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Abstract

In this paper, we are interested in understanding the complexity of computing multilinear polyno-
mials using depth four circuits in which the polynomial computed at every node has a bound on the
individual degree of r > 1 with respect to all its variables (referred to as multi-r-ic circuits). The goal
of this study is to make progress towards proving superpolynomial lower bounds for general depth
four circuits computing multilinear polynomials, by proving better bounds as the value of r increases.

Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four
arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on

nO(1) variables and degree d = o(n), must have size at least
(
n
r1.1

)Ω(√d
r

)
when r is o(d) and is

strictly less than n1.1. This bound however deteriorates as the value of r increases. It is a natural
question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a
bound that holds for a larger regime of r.

In this paper, we prove a lower bound which does not deteriorate with increasing value of r, albeit
for a specific instance of d = d(n) but for a wider range of r. Formally, for all large enough integers
n and a small constant η, we show that there exists an explicit polynomial on nO(1) variables and
degree Θ(log2 n) such that any depth four circuit of bounded individual degree r 6 nη must have
size at least exp

(
Ω
(
log2 n

))
. This improvement is obtained by suitably adapting the complexity

measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by
the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).

1 Introduction

One of the major focal points in the area of algebraic complexity theory is to show that certain polynomials
are hard to compute syntactically. Here, the hardness of computation is quantified by the number of
algebraic operations that are needed to compute the target polynomial. Instead of the standard Turing
machine model, we consider arithmetic circuits and formulas as models of computation for polynomials.

Arithmetic circuits are directed acyclic graphs such that the leaf nodes are labeled by variables
or constants from the underlying field, and every non-leaf node is labeled either by a + or ×. Every
node computes a polynomial by operating on its inputs with the operand given by its label. The
flow of computation flows from the leaf to the output node. We refer the readers to the standard
resources [SY10, Sap19] for more information on arithmetic formulas and arithmetic circuits.

Valiant conjectured that the permanent polynomial does not have polynomial sized arithmetic
circuits [Val79]. Working towards that conjecture, we aim to prove superpolynomial circuit size lower
bounds. However, the best known circuit size lower bound is Ω(n logn), for a power symmetric
polynomial, due to Baur and Strassen [Str73, BS83], and, the best known formula size lower bound is
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Ω(n2), due to Kalorkoti [Kal85]. Owing to the slow progress towards proving general circuit/formula
lower bounds, it is natural to study some restricted classes of arithmetic circuits and formulas.

Since most of the polynomials of interest such as determinant, permanent, etc., are multilinear
polynomials, it is natural to consider the restriction where every intermediate computation is in fact
multilinear. Due to the phenomenal work in the last two decades [NW97, Raz06, Raz04, RY08, RY09,
HY11, RSY08, AKV18, CLS19, CELS18, CLS18], the complexity of multilinear formulas and circuits is
better understood than that of general formulas and circuits.

Backed by this progress it is natural to try to extend these results to a circuit model where the
individual degree with every variable in the polynomial computed at every node in the circuit is at most
r. We refer to these circuits as multi-r-ic circuits. When r = 1, the circuit model is multilinear.

Kayal and Saha [KS17a] first studied multi-r-ic circuits of depth three and proved exponential lower
bounds. Kayal, Saha and Tavenas [KST18] have extended this and proved exponential lower bounds
at depth three and depth four. These circuits that were considered were syntactically multi-r-ic . That
is, at every product node, every variable appears in the support of at most r many operands, and the
sum total of the individual degrees over all the operands is also at most r. Henceforth, all the multi-r-ic
depth four circuits that we talk about shall be syntactically multi-r-ic .

Recently, Kumar, Oliviera and Saptharishi [KdOS19] showed that there is a chasm1 for multi-r-ic
circuits too. Formally, they showed that any polynomial sized (say nc for a fixed constant c) multi-r-ic
circuit of arbitrary depth computing a polynomial on n variables can be depth reduced to a syntactical
multi-r-ic depth four circuits of size exp(O(

√
rn logn)). This provides us a motivation to study multi-r-ic

depth four circuits and prove strong lower bounds against them.

Kayal, Saha and Tavenas [KST18] proved an exponential size lower bound against multi-r-ic depth
four circuits computing the iterated matrix multiplication polynomial. They achieved this bound using a
measure that is inspired by the method Shifted Partial Derivatives [Kay12, GKKS14] and the method of
Skew Partial Derivatives [KNS16]. They referred to this new technique as the method of Shifted Skew
Partial Derivatives. Hegde and Saha [HS17] improved upon [KST18] and showed a near-optimal size
lower bound. However, the best known lower bounds are for polynomials that are not multilinear but
multi-r-ic.

Motivation for this work

Raz and Yehudayoff [RY09] showed a lower bound of exp(Ω
(√
d logd

)
) against multilinear depth

four circuits which compute a multilinear polynomial over n variables and degree d� n (cf. [KST18,

Footnote 9]). Kayal, Saha and Tavenas [KST18] have shown a lower bound of
(
n
r1.1

)Ω(√d
r

)
for a

multilinear polynomial over nO(1) variables and degree d that is computed by a multi-r-ic depth four
circuit. This lower bound deteriorates as the value of r increases. Further, it is superpolynomial only
when r is o(d) and is strictly less than n1.1. This raises a natural question if the dependence on r could
be improved upon.

In this work, we show that for a certain regime of d, we can prove a lower bound that does not
deteriorate as the value of r increases.

1Agrawal and Vinay [AV08], Koiran [Koi12], and Tavenas [Tav15] showed that any general circuit can be depth reduced to
a depth four circuit of non-trivial size.
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Theorem 1 (Main Theorem). Let n be a large enough integer. There exist a constant η ∈ (0, 1) and
an explicit nO(1)-variate, degree Θ(log2 n) multilinear polynomial Qn such that for all r 6 nη, any
syntactically multi-r-ic depth four circuit computing Qn must have size exp

(
Ω(log2 n)

)
.

By substituting for d = Θ(log2 n) into the bound from [KST18], we get that their bound evaluates

to n
Ω
(

logn√
r

)
. Note that this bound is superpolynomial only when r = o(log2 n). Thus our lower bound

is quantitatively better in this regime of parameters. Further, we show a lower bound in the regime of
parameters where r > d, for which Kayal, Saha and Tavenas [KST18] do not.

If we can show superpolynomial size lower bounds against multi-r-ic depth four circuits for r = nc

for any constant c, then we indeed have superpolynomial circuit size lower bounds against depth four
circuits. We believe that by building on the work of [KST18, HS17], Theorem 1 is a step towards that
direction.

