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Abstract
Most types of messages we transmit (e.g., video, audio, images, text) are not fully compressed,

since they do not have known efficient and information theoretically optimal compression algorithms.
When transmitting such messages, standard error correcting codes fail to take advantage of the fact that
messages are not fully compressed.

We show that in this setting, it is sub-optimal to use standard error correction. We consider a
model where there is a set of “valid messages” which the sender may send that may not be efficiently
compressible, but where it is possible for the receiver to recognize valid messages. In this model, we
construct a (probabilistic) encoding procedure that achieves better tradeoffs between data rates and
error-resilience (compared to just applying a standard error correcting code).

Additionally, our techniques yield improved efficiently decodable (probabilistic) codes for fully com-
pressed messages (the standard setting where the set of valid messages is all binary strings) in the
high-rate regime.
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1 Introduction
Suppose that Alice wishes to send a message 𝑚 to Bob. She can first compress it as well as she can. There are
many types of data (e.g. images, audio, video, text) that we do not know how to efficiently and information
theoretically optimally compress and decompress. For such messages, this compression step will result in
a longer-than-optimal message. For example, the best efficient compression scheme may result in a 𝑏-bit
long compressed message, whereas an information theoretically optimal compression scheme might be able
to obtain 0.5𝑏 bits.

After compressing, Alice can apply an error correcting code to the compressed message, ensuring that
Bob can recover the message in the presence of corruptions. Suppose Alice wishes to have her message be
resilient against up to 5% worst-case errors. Then, the best known construction of a code with efficient
unique decoding and public randomness will result in a total of approximately 3.64𝑏 bits sent to Bob (using
bounds implicit in [Rud07, HRW17]).

We show that in this setting it is sub-optimal to treat compression and error correction as two orthogonal
concerns. We instead address both compression and error correction simultaneously, constructing an error
correcting code that exploits the fact that messages are not fully compressed. This allows Alice to send only
fewer bits to Bob with the same error resilience. For example, with the above parameters Alice can send
2.24𝑏 bits.

1.1 Contextually Unique Decoding
We define a new notion, contextually unique decoding, that formalizes the idea of encoding a not fully
compressed message. Roughly speaking, we let 𝑆 ⊆ {0, 1}𝑘 denote a set of “valid messages” that Alice may
send. Suppose, for example, that Alice is sending English text of a certain size to Bob. Then we think of
𝑆 as the set of all “reasonable” texts Alice can send. For example, “meet me at 5pm” (when translated to
binary) is in 𝑆. However, “wef ojip447oll” is not in 𝑆. We assume that Bob has oracle access to 𝑆 – he
has the power to determine whether a message is reasonable or not. Because most strings do not look like
reasonable texts, we see that 𝑆 is pretty small1. We now wish to say that whenever Alice encodes an element
𝑚 of 𝑆, Bob will be able to recover 𝑚.

Motivated by this, we say that a family of codes {𝐶𝑖 : {0, 1}𝑘 → {0, 1}𝑛} is contextually uniquely decodable
if there is a decoding algorithm 𝐷 such that for any sufficiently small set of messages 𝑆 ⊆ {0, 1}𝑘, it holds
w.h.p. for a random 𝑖 that for all 𝑚 ∈ 𝑆, the algorithm 𝐷 (with oracle access to 𝑆) can recover 𝑚 given 𝑖
and an adversarially corrupted 𝐶𝑖(𝑚) (where the adversary may depend on 𝑖).

Alice may have partially compressed the text she wishes to send (we assume she cannot fully compress it,
since we don’t know any efficient practical information theoretically optimal compression schemes for text).
In this case, a message is in 𝑆 if it looks like reasonable text once it is decompressed.

A code with contextually unique decoding would (assuming public randomness) allow Alice to send a
message to Bob, so that he can recover Alice’s message even in the presence of corruptions.

Formally, we define:

Definition 1.1 (𝛿-Hamming Adversary). A 𝛿-Hamming adversary is a function 𝒜 : {0, 1}𝑛 → {0, 1}𝑛 such
that for all 𝑐 ∈ {0, 1}𝑛, the Hamming distance between 𝑐 and 𝒜(𝑐) is at most 𝛿𝑛.

Definition 1.2 (Contextually Unique Decoder). An oracle algorithm 𝐷 is an (𝑟, 𝛿, 𝜖, 𝜏)-contextually unique
decoder for a family of probabilistic codes {𝐶𝑖 : {0, 1}𝑘 $→ {0, 1}𝑛}𝑖∈ℐ if for all sets 𝑆 ⊆ {0, 1}𝑘 with |𝑆| ≤ 2𝑟𝑛,
it holds with probability at least 1−𝜖 over the choice of 𝑖← ℐ that for all messages 𝑚 ∈ 𝑆 and all 𝛿-Hamming
adversaries 𝒜 (that may depend on 𝑖),

Pr
𝑐←𝐶𝑖(𝑚)

[𝐷𝑆(𝑖,𝒜(𝑐)) ̸= 𝑚] ≤ 𝜏.

1Notice that if 𝑆 if of size 2𝑘′ , then information theoretically it would be possible for Alice to compress the message to 𝑘′

bits, and then apply an error correcting code.
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We emphasize the order of quantifiers in the definition. We use randomness in two different ways. First,
randomness is used to pick a code from the family {𝐶𝑖}. This choice of randomness is agreed upon by all
parties ahead of time and is publicly known (to the sender, receiver, and the adversary), and must work
for all messages. Randomness is then also used by the sender (Alice) when encoding. That is, even after
fixing the message 𝑚 and the choice of 𝐶𝑖, the encoding of a message 𝑚 using 𝐶𝑖 depends on the encoder’s
randomness (we use the notation 𝐶𝑖 : {0, 1}𝑘 $→ {0, 1}𝑛 to denote that 𝐶𝑖 is a function taking an input
from {0, 1}𝑘, along with some randomness, and outputs an element of {0, 1}𝑛, which may depend on the
randomness). The decoder only needs to know the randomness used in picking 𝐶𝑖, and not the randomness
used by the encoder in evaluating 𝐶𝑖.

1.2 Main Result and Construction Overview
We first overview our construction of contextually unique decodable codes, and then we formally describe
our main result (Theorem 1.3).

1.2.1 Construction Overview

The Main Idea In the standard model of error correcting codes, we have a code 𝐶, which we use to
encode a message 𝑚 as 𝐶(𝑚). Then, even when an adversary may corrupt a bounded number of entries
of 𝐶(𝑚), it is still possible to recover 𝑚. This is called unique decoding. List decoding [Eli57, Woz58] is
a generalization of unique decoding where instead of recovering 𝑚, the decoding algorithm outputs a short
(polynomial sized) list 𝑚1, 𝑚2, . . . , 𝑚ℓ such that the real message 𝑚 is in the list. This relaxation makes it
possible to handle more errors.

The key in our construction is to have Alice send a coded version of the message 𝑚 with good list decoding
properties. Then, the goal will be that when Bob list-decodes Alice’s message, only one of the elements in
Bob’s list will be a “valid message” (that is, only one element of the list will be in 𝑆). Then, the hope is
that Bob can correct errors up to the list decoding radius, instead of the unique decoding radius.

So for example, Alice might encode the message “call me at 4pm”, and after an adversary adds some
errors, and Bob decodes, he will have a list of messages. Ideally, the list will look something like “kwjlewf
6oahzm”, “aowi2ifmlpzo”, “wef ojip447oll”, “call me at 4pm”, and “5ncbzmap89pqq”. From this list, it will
be easy for Bob to infer that the message Alice sent was “call me at 4pm” (formally, he will use his oracle
access to 𝑆 to check which of the strings are in 𝑆, and we hope that only one will be in the set 𝑆 of valid
messages). Note, however, that if Bob’s list contains more than one valid message – for example, if the list
of messages is “call me at 7pm”, “my phone broke”, “call me at 4pm”, and “come to my office” – then it will
not be possible for Bob to determine which was the intended message (formally, this situation corresponds
to Bob’s list containing more than one element in 𝑆).

The technical focus of our constructions is ensuring that within the set of candidate messages provided
by a list-decoding algorithm, with high probability only one message will be valid. Our main theorem
(Theorem 1.3) can indeed be viewed as a transformation from a list-decodable code to a contextually-
uniquely decodable code.

Randomizing the message space Let 𝑆 be the set of valid messages. To ensure that only one elements
of Bob’s list is in 𝑆, the idea is to randomize the message space. If the messages in Bob’s list are more or
less random (other than Alice’s intended message), it is unlikely that more than one of the messages will be
in 𝑆 (we assume that |𝑆| is small relative to the entire message space {0, 1}𝑘). So ideally, what we would
want to do is pick a random permutation 𝜋 of {0, 1}𝑘 (which is the set of all possible messages, including
those not in 𝑆) using public randomness, and then use an error correcting code 𝐶 with good list decoding
parameters on 𝜋(𝑚). Then, the set of messages that the adversary can cause to be in Bob’s list will be a
random small subset of {0, 1}𝑘, which, because 𝑆 is small, will likely not intersect 𝑆.

There are some issues with the approach described above. One issue is that picking a random permutation
of {0, 1}𝑘 requires a number of bits exponential in 𝑘, but we want Alice and Bob to be efficient. This issue
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can be solved by using pairwise independence. Roughly speaking, one can see why pairwise independence
is enough as follows. The choice of 𝜋 is bad if there are two messages 𝑚1 and 𝑚2 in 𝑆 such that 𝐶(𝜋(𝑚1))
is close to 𝐶(𝜋(𝑚2)). This causes the adversary to be able to corrupt few entries of an encoding of 𝑚1 and
cause it to be close to an encoding of 𝑚2. One can see that the probability 𝐶(𝜋(𝑚1)) is close to 𝐶(𝜋(𝑚2))
is the same for a random 𝜋 and a 𝜋 chosen from a pairwise independent family, since it depends on only two
evaluations of 𝜋.

