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Abstract

We revisit one original motivation for the study of no-signaling multi-prover interactive proofs (NS-
MIPs): specifically, that two spatially separated provers are guaranteed to be no-signaling by the physical
principle that information cannot travel from one point to another faster than light.

We observe that with more than two provers, the physical connection between no-signaling and
faster-than-light communication is more nuanced, depending on the relative positioning of the provers.
In particular, we observe that provers are guaranteed to be no-signaling if and only if their positions are
convexly independent. Other prover positionings provide weaker guaranteees.

We consider a new issue that thus arises only in the many-prover setting: how precisely must provers
be positioned in order to guarantee the soundness of a (NS-)MIP? We prove that substantially more
precision is required to guarantee full no-signaling than to guarantee soundness of a specific NS-MIP for
PSPACE implicit in the work of Kalai and Raz (CRYPTO 2009).
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1 Introduction

The notion of no-signaling (but potentially nonlocal) behaviour by multiple spatially separated parties has
proven to be a valuable concept in the study of quantum information, as well as in cryptography. If k
players (probabilistically) map inputs q1, . . . , qk to outputs a1, . . . , ak, they are said to be no-signaling if the
distribution of (ai)i∈S for any set S ⊆ [k] depends only on (qi)i∈S . It turns out that this is a more general
notion than local behaviour, in which functions (f1, . . . , fk) are jointly sampled independently of q1, . . . , qk,
and then each ai is computed as ai = fi(qi). One example of a no-signaling but nonlocal behavior, due
to Clauser et al. [CHSH69], maps q1, q2 ∈ {0, 1} to a1, a2 ∈ {0, 1} sampled uniformly at random such that
a1 ⊕ a2 = q1 ∧ q2.

We are primarily interested in multi-prover interactive proofs (MIPs) [BGKW88] that retain soundness
even against malicious provers that may use an arbitrary no-signaling strategy. Kalai, Raz, and Roth-
blum [KRR14] showed that with k > 2 provers — in fact k = nc provers for some constant c > 0 — it
is possible to construct a k-prover one-round MIP for EXP with soundness against all no-signaling strate-
gies. They were motivated by the fact that under standard cryptographic assumptions, such an MIP can be
compiled into a single prover one-round argument for EXP, resolving a long-standing open problem.

Using more than two provers was essential in the result of [KRR14], as Ito [Ito10] has shown that two-
prover MIPs with soundness against no-signaling strategies are limited to PSPACE. Subsequently, Holden
and Kalai [HK20] have proved that in fact at least ω(

√
log n) provers are necessary for any such MIP beyond

PSPACE (with negligible soundness error).
One additional folklore motivation (mentioned explicitly by e.g. [KRR14, HK20]) for studying no-

signaling MIPs is that

“...the principle that information cannot travel faster than light is a central principle in physics,
and is likely to remain valid in any future ultimate theory of nature, since its violation means that
information could be sent from future to past. Therefore, soundness against no-signaling strategies
is likely to ensure soundness against provers that obey a future ultimate theory of physics, and
not only the current physical theories that we have, that are known to be incomplete.” — Kalai,
Raz, and Rothblum [KRR14].

In this work, we observe that ≥ 3-prover no-signaling is not necessarily implied by the principle that
information cannot travel between two points faster than light. We then investigate what is implied by said
principle.

For the rest of this introduction, we abstract out the speed of light by defining a metric on the set of
possible prover positions in which the distance between any two points x and y is the minimum time required
to transmit information from x to y, which we shall denote by t(x  y). If X and Y are sets, we write
t(X  Y ) to denote maxx∈X,y∈Y t(x  y). We will exclusively consider Euclidean space R

3, but we allow
for the possibility that other metrics may arise.

1.1 Our Results and Techniques

We first recall (Physical Theorem 3.6) a physical “reduction” that uses signaling provers to construct a faster-
than-light communicator, and point out that it inherently relies on a condition about the positions of the
signaling provers. In particular, suppose that provers {Pi}i∈T , located at positions {xi}i∈T , produce outputs
that signal about the inputs to provers {Pi}i∈S , located at positions {xi}i∈S (we call this (S → T )-signaling).
If there are positions a, b such that

t(a {xi}i∈S) + t({xi}i∈T  b) < t(a b), (1)

then the reduction uses such provers to construct a device that communicates from a to b in time less than
t(a b). If Eq. (1) is satisfied, we say that {xi}i∈S and {xi}i∈T are separated.

Physical Theorem 3.6 naturally leads to a generalization of the notion of no-signaling that we call metric
no-signaling: For any positions (x1, . . . , xk), we say that P is (x1, . . . , xk)-metric no-signaling if for all S, T ⊆ [k]

2



with {xi}i∈S separated from {xi}i∈T , P is (S → T )-no-signaling. Our physical reduction implies (under
the assumption that point-to-point faster-than-light communication is impossible) that if a collection P of
provers is located at positions x1, . . . , xk, then P must be (x1, . . . , xk)-metric no-signaling.

