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Abstract. We suggest a general framework to study dependency schemes for dependency quan-
tified Boolean formulas (DQBF). As our main contribution, we exhibit a new tautology-free
DQBF dependency scheme that generalises the reflexive resolution path dependency scheme. We
establish soundness of the tautology-free scheme, implying that it can be used in any DQBF proof
system. We further explore the power of DQBF resolution systems parameterised by dependency
schemes and show that our new scheme results in exponentially shorter proofs in comparison
to the reflexive resolution path dependency scheme when used in the expansion DQBF system
∀Exp+Res.
On QBFs, we demonstrate that our new scheme is exponentially stronger than the reflexive
resolution path dependency scheme when used in Q-Resolution, thus resulting in the strongest
QBF dependency scheme known to date.
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1 Introduction

Quantified Boolean formulas (QBF) have been intensively studied in the past decade, both
practically and theoretically. On the practical side, there have been huge improvements in
QBF solving [28]. These build on the success of SAT solving [35], but also incorporate new
ideas genuine to the QBF domain, such as expansion solving [19] and dependency schemes [31].
Due to its PSPACE completeness, QBF solving is relevant to many application domains that
cannot be efficiently encoded into SAT [16,21,24]. On the theoretical side, there is a substantial
body of QBF proof complexity results (e.g. [3,6,8–10]), which calibrates the strength of solvers
while guiding their development.

In QBF solving, a severe technical complication is that variable dependencies stemming
from the linear order of quantification1 must be respected when assigning variables. In con-
trast, a SAT solver can assign variables in any order, granting complete freedom to decision
heuristics, which are crucial for performance. As a remedy, QBF researchers have developed
dependency schemes. Dependency schemes try to determine algorithmically which of the vari-
able dependencies are essential, thereby identifying spurious dependencies which can be safely
disregarded. The result is greater freedom for decision heuristics.

Practical QBF solving utilises dependency schemes, for example the solvers DepQBF [22]
and Qute [25,26], and experiments show dependency-aware solving is particularly competitive
on QBFs with high quantifier complexity [18,23].

The performance gains are also underlined by theoretical findings. There is a sequence of
results [7, 27, 34] that establish how and when dependency schemes are sound to use with a
QBF proof system, such as the central QBF resolution systems Q-Resolution [20] and long-
distance Q-Resolution [2]. In [6] it is demonstrated that using the reflexive resolution path
dependency scheme (Drrs [34]) in Q-Resolution can exponentially shorten proofs.

? This research was supported by grants from FWF (J-4361), the John Templeton Foundation (grant no.
60842), and the Carl Zeiss Foundation.

1 The standard input for solvers is a prenex QBF.
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While dependency schemes aim to algorithmically determine spurious dependencies, de-
pendency quantified Boolean formulas (DQBF) allow to directly express variable dependencies
by specifying, for each existential variable x, a dependency set of universal variables on which
x depends. This is akin to the use of Henkin quantifiers in first-order logic [17]. Compared to
QBFs, DQBFs boost reasoning power and enable further applications (cf. [32] for an overview).
The price of succinct encodings is an increase of the complexity of the satisfiability problem
from PSPACE (for QBF) to NEXP (for DQBF) [1].

It seems natural that there should be a relationship between dependency schemes and
DQBF, and indeed the paper [7] suggests that dependency schemes for QBF should be viewed
as truth-preserving mappings from QBF to DQBF.

Now, is there even a need for dependency schemes for DQBF? The answer is yes: also for
DQBFs it is possible that the dependency sets contain spurious dependencies, which can be
safely eliminated [36]. Indeed, Wimmer et al. [36] showed that several dependency schemes for
QBF, including Drrs, can be lifted to DQBF. They also demonstrate that using dependency
schemes for DQBF preprocessing can have a significant positive impact on solving time.

However, in contrast to QBF, there are currently no results on how DQBF dependency
schemes can be incorporated into DQBF proof systems, and how this affects their proof-
theoretic strength.

This paper contributes to the theory of DQBF dependency schemes on three main fronts.

A. A proof complexity framework for DQBF dependency schemes. We extend the
interpretation of QBF dependency schemes proposed in [7] to DQBF. The result is a framework
in which a sound DQBF dependency scheme D can be straightforwardly incorporated into
an arbitrary DQBF proof system P, yielding the parametrised system P(D). More precisely,
in our framework a proof of Φ in P(D) is simply a P proof of D(Φ), where D is a mapping
between DQBFs.

A major benefit of this approach is that the rules of the proof system remain independent of
the dependency scheme, which essentially plays the role of a preprocessor. Moreover, soundness
of a dependency scheme is characterised by the natural property of full exhibition [4, 33],
independently of proofs. This is a welcome feature, since even defining sound parameterisations
on the QBF fragment has been fairly non-trivial, e.g. for the long-distance Q-Resolution
calculus [4, 27].

We also extend the notion of genuine proof size lower bounds [12,14] to DQBF proof sys-
tems. Since DQBF encompasses QBF, proof systems are susceptible to lower bounds from QBF
proof complexity. We define a precise condition by which hardness from the QBF fragment
is factored out. As such, our framework fosters the first dedicated DQBF proof complexity
results.

B. The tautology-free dependency scheme. We define and analyse a new DQBF depen-
dency scheme called the tautology-free dependency scheme (Dtf). Our scheme builds on the
reflexive resolution path dependency scheme (Drrs) [34], originally defined for QBFs, which
prior to this paper was the strongest known DQBF scheme. Dtf improves on Drrs by disal-
lowing certain kinds of tautologies in resolution paths, thereby identifying further spurious
dependencies.

We show that Dtf is fully exhibited, and therefore sound, by reducing its full exhibition to
that of Drrs. For this, we point out that the full exhibition of Drrs on DQBF is an immediate
consequence of results of Wimmer et al. [36].