Another issue with the construction as described above is that the probability that there exist 𝑚1, 𝑚2 ∈ 𝑆
with 𝐶(𝜋(𝑚1)) close to 𝐶(𝜋(𝑚2)) is not that low (it is 2−𝑐𝑛, for some 𝑐. Ideally, we would like it to be
2−𝜔(𝑛), so we can apply a union bound over all of 𝑆 and not worry about the value of 𝑐). We alter the
construction by instead of picking a single 𝜋, picking a collection 𝜋1, 𝜋2, . . . , 𝜋𝑁 which will be agreed on
using public randomness. Then, the encoder (Alice) will pick a random 𝑗 ∈ [𝑁 ], and use 𝐶(𝜋𝑗(𝑚)) as the
message sent to Bob. To decode, Bob will decode 𝐶 to get a list 𝐿, and then for each 𝑗 ∈ [𝑛] and for each
𝑥 ∈ 𝐿 he will check if 𝜋−1

𝑗 (𝑥) ∈ 𝑆, and with high probability only one such pair (𝑥, 𝑗) will satisfy 𝜋−1
𝑗 (𝑥) ∈ 𝑆.

Then Bob will know that the message 𝑚 that Alice sent is 𝜋−1
𝑗 (𝑥).

We now outline how we show that Bob’s list with high probability indeed contains only one element in
𝑆. Consider the probability that for a certain 𝑚 in 𝑆, we have 𝐶(𝜋(𝑚)) close to some 𝐶(𝜋(𝑚′)). Call this
probability 𝑝. Then, the probability that for most 𝑗, we have 𝐶(𝜋𝑗(𝑚)) close to some 𝐶(𝜋𝑗′(𝑚′)) will be
approximately 𝑝Ω(𝑁) (by a Chernoff bound), which is much smaller than 𝑝. This allows us to apply a union
bound over all messages in 𝑆 without losing anything significant.

Amplifying the success probability (Section 4) The construction described above works, but it has
a downside that there is inverse polynomial probability of error. That is, with probability inversely polyno-
mial in the message lengths, Bob may be unable to recover the message Alice sent, since with probability
approximately 1

𝑁 Alice may pick a bad choice of 𝑖.
Ideally, we would want to succeed with all but negligible probability. One approach is to set 𝑁 to be

superpolynomial. The problem with this is that now Bob will not be able to efficiently decode, since his
decoding algorithm requires trying every one of the 𝑁 permutations. To fix this, instead of Alice sending
Bob 𝐶(𝜋𝑖(𝑚)), she will send him 𝐶(𝜋𝑖(𝑚), 𝑖) (we apply 𝐶 to the string which is the concatenation of 𝜋𝑖(𝑚)
and 𝑖). Now, when Bob list decodes 𝐶, he will get a list of the form (𝑥1, 𝑖1), (𝑥2, 𝑖2), . . . (𝑥ℓ, 𝑖ℓ). Now, he can
check if 𝜋−1

𝑖1
(𝑥1) ∈ 𝑆, or if 𝜋−1

𝑖2
(𝑥2) ∈ 𝑆, and so on. Crucially, we see that for each element (𝑥𝑗 , 𝑖𝑗) in the

list, Bob needs to try only a single permutation (namely 𝑖𝑗), instead of all permutations. This allows Bob
to remain efficient even when there are superpolynomially many permutations for Alice to pick from.

This leads to a new issue, since one needs to agree on a superpolynomially sized family of permutations
sampled from a family of pairwise independent permutations. Also, we want this family to be efficiently
sampleable, and for each element to have a succinct description. It turns out that this can be solved using
𝑘-wise independence (and 𝑘-wise 𝜖-dependence). This part is more technical, and we refer the reader to the
body of the paper for details.

1.2.2 The main theorem

Here we formally describe the main theorem. We say that an 𝑛-bit code is combinatorially (𝜌, 𝜆)-list decodable
if for any 𝑦 ∈ {0, 1}𝑛, there are at most ≈ 2𝜆𝑛 codewords within relative Hamming distance 𝜌 of 𝑦. We
are also interested in the asymptotic computational efficiency of encoding and decoding procedures, so we
consider ensembles of codes {𝐶𝑛 : {0, 1}𝑘𝑛 → {0, 1}𝑛}𝑛∈Z+ . We will restrict our attention to ensembles where
𝑟 = lim 𝑘𝑛

𝑛 exists, and we call 𝑟 the rate of the ensemble. We say that {𝐶𝑛} is efficiently 𝜌-list-decodable if
there is a polynomial-time algorithm that on input 𝑦 ∈ {0, 1}𝑛, outputs all codewords of 𝐶𝑛 that are within
relative Hamming distance 𝜌 of 𝑦.

Theorem 1.3 (Simplified Main Theorem). Suppose that {𝐶 ′𝑛 : {0, 1}𝑘′
𝑛 → {0, 1}𝑛}𝑛∈Z+ is a rate-𝑟′ ensemble

of (deterministic) codes that is efficiently 𝛿-list-decodable. Suppose also that {𝐶 ′𝑛} is combinatorially (2𝛿, 𝜆)-
list decodable.
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Sparsity
Errors 0.01 0.02 0.03 0.05 0.1 0.2

1 0.661 0.504 0.396 0.275 0.142 0.028
0.9 0.778 0.591 0.451 0.277 0.142 0.030
0.75 0.778 0.661 0.574 0.332 0.142 0.034
0.5 0.778 0.661 0.574 0.446 0.142 0.038
0.25 0.778 0.661 0.574 0.446 0.142 0.040
0.1 0.778 0.661 0.574 0.446 0.178 0.041
0.05 0.778 0.661 0.574 0.446 0.202 0.041
0.01 0.778 0.661 0.574 0.446 0.235 0.041

Table 1: This table shows some example values of what rates can be achieved with our main theorem
(Theorem 1.3) together with the best of the Blokh-Zyablov (Fact 1.6) and Thommesen-Rudra (Theorem A.14)
bounds. If |𝑆| = 2𝑠·𝑘, and 𝑆 ⊆ {0, 1}𝑘, we say that the sparsity of 𝑆 is 𝑠. So, for example, if 𝑆 is of size 2.5𝑘,
and there are 3% fraction of errors, we see that we can achieve rate .574 (and so Alice’s message size would be
𝑘/.574, or approximately 1.74𝑘). The best Alice would be able to do without contextually unique decoding
would be rate .396, which corresponds to over 2.52𝑘 bits sent (this can be seen by looking at the sparsity 1
row, which corresponds to using standard unique decoding, since in this case 𝑆 is the whole message space
{0, 1}𝑘).

Then for some negligible function 𝜖(𝑛), there is a rate-𝑟′ ensemble of probabilistic codes {𝐶𝑛} such that
𝐶𝑛 has a polynomial-time

(︀
𝑟′ − 𝜆− 𝑜(1), 𝛿, 𝜖, 𝜖

)︀
-contextually unique decoder.

So, suppose we wish to construct contextually unique codes where the message can be recovered when
there are up to 0.1 fraction of corruptions. So we have 𝛿 = 0.1. We now wish to find an 𝑟′ and 𝜆 which
maximize 𝑟′−𝜆 such that there are deterministic codes which are of rate 𝑟′, and are combinatorially (2𝛿, 𝜆)-list
decodable (we also have make sure the codes are efficiently 𝛿-list decodable).

Once fixing 𝛿, the tradeoff here is between 𝑟′ and 𝜆. The best contextually unique codes will have
high rates 𝑟′ − 𝜆 − 𝑜(1), so we want 𝜆 to be small, and 𝑟′ to be large. However, the codes {𝐶 ′𝑛} must be
combinatorially (2𝛿, 𝜆)-list decodable. So, as we increase 𝑟′, the lowest possible value of 𝜆 decreases.

We give some examples of parameter settings to Theorem 1.3 in Section 1.2.2.

1.3 Improvements for standard randomized setting
An important special case of contextually unique decoding is obtained by fixing 𝑆 = {0, 1}𝑘𝑛 , viewed as
a subset of {0, 1}𝑘′

𝑛 for 𝑘′𝑛 > 𝑘𝑛 by zero-padding. In this case, a contextually uniquely decodable code is
quite similar to a standard error-correcting code — the main difference is in the use of randomness both
in generating the code and encoding messages. Perhaps surprisingly, we obtain better parameters in the
high-rate regime than any other known efficiently decodable code (including probabilistic constructions with
public randomness).

Discussion: If there is a (deterministic) code that can be efficiently list decoded up to 𝛿 errors, and
combinatorially uniquely decoded up to 𝛿′ errors, then it is possible to efficiently uniquely decode up to
min(𝛿, 𝛿′) errors. This can be done by simply list decoding, and then going over every element in the list to
determine which of the elements, when encoded, is closest to the received message. So, in short, it is not
hard to see that good efficient list decoding and good combinatorial unique decoding implies good efficient
unique decoding (this idea is, roughly speaking, what gives the green line (TR bound) in Figure 1).

Our corollary can be viewed as a strengthening of this result. We show that rather than requiring
good efficient list decoding and good combinatorial unique decoding, we can use codes with good efficient
list decoding and good combinatorial list decoding. The idea, roughly speaking, is to use our efficient list
decoding algorithm to obtain a list of candidate messages, and we use our main theorem on contextually
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unique decoding to ensure that only one of these messages will be a “valid” message. Then, we can go
through each candidate in the list, and pick the one which is a valid message.

Corollary 1.4 (Simplified Main Corollary). Suppose that {𝐶(𝑛) : {0, 1}𝑘′
𝑛 → {0, 1}𝑛}𝑛∈Z+ is a rate-𝑟′ en-

semble of (deterministic) codes that is efficiently 𝛿-list-decodable. Suppose also that {𝐶(𝑛)} is combinatorially
(2𝛿, 𝜆)-list decodable.

Then there exists an ensemble {𝒞(𝑛)}𝑛∈Z+ , where 𝒞(𝑛) = {𝐶𝑖 : {0, 1}𝑘𝑛
$→ {0, 1}𝑛}𝑖∈ℐ(𝑛) is a family of

probabilistic codes, such that:

1. lim 𝑘𝑛

𝑛 = 𝑟′ − 𝜆, and

2. There are poly(𝑛)-time algorithms to:

∙ Sample from ℐ(𝑛) given 1𝑛.
∙ Probabilistically encode 𝐶𝑖(𝑚) given 𝑖 and 𝑚,
∙ Decode 𝛿-corrupted codewords of 𝐶𝑖. That is, there is a deterministic poly(𝑛)-time algorithm 𝐷

and a negligible function 𝜖(𝑛) such that with probability at least 1−𝜖(𝑛) over the choice of 𝑖← ℐ(𝑛),
it holds for all messages 𝑚 ∈ {0, 1}𝑘𝑛 and all 𝛿-Hamming adversaries 𝒜, that

Pr
𝑐←𝐶𝑖(𝑚)

[𝐷(𝑖,𝒜(𝑐)) ̸= 𝑚] ≤ 𝜖(𝑛).

