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Abstract

We consider the univariate polynomial fd := (x + 1)d when represented as a sum of
constant-powers of univariate polynomials. We define a natural measure for the model, the
support-union, and conjecture that it is Ω(d) for fd.

We show a stunning connection of the conjecture to the two main problems in algebraic
complexity: Polynomial Identity Testing (PIT) and VP vs. VNP. Our conjecture on fd im-
plies blackbox-PIT in P. Assuming the Generalized Riemann Hypothesis (GRH), it also
implies VP 6= VNP. No such connection to PIT, from lower bounds on constant-powers rep-
resentation of polynomials was known before. We establish that studying the expression
of (x + 1)d, as the sum of 25th-powers of univariates, suffices to solve the two major open
questions.

In support, we show that our conjecture holds over the integer ring of any number field.
We also establish a connection with the well-studied notion of matrix rigidity.

2012 ACM CCS concept: Theory of computation - Algebraic complexity theory, Problems, re-
ductions and completeness, Pseudorandomness and derandomization; Computing method-
ologies - Algebraic algorithms; Mathematics of computing - Combinatoric problems.
Keywords: hitting set, circuit, univariate polynomial, powers, squares, VP vs VNP, PIT, matrix
rigidity, lower bound, monomials, support, CH, #P/Poly.

1 Introduction

Algebraic circuits provide a way to study computation. Here, the complexity classes contain
multivariate polynomial families instead of languages. An algebraic circuit is a natural model to
represent a polynomial compactly; for definition see Section 2.

The class VP contains the families of n-variate polynomials of degree poly(n) over F, com-
puted by circuits of poly(n)-size. The class VNP can be seen as a non-deterministic analog of
the class VP. Informally, it contains the families of n-variate polynomials that can be written as
an exponential sum of polynomials in VP; for formal definitions, see Section 2. VP is contained
in VNP and it is believed that this containment is strict (Valiant’s Hypothesis [Val79a]). For
more details see, [Mah14, SY10, BCS13]. Unless specified otherwise, we consider field F = Q

(or finite field with ‘large’ characteristic).
The interplay between proving lower bounds and derandomization is one of the central

themes in complexity theory [NW94]. In algebraic complexity theory, the derandomization
question asks for an efficient deterministic algorithm for Polynomial Identity Testing (PIT), i.e. to
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test whether a given algebraic circuit computes the identically zero polynomial [KI03]. Blackbox-
PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
Finding a deterministic polynomial time algorithm for PIT for either version is a long-standing
open question.

Since a circuit of size s can have exp(s) many monomials, we cannot hope to solve PIT
in polynomial time by computing the polynomial explicitly. But since evaluation of the poly-
nomial at a point is efficient and a non-zero polynomial evaluated at a random point is non-
zero with high probability (by the Polynomial Identity Lemma [Ore22, DL78, Zip79, Sch80]), one
gets a randomized polynomial time algorithm for PIT. For more details on PIT, see the sur-
veys [Sax09, Sax14, SY10, KS19] or review articles [Wig17, Mul12]. The problem also naturally
appears in the algebraic-geometry approaches to the P 6= NP question, e.g. [Mul17, Muk16,
GMQ16, Gro15, Mul12].

One important direction, from hardness to derandomization, is to design deterministic PIT
algorithms for small circuits assuming access to explicit hard polynomials. Most of the construc-
tions use the concept of hitting-set generator (HSG), which usually incorporates the notion of
combinatorial designs; these are large uniform set families with small pairwise intersections. Very
recent work discovered that PIT is amenable to the phenomenon of bootstrapping (of variables)
[AGS19, KST19]. Finally, Guo et al. [GKSS19] came up with a HSG without designs and showed
that hardness of constant (≥ 4) variate polynomials can be used to solve PIT in general.

The classical Waring problem asks for a number k whether there exists a number g(k) such
that every natural number can be written as the sum of g(k)-many k-th powers of numbers.
Some celebrated examples are g(2) = 4 [Dix64] and g(3) = 9 [Kem12]. Later, many vari-
ants of Waring’s problem for polynomials have been studied using real/complex analytic tools
[FOS12, CCG12, BT15]. The sum-of-squares problem (SOS) is to represent polynomials as sum
of squares. It has many applications in optimization and control theory, see [Lau09, BM16].
Roughly speaking, we want to relate variants of SOS to PIT or to lower bounds. Towards that,
we create a new framework and take the first step. Theorems 1 & 3 below state:

If (x + 1)d written as sum of o(d) many 25th-powers of univariates requires Ω(d) many
distinct monomials, then blackbox-PIT ∈ P, and, assuming GRH, we have VP 6= VNP.

Prior lower bounds for univariate polynomials. It is known that the computation of most
of the polynomials of degree d requires Ω(d) many arithmetic operations [Mot55, Bel58]. For
explicit polynomials, ∑d

i=0
√

pi xi requires circuits of size Ω
(√

d/ log d
)
, where pi is the i-th

prime number [BCS13, Cor.9.4]. For integral coefficients, the polynomial ∑d
i=0 22i

xi requires
circuits of size Ω

(√
d/ log d

)
[Str74].

Such polynomials can be converted to exponentially hard multilinear polynomial fn(x). Un-
fortunately, such seemingly strong lower bounds are insufficient to separate VP and VNP; be-
cause the polynomial families turn out to be non-explicit, in particular, fn may not be in VNP.
Thus the hardness alone does not resolve VP vs VNP (see [HS80, Bür13]).