We show that if x1, . . . , xk are convexly independent, then any (x1, . . . , xk)-metric no-signaling strategy
is in fact no-signaling. Indeed, if P were (S → T )-signaling for some (disjoint) S, T , then a simple hybrid
argument implies that P is ({i} → T )-signaling for some i ∈ S. On the other hand, the convex independence
of x1, . . . , xk implies that xi is separated from xT , which contradicts that P is (x1, . . . , xk)-metric no-signaling.

1.1.1 Robust Configurations

We would like MIPs that are not only sound against metric no-signaling strategies, but are “robustly”
so. Formally, for a metric space (X, d), we say that a configuration ~x′ = (x′1, . . . , x′k) ∈ Xk is an ǫ-
perturbation of ~x = (x1, . . . , xk) if x′i = ρ(xi) for some ρ : X → X such that for all a, b ∈ X, it holds that
e−ǫ · d(a, b) ≤ d

(

ρ(a), ρ(b)
)

≤ eǫ · d(a, b). When an MIP is sound against ~x′-metric no-signaling strategies for
all ǫ-perturbations ~x′ of some fixed ~x, we say that that the MIP is ǫ-robustly metric no-signaling sound.

One might hope that for some positions (x1, . . . , xk), it in fact holds for all ǫ-perturbations (x′1, . . . , x′k)
that the notion of (x′1, . . . , x′k)-metric no-signaling is equivalent to (full) no-signaling. Indeed, this would
imply that any no-signaling MIP is in fact ǫ-robustly metric no-signaling sound. Unfortunately, we show
that such positions cannot exist unless ǫ ≤ 1

Ω(k1/3)
. Loosely speaking, Descarte’s theorem on total angular

defect (a 3-dimensional analogue of the fact that the exterior angles of a convex polygon sum to 2π) states
that some vertex of a convex polyhedron has small “curvature”. Unlike in two dimensions, a vertex v having
small curvature does not mean that v has neighboring vertices a and b such that the angle ∠avb is large.
However, if this is not the case we show that it is possible to flatten the polyhedron at v with only a mild
deformation.

Finally, we show that a no-signaling MIP for PSPACE (with a super-constant number of provers) implicit
in a work of Kalai and Raz [KR09] is Ω(1)-robustly metric no-signaling sound. Intuitively, in this MIP each
prover corresponds to a round of a public-coin interactive proof, and soundness only relies on the provers
corresponding to rounds 1, . . . , i not signaling about the inputs to prover j for any j > i. To guarantee this,
it suffices to arrange the provers sequentially along a line.

So as not to oversell this result, we mention that existing 2-prover NS-MIPs for PSPACE [IKM08] are
automatically ǫ-robustly metric no-signaling sound for all ǫ. It remains an interesting open question whether
there is any robustly metric no-signaling sound MIP beyond PSPACE.

2 Preliminaries

Definition 2.1. A metric space is a pair (X, d), where X is a set, and d : X×X → R≥0 is a function (called
a metric on X) such that for all x, y, z ∈ X:

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.2. A strategy P : Qk $→ Ak is said to be no-signaling if for all q, q′ ∈ Qk and all S ⊆ [k] with
qS = q′S , it holds that P (q)S and P (q′)S are identically distributed.

2.1 Geometry

We use some facts and notions from 3D Euclidean and spherical geometry. Rather than reproduce them
here, we refer the reader to any textbook, and simply state the notation we will use here.
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If a, b, and c, are distinct points, we write
−→
ab to denote the ray with endpoint a that passes through b,

we write
←→
ab to denote the line passing through a and b, and we write ab to denote the line segment with

endpoints a and b. We write ∠abc to refer to the angle with vertex b enclosed by the rays
−→
ba and

−→
bc. We

write m∠abc to denote the measure (in radians) of ∠abc. We write ∆abc to denote the triangle with sides
ab, bc, and ca. We use the same notation for spherical lines, line segments, angles, and triangles.

2.2 Games and Proofs

The rest of Section 2 is taken verbatim (with author permission) from [Hol19].
It will be convenient for us to consider separately from interactive proofs (which are associated with a

language L, involve an input x, and have completeness / soundness properties depending on whether x ∈ L)
a notion of an interactive game, which has no input.

We think of an interactive game as something that is played by a single player in r rounds. At the
beginning of the ith round, the player must specify a message αi ∈ {0, 1}∗. Then, a message βi is sampled
uniformly from {0, 1}ℓi for some ℓi that is pre-specified independently of any of the player’s choices. At the
end of the rth round, a predicate W is applied to (α1, β1, . . . , αr, βr) to determine whether the player wins.

More formally:

Definition 2.3 (Interactive Game). An (r-round) public-coin interactive game is a tuple (ℓ1, . . . , ℓr, W ),
where each ℓi ∈ Z

+ and W ⊆ {0, 1}∗ is an “acceptance” set. A strategy is a function s : {0, 1}∗ → {0, 1}∗.
If G = (ℓ1, . . . , ℓr, W ) is a public-coin interactive game and s is a strategy, then the value of G with respect

to s (alternatively the probability with which s wins G) is

v[s](G)
def
= Pr

β1←{0,1}ℓ1

...
βr←{0,1}ℓr

[

(α1, β1, . . . , αr, βr

)

∈W
]

,

where each αi is defined to be s(β1, . . . , βi−1). The value of G, denoted v(G), is sups v[s](G).

