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Abstract

The proof system Res(PCd/R) is a natural extension of the Resolution proof system
that instead of clauses of literals operates with disjunctions of degree d polynomials over
a ring R with boolean variables. Proving super-polynomial lower bounds for the size
of Res(PC1/R)-refutations of CNFs is one of the important problems in propositional
proof complexity. The existence of such lower bounds is even open for Res(PC1/F)
when F is a finite field such as F2. In this paper, we investigate Res(PCd/R) and tree-
like Res(PCd/R) and prove size-width relations for them when R is a finite ring. As an
application, we get for every finite field F the following lower bounds on the number
of clauses:

1. We prove almost quadratic lower bounds for Res(PCd/F)-refutations for every
fixed d. The new lower bounds are for the following CNFs:

(a) mod q Tseitin formulas (char(F) 6= q),

(b) Random k-CNFs with linearly many clauses.

2. We also prove super-polynomial and exponential lower bounds for tree-like Res(PCd/F)-
refutations where d is not too large with respect to n for the following CNFs:

(a) mod q Tseitin formulas (char(F) 6= q),

(b) Random k-CNFs.

The above results imply the first nontrivial lower bounds for Res(⊕) [10, 11], Res(linF)
where F is a finite field [18], and R(PCd/F2) [16]. Moreover, they imply the first super-
polynomial and exponential lower bounds for tree-like R(PCd/F2)-refutations of mod q
Tseitin formulas and random k-CNFs.
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1 Introduction

Resolution is perhaps the most studied proof system in propositional proof complexity. This
system works with clauses of literals. Given an unsatisfiable CNF formula F , a Resolution
refutation of F starts with this formula and derives the empty clause with several applications
of its rules. Resolution is important in several ways. For example, it is closely related to SAT
solvers, so studying Resolution leads to a better understanding of the limits of Resolution
based SAT solvers. Moreover, Resolution is a starting point for defining stronger proof
systems. Understanding stronger proof systems in terms of length of proofs is important in
the following ways:

1. From the mathematical logic point of view, the existence of super-polynomial lower
bounds for strong enough proof systems implies independence results for first-order
theories.

2. From the computational complexity point of view, proving lower bounds for proof
systems is related to the NP 6= CoNP question. Indeed, NP 6= CoNP is equivalent to
the existence of super-polynomial lower bounds for every propositional proof system.

One way of introducing a proof system that is stronger than Resolution is to define it in
a way that it can work with functions that are stronger than the disjunction of literals (in
terms of definability) in lines of the proof. As examples of such proof systems we can list
the following ones:

Proof system Proof lines
1 Cutting Planes Linear inequalities
2 Polynomial Calculus Polynomials

3 AC0-Frege Constant depth formulas
4 Frege Formulas

We know lower bounds for the first three systems in the above list, but there are no known
super-polynomial lower bounds for the Frege proof system. Since the known lower bounds
for the AC0-Frege proof system were proved by adapting the techniques which had been used
to prove super-polynomial and exponential lower bounds for AC0 circuits (see [1, 14, 19]), the
natural next step seemed to be to prove lower bounds for the AC0[p]-Frege proof system by
adapting Razborov–Smolensky approximation method that was used to prove AC0[p] circuit
lower bounds. However, this problem remains open to this day, and it is one of the frontier
problems in propositional proof complexity. Because proving super-polynomial lower bounds
for the AC0[p]-Frege proof system seems to be hard, reasonable subsystems of AC0[p]-Frege
and similar proof systems that can work with some kind of limited counting was investigated
in the literature. We briefly review the known results about these systems.

One of the first such systems is the AC0-Frege proof system with the Countp Principle,
when p is a prime number. Super-polynomial lower bounds were proved on the length of
proofs of the Countq Principle when q 6= p is a prime number for this system in [2, 4, 23].
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Two other important proof systems are Nullstellensatz and Polynomial Calculus. There
are several works about them in the literature. Here we only mention some of the first ones.
The Nullstellensatz proof system was defined by Beame et al. in [4] and they proved the
first degree lower bound for it which was for the Countp Principle. Later the Polynomial
Calculus proof system was defined by Clegg et al. in [7] and proved a degree separation
between the Nullstellensatz proof system and Polynomial Calculus proof system. Razborov
in [22] proved the first nontrivial degree lower bound for Polynomial Calculus and showed
that every Polynomial Calculus refutation of the Pigeonhole Principle has degree at least
n/2 + 1.

Kraj́ıček in [15] defined the subsystem Fcd(MODp) of AC0[p]-Frege proof system and proved
that Fcd(MODp) needs super-polynomial size for the Countq Principle (where q 6= p is a prime
number) and tree-like Fcd(MODp) needs exponential size for proving the Pigeonhole Principle.

Raz and Tzameret in [21] defined the proof system R(lin) (Res(PC1/Z) in our nota-
tion) and showed that R(lin) is very strong by proving that this system has polynomial size
refutations of the Pigeonhole Principle, mod q Tseitin formulas, and the Clique-Coloring
Principle. They also proved an exponential lower bound for a fairly strong fragment of R(lin)
using monotone feasible interpolation. Later Tzameret in [24] investigated the proof system
R(quad) (Res(PC2/Z) in our notation) and proved that if it has the feasible interpolation
property, then there is an efficient deterministic refutation algorithm for random 3SAT with
n variables and Ω(n1.4) clauses.

Itsykson and Sokolov in [10, 11] introduced the proof system Res(⊕) (Res(PC1/F2) in
our notation). They investigated the power of this system from different aspects and proved
that tree-like Res(⊕) needs exponential size for refuting the Pigeonhole Principle and lifted
versions of Tseitin formulas and Pebbling formulas. They proved these lower bounds by
generalizing the well-known prover-delayer games of [20] and also by using the known com-
munication complexity lower bounds.

In [16] Kraj́ıček defined randomized dag-like communication games for Karchmer–Wigderson
relations. He proved that R(lin/F2) (another formulation of Res(⊕)) has the randomized
feasible interpolation property which means that from a R(lin/F2)-refutation of the non-
disjointness of two NP sets U and V , we can construct such a game for computing the
Karchmer–Wigderson relation associated with U and V . Furthermore, he proved that such
protocols correspond to monotone circuits with local oracles (CLO) in the case when U is
upward closed or V is downward closed. Therefore, if we prove lower bounds for any CLO
separating a monotone disjoint NP-pair, this leads to a lower bound for R(lin/F2). Using the
randomized feasible interpolation, he proved that every tree-like R(lin/F2)-refutation of the
Hall Principle has exponential size (see Theorem 18.6.4 in [12]). He also introduced the proof
system R(PCd/F2) which is a natural generalization of R(lin/F2) and discussed the possibility
of proving the randomized feasible interpolation property for it. Kraj́ıček and Oliveira in
[13] proved lower bounds for a subclass of CLOs (containing the class of the usual monotone
circuits) separating k-cliques and the set of complete (k − 1)-partite graphs, but it is not
known whether a lower bound for this subclass is enough for getting a super-polynomial
lower bound on the size of R(lin/F2)-refutations of the Clique-Coloring Principle.
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Following [15], Garĺık and Ko lodziejczyk in [8] defined the subsystem PKcd(⊕) of AC0[2]-
Frege proof system. In this system, every line of a proof is a disjunction such that disjuncts
have depth at most d, and parities can only appear as the outermost connectives of disjuncts,
and all but c disjuncts contain no parity connective at all. Then they investigated the relation
between PK

O(1)
O(1)(⊕), tree-like PK

O(1)
O(1)(⊕) and the AC0-Frege proof systems with the Count2

Principle and proved several lower bounds for them. They also proved that an extension
of tree-like Res(⊕) is polynomially simulated by a system related to PK

O(1)
O(1)(⊕), and hence

they obtained an exponential lower bound for the Count3 Principle for tree-like Res(⊕).
Although they did not mention it in their paper, their lower bound also works for tree-like
Res(PCd/F2) when d = nε and ε > 0 is a small enough constant1. So they implicitly proved
the first super-polynomial lower bound for tree-like R(PCnε/F2).