The Pochhammer-Wilkinson polynomial, Pd(x) := ∏d
i=1(x− i), is conjectured to be hard, i.e.

size(Pd) ≥ Ω(d). Such hardness would imply VP 6= VNP, assuming GRH [Bür09, Cor.4.2].
This is also related to the famous τ-conjecture [SS+95] about integral roots and its real variants
in algebraic complexity [Koi11, KPTT15].

Another way to separateVP andVNP is to show lower bounds of the top-fan-in of an explicit
polynomial when written as sum of powers. In particular, Koiran [Koi11] implicitly showed that
if there exists a univariate polynomial fd(x) of degree d such that any representation of the
form fd(x) = ∑s

i=1 ci Qei
i , where sparsity(Qi) ≤ t and arbitrary ei ’s, requires s ≥ (d/t)Ω(1),

then VP 6= VNP. The proof applies the depth-4 reduction [AV08, Koi12, GKKS13, Tav15] to
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flatten a circuit. In the case of deg(Qi) ≤ t, a lower bound of s ≥ Ω(
√

d/t) is indeed known
[KKPS15]. For deg(Qi) ≤ 1, the bound s ≥ Ω(d) has been established for certain polynomials;
using the concept of Birkhoff Interpolation [GMK17, KPGM18].

The above lower bound connections do not give poly-time blackbox-PIT. However, some of
them do give conditional quasi-poly-time blackbox-PIT [AV08, Bür09, Koi11, Koi12, Tav15].

1.1 New measure and our conjecture

For a polynomial f (x) ∈ R[x] over a ring R, and a positive integer r, we say that f is computed
as a sum of r-th powers if we can write

f =
s

∑
i=1

ci `
r
i , (1)

for some s, where ci ∈ R and `i(x) ∈ R[x]. Interestingly, for any fixed r ∈ N, the sum of r-th
powers is a complete model for R = F, a field of characteristic zero (resp. large), see Lemmas 9
and 22.

A natural complexity measure in (1) is the support-union size, namely the number of dis-
tinct monomials in the representation,

∣∣⋃s
i=1 supp(`i)

∣∣ where support supp(`) denotes the set
of nonzero monomials in the polynomial `. The support-union size of f with respect to r and s,
denoted UR( f , r, s) is defined as the minimum support-union size when f is written in the
form (1), and ∞, if no such representation exists. Note that s is the top fan-in when (1) is
considered as a circuit.

An easy counting argument shows that UR( f , r, s) ≥ Ω(|supp( f )|1/r), for all s. Note that
|supp( f )| ≤ deg( f ) + 1. We consider the polynomial family fd := (x + 1)d of degree d. Hence,
in this case actually |supp( f )| = d + 1. We want to investigate how close UR( fd, r, s) gets to d.

• For s = 1, if r | d, then we have UF( fd, r, 1) ≤ d/r + 1, because (x + 1)d = (x + 1)(d/r)·r.

• For s = 2, we show that UF( fd, r, 2) ≥ d/r + 1 (Theorem 25).

• (Small s). For s = r + 1 and any d, we show that UF( fd, r, r + 1) ≤ d/r + r (Lemma 21).

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that UF( fd, r, s) ≤ O(d1/r) (Lemma
22). Thus, for large s, we get UF( fd, r, s) = Θ(d1/r), which resolves this case.

For technical reasons, we will restrict d to the domain

Ir := { r` − 1 | ` ∈N } .

Let F be Q, or a finite field of characteristic > r. We see an intriguing trade-off between the
measure U and the top fan-in s. Motivated from the examples above we conjecture the follow-
ing.

Conjecture 1 (C1). There exist positive constants δ1 ≤ 1, δ2 ≥ 1 and a constant prime-power r such
that UF

(
fd, r, dδ1

)
≥ d/rδ2 , for all large enough d ∈ Ir.

Remarks. 1. For δ1 ∈ (0, 1], s = dδ1 ≤ d. Then the above example for large s does not apply.
On the other hand, by picking a large δ2, the lower bound on U required, is much smaller
than d/r.

2. We believe the conjecture to hold for any large d ∈ N (i.e. beyond Ir). We believe the
conjecture to be true for most polynomial families, e.g. fd := ∑d

i=0 2i2
xi or fd := ∏d

i=1(x−
i).
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3. For the results of this paper, we could even restrict the degrees of `i, to be O(d), in the
sum of r-th powers representation. This might help in proving the conjecture. For details,
see Remark 2 at the end of Section 3.1.

4. One can ask for the number of distinct monomials required to approximate fd(x) as a sum
of r-th powers. We believe the above conjecture to hold in the approximative computation
model as well. See Conjecture C2 and its consequences in Section B.2.

5. We also study a different measure by taking the sparsity-sum (of `i’s); see Conjecture C3.

1.2 Our results

The central theme of this paper is to show interrelations between the conjecture and derandom-
ization/hardness questions in algebraic complexity. Hardness results have often given efficient
derandomization [AGS19, GKSS19]. Can the suspected hardness of (x + 1)d lead to derandom-
ization? Can studying representations like (x + 1)d = ∑i `

25
i give efficient PIT? Older results

give no inkling of an answer as they needed the powers to be a growing function instead of an
absolute constant. We demonstrate a positive answer:

Theorem 1 (Conditional PIT). If Conjecture C1 holds for some r ≥ 25, then blackbox-PIT ∈ P.

Remarks. 1. Older hardness to derandomization results are mostly based on depth-4 reduction
[AV08, Koi12, Tav15], requiring arbitrarily small but growing r = ω(1). This is the first time
that constant r model is connected to derandomization.

2. Older results lead to various conditional derandomizations. E.g. multi-variate hard poly-
nomials lead to blackbox-PIT ∈ QP (quasipoly-time) [KI03, AGS19]. Recently, Guo et
al. [GKSS19] showed that the hardness of a constant k-variate polynomial yields blackbox-
PIT ∈ P, where k ≥ 4 (see Theorem 10). Now, we improve it to k = 1 and show that the
hardness of a simple univariate polynomial, in a much weaker model, also translates to
complete derandomization.