The explicit polynomial that we consider can be expressed as a p-projection of Iterated Matrix
Multiplication polynomial IMMñ,d̃ (where ñ = nO(1) and d̃ = Θ(log2 n)) and thus Theorem 1 implies

a lower bound of nΩ(logn) for Iterated Matrix Multiplication polynomial as well.

Corollary 2 (Informal). Let n and d be integers such that d = Θ(log2 n). There exists a constant
η ∈ (0, 1) such that for all r 6 nη, any syntactically multi-r-ic depth four circuit computing Iterated Matrix
Multiplication polynomial (IMMn,d) must have size at least exp

(
Ω(log2 n)

)
.

Since Iterated Matrix Multiplication polynomial can be expressed as a p-projection of determinant
polynomial [Sap19, Theorem 3.6], we get a similar lower bound for the determinant polynomial too.

Corollary 3 (Informal). LetN be a large integer. There exists a constant η ∈ (0, 1) such that for all r 6 Nη

any syntactically multi-r-ic depth four circuit computing the determinant polynomial over N×N matrix
must have size at least exp

(
Ω̃(log2N)

)
.

Proof overview:

A depth four circuit computes polynomials that can be expressed as sums of products of polynomials.
Analogous to the work of Fournier et al. [FLMS15], and Kumar and Saraf [KS17b], we first consider
multi-r-ic depth four circuits of low bottom support2 and prove lower bounds against them.

Let T1, T2, . . . , Ts be the terms corresponding to the product gates feeding into the output sum gate.
The output polynomial is the sum of terms T1, T2, . . . , Ts. Note that each of these Ti’s is a product
polynomials Qi,j such that every monomial in these Qi,j’s depends on a small set of variables (say µ
many). One major observation at this point is to see that there can at most be N · r many factors in any
of the Ti’s.

Kayal et al. [KST18] observed that the measure of shifted partial derivates [KSS14, FLMS15] does
not yield any non-trivial lower bound if the number of factors is much larger than the number of variables
itself. They worked around this obstacle by defining a hybrid complexity measure (refered to as Shifted
Skew Partial Derivatives) where they first split all the variables into two disjoint sets Y and Z such that
|Y|� |Z|. They then considered some low order partial derivatives with respect to monomials in F[Y]

2That is, all the product gates at the bottom are supported on small set of variables.
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and subsequently set all the variables from Y to zero in the partial derivatives obtained. This effectively
reduces the number of factors in any summand in a partial derivatives of T to at most |Z| · r. They then
shift these polynomials by monomials in variables from Z and look at the dimension of the F-linear span
of the polynomials thus obtained.

This measure gave them a size lower bound of
(
n
r1.1

)Ω(√d
r

)
against multi-r-ic depth four circuits

computing an explicit polynomial on nO(1) variables and degree d = o(n) when r = o(d). To improve
the dependence on r in the lower bound, we consider a variant of Shifted Skew Partial Derivatives that we
call Projected Shifted Skew Partial Derivatives. Here, we project down the space of Shifted Skew Partials
and only look at the multilinear terms. Since the polynomial of interest is multilinear, it makes sense
to only look at the multilinear terms obtained after the shifts of the skew partial derivatives. This is
analogous to the method employed by Kayal et al. [KLSS17] to prove exponential size lower bounds for
homogeneous depth four circuits, through the measure of Projected Shifted Partial Derivatives.

We first show that the dimension of Projected Shifted Skew Partial derivatives is not too large for
small multi-r-ic depth four circuits of low bottom support. We then show that there exists an explicit
polynomial whose dimension of Projected Shifted Skew Partial derivatives is large and thus cannot be
computed by small multi-r-ic depth four circuits. We then lift this result to multi-r-ic depth four circuits
for a suitable set of parameters.

2 Preliminaries

Notation:

• For a polynomial f ∈ F[Y t Z], we use ∂=kY (f) to refer to the space of partial derivatives of order k
of f with respect to monomials of degree k in Y.

• We use z=` and z6` to refer to the set of all the monomials of degree equal to ` and at most `,
respectively, in variables from Z.

• We use z6`ML to refer to the set of all the multilinear monomials of degree at most ` in variables
from Z.

• We use z6`NonML to refer to the set of all the non-multilinear monomials of degree at most ` in
variables from Z.

• For sets A and B of polynomials, we define the product A ·B to be the set {f · g | f ∈ A and g ∈ B}.

• For a polynomial f, vars(f) is the set of variables that the polynomial f depends on.

• For a gate u in a circuit, we use fu to denote the polynomial computed at gate u.

• For a polynomial f in F[Y t Z], we define Z-support of f to be equal to vars(f) ∩ Z and Z-support
size of f to be equal to |vars(f) ∩ Z|.

Definition 4 (Depth four circuits). A depth four circuit (denoted by ΣΠΣΠ) over a field F and variables
{x1, x2, . . . , xn} computes polynomials which can be expressed in the form of sums of products of polynomials.
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That is,
s∑
i=1

di∏
j=1

Qi,j(x1, . . . , xn) for some di’s. A depth four circuit is said to have a bottom support

of t (denoted by ΣΠΣΠ{t}) if it is a depth four circuit and all the monomials in every polynomial Qi,j
(j ∈ [di], i ∈ [s]) depend on at most t variables.

Definition 5 (multi-r-ic circuits). Let r = (r1, r2, · · · , rn). An arithmetic circuit C is said to be a syntacti-
cally multi-r-ic circuit if

• for all gates v ∈ C and i ∈ [n], degxi(fv) 6 ri,

• for all product gates u ∈ C such that u = u1×u2× · · · ×ut, each variable xi can appear in at most
ri many of the ui’s (i ∈ [t]) and the total formal degree with respect to every variable xi (i ∈ [n])
over the polynomials computed at u1,u2, · · · ,ut, is bounded by ri, i.e.

∑
j∈[t] degxi(fuj) 6 ri for

all i ∈ [n].

If r = (r, r, · · · , r), then we simply refer to them as multi-r-ic circuits.

Complexity Measure: We shall now describe our complexity measure which we shall henceforth
refer to as Dimension of Projected Shifted Skew Partial Derivatives. This is a natural extension of the
Dimension of Shifted Skew Partial Derivatives as used by [KST18].

This formulation is analogous to the work of [KLSS14] where they study a shifted partials inspired
measure called Shifted Projected Partial derivatives and then [KLSS17] where they study Projected Shifted
Partial derivatives.

Since the polynomial of interest is multilinear, it does make sense for us to only look at those shifts
of the partial derivatives that maintain multilinearity. At the same time, since the individual degree of
the intermediate computations in the multi-r-ic depth four circuit is large and non-multilinear terms
cancel out to generate the multilinear polynomial, we can focus on the multilinear terms generated after
the shifts by projecting our linear space of polynomials down to them. We describe this process formally,
below.