Definition 2.4 (Interactive Proof). An (r(·)-round) public-coin interactive proof for a language L with sound-
ness error ǫ(·) is a pair (P, V ), where V is a polynomial-time algorithm mapping any string x ∈ {0, 1}∗ to an
r(|x|)-round single-player game with the following properties:

• (Completeness) If x ∈ L, then P (x) is a strategy that wins V (x) with probability 1.

• (Soundness) If x /∈ L, then all strategies P ∗ win V (x) with probability at most ǫ(|x|).

The interactive proof is said to be public-coin if each V (x) is public-coin.

Definition 2.5 (Game Transcript). If G = (ℓ1, . . . , ℓr, W ) is a public-coin interactive game, then a (complete)
transcript for G is α1|β1| · · · |αr|βr with each βi ∈ {0, 1}ℓi and αi ∈ {0, 1}∗. An accepting transcript is one
that is contained in W . A transcript prefix is any α1|β1| · · · |αi|βi for i ∈ {0, . . . , r}.

Definition 2.6 (Game Suffix). If G = (ℓ1, . . . , ℓr, W ) is an r-round public-coin interactive game and
α1|β1| · · · |αi|βi is a transcript prefix for G, we denote by G|τ the game (ℓi+1, . . . , ℓr, W |τ ), where W |τ is
the set of strings of the form αi+1|βi+1| · · · |αr|βr for which α1|β1| · · · |αr|βr ∈W .

We refer to G|τ as the suffix of G following τ .

3 Physical Axioms and Metric No-Signaling

In this section, we aim to relate the purely mathematical notion of no-signaling to physical theories of reality.
In so doing, we necessarily sacrifice some definitional rigor. Still, wherever possible we strive as much as
possible to work with well-defined purely mathematical notions.
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Physics Axiom 3.1. Space consists of a set of positions X, endowed with a metric d, such that for all
a, b ∈ X, it is possible to transmit any message from a to b in time d(a, b), and it is impossible to transmit
any information from a to b faster than this.

Example 3.2. In special relativity, the space of all possible positions is R
3 with the usual Euclidean metric

(up to some constant that depends on the chosen units and the speed of light).

Definition 3.3. Say that a strategy P : Qk $→ Ak is (S → T )-no-signaling if for all q, q′ ∈ Qk satisfying
qi = q′i for all i /∈ S, it holds that P (q)T and P (q′)T are identically distributed.

We observe that the standard notion of no-signaling is equivalent to requiring (S → T )-no-signaling for
all disjoint S, T . We show that Physics Axiom 3.1 implies (S → T )-no-signaling for a different set of (S, T )
that depends on the positions of the provers.

Definition 3.4. For any metric space (X, d), we say that non-empty subsets S, T ⊆ X are separated if there
exist s, t ∈ X such that

sup
x∈S

d(s, x) + sup
x∈T

d(x, t) < d(s, t).

One reason that Definition 3.4 is natural is because of Proposition 4.4, which states that in R
n our notion

of separation is equivalent to hyperplane separation. A basic fact about separated sets is that they are always
disjoint.

Definition 3.5. Say that a strategy P : Qk $→ Ak is (x1, . . . , xk)-metric no-signaling if P is (S → T )-no-
signaling for all S, T ⊆ [k] for which {xi}i∈S and {xi}i∈T are separated.

Physical Theorem 3.6. Let D be a device that at a pre-specified time (say t = 0) takes inputs q1, . . . , qk ∈
Q at respective positions x1, . . . , xk, and at the same positions produces outputs a1, . . . , ak ∈ A. Then
either D implements a (x1, . . . , xk)-metric no-signaling strategy, or it can be used to build a faster-than-light
communicator.

Proof. Suppose that D does not implement a (x1, . . . , xk)-metric no-signaling strategy. Then there exist sets
S, T ⊆ [k] such that:

• {xi}i∈S and {xi}i∈T are separated; that is, there exist s, t ∈ X such that

max
i∈S

d(s, xi) + max
i∈T

d
(

xi, t
)

< d(s, t).

• There exist q(0), q(1) ∈ Qk such that:

– q
(0)
i = q

(1)
i for all i /∈ S, but

– D(q(0))T and D(q(1))T have statistical distance ǫ > 0.