3. Our choice of fd = (x + 1)d is mostly because it is simple. Note that one can compute fd
by repeated squaring which yields circuits of size O(log d). One could also work with
more intricate polynomials, e.g. ∏d

i=1(x− i) or ∑d
i=0 2i2

xi, whose circuit complexity is not
clear, but may well be Ω(d). Showing Conjecture C1 for any of these polynomials would
similarly lead us to the parameters in Theorem 1.

4. One can show that the approximate version of the conjecture (see Conjecture C2) implies
a poly-time hitting-set for VP-circuits (Theorem 29).

We do not know whether Conjecture C1 is true over F = Q. But we show a strong lower
bound over localized integer rings (e.g. Z) giving substantial evidence for Conjecture C1. For
the algebraic number theory terms, see [Lan13]. For any number field K, let OK be the ring
of integers in K, e.g. Z in Q. Let P be a prime ideal of OK, e.g. 〈p〉 of Z. Define the localization
(OK)P := {r/s | r, s ∈ OK, s 6∈ P}which is a domain larger thanOK, e.g. Z〈p〉; it has all fractions
except the ones like 1/p. We show that Conjecture C1 is true over R := (OK)P, whenever
P | 〈r〉OK (equivalently P ⊇ 〈r〉OK).

Theorem 2 (Unconditional lower bound). Fix a prime-power r, any s ≥ 1, and fd(x) := (x + 1)d.
Fix a number field K and its prime ideal P such that P | 〈r〉OK . Then, U(OK)P

( fd, r, s) > d, ∀d ∈ Ir.

Remark. The lower bound of d + 1 is stronger than d/rδ2 that Conjecture C1 requires. This sug-
gests that constants like 1/r ∈ Q = F may help a bit in writing as sum-of-r-th-powers.
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We use the hardness of fd(x) to explicitly show separation between VP and VNP, assuming
GRH (generalized Riemann hypothesis).

Theorem 3 (Conditional l.b.). If GRH and Conjecture C1 for some r ≥ 25, hold then VP 6= VNP.

Remarks. 1. It is interesting to note that if Conjecture C1 holds for more intricate polynomial
families, e.g. ∑d

i=0 2i2
xi, then we get VP 6= VNP without GRH! This has to do with the

explicitness of the polynomial family. For details, see Remark 1 at the end of Section 3.3.

2. It is not clear whether r = 2 (i.e. sum of squares hardness) gives efficient derandom-
ization, or strong algebraic lower bounds, from our proof technique. However, in the
non-commutative setting, it is known that strong lower bound on sum-of-squares implies
that Permanent is hard [HWY11]. Our framework can be seen as its analog, in the more
natural commutative setting.

Connecting the conjecture to matrix rigidity. We restrict ourselves to r = 2 and look at the
measure UF(·) . We establish an interesting connection to matrix rigidity, a well studied pseudo-
random property of a matrix. A matrix A ∈ Fn×n is (r, s) rigid if A cannot be written as a sum
A = R + S, where R is a matrix of rank r and S is a matrix with at most s non-zero entries.
Valiant [Val77] famously proved that if A is computed by a linear circuit with bounded fan-in
of depth O(log n) and size O(n), then A is not (ε · n, n1+δ) rigid for every ε, δ > 0; for a simple
proof see [SY10, Thm.3.22]. Thus, rigidity could be a way to prove super-linear circuit lower
bounds; see [AC19, DGW19, Lok09] and the references therein. We show that a lower bound
on UF( fd, 2, d) is already of great interest.

Theorem 4 (To rigidity). If Conjecture C1 is true for r = 2 and δ1 = 1 and some δ2 ≥ 1, then, there
exists δ > 0 and infinitely many n× n matrices An s.t. An is (n/2δ2+3, n1+δ) rigid, for any δ < 1.

We discuss connections to other models and measures in Section 3.5.

1.3 Proof ideas

Proof idea of Theorem 1. The basic idea is to construct a k (=constant) variate polynomial
from fd := (x + 1)d, and show that it is hard, assuming Conjecture C1. With appropriate
parameters, this hardness will lead us to efficient hitting-set for VP using the recent result of
Guo et al. [GKSS19], see Theorem 10. The choice of many constants in the proof is quite subtle.
We found it quite surprising that everything goes through with r = 25. We do not know how
to improve it to a smaller r (unless [VSBR83] improves).

We construct a k-variate polynomial Pn(x) of individual degree at most n from fd, where k
depends on r, δ1, δ2. The construction is an inverse Kronecker substitution, i.e., we have

Pn(x1, . . . , xk) 7→ Pn(x(n+1)0
, . . . , x(n+1)k−1

) = fd(x),

where d is the unique element in Ir ∩ [((n + 1)k − 1)/(r + 1), (n + 1)k − 1]. The important prop-
erty of this map is that it is a bijection between supp(Pn) and supp( fd).

We prove that size(Pn) > d1/µ, where µ ≥ 1 is a constant which depends on r, δ1, δ2. For
the sake of contradiction, assume that this is not the case. Then there is a normal-form circuit
(see Section 2 for definitions) that computes Pn with only a polynomial blow-up in size. We
cut this circuit at the t-th top multiplication layer, where 5t ≤ r < 5t+1, and compute the top
and bottom part as ΣΠ-circuits. Thus, we have Pn computed by a circuit of depth 4 with the
top multiplicative fan-in 5t. One can thus write Pn = Σicigr

i and show that, with appropriate

5



parameter setting, there are at most dδ1 summands and the support-union | ∪i supp(gi)| <
d/rδ2 . As Kronecker substitution does not increase the summand fan-in and support, fd has
a sum-of-r-th-powers representation with ’small’ support-union. This contradicts Conjecture
C1.