Let the variable set X be partitioned into two fixed, disjoint sets Y and Z such that |Y| is much larger
than |Z|, |Y| � |Z|. Let σY : F[Y t Z] 7→ F[Z] be a linear map such that for any polynomial f(Y,Z),
σY(f) ∈ F[Z] is obtained by setting every variable from Y to zero and leaving the variables from Z

untouched. Let mult : F[Z] 7→ F[Z] be a linear map such that for any polynomial g(Z), mult(g) ∈ F[Z]
is obtained by setting the coeficients of all the non-multilinear monomials in g to 0 and leaving the rest
untouched.

Recall that we use ∂=kY f to denote the set of all partial derivatives of f of order k with respect to
degree k monomials over variables just from Y, and z6` · σY(∂=kY f) to refer to the set of polynomials
obtained by multiplying each polynomial in σY(∂=kY f) with monomials of degree at most ` in Z variables.
We will now define our complexity measure, Dimension of Projected Shifted Skew Partial Derivatives
with respect to parameters k and ` (denoted by Γk,`) as follows.

Γk,`(f(Y,Z)) = dim
(
F-span

{
mult

(
z6` · σY

(
∂=kY f

))})
This is a natural generalization of Shifted Skew Partial Derivatives measure defined by Kayal, Saha

and Tavenas [KST18]. The following proposition is easy to verify.
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Proposition 6 (Sub-additivity). Let k and ` be integers. Let the polynomials f, f1, f2 be such that f = f1+f2.
Then, Γk,`(f) 6 Γk,`(f1) + Γk,`(f2) .

Monomial Distance: We recall the following definition of distance between monomials from [CM19].

Definition 7 (Definition 2.7, [CM19]). Let M1,M2 be two monomials over a set of variables. Let S1 and
S2 be the multisets of variables corresponding to the monomials M1 and M2 respectively. The distance
dist(M1,M2) between the monomials M1 and M2 is the min{|S1|− |S1 ∩ S2|, |S2|− |S1 ∩ S2|} where the
cardinalities are the order of the multisets.

For example, let M1 = x2
1x2x

2
3x4 and M2 = x1x

2
2x3x5x6. Then S1 = {x1, x1, x2, x3, x3, x4}, S2 =

{x1, x2, x2, x3, x5, x6}, |S1| = 6, |S2| = 6 and dist(M1,M2) = 3. It is important to note that two distinct
monomials could have distance 0 between them if one of them is a multiple of the other and hence the
triangle inequality does not hold.

For two vectors a, b, we use HammingDist(a, b) to refer to the Hamming distance between these
vectors a and b.

The following beautiful lemma (from [GKKS14]) is key to the asymptotic estimates required for the
lower bound analyses.

Lemma 8 (Lemma 6, [GKKS14]). Let a(n), f(n),g(n) : Z>0 → Z>0 be integer valued functions such
that (f+ g) = o(a). Then,

ln
(a+ f)!
(a− g)!

= (f+ g) lna±O
(
(f+ g)2

a

)
We need the following strengthening of the Principle of Inclusion and Exclusion, due to Kumar and

Saraf [KS17b].

Lemma 9 (Strong Inclusion-Exclusion, Lemma 3.8 [KS17b]). Let W1,W2, · · · ,Wt be subsets of a fi-
nite set W. For a parameter λ > 1, let

∑
i,j∈[t]
i 6=j

∣∣Wi ∩Wj∣∣ 6 λ
∑
i∈[t] |Wi| . Then,

∣∣∪i∈[t]Wi∣∣ >

1
4λ

∑
i∈[t] |Wi| .

3 Multi-r-ic Depth Four Circuits of Low Bottom Support

Let C be a multi-r-ic depth four circuit of size s and bottom support at most µ. For some parameters k
and ` which we shall fix later, we shall show that Γk,`(C) is not too large if multi-r-ic depth four circuit
C is of small size and is of low bottom support.

3.1 Upper bound on Γk,`(C)

Recall that C can be expressed a sum of at most s many products of polynomials T1 + · · ·+ Ts where
each Ti is a syntactically multi-r-ic product of polynomials of low monomial support.
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We shall first prove a bound on Γk,`(Ti) for an arbitrary i ∈ [s] and derive a bound on Γk,`(C) by
using sub-additivity of the measure (cf. Proposition 6).

Let T be a syntactic multi-r-ic product of polynomials P1(Y,Z) · P2(Y,Z) · . . . · PD(Y,Z) · R(Y) such
that all the monomials in every polynomial factor in T depend on at most µ many variables. We shall
first pre-process the product T by doing the following procedure.

Preprocessing: Repeat this process until all but at most one of the factors in T (except R) have a
Z-support size of at least µ2 .

1. Pick two factors Pi1 and Pi2 from T such that R /∈ {Pi1 ,Pi2} and they have the smallest Z-support
size amongst all the factors but R in T .

2. If both of them have Z-support size strictly less than µ
2 , merge these factors to obtain a new factor

P ′. Else, stop.

3. Update the term T by replacing the factors Pi1 and Pi2 with P ′. Repeat.

In the procedure described above, it is important to note that post merging, the monomials in the
product polynomial will depend on at most µ many variables from Z as the factors being merged had
Z-support size strictly less than µ

2 each. Henceforth, W.L.O.G we shall assume that every product gate at
the top, in multi-r-ic depth four circuit of low bottom support, is in the processed form.

Let T = Q1(Y,Z) ·Q2(Y,Z) · . . . ·Qt(Y,Z) · R(Y) be the product obtained after the preprocessing.
All but at most one of the Qi’s have a Z-support size of at least µ2 . The total Z-support size is at most
|Z| r = mr since T is a syntactically multi-r-ic product. Thus,

(t− 1) · µ
2
6 mr =⇒ t 6

2mr
µ

+ 1.

Lemma 10. Let n,k, r, ` and µ be positive integers such that `+ kµ < m
2 . Let T be a processed syntactic

multi-r-ic product of polynomialsQ1(Y,Z)·Q2(Y,Z)·. . .·Qt(Y,Z)·R(Y) such that all monomials in each of
theQi’s (i ∈ [t]) depend on at most µmany variables from Z. Then, Γk,`(T) is at most

(
t
k

)
·
(
m
`+kµ

)
·(`+kµ).

Before presenting the proof of Lemma 10, we shall first use it to show an upper bound on the
dimension of the space of Projected Shifted Skew Partial derivatives of a depth four multi-r-ic circuit of
low bottom support.