Remark 1.5. An interesting weakening of the conclusion of Corollary 1.4 is that for sufficiently large 𝑛,
there exists 𝑖 ∈ ℐ(𝑛) such that for all messages 𝑚 ∈ {0, 1}𝑘𝑛 , there exists randomness 𝑠 such that for all
𝑐′ ≈𝛿 𝐶𝑖(𝑚; 𝑠), it holds that 𝐷(𝑖, 𝑐′) = 𝑚. In other words, 𝐷(𝑖, ·) is a polynomial-size error-correcting circuit
for an (inefficiently computable and non-explicit) deterministic code.

We compare the conclusion of Corollary 1.4 to what is known for standard (deterministic) binary codes.
To our knowledge, the best known rate vs. error tolerance tradeoff for efficiently decodable and de-

terministic binary codes is given by the Blokh-Zyablov (BZ) bound [BZ82], and is attained by multi-level
concatenated codes (see Fact 1.6). With probabilistically constructed codes, it is possible to do better for
sufficiently low rates. It was observed is known that for rates below about 0.02, the concatenation of a
folded Reed-Solomon code with random linear codes simultaneously achieves high distance (matching the
GV bound) [Tho83] and efficient list-decodability for a larger number of errors [Rud07]. This implies an
efficient unique decoding procedure (by list decoding and then taking the candidate that is closest to the
received word). While not made explicit in previous work, the same ideas achieve performance that is inter-
mediate between the BZ and GV bounds for rates up to about 0.3. We will refer to the resulting rate-distance
tradeoff as the Thommesen-Rudra (TR) bound. In [HRW17], the authors implicitly show that that one can
achieve near linear time decoders up to the TR bound.

In the high rate regime there were no codes, even probabilistic constructions, that were efficiently decod-
able beyond the BZ bound.

Fact 1.6 (Blokh-Zyablov bound [BZ82, GR09]). For any 𝜌 ∈ (0, 1
2 ) and any

0 < 𝑅 < 𝑅BZ(𝜌) def= 1−𝐻(𝜌)− 𝜌 ·
∫︁ 1−𝐻(𝜌)

0

𝑑𝑥

𝐻−1(1− 𝑥) ,

there exists a rate-𝑅 ensemble of codes {𝐶𝑛}𝑛∈Z+ that is efficiently 𝜌-list decodable and efficiently uniquely-
decodable against up to a 𝜌

2 fraction of errors.

Note that efficient 𝜌-list decodability generically implies combinatorial
(︀
𝜌′, 𝐻(𝜌′) − 𝐻(𝜌) + 𝑜(1)

)︀
-list

decodability for any 1
2 ≥ 𝜌′ ≥ 𝜌. By combining this with Corollary 1.4, we obtain bounds that improve over

the BZ (and TR) bound for rates above roughly 0.3. This is illustrated in Fig. 1.
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Figure 1: We improve over previous efficiently decodable binary codes (even probabilistic constructions)
[BZ82, Rud07] for rates above about 0.3. Although it appears in this plot as if the TR bound slightly beats
the GV bound for very low rates, this is an artifact of our plotting software that disappears upon zooming
in.

1.4 Related Work
Our work is an application of list decoding, a notion that was introduced by Elias in the 50’s [Eli57]. The
notion was then (implicitly) revisited with a focus on algorithmic efficiency by Goldreich and Levin [GL89],
who showed how to efficiently list-decode the Hadamard code, and later by Sudan [Sud97], who showed the
same for Reed-Solomon codes. List decoding has proven to be a useful notion in computational complexity
theory, and has recently been the focus of extensive research (see e.g. the surveys of Sudan [Sud00] and
Guruswami [Gur06]).

Several works have studied variants of the error correction problem in which it is possible to obtain
improved results on worst-case unique decoding. Guruswami [Gur03] considered a model in which a sender
is able send a small amount of information over a noise-free channel, and showed that this enables unique
decoding up to the list-decoding radius. Langberg [Lan04] considered the different notion of “private codes”,
in which the sender and receiver share some secret randomness, and showed that it is possible to achieve
better parameters in this model. Our constructions in contrast use only public randomness, and does not
require any noise-free channel.

Perhaps a more relevant line of work to us is one that studies, loosely speaking, whether imperfectly
shared context can improve the efficiency of interactive protocols. This question has been articulated and
studied in the settings of interactive communication complexity [CGMS17, GKKS16, GS17], simultaneous
message passing [BGI14], and message compression [JKKS11, HS16], and in the general setting of “goal-
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oriented communication” [GJS12].
Our work can be viewed through a similar lens. We seek to improve the efficiency of communication,

leveraging context (which implies that only a small number of messages “make sense”). Like in prior works,
the context is not fully known to both parties. In fact, we go further: the sender may know nothing about
the context, other than that the message he is sending makes sense. At the same time, the receiver may
know very little about the context – only enough to answer a polynomial number of questions on whether a
given message makes sense. Moreover, in contrast to prior works, we do not assume error-free communication
channels, and we emphasize the importance of efficient algorithms, while prior works have focused primarily
on minimizing communication.

A main idea in this paper is to use list decodable codes, and to permute the message space in such a
way as to achieve unique decoding instead of just list decoding. Similar ideas have been used for example
in [GS16] and [CJL19]. However, in those works the adversary is not fully general like in this work, but is
restricted (either computationally, or by having to corrupt the codeword in an online fashion).

2 Preliminaries
2.1 Codes
A deterministic code of dimension 𝑘 and block length 𝑛 over an alphabet Σ is a (multi-)subset 𝒞 ⊆ Σ𝑛 of
size |Σ|𝑘, whose elements are called codewords. The rate of such a code is the quantity 𝑘

𝑛 . Throughout this
paper, we focus on the case when Σ is a finite field F𝑞 and when the dimension 𝑘 is integral. In such cases,
we associate the codewords of 𝒞 with Σ𝑘, and we abuse notation by writing 𝒞 to refer both to the multiset
of codewords and the corresponding mapping from Σ𝑘 to Σ𝑛. A code 𝒞 as above is said to be linear if it is a
subspace of Σ𝑛, and in this case the associated mapping can be taken to be a linear function.

For any alphabet Σ, any 𝑛, and any 𝑢, 𝑣 ∈ Σ𝑛, the Hamming distance between 𝑢 and 𝑣, denoted Δ(𝑢, 𝑣),
is

Δ(𝑢, 𝑣) def=
⃒⃒⃒{︀

𝑖 ∈ [𝑛] : 𝑢𝑖 ̸= 𝑣𝑖

}︀⃒⃒⃒
.

When Δ(𝑢, 𝑣) ≤ 𝛿𝑛, we write 𝑢 ≈𝛿 𝑣. If 𝑆 is a set, we write Δ(𝑢, 𝑆) to denote min𝑣∈𝑆 Δ(𝑢, 𝑣). The distance
of a code 𝒞 is min�̸�=𝑐′∈𝒞 Δ(𝑐, 𝑐′).

We also consider probabilistic codes, focusing on codes over binary alphabets.

Definition 2.1. A probabilistic binary code of block length 𝑛 and dimension 𝑘 is a randomized function
𝒞 : {0, 1}𝑘 $→ {0, 1}𝑛.

When discussing the asymptotic performance of (deterministic or probabilistic) codes, it makes sense to
consider ensembles of codes {𝒞𝑛 : {0, 1}𝑘𝑛 → {0, 1}ℓ𝑛} with varying message lengths and block lengths. We
will always assume several restrictions on 𝑘𝑛 and ℓ𝑛 to rule out pathological examples. Specifically, we will
assume that:

∙ The limit 𝑟 = lim𝑛→∞
𝑘𝑛

ℓ𝑛
exists with 𝑟 ∈ (0, 1). We call 𝑟 the rate of the ensemble.

∙ lim𝑛→∞
ℓ𝑛

𝑛 = 1. This is important so that for a large message of length 𝑘, the cost of padding to length
𝑘𝑛 is not too large.

Given these two assumptions, it is possible without loss of generality to assume ℓ𝑛 = 𝑛 (we can always take
a code from the ensemble with larger ℓ𝑛, and truncate it; asymptotically, this affects neither its rate nor its
error tolerance).

Definition 2.2. We say that an ensemble of codes {𝐶𝑛 : {0, 1}𝑘𝑛 → {0, 1}𝑛}𝑛∈Z+ is combinatorially (𝜌, 𝜆)-list
decodable if there is some 𝐿(𝑛) ≤ 2(𝜆+𝑜(1))·𝑛 and 𝜌′(𝑛) ≥ 𝜌 − 𝑜(1) such that for any 𝑦 ∈ {0, 1}𝑛, there are
at most 𝐿(𝑛) values of 𝑚 ∈ {0, 1}𝑘𝑛 for which 𝐶𝑛(𝑚) ≈𝜌′(𝑛) 𝑦. If there is a polynomial-time algorithm that
outputs all such 𝑚 (in which case we can assume 𝜆 = 0), then we say that {𝐶𝑛} is efficiently 𝜌-list decodable.

We will also say that {𝐶𝑛} is combinatorially 𝜌-list decodable if it is combinatorially (𝜌, 0)-list decodable.
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2.2 Binomial Coefficients
We will use the following approximations of binomial coefficients.

Fact 2.3. For any 𝑛, 𝑘 ∈ Z≥0, it holds that(︁𝑛

𝑘

)︁𝑘

≤
(︂

𝑛

𝑘

)︂
≤

(︁𝑒𝑛

𝑘

)︁𝑘

.

For all constant 0 ≤ 𝛿 ≤ 1, as 𝑛 goes to infinity(︂
𝑛

𝛿𝑛

)︂
= Θ̃

(︀
2𝐻(𝛿)𝑛

)︀
,

where 𝐻(𝑝) = −𝑝 log2 𝑝− (1− 𝑝) log2(1− 𝑝) is the binary entropy function.

We will also use the standard notion of 𝑞-ary entropy.

Definition 2.4. The 𝑞-ary entropy function is

𝐻𝑞(𝑥) = 𝑥 log𝑞(𝑞 − 1)− 𝑥 log𝑞 𝑥− (1− 𝑥) log𝑞(1− 𝑥).

We define the inverse function 𝐻−1
𝑞 to map any 𝑦 ∈ [0, 1] to the unique value 𝑥 ∈ [0, 1 − 1/𝑞] for which

𝐻𝑞(𝑥) = 𝑦.