Note that we require r ≥ 25 because our calculation needs t ≥ 2. For t = 1 our argument
would not work: we get the support-union size (k+kn/2

k ) > (n + 1)k > d instead of d/rδ2 (for
large enough n and constant k), which does not yield a contradiction.

The coefficients of Pn are simply (d
i), which can be computed in poly(d)-time. Hence, Pn is

both, explicit and hard! Also, the hardness is d1/µ ≥ Ω(nk/µ), where deg(Pn) = O(n). Thus,
for k > 3µ, we can invoke Theorem 10 and use Pn to construct a poly-time HSG for VP-circuits.

Proof idea of Theorem 2. Let r be a power of a prime r0 ≥ 2. If d = r` − 1, for some ` ∈ N,
one can show that (d

i) ≡ ±1 (mod r0), for every 0 ≤ i ≤ d. In particular, (x + 1)d mod r0 has
d + 1 many coefficients. On the other hand, as the Frobenius map φ : x 7→ xr0 is a GF(r0)-
linear endomorphism, `(x)r ≡ `(xr) mod r0, for any univariate integral polynomial `. Note
that, Frobenius map does not change the support. So, (x + 1)d ≡ ∑ ci`

r
i mod r0 implies that the

support-union of `i’s must have size ≥ d + 1; hence the bound follows.
Essentially the same proof works over (OK)P, where prime ideal P | rOK.

Proof idea of Theorem 3. Unlike the proof of Theorem 1, here we construct an n (=non-
constant) variate multilinear polynomial Pn from fd := (x + 1)d. We show that it is ‘hard’
assuming Conjecture C1.

Pn(x) is such that after Kronecker substitution: Pn(x1, . . . , xn) 7→ Pn(x20
, . . . , x2n−1

) = fd,
where d is the unique element in Ir ∩ [(2n− 1)/(r+ 1), 2n− 1]. As expected, the map is a bijection
between supp(Pn) and supp( fd).

We prove that Pn requires d1/µ = 2Ω(n)-size circuit, where µ is a constant which depends
on r and δ1. In spirit, this part is similar to that in the proof of Theorem 1. However, there
are many differences in the proof details as the parameters of Pn are ‘inverted’ (i.e. individual
degree vs. number of variables). Interestingly, this part would go through even by a slightly
weaker version of Conjecture C1 (e.g. support-union ≥ Ω(d) is not fully used).

Now assume that GRH is true and VP = VNP. Then the counting hierarchy (CH) collapses
to P/poly (Theorem 6). It is not hard to show that each bit of (d

i), in the coefficients of fd, is
computable in CH ⊆ P/poly. Thus, using Valiant’s criterion, {Pn}n ∈ VNP = VP; contradicting
the 2Ω(n)-hardness of Pn proved above from Conjecture C1. So, we conclude VP 6= VNP.

Proof idea of Theorem 4. If A is not (εn, n1+δ) rigid, then one can show that A can be written
as BC, where ‘sparse’ matrices B and C can have at most 4εn2 + 2n1+δ non-zero entries. Now,
the idea is to use fd to construct matrices An that cannot be factored thus.

Define d := n2 − 1 ∈ I2, [x]n :=
[
1 x · · · xn−1], and similarly [y]n. Define polynomial

gn(x, y) such that after Kronecker substitution: gn(x, y) 7→ gn(x, xn) = (x + 1)d = fd. Finally,
define matrix An such that [y]n An[x]Tn = gn(x, y).

Suppose An = BC, with B ∈ Fn×t, C ∈ Ft×n and t := d/2δ2+1 (which specifies ε). Then,
[y]nB C [x]Tn = gn(x, y). We deduce that fd = ∑i∈[t] `i(x) ˜̀ i(xn), where ([y]nB)i =: ˜̀ i(y) and
(C [x]Tn )i =: `i(x). Note that fd can easily be written as sum of 2t squares.

Assuming Conjecture C1, one can show that union of the supports of `i, ˜̀ i must be ‘large’,
for i ∈ [n], which ensures that the number of nonzero entries in B and C is ‘large’. Therefore,
choosing ε and δ carefully, An is rigid with the stated parameters.
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2 Preliminaries

Basic notation. Denote the underlying field as F and assume that it is Q, Qp, or their fixed
extensions. Our results hold also for finite fields of large characteristic.

Let [n] = {1, . . . , n}. For i ∈ N and b ≥ 2, we denote by baseb(i) the unique k-tuple
(i1, . . . , ik) such that i = ∑k

j=1 ij bj−1. In the special case b = 2, we define bin(i) = base2(i) .
For estimates on binomial coefficients, we use the following standard bound for 1 ≤ k ≤ n,(

n
k

)
≤
( en

k

)k
. (2)

Complexity classes. We assume that the reader is familiar with the standard complexity classes
like P, NP, the polynomial hierarchy PH, or the counting class #P (see for example [AB09]). The
counting hierarchy is denoted by CH [Wag86]. The class of poly-size circuits can be expressed
by the nonuniform advice class P/poly.

Matrix rigidity. A matrix A over F is (r, s)-rigid, if one needs to change > s entries in A to
obtain a matrix of rank≤ r. That is, one cannot decompose A into A = R + S, where rank(R) ≤
r and sp(S) ≤ s, where sp(S) is the sparsity of S, i.e., the number of nonzero entries in S.