Lemma 11. Letn,k, r, ` andµ be positive integers such that `+kµ < m
2 . LetC be a processed syntactic multi-

r-ic depth four circuit of bottom support µ and size s. Then, Γk,`(C) is at most s ·
( 2mr
µ +1
k

)
·
(
m
`+kµ

)
· (`+kµ).

Proof. From the above discussion, we get that C can be expressed as
∑s
i Ti such that each Ti is a

processed syntactically multi-r-ic product of polynomials, all of whose monomials depend on at most
µ many variables from Z. From Proposition 6, we get that Γk,`(C) 6

∑s
i=1 Γk,`(Ti). From the afore

mentioned discussion we know that the number of factors in Ti with non-zero Z-support size is at most(
2mr
µ + 1

)
. From Lemma 10, we get that Γk,`(Ti) is at most

( 2mr
µ +1
k

)
·
(
m
`+kµ

)
· (`+ kµ). By putting all

of this together, we get that

Γk,`(C) 6 s ·
(2mr

µ + 1

k

)
·
(

m

`+ kµ

)
· (`+ kµ) .
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We now present the proof of Lemma 10 to complete the picture.

Proof of Lemma 10. We will first show by induction on k, the following for the set of kth order partial
derivatives of T with respect to degree k monomials over variables from Y.

∂=kY T ⊆F-span




⋃
S∈( [t]

t−k)

{(∏
i∈S

Qi(Y,Z)

)
· z6kµML · F[Y]

}
⋃

⋃
S∈( [t]

t−k)

{(∏
i∈S

Qi(Y,Z)

)
· z6krµNonML · F[Y]

}


The base case of induction for k = 0 is trivial as T is already in the required form. Let us assume the
induction hypothesis for all derivatives of order < k. That is, ∂=k−1

Y T can be expressed as a linear
combination of terms of the form

h(Y,Z) =

(∏
i∈S

Qi(Y,Z)

)
· h1(Z) · h2(Y)

where S is a set of size t− (k− 1), h1(Z) is a structured polynomial in F[Z] of degree at most (k− 1)rµ,
and h2(Y) is some polynomial in F[Y]. That is, h1(Z) can be expressed as a linear combination of
multilinear monomials of degree at most (k− 1)µ, and non-multilinear monomials of degree at most
(k− 1)rµ over F[Z].

For some u ∈ [|Y|] and some fixed i0 in S,

∂h(Y,Z)
∂yu

=

∑
j∈S

∏
i∈S
i 6=j

Qi(Y,Z)

 · ∂Qj(Y,Z)
∂yu

· h1(Z) · h2(Y)

+

∏
i∈SQi

Qi0
·Qi0(Y,Z) · h1(Z) ·

∂h2(Y)

∂yu

where the first summand on the right hand side of the above equation lies in the subspace

F-span
{(∏

i∈S
i 6=j

Qi(Y,Z)
)
· ∂Qj(Y,Z)

∂yu
· h1(Z) · F[Y] : j ∈ [S]

}
and the second summand in the same

equation, lies in the subspace F-span
{∏

i∈SQi
Qi0

·Qi0(Y,Z) · h1(Z) · F[Y]
}

.

Note that ∂Qj(Y,Z)
∂yu

and Qi0 are polynomials such that every monomial in these depends on at most
µ many variables from Z. These monomials can be split into two sets, those that are multilinear and
those that are strictly non-multilinear, over the variables from Z.

∂h(Y,Z)
∂yu

∈ F-span


⋃

T∈( S
|S|−1)

{(∏
i∈T

Qi(Y,Z)

)
· z6µML · h1(Z) · F[Y]

}
⋃
F-span


⋃

T∈( S
|S|−1)

{(∏
i∈T

Qi(Y,Z)

)
· z6rµNonML · h1(Z) · F[Y]

}
8



In the above expression, the contribution from the variables in Y, to the monomials in ∂Qj(Y,Z)
∂yu

and Qi0
gets absorbed into F[Y].

Recall the fact that h1(Z) is a linear combination of multilinear monomials of degree at most (k−1)µ,
and non-multilinear monomials of degree at most (k− 1)rµ. Thus, we get that,

∂h(Y,Z)
∂yu

∈ F-span


⋃

T∈( [t]
t−k)

{(∏
i∈T

Qi(Y,Z)

)
· z6kµML · F[Y]

}
⋃
F-span


⋃

T∈( [t]
t−k)

{(∏
i∈T

Qi(Y,Z)

)
· z6krµNonML · F[Y]

} .

From the discussion above we know that any polynomial in ∂=kY (T) can be expressed as a linear
combination of polynomials of the form ∂h

∂yu
. Further every polynomial of the form ∂h

∂yu
belongs to the

set

W = F-span


⋃

T∈( [t]
t−k)

{(∏
i∈T

Qi(Y,Z)

)
· z6kµML · F[Y]

}
⋃
F-span


⋃

T∈( [t]
t−k)

{(∏
i∈T

Qi(Y,Z)

)
· z6krµNonML · F[Y]

} .

Thus, we get that ∂=kY T is a subset of W. This completes the inductive argument.

From the afore mentioned discussion, we can now derive the following expressions.

σY
(
∂=kY T

)
⊆F-span


⋃

S∈( [t]
t−k)

{(∏
i∈S

σY(Qi)

)
· z6kµML

}
⋃
F-span


⋃

S∈( [t]
t−k)

{(∏
i∈S

σY(Qi)

)
· z6krµNonML

} .

It is easy to see that this inclusion holds under shift by monomials of degree at most ` over variables
from Z.

z6` · σY
(
∂=kY T

)
⊆F-span


⋃

S∈( [t]
t−k)

{(∏
i∈S

σY(Qi)

)
· z6`+kµML

}
⋃
F-span


⋃

S∈( [t]
t−k)

{(∏
i∈S

σY(Qi)

)
· z6`+krµNonML

} .

By taking a multilinear projection of the elements on both sides, we get that

F-span
{

mult
(
z6` · σY

(
∂=kY T

))}
⊆ F-span


⋃

S∈( [t]
t−k)

{
mult

((∏
i∈S

σY(Qi)

)
· z6`+kµML

)}
9



⊆ F-span


⋃

S∈( [t]
t−k)

{(
mult

(∏
i∈S

σY(Qi)

))
· z6kµ+`ML

} .

Thus we get that dim
(
F-span

{
mult

(
z6` · σY(∂=kY T)

)})
is at most

dim

F-span


⋃

S∈( [t]
t−k)

{(
mult

(∏
i∈S

σY(Qi)

))
· z6kµ+`ML

}


6 dim

F-span


⋃

S∈( [t]
t−k)

{
mult

(∏
i∈S

σY(Qi)

)}
 · dim

(
F-span

{
z6kµ+`ML

})

6

(
t

t− k

)
·
kµ+`∑
i=0

(
m

i

)
6

(
t

k

)
·
(

m

`+ kµ

)
· (`+ kµ) (Since `+ kµ < m/2).