C. Exponential separations of (D)QBF proof systems. To demonstrate the strength of
our new scheme Dtf, we show that it can exponentially shorten proofs in DQBF proof systems.
As a case study, we consider the expansion calculus ∀Exp+Res. The choice of ∀Exp+Res is
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motivated by two considerations: (1) it is a natural calculus, whose QBF fragment models
expansion solving [19], and (2) other standard QBF resolution systems such as Q-Resolution
and long-distance Q-Resolution do not lift to DQBF [11].

For ∀Exp+Res parameterised by dependency schemes we show that

∀Exp+Res < ∀Exp+Res(Drrs) < ∀Exp+Res(Dtf) (1)

forms a hierarchy of DQBF proof systems of strictly increasing strength.
Since there exist no prior DQBF proof complexity results whatsoever, this entails proving

exponential proof-size lower bounds in the first two systems. We obtain these by introducing
two new DQBF versions of the equality formulas (originally QBFs [8,13]). Together with the
corresponding upper bounds, this yields the separations in (1). We highlight that these are
genuine separations in the precise sense of our DQBF framework, whereby hardness due to
the QBF fragment is factored out.

Finally, we show that our new dependency scheme Dtf is also relevant for QBFs: we prove
that Q-Resolution parameterised by Dtf is exponentially stronger than Q-Resolution with Drrs.
Thus Dtf currently constitutes the strongest known dependency scheme for Q-Resolution.

Organisation. Section 2 defines DQBF preliminaries. In Section 3 we explain dependency
schemes. Section 4 details how to parameterise DQBF proof systems by dependency schemes.
In Section 5 we define our new scheme Dtf and show its soundness. In Section 6 we prove
the proof complexity upper and lower bounds needed for the strict hierarchy in (1). Section 7
applies Dtf to QBF and shows that it is stronger than Drrs when used with Q-Resolution.

2 Preliminaries

DQBF syntax. We assume familiarity with the syntax of propositional logic and the notion
of Boolean formula (simply formula). A variable is an element z of the countable set V. A
literal is a variable z or its negation z. The negation of a literal a is denoted a, where z := z
for any variable z. A clause is a disjunction of literals. A conjunctive normal form formula
(CNF) is a conjunction of clauses. The set of variables appearing in a formula ψ is denoted
vars(ψ). For ease, we often write clauses as sets of literals, and CNFs as sets of clauses. For
any clause C and any set of variables Z, we define C�Z := {a ∈ C : var(a) ∈ Z}.

A dependency quantified Boolean formula (DQBF) is a sentence of the form Ψ := Π · ψ,
where Π := ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn) is the quantifier prefix and ψ is a CNF called
the matrix. In the quantifier prefix, each existential variable xi is associated with a dependency
set Sxi , which is a subset of the universal variables {u1, . . . , um}. With vars∀(Ψ) and vars∃(Ψ)
we denote the universal and existential variable sets of Ψ , and with vars(Ψ) their union. We
deal only with closed DQBFs, in which vars(ψ) ⊆ vars(Ψ). We define a relation deps(Ψ) on
vars∀(Ψ)× vars∃(Ψ), where (u, x) ∈ deps(Ψ) if, and only if, u ∈ Sx.

The set of all DQBFs is denoted DQBF. A QBF is a DQBF whose dependency sets are
linearly ordered with respect to set inclusion, i.e. Sx1 ⊆ · · · ⊆ Sxn . The prefix of a QBF can
be written as a linear order in the conventional way. The set of all QBFs is denoted QBF.

DQBF semantics. An assignment α to a set Z of Boolean variables is a function from Z
into the set of Boolean constants {0, 1}. The domain restriction of α to a subset Z ′ ⊆ Z is
written α�Z′ . The set of all assignments to Z is denoted 〈Z〉. The restriction of a formula
ψ by α, denoted ψ[α], is the result of substituting each variable z in Z by α(z), followed by
applying the standard simplifications for Boolean constants, i.e. 0 7→ 1, 1 7→ 0, φ ∨ 0 7→ φ,
φ ∨ 1 7→ 1, φ ∧ 1 7→ φ, and φ ∧ 0 7→ 0. We say that α satisfies ψ when ψ[α] = 1, and falsifies
ψ when ψ[α] = 0.
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A model for a DQBF Ψ := Π · ψ is a set of functions f := {fx : x ∈ vars∃(Ψ)}, fx :
〈Sx〉 → 〈{x}〉, for which, for each α ∈ 〈vars∀(Ψ)〉, the combined assignment α ∪ {fx(α�Sx

) :
x ∈ vars∃(Ψ)} satisfies ψ. A DQBF is called true when it has a model, otherwise it is called

false. When two DQBFs share the same truth value, we write Ψ
tr≡ Ψ ′.

DQBF expansion. Universal expansion is a syntactic transformation that removes a uni-
versal variable from a DQBF. Let Ψ be a DQBF, let u be a universal, and let y1, . . . , yk be the
existentials for which u ∈ Syi . The expansion of Ψ by u is obtained by creating two ‘copies’
of Ψ . In the first copy, u is assigned 0 and each yi is renamed yui . In the second copy, u is
assigned 1 and each yi is renamed yui . The two copies are then combined, and u is removed
completely from the prefix. Formally, exp(Ψ, u) := Π ′ · ψ′, where Π ′ is obtained from Π by
removing ∀u and replacing each ∃yi(Syi) with ∃yui (Syi \ {u}) ∃yui (Syi \ {u}), and

ψ′ := ψ[u 7→ 0, y1 7→ yu1 , . . . , yk 7→ yuk ] ∧ ψ[u 7→ 1, y1 7→ yu1 , . . . , yk 7→ yuk ] .

Universal expansion is known to preserve the truth value, i.e. Ψ
tr≡ exp(Ψ, u). Expansion

by a set of universal variables U is defined as the successive expansion by each u ∈ U (the
order is irrelevant), and is denoted exp(Ψ,U). Expansion by the whole set vars∀(Ψ) is denoted
exp(Ψ), and referred to as the total expansion of Ψ . The superscripts in the renamed existential
variables are known as annotations. Annotations grow during successive expansions. In the
total expansion, each variable is annotated with a total assignment to its dependency set.