Imagine placing a device at each position xi that acts as follows. If i ∈ S, it listens for a bit b at time

0, and immediately provides q
(b)
i as the ith input to D. If i /∈ S, then our device simply provides the fixed

value q
(0)
i = q

(1)
i as the ith input to D. If i ∈ T , then upon receiving an output ai at xi from D, our device

transmits ai to position t.
Suppose that Alice receives a random bit b ∈ {0, 1} at time −maxi∈S d(s, xi) and then, for each i ∈ S,

Alice transmits b at time −d(s, xi) to position xi. For each i ∈ T , Bob receives a message ai from position
xi at time d(xi, t). By time maxi∈T d(xi, t), Bob has received such messages (ai)i∈T . If (ai)i∈T has higher
probability in D(q(0))T than in D(q(1))T , then Bob guesses that b = 0; otherwise, Bob guesses that b = 1.
Clearly Bob guesses correctly with probability 1+ǫ

2 . On the other hand, the elapsed time between when Alice
receives b (at position s) and when Bob guesses b (at position t) is maxi∈S d(s, xi) + maxi∈T d(xi, t), which
is less than d(s, t), which is a contradiction.
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4 No-Signaling vs. Metric No-Signaling

In this section, we show that it is possible to arrange provers in Euclidean space so that metric no-signaling
implies the standard notion of no-signaling. Conversely, we show that with some (non-degenerate) arrange-
ments, metric no-signaling is a strictly weaker requirement than no-signaling.

Theorem 4.1. If x1, . . . , xk ∈ R
n are convexly independent, then any (x1, . . . , xk)-metric no-signaling

strategy P : Qk $→ Ak is no-signaling.

Proof. This follows as a simple corollary of Propositions 4.3 and 4.4 below. Specifically, by the definition of
convex independence, no xi is contained in the convex hull of {xj}j 6=i. Thus there is a hyperplane separating
xi from {xj}j 6=i. By Proposition 4.4 and the definition of metric no-signaling, P must be ({i} → [k] \ {i})-
no-signaling. Since this holds for all i, P must be no-signaling by Proposition 4.3.

Corollary 4.2. For any k, there exist x1, . . . , xk ∈ R
n such that (x1, . . . , xk)-metric no-signaling is equivalent

to no-signaling.

Proof. This follows from the fact that there exist polytopes with arbitrarily many vertices.

Proposition 4.3. P : Qk $→ Ak is no-signaling if and only if it is ({i} → [k] \ {i})-no-signaling for al
i ∈ [k].

Proof. By definition, P is no-signaling if and only if it is (S → T )-no-signaling for all disjoint S, T ⊆ [k]. By
a simple hybrid argument, this is equivalent to P being ({i} → T )-no-signaling for all i, T satisfying i /∈ T .
In turn, this is clearly equivalent to P being ({i} → [k] \ {i})-no-signaling for all i ∈ [k].

Proposition 4.4. In R
n, finite sets S and T are separated if and only if there is a hyperplane H separating

S from T .

Proof. Suppose that S and T are separated. That is, there exist points s and t such that maxp∈S d(s, p) +
maxp∈T d(p, t) < d(s, t). Then S is contained in a ball of radius maxp∈S d(s, p) centered at s, and T is
contained in a ball of radius maxp∈T d(p, t) centered at t. These two balls are convex and disjoint, and thus
the “only if” direction follows from the well-known hyperplane separation theorem.

For the “if” direction, suppose that S and T are separated by a hyperplane H = {p : u · p = 0} for a
unit vector u (by changing coordinates we may assume without loss of generality that H passes through the
origin). Let ǫ > 0 be such that u · p ≤ −ǫ for all p ∈ S and u · p ≥ ǫ for all p ∈ T .

By the Pythagorean theorem, it holds for all p ∈ S that

lim
λ→∞

λ− d(−λu, p) = d(p, H) ≥ ǫ.

Similarly for p ∈ T ,
lim

λ→∞
λ− d(λu, p) = d(p, H) ≥ ǫ.

Thus for sufficiently large λ, it holds for all p ∈ S that d(−λu, p) ≤ λ − ǫ/2, and for all p ∈ T that
d(λu, p) ≤ λ− ǫ/2. Thus with s = −λu and t = λu,

max
p∈S

d(s, p) + max
p∈T

d(p, t) ≤ 2λ− ǫ < 2λ = d(s, t).

Theorem 4.5. For any x1, . . . , xk ∈ R
n that are not convexly independent, there exists a (x1, . . . , xk)-metric

no-signaling strategy that is not no-signaling.

Proof. There must exist some i such that xi is in the convex hull of {xj}j 6=i. Without loss of generality,

suppose that i = k. Let P : {0, 1}k $→ {0, 1}k denote a strategy that on input (q1, . . . , qk) outputs random
(a1, . . . , ak) such that a1 ⊕ · · · ⊕ ak−1 = qk.
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We first show that P is (x1, . . . , xk)-metric no-signaling. Because of how we constructed the output
distribution of P , it can only possibly fail to be (S → T )-no-signaling when T contains {1, . . . , k − 1}. But
we only require (S → T )-no-signaling when S and T are separated (and in particular disjoint and no-empty).
The only candidate is S = {k} and T = {1, . . . , k}, but these are not separated (xk is contained in the convex
hull of {x1, . . . , xk}).

On the other hand, P is not no-signaling because the distribution of (a1, . . . , ak−1) clearly depends on
qk.