Polynomials. For a multivariate polynomial p ∈ F[x], where x = (x1, . . . , xm), for some m ≥
1, the support of p, denoted by supp(p), is the set of nonzero monomials in p. The sparsity or
support size of p is |p|1 = |supp(p)|. By coef(p) we denote the coefficient vector of p (in some
fixed order). For polynomials p1, . . . , ps ∈ F[x], their span is the vector space

spanF(p1, . . . , ps) = {
s

∑
i=1

ci pi | ci ∈ F, for i = 1, . . . , s }.

For an exponent vector e = (e1, . . . , ek), we use xe to denote the monomial xe1
1 . . . xek

k .
By F[x]≤d we denote the F-vector space of univariate polynomials of degree at most d.

Algebraic circuits. An algebraic circuit is a layered directed acyclic graph. The leaf nodes are
labeled with the input variables x1, . . . , xn and constants from the underlying field F. All the
other nodes are labeled as addition and multiplication gates. The root node outputs the poly-
nomial computed by the circuit. Some of the complexity parameters of a circuit are the size, the
number of edges and nodes, the depth, the number of layers, the fan-in, the maximum number
of inputs to a node, and the fan-out, the maximum number of outputs of a node.

For a polynomial f , the size of the smallest circuit computing f is denoted by size( f ), it is
the algebraic circuit complexity of f . By C(n, D, s), we denote the set of circuits C that compute
n-variate polynomials of degree D such that size(C) ≤ s. The circuit complexity of a family {Pn}n
is g(n), if size(Pn) = Θ(g(n)).

The class VP contains the families of n-variate polynomials of degree poly(n) over F, com-
puted by circuits of poly(n)-size. The class VNP can be seen as a non-deterministic analog of
the class VP. A family of n-variate polynomials { fn}n over F is in VNP if there exists a fam-
ily of polynomials {gn}n in VP such that for every x = (x1, . . . , xn) one can write fn(x) =

∑w∈{0,1}t(n) gn(x, w), for some polynomial t(n) which is called the witness size.
VP and VNP have several closure properties. In particular, they are closed under substitu-

tion. That is, for a polynomial f (x, y) ∈ VP (or VNP), also f (x, y0) ∈ VP (resp. VNP), for any
values y0 from F assigned to the variables in y.

7



Valiant [Val79b] gace a useful sufficient condition for a polynomial family { fn(x)}n to be
in VNP.

Theorem 5 (Valiant’s criterion, [Val79b]). A family { fn}n of polynomials is in VNP if there exists
φ ∈ P/poly such that for all x ∈ Fn,

fn(x) = ∑
e∈{0,1}n

φ(e) xe .

Valiant’s hypothesis and GRH. Valiant conjectured thatVP 6= VNP. Bürgisser [Bür00, Cor.1.2]
showed that if Valiant’s hypothesis is false and GRH holds, then the polynomial hierarchy col-
lapses. From this, it is not hard to deduce the following.

Theorem 6. If GRH is true and VP = VNP, then CH ⊆ P/poly.

Over finite fields, GRH is not needed; GRH is required only for Q.

Normal-form algebraic circuits. In our proofs we need some structural results on algebraic
circuits, especially depth reductions and hardness to derandomization results. For completeness, we
state them explicitly.

A normal-form algebraic circuit is an algebraic circuit C with the following properties:

1. C has alternating layers of addition and multiplication gates with the root being addition,

2. below each multiplication layer the associated polynomial degree at least halves,

3. the fan-in of each multiplication gate is at most 5 (multiplicative fan-in), and

4. depth(C) = O(log d), where d is the degree of the polynomial computed by C.

Any circuit can be computed by a normal-form circuit with only polynomial blow up in size.

Theorem 7. [VSBR83, AJMV98] Suppose f (x) ∈ F[x] is a polynomial of degree d which can be
computed by a circuit C of size s. Then there exists a normal-form circuit C ′ of size O(s3d6) that
computes f .

Every polynomial can be computed by circuit of depth 2, however, with exponential size.
Let f be an n-variate polynomial of degree d. It has at most (n+d

d ) monomials. This directly
yields a ΣΠ-circuit of size (n+d

d ).

Fischer’s formula. By a formula due to Fischer [Fis94] one can write any monomial as an
exponential sum of powers. It requires char F = 0 or large. Also, it fails over Z.

Lemma 8 ([Fis94]). Let F be a field of characteristic 0 or > m. Any expression of the form g =

∏i∈[m] gi can be written as g = ∑j∈[2m] cjhm
j , where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

Note that the exponent m of the hj’s in Fischer’s formula is determined by the number of
factors in the product expression. For our purpose, we need to be more flexible with the expo-
nent. The following lemma shows how to rewrite the sum as powers of r, for any r ≥ m. Note
in the proof that the support-union of h does not change in the new representation.
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Lemma 9. Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r. There exist
cm,i ∈ F and distinct λi ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r

∑
i=0

cm,i (h(x) + λi)
r . (3)

Proof. Consider the polynomial (h(x) + t)r, where t is a new indeterminate different from x.
We have

(h(x) + t)r =
r

∑
i=0

(
r
i

)
h(x)i tr−i .

Choose r + 1 many distinct λi’s and put t = λi, for i = 0, 1, . . . , r. We get r + 1 many linear
equations which can be represented in matrix form Av = b, for matrix A =

(
(r

j) λ
r−j
i

)
0≤i,j≤r

,

and vectors v =
(
hi)

0≤i≤r and b = ((h + λi)
r)0≤i≤r.

Note that except for the binomial factors, A is a Vandermonde matrix. When computing the
determinant, one can pull out the binomial factor (r

j) from the j-th column, for j = 0, 1, . . . , r.
Then a Vandermonde matrix remains, and hence

det(A) =
r

∏
j=0

(
r
j

)
· ∏

0≤i<j≤r
(λj − λi) 6= 0 .