2.3 Covering Numbers for Hamming Balls
For 𝑥 ∈ {0, 1}𝑛, we will denote by 𝐵𝑟(𝑥) the Hamming ball of radius 𝑟 centered at 𝑥, i.e. the set {𝑥′ ∈
{0, 1}𝑛 : Δ(𝑥, 𝑥′) ≤ 𝑟}.

Definition 2.5. Let 𝑆 be a subset of {0, 1}𝑛, and let 𝑟 be a positive real number. An 𝑟-covering of 𝑆 is a
subset 𝐶 of {0, 1}𝑛 such that 𝑆 ⊆ ∪𝑥∈𝐶𝐵𝑟(𝑥). The 𝑟-covering number of 𝑆, denoted 𝑁𝑟(𝑆), is the minimum
cardinality of any 𝑟-covering of 𝑆.

A volume argument with Fact 2.3 shows, for any 0 < 𝛿0 < 𝛿1 ≤ 1
2 , that 𝑁𝛿0𝑛(𝐵𝛿1𝑛) ≥ Ω̃

(︀
2(𝐻(𝛿1)−𝐻(𝛿0))·𝑛)︀

.
In fact, a simple application of the probabilistic method (due to Dumer et al.) also shows that 𝑁𝛿0𝑛(𝐵𝛿1𝑛) ≤
�̃�

(︀
2(𝐻(𝛿1)−𝐻(𝛿0))·𝑛)︀

. These two statements are combined in the following fact.

Fact 2.6 ([DPP02, Eq. 2.4]). For any 0 ≤ 𝛿0 < 𝛿1 ≤ 1
2 and any 𝑥 ∈ {0, 1}𝑛, it holds that

𝑁𝛿0𝑛

(︀
𝐵𝛿1𝑛(𝑥)

)︀
= Θ̃

(︀
2(𝐻(𝛿1)−𝐻(𝛿0))·𝑛)︀

.

2.4 𝑡-wise Independence
Definition 2.7. A family of hash functions {ℎ𝑖 : 𝑋 → 𝑌 }𝑖∈ℐ is said to be 𝑡-wise independent if for all
distinct 𝑥1, . . . , 𝑥𝑡 ∈ 𝑋, the distribution of (ℎ𝑖(𝑥1), . . . , ℎ𝑖(𝑥𝑡)) for a uniformly random 𝑖 ∈ ℐ is uniformly
random over 𝑌 𝑡.

Imported Theorem 2.8 ([WC81]). For any 𝑛, 𝑚, 𝑡 ∈ Z+, there exists a 𝑡-wise independent family of
hash functions mapping {0, 1}𝑛 to {0, 1}𝑚 such that it takes poly(𝑛, 𝑚, 𝑡) time to sample or evaluate a hash
function.

Definition 2.9. A family of permutations {𝜋𝑖 : 𝑋 → 𝑋}𝑖∈ℐ is said to be 𝑡-wise 𝜖-dependent if for all distinct
𝑥1, . . . , 𝑥𝑡 ∈ 𝑋 it holds for uniformly random 𝑖 ∈ ℐ that the distribution of

(︀
𝜋𝑖(𝑥1), . . . , 𝜋𝑖(𝑥𝑡)

)︀
is 𝜖-close in

statistical distance to uniformly random over tuples of distinct 𝑦1, . . . , 𝑦𝑡 ∈ 𝑋.

Imported Theorem 2.10 ([KNR09, Theorem 5.9]). For any 𝜖 > 0 and any 𝑡 ∈ Z+, there exists a 𝑡-wise
𝜖-dependent family of permutations on {0, 1}𝑛 with description length 𝑂

(︀
𝑛𝑡 + log( 1

𝜖 )
)︀

such that it takes time
poly

(︀
𝑛, 𝑡, log( 1

𝜖 )
)︀

to sample, evaluate, or invert a permutation.
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3 Contextually Unique Decoding
In this section we present the notion of contextually-unique decoding, and we give some simple constructions
of contextually-unique decoders with qualitatively worse parameters than our main result.

Definition 3.1. An oracle algorithm 𝐷 is an (𝑟, 𝛿, 𝜖, 𝜏)-contextually unique decoder for a family of proba-
bilistic codes {𝐶𝑖 : {0, 1}𝑘 $→ {0, 1}𝑛}𝑖∈ℐ if for all sets 𝑆 ⊆ {0, 1}𝑘 with |𝑆| ≤ 2𝑟𝑛, it holds with probability
at least 1− 𝜖 over the choice of 𝑖← ℐ that for all messages 𝑚 ∈ 𝑆 and all 𝛿-Hamming adversaries 𝒜,

Pr
𝑐←𝐶𝑖(𝑚)

[𝐷𝑆(𝑖,𝒜(𝑐)) ̸= 𝑚] ≤ 𝜏.

On the order of quantifiers In the definitions above, we fix a family of codes, then say that for all small
enough 𝑆, a random code from the family is good for 𝑆. In particular, we do not allow an adversary to
choose 𝑆 after the code is sampled. This may be problematic in some cases, but Definition 3.1 suffices in
the common case of languages that are already established (but not perfectly compressible). This includes
languages like “English sentences” or “images of dogs”. In this case, since the set 𝑆 is already in principle
determined (albeit not fully understood), it suffices to pick and agree upon a random code from the family
ahead of time, and always use that code in the future.

3.1 Inefficient Decoding
It is possible to show that for fixed deterministic codes, contextually unique decoding is no easier than unique
decoding for the entire ambient message space. In Theorems 3.2 and 3.4, we show that randomly sampled
codes can do better (albeit with an inefficient decoder).

A family of codes {𝐶𝑖 : {0, 1}𝑘 → {0, 1}𝑛}𝑖 is said to be pairwise independent if for all distinct 𝑥, 𝑥′ ∈
{0, 1}𝑘, the distribution of

(︀
𝐶𝑖(𝑥), 𝐶𝑖(𝑥′)

)︀
for random 𝑖 is uniform over {0, 1}𝑛 × {0, 1}𝑛. For instance, a

random linear code is pairwise independent.

Theorem 3.2. Let {𝒞𝑛}𝑛∈Z+ be an ensemble of pairwise independent code families2, where each code in the
family 𝒞𝑛 has 𝑛-bit codewords. Then for all 𝑟, 𝛿 ∈ (0, 1) with 𝐻(2𝛿) + 2𝑟 < 1, there is a (𝑟, 𝛿, exp(−Ω(𝑛)), 0)-
contextually unique decoder for 𝒞𝑛.

Proof. Let 𝑆 be a message space with |𝑆| ≤ 2𝑟𝑛. We will show that with all but exp(−Ω(𝑛)) probability
over the choice of code 𝐶 ← 𝒞𝑛, the restriction 𝐶|𝑆 of 𝐶 to 𝑆 has relative distance 2𝛿.

For any distinct 𝑚, 𝑚′ ∈ 𝑆, it follows from pairwise independence and Fact 2.3 that

Pr
𝐶

[𝐶(𝑚) ≈2𝛿 𝐶(𝑚′)] ≤ �̃�(2𝐻(2𝛿)𝑛)
2𝑛

≤ 1
Ω̃(2(1−𝐻(2𝛿))·𝑛).

Union bounding over all pairs of 𝑚, 𝑚′,

Pr
𝐶

[∃𝑚, 𝑚′ ∈ 𝑆 s.t. 𝑚 ̸= 𝑚′ and 𝐶(𝑚) ≈2𝛿 𝐶(𝑚′)] ≤ 1
Ω̃(2(1−2𝑟−𝐻(2𝛿))·𝑛)

≤ exp(−Ω(𝑛)).

Discussion One interesting aspect of Theorem 3.2 is that it demonstrates a family of codes with an
“apparent rate” that is independent of the number of tolerable errors, as long as the “true” message space is
sufficiently sparse. For example, each 𝒞𝑛 might map {0, 1}2𝑛 → {0, 1}𝑛, yet as long as the 2𝑛-bit messages
have some structure that is known to the receiver (not necessarily to the sender!), it can be guaranteed that
the receiver will reconstruct the sender’s message.

However, the parameters achieved by Theorem 3.2 are not optimal. In particular, its error-tolerance is
not competitive with the alternative approach of first compressing messages in 𝑆 into 𝑟𝑛-bit representations,

2Note that we do not explicitly make any assumption on the rate vs. distance tradeoff of 𝒞𝑛; instead, we implicitly use the
fact that any code drawn from a pairwise independent family has relatively good distance with high probability.
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and then applying a good error-correcting code to this representation. The GV bound for binary codes states
that there exist codes with rate 𝑟 and relative distance 2𝛿 whenever 𝐻(2𝛿) + 𝑟 < 1. It is consistent with
current knowledge that this bound is tight.

Our next result closes this gap by sampling a probabilistic code rather than a deterministic code.
Construction 3.3. Let 𝐶1, . . . , 𝐶𝑁 : {0, 1}𝑘 → {0, 1}𝑛 be deterministic binary codes. We define the prob-
abilistic code 𝐶mix[𝐶1, . . . , 𝐶𝑁 ] : {0, 1}𝑘 $→ {0, 1}𝑛 so that 𝐶mix[𝐶1, . . . , 𝐶𝑁 ](𝑚) is 𝐶𝑖(𝑚) for a uniformly
random 𝑖← [𝑁 ].
Theorem 3.4. Let {𝒞𝑛}𝑛∈Z+ be an ensemble, where 𝒞𝑛 is a pairwise independent family of codes with 𝑛-bit
codewords.

For all 𝑟, 𝛿 ∈ (0, 1) with 𝐻(2𝛿) + 𝑟 < 1 and any 𝜏 ≥ 𝑛−𝑂(1), there exists 𝑁 ≤ 𝑛𝑂(1) such that there is an
(inefficient) (𝑟, 𝛿, exp(−Ω(𝑛)), 𝜏)-contextually unique decoder for {𝐶mix[𝐶1, . . . , 𝐶𝑁 ]}𝐶𝑖∈𝒞𝑛

In other words, 𝒞𝑛 pairwise independent family of codes with 𝑛-bit codewords, and the code we use is
{𝐶mix[𝐶1, . . . , 𝐶𝑁 ]}𝐶𝑖∈𝒞𝑛

, where the 𝐶1, . . . , 𝐶𝑁 are randomly chosen elements of 𝒞𝑛.