3 DQBF Dependency Schemes and Full Exhibition

In this section, we lift the ‘DQBF-centric’ interpretation of QBF dependency schemes [7] to
the DQBF domain, and recall the definition of full exhibition.

How should we interpret variable dependence? Dependency schemes [31] were originally
introduced to identify so-called spurious dependencies: sometimes the order of quantification
implies that z depends on z′, but forcing z to be independent preserves the truth value.
Technically, a dependency scheme D was defined to map a QBF Φ to a set of pairs (z′, z) ∈
vars(Φ)×vars(Φ), describing an overapproximation of the dependency structure: (z′, z) ∈ D(Φ)
means that the dependence of z on z′ should not be ignored, whereas (z′, z) /∈ D(Φ) means
that it can be. The definition was tailored to QBF solving, in which variable dependencies for
both true and false formulas come into play.

The DQBF-centric interpretation [7] followed somewhat later. There, the goal was a de-
pendency scheme framework tailored to refutational QBF proof systems. Refutational systems
work only with false formulas, and this allows a broad refinement: the dependence of univer-
sals on existentials can be ignored. As such, it makes sense to consider merely the effect of
deleting some universal variables from the existential dependency sets. Thus, a dependency
scheme becomes a mapping from QBF into DQBF.

Likewise, in this work we seek a framework tailored towards refutational proof systems.
Hence we advocate the same approach for the whole domain DQBF. A DQBF dependency
scheme will be viewed as a mapping to and from DQBF, in which the dependency sets may
shrink. The notion of shrinking dependency sets is captured by the relation following.

Definition 1. We define the relation ≤ on DQBF×DQBF as follows: Π ′ · φ ≤ Π ·ψ if, and
only if, φ = ψ, vars∃(Ψ

′) = vars∃(Ψ), and the dependency set of each existential in Π ′ is a
subset of that of Π.

In this paper, we only consider poly-time computable dependency schemes.
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Definition 2 (dependency scheme). A dependency scheme is a polynomial-time com-
putable function D : DQBF→ DQBF for which D(Ψ) ≤ Ψ for all Ψ .

Under this definition, a spurious dependency according to D is a pair (u, x) such that u is
in the dependency set for x in Ψ , but not in D(Ψ). A natural property of dependency schemes,
identified in [36], is monotonicity.2

Definition 3 (monotone (adapted from [36])). We call a dependency scheme D mono-
tone when Ψ ′ ≤ Ψ implies D(Ψ ′) ≤ D(Ψ), for all Ψ and Ψ ′.

A fundamental concept in the DQBF-centric framework, which has strong connections to
soundness in related proof systems [6], is full exhibition. First used by Slivovsky [33], the name
was coined later in [4], describing the fact that there should be a model which ‘fully exhibits’
all spurious dependencies. ‘Full exhibition’ is synonymous with ‘truth-value preserving’.

Definition 4 (full exhibition [4, 33]). A dependency scheme D is called fully exhibited

when Ψ
tr≡ D(Ψ), for all Ψ .

4 Parametrising DQBF Calculi by Dependency Schemes

In this section we show how to incorporate dependency schemes into DQBF proof systems.
In the spirit of so-called ‘genuine’ lower bounds [12], we also introduce a notion of genuine
DQBF hardness.

Refutational DQBF proof systems. We first define what we mean by a DQBF proof
system. With FDQBF we denote the set of false DQBFs. We consider only refutational proof
systems, which try to show that a given formula is false. Hence, ‘proof’ and ‘refutation’ can
be considered synonymous.

Following [15], a DQBF proof system over an alphabet Σ is a polynomial-time computable
onto function P : Σ∗ → FDQBF. In practice, we do not always want to define a proof system
explicitly as a function on a domain of strings. Instead, we define what constitutes a refutation
in the proof system P, and then show: (1) Soundness: if Ψ has a refutation, it is false (the
codomain of P is FDQBF); (2) Correctness: every false DQBF has a refutation (P is onto);
(3) Checkability: refutations can be checked efficiently (P is polynomial-time computable).

To date, at least three DQBF proof systems have been proposed: the fundamental expansion-
based system ∀Exp+Res [7], the more sophisticated expansion system IR-calc [7], and the
system Fork Resolution [29] which is based on the concept of information forks.

Incorporating dependency schemes. A dependency scheme, interpreted as a DQBF map-
ping as in Definition 2, can be combined with an arbitrary proof system in a straightforward
manner.

Definition 5 (P(D)). Let P be a DQBF proof system and let D be a dependency scheme. A
P(D) refutation of a DQBF Ψ is a P refutation of D(Ψ).

The proof system P(D) essentially utilises the dependency scheme as a preprocessing step,
mapping its input Ψ to the image D(Ψ) before proceeding with the refutation. In this way, the
application of the dependency scheme D is separated from the rules of the proof system P, and
consequently the definition of P need not be explicitly modified to incorporate D (cf. [4,34]).

Of course, we must ensure that our preprocessing step is correct; we do not want to map
a true formula to a false one, which would result in an unsound proof system. Now it becomes
clear why full exhibition is central for soundness.

2 A different notion of monotonicity for dependency schemes is defined in [27].
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Proposition 6. Given a DQBF proof system P and a dependency scheme D, P(D) is sound
if, and only if, D is fully exhibited.

Proof. Suppose that D is fully exhibited. Let π be a P(D) refutation of a DQBF Ψ . Then π
is a P refutation of D(Ψ), which is false by the soundness of P. Hence Ψ is false by the full
exhibition of D, so P(D) is sound.

Suppose now that D is not fully exhibited. Since D preserves falsity by definition, there
must exist a true DQBF Ψ for which D(Ψ) is false. Then there exists a P refutation of D(Ψ)
by the completeness of P, so P(D) is not sound. ut

Note that completeness and checkability of P are preserved trivially by any dependency
scheme, so we can even say that P(D) is a DQBF proof system if, and only if, D is fully exhib-
ited. Thus full exhibition characterises exactly the dependency schemes whose incorporation
preserves the proof system.