5 Robustness and Boundedness in Metric No-Signaling

In real life, it is impossible to ensure that provers are positioned exactly as specified. We consider per-
turbations of prover positions that may modify the distance between any two points by at most a small
multiplicative factor.

Definition 5.1. An ǫ-isometry of a metric space (X, d) is a function ρ : X → X such that for all x, y ∈ X,
it holds that e−ǫ · d(x, y) ≤ d

(

ρ(x), ρ(y)
)

≤ eǫ · d(x, y).

Definition 5.2. A class of k-prover strategies S is said to be ǫ-robustly instantiable via metric no-signaling
(in a metric space (X, d)) if there exist positions x1, . . . , xk ∈ X such that for all ǫ-isometries ρ, it holds that
any

(

ρ(x1), . . . , ρ(xk)
)

-metric no-signaling strategy is contained in S.

Theorem 5.3. There is a constant c > 0 such that the class of k-prover no-signaling strategies is at most
O(k−1/3)-robustly instantiable via metric no-signaling (in R

3).

Proof. By Theorem 4.5, it suffices to show that for all points ~v1, . . . , ~vk ∈ R
3, there exists an ǫ-isometry

ρ : R3 → R
3 such that ρ(~v1), . . . , ρ(~vk) are not convexly independent. If ~v1, . . . , ~vk are not already vertices

of a convex polyhedron K, we are done.
By Descartes’ theorem on total angular defect, there exists a vertex ~v∗ of this polyhedron with angular

defect at most 4π
k . Without loss of generality say that ~v∗ is at the origin, and let ~v1, . . . , ~vd be its neighboring

vertices.
For i ∈ [d], define the plane Pi = span(~vi, ~vj) for j ∈ [d] such that j ≡ i + 1 (mod d). Let n̂(i) denote the

unit normal vector to Pi, such that K is contained in the half-space Hi
def
= {~x : ~x · n̂(i) ≤ 0}.

Say that a plane P through the origin, defined by orthogonality to a unit normal vector n̂, is an ǫ-good
projection plane (for some ǫ > 0 to be determined later) if n̂ · n̂(i) ≥ 1− ǫ for each i ∈ [d], and if ~v∗ lies in the
convex hull of the orthogonal projections of ~v1, . . . , ~vd onto P .

Case 1: There exists a (10πk)−2/3-good projection plane Let P = {~x : ~x · n̂ = 0} be an ǫ-good
projection plane for ǫ = (10πk)−2/3.

We now work in a coordinate system in which n̂ is the azimuthal (z-) axis, ~v∗ is the origin, and the x-
and y- axes are arbitrary. For i ∈ [d], let (ri, θi, zi) denote the cylindrical coordinates of ~vi. We define a
mapping ρ : R3 → R

3 in these cylindrical coordinates as follows. On input (r, θ, z), let i, j ∈ [d] and λ ∈ [0, 1]
be such that θ ≡ λθi + (1 − λ)θj (mod 2π) and j ≡ i + 1 (mod d) (this uniquely determines i, j, and λ).
Then we define

ρ(r, θ, z) =
(

r, θ, z − r ·
(

λ
zi

ri
+ (1− λ)

zj

rj

)

)

.

By construction, ρ acts as orthogonal projection onto P when restricted to the points ~v1, . . . , ~vd. It
remains to show that ρ is an approximate isometry. We first establish the following claim about the cylindrical
coordinates of {~vi}.
Claim 5.4. For all i, j ∈ [d],

∣

∣

∣

zi

ri

∣

∣

∣
≤ O(k−1/3) (2)
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and
∣

∣

∣

zi

ri
− zj

rj

∣

∣

∣
≤ |θi − θj | ·O(k−1/3). (3)

Proof. The point ~vi lies on a plane Pi defined by orthogonality to a unit vector n̂(i) that is close to n̂.

In Cartesian coordinates, n̂(i) = (n
(i)
x , n

(i)
y , n

(i)
z )⊤ for n

(i)
z ≥ 1 − ǫ (and thus ‖(n(i)

x , n
(i)
y )⊤‖2 ≤

√
2ǫ). In

cylindrical coordinates, Pi can be described as

Pi =
{

(r, θ, z) : r ·
(

n(i)
x cos θ + n(i)

y sin θ
)

+ n(i)
z · z = 0

}

. (4)

This implies that for all points (r, θ, z) ∈ Pi with r 6= 0, we have z
r = −n(i)

x cos θ+n(i)
y sin θ

n
(i)
z

, so

∣

∣

∣

z

r

∣

∣

∣
≤ ‖(n

(i)
x , n

(i)
y )⊤‖2

n
(i)
z

≤
√

2ǫ

1− ǫ
≤ O(

√
ǫ) = O(k−1/3).

Eq. (3) follows from Eq. (4) and the fact that n
(i)
x cos θ + n

(i)
y sin θ is an O(k−1/3)-Lipschitz function of

θ.