Proof Overview. Suppose that a sender encodes a message 𝑚, and the receiver gets an adversarially perturbed
codeword 𝑐′. We define the (inefficient) decoder so that it finds all 𝑖′ and all 𝑚′ ∈ 𝑆 for which 𝐶𝑖′(𝑚′) is
within distance 𝛿𝑛 of 𝑐′. We claim that with high probability, the only such (𝑖′, 𝑚′) is in fact (𝑖, 𝑚).

To see this, we first fix 𝑚, and consider two different ways in which an encoding of 𝑚 can be confused
for an encoding of a different message. Using Fact 2.3 one can show that, for each 𝑖:

1. The probability over the choice of 𝐶𝑖 that there exists 𝑚′ ∈ 𝑆 ∖ {𝑚} such that 𝐶𝑖(𝑚′) and 𝐶𝑖(𝑚) are
within Hamming distance 2𝛿𝑛 is at most 2(𝑟+𝐻(2𝛿)−1)𝑛.

2. The probability over 𝐶1, . . . , 𝐶𝑖−1, 𝐶𝑖+1, . . . , 𝐶𝑁 that there exists 𝑚′ ∈ 𝑆 ∖ {𝑚} and 𝑖′ ̸= 𝑖 such that
𝐶𝑖′(𝑚′) and 𝐶𝑖(𝑚) are within Hamming distance 𝛿𝑛 is at most 𝑁 · 2(𝑟+𝐻(2𝛿)−1)𝑛.

At this point, unless 𝐻(2𝛿) + 2𝑟 < 1, we cannot simply apply a union bound to argue that with high
probability 𝐶𝑖(𝑚) and 𝐶𝑖′(𝑚′) are 2𝛿𝑛-far for all 𝑚 ̸= 𝑚′.

To rely only on the weaker condition that 𝐻(2𝛿) + 𝑟 < 1, the key insight is that for any fixed 𝑚, “most”
(all but a 𝜏 fraction) of 𝐶𝑖’s will be good in the above sense with all but 2−(𝑟+Ω(1))·𝑛 probability. To show
this, we must set 𝑁 to be a sufficiently large polynomial and use Azuma’s inequality (rather than Chernoff)
because the events {(2) holds for 𝑖}𝑖 are not mutually independent. After this, the probability 2−(𝑟+Ω(1))·𝑛

is sufficiently small that we can union bound over all 2𝑟𝑛 choices of 𝑚.

Rather than elaborating on the details here, we instead defer to our full proof of Theorem 3.5, which uses
the same approach.

Discussion Unlike Theorem 3.2, Theorem 3.4 matches (other than the arbitrarily small inverse polynomial
probability of decoding error) the rate vs. error tolerance tradeoff that is known to be achievable with
inefficient decoding for known, efficiently compressible sets 𝑆 (the GV bound).

3.2 Efficient Decoding with Noticeable Error
To obtain an efficient contextually-unique decoder, we adapt the ideas of Theorem 3.4. Instead of using
a pairwise independent family of codes (which is not efficiently decodable), we use a “random” efficiently
list-decodable code. Specifically, we use a fixed efficiently list-decodable deterministic code, composed with
a random (efficiently evaluable and invertible) permutation 𝜋.

Recall the definition of 𝐶mix from Construction 3.3.
Theorem 3.5. Let {𝐶 ′𝑛 : {0, 1}𝑘𝑛 → {0, 1}𝑛}𝑛∈Z+ be a rate-𝑟′ ensemble of (deterministic) binary codes that
is efficiently 𝜌-list decodable and combinatorially (2𝛿, 𝜆)-list decodable.

Then, for any 𝑟 < 𝑟′ − 𝜆 and any 𝜏(𝑛) ≥ 𝑛−𝑂(1), there exists 𝑁(𝑛) ≤ 𝑛𝑂(1) such that for any pairwise
independent family Π𝑛 of permutations of {0, 1}𝑘𝑛 , the family of codes {𝐶mix[𝐶 ′𝑛∘𝜋1, . . . , 𝐶 ′𝑛∘𝜋𝑁 ]}𝜋1,...,𝜋𝑁∈Π𝑛

has a (𝑟, 𝛿, exp(−Ω(𝑛)), 𝜏)-contextually unique decoder.
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Discussion The main advantage of Theorem 3.5 over Theorem 3.4 is that the decoder can run in poly(𝑛)
time. The main disadvantage compared to Theorem 3.2 is that the probability of incorrectly decoding is
relatively high; in particular, the length of the description of a code (and therefore also the encoder’s and
decoder’s running times) are inversely proportional to the error probability.

Our proof of Theorem 3.5 relies on the following version of the Azuma-Hoeffding inequality, which can
be found as Equation (3) in [Sas11]:

Imported Theorem 3.6 (Azuma-Hoeffding). Let {𝑋𝑘}∞𝑘=0 be a real-valued martingale with 𝑎𝑘 ≤ 𝑋𝑘 −
𝑋𝑘−1 ≤ 𝑏𝑘. Then for every 𝑟 ≥ 0,

Pr[|𝑋𝑛 −𝑋0| ≥ 𝑡] ≤ 2 · exp
(︂
− 2𝑡2∑︀𝑛

𝑘=1(𝑏𝑘 − 𝑎𝑘)2

)︂
.

We now commence the proof of Theorem 3.5.

Proof. We first describe the decoding algorithm. We are given as input a corrupted codeword 𝑦 ∈ {0, 1}𝑛,
and given oracle access to a set 𝑆 of “valid messages”. We run the list-decoding algorithm for 𝐶 ′𝑛 on 𝑦 to
obtain a list of codewords 𝑐𝑖 = 𝐶 ′𝑛(𝑚𝑖) for 𝑖 = 1, . . . , 𝐿. We find 𝑖 ∈ [𝐿], 𝑗 ∈ [𝑁 ] that 𝜋−1

𝑗 (𝑚𝑖) is in 𝑆. If no
such (𝑖, 𝑗) exists, or if multiple such (𝑖, 𝑗) exists, we reject (output ⊥). Otherwise, we output 𝜋−1

𝑗 (𝑚𝑖).
Let 𝑝0 denote the quantity 2𝑟𝑛 ·max𝑐∈{0,1}𝑛 Pr𝑚←{0,1}𝑟′𝑛 [Δ(𝐶𝑛(𝑚), 𝑐) ≤ 2𝛿𝑛]. Using a union bound, we

can see that 𝑝0 bounds the probability, for any fixed 𝑐, that 𝐶 ′𝑛(𝑦) is 2𝛿𝑛-close to 𝑐 for any of 2𝑟𝑛 different
uniformly random 𝑦. The combinatorial list-decodability of {𝐶 ′𝑛} implies that 𝑝0 ≤ 1/Ω̃

(︀
2(𝑟′−𝑟−𝜆)·𝑛)︀

. By
assumption on 𝑟, this decreases exponentially with 𝑛, and in particular for any 𝑁 ≤ 𝑛𝑂(1), it holds that

𝜏 ≥ 𝜔(𝑝0 ·𝑁2). (1)

Let 𝑁(𝑛) be a sufficiently large polynomial such that 2𝜏2𝑁 − ln(2) · 𝑟𝑛 ≥ Ω(𝑛).

Claim 3.7. For any permutations 𝜋1, . . . , 𝜋𝑁 , let 𝐶𝜋1,𝜋2,...,𝜋𝑁
denote 𝐶mix[𝐶 ′𝑛 ∘ 𝜋1, . . . , 𝐶 ′𝑛 ∘ 𝜋𝑁 ]. For every

𝑚 ∈ 𝑆, it holds that

Pr
𝜋1,...,𝜋𝑁

𝐶:=𝐶𝜋1,𝜋2,...,𝜋𝑁

[︂
∃ 𝛿-Hamming adversary 𝒜 s.t.
Pr𝑐←𝐶(𝑚)[𝐷𝑆(𝒜(𝑐)) ̸= 𝑚] ≥ 3𝜏

]︂
≤ 𝑒−(2−𝑜(1))𝜏2𝑁

≤ 2−(𝑟+Ω(1))𝑛.

Proof. Consider the probability space defined by sampling 𝜋1, . . . , 𝜋𝑁 ← Π. For each 𝑖 ∈ [𝑁 ], define random
variables

𝑋
(<)
𝑖 =

{︃
1 if ∃𝑗 < 𝑖 and ∃𝑚′ ∈ 𝑆 s.t. 𝐶𝑛(𝜋𝑗(𝑚′)) ≈2𝛿 𝐶𝑛(𝜋𝑖(𝑚))
0 otherwise.

Define random variables {𝑋(=)
𝑖 }𝑖∈[𝑁 ] and {𝑋(>)

𝑖 }𝑖∈[𝑁 ] analogously – that is, replace the condition “𝑗 < 𝑖”
by “𝑗 = 𝑖” or “𝑗 > 𝑖” respectively.

Note that 𝑋
(=)
1 , . . . , 𝑋

(=)
𝑁 are mutually independent because 𝑋

(=)
𝑖 depends only on 𝜋𝑖. The pairwise

independence of Π and a union bound over all 𝑚′ implies that for each 𝑖, Pr[𝑋(=)
𝑖 = 1] ≤ 𝑝0 ≤ 𝑁 · 𝑝0.

The random variables 𝑋
(<)
1 , . . . , 𝑋

(<)
𝑁 are not independent. However, conditioned on 𝑋

(<)
1 , . . . , 𝑋

(<)
𝑖−1

(indeed on any value of 𝜋1, . . . , 𝜋𝑖−1) the pairwise independence of 𝜋𝑖 and a union bound over 𝑗 < 𝑖 and over
𝑚′ implies that

Pr[𝑋(<)
𝑖 = 1|𝑋(<)

1 , . . . , 𝑋
(<)
𝑖−1] ≤ 𝑖 · 𝑝0 ≤ 𝑁 · 𝑝0.