3.2 Polynomial family that is hard for multi-r-ic depth four circuits of low bottom sup-
port

Let n,α,k be positive integers and N0 be equal to k(n2 + 2αn). Let Y and Z be two disjoint sets of
variables defined as follows. For all i ∈ [k], let

Yi =
{
y
(i)
a,b | a,b ∈ [n]

}
Zi =

{
z
(i,1)
a,c | a ∈ [n] and c ∈ [α]

}⋃{
z
(i,2)
c+α,b | b ∈ [n] and c ∈ [α]

}
.

Then,

Y =
⋃
i∈[k]

Yi and Z =
⋃
i∈[k]

Zi .

Let the variable set X = {x1, . . . , xN0} be equal to Y t Z under some suitable renaming. We define
the polynomial family fn,α,k(X) = fn,α,k(Y,Z) as follows (exactly as it was defined in [KST18]).

fn,α,k(Y,Z) =
k∏
i=1

gi(Yi,Zi) where gi(Yi,Zi) =
∑

a,b∈[n]

y
(i)
a,b

∏
c∈[α]

z
(i,1)
a,c z

(i,2)
c+α,b.

It is easy to see that |Y| is n2k and |Z| is 2αnk. We shall henceforth use m to refer to |Z|. Thus,
N0 = |X| = |Y| + |Z| = k(n2 + 2αn). The degree of the polynomial fn,α,k (denoted by d) is equal to
(2αk+ k).

The following lemma follows from the generalized Hamming bound [GRS19, Section 1.7].

10



Lemma 12. For every ∆0 < k, there is a subset P∆0 ⊂ [n]2k of size n
2k−∆0

∆0(2k
∆0
)

such that for all (a, b) 6=

(a ′, b ′) ∈ P∆0 , HammingDist((a, b), (a ′, b ′)) > ∆0.

Proof. There are n2k elements in [n]2k. Note that the volume of a Hamming ball of radius ∆0 < k over
vectors of length 2k is at most

∑∆0
i=0

(2k
i

)
·ni 6 ∆0

(2k
∆0

)
n∆0 . That is, there are at most ∆0

(2k
∆0

)
n∆0 many

vectors (a, b) that are at most ∆0-far from its center. Thus, there exists a packing of these Hamming balls
in [n]2k with at least n

2k−∆0

∆0(2k
∆0
)

many balls. The centers of these balls are at least 2∆0 far away and thus at

least ∆0 far away, from each other. Set P∆0 to be the collection of centers of these hamming balls.

Remark: Lemma 12 can be optimised in the above lemma to obtain a set P of size 2n2k−0.5∆0

∆0( 2k
0.5∆0

)
by

considering balls of radius 0.5∆.

Let ∂k(a,b)fn,α,k =
∂kfn,α,k

y
(1)
a1,b1

y
(2)
a2,b2

···y(k)
ak ,bk

. It is important to note that for any choice of (a, b) ∈ [n]2k,

we get that ∂k(a,b)fn,α,k is a multilinear monomial of degree d− k = 2αk, over just the variables from Z.

Lemma 13. Let (a, b), (a ′, b ′) ∈ [n]2k be such that HammingDist((a, b), (a ′, b ′)) > ∆0. Then

dist
(
∂k(a,b)fn,α,k,∂k(a ′,b ′)fn,α,k

)
> α∆0.

Proof. For a vector (a, b) ∈ [n]2k, ∂kfn,α,k

y
(1)
a1,b1

y
(2)
a2,b2

···y(k)
ak ,bk

=
∏k
i=1
∏
c∈[α] z

(i,1)
ai,c · z

(i,2)
c+α,bi

. For all i ∈ [k], let

h
(i)
(a,b) =

∏
c∈[α] z

(i,1)
ai,c · z

(i,2)
c+α,bi

. Note that for some i ∈ [k], if ai 6= a ′i, dist
(
h
(i)
(a,b),h

(i)
(a ′,b ′)

)
is at least α.

Similar is the case when bi 6= b ′i. Thus, if HammingDist((a, b), (a ′, b ′)) > ∆0, there are at least∆0 many

locations such that either ai 6= a ′i or bi 6= b ′i and hence dist
(
∂k(a,b)fn,α,k,∂k(a ′,b ′)fn,α,k

)
> α∆0.

For any ∆0 < k, let P∆0 be the set of vectors obtained from Lemma 12. Let ∂=kP∆0
fn,α,k be defined to

be the set
{
∂k(a,b)fn,α,k =

∂kfn,α,k

y
(1)
a1,b1

y
(2)
a2,b2

···y(k)
ak ,bk

| (a, b) ∈ P∆0

}
. By combining this with Lemma 13, we

get that the pairwise distance between any two monomials in the set ∂=kP∆0
fn,α,k is at least α∆0. This

can formally be summarized as follows.

Lemma 14. Let ∆0,n,α,k be integers. Let P∆0 be a subset of [n]2k obtained from Lemma 12 such that
for any (a, b) 6= (a ′, b ′) ∈ P∆0 , HammingDist((a, b), (a ′, b ′)) > ∆0. Then ∂=kP∆0

(fn,α,k) is a set of
monomials of degree (d− k) such that for any pair of monomials Mi 6=Mj in it, dist(Mi,Mj) > α∆0.

We shall now show that the cardinality of the set mult
(

z=` · σY
(
∂=kP∆0

fn,α,k

))
is large enough for

a suitable setting of parameters α, ∆0 and k.

Lemma 15. For ε and δ be some constants in (0, 1). Let n be an asymptotically large integer. Let
m,k,d,∆0,α, ` and µ be such that

• m = 2αnk,

11



• d = 2αk+ k,

• `+ kµ < m
2 ,

• (d− k)2 = o(m),

• α2∆2
0 = o(m),

• ∆0 = δk and

• ` = m
2 (1 − ε).

Then for all α 6 0.98·(2−δ) logn
δ log( 2

1−ε)
, we get that

∣∣∣mult
(

z=` · σY
(
∂=kP∆0

fn,α,k

))∣∣∣ > n(2−δ)k
(
m−(d−k)

`

)
4δk

(2k
δk

)
where P∆0 is a set obtained from Lemma 12.

Proof. Let M1,M2, . . . ,Mt be the monomials in the set ∂=kP∆0
(fn,α,k), over variables from Z. From

Lemma 14, we get that dist(Mi,Mj) > ∆ = α∆0 for all i 6= j. Further, σY(∂=kP∆0
(fn,α,k)) =

∂=kP∆0
(fn,α,k).