To see that ρ is an O(k−1/3)-isometry, it suffices to show that ρ(~x)−~x is O(k−1/3)-Lipschitz. In cylindrical
coordinates, ρ always applies a displacement in the z-direction that depends only on (r, θ), so it suffices to
show that the displacement is O(k−1/3)-Lipschitz. By a hybrid argument, it suffices to show that ρ(·, θ, z)
and ρ(r, ·, z) are O(k−1/3)-Lipschitz for fixed (r, θ, z). This follows from Claim 5.4.

Case 2: There is no (10πk)−2/3-good projection plane In this case, the polyhedron K is contained
in the intersection of two half-spaces H = {~x : ~x · n̂ ≤ 0} and H ′ = {~x : ~x · n̂′ ≤ 0} whose bounding planes
P and P ′ form a dihedral angle of α with cos(α) ≥ −1 + ǫ for ǫ = (10πk)−2/3. Equivalently, n̂ · n̂′ ≤ 1− ǫ.

Claim 5.5. There exist i, j ∈ [d] such that m∠~vi~v
∗~vj ≥ π −O(k−1/3).

Proof. Let â and −â be two opposite unit vectors in P ∩ P ′. We will show the existence of i, j ∈ [d] such
that

m∠â~v∗~vi ≤ ϕ (5)

and
m∠(−â)~v∗~vj ≤ ϕ, (6)

where ϕ = 10π
ǫk = O(k−1/3). Suppose for contradiction that Eqs. (5) and (6) cannot both be satisfied.

Without loss of generality, suppose that Eq. (6) that cannot be satisfied.
We consider the radial projection of K onto a unit sphere centered at ~v∗. The fact that ~v∗ has small

angular defect means that the projection is a (convex) spherical polygon with perimeter at least 2π − 4π
k ,

whose corners are the projections of ~v1, . . . , ~vd.
We will obtain a contradiction by bounding the projection of K within a shape of perimeter less than

2π − 4π
k . The non-existence of a vertex ~vi with m∠(−â)~v∗~vi ≤ ϕ means that the projection of K avoids a

spherical cap of polar angle ϕ centered at −â. Let P ′′ be a plane passing through ~v∗ such that the lines
P ′′ ∩ P and P ′′ ∩ P ′ each intersect P ∩ P ′ at an angle of ϕ. Let b̂ and ĉ be (the unique) unit vectors in
P ′′ ∩ P ∩H ′ and P ′′ ∩ P ′ ∩H, respectively. The projection of K then is contained in the spherical triangle
∆âb̂ĉ.

∆âb̂ĉ is obtained from the perimeter-2π spherical quadrilateral with vertices â, b̂, −â, and ĉ by “short-
cutting” from b̂ to ĉ. Thus ∆âb̂ĉ has perimeter

2π −m∠b̂~v∗(−â)−m∠(−â)~v∗ĉ + m∠ĉ~v∗b̂ = 2π − 2ϕ + m∠ĉ~v∗b̂.
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Letting γ denote m∠ĉ~v∗b̂, the spherical law of cosines gives

cos γ = cos2 ϕ + sin2 ϕ · cos α

=
1 + cos(2ϕ)

2
+ cos α · 1− cos(2ϕ)

2

=
1 + cos α

2
+ cos(2ϕ) · 1− cos α

2

= cos2
(α

2

)

+ cos(2ϕ) · sin2
(α

2

)

≥ ǫ

2
+ (1− ǫ

2
) · cos(2ϕ).

Using the approximation 1− θ2

2 ≤ cos(θ) ≤ 1− θ2

2 + θ2

24 , we obtain

γ4

24
− γ2

2
≥ −(1− ǫ/2) · 2ϕ2.

(

γ2

√
24
−
√

24

4

)2

≥ 3

2
− (1− ǫ/2) · 2ϕ2

∣

∣

∣

∣

γ2

√
24
−
√

24

4

∣

∣

∣

∣

≥
√

3

2
− (1− ǫ/2) · 2ϕ2

γ2

√
24
≤
√

24

4
−

√

3

2
− (1− ǫ/2) · 2ϕ2,

where in the last step we use the fact that γ is small. Thus,

γ2 ≤ 6− 6 ·
√

1− (1− ǫ/2) · 4ϕ2

3

≤ (1− ǫ/2) · 4ϕ2

and finally

γ ≤
√

1− ǫ/2 · 2ϕ ≤ 2ϕ− ϕǫ

2
.

The above calculation shows that the perimeter of ∆âb̂ĉ is at most 2π − ϕǫ
2 . But ϕǫ

2 > 4π
k , which is a

contradiction.
An identical argument shows that there must exist a vertex ~vj with m∠(−â)~v∗~vj ≤ ϕ.

Let i and j be as guaranteed to exist by Claim 5.5. Consider a 3-dimensional Cartesian coordinate system
in which ~v∗ is the origin, ~vi lies on the negative x-axis and ~vj lies in the upper half of the x-y plane. With
θ denoting π −m∠~vi~v

∗~vj , we define a mapping ρ so that ρ(x, y, z) = (x, y′, z) where

y′ =

{

y if x ≤ 0

y − x tan θ otherwise.

This is a tan(θ)(= O(ǫ′))-isometry that maps ∠~vi~v
∗~vj into a straight line.