Part and Tzameret in [18] defined the proof system Res(linR) for every ring R (Res(PC1/R)
in our notation), and proved several lower bounds for dag-like and tree-like Res(linR) for
different rings. In particular, for finite fields they proved exponential lower bounds for the
Pigeonhole Principle, mod q Tseitin formulas (q is a prime different from the characteristic
of the field) and random k-CNFs. They used two main tools for proving these lower bounds.
First, they generalized the prover-delayer game of [10] to an arbitrary ring R. Second they
proved a size-width relation for tree-like Res(linR) for any ring R. They also proved the
first super-polynomial lower bound for dag-like Res(linQ)-refutations. This lower bound was
proved for the Subset-sum Principle which is not a CNF, so the lower bound problem for
CNFs remained open. It is worth noting that a size-width relation for tree-like Res(⊕) was
proved by Garĺık and Ko lodziejczyk in an unpublished manuscript before [18].

Following the prover-delayer method that was used in [10, 18], Gryaznov proved in [9]
exponential lower bounds for the Ordering and Dense Linear Ordering Principles in tree-like
Res(⊕), and hence separated tree-like Res(⊕) and Res. Regarding the separation between
tree-like Res(⊕) and Res, [11] strengthened Gryaznov’s result by proving that a lifted version
of Pebbling formulas is hard for tree-like Res(⊕), but it is easy for regular Resolution.

In this paper we continue investigating the power of Res(PC1/R), tree-like Res(PC1/R)
and also their generalization Res(PCd/R) and tree-like Res(PCd/R) when d > 1. Our main
theorem (Theorem 3.1) is a new size-width relation. This theorem has two advantages to
the size-width relation of [18]. First, it works for the dag-like systems such as Res(linR) and
more generally Res(PCd/R), and hence we can prove nontrivial lower bounds in the dag-
like setting. Second, it is not limited to linear forms, and we can prove lower bounds for
Resolution over polynomials. Moreover, the proof of this theorem uses the same strategy for
the tree-like and dag-like proofs.

Contents of this paper. In section 2, we explain definitions and notations. In section
3, we state the main results. In section 4, we prove a size-width relation for Res(PCd/R)
and tree-like Res(PCd/R) over every finite ring R. The novel idea that is used to prove
these size-width relations is a combination of the usage of extension variables and the size-
width relation of Ben-Sasson and Wigderson for Resolution [5]. In more detail, the main

1Private communication with Leszek Ko lodziejczyk.
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idea is to use the extension variables to translate refutations in Res(PCd/R) and tree-like
Res(PCd/R) to Resolution refutations of some new clauses formed by these new extension
variables, then use the size-width relation of Ben-Sasson and Wigderson for Resolution [5],
and finally translate back to Res(PCd/R)-refutations. In section 5, we prove lower bounds
as an application of this theorem. To prove these lower bounds, we show that if a CNF
formula F has a low width Res(PCd/F)-refutation, then it also has a low degree refutation
in Polynomial Calculus over F. This strategy was first used in [18] to relate the width of
Res(linF)-refutations of F to the degree of Polynomial Calculus refutations of it. This enables
us to use the known degree lower bounds for Polynomial Calculus and the new size-width
relation to prove our lower bounds. We prove the first nontrivial (almost quadratic) lower
bounds for Res(PC1/F) and in general for Res(PCd/F) (for every fixed d) over finite fields. For
the tree-like case over finite fields, we prove the first super-polynomial and exponential lower
bounds for tree-like Res(PCd/F) where d is limited by some sub-linear function of n. These
lower bounds imply the first nontrivial (almost quadratic) lower bound for Res(⊕), Res(linF)
when F is a finite field, and R(PCd/F2). Moreover, it implies the first super-polynomial and
exponential lower bounds for tree-like R(PCd/F2)-refutations of mod q Tseitin formulas and
random k-CNFs.

2 Preliminaries

Resolution (Res) is a proof system that works with clauses of literals. Every clause in a
Resolution derivation is a disjunction of variables or negation of variables without repetition.
Resolution proof system has the following rules:

1. Resolution:

C ∨ p D ∨ ¬p
C ∨D

2. Weakening:

C
C ∨D

where p ∈ {p1, ..., pn} (the set of variables appearing in the initial clauses) and C and D are
arbitrary clauses. We needed Resolution to be an implicationally complete system. That is
the reason behind the existence of the weakening rule.

A CNF formula is a set of clauses. The set of variables appearing in a clause D and a
CNF formula F are denoted by V (D) and V (F ). A Resolution derivation of a clause D from
the CNF formula F = {C1, ..., Ck}, shown as F ` D, is a sequence π = D1, ..., Dl such that:

1. Dl = D,

2. for every i ≤ l, Di is in F or Di was derived by the resolution rule or the weakening
from {Dj|j < i} in one step.
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For a ring R, we define Resolution over Polynomial Calculus, Res(PC/R), as a proof
system like Res which works with clauses of polynomials of boolean variables (no negative
variables), instead of literals. So a clause in Res(PC/R) is C =

∨
i<l fi(x̄) such that each

fi(x̄) is a polynomial with coefficients in R. Moreover, there is no repetition of polynomials
in a clause. C =

∨
i<l fi(x̄) is true under a boolean assignment a ∈ {0, 1}n iff there exists an

i such that fi(a) = 0. Following [18], we use a similar set of rules for defining Res(PC/R):

1. Resolution:

C ∨ f(x̄) D ∨ g(x̄)

C ∨D ∨ af(x̄) + bg(x̄)

for every a, b ∈ R,

2. Weakening:

C
C ∨ f(x̄)

3. Simplification:

C ∨ a
C

for every a ∈ R \ {0},

4. Multiplication:

C ∨ f(x̄)

C ∨ g(x̄) · f(x̄)

where g(x̄), f(x̄) are polynomials with coefficients in R and x ∈ {x1, ..., xn} is a variable from
the initial clauses. Furthermore, Res(PC/R) has 0 and x∨x−1 (x ∈ {x1, ..., xn}) as axioms.
A Res(PC/R) derivation of a clause D from the CNF formula F = {C1, ..., Ck}, F ` D is a
sequence π = D1, ..., Dl such that:

1. Dl = D,

2. for every i ≤ l, Di is in F , or Di is a Res(PC/R) axiom, or Di was derived by the rules
of Res(PC/R) from {Dj|j < i} in one step.