Similarly,
Pr[𝑋(>)

𝑖 = 1|𝑋(>)
𝑖+1, . . . , 𝑋

(>)
𝑁 ] ≤ (𝑁 − 𝑖) · 𝑝0 ≤ 𝑁 · 𝑝0.
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Azuma’s inequality (Imported Theorem 3.6) implies that

Pr[
∑︁

𝑖

𝑋
(<)
𝑖 ≥ 𝜏𝑁 ] ≤ 2𝑒−2(𝜏−𝑝0𝑁2)2𝑁

≤ 𝑒−(2−𝑜(1))𝜏2𝑁 by (1),

and we obtain the same bound on Pr[
∑︀

𝑖 𝑋
(>)
𝑖 ≥ 𝜏𝑁 ] and Pr[

∑︀
𝑖 𝑋

(<)
𝑖 ≥ 𝜏𝑁 ]. So

Pr
[︁ ∑︁

𝑖

(︀
𝑋

(<)
𝑖 + 𝑋

(=)
𝑖 + 𝑋

(>)
𝑖

)︀
≥ 3𝜏𝑁

]︁
≤ 3 · 𝑒−(2−𝑜(1))𝜏2𝑁 ≤ 𝑒−(2−𝑜(1))𝜏2𝑁 ,

which is equivalent to the statement of the claim.

Theorem 3.5 follows from union bounding over all 2𝑟𝑛 values of 𝑚 ∈ 𝑆.

4 Main Theorem: Efficient Decoding with Negligible Error
In our previous constructions, we always had some inverse polynomial probability (over the choice of encoding
randomness) of incorrectly decoding. We now show how to reduce this error probability to negligible by using
a super-polynomial number of permutations, but preserving the polynomial-time efficiency of encoding and
decoding. This is Theorem 4.2 below, from which Theorem 1.3 follows immediately (after using Theorem
2.8 and Theorem 2.10).

Construction 4.1. Let 𝐶 ′ : {0, 1}𝑟′𝑛 → {0, 1}𝑛 be a deterministic code, let Π = {𝜋𝑘 : {0, 1}𝑟′𝑛−𝑠 →
{0, 1}𝑟′𝑛−𝑠}𝑘∈𝒦 be a family of efficiently evaluable and invertible permutations, and let ℎ : {0, 1}𝑠 → 𝒦 be a
hash function.

We define a probabilistic code 𝐶𝐶′,Π,ℎ : {0, 1}𝑟′𝑛−𝑠 $→ {0, 1}𝑛 that encodes a message 𝑚 ∈ {0, 1}𝑟′𝑛−𝑠 by
picking 𝑥← {0, 1}𝑠 at random, and outputting 𝐶 ′(𝜋ℎ(𝑥)(𝑚), 𝑥).

Theorem 4.2. Suppose that:

∙ 𝐶 ′ : {0, 1}𝑟′𝑛 → {0, 1}𝑛 is a (deterministic) binary code that is efficiently 𝜌𝑒-list-decodable

∙ 𝛿 ≤ 𝜌𝑒 and 𝜆 are such that 𝐶 ′ is combinatorially (2𝛿, 𝜆)-list decodable.

∙ For some 𝑡 = 𝑡(𝑛) and 𝑠 = 𝑠(𝑛) satisfying Ω(𝑛) ≤ 𝑡(𝑛) ≤ 𝑛𝑂(1) and 𝜔(log 𝑛) ≤ 𝑠(𝑛) ≤ 𝑜(𝑛):

– Π = {𝜋𝑘 : {0, 1}𝑟′𝑛−𝑠 → {0, 1}𝑟′𝑛−𝑠}𝑘∈𝒦 is a (𝑡 + 1)-wise 𝜖-dependent family of permutations with
𝜖 ≤ 2−𝑛, and

– ℋ = {ℎ𝑖 : {0, 1}𝑠 → 𝒦}𝑖∈ℐ is a 2𝑡-wise independent hash family.

Then the family of probabilistic codes {𝐶𝐶′,Π,ℎ}ℎ∈ℋ has an (𝑟, 𝛿, exp(−𝜔(𝑛)), 𝑡
2𝑠 )-contextually unique

decoder for any 𝑟 < 𝑟′ − 𝜆.

Proof. Let 𝑆 ⊆ {0, 1}𝑟′𝑛−𝑠 be any set of messages with |𝑆| ≤ 2𝑟𝑛. We describe the contextually unique
decoding algorithm on input 𝑦 ∈ {0, 1}𝑛. First, the algorithm applies the efficient list-decoding algorithm
to obtain all codewords 𝑦′1, . . . , 𝑦′𝐿 of 𝐶 ′ that are within relative Hamming distance 𝜌𝑒 of 𝑦. Then each 𝑦′𝑖 is
parsed as (𝜋ℎ(𝑥)(𝑚𝑖), 𝑥). The decoding algorithm outputs any 𝑚𝑖 that is in 𝑆. It is immediate from efficient
list-decodability that there is at least one such 𝑚𝑖. We need to show that with high probability there is at
most one such 𝑚𝑖.

We will rely on the following variant of the Chernoff bound for binary random variables, which does not
require the random variables to be fully independent. Instead, it only requires bounding the probability that
relatively small subsets of variables are simultaneously 1.
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Imported Theorem 4.3 ([LL14]). Let 𝑋1, . . . , 𝑋𝑁 be {0, 1}-valued random variables, let 0 < 𝛽 < 1, and
let 0 < 𝑡 < 𝛽𝑁 . Then

Pr
[︃

𝑁∑︁
𝑖=1

𝑋𝑖 ≥ 𝛽𝑁

]︃
≤ 1(︀

𝛽𝑁
𝑡

)︀ · ∑︁
𝐴∈([𝑁]

𝑡 )
E

[︃∏︁
𝑖∈𝐴

𝑋𝑖

]︃
.

We will write 𝑁 to denote 2𝑠, and for brevity of notation we will view any hash function ℎ ∈ ℋ directly
as the corresponding tuple of permutations (𝜋𝑘0 , . . . , 𝜋𝑘𝑁−1), where 𝑘𝑖 = ℎ(𝑖).

It is sufficient to show that for 𝜏(𝑛) = 𝑡
𝑁 , it holds for every 𝑚 ∈ 𝑆 that

Pr
(𝜋1,...,𝜋𝑁 )←ℋ

[︁⃒⃒
{𝑖 : ∃𝑗 ∈ [𝑁 ], 𝑚′ ∈ 𝑆 ∖{𝑚} s.t. 𝐶 ′(𝜋𝑖(𝑚), 𝑖) ≈2𝛿 𝐶 ′(𝜋𝑗(𝑚′), 𝑗)}

⃒⃒
≥ 𝜏 ·𝑁

]︁
≤ 2−𝑟𝑛 · exp(−𝜔(𝑛)).

We will use the Chernoff variant to prove the above inequality. Let 𝑋𝑖 denote the indicator random
variable for the event

∃𝑗 ∈ [𝑁 ], 𝑚′ ∈ 𝑆 ∖ {𝑚} s.t. 𝐶 ′(𝜋𝑖(𝑚), 𝑖) ≈2𝛿 𝐶 ′(𝜋𝑗(𝑚′), 𝑗),

so what we want to bound is Pr
[︁∑︀𝑁

𝑖=1 𝑋𝑖 ≥ 𝜏 ·𝑁
]︁
.

For 𝑖, 𝑗 ∈ [𝑁 ] and 𝑚′ ∈ 𝑆 ∖ {𝑚}, let 𝑌𝑖,𝑗,𝑚′ denote the indicator random variable for the event

𝐶 ′(𝜋𝑖(𝑚), 𝑖) ≈2𝛿 𝐶 ′(𝜋𝑗(𝑚′), 𝑗).

Let 𝐴 ⊆ [𝑁 ] be a subset of size |𝐴| = 𝑡. Say 𝐴 = {𝑎1, . . . , 𝑎𝑡}. We have

E

[︃ ∏︁
𝑎∈𝐴

𝑋𝑎

]︃
≤ E

⎡⎢⎢⎣ ∏︁
𝑎∈𝐴

∑︁
𝑗∈[𝑁 ]

𝑚′∈𝑆∖{𝑚}

𝑌𝑎,𝑗,𝑚′

⎤⎥⎥⎦
=

∑︁
𝑗1,...,𝑗𝑡∈[𝑁 ]

𝑚′
1,...,𝑚′

𝑡∈𝑆∖{𝑚}

E

[︃
𝑡∏︁

𝑖=1
𝑌𝑎𝑖,𝑗𝑖,𝑚′

𝑖

]︃
. (2)

We now would like to use the independence of ℋ and of Π to equate E[
∏︀

𝑖 𝑌𝑎𝑖,𝑗𝑖,𝑚′
𝑖
] with

∏︀
𝑖 E[𝑌𝑎𝑖,𝑗𝑖,𝑚′

𝑖
].

However this is not quite true, for two reasons. First, Π is only approximately (𝑡 + 1)-wise independent.
Second, Π is a family of (𝑡 + 1)-wise (almost) independent permutations, rather than unstructured functions.

Still, an only slightly worse bound holds for E
[︁∏︀𝑡

𝑖=1 𝑌𝑎𝑖,𝑗𝑖,𝑚′
𝑖

]︁
. Conditioned on 𝜋𝑗1(𝑚′1), . . . , 𝜋𝑗𝑡

(𝑚′𝑡) and
𝜋𝑎1(𝑚), . . . , 𝜋𝑎𝑖−1(𝑚), the 2𝑡-wise independence of ℋ and the (𝑡 + 1)-wise 𝜖-dependence of Π imply that the
distribution of of 𝜋𝑎𝑖(𝑚) is (𝜖+ 𝑡

2𝑟′𝑛−𝑠 )-close to uniform over {0, 1}𝑟′𝑛−𝑠. The combinatorial list-decodability
of 𝐶 ′ asserts that the number of 𝑦 for which 𝐶 ′(𝑦) ≈2𝛿 𝐶 ′(𝜋𝑗𝑖

(𝑚′), 𝑗𝑖) is at most 2𝜆·𝑛.
We can therefore continue bounding (2) as follows:

≤
∑︁

𝑗1,...,𝑗𝑡∈[𝑁 ]
𝑚′

1,...,𝑚′
𝑡∈𝑆∖{𝑚}

𝑡∏︁
𝑖=1

(︂
2𝜆·𝑛

2𝑟′𝑛−𝑠
+ 𝜖 + 𝑡

2𝑟′𝑛−𝑠

)︂

≤ (𝑁 · 2𝑟𝑛)𝑡 · 2(𝜆−𝑟′+𝑜(1))·𝑛𝑡

≤ 𝛼(𝑛)𝑡,
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where we define 𝛼(𝑛) = 𝑁(𝑛) · �̃�(2(𝜆+𝑟−𝑟′+𝑜(1))·𝑛), which is exp(−Ω(𝑛)) by assumption on 𝛿 and 𝑟 and
because 𝑁 ≤ 2𝑜(𝑛). Thus for 𝜏(𝑛) = 𝑡

𝑁 ≥ 𝜔(𝛼(𝑛)), it holds by Imported Theorem 4.3 that

Pr
[︃

𝑁∑︁
𝑖=1

𝑋𝑖 ≥ 𝜏 ·𝑁

]︃
≤

(︀
𝑁
𝑡

)︀(︀
𝜏 ·𝑁

𝑡

)︀ · 𝛼(𝑛)𝑡

≤
(︁𝑒𝛼

𝜏

)︁𝑡

≤ exp(−𝜔(𝑡))
≤ exp(−𝜔(𝑛))
≤ 2𝑟𝑛 · exp(−𝜔(𝑛)).