In our feasibility results, we also consider the boundedness of a prescribed prover arrangement (~v1, . . . , ~vk),
normalized so that the minimum distance between any ~vi, ~vj for i 6= j is 1.

Definition 5.6. We say that a configuration (~v1, . . . , ~vk) is B-bounded if

maxi,j d(~vi, ~vj)

mini6=j d(~vi, ~vj)
≤ B.
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5.1 Robustly Instantiating the Kalai-Raz NS-MIP

We now show that there do exist useful relaxations of no-signaling that are Ω( 1
log n )-robustly instantiable via

metric no-signaling.
Recall the following multi-prover interactive proof (PMIP, VMIP) implicit in the work of Kalai and Raz [KR09].

Let Π = (PIP, VIP) be an r-round public-coin interactive proof with negligible soundness error ǫ = ǫ(n), where
each verifier message is of length ℓ = ℓ(n). The MIP, which we will denote by KR[Π], works as follows: There

are r provers. On input x, VMIP samples B1, . . . , Br ← {0, 1}ℓ, and sends B[i]
def
= (B1, . . . , Bi−1) to the

ith prover. The verifier accepts if the ith prover returns Ai such that (A1, B1, . . . , Ar, Br) is an accepting
transcript for x in Π.

Theorem 5.7. For any ǫ-sound r-round public-coin interactive proof Π, the MIP KR[Π] is ǫ-sound against
all strategies that are ({j} → {1, . . . , i})-no-signaling for all i < j.

Proof. Let KR[Π] = (PMIP, VMIP). For any x ∈ {0, 1}n \ L, consider a strategy P ∗ that wins in the
game VMIP(x) with probability greater than ǫ(n). That is, in the probability space defined by sampling
B1, . . . , Br ← {0, 1}ℓ and computing (A1, . . . , Ar)← P ∗(B[0], . . . , B[r−1]),

Pr [(A1, B1, . . . , Ar, Br) is accepting] > ǫ(n).

Then in particular there must exist i ∈ [r] such that

E
[

v
(

VIP(x)|A1|B1|···|Ai|Bi

)]

> E
[

v
(

VIP(x)|A1|B1|···|Ai−1|Bi−1

)]

.

By definition of v(VIP(x)|A1|B1|···|Ai−1|Bi−1
), the random variables Bi and (A1, B1, . . . , Ai−1, Bi−1, Ai)

must not be independent. Thus there are values b
(0)
i , b

(1)
i such that the distribution of (A1, B1, . . . , Ai−1, Bi−1, Ai)

conditioned on Bi = b
(0)
i is different than conditioned on Bi = b

(1)
i . This means that P ∗ is not ({i +

1, . . . , r} → {1, . . . , i})-no-signaling. Then, by a simple hybrid argument, there must exist some j > i such
that P ∗ is not ({j} → {1, . . . , i})-no-signaling.

Motivated by Theorem 5.7, we make the following definition.

Definition 5.8. We say that a k-prover strategy P is KR-no-signaling if it is ({j} → {1, . . . , j − 1})-no-
signaling for all j ∈ [k].

Theorem 5.9. n-prover KR-no-signaling is Ω( 1
log(n) )-robustly n-boundedly instantiable via metric no-signaling

in R
3.

Proof. For all i ∈ Z, let xi denote the point (i, 0, 0). We will show that the arrangement (x1, . . . , xn) suffices.
Let ǫ < 1

log(n) , let ρ be an arbitrary ǫ-isometry, and let yi = ρ(xi) for all i ∈ Z.

We begin by establishing lower bounds on the measures of the angles ∠yi1
yi2

yi3
and ∠yi2

yi3
yi4

. Recall
that for an angle ∠ABC, we write m∠ABC to denote the measure of ∠ABC (which is between 0 and π).

Definition 5.10. For any a, b ∈ Z
+, let θa,b denote

sup
ρ,i

[π −m∠yi−ayiyi+b] ,

where the supremum is over all ǫ-isometries ρ and all i ∈ [n].

Lemma 5.11. For all a, b ∈ Z
+, it holds that θa,b ≤ O

(√
ǫ · log(a + b)

)

.

Before proving Lemma 5.11, we demonstrate that it suffices for Theorem 5.9.
Suppose that for some j ∈ [n], yj is in the convex hull of {y1, . . . , yj−1}. By Carathéodory’s theorem,

there must exist i1 < i2 < i3 < i4 such that yj is in the convex hull of {yi1
, yi2

, yi3
, yi4
}.
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Thus in the tetrahedron with vertices yi1
, yi2

, yi3
, yi4

, it holds that yi2
, yi3

, and yi4
each have angular

defect at most 2ǫ. Thus by Descartes’ theorem on total angular defect, yi1
and yi4

both have angular defect
at least 2π − 2ǫ.

Replacing yi1
by yj does not increase the angular defect of yi4

. Hence the angle ∠yi1
yi4

yj is at most ǫ,
which is a contradiction.