Therefore, A is invertible and we have v = A−1b.
Let cm be the (m + 1)-th row of A−1. Then we have h(x)m = cm · b which is exactly (3).

Kronecker map and its inverse. Let p(x1, . . . , xk) be a polynomial, where the variables have
individual degree bounded by n. The Kronecker map φk,n(p)(x) yields a univariate polynomial
by replacing variable xi in p by x(n+1)i−1 , for all i ∈ [k].

The map has the property that any polynomial with individual degree at most n gets uniquely
mapped to a univariate polynomial of degree at most d = ∑k

i=1 n(n + 1)i−1 = (n + 1)k −
1 [Kro82].

Next, we consider the inverse map. Let q(x) be a univariate polynomial of degree d. For
k ≥ 1 let x = (x1, . . . , xk) and n = d(d + 1)1/ke − 1. The inverse Kronecker map ψk,d(q)(x) yields
a k-variate polynomial by replacing xi in q by xbasen+1(i), for all i ∈ [k].

It is easy to see that ψk,d maps each xi to a distinct k-variate monomial of individual degree
≤ n, for 0 ≤ i ≤ d. Also, we have φk,n ◦ ψk,d(q) = q (thus, φk,n ◦ ψk,d = id over F[x]≤d).

Hitting-set generators and deterministic blackbox-PIT from lower bounds. The technical
tool to solve blackbox-PIT is to construct an efficient hitting-set generator.

A polynomial map G : Fk −→ Fn given by G(z) = (g1(z), g2(z), . . . , gn(z)) is a hitting-set
generator (HSG) for a class C ⊆ F[x1, x2, . . . , xn] of polynomials, if for every nonzero f ∈ C, we
have that f ◦ G = f (g1, g2, . . . , gn) is nonzero.

We say that G is t-time HSG, if coef(gi) can be computed in time t and the maximum degree
of gi is ≤ t.

Given a HSG, one can construct a hitting-set, a set H such that a non-zero circuit is non-zero
at some points in H. Crucial here is the size of H which depends on the parameters of the
HSG. A t-time HSG G gives a (td)O(k) time blackbox-PIT algorithm, for circuits that compute
polynomials of degree ≤ d, over popular fields like rationals Q or their extensions, local fields
Qp or their extensions, or finite fields Fq. When k is constant, we get a poly-time blackbox-PIT.
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Very recently, Guo et al. [GKSS19] showed how to use the hardness of a constant variate
explicit polynomial family to derandomize PIT. They need the algebraic circuit hardness to be
more than d3; which requires k ≥ 4 for the family to exist.

Theorem 10. [GKSS19] Let P ∈ F[x] be a k-variate polynomial of degree d such that coef(P) can be
computed in poly(d)-time. If size(P) > s10k+2 d3, then there is a poly(s)-time HSG for C(s, s, s).

3 Proofs of the main results

In this section, we prove the four main theorems.

3.1 Conjecture C1 to blackbox-PIT: Proof of Theorem 1

Proof of Theorem 1. Let Conjecture C1 be true for some r ≥ 25, δ1 > 0, and δ2 ≥ 1. Let k be a
constant that will be specified later and x := (x1, . . . , xk). For all large n ∈N, there exists exactly
one d := d(n) such that d ∈ Ir ∩ [

(
(n + 1)k − 1

)
/(r + 1), (n + 1)k − 1]. This follows from the

fact that the ratio of two consecutive elements in Ir can be at most (r`+1 − 1)/(r` − 1) < r + 1,
for ` ≥ 2.

Define the polynomial family Pn(x) := ψk,d( fd) via the inverse Kronecker map applied to
fd = (x + 1)d. From the definition it is clear that Pn is a k-variate polynomial with individual
degree at most n, because the individual degree is bounded by d(d + 1)1/ke − 1 ≤ n. Hence,
the total degree of Pn is bounded by kn.

Note that (Pn)n is an explicit family of polynomials because its coefficient vector coef(Pn)
can be computed in poly(d) = poly(n) time. To see this, observe that for e = (e1, . . . , ek), we
have coef(xe)(Pn) = (d

e), where e = ∑k
i=1 ei(n + 1)i−1. Also, the number of monomials in Pn is

supp(Pn) = d + 1.
Next we will show the hardness of the polynomial family (Pn)n. Let

µ =
3

δ1
r −

7
k

. (4)

We want µ > 0. This enforces a condition for k, namely k > 7r/δ1.

Claim 11 (Hardness of Pn). C1 =⇒ size(Pn) > d1/µ, for all large enough n.

Proof of Claim 11. Assume to the contrary that there exists an infinite subset J ⊆ N such that
size(Pn) ≤ d1/µ, for n ∈ J. We will show that Conjecture C1 is false over an infinite subset
Jr = { d(n) | n ∈ J } ⊆ Ir which is a contradiction.

Let C be a circuit of size≤ d1/µ that computes Pn. Thus, by Theorem 7, there exists a normal-
form circuit C′ of size s′ := d3/µ (kn)6. We cut the circuit C′ after the t-th layer of multiplication
gates from the top, for a constant t ≥ 2 to be fixed later. This divides C′ into two parts, both of
them we express as ΣΠ-circuits.

• Top part: Since the fan-in of each multiplication gate is 5, the top part of the circuit com-
putes a polynomial of degree at most 5t. The number of variables is bounded by s′, the
size of the circuit. Hence, the top part can be written as a ΣΠ-circuit of size s0 := (s′+5t

5t ).