Res(PCd/R) is a proof system using Res(PC/R) rules and axioms, with the restriction that
every polynomial appearing in a derivation should have total degree at most d.

In this paper, we study the length of refutations in the Res(PCd/R) and tree-like Res(PCd/R).
A CNF formula F is refutable if F ` ∅ where ∅ is the empty clause. The size of a derivation
π is denoted by |π|, and it is the number of clauses in π. This measure lower bounds the
usual bit-size of proofs, therefore our lower bounds also hold for the bit-size measure too.
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Let π = D1, .., Dl be a derivation in one of the defined proof systems. The graph Gπ

associated with π is a DAG with Dis as nodes, and for every derivation step directed edges
are added from the assumptions clauses to the consequence clause. π is called tree-like iff
Gπ is a tree. In general, it is possible to make any derivation tree-like by making copies of
the initial clauses. If P is one of the defined proof systems, then P ∗ denotes tree-like P .

Let C be a disjunction of literals or polynomials, then m[C] is the set of disjuncts of C and
w(C) (width of C) is the number of disjuncts in C, so w(C) = |m[C]|. For a CNF formula
F = {C1, ..., Ck}, w(F ) = maxC∈F w(C). For a derivation π in one of the defined proof
systems, w(π) = maxD∈π w(D). For a proof system P , a set of clauses F (not necessarily
nonempty) and a clause D, the notation

F w
P
D

means that there exists a P -derivation π for D from F such that w(π) ≤ w. If F is an
unsatisfiable CNF and R is a ring, then the refutation size and the width corresponding to
F in Res(PCd/R) are respectively:

1. SR,d(F ) is the minimum |π| among all Res(PCd/R)-refutations π of F .

2. wR,d(F ) is the minimum w(π) among all Res(PCd/R)-refutations π of F ,

S∗R,d(F ) is the refutation size corresponding to F in Res∗(PCd/R). Res-refutation width and
size corresponding to F is denoted by wRes(F ) and SRes(F ). For Res∗, minimal refutation
size of F is denoted by SRes∗(F ).

It is easy to see that (tree-like) Res(PC1/F2) simulates (tree-like) Res(⊕) of [10, 11] and
(tree-like) Res(PCd/F2) simulates (tree-like) R(PCd/F2) of [16].

3 Main results

In this section, we mention the main results of this paper. The main theorem is a size-width
relation for (tree-like) Res(PCd/R) when R is a finite ring.

Theorem 3.1 (Size-Width relation) Let R be a finite ring and F be an unsatisfiable CNF
in n variables, then for every d, the following inequalities hold:

1.
wR,d(F )

|R| − 1 ≤ max{3,w(F )}+ log(3S∗R,d(F )).

2.
wR,d(F )

|R| − 1 ≤ max{3,w(F )}+O
(√(

2n+ 3SR,d(F )
)

log(3SR,d(F ))
)

.

where log is the binary logarithm.

Proof. See section 4.
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Using the above theorem we prove new lower bounds for the mod q Tseitin formulas and
random k-CNFs.

Definition 3.1 (mod q Tseitin formulas) Let G = (V,E) be a directed d-regular graph. For
every (v, u) ∈ E, we have a fixed variable xu,v. Let σ : V → Fq (q is a prime number).
Then mod q Tseitin formula Tq(G, σ) is a CNF encoding of the following equations for every
v ∈ V :

(
∑

(v,u)∈E

xv,u −
∑

(u,v)∈E

xu,v) ≡ σ(v) (mod q)

Note that Tq(G, σ) is unsatsifiable iff
∑

v∈V σ(v) 6≡ 0 (mod q). This formula has O(2d|V |)
clauses and each clause has width O(d). So in particular, the number of clauses of this
formula is linear in the number of variables when d is a fixed constant. This is important
for our almost quadratic lower bound for Res(PCd/F), because for every unsatisfiable CNF
formula F , |F | ≤ SR,d(F ).

Definition 3.2 (Random k-CNF) A random k-CNF is a formula F ∼ Fn,∆k with n variables
that is generated by picking randomly and independently ∆·n clauses from the set of all 2k

(
n
k

)
clauses of width k.

The following corollaries explain the new lower bounds.

Corollary 3.2 Let F be a finite field. Then the following lower bounds hold:

1. If q is a fixed prime such that char(F) 6= q, then there exists a constant dq such that
for every fixed d the following holds. If c ≥ dq, then for every large enough n and
every c-regular Ramanujan graph G on n nodes (augmented with arbitrary orientation

of its edges) and for every function σ such that Tq(G, σ) is unsatisfiable, n2− (log logn)2

logn ≤
SF,d(Tq(G, σ)).

2. Let F ∼ Fn,∆k , k ≥ 3 and ∆ = ∆(n) is such that ∆ = c for some constant c with the

property that c2−k ≥ 0.7. Then with probability 1− o(1), n2− (log logn)2

logn ≤ SF,d(F ).

Proof. See section 5.

Corollary 3.3 Let F be a finite field. Then The following lower bounds hold:

1. If q is a fixed prime such that char(F) 6= q, then there exists a constant dq such that
for every fixed d the following holds. If c ≥ dq, then for every large enough n and every
c-regular Ramanujan graph G on n nodes (augmented with arbitrary orientation of its
edges) and for every function σ such that Tq(G, σ) is unsatisfiable, S∗F,d(n)(Tq(G, σ)) is

(a) super-polynomial if for every natural number k, n
k logn

eventually dominates d(n).

(b) exponential if there exists ε ∈ (0, 1) such that nε eventually dominates d(n).

8



2. Let F ∼ Fn,∆k , k ≥ 3 and ∆ = ∆(n) is such that ∆ = o(n
k−2
2 ). Then with probability

1− o(1), S∗F,d(n)(F ) is

(a) super-polynomial if for every natural number k′, n
k′∆2/(k−2)·log ∆·logn

eventually dom-

inates d(n).

(b) exponential if there exists ε ∈ (0, 1) such that nε

∆2/(k−2)·log ∆
eventually dominates

d(n).

Proof. See section 5.

As we mentioned in Preliminaries the proved lower bounds in Corollaries 3.2 and 3.3 also
hold for the bit-size of proofs.

4 Size-Width relation for Res(PCd/R) and Res∗(PCd/R)

In this section, we prove the size-width relation in a sequence of propositions and lemmas.
In the next section we prove the lower bounds using the size-width relation.

Proposition 4.1 For every ring R, and every monomial p(x̄) =
∏n

i=1 x
di
i of total degree d

(
∑n

i=1 di = d),

∅ 2

Res(PCd/R)
p(x̄) ∨ p(x̄)− 1.

Proof. We prove this proposition by induction on d. The statement is true for d ≤ 1. Because
we have boolean axioms for every variable and also 0 is an axiom. Let p(x̄) = x′p′(x̄) with
total degree d = k + 1. By induction hypothesis

∅ 2

Res(PCk/R)
p′(x̄) ∨ p′(x̄)− 1.