Theorem 4.2 follows by union bounding over all 2𝑟𝑛 choices of 𝑚 ∈ 𝑆.

5 Future Directions
There are several interesting directions that we have not yet explored. We highlight a few below:

∙ How well is it possible to perform contextually unique decoding in different error models? For example,
one might consider adversarial erasures, insertions, deletions, random errors, and so on.

∙ What are the optimal achievable parameters for contextually unique decoding?

∙ Is it possible to have a single probabilistic code that simultaneously works well for all message sets 𝑆
of bounded size? If so, with what parameters?

∙ When 𝑆 = {0, 1}𝑘 padded with zeroes, can our construction be made explicit?
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A Coding Theory
Throughout this section, we will not assume that codes have integer dimension unless stated otherwise. We
will also assume the preliminary definitions from Section 2.1.

A.1 Definitions
A.1.1 The Basics

Definition A.1. A code 𝒞 ⊆ 𝑉 𝑛 where 𝑉 is a vector space over a field F is said to be F-linear if 𝒞 is a
linear subspace of 𝑉 𝑛.

Imported Theorem A.2 (Singleton Bound). Any code of dimension 𝑘, block length 𝑛, and distance 𝑑
satisfies 𝑘 ≤ 𝑛− 𝑑 + 1.

Definition A.3 (MDS codes). We say that a (potentially non-linear) code is maximum distance separable
(MDS) if it satisfies the Singleton bound with equality.
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Definition A.4 (List Recoverability). A code 𝒞 ⊆ Σ𝑛 is said to be (𝜁, 𝑙, 𝐿)-list recoverable if it holds for all
size-ℓ sets 𝐴1, . . . , 𝐴𝑛 ⊆ Σ that there are at most 𝐿 values of 𝑐 ∈ 𝒞 for which

⃒⃒
{𝑖 : 𝑐𝑖 /∈ 𝐴𝑖}

⃒⃒
≤ 𝜁𝑛.

An ensemble of codes {𝒞(𝑛)} is said to be
(︀
𝜁, 𝑙, 𝐿(·)

)︀
-list recoverable if each 𝒞(𝑛) is

(︀
𝜁, 𝑙, 𝐿(𝑛)

)︀
-list re-

coverable. It is said simply to be (𝜁, 𝑙)-list recoverable if there is some polynomially bounded 𝐿(·) for which
it is

(︀
𝜁, 𝑙, 𝐿(·)

)︀
-list recoverable. It is said to be efficiently (𝜁, 𝑙)-list recoverable if there is a polynomial-

time algorithm that on input (1𝑛, 𝐴1, . . . , 𝐴𝑛) with each |𝐴𝑖| ≤ 𝑙, outputs a list of all 𝑐 ∈ 𝒞(𝑛) for which⃒⃒
{𝑖 : 𝑐𝑖 /∈ 𝐴𝑖}

⃒⃒
≤ 𝜁𝑛.

List decodability is just the special case of list recoverability with in which 𝑙 = 1. We restate the definition
of list decodability for readability.

Definition A.5 (List Decodability). A code 𝒞 ⊆ Σ𝑛 is said to be (𝜌, 𝐿)-list decodable if for every 𝑦 ∈ Σ𝑛,
there are at most 𝐿 codewords of 𝒞 that are within relative Hamming distance 𝜌 of 𝑦.

An ensemble of codes {𝒞(𝑛)} is said to be
(︀
𝜌, 𝐿(·)

)︀
-list decodable if each 𝒞(𝑛) is (𝜌, 𝐿(𝑛))-list decodable. It

is said to be simply 𝜌-list decodable if there exists 𝐿(𝑛) ≤ 𝑛𝑂(1) for which it is
(︀
𝜌, 𝐿(·)

)︀
-list decodable, and it

is said to be efficiently 𝜌-list decodable if there is a polynomial-time algorithm that on input (1𝑛, 𝑦), outputs
all the elements of 𝒞(𝑛) that are within relative Hamming distance 𝜌 of 𝑦.

A.1.2 Concatenated Codes

Definition A.6 (Concatenated Codes). Let 𝒞out ⊆ Σ𝑁
out be a code, and let 𝒞in

1 , . . . , 𝒞in
𝑁 : Σout → Σ𝑛

in be
codes. Then the concatenation of 𝒞out and (𝒞in

1 , . . . , 𝒞in
𝑁 ) is

𝒞out ∘ (𝒞in
1 , . . . , 𝒞in

𝑁 ) def=
{︁(︀
𝒞in

1 (𝑐1), . . . , 𝒞in
𝑁 (𝑐𝑛)

)︀
: 𝑐 ∈ 𝒞out

}︁
.

If 𝒞in
1 = · · · = 𝒞in

𝑁
def= 𝒞in, then we abbreviate this as 𝒞out ∘ 𝒞in.

We use the notation (𝒞in
1 , . . . , 𝒞in

𝑁 )(𝑐) to denote
(︀
𝒞in

1 (𝑐1), . . . , 𝒞in
𝑁 (𝑐𝑁 )

)︀
.

Proposition A.7. If 𝒞out ⊆ Σ𝑁
out is efficiently (𝜁, 𝑙, 𝐿)-list recoverable, and if 𝒞in

1 , . . . , 𝒞in
𝑁 : Σout → Σ𝑛

in are
efficiently (𝜌, 𝑙)-list decodable, then 𝒞 = 𝒞out ∘ (𝒞in

1 , . . . , 𝒞in
𝑁 ) is (𝜁𝜌, 𝐿)-list decodable.

More generally, if each 𝒞in
𝑖 is (𝜌𝑖, 𝑙)-list decodable then 𝒞 is (𝜌′, 𝐿)-list decodable where

𝜌′
def= 1

𝑁
· min

𝑆⊆[𝑁 ]
|𝑆|=𝜁𝑁

∑︁
𝑖∈𝑆

𝜌𝑖. (3)

Moreover, the complexity of the list decoding procedure is proportional to the complexity of list decoding
each 𝒞in

𝑖 and subsequently list recovering 𝒞out.

Proof. Fix any 𝑦 ∈ Σ𝑛𝑁
in . Parse 𝑦 as (𝑦1, . . . , 𝑦𝑁 ) ∈ (Σ𝑛

in)𝑁 , and for each 𝑖 ∈ [𝑁 ], let 𝐵𝑖 ⊆ Σ𝑛
in denote a size-ℓ

multiset that contains all codewords of 𝒞in
𝑖 within relative distance 𝜌𝑖 of 𝑦𝑖 (such a subset is guaranteed to

exist by the list decodability of 𝒞in
𝑖 . Let 𝐴𝑖 = (𝒞in

𝑖 )−1(𝐵𝑖) ⊆ Σout denote the set of preimages of 𝐵𝑖 under
𝒞in

𝑖 .
If 𝑐 ∈ 𝒞out ∘ (𝒞in

1 , . . . , 𝒞in
𝑁 ) has relative distance at most 𝜌′ to 𝑦, parse 𝑐 as

(︀
𝒞in

1 (𝑥1), . . . , 𝒞in
𝑁 (𝑥𝑁 )

)︀
∈ (Σ𝑛

in)𝑁

where (𝑥1, . . . , 𝑥𝑁 ) ∈ 𝒞out. By Eq. (3), there are at most (1 − 𝜁) values of 𝑖 ∈ [𝑁 ] for which the relative
distance of 𝒞in

𝑖 (𝑥𝑖) and 𝑦𝑖 is more than 𝜌𝑖. For all other 𝑖, the list decodability of 𝒞in
𝑖 implies that 𝑥𝑖 ∈ 𝐴𝑖.

The list recoverability of 𝒞out implies that there are at most 𝐿 such values of 𝑐.

Corollary A.8. For all finite fields F = F𝑞 and all 𝑟, 𝑅, 𝜁 ∈ (0, 1), there exists 𝑙 ∈ Z+ such that if
𝒞out ⊆ (F𝑘)𝑁 is a rate-𝑅, F-linear, efficiently (𝜁, 𝑙, 𝐿)-list recoverable code with 𝜔(1) < 𝑘 ≤ 𝑂(log 𝑁)
and if 𝒞in

1 , . . . , 𝒞in
𝑁 : F𝑘 → F𝑛 are random rate-𝑟 linear codes, then for all 𝜌 < 𝐻−1

𝑞 (1 − 𝑟), it holds that
𝒞 = 𝒞out∘(𝒞in

1 , . . . , 𝒞in
𝑁 ) is a rate-𝑟𝑅 efficiently

(︀
𝜁𝜌, 𝐿)-list decodable code with all but exp(−Ω(𝑁)) probability.
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Proof. Pick 𝜌′ ∈
(︀
𝜌, 𝐻−1

𝑞 (1− 𝑟)
)︀
. By Imported Theorem A.9, there is 𝑙 ∈ Z+ such that each 𝒞in

𝑖 is (𝜌′, 𝑙)-list
decodable with all but 𝑞−Ω(𝑘/𝑟) = 𝑜(1) probability. By Chernoff’s inequality, it holds for all 𝜖 > 0 that
with all but exp(−Ω(𝑁)) probability that at most an 𝜖 fraction of 𝒞in

𝑖 are not (𝜌′, 𝑙)-list decodable. Because
𝑞𝑘 = poly(𝑁), this list decodability is efficient. Thus 𝒞out ∘ (𝒞in

1 , . . . , 𝒞in
𝑁 ) is efficiently (𝜁− 𝜖)𝜌′-list decodable.

Setting 𝜖 = 𝜁
(︁

1− 𝜌
𝜌′

)︁
> 0 completes the proof.