Proof of Lemma 5.11. We begin with the special case in which a = b, in which we obtain the stronger bound
O(
√

ǫ) (independent of a).

Claim 5.12. For any a ∈ Z
+, θa,a ≤ O(

√
ǫ).

Proof. We know that for all i, ‖yi − yi−a‖ and ‖yi+a − yi‖ are at most eǫ · a, while ‖yi+a − yi−a‖ is at least
2e−ǫ · a

By the law of cosines, we have

cos(m∠yi−ayiyi+a) =
‖yi − yi−a‖2 + ‖yi+a − yi‖2 − ‖yi+a − yi−a‖2

2 · ‖yi − yi−a‖ · ‖yi+a − yi‖

≤ 2e2ǫa2 − 4e−2ǫa2

2e22ǫa2

=
e2ǫ − 2e−2ǫ

e2ǫ

= 1− 2e−4ǫ

≤ −1 + O(ǫ) for small ǫ.

Thus
cos(π −m∠yi−ayiyi+a) ≥ 1−O(ǫ).

By the Taylor expansion cos(δ) ≈ 1− δ2

2 for small δ, we have

m∠yi−ayiyi+a ≤ O(
√

ǫ).

We also note that θa,b is symmetric.

Claim 5.13. For all a, b, it holds that θa,b = θb,a.

Proof Sketch. Follows by the symmetry of reversing the ordering of x1, . . . , xn.

Claim 5.14. For all a, c > 0 and all 0 < b < c, it holds that θa,c ≤ θa,b + θb,c−b.

Corollary 5.15. For all a, b > 1, it holds that θa,b ≤ θa−1,1 + θ1,1 + θ1,b−1.

Proof. Assuming Claim 5.14, we have θa,b ≤ θa,1 + θ1,b−1 = θ1,a + θ1,b−1 ≤ θ1,1 + θ1,a−1 + θ1,b−1.

Claim 5.16. For all a, b ∈ Z
+, it holds that θa,b ≤ θ2a,b + θa,a.

In our proofs of Claims 5.14 and 5.16, we will repeatedly use the following “spherical triangle inequality”,
which we state without proof.

Fact 5.17. For any points O, A, B, C ∈ R
3, it holds that

m∠AOC ≤ m∠AOB + m∠BOC.

Proof of Claim 5.14. For any i, we have

m∠yi−ayiyi+c ≥ m∠yi−ayiyi+b −m∠yi+byiyi+c (Fact 5.17)

≥ m∠yi−ayiyi+b − (π −m∠yiyi+byi+c)

So π −m∠yi−ayiyi+c ≤ π −m∠yi−ayiyi+b + (π −m∠yiyi+byi+c) ≤ θa,b + θb,c−b, and the claim follows.
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Proof of Claim 5.16. For any i and ρ, we have

m∠yi−ayiyi+b ≥ m∠yi−2ayiyi+b −m∠yi−2ayiyi−a (Fact 5.17)

≥ m∠yi−2ayiyi+b − (π −m∠yi−2ayi−ayi)

So π−m∠yi−ayiyi+b ≤ π−m∠yi−2ayiyi+b + (π−m∠yi−2ayi−ayi) ≤ θ2a,b + θa,a, and the claim follows.

Using Claims 5.12 to 5.14 and 5.16, we easily see that θ1,a ≤ O
(√

ǫ · log(a)
)

. For example,

θ1,11 ≤ θ1,1 + θ1,10 (Claim 5.14)

≤ 2 · θ1,1 + θ2,10 (Claim 5.16)

≤ 2 · θ1,1 + θ2,2 + θ2,8 (Claim 5.14)

≤ 2 · θ1,1 + 2 · θ2,2 + θ4,8 (Claim 5.16)

≤ 2 · θ1,1 + 2 · θ2,2 + 2 · θ4,4 (Claim 5.14)

≤ 6 ·O(
√

ǫ) (Claim 5.12).

The general bound is obtained in a similar way following the binary decomposition of a.
Given this bound on θ1,a, we apply Corollary 5.15 to obtain θa,b ≤ θa−1,1 + θ1,1 + θ1,b−1 ≤ O

(√
ǫ · log(a +

b)
)

.

By the discussion following the statement of Lemma 5.11, we have proved Theorem 5.9.

It is possible to Ω(1)-robustly instantiate n-prover KR-no-signaling, at the cost of using an arrangement
that is only B-bounded for B ≥ eΩ(n).

Theorem 5.18. For ǫ > 0, it holds that n-prover KR-no-signaling is ǫ-robustly eO(n)-boundedly instantiable
via metric no-signaling.

Proof. Let α > 2ǫ, let xi =
(

eαi, 0, 0
)

for i ∈ Z
+, and let ρ be an arbitrary ǫ-isometry. Let yi denote ρ(xi).

For any i, we have e(2i−1)ǫ < eαi−ǫ ≤ ‖yi − ρ(0)‖ ≤ eαi+ǫ < e(2i+1)ǫ. Thus {y1, . . . , yi} are contained in
a ball of radius e(2i+1)ǫ centered at the origin, while the point yi+1 is not.
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