So by two times using of the multiplication rule we get

∅ 2

Res(PCk+1/R)
x′p′(x̄) ∨ x′p′(x̄)− x′.

Note that x′ ∨ x′− 1 is an axiom in Res(PCk+1/R), and hence by k times using the multipli-
cation rule we get

∅ 2

Res(PCk+1/R)
x′p′(x̄) ∨ x′ − 1.

By applying the resolution rule on x′p′(x̄) ∨ x′p′(x̄)− x′ and x′p′(x̄) ∨ x′ − 1, we get

∅ 2

Res(PCk+1/R)
x′p′(x̄) ∨ x′p′(x̄)− 1.
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Proposition 4.2 Let R be a finite ring. Then for every polynomial p(x̄) ∈ R[x̄] of total
degree d,

∅ |R|+1

Res(PCd/R) ∨
a∈R

p(x̄)− a.

Proof. We prove the proposition by induction on the number of non-zero degree monomials
in p(x̄). The statement is true for polynomial p(x̄) = b, (b ∈ R), because 0 is an axiom and
we can use the weakening rule on 0 to derive the desired clause. Let p(x̄) = bf(x̄) + g(x̄)
such that f(x̄) =

∏n
i=1 x

di
i is a non-zero degree monomial and b ∈ R \ {0}. g(x̄) has one less

non-zero degree monomial than p(x̄), hence by induction hypothesis,

∅ |R|+1

Res(PCd/R) ∨
a∈R

g(x̄)− a.

By Proposition 4.1,

∅ 2

Res(PCd/R)
f(x̄) ∨ f(x̄)− 1.

So by using |R| times resolution rule we get

∅ |R|+1

Res(PCd/R)
f(x̄)− 1 ∨

∨
a∈R

bf(x̄) + g(x̄)− a.

By the same argument, we get

∅ |R|+1

Res(PCd/R)
f(x̄) ∨

∨
a∈R

bf(x̄) + g(x̄)− a− b.

Therefore by the resolution rule on f(x̄)∨
∨
a∈R bf(x̄)+g(x̄)−a−b and f(x̄)−1∨

∨
a∈R bf(x̄)+

g(x̄)− a and a simplification rule we have

∅ |R|+1

Res(PCd/R) ∨
a∈R

p(x̄)− a.

Let R be a finite ring. Suppose π is a P -refutation of a CNF formula F in variables V (F ) =
{x1, ..., xn}, P ∈ {Res∗(PCd/R),Res(PCd/R)}. For every polynomial f(x̄) ∈ R[x̄] of total
degree at most d, we define a new atomic variable qf . To prove the size-width relation,
we translate polynomials that appeared in π to new atomic variables by a mapping Q.
Furthermore, we define a new CNF formula Ex(π) using these new variables and original
ones such that:

(I) SRes(Ex(π) ∪ Q(F )) ≤ 3|π|. Moreover, if π is tree-like, then we have SRes∗(Ex(π) ∪
Q(F )) ≤ 3|π|.

(II) An upper bound for wRes(Ex(π) ∪Q(F )) implies an upper bound for wR,d(F ).
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Using the above relations and the Ben-Sasson and Wigderson size-width relation for (tree-
like) Res, we prove our size-width relation.

For every polynomial f ∈ R[x̄], fix an atomic variable qf . These atomic variables are
going to be the translation of polynomials. For every CNF formula F and every Res(PCd/R)-
refutation π of F , we use the following simple mapping to translate the polynomials that
appear in clauses of π to atomic variables:

Q(f) = qf .

For a clause C, Q(C) is
∨
r∈C Q(r) (Q(∅) = ∅) and for a CNF formula F = {C1, ..Ck}, Q(F )

is {Q(C1), ..., Q(Ck)}.
The CNF formula Ex(π) contains the following clauses:

1. If the simplification rule is used on a non-zero constant polynomial a in π, then ¬qa ∈
Ex(π).

2. qxi ∨ qxi−1 ∈ Ex(π), if the axiom xi ∨ xi − 1 is used in π.

3. q0 ∈ Ex(π), if the axiom 0 is used in π.

4. If the resolution rule is used in π to derive af + bg from f and g, then

¬qf ∨ ¬qg ∨ qaf+bg ∈ Ex(π).

5. If the multiplication rule is used to derive g · f from f , then

¬qf ∨ qg·f ∈ Ex(π).

The previous translation is used to prove property (I). To prove property (II), we need
another translation from clauses definable in V (Ex(π) ∪ Q(F )) to clauses of polynomials
of degree at most d. For this, we define a mapping from these variables to polynomials
and hence, clauses of these literals automatically translate to clauses of polynomials. This
mapping is defined as follows:

Q′(r) =

{
f r = qf∨
a∈R\{0} f − a r = ¬qf

For a clause C, Q′(C) is
∨
r∈C Q

′(r) (Q′(∅) = ∅). Now we are ready to state the lemma for
proving properties (I) and (II).

Lemma 4.3 For a finite ring R and every CNF formula F , let π be a Res(PCd/R)-refutation
of F , then the following statements are true:

1. There exists a Res-refutation π′ of Ex(π) ∪Q(F ) such that |π′| ≤ 3|π|. Moreover, if π
is tree-like, then π′ is also tree-like.

11



2. For every clause C∗ in variables of Ex(π) ∪Q(F ), if

Ex(π) ∪Q(F ) w
Res

C∗,

then
F |R|(w+1)

Res(PCd/R)
Q′(C∗).

Proof. 1. Let πs be a sub-sequence of π such that a clause C in π is in πs iff there exists
a directed path from C to the empty clause in Gπ. Note that π is a Res(PCd/R)-
refutation of F , hence πs becomes a Res(PCd/R)-refutation of F too. The important
property of πs is the following claim.

Claim 1 Let f(x̄) ∈ R[x̄] be a polynomial, then if the step

C
C ∨ f(x̄)

exists in πs for some clause C, then qf ∈ V (Ex(π)).

Suppose such a step exists in πs for f(x̄) and a clause C. Note that according to the
definition of πs, there exists a directed path P from C∨f(x̄) to the empty clause in Gπ

and moreover, P also exists in Gπs . P starts from C ∨ f(x̄) to ∅, hence there should
be a step in P such that either one of the resolution rule, or the multiplication rule, or
the simplification rule is used on f(x̄). This implies that qf or its negation is appeared
in one of the clauses of Ex(π) and hence qf ∈ V (Ex(π)).

Now we are ready to prove the statement of the lemma. Let πs = D1, ..., Dl. We want
to construct a sequence π′1 v π′2 v ...π′l from πs by iterating the following process on
Dis starting from D1. Suppose we have constructed π′i−1 = D′1, ..., D

′
u (for some u)

from π′i−2 and Di−1 and now we want to construct π′i:

(a) If Di is a clause of F , then Q(Di) is a clause of Q(F ) and π′i = π′i−1, Q(Di).