• Bottom part: Since deg(Pn) ≤ kn and the degree at least halves below every multi-
plication layer, the bottom part computes several k-variate polynomials, each of degree
≤ kn2−t. So, the bottom part can be written as a ΣΠ-circuits of total size s1 := (k+kn2−t

k ).

10



When we recombine the ΣΠ-circuits of the two parts, we get a Σs0 Π5t
Σ Πkn2−t-circuit that

computes Pn,
Pn = ∑

i∈[s0]
∏

j∈[5t]

gi,j , (5)

where the polynomials gi,j are the ones computed by the bottom part. So deg(gi,j) ≤ kn2−t.
Because the gi,j’s have the same k variables as input, their support-union size is bounded by
|⋃i,j supp(gi,j)| ≤ s1.

Now we use Fischer’s formula (Lemma 8) , to express the product in (5) as a sum of 25t

powers. Combined with the sum in (5) and renaming the summands, we can write

Pn = ∑
`∈[s0 25t ]

c` g5t

` . (6)

where g` ∈ spanF

(
gi,j | j ∈ [5t]

)
, for some i ∈ [s0], and c` ∈ F, for ` ∈ [s0 25t

] .
Next we use Lemma 9 to adjust the exponent in (6) from 5t to r. Choose t such that 5t ≤

r < 5t+1. By Lemma 9, there exist c`,j, λj ∈ F such that g5t

` = ∑j∈[r+1] c`,j (g` + λj)
r. We plug

this into (6) and rename the summands; then we can write

Pn = ∑
i∈[s̃]

c̃i g̃r
i , (7)

where s̃ := s0 (r + 1) 25t and c̃i ∈ F. Note that the polynomials g̃i are in the affine space of the
above polynomials gi,j. Therefore, polynomials g̃i are also k-variate and of degree deg(g̃i) ≤
kn2−t, and have the same support-union as the polynomials gi,j in (5). Hence, |⋃i supp(g̃i)| ≤
s1.

Recall that Pn is defined via the inverses Kronecker map from fd, i.e., Pn(x) = ψk,d( fd).
Hence, when we apply the Kronecker map φk,n on Pn, we get back fd,

fd = φk,n(Pn) =
s̃

∑
i=1

c̃i φk,n(g̃i)
r .

Since Kronecker substitution maintains the support size, we have |⋃i supp(φk,n (g̃i))| ≤ s1, and
therefore UF( fd, r, s̃) ≤ s1.

We want to show that s̃ < dδ1 and s1 < d/rδ2 , for all large enough n. Then we have
UF( fd, r, dδ1) < d/rδ2 , for all large d ∈ Jr ⊆ Ir which contradicts Conjecture C1.

Bound on s0. We start by deriving a bound on s0. By the standard bound on binomial coeffi-
cients (2), we have for large enough n

s0 =

(
s′ + 5t

5t

)
≤ (e (

s′

5t + 1))5t
<

(
3

s′

5t

)5t

≤
(

3
d

3
µ (kn)6

5t

)5t

≤ c
(

d
3
µ n6

)r
, (8)

where c =
(

3k
5t

)5t

is a constant, and in the last inequality, we used that 5t ≤ r.
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Recall that by our choice of d, we have d ≥ (n+1)k−1
r+1 > nk

r+1 , and therefore

n < (d (r + 1))
1
k . (9)

Plugging (9) into (8), we get

s0 < c
(

d
3
µ (d (r + 1))

6
k

)r
= c′ d

3r
µ + 6r

k = c′ dδ1− r
k (10)

where c′ = c (r + 1)6r/k is a constant, and in the last equality, we used that δ1 = 3r/µ + 7r/k,
which follows from (4).

Bound on s̃. With (10), we get the desired estimate for s̃,

s̃ = (r + 1) 25t
s0 < (r + 1) 25t

c′ dδ1− r
k < dδ1 . (11)

For the last inequality note that r, t, c′ are constants. Hence we can choose d large enough to
fulfill the inequality.

Bound on s1. Finally, we show that s1 < d/rδ2 . Again by (2), we have

s1 =

(
k + k n 2−t

k

)
<
(
e
(
1 + n 2−t))k ≤ 3k nk 2−tk < 3k d (r + 1) 2−tk,

Hence, it suffices to show that 3k d (r + 1) 2−tk ≤ d/rδ2 . This is equivalent to 3k ≤ 2tk/(rδ2(r +
1)). Because r < 5t+1, it suffices to show that

3k ≤ 2tk

5(δ2+1)(t+1)
. (12)

Consider the fraction in (12). When we require k ≥ 3(δ2 + 1), we have 2k/5(δ2+1) > 1. Then
the fraction is growing with t. Since we assume t ≥ 2, it then suffices to satisfy (12) for t = 2.
Then (12) boils down to 125δ2+1 ≤ (4/3)k, which is satisfied for k ≥ 17(δ2 + 1). Hence, the
above calculations holds when we pick k > max (17(δ2 + 1), 7r/δ1). This proves Claim 11.

Form hardness to HSG. We show that by the hardness of Pn from Claim 11, we can fulfill the
assumption in Theorem 10 that size(Pn) > s10k+2 deg(Pn)3, for some appropriate function s(n).
Recall that deg(Pn) ≤ kn. Define

s(n) = n
1

10k+3 .

Then we have

s10k+2 deg(Pn)
3 ≤ s10k+2 (kn)3 = n

10k+2
10k+3 (kn)3 = k3 n4− 1

10k+3 <
n4

(r + 1)1/µ
. (13)

For the last inequality note that k, r, µ are constants. So for large enough n, the inequality will
hold.