Simulations, separations and genuine lower bounds. Of course, the rationale for util-
ising a dependency scheme as a preprocessor lies in the potential for shorter refutations. We
first recall the notion of p-simulation from [15]. Let P and Q be DQBF proof systems. We
say that P p-simulates Q (written Q ≤p P) when there exists a polynomial-time computable
function from Q refutations to P refutations that preserves the refuted formula.

Since a p-simulation is computed in polynomial time, the translation from Q into P incurs
at most a polynomial size blow-up. As such, the conventional approach to proving the non-
existence of a p-simulation is to exhibit a family of formulas {Ψn}n∈N that has polynomial-size
refutations in Q, while requiring super-polynomial size in P.

Now, it is of course possible that the hard formulas {Ψn}n∈N are QBFs. While this suffices
to show that Q �p P, it is not what we want from a study of DQBF proof complexity;
it is rather a statement about the QBF fragments of the systems P and Q. In reality the
situation is even more complex. The lower bound may stem from QBF proof complexity even
when {Ψn}n∈N are not QBFs. More precisely, there may exist an ‘embedded’ QBF family
{Φn}n∈N which is already hard for P, where ‘embedded’ means Φn ≤ Ψn. Under the reasonable
assumption that decreasing dependency sets cannot increase proof size,3 any DQBF family
in which {Φn}n∈N is embedded will be hard for P.

For that reason, we introduce a notion of genuine DQBF hardness that dismisses all
embedded QBF lower bounds.

Definition 7. Let P and Q be DQBF proof systems. We write Q �∗p P when there exists a
DQBF family {Ψn}n∈N such that:

(a) {Ψn}n∈N has polynomial-size Q refutations;

(b) {Ψn}n∈N requires superpolynomial-size P refutations;

(c) every QBF family {Φn}n∈N with Φn ≤ Ψn has polynomial-size P refutations.

We write P <∗p Q when both P ≤p Q and Q �∗p P hold.

Hence, P <∗p Q means that Q simulates P, but P does not simulate Q, and the hardness
result for P is a genuine DQBF lower bound. Prior to this paper, there were no such hardness
results in the DQBF literature.

3 This holds for all known DQBF proof systems.
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5 The Tautology-free Dependency Scheme

In this section we define the tautology-free dependency scheme Dtf and show that it is fully
exhibited.

For any DQBF Ψ , we denote by I∃(Ψ) the set of independent existential variables, i.e.
I∃(Ψ) := {x ∈ vars∃(Ψ) : Sx = ∅} is the set of existentials whose dependency sets are empty.

Definition 8 (Drrs [34] and Dtf). The reflexive resolution path dependency scheme (Drrs)
is defined as the mapping Ψ 7→ Ψ ′, where

Ψ := ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn) · ψ ,
Ψ ′ := ∀u1 · · · ∀um∃x1(S′x1) · · · ∃xn(S′xn) · ψ ,

and S′i is the set of universal variables u ∈ Si for which there exists a sequence C1, . . . , Ck of
clauses in ψ and a sequence p1, . . . , pk−1 of existential literals satisfying the following condi-
tions:

(a) u ∈ C1 and u ∈ Ck;

(b) for some j ∈ [k − 1], xi = var(pj);

(c) for each j ∈ [k − 1], pj ∈ Cj, pj ∈ Cj+1, and u ∈ Svar(pi);
(d) for each j ∈ [k − 2], var(pj) 6= var(pj+1).

The tautology-free dependency scheme (Dtf) adds to Drrs the condition

(e) for each j ∈ [k − 1], (Cj ∪ Cj+1)�I∃(Ψ) is non-tautological.

Let us give an example, illustrating that Dtf is stronger than Drrs.

Example 9. Consider the DQBF Ψ = ∃x∀u∃z ·C1 ∧ C2, where C1 = x∨u∨z and C2 = x∨u∨z.
The sequence of clauses C1, C2 and the sequence consisting of the single literal p1 = z show
that (u, z) ∈ deps(Drrs(Ψ)). However, the same sequence of clauses violates condition (e) of
Definition 8 because (C1 ∪ C2)�I∃(Ψ) is a tautology on x ∈ I∃(Ψ). Since the reverse sequence
has the same tautology and there are no other sequences to consider, we conclude that (u, z) 6∈
deps(Dtf(Ψ)). ut

Proposition 10. Dtf is a monotone dependency scheme.

Proof. It is easy to see that Dtf(Ψ) ≤ Ψ for each Ψ . It remains to verify polynomial-time
computability and monotonicity.

Polynomial-time computability. As there are polynomially many pairs, it suffices to show
that whether (u, x) is in deps(Ψ) can be decided in polynomial time for each pair (u, x).
Consider the directed graph GuΨ = (VΨ , E

u
Ψ ) with the vertex set VΨ = {(C, a) : C ∈ Ψ, a ∈

C} and with an edge from (C, a) to (D, e) if e ∈ C, u ∈ Svar(e), var(a) 6= var(e), and
(C ∪D)�I∃(Ψ) is non-tautological.

We claim that (u, x) ∈ deps(Ψ) if, and only if, there is a literal a, var(a) = x, and clauses
C,C ′, C ′′ such that u ∈ C ′′, (C ′, a) is reachable from (C, u) and (C ′′, e) is reachable from
(C ′, a) for some e. Indeed, it is easy to verify that the concatenation of a pair of such paths
directly translates to the required sequences from Definition 8, and vice versa. Clearly, GuΨ
can be constructed in polynomial time, hence we can test all candidates (C, u), compute all
middle points (C ′, a) reachable from them, and check whether some (C ′′, e) is reachable from
any of them, all in polynomial time.