(b) If Di := xj ∨ xj − 1 for some j, then qxj ∨ qxj−1 is a clause of Ex(π) and π′i =
π′i−1, qxj ∨ qxj−1.

(c) If Di := 0, then q0 is a clause of Ex(π) and π′i = π′i−1, q0.

(d) If Di = C ∨ C ′ ∨ af(x̄) + bg(x̄) and it is derived from Dj = C ∨ f(x̄) and
Dk = C ′ ∨ g(x̄) by the resolution rule, then if

i. f(x̄) 6= g(x̄):
Then ¬qf ∨ ¬qg ∨ qaf+bg is a clause of Ex(π) and moreover, Q(C) ∨ qf and
Q(C ′)∨qg are the last clauses of π′j and π′k respectively. So π′i is π′i−1 appended
by the following clauses:

A. ¬qf ∨ ¬qg ∨ qaf+bg,

B. Q(C) ∨ ¬qg ∨ qaf+bg,

12



C. Q(C) ∨Q(C ′) ∨ qaf+bg.

So the appended derivation is the following:

Q(C) ∨ qf ¬qf ∨ ¬qg ∨ qaf+bg

Q(C) ∨ ¬qg ∨ qaf+bg Q(C ′) ∨ qg
Q(C) ∨Q(C ′) ∨ qaf+bg

ii. f(x̄) = g(x̄):
Then ¬qf ∨ qaf+bf is a clause of Ex(π) and moreover, Q(C) ∨ qf is the last
clause of π′j. So π′i is π′i−1 appended by the following clauses:

A. ¬qf ∨ qaf+bf ,

B. Q(C) ∨ qaf+bf ,

C. Q(C) ∨Q(C ′) ∨ qaf+bf .

So the appended derivation is the following:

Q(C) ∨ qf ¬qf ∨ qaf+bf

Q(C) ∨ qaf+bf

Q(C) ∨Q(C ′) ∨ qaf+bf

(e) If Di = C ∨ f(x̄) and it is derived from Dj = C by the weakening rule, then
by Claim 1 qf ∈ V (Ex(π)). Moreover, Q(C) is the last clause of π′j. So π′i =
π′i−1, Q(C) ∨ qf . So the appended derivation is the following:

Q(C)

Q(C) ∨ qf
(f) If Di = C and it is derived from Dj = C ∨ a (a ∈ R \ {0}) by the simplification

rule, then ¬qa is a clause of Ex(π). Moreover, Q(C) ∨ qa is the last clause of π′j.
So π′i = π′i−1,¬qa, Q(C). So the appended derivation is the following:

Q(C) ∨ qa ¬qa
Q(C)

(g) If Di = C ∨ g(x̄) · f(x̄) and it is derived from Dj = C ∨ f(x̄) by the multiplication
rule, then ¬qf ∨ qg·f is a clause of Ex(π). Moreover, Q(C) ∨ qf is the last clause
of π′j. So π′i = π′i−1,¬qf ∨ qg·f , Q(C) ∨ qg·f . So the appended derivation is the
following:

Q(C) ∨ qf ¬qf ∨ qg·f
Q(C) ∨ qg·f

It is easy to verify that π′ := π′l is a Res-refutation of Ex(π)∪Q(F ). The reason is that
for the cases (a), (b), and (c), the appended clauses are in Ex(π)∪Q(F ). For the case
(e), the weakening rule of Resolution is used. For the remaining cases, the resolution
rule is used. The initial clauses are the clauses of Ex(π) ∪ Q(F ) and the last clause
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in π′ is the empty clause, hence π′ is a Res-refutation of Ex(π) ∪Q(F ). It is apparent
from the explanations that if π is tree-like, then π′ is also tree-like.

Note that for every i the inequality |π′i| ≤ |π′i−1|+ 3 holds, hence |π′| ≤ 3|π|.

2. We prove this part by induction on the number of steps of deriving C∗.

(a) Base step:

If the number of steps in deriving C∗ is one, then C∗ is one of the initial clauses
of Ex(π) ∪Q(F ). Therefore we have the following cases:

i. C∗ ∈ Q(F ):
In this case Q′(C∗) is a clause of F , so

F w

Res(PCd/R)
Q′(C∗).

ii. C∗ = q0:
0 is an axiom of Res(PCd/R), so

∅ 1

Res(PCd/R)
0.

iii. C∗ = ¬qa for some a ∈ R \ {0}:
Note that Q′(¬qa) =

∨
b∈R\{0} a − b which is

∨
b∈R\{a} b. 0 is an axiom of

Res(PCd/R), so by |R| − 1 times use of the weakening rule we get

∅ |R|−1

Res(PCd/R) ∨
b∈R\{a}

b.

iv. C∗ = qxi ∨ qxi−1:
Q′(qxi ∨ qxi−1) is xi ∨ xi − 1 which is an axiom of Res(PCd/R), so

∅ 2

Res(PCd/R)
xi ∨ xi − 1.

v. C∗ = ¬qf ∨ ¬qg ∨ qaf+bg:

A. f(x̄) 6= g(x̄):
Note that

Ex(π) ∪Q(F ) 3
Res

C∗.

By Proposition 4.2,

∅ |R|+1

Res(PCd/R) ∨
c∈R

f(x̄)− c

and
∅ |R|+1

Res(PCd/R) ∨
c∈R

g(x̄)− c,

hence by the resolution rule we get

∅
2|R|−1

Res(PCd/R)
af(x̄) + bg(x̄) ∨

∨
c∈R\{0}

f(x̄)− c ∨
∨

c∈R\{0}

g(x̄)− c.
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B. f(x̄) = g(x̄):
Note that

Ex(π) ∪Q(F ) 2
Res

C∗

because C∗ = ¬qf ∨ qaf+bf . By Proposition 4.2,

∅ |R|+1

Res(PCd/R) ∨
c∈R

f(x̄)− c,

hence by the multiplication rule we get

∅ |R|+1

Res(PCd/R)
(a+ b)f(x̄) ∨

∨
c∈R\{0}

f(x̄)− c.

vi. C∗ = ¬qf ∨ qg·f :
Note that

Ex(π) ∪Q(F ) 2
Res

C∗.

By Proposition 4.2,

∅ |R|+1

Res(PCd/R) ∨
c∈R

f(x̄)− c,

hence by the multiplication rule we get

∅ |R|+1

Res(PCd/R)
g(x̄) · f(x̄) ∨

∨
c∈R\{0}

f(x̄)− c.

(b) Induction step:

i. Resolution rule:
Suppose C and D are clauses in variables of Ex(π) ∪Q(F ) such that

Ex(π) ∪Q(F ) w
Res

C ∨D

in k+1 steps. Moreover, assume the last rule is an application of the resolution
rule on C ∨ qf and D ∨ ¬qf such that qf ∈ V (Ex(π) ∪Q(F )). Therefore

A. Ex(π) ∪Q(F ) w1

Res
C ∨ qf in at most k steps.

B. Ex(π) ∪Q(F ) w2

Res
D ∨ ¬qf in at most k steps.

So w = max{w1, w2,w(C ∨D)}. Moreover, by induction hypothesis

A. F |R|(w1+1)

Res(PCd/R)
Q′(C ∨ qf ).