Recall from (9) that nk/(r + 1) < d. Suppose we have the additional property that 4 ≤ k/µ.
Then we can continue (13) by

n4

(r + 1)1/µ
≤ nk/µ

(r + 1)1/µ
< d1/µ < size(Pn). (14)

12



Equations (13) and (14) give the desired hardness of Pn.
It remains to fulfill the additional requirement 4 ≤ k/µ. We show that that this holds for

k ≥ 19r/δ1:

µ =
3

δ1
r −

7
k

≤ 3
δ1
r −

7δ1
19r

=
3 · 19r
11δ1

<
19r
4δ1
≤ k

4
.

Hence our overall choice for k is k ≥ max(17(δ2 + 1), 19r/δ1).
Thus, Theorem 10 gives a poly(s)-time hitting-set generator for C(s, s, s). Note that s can

be any polynomial because one can choose n appropriately and k is independent of n. Hence,
blackbox-PIT ∈ P.

Remarks. 1. The same proof works for other polynomials like, ∏i∈[d](x± i) or ∑d
i=0 2i2

xi. The
hardness-proof part does not change at all (assuming the corresponding Conjecture C1).
Their explicitness is also clear as their coefficient vector is computable in poly(d)-time.
So, the corresponding Pn will be k (=constant) variate and poly(n)-time explicit.

2. Recall the proof notation. As the degree of g̃i’s is ≤ kn2−t, the degree of φk,n(g̃i) is ≤
(n + 1)k−1 · kn2−t < k · (n + 1)k · 2−t ≤ k · (d(r + 1) + 1) · 2−t = O(d) (∵ k, r, t are
constants). Thus, it suffices to study the representation of fd as sum-of-r-th powers `r

i ,
where deg(`i) ≤ O(d); this should lead to the same conclusion as that in Theorem 1.

3. An approximative version, Conjecture C2, leads to an efficient HSG for the class VP. The
details are discussed in Theorem 29.

3.2 Evidence towards Conjecture C1: Proof of Theorem 2

In the proof of Theorem 2 we consider the support size of fd modulo a prime r. We prove
first that (x + 1)d mod r has full support, i.e. d + 1. We use a celebrated theorem due to Lu-
cas [Luc78].

Theorem 12 (Lucas’s Theorem, [Luc78]). For m, n ∈N and a prime p, let

m = mk pk + mk−1 pk−1 + . . . + m1 p + m0

n = nk pk + nk−1 pk−1 + . . . + n1 p + n0

be the base-p representation of m and n. Then(
m
n

)
≡

k

∏
i=0

(
mi

ni

)
(mod p) .

Lemma 13. Let d = r` − 1, for some prime r and ` ∈N. Then

(x + 1)d ≡
d

∑
k=0

(−1)k xk (mod r) . (15)

Therefore, we have for the support size |(x + 1)d mod r|1 = d + 1.

Proof. The base-r representation of d is d = ∑`−1
i=0 (r− 1) ri. Let 0 ≤ k ≤ d and write k in base-r

representation, k = ∑`−1
i=0 kiri.
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By Lucas’s Theorem, we have(
d
k

)
≡

`−1

∏
i=0

(
r− 1

ki

)
(mod r). (16)

Now observe that (r−1
ki
) ≡ (−1)ki (mod r). This is because (r− 1)(r− 2) · · · (r− ki) ≡ (−1)ki ki!

(mod r), and hence (
r− 1

ki

)
≡ (−1)ki ki!

ki!
≡ (−1)ki (mod r) .

Plugging this into (16), we get (
d
k

)
≡ (−1)∑`−1

i=0 ki .

Finally observe that k = ∑`−1
i=0 kiri ≡ ∑`−1

i=0 ki (mod 2), because r is odd. This proves (15).

Proof of Theorem 2. Let r be a power of a prime r0 and d ∈ Ir. Hence, there is an ` ∈N such that
d = r` − 1.

By Lemma 13, we have |(x + 1)d mod r0|1 = d + 1. Moreover, r0 does not divide any of the
coefficients (d

k) because (d
k) ≡ (−1)k (mod r0), for any 0 ≤ k ≤ d.

Consider the given prime ideal P of OK that contains 〈r〉OK , and hence contains 〈r0〉OK .
Suppose (d

j) ∈ 〈r0〉(OK)P
, for some 0 ≤ j ≤ d. Then, simply by ideal definition, there exists

m ∈ (OK)P such that (d
j) = mr0. Since r0 does not divide (d

j) and r0 ∈ P, the quotient (d
j)/r0

cannot lie in the localization (OK)P, which is a contradiction.
Thus, (d

j) /∈ 〈r0〉(OK)P
, for all 0 ≤ j ≤ d. Whence,

fd(x) = ∑
i∈[s]

ci `
r
i =⇒ fd(x) ≡ ∑

i∈[s]
ci `i(xr) mod 〈r0〉(OK)P

=⇒
∣∣ ⋃

i∈[s]
supp(`i(xr))

∣∣ ≥ d + 1

=⇒
∣∣ ⋃

i∈[s]
supp(`i)

∣∣ ≥ d + 1,

which gives a lower bound on the support-union size as promised.

Remarks. 1. The fact that P is a prime ideal is crucial in the above proof. This proof works
for the polynomial g := ∑d

i=0 2i2
xi as well, as long as r is odd. This is simply because

2i2 6= 0 mod r0, for any odd prime r0. The rest of the proof remains unchanged. For even
r, one can work with the alternative h := ∑d

i=0 3i2
xi. Conjecture C1 though may still be

true for g & h.

2. This also proves that for any prime-power r, for any integer m coprime to r, and for all
d ∈ Ir we have UZ (m fd, r, ·) > d. This behavior changes when m, r are not coprime.

3