A.1.3 Concatenation with Random Codes

Imported Theorem A.9 ([ZP82]). For any field F = F𝑞 and any 𝑟, 𝜌 ∈ (0, 1) satisfying 𝜌 < 𝐻−1
𝑞 (1 − 𝑟),

there exists 𝐿 ∈ Z+ such that a random linear code 𝐶 : F𝑟𝑛 → F𝑛 is (𝜌, 𝐿)-list decodable with all but 𝑒−Ω(𝑛)

probability.

We include a proof for completeness, as we were unable to obtain the English version of [ZP82].

Proof. We begin with the observation that for any 𝐽 linearly independent messages 𝑚1, . . . , 𝑚𝐽 , and any
radius-𝜌 Hamming ball 𝐵 ⊆ F𝑛, we have

Pr
𝐶

[︀
∀𝑖 ∈ [𝐽 ], 𝐶(𝑚𝑖) ∈ 𝐵

]︀
≤ 𝑞𝑛𝐽(𝐻𝑞(𝜌)−1).

Union bounding over the ≤ 𝑞𝑟𝑛𝐽 possibilities for (𝑚1, . . . , 𝑚𝐽) and the 𝑞𝑛 possibilities for 𝐵, we get that

Pr
𝐶

[︀
∃ independent 𝑚1, . . . , 𝑚𝑗 , 𝐵 s.t. ∀𝑖 ∈ [𝐽 ], 𝐶(𝑚𝑖) ∈ 𝐵

]︀
≤ 𝑞𝑛(1+𝐽·(𝑟+𝐻𝑞(𝜌)−1)),

which is 𝑒−Ω(𝑛) when 𝐽 is sufficiently large.
Finally, we observe that for all 𝐽 and sufficiently large 𝑛 (in particular 𝑛 ≥ 𝐽/𝑟 suffices), there exists

𝐿 ∈ Z+ (in particular, 𝐿 = 𝑞𝐽−1 + 1 suffices) such that every set 𝑆 ⊆ F𝑟𝑛 of 𝐿 messages contains a tuple of
linearly independent messages (𝑚1, . . . , 𝑚𝐽) ∈ 𝑆𝐽 . The theorem follows.

Theorem A.10 ([Tho83, Eqs. (10) and (13)]). For any finite field F = F𝑞 and any 𝑟, 𝑅, 𝛿 ∈ (0, 1) satisfying

𝛿 < min
𝜃∈[1−𝑅,1]

𝜃 ·𝐻−1
𝑞

(︂
1− 𝑟

(︀
1− 1−𝑅

𝜃

)︀)︂
, (4)

if 𝒞out ⊆ (F𝑘)𝑁 is a rate-𝑅 F-linear MDS code and 𝒞in
1 , . . . , 𝒞in

𝑁 : F𝑘 → F𝑛 are random rate-𝑟 linear codes,
then 𝒞 = 𝒞out ∘ (𝒞in

1 , . . . , 𝒞in
𝑁 ) has relative distance 𝛿 with all but 𝑞−Ω(𝑁)·Ω(𝑛) probability.

Proof Overview In order to show that 𝒞 has large minimum distance, it suffices to show that 𝒞 has no
codeword of small Hamming weight. We will show that for every weight 𝑊 ∈ [𝑁 ], there likely will be no
low-weight codeword of the form (𝒞in

1 , . . . , 𝒞in
𝑁 )(𝑐) where 𝑐 is a weight-𝑊 codeword of 𝒞out. The higher 𝑊 ,

the lower the probability that any specific (𝒞in
1 , . . . , 𝒞in

𝑁 )(𝑐) has low weight, but the more weight-𝑊 codewords
there are. The idea of the proof is that when 𝛿 satisfies Eq. (4), then the individual probabilities are small
enough for a union bound.

Proof. Fix F, 𝑟, 𝑅, and 𝛿 satisfying Eq. (4). Let ℎ denote 𝛿𝑛𝑁 , let 𝐷 denote (1−𝑅)𝑁 + 1, and let 𝑄 denote
𝑞𝑘.

We will need the following bound on the number 𝐴𝑊 of 𝒞out codewords with Hamming weight exactly
𝑊 , which follows from the assumption that 𝒞out is MDS.

𝐴𝑊 ≤

{︃
0 if 𝑊 < 𝐷(︀

𝑁
𝑊

)︀
𝑄𝑊−𝐷+1 otherwise.
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For any 𝑐 ∈ 𝒞out with weight 𝑊 , then (𝒞in
1 , . . . , 𝒞in

𝑁 )(𝑐) can have Hamming weight at most 𝑊𝑛, and the
probability that it has Hamming weight at most ℎ is bounded by

𝑞−𝑛𝑊
ℎ∑︁

𝑖=0

(︂
𝑛𝑊

𝑖

)︂
(𝑞 − 1)𝑖 ≤ 𝑞−𝑛𝑊

(︀
1−𝐻𝑞(ℎ/𝑛𝑊 )

)︀
.

Thus the probability that 𝒞 has distance at most ℎ is thus
𝑁∑︁

𝑊 =𝐷

𝐴𝑊 𝑞−𝑛𝑊
(︀

1−𝐻𝑞(ℎ/𝑛𝑊 ))
)︀
≤

𝑁∑︁
𝑊 =𝐷

𝑞𝑁+𝑘(𝑊−𝐷+1)−𝑛𝑊
(︀

1−𝐻𝑞(ℎ/𝑛𝑊 )
)︀

=
𝑁∑︁

𝑊 =𝐷

𝑞−𝑛𝑊(1−𝐻𝑞(ℎ/𝑛𝑊 )− 𝑘
𝑛

𝑊 −𝐷+1
𝑊 − 𝑁

𝑛𝑊 )

=
𝑁∑︁

𝑊 =𝐷

𝑞
−𝑛𝑊

(︀
1−𝐻𝑞(ℎ/𝑛𝑊 )−𝑟(1− 𝐷

𝑊 )− 1
Ω(𝑁)−

1
Ω(𝑛)

)︀

=
𝑁∑︁

𝑊 =𝐷

𝑞
−𝑛𝑊

(︀
1−𝐻𝑞( ℎ

𝑛𝑁
𝑁
𝑊 )−𝑟(1−(1−𝑅) 𝑁

𝑊 )− 1
Ω(𝑁)−

1
Ω(𝑛)

)︀
. (5)

If there exists 𝜖 > 0 such that 1−𝐻𝑞( ℎ
𝑛𝑁

𝑁
𝑊 )− 𝑟(1− (1−𝑅) 𝑁

𝑊 ) is at least 𝜖 for all 𝑊 ∈ {𝐷, . . . , 𝑁}, then
(5) is 𝑞−Ω(𝑛)·Ω(𝑁). By the uniform continuity of 𝐻−1

𝑞 , the existence of such an 𝜖 is guaranteed as long as

𝛿 = ℎ

𝑛𝑁
< min

𝜃∈[𝐷/𝑁,1]
𝜃 ·𝐻−1

𝑞

(︂
(1− 𝑟

(︀
1− 1−𝑅

𝜃

)︀)︂
,

which is implied as 𝑁 →∞ by

𝛿 < min
𝜃∈[1−𝑅,1]

𝜃 ·𝐻−1
𝑞

(︂
1− 𝑟

(︀
1− 1−𝑅

𝜃

)︀)︂
because of the continuity of 𝐻−1

𝑞 .

We also have an identical bound for list decodability, under the additional assumption that the outer
code is sufficiently list recoverable.

Theorem A.11 (Implicit in proof of [GR08a, Theorem 2]). For any finite field F = F𝑞 and any 𝑟, 𝑅, 𝜌 ∈ (0, 1)
satisfying 𝜌 < inf𝜃∈(1−𝑅,1) 𝜃 · 𝐻−1

𝑞

(︀
1 − 𝑟(1 − (1−𝑅)

𝜃 )
)︀
, there exists 𝑙 ∈ Z+ such that if 𝒞out ⊆ (F𝑘)𝑁 is a

rate-𝑅, F-linear, (𝜌, 𝑙, 𝐿)-list recoverable MDS code, and if 𝒞in
1 , . . . , 𝒞in

𝑁 : F𝑘 → F𝑛 are random rate-𝑟 linear
codes3, then 𝒞out∘(𝒞in

1 , . . . , 𝒞in
𝑁 ) is a rate-𝑟𝑅 combinatorially (𝜌, 𝐿)-list decodable code with all but 𝑞−Ω(𝑁)·Ω(𝑛)

probability.

A.2 Optimally List Recoverable Codes
Imported Theorem A.12 ([GR08b]). For all finite fields F = F𝑞, all 𝑅, 𝜌 ∈ (0, 1) satisfying 𝑅 + 𝜌 < 1,
and all 𝑙 ∈ Z+, there exists a rate-𝑅, efficiently (𝜌, 𝑙)-list recoverable ensemble of F-linear MDS codes
{𝐶𝑁 ⊆ (F𝑘𝑁 )𝑁}𝑁∈Z+ with 𝑘𝑁 = Θ(log 𝑁).

Remark A.13. Imported Theorem A.12 is only implicit in [GR08b]. Specifically, they show that folded
Reed-Solomon codes (with a sufficiently large folding parameter) achieve optimal list recoverability, but
their definition of Reed-Solomon codes only allows block lengths 𝑝𝑘 − 1, where 𝑝𝑘 is a prime power. We
observe that their analysis works without modification for truncations to a smaller block length.

3Specifically, each 𝒞in
𝑖 is sampled independently and uniformly at random from the set of not necessarily injective linear

maps from F𝑘 to F𝑛.
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A.3 Simultaneous Combinatorial and Efficient List-Decodability
As a corollary of Corollary A.8, Theorem A.11, and Imported Theorem A.12, we have the following theorem,
which we use (along with Fact 2.6 and the Blokh-Zyablov bound) to instantiate Theorem 4.2:

Theorem A.14. For any 𝑟, 𝑅 ∈ (0, 1) and any

𝜌𝑒 < (1−𝑅)𝐻−1(1− 𝑟)

𝜌𝑐 < min
𝜃∈[1−𝑅,1]

𝜃 ·𝐻−1
(︂

1− 𝑟

(︂
1− 1−𝑅

𝜃

)︂)︂
,

there exists an ensemble of families of binary codes such that:

∙ The ensemble has rate 𝑟𝑅.

∙ The ensemble is w.h.p. efficiently 𝜌𝑒-list decodable.

∙ The ensemble is w.h.p. combinatorially 𝜌𝑐-list decodable.
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