B. F |R|(w2+1)

Res(PCd/R)
Q′(D ∨ ¬qf ).

Note that Q′(qf ) = f(x̄) and Q′(¬qf ) =
∨
c∈R\{0} f(x̄)− c. Let

H := {f(x̄)− c|c ∈ R},
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then by applying the resolution and simplification rules |R| times, we can
derive

E :=
∨

g∈m[Q′(C∨D)]\H

g(x̄)

from Q′(C ∨ qf ) and Q′(D ∨ ¬qf ). Note that m[E] ⊆ m[Q′(C ∨ D)]. The
width of deriving E is at most

max {(w1 + 1)|R|, (w2 + 1)|R|,w(Q′(C ∨D)) + |R| − 1}

which is less than or equal to

max {(w1 + 1)|R|, (w2 + 1)|R|, (w(C ∨D) + 1)(|R| − 1)} ,

which is less than or equal to

|R|(max {w1, w2,w(C ∨D)}+ 1).

If m[Q′(C ∨D)] ∩H = ∅, then we are done, otherwise m[Q′(C ∨D)] \H (
m[Q′(C ∨D)]. In this case, {E}

w(Q′(C∨D))

Res(PCd/R)
Q′(C ∨D) by applications of the

weakening rule, so the width of deriving Q′(C ∨D) is at most

max{Q′(C ∨D), |R|(max {w1, w2,w(C ∨D)}+ 1)}

which is less than or equal to

|R|(max {w1, w2,w(C ∨D)}+ 1).

ii. Weakening rule:
Suppose C and D are clauses in variables of Ex(π) ∪Q(F ) such that

Ex(π) ∪Q(F ) w
Res

C ∨D

in k + 1 steps. Moreover, assume that the last rule is an application of the
weakening rule on C. Therefore

A. Ex(π) ∪Q(F ) w1

Res
C in at most k steps.

So w = max{w1,w(C ∨D)}. Moreover, by induction hypothesis

A. F |R|(w1+1)

Res(PCd/R)
Q′(C).

If D =
∨
qf∈A qf ∨

∨
qg∈B ¬qg where A,B ⊆ V (Ex(π) ∪Q(F )), then

m[Q′(D)] ⊆ {f(x̄)|qf ∈ A} ∪ {g(x̄)− c|c ∈ R \ {0}, qg ∈ B},

so by applying the weakening rule at most |A|+ |B|(|R| − 1) times on Q′(C),
we can derive Q′(C ∨D). The width of deriving Q′(C ∨D) is at most

max{(w1 + 1)|R|,w(Q′(C ∨D))}
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which is less than or equal to

max{(w1 + 1)|R|,w(C ∨D)(|R| − 1)},

which is less than or equal to

|R|(max{w1,w(C ∨D)}+ 1).

For proving the size-width relation for (tree-like) Res(PCd/R), we need the size-width relation
of Ben-Sasson and Wigderson which was proved in the seminal paper [5].

Theorem 4.4 ([5]) For every unsatisfiable CNF formula F in n variables, the following
inequalities hold:

1. wRes(F ) ≤ w(F ) + log SRes∗(F ).

2. wRes(F ) ≤ w(F ) +O(
√
n log SRes(F )).

where log is the binary logarithm.

4.1 Proof of Theorem 3.1

1. Let π be a minimal size Res∗(PCd/R)-refutation of F (|π| = S∗R,d(F )). By the first part
of Lemma 4.3,

SRes∗(Ex(π) ∪Q(F )) ≤ 3S∗R,d(F ).

On the other hand, by the second part of Lemma 4.3,

wR,d(F )

|R|
− 1 ≤ wRes(Ex(π) ∪Q(F )).

Furthermore, w(Ex(π)∪Q(F )) ≤ max{3,w(F )}, because w(Ex(π)) ≤ 3 by the way we
constructed it. Note that by the first inequality of Theorem 4.4

wRes(Ex(π) ∪Q(F )) ≤ w(Ex(π) ∪Q(F )) + log SRes∗(Ex(π) ∪Q(F )).

So putting these inequalities together we get

wR,d(F )

|R|
− 1 ≤ max{3,w(F )}+ log 3S∗R,d(F ).

2. The proof of this part is similar to the proof of the previous part with some extra
efforts. Let π be a minimal size Res(PCd/R)-refutation of F (|π| = SR,d(F )). By the
first part of Lemma 4.3,

SRes(Ex(π) ∪Q(F )) ≤ 3SR,d(F ).
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On the other hand, by the second part of Lemma 4.3,

wR,d(F )

|R|
− 1 ≤ wRes(Ex(π) ∪Q(F )).

Furthermore, w(Ex(π)∪Q(F )) ≤ max{3,w(F )}, because w(Ex(π)) ≤ 3 by the way we
constructed it. Note that by the second inequality of Theorem 4.4

wRes(Ex(π)∪Q(F )) ≤ w(Ex(π)∪Q(F ))+O
(√
|V (Ex(π) ∪Q(F )) | log SRes (Ex(π) ∪Q(F ))

)
.

so putting these inequalities together we get

wR,d(F )

|R|
− 1 ≤ max{3,w(F )}+O

(√
|V (Ex(π) ∪Q(F )) | log 3SR,d(F )

)
.

To complete the proof, it is sufficient to bound the value of |V (Ex(π) ∪ Q(F ))|. Note
that F is a CNF, so every disjunct in a clause of it is of the form of x or x− 1 where
x ∈ V (F ). By the fact that F has n variables, we can deduce that |V (Q(F ))| ≤ 2n.
Moreover, if we look at the way Ex(π) was constructed, we can see that for every
step in π, we add a clause with at most three new variables to Ex(π), so this implies
V (Ex(π)) ≤ 3|π|. From these facts we get

|V (Ex(π) ∪Q(F ))| ≤ 2n+ 3SR,d(F ),

so we get the desired inequality which is

wR,d(F )

|R|
− 1 ≤ max{3,w(F )}+O

(√
(2n+ 3SR,d(F )) log 3SR,d(F )

)
.

5 Application of the Size-Width relation to Lower bounds

In this section, we prove the lower bounds for Res(PCd/F) and Res∗(PCd/F) for every finite
field F. We use the same strategy as [18] by proving width lower bounds from degree lower
bounds of Polynomial Calculus refutations.

Let F be a field. Then Polynomial Calculus over the field F, PC/F is a proof system that
works with polynomials with coefficients in F. A polynomial f(x̄) ∈ F[x̄] is true under the
boolean assignment a ∈ {0, 1}n iff f(a) = 0. PC/F has the following rules:

1. Addition:

f(x̄) g(x̄)

af(x̄) + bg(x̄)
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for every a, b ∈ F,

2. Multiplication:

f(x̄)

x · f(x̄)

where f(x̄), g(x̄) are polynomials with coefficients in F and x ∈ {x1, ..., xn} is a variable from
the initial polynomials. Moreover, PC/F has x2 − x for every x ∈ {x1, ..., xn} as an axiom.
A PC/F- derivation of a polynomial f(x̄) ∈ F[x̄] from a set of polynomials F ⊆ F[x̄], F ` f
is a sequence π = D1, ..., Dl such that:

1. Dl = f ,

2. for every i ≤ l, Di is in F , or Di is a PC/F axiom, or Di was derived by the rules of
PC/F from {Dj|j < i} in one step.