Monotonicity. Let Ψ, Ψ ′ be DQBFs with Ψ ′ ≤ Ψ , let (u, x) ∈ deps(Dtf(Ψ ′)). We show that
(u, x) ∈ deps(Dtf(Ψ)). It follows that Dtf(Ψ ′) ≤ Dtf(Ψ).
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There exists a sequence of clauses C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satis-
fying conditions (a) to (e) in Definition 8 with respect to (u, x) ∈ deps(Ψ ′). We show that the
same sequences satisfy conditions (a) to (e) with respect to (u, x) ∈ deps(Ψ), which implies
(u, x) ∈ deps(Dtf(Ψ)).

Conditions (a), (b) and (d) are satisfied trivially. Since Ψ ′ ≤ Ψ , each dependency set
Svar(pi) in Ψ is a superset of the corresponding dependency set S′var(pi) in Ψ ′, so condition (c)

is satisfied. Condition (e) is satisfied since the set of independent variables I∃(Ψ) is a subset
of I∃(Ψ

′). ut

Wimmer et al. [36] essentially showed that Drrs is fully exhibited, even though they did
not use that term. Theorems 3 and 4 in [36] together imply that all spurious dependencies
can be removed one by one in any order without changing the truth value (as is remarked at
the start of Section 3.1 in that paper).

Theorem 11 (Wimmer et al. [36]). Drrs is fully exhibited.

We show full exhibition of Dtf by reduction to full exhibition of Drrs.

Theorem 12. Dtf is fully exhibited.

Proof. Since Dtf(Ψ) ≤ Ψ , we only need to show that if Ψ is true, then Dtf(Ψ) is true. Assume
Ψ is true; then there is an assignment σ ∈ 〈I∃(Ψ)〉 such that Ψ [σ] is true. We claim that
(u, x) ∈ deps(Drrs(Ψ [σ])) implies (u, x) ∈ deps(Dtf(Ψ)). Consider sequences C1, . . . , Ck and
p1, . . . , pk−1 witnessing (u, x) ∈ deps(Drrs(Ψ [σ])). For each Ci there is C ′i ∈ Ψ , such that
Ci = C ′i[σ], i.e. C ′i ⊆ Ci ∪ σ, where σ is the largest clause falsified by σ. It is readily verified
that the sequences C ′1, . . . , C

′
k and p1, . . . , pk−1 witness (u, x) ∈ deps(Dtf(Ψ)). In particular, no

tautologies can appear among (C ′i ∪ C ′i+1)�I∃(Ψ), because all C ′i agree with σ on the variables

of I∃(Ψ). Hence, we get Drrs(Ψ [σ]) ≤ Dtf(Ψ)[σ]. By full exhibition of Drrs, we have that
Drrs(Ψ [σ]) is true, which means Dtf(Ψ)[σ] is true, and hence Dtf(Ψ) is true. ut

Example 13. Consider Ψ from Example 9. It is easy to see that Ψ is true. As shown in Exam-
ple 9,Dtf(Ψ) = ∃x∃z∀u·(x ∨ z ∨ u) ∧ (x ∨ z ∨ u). We can see that the assignment x 7→ 1, z 7→ 0
is a model of Dtf(Ψ), which is therefore true, in line with full exhibition of Dtf. ut

6 Proof Complexity of ∀Exp+Res(D)

Among the first DQBF proof systems to be introduced, the expansion based system ∀Exp+Res [7,
19] is arguably the most natural. In this section we investigate its proof complexity under
parametrisation by dependency schemes; that is, we investigate the proof complexity of P(D)
where P is ∀Exp+Res. Our main result is the following theorem.

Theorem 14. ∀Exp+Res <∗p ∀Exp+Res(Drrs) <∗p ∀Exp+Res(Dtf).

The simulations present in Theorem 14 follow from two observations, namely (1) Dtf(Ψ) ≤
Drrs(Ψ) (by definition), and (2) Ψ ′ ≤ Ψ guarantees that ∀Exp+Res refutations of Ψ ′ are no
larger than those of Ψ . Indeed, given a refutation of Ψ , restricting the annotations to the
dependency sets of Ψ ′ produces a refutation of Ψ ′ of the same size. We refer to this property
as the monotonicity of ∀Exp+Res.

The challenge is to show the genuine separations (Theorems 20 and 26). We note that the
QBF analogue of the first separation is known [6]. The question (and indeed the notion) of a
genuine separation was not previously considered.

The DQBF proof system ∀Exp+Res. We recall the propositional Resolution proof system
[30]. A Resolution refutation of a CNF ψ is a sequence C1, . . . , Ck of clauses where Ck is empty
and each Ci is derived by one of the following rules:

8



A Axiom: Ci is a clause in ψ;
R Resolution: Ci = A ∨B, where Cr = A ∨ x and Cs = B ∨ x, for some r, s < i.

The DQBF proof system ∀Exp+Res, with which we shall concern ourselves for the remain-
der of the section, is built upon Resolution. Perhaps the most obvious way to decide DQBF
is to reduce it to propositional logic by expanding out all the universal variables, based on
the fact that Ψ is true if, and only if, the matrix of exp(Ψ) is satisfiable. This is exactly how
∀Exp+Res works. The input DQBF is first expanded, and then refuted in Resolution.

Definition 15 (∀Exp+Res [7, 19]). A ∀Exp+Res refutation of a DQBF Ψ is a Resolution
refutation of the matrix of exp(Ψ).

It is known that ∀Exp+Res is sound, complete and checkable on DQBFs [7]. Note that
a ∀Exp+Res refutation of Ψ may be small even if its expansion exp(Ψ) is large, since the
underlying Resolution refutation of exp(Ψ) need not necessarily introduce every clause as an
axiom.

Given that fully exhibited dependency schemes like Dtf and Drrs (Theorem 12) can be
incorporated into an arbitrary DQBF proof system P (Proposition 6), we obtain the DQBF
proof systems ∀Exp+Res(Drrs) and ∀Exp+Res(Dtf).

Next we show the two genuine separations that together constitute a proof of Theorem 14.