LetM be the set of all mutlilinear monomials of the formMi ·M ′ over variables from Z where i ∈ [t]
and M ′ is a multilinear monomial of degree `. It is important to note that the setM now corresponds

to the set mult
(

z=` · σY
(
∂=kP∆0

fn,α,k

))
.

For all i ∈ [t], let Bi be the set of multilinear monomials of the formMi ·M ′ whereMi is a monomial

from σY

(
∂=kP∆0

fn,α,k

)
andM ′ is a multilinear monomial of degree ` over variables from Z and is disjoint

from Mi. From the aforementioned discussion, it follows that |M | =
∣∣∪ti=1Bi

∣∣.
For all i ∈ [t], deg(Mi) is equal to d− k (from Lemma 14). There are

(
m−(d−k)

`

)
many monomials

M ′ over variables from Z, that are disjoint from Mi. Thus the cardinality of the set Bi is equal to(
m−(d−k)

`

)
.

For any i, j ∈ [t] such that i 6= j, consider two monomials M̂i =Mi ·M ′ and M̂j =Mj ·M ′′ from
Bi and Bj respectively. For M̂i and M̂j to be identical, M ′ must contain variables from Mj \Mi and
similarly M ′′ must contain variables from Mi \Mj. The rest of the at most (` − ∆) many variables
should be the same both in M ′ and M ′′ and thus in M̂i and M̂j. The number of multilinear monomials
M ∈ Bi ∩ Bj, over variables from Z is at most

(
m−(d−k)−∆

`−∆

)
. Thus, for all i, j ∈ [t] such that i 6= j,∣∣Bi ∩ Bj∣∣ 6 (m−(d−k)−∆

`−∆

)
. This inequality implicitly uses the fact that (d − k)2 = o(m), ∆2 = o(m)

and ` = m
2 (1 − ε).

Thus,

t∑
i=1

|Bi| = t

(
m− (d− k)

`

)
and

t∑
i 6=j∈[t]

∣∣Bi ∩ Bj∣∣ 6 t2

2

(
m− (d− k) − ∆

`− ∆

)
.

12



Let T1 = t
(
m−(d−k)

`

)
and T2 = t2

2

(
m−(d−k)−∆

`−∆

)
. Let λ = T2

T1
. We get that

∑
i 6=j∈[t]

∣∣Bi ∩ Bj∣∣ 6
T2 = λT1 = λ

∑
i∈[t] |Bi|. We shall now show that λ = T2

T1
> 1 for all α 6 0.98(2−δ) logn

δ log( 2
1−ε)

. Once we prove

that λ > 1, we can then invoke Lemma 9 and show that
∣∣∪i∈[t]Bi∣∣ > T1/4.

By simplifying the expression for T2
T1

, we get the following.

T2

T1
=
t2

2

(
m−(d−k)−∆

`−∆

)
t
(
m−(d−k)

`

)
=
t

2
· (m− (d− k) − ∆)!
(`− ∆)!(m− `− (d− k))!

· (m− `− (d− k))!`!
(m− (d− k))!

=
t

2
· (m− (d− k) − ∆)!

(m− (d− k))!
· `!
(`− ∆)!

=
t

2
· (m− (d− k) − ∆)!

m!
· m!
(m− (d− k))!

· `!
(`− ∆)!

≈ O(1) · t · m
(d−k) · `∆

m(d−k)+∆
(Using Lemma 8)

= O(1) · t ·
(
`

m

)∆
.

The math block above crucially uses the fact that ∆2 = o(m) = o(`) and (d − k)2 = o(m) while
invoking Lemma 8. The error term from invoking Lemma 8 has been absorbed by the constant 2 to
give rise to O(1) factor. For some suitably fixed constants δ and ε, let ∆0 be set to δk and ` be set to
m
2 (1 − ε). Recall that for a fixed ∆0, t = n2k−∆0

∆0(2k
∆0
)

and ∆ = α∆0 = δαk.

For the sake of contradiction, let us assume that T2
T1
< 1. Then,

O(1) · n
2k−∆0

∆0
(2k
∆0

) · ( `
m

)∆
< 1

n2k−∆0 < c0 · ∆0

(m
`

)∆(2k
∆0

)
n2k−∆0 < c0 · ∆0

(
2

1 − ε

)∆(2ek
∆0

)∆0

n(2−δ)k < c0 · ∆0

(
2

1 − ε

)αδk(2ek
δk

)δk
(2 − δ)k logn < log (c0∆0) + αδk log

(
2

1 − ε

)
+ δk log

(
2e
δ

)
where c−1

0 is a constant hidden under the O(1) in the first line of the math block. Hence,

α >
(2 − δ) logn− δ log

(
2e
δ

)
− 1
k log (c0 · ∆0)

δ log
(

2
1−ε

) .

13



This contradicts our assumption on α for all asymptotically large n. Thus, we get that for all α 6
0.98 · (2−δ) logn

δ log( 2
1−ε)

,

∣∣∣mult
(

z=` · σY
(
∂=kP∆0

fn,α,k

))∣∣∣ = |M | >
T1

4
=
t
(
m−(d−k)

`

)
4

=
n2k−∆0

(
m−(d−k)

`

)
4∆0

(2k
∆0

) =
n(2−δ)k

(
m−(d−k)

`

)
4δk

(2k
δk

) .

Lemma 16. Let δ and ε be any constants in (0, 1). Let n be an asymptotically large integer. Letm,k,d,α, `
and µ be such that

• m = 2αnk,

• d = 2αk+ k,

• `+ kµ < m
2 ,

• (d− k)2 = o(m),

• ∆0 = δk and

• ` = m
2 (1 − ε).

Then for all α 6 0.98 · (2−δ) logn
δ log( 2

1−ε)
and ε, δ ∈ (0, 1), we get

Γk,`(fn,α,k) >
n(2−δ)k

(
m−(d−k)

`

)
4δk

(2k
δk

) .

Proof. Recall that mult
(

z=` · σY
(
∂=kP∆0

fn,α,k

))
is a set of multilinear monomials over just the variables

from Z and thus,∣∣∣mult
(

z=` · σY
(
∂=kP∆0

fn,α,k

))∣∣∣ 6 dim
(
F-span

{
mult

(
z=` · σY

(
∂=kP∆0

fn,α,k

))})
.

Since ∂=kP∆0
(fn,α,k) ⊆ ∂=kY (fn,α,k) and z=` ⊆ z6`, we get that

dim
(
F-span

{
mult

(
z=` · σY

(
∂=kP∆0

fn,α,k

))})
6 dim

(
F-span

{
mult

(
z6` · σY

(
∂=kY fn,α,k

))})
= Γk,`(fn,α,k) .