A PC/F-refutation of a set F ⊆ F[x̄] is a derivation of 1 from F (F ` 1). One of the important
measure for Polynomial calculus derivations is the degree measure. For a polynomial f(x̄) ∈
F[x̄] let d(f) be the degree of f(x̄). For a set F ⊆ F[x̄] (not necessarily nonempty) and a
polynomial f(x̄) ∈ F[x̄], the notation

F d

PC/F
f

means there exists a PC/F-proof π for f from F such that the degree of each polynomial in
π is at most d.

Let C = {f1, ..., fl} be a clause of polynomials over the field F. Then the arithmetization
of C is the polynomial hC(x̄) =

∏
f∈C f(x̄) (h∅(x̄) = 1).

To prove the relation between ResF(PC) and PC/F we need the following lemma.

Lemma 5.1 Let F be a field and f(x̄) ∈ F[x̄] be a polynomial. Then the following statements
are true:

1. For every polynomial g(x̄) ∈ F[x̄],

{f(x̄)}
d(f)+d(g)

PC/F
g(x̄) · f(x̄).

2. If F is a finite field such that char(F) = p for some prime p, then

{f 2(x̄)}
p·d(f)

PC/F
f(x̄).

Proof. 1. Let g(x̄) =
∑

p∈A p(x̄) where A is a set of monomials with coefficients in F. For

every p(x̄) = a
∏n

i=1 x
di
i in A where a ∈ F, we have

{f(x̄)}
d(f)+d(p)

PC/F
up(x̄) · f(x̄)
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by d(p) applications of the multiplication rule where up(x̄) = 1
a
p(x̄) . So by adding

up(x̄) · f(x̄) for every p(x̄) ∈ A using the addition rule we get

{f(x̄)}
d(f)+maxp∈A{d(up)}

PC/F ∑
p∈A

p(x̄) · f(x̄)

which means
{f(x̄)}

d(f)+d(g)

PC/F
g(x̄) · f(x̄).

2. Let f(x̄) =
∑

q∈A q(x̄) where A is a set of monomials with coefficients in F. It is well-
known that the identity (x + y)p = xp + yp is true in every field of characteristic p.
Therefore

fp(x̄) =
∑
q∈A

qp(x̄)

which implies

{f 2(x̄)}
p·d(f)

PC/F ∑
q∈A

qp(x̄)

by the previous part of the lemma. Moreover, it is easy to prove that for every monomial

q(x̄) =
∏n

i=1 x
di
i and every k ≥ 1, ∅

[PC/F,k·d(q)]
qk(x̄) − q(x̄). This can be proved by

induction on d(q) and using the fact that x2− x is an axiom for every x ∈ {x1, ..., xn}.
This implies that by applications of the addition rule we get

{f 2(x̄)}
p·d(f)

PC/F ∑
q∈A

qp(x̄)− (qp(x̄)− q(x̄))

which means
{f 2(x̄)}

p·d(f)

PC/F
f(x̄).

Now we are ready to state the relation between Res(PCd/F) and PC/F. This is the
generalization of Theorem 45 in [18].

For a CNF formula F , let HF = {hC |C ∈ F}.

Lemma 5.2 Let F be a CNF. Then for every finite field F (char(F)=p), every clause C∗,

and every d, if F w

Res(PCd/F)
C∗, then HF pwd

PC/F
hC∗.

Proof. The proof of this lemma is similar to the proof of Proposition 26 in [18] using induction
on the number of the steps in derivation of C∗ from F .

1. Base step:

If the number of steps in deriving C∗ is one, then C∗ is one of the initial clauses of F
or an axiom. Therefore we have the following cases:
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(a) C∗ ∈ F :

In this case
C∗

w(C∗)

Res(PCd/F)
C∗,

so
{hC∗(x̄)}

dw(C∗)

PC/F
hC∗(x̄).

(b) 0:

0 is an axiom of Res(PCd/F), so

∅ 1

Res(PCd/F)
0.

Note that x2
i − xi is an axiom in PC/F. So we can derive 0 by using the addition

rule on x2
i − xi, therefore

∅ 2

PC/F
0.

(c) xi ∨ xi − 1:

xi ∨ xi − 1 is an axiom of Res(PCd/F), so

∅ 2

Res(PCd/F)
xi ∨ xi − 1.

Furthermore, hxi∨xi−1 is x2
i − xi which is an axiom of PC/F. So

∅ 2

PC/F
x2
i − xi.

2. Induction step:

(a) Resolution rule:

Suppose C and D are clauses in variables of F and f(x̄), g(x̄) ∈ F[x̄] such that

F w

Res(PCd/F)
C ∨D ∨ af(x̄) + bg(x̄)

in k + 1 steps. Moreover, assume the last rule is an application of the resolution
rule on C ∨ f(x̄) and D ∨ g(x̄). Therefore

i. F w1

Res(PCd/F)
C ∨ f(x̄) in at most k steps.

ii. F w2

Res(PCd/F)
D ∨ g(x̄) in at most k steps.

So w = max{w1, w2,w(C ∨D ∨ af + bg)}. Moreover, by induction hypothesis

i. HF pw1d

PC/F
hC∨f (x̄).

ii. HF pw2d

PC/F
hD∨g(x̄).

Let E := m[C ∨D]. Then by the first part of Lemma 5.1
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i. {hC∨f (x̄)}
d(hE)+d(f)

PC/F
hE(x̄) · f(x̄).

ii. {hD∨g(x̄)}
d(hE)+d(g)

PC/F
hE(x̄) · g(x̄).

Hence by application of the addition rule we get

hE(x̄)(af(x̄) + bg(x̄))

and the degree of deriving this polynomial is at most

max{pw1d, pw2d, d(hE(af + bg))}.

To prove an upper bound for the above quantity we should consider the following
cases:

i. af(x̄) + bg(x̄) 6∈ E:
In this case,

hE(x̄)(af(x̄) + bg(x̄)) = hC∨D∨af+bg(x̄).

Therefore
d(hE(af + bg)) ≤ dw(C ∨D ∨ af + bg),

so the degree of deriving hC∨D∨af+bg(x̄) is at most

pdmax{w1, w2,w(C ∨D ∨ af + bg)}.

ii. af(x̄) + bg(x̄) ∈ E:
Let E ′ := E \ {af(x̄) + bg(x̄)}. Then

hE(x̄)(af(x̄) + bg(x̄)) = hE′(x̄)(af(x̄) + bg(x̄))2.

By the second part of Lemma 5.1 we have

{(af(x̄) + bg(x̄))2}
pd(af+bg)

PC/F
af(x̄) + bg(x̄).