Separation of ∀Exp+Res and ∀Exp+Res(Drrs). Our separating formulas are DQBFs based
on the equality QBFs [8]. Our modification exploits a refined dependency structure and utilises
the following notation: the matrix-clause product of a CNF ψ and a clause C is the CNF
ψ ⊗ C := {D ∪ C : D ∈ ψ}.

Definition 16 (EQ0
n (adapted from [8])). EQ0

n := ΠEQ
n · ψEQ

n , where

ΠEQ
n := ∀u1 · · · ∀un∃x1(∅) · · · ∃xn(∅) ∃z1(u1) · · · ∃zn(un) ,

ψEQ
n := (z1 ∨ · · · ∨ zn) ∧

∧n

i=1

(
(xi ∨ ui ∨ zi) ∧ (xi ∨ ui ∨ zi)

)
.

Since the dependency sets of EQ0
n are strict subsets of those of the original equality for-

mulas (in which each zi depends on each uj), the QBF lower bound for ∀Exp+Res [5] does
not suffice for EQ0

n. Nonetheless, a similar argument works, based on the fact that no small
subset of clauses in the expansion is unsatisfiable.

Theorem 17. {EQ0
n}n∈N requires exponential-size ∀Exp+Res refutations.

Proof. The total expansion of EQ0
n is the CNF ψ ∧

∧n
i=1

(
(xi ∨ zuii ) ∧ (xi ∨ zuii )

)
, where ψ is

the conjunction of all clauses of the form (za11 ∨ · · · ∨ z
an
n ) with var(ai) = ui. We show that

removing any of the 2n clauses from ψ makes the total expansion satisfiable. It follows that
any Resolution refutation of exp(EQ0

n) must have 2n axiom clauses.
Suppose that some clause A is absent from ψ, and let us assume without loss of generality

that A := (zu11 ∨ · · · ∨ z
un
n ), i.e. the clause corresponding to ui 7→ 1 for each i (the general case

is symmetrical). Now, assigning each zuii 7→ 1 satisfies every clause in ψ except A. Assigning
each zuii 7→ 0 satisfies each clause (xi∨zuii ). Finally, assigning each xi 7→ 1 satisfies each clause
(xi ∨ zuii ). ut

The corresponding upper bound for EQ0
n in ∀Exp+Res(Drrs) does follow from that of the

original equality QBFs (by the monotonicity of Drrs and ∀Exp+Res). We give a full proof
nonetheless, since we will use the details later. The main point is that Drrs identifies all pairs
as spurious dependencies.
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(xn ∨ un ∨ zn) (z1 ∨ · · · ∨ zn) (xn ∨ un ∨ zn)

(
xn ∨ zun

n

) (
z1 ∨ · · · ∨ zn−1 ∨ zun

n

) (
z1 ∨ · · · ∨ zn−1 ∨ zun

n

)
(xn ∨ zun

n )

(xn ∨ z1 ∨ · · · ∨ zn−1) (xn ∨ z1 ∨ · · · ∨ zn−1)

(z1 ∨ · · · ∨ zn−1)

A A A A

R R

R

Fig. 1. The prelude to a linear-size ∀Exp+Res refutation of Φ0
n. In order to reduce exp(Φ0

n) to exp(Drrs(EQ0
n−1)),

we need only derive the clause (z1 ∨ · · · ∨ zn−1).

Proposition 18 ([6]). For all n, the dependency sets of Drrs(EQ0
n) are empty.

Proof. Aiming for contradiction, suppose that there exists a sequence of clauses C1, . . . , Ck
and a sequence of literals p1, . . . , pk−1 satisfying conditions (a) to (d) of Definition 8 with
respect to (ui, zi) ∈ deps(EQ0

n). Since zi is the unique variable whose dependency set contains
ui, we must have k = 2, by conditions (c) and (d). By condition (a), we have ui ∈ C1, so
C1 = (xi ∨ ui ∨ zi), and by condition (c) we have p1 = zi. Also by condition (c) we have
zi ∈ C2, so C2 = (z1 ∨ · · · ∨ zn). We therefore reach a contradiction, since ui /∈ C2 violates
condition (a). ut

Theorem 19 ([6]). {EQ0
n}n∈N has linear-size ∀Exp+Res(Drrs) refutations.

Proof. By Proposition 18, the total expansion of Drrs(EQ0
n) is obtained simply by removing

the universal literals; that is, the matrix of exp(Drrs(EQ0
n)) is

(z1 ∨ · · · ∨ zn) ∧
∧n

i=1

(
(xi ∨ zi) ∧ (xi ∨ zi)

)
. (2)

It is easy to see that this CNF has linear-size Resolution refutations. First, resolve each pair
(xi ∨ zi), (xi ∨ zi) over xi, and resolve the resulting unit clauses (zi) with the remaining clause
to obtain the empty clause. ut

Theorems 17 and 19 together imply that ∀Exp+Res does not p-simulate ∀Exp+Res(Drrs).
It remains to show that the lower bound is genuine.

Theorem 20. ∀Exp+Res �∗p ∀Exp+Res(Drrs).

Proof. It is easy to see that the largest QBF Φ0
n that is smaller than EQ0

n has exactly one
non-empty dependency set. Let us assume without loss of generality that this is Szn = {un}.
We will show that Φ0

n has a linear-size ∀Exp+Res refutation. Hence, by the monotonicity of
∀Exp+Res, any family of QBFs smaller than {EQ0

n}n∈N has linear-size ∀Exp+Res refutations.
Thus, by Theorems 17 and 19, {EQ0

n}n∈N satisfies all the conditions of Definition 7.
It remains to show that Φ0

n has a linear-size ∀Exp+Res refutation, or equivalently, that
exp(Φ0

n) has a linear-size Resolution refutation. It is readily verified that exp(Φ0
n) contains

every clause in exp(Drrs(EQ0
n−1)) except (z1 ∨ · · · ∨ zn−1). Figure 1 illustrates that this clause

can be derived from exp(Φ0
n) in a constant number of resolution steps. Since exp(Drrs(EQ0

n−1))
has a linear-size Resolution refutation by Theorem 19, so does exp(Φ0

n). ut

Separation of ∀Exp+Res(Drrs) and ∀Exp+Res(Dtf). For our second separation, we intro-
duce another DQBF family. This time, we refine the prefix of an existing modification of the
equality formulas.
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Definition 21 (EQ1
n (adapted from [13])). For each natural number n,

EQ1
n := ΠEQ

n ∃r(∅) ∃s({u1, . . . , un}) ·(
ψEQ
n ⊗ (r ∨ s)

)
∧
(
ψEQ
n ⊗ (r ∨ s)

)
∧ (r ∨ s) ∧ (r ∨ s) .