Putting this together with Lemma 15 we get that Γk,`(fn,α,k) >
n(2−δ)k(m−(d−k)

` )
4δk(2k

δk)
.
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3.3 Putting it all together

We shall now prove a size lower bound against depth four multi-r-ic circuits of low bottom support that
compute fn,α,k by instantiating α to a suitable value that is smaller than 0.98·(2−δ) logn

δ log( 2
1−ε)

for some fixed

constants δ and ε.

Lemma 17. There exist constants δ, ε and ν in (0, 1) such that (1−δ−ν)
2 log( 2

1+ε)
6 0.98(2−δ)
δ log( 2

1−ε)
.

Proof. Proof by instantiation. Let ε = 0.1, δ = 0.1 and ν = 0.85.

• (1 − δ− ν) = 0.05,

• 2
1+ε ≈ 1.818,

• 2 log
(

2
1+ε

)
≈ 1.725,

• (1−δ−ν)
2 log( 2

1+ε)
≈ 0.029,

• 0.98(2 − δ) = 1.862,

• 2
1−ε ≈ 2.22,

• δ log
(

2
1−ε

)
≈ 0.1152 and

• 0.98(2−δ)
δ log( 2

1−ε)
≈ 16.163.

Remark: There exist a lot of constants that satisfy the condition in Lemma 17. We can choose the
constants such that µ and α are integers.

Theorem 18. Let δ, ε and ν be some constants as obtained from Lemma 17. Let n be an asymptotically
large integer. Let r,α and µ be such that

• r 6 n0.5ν,

• µ = 0.4ν logn
log( 1+ε

1−ε)
and

• α =
(1−δ−ν) logn

2 log( 2
1+ε)

.

Let C be a depth four multi-r-ic circuit of bottom support at most µ and size s. If C computes the polynomial
fn,α,k then s must at least be n0.09νk.

Proof. Let δ, ε and ν be the constants obtained from Lemma 17. For a fixed value of α =
(1−δ−ν) logn

2 log( 2
1+ε)

,

the polynomial fn,α,k is defined on the variable sets Y and Z such that |Z| = m = 2αnk. Let `,k,µ be
such that ` = m

2 (1− ε), k2µ2 = o(m) and `+kµ < m
2 . Let ∆0 = δk. Let us assume that the polynomial
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fn,α,k is computed by a depth four multi-r-ic circuit C of bottom support at most µ and size s. Then it
must be the case that Γk,`(fn,α,k) = Γk,`(C).

Invoking Lemma 16 with α =
(1−δ−ν) logn

2 log( 2
1+ε)

6 0.98(2−δ) logn
δ log( 2

1−ε)
, and the values of ε, δ and ν obtained

from Lemma 17, we get that

Γk,`(fn,α,k) >
n(2−δ)k

(
m−(d−k)

`

)
4δk

(2k
δk

) .

Invoking Lemma 11 with `+ kµ < m
2 , we get that

Γk,`(C) 6 s ·
(2mr

µ + 1

k

)
·
(

m

`+ kµ

)
· (`+ kµ) .

Putting these two together with the fact that Γk,`(fn,α,k) = Γk,`(C), we get the following.

s >
O(1) · n(2−δ)k ·

(
m−(d−k)

`

)
δk ·

(2k
δk

)
·
( 2mr
µ +1
k

)
·
(
m
`+kµ

)
· (`+ kµ)

>
O(1)

δk · (`+ kµ)
· n(2−δ)k ·

(
δ

2e

)δk
·
(

kµ

2emr+ eµ

)k
·
(
m−(d−k)

`

)(
m
`+kµ

)
>

O(1)
δk · (`+ kµ)

· n(2−δ)k ·
(
δ

2e

)δk
·
(
kµ

3emr

)k
· (m− (d− k))!

m!
· (m− `− kµ)!
(m− `− (d− k))!

· (`+ kµ)!
`!

≈ O(1)
δk · (`+ kµ)

· n(2−δ)k ·
(
δ

2e

)δk
·
(
kµ

3emr

)k
· `kµ

m(d−k)
· (m− `)(d−k)−kµ

=
O(1)

δk · (`+ kµ)
· n(2−δ)k ·

(
δ

2e

)δk
·
(
kµ

3emr

)k
·
(

`

m− `

)kµ
·
(
m− `

m

)d−k
=

O(1)
δk · (`+ kµ)

· n(1−δ)k ·
(
δ

2e

)δk
·
( µ

6eαr

)k
·
(

1 − ε

1 + ε

)kµ
·
(

1 + ε

2

)2αk

=
O(1)

δk · (`+ kµ)
· exp

[
k

(
(1 − δ) logn− 2α log

(
2

1 + ε

)
− log r− µ log

(
1 + ε

1 − ε

))]
·
(
δ

2e

)δk
·
( µ

6eα

)k
=

O(1)
δk · (`+ kµ)

· exp
[
k

(
ν logn− log r+ log

( µ

6eα

)
+ δ log

(
δ

2e

)
− µ log

(
1 + ε

1 − ε

))]
.

In line 2 of the above math block, we use the inequality
(
n
k

)
6
(
en
k

)k. In line 4, we use Lemma 8 to
simplify the terms along with the fact that k2µ2 = o(m− `), (d− k)2 = o(m) and k2µ2 = o(`). In line
6, we substitute 2αnk for m and simplify the terms.

Recall that ε, δ andν are constants in (0, 1) given by Lemma 17 and µα = O(1). Ifµ log
(

1+ε
1−ε

)
+log r 6

0.9ν logn, we get that

s >
O(1) · n0.1νk

δk · (`+ kµ)
·
(
δ

2e

)δk
·
( µ

6eα

)k
>
n0.1νk

2O(k)
> n0.09νk

for all asymptotically large enough n.
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4 Multi-r-ic Depth Four Circuits

We shall now define another polynomial family Pn,α,k based on the definition of fn,α,k and then prove
a lower bound for the polynomial family Pn,αk against multi-r-ic depth four circuits by lifting the lower
bound for fn,α,k against multi-r-ic depth four circuits of low bottom support.

Let c be a fixed constant in (0, 1). Let X̂ = {x̂1,1, x̂1,2, . . . , x̂1,t, . . . , x̂N0,1, x̂N0,2, . . . , x̂N0,t} be a
variable set distinct from X such that t = N1+c

0 +Nc0 lnN0. Then the polynomial Pn,α,k(X̂) is defined
as follows.

Pn,α,k(X̂) = fn,α,k

 t∑
j=1

x̂1,j,
t∑
j=1

x̂2,j, · · · ,
t∑
j=1

x̂N0,j

 .