Hence the degree of deriving hC∨D∨af+bg(x̄) = hE′(x̄)(af(x̄) + bg(x̄)) is at
most

max{pw1d, pw2d, d(hE(af + bg)), d(hE′) + pd(af + bg)}.
Note that hE(x̄) = hC∨D∨af+bg(x̄), so

d(hE(af + bg)) ≤ d(w(C ∨D ∨ af + bg) + 1),

d(hE′) ≤ d(w(C ∨D)− 1), and also d(af + bg) ≤ d, hence the degree upper
bound is

max{pw1d, pw2d, d(w(C ∨D ∨ af + bg) + 1), d(w(C ∨D)− 1) + pd}

which is less than or equal to

pdmax{w1, w2,w(C ∨D ∨ af + bg)}.
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(b) Weakening rule: Suppose C is a clause in variables of F and f(x̄) ∈ F[x̄] such
that

F w

Res(PCd/F)
C ∨ f(x̄)

in k + 1 steps. Moreover, assume the last rule is an application of the weakening
rule on C. Therefore

i. F w1

Res(PCd/F)
C in at most k steps.

So w = max{w1,w(C ∨ f)}. Moreover, by induction hypothesis

i. HF pw1d

PC/F
hC(x̄).

Note that hC∨f (x̄) = hC(x̄) · f(x̄), hence by the first part of Lemma 5.1

i. {hC(x̄)}
d(hC)+d(f)

PC/F
hC∨f (x̄).

Therefore the degree of deriving hC∨f (x̄) is at most

max{pw1d, d(hC∨f )}

and by the fact that d(hC∨f ) ≤ dw(C ∨ f), it is at most

pdmax{w1,w(C ∨ f)}.

(c) Simplification rule:

Suppose C is a clause in variables of F and a ∈ F \ {0} such that

F w

Res(PCd/F)
C

in k+1 steps. Moreover, assume the last rule is an application of the simplification
rule on C ∨ a. Therefore

i. F w1

Res(PCd/F)
C ∨ a in at most k steps.

So w = w1. Moreover, by induction hypothesis

i. HF pw1d

PC/F
hC∨a(x̄).

Note that hC∨a(x̄) = ahC(x̄), hence by applying the addition rule on x2
1 − x1 and

ahC(x̄) (hC(x̄) = a−1hC∨a(x̄) + 0(x2
1 − x1)) we can derive hC(x̄). The degree of

this derivation is at most

max{pw1d, d(hC)} ≤ pw1d.

(d) Multiplication rule:

Suppose C is a clause in variables of F and f(x̄), g(x̄) ∈ F[x̄] such that

F w

Res(PCd/F)
C ∨ g(x̄) · f(x̄)

in k+1 steps. Moreover, assume the last rule is an application of the multiplication
rule on C ∨ f(x̄). Therefore
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i. F w1

Res(PCd/F)
C ∨ f(x̄) in at most k steps.

So w = w1. Moreover, by induction hypothesis

i. HF pw1d

PC/F
hC∨f (x̄).

Note that by the first part of Lemma 5.1

{hC∨f (x̄)}
d(hC∨f )+d(g)

PC/F
g(x̄) · hC∨f (x̄).

So the degree of deriving g(x̄) · hC∨f (x̄) from HF is at most

max{pw1d, d(hC∨f ) + d(g)} ≤ pw1d.

Now to conclude induction step, we should consider the following cases:

i. hC∨g·f (x̄) = g(x̄) · hC∨f (x̄):
In this case we know

d(hC∨g·f (x̄)) ≤ w1d

which means the degree of deriving hC∨g·f (x̄) is at most pw1d.

ii. hC∨g·f (x̄) 6= g(x̄) · hC∨f (x̄):
In this case

g(x̄) · hC∨f (x̄) = hE(x̄) · (g(x̄) · f(x̄))2.

where E := m[C] \ {g(x̄) · f(x̄)}. Note that by the second part of Lemma 5.1

{(g(x̄) · f(x̄))2}
p·d(g·f)

PC/F
g(x̄) · f(x̄).

Hence the degree of deriving hC∨g·f (x̄) is at most

max{pw1d, d(hE) + pd(g · f)}.

Note that d(hE) ≤ d(w(C)− 1) and d(g · f) ≤ d, hence the degree of deriving
hC∨g·f (x̄) is at most

max{pw1d, d(w(C)− 1) + pd} ≤ pw1d.

For proving width lower bounds for (tree-like) Res(PCd/F) (F is a finite field) we use the
known degree lower bounds for PC/F.

Theorem 5.3 ([3]) For any field F and for any fixed prime q such that char(F) 6= q, there
exists a constant dq such that the following holds. If d ≥ dq and G is a d-regular Ramanu-
jan graph on n vertices (augmented with arbitrary orientation of its edges), then for every
function σ such that Tq(G, σ) is unsatisfiable, every PC/F-refutation of Tq(G, σ) has degree
Ω(dn).
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Actually, the above theorem holds for any good enough expander graph. It is well-known
that for every fixed d, there exists an infinite family of d-regular Ramanujan graphs (see
[17]), hence for every fixed d, there exists an infinite family of dq-regular Ramanujan graphs
G such that lower bound of Theorem 5.3 works on mod q Tseitin formulas defined based on
members of G.

The following theorem explain the known degree lower bounds for random k-CNFs in
PC/F.

Theorem 5.4 ([3]) Let F ∼ Fn,∆k , k ≥ 3 and ∆ = ∆(n) is such that ∆ = o(n
k−2
2 ). Then

every PC/F-refutation of F has degree Ω( n
∆2/(k−2)·log ∆

) with probability 1− o(1) for any field
F.

5.1 Proof of Corollary 3.2

1. Suppose for a large enough n, SF,d(Tq(G, σ)) < n2− (log logn)2

logn . Note that by Lemma 5.2
and Theorem 5.3,

wF,d(Tq(G, σ)) = Ω(
c

pd
n).

So there exists an ε > 0 such that for a large enough n, εn ≤ wF,d(Tq(G, σ)), hence by
Theorem 3.1 and the assumption at the beginning of the proof, for a large enough n,
we have:

ε′n ≤ c′ +

√(
2n+ 3n2− (log logn)2

logn
)

log(3n2− (log logn)2

logn )

for some positive ε′ and c′ is a constant. Therefore

(ε′n− c′)2 ≤
(
2n+ 3n2− (log logn)2

logn
)

log(3n2− (log logn)2

logn ),

but this is not true because n2− (log logn)2

logn log(n2− (log logn)2

logn ) = o(n2), hence we get a con-
tradiction and this completes the proof.

2. The proof of this part is similar to the proof of the previous part by using Theorem
5.4. Also, it is not hard to show that if F ∼ Fn,∆k and ∆ satisfies the assumption of
the corollary, then with probability 1− o(1) F is unsatisfiable (see [6]).

5.2 Proof of Corollary 3.3

The argument for this corollary is the same as the argument in Corollary 3.2 using the degree
lower bounds of Theorems 5.3 and 5.4.
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[14] Jan Kraj́ıček, Pavel Pudlák, and Alan R. Woods. An exponential lower bound to the
size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and
Algorithms, 7(1):15–40, 1995. Preliminary version in STOC ’92.
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