The main idea is that the addition of the fresh variables r and s is enough to obfuscate
all the spurious dependencies for Drrs. As such, preprocessing with Drrs has no effect, and
hardness can be proved via the ∀Exp+Res lower bound for EQ0

n (Theorem 17).

Proposition 22. For each n, Drrs(EQ1
n) = EQ1

n.

Proof. To prove the proposition, we must find sequences satisfying conditions (a) to (d) of
Definition 8 with respect to both (ui, zi), (ui, s) ∈ deps(EQ1

n) for each i. In fact, for both pairs
(ui, zi) and (ui, s), the sequence of clauses

(r ∨ xi ∨ ui ∨ zi ∨ s), (r ∨ z1 ∨ · · · ∨ zn ∨ s), (r ∨ xi ∨ ui ∨ zi ∨ s)

and the sequence of literals zi, s suffice. ut

Theorem 23. {EQ1
n}n∈N requires exponential-size ∀Exp+Res(Drrs) refutations.

Proof. Consider the assignment α defined by r 7→ 0, s 7→ 0. It is easy to see that EQ1
n[α] =

EQ0
n. Now consider the ‘expanded’ assignment αU defined by r 7→ 0, sσ 7→ 0 for each σ ∈

〈{u1, . . . , un}〉. It is less easy to see, but readily verified, that exp(EQ1
n)[αU ] = exp(EQ1

n[α]) =
exp(EQ0

n). Let π be a ∀Exp+Res(Drrs) refutation of EQ1
n; that is, a Resolution refutation of

exp(Drrs(EQ1
n)). By Proposition 22, π is a Resolution refutation of exp(EQ1

n). Since Resolution
is closed under restrictions, π[αU ] is a Resolution refutation of exp(EQ1

n)[αU ] = exp(EQ0
n) with∣∣π[αU ]

∣∣ ≤ |π|. By Theorem 17, 2n ≤
∣∣π[αU ]

∣∣ ≤ |π|. ut

The situation is quite different for the tautology-free dependency scheme Dtf. Here, the
simple detection of consecutive-clause tautologies in the variable r is enough to identify all
spurious dependencies, resulting in linear-size refutations.

Proposition 24. For each n, the dependency sets of Dtf(EQ1
n) are all empty.

Proof. Aiming for contradiction, suppose that there exists a sequence of clauses C1, . . . , Ck
and a sequence of literals p1, . . . , pk−1 satisfying conditions (a) to (e) of Definition 8 with
respect to (uj , y) ∈ deps(EQ1

n), for some y ∈ {zj , s}.
By condition (c), none of the var(pi) is r. Hence, if some Ci is either (r ∨ s) or s ∨ r, we

must have i = 1 or i = k, violating condition (a). Therefore those clauses do not appear in
the sequence. It follows that none of the var(pi) is s, for otherwise we would have consecutive
clauses Ci and Ci+1 whose resolvent over s contains complementary literals in r, violating
condition (e).

Hence each var(pi) = zj , and we must have k = 2, by conditions (c) and (d). Now we reach
a contradiction as in the proof of Proposition 18, despite the addition of literals in r and s. By
condition (a), we have ui ∈ C1, and we deduce that ui /∈ C2, contradicting condition (a). ut

Theorem 25. {EQ1
n}n∈N has linear-size ∀Exp+Res(Dtf) refutations.

Proof. By Proposition 24, the total expansion of Dtf(EQ1
n) is obtained by removing universal

literals, hence exp(Dtf(EQ1
n)) is the CNF

(r ∨ z1 ∨ · · · ∨ zn ∨ s) ∧
∧n

i=1

(
(r ∨ xi ∨ zi ∨ s) ∧ (r ∨ xi ∨ zi ∨ s)

)
∧ (r ∨ s) ∧

(r ∨ z1 ∨ · · · ∨ zn ∨ s) ∧
∧n

i=1

(
(r ∨ xi ∨ zi ∨ s) ∧ (r ∨ xi ∨ zi ∨ s)

)
∧ (r ∨ s) .
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By resolution of (r ∨ s) over r with each clause containing r, and likewise of (r ∨ s) with
each clause containing r, we obtain all clauses in the CNF

(exp(Drrs(EQ0
n))⊗ (s)) ∧ (exp(Drrs(EQ0

n))⊗ (s)) ,

where exp(Drrs(EQ0
n)) is the CNF (2) from the proof of Theorem 19. By resolution over s we

obtain exp(Drrs(EQ0
n)) itself, which has a linear-size Resolution refutation by Theorem 19. It

is easy to see that the whole refutation of exp(Dtf(EQ1
n)) is of linear size. ut

Theorem 26. ∀Exp+Res(Drrs) �∗p ∀Exp+Res(Dtf).