Note that Pn,α,k is a polynomial on N = N2+c
0 + N1+c

0 lnN0 many variables and deg(Pn,α,k) =
deg(fn,α,k) .

Definition 19 (p-projections). A polynomial g(y1, . . . ,ym) is said to be a p-projection of the polynomial
h(x1, . . . , xn) if there exists a suitable substitution φ : X 7→ Y ∪ F, of X = {x1, . . . , xn} by either variables
in Y = {y1, . . . ,ym} or constants from the base field such that

g(y1, . . . ,ym) = h(φ(x1), . . . ,φ(xn)).

It is easy to see that if h(x1, . . . , xn) has a circuit of size s then so does g(y1, . . . ,ym).

Let us now recall the following lemmas from [Sap19]. Proofs of these lemmas are a step by step
adaptation, rather a replication of proofs of Lemma 20.5 and Lemma 20.4 respectively in [Sap19].

We shall first show that the polynomial Pn,α,k reduces to the polynomial fn,α,k upon taking random
restrictions and p-projections, with a high probability.

Lemma 20 (Analogous to Lemma 20.53, [Sap19]). Let c be a constant as fixed above. Let ρ be a random
restriction on the variable set X̂ that sets each variable to zero independently, with a probability of (1−N−c

0 ).
Then fn,α,k(X) is a p-projection of ρ(Pn,α,k(X̂)) with a probability of at least (1 − e−N0).

Proof. For all i ∈ [N0], probability that all the variables x̂i,j (j ∈ [t]) are set to zero by ρ is as follows.

Pr[ρ(x̂i,1) = ρ(x̂i,2) = · · · ρ(x̂i,t) = 0] = (1 −N−c
0 )t ≈ e−

t
Nc0 = e

−
N1+c

0 +Nc0 lnN0
Nc0 =

1
N0eN0

.

By union bound, the probability that there exists an i ∈ [N0] such that all the variables of the form x̂i,j
for j ∈ [t] are set to zero is at most 1

eN0
. Thus, with a probability of at least (1 − e−N0), for each i, there

exists at least one j such that ρ(x̂i,j) 6= 0. It is easy to see that the polynomial fn,α,k can be written as a
p-projection of ρ(Pn,α,k) in such a case. For each i ∈ [N0], the substitution maps one of the non-zero
ρ(x̂i,j)’s to xi and sets the rest to 0.

We shall now show that, under random restrictions any syntactically multi-r-ic depth four circuit
reduces to a syntactically multi-r-ic depth four circuit of low bottom support with a high probability and
without any blow up in size.

3The form of this lemma as mentioned in [Sap19] is due to Kumar and Saptharishi.
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Lemma 21 (Analogous to Lemma 20.4, [Sap19]). Let γ > 0 be a parameter. Let N and µ be integers. Let
P be aN-variate polynomial that is computed by a syntactically multi-r-ic depth 4 circuit C of size s 6 Nγµ.
Let ρ be a random restriction that sets each variable to zero independently with probability (1 −N−2γ).
Then with a probability of at least (1 −N−γµ), polynomial ρ(P) is computed by a multi-r-ic depth four
circuit C ′ of bottom support at most µ, and size s.

Proof. Let C be a multi-r-ic depth four circuit of size s computing P. Let {M1,M2, . . . ,Mt} be the set of
monomials computed at the lower product gate of C which have at least µ+ 1 distinct variables in their
support. Note that t is at most s. For all i ∈ [t],

Pr[ρ(Mi) 6= 0] <
(
N−2γ)µ .

By taking a union bound, the probability that there exists in a monomial amongst {M1,M2, . . . ,Mt} that
is not set to 0 by ρ is strictly less than t ·N−2γµ 6 s ·N−2γµ 6 N−γµ. Thus with a probability of at least
(1 −N−γµ), all the monomials at the bottom product gate depend on at most µ distinct variables.

With this background, we are now ready to present the proof of Theorem 1.

Proof of Theorem 1. Let ε, δ and ν be the constants obtained from Lemma 17 and c be a small constant
in (0, 1) as fixed above. Let n be a large positive integer. Let the parameters N,N0, r,µ,α and k be set
in terms of n or otherwise as follows.

• r 6 n0.5ν,

• µ = 0.4ν logn
log( 1+ε

1−ε)
,

• α =
(1−δ−ν) logn

2 log( 2
1+ε)

,

• N0 = k(n2 + 2αnk),

• N = N2+c
0 +N1+c

0 lnN0,

• γ be a parameter given by the equation N2γ = Nc0 and

• k = 10γµ logN
ν logn .

The above setting of parameters also satisfies the condtions that k2µ2 = o(m) and (d−k)2 = O(α2k2) =
o(m).

Let X̂ = {x̂1,1, x̂1,2, . . . , x̂1,t, . . . , x̂N0,1, x̂N0,2, . . . , x̂N0,t} be a set of variables over which the polyno-
mial Pn,α,k is defined where t = N1+c

0 +Nc0 lnN0. Let ρ be a random restriction such that a variable is
set to zero with a probability of (1 −N−c

0 ) = (1 −N−2γ), and is left untouched otherwise. Let C be a
syntactically multi-r-ic depth four circuit of size s 6 Nγµ that computes Pn,α,k.

Lemma 21 tells us that C ′ = ρ(C) is a multi-r-ic depth four circuit of size s and bottom support
at most µ with a probability of at least (1 −N−γµ). Conditioned on this probability, ρ(Pn,α,k) has a
multi-r-ic ΣΠΣΠ{µ} size at most s.
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By invoking Lemma 20, we get that fn,α,k is a p-projection of ρ(Pn,α,k) with a probability of at least
(1 − e−N0). Since ρ(Pn,α,k) has a multi-r-ic ΣΠΣΠ{µ} circuit of size at most s with a probability of at
least 1 −N−γµ, with a probability of at least (1 −N−γµ − e−N0), fn,α,k is computed by a multi-r-ic
ΣΠΣΠ{µ} circuit of size at most s. In other words, there exists a multi-r-ic depth four circuit of bottom
support at most µ and size at most s, that computes fn,α,k.

On the other hand, by invoking Theorem 18 with the set of parameters as defined above, we get that
any multi-r-ic ΣΠΣΠ{µ} circuit that computes fn,α,k must be of size exp((0.09νk logn). Upon putting
both of these facts together, it must be the case that

n0.09νk = N0.9γµ 6 s 6 Nγµ.

Since ε, δ and ν are constants, and N = nO(1), we get that s must at least be exp
(
Ω(log2 n)

)
. The

explicit polynomial Qn is Pn,α,k where α and k are set to values described above.
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