Proof. It is easy to see that the largest QBF Φ1
n that is smaller than EQ1

n has Ss = {u1, . . . , un}
and exactly one other non-empty dependency set Szi = {ui}, where i = n without loss of
generality. We will prove that Φ1

n has linear-size ∀Exp+Res(Drrs) refutations. We therefore
prove the theorem, since by Theorems 23 and 25, and the monotonicity of ∀Exp+Res(Drrs),
{EQ1

n}n∈N satisfies all the conditions of Definition 7.
A ∀Exp+Res(Drrs) refutation of Φ1

n is a ∀Exp+Res refutation of Drrs(Φ1
n). By definition,

Drrs(Φ1
n) ≤ Φ1

n. Now, Φ1
n has linear-size ∀Exp+Res refutations: it is readily verified that

exp(EQ1
n), which has linear-size Resolution refutations, can be derived from exp(Φ1

n) in a
linear number of Resolution steps. Hence Drrs(Φ1

n) has linear-size ∀Exp+Res refutations, by
the monotonicity of ∀Exp+Res; i.e. Φ1

n has linear-size ∀Exp+Res(Drrs) refutations. ut

7 Tautology-free Dependencies for QBF

We now turn our attention to dedicated QBF proof complexity, in particular to the QBF
proof systems Q-Res(D) [34] that were introduced to model dependency-aware QBF solving.
We show the following.

Theorem 27. Q-Res(Dtf) is exponentially stronger than Q-Res(Drrs).

Since Drrs was state-of-the-art for Q-Res(D), Theorem 27 shows that Dtf is currently the
strongest known dependency scheme applicable to dependency-aware QBF solving. We recall
the definition of the QBF proof system Q-Res(D).

Definition 28 (Q-Res(D) [20,34]). A Q-Res refutation of a QBF Φ is a sequence C1, . . . , Ck
of clauses in which Ck is empty and each Ci is derived by one of the following rules:

A Axiom: Ci is a non-tautological clause in the matrix of Φ;
R Resolution: Ci = A ∨ B, where Cr = A ∨ x and Cs = B ∨ x, for some r, s < i and some

x ∈ vars∃(Φ), and Ci is not a tautology.
U Universal reduction: Ci ∨ a = Cr for some r < i and some literal a with var(a) = u ∈

vars∀(Φ) and (u, x) /∈ deps(Φ) for each x ∈ vars(Ci).

Given a QBF dependency scheme D, a Q-Res(D) refutation of Φ is a Q-Res refutation of
D(Φ).

Q-Res(Dtf) is complete for QBF by [20], and soundness follows by full exhibition.

Theorem 29. Q-Res(Dtf) is a QBF proof system.

QBF separation of Q-Res(Drrs) and Q-Res(Dtf). Our separating formulas are the QBFs on
which our DQBF modification EQ1

n (Definition 21) was based. An exponential lower bound
for these formulas in Q-Res(Drrs) was shown in [13].
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(xn ∨ un ∨ zn) (z1 ∨ · · · ∨ zn) (xn ∨ un ∨ zn)

(xn ∨ un ∨ z1 ∨ · · · ∨ zn−1) (xn ∨ un ∨ z1 ∨ · · · ∨ zn−1)

(xn ∨ z1 ∨ · · · ∨ zn−1) (xn ∨ z1 ∨ · · · ∨ zn−1)

(xn−1 ∨ un−1 ∨ zn−1) (z1 ∨ · · · ∨ zn−1) (xn−1 ∨ un−1 ∨ zn−1)

...
...

...

A A A

R R

U U

R

Fig. 2. Linear-size Q-Res refutation of the DQBF EQ0
n. In a constant number of steps, EQ0

n is reduced to
EQ0

n−1.

Definition 30 (EQ2
n [13]). For each natural number n,

EQ2
n := ∃r∃x1 · · · ∃xn∀u1 · · · ∀un∃z1 · · · zn∃s ·(

ψEQ
n ⊗ (r ∨ s)

)
∧
(
ψEQ
n ⊗ (r ∨ s)

)
∧ (r ∨ s) ∧ (r ∨ s)

Theorem 31 ([6]). EQ2
n require exponential-size Q-Res(Drrs) refutations.

We show that EQ2
n have linear-size refutations in Q-Res(Dtf). The proof is along similar

lines as our upper bound for EQ1
n in ∀Exp+Res(Dtf). We first show that Dtf identifies the full

set of spurious dependencies, which gives rise naturally to short refutations.

Proposition 32. For each n, the dependency sets of Dtf(EQ2
n) are all empty.

Proof. Aiming for contradiction once again, suppose that there exists a sequence of clauses
C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satisfying conditions (a) to (e) of Definition 8
with respect to (ui, y) ∈ deps(EQ1

n), for some variable y ∈ {z1, . . . , zn, s}.
As in the proof of Proposition 24, we can deduce that variables r and s do not appear in

the sequence of literals. By condition (a) we have u ∈ C1. By condition (c) we have p1 = zi
and C2 = (z1 ∨ · · · ∨ zn ∨ a), with var(a) = s. By conditions (c) and (d), we have p2 = zj for
some j 6= i. By condition (c) zj ∈ C2, and by conditions (c) and (d) we must have k = 2. This
violates condition (a), since ui /∈ C2. ut

Theorem 33. {EQ2
n}n∈N has linear-size Q-Res(Dtf) refutations.

Proof. By Proposition 32, deps(Dtf(EQ2
n)) is the empty relation. It follows that all universal

literals in the matrix may be removed by universal reduction. Hence, with a single axiom and
universal reduction step per clause, we derive the clauses of exp(Dtf(EQ1

n)) from the proof of
Theorem 25. Each step of the linear-size Resolution refutation described there is also available
in Q-Res(Dtf). ut

8 Conclusions

We conclude with an interesting observation and a question for future research. The family
{EQ0

n}n∈N from Definition 16 is an adaptation of the equality QBFs {EQn}n∈N from [8],
obtained by shrinking the dependency set of each zi to just {ui}. While in QBF {EQn}n∈N

13



requires exponentially long proofs in both ∀Exp+Res and Q-Res [5, 8], in DQBF {EQ0
n}n∈N

remains hard only for ∀Exp+Res. Indeed, even though Q-Res is incomplete for DQBF, it is
sound, and {EQ0

n}n∈N has linear-size Q-Res refutations, as shown in Figure 2. This suggests
that there may be some hidden proof-complexity relationship between ∀Exp+Res and Q-Res
in DQBF, even though Q-Res is incomplete there.

We have presented the strongest known dependency scheme Dtf. A natural question is
whether some even stronger dependency schemes for (D)QBF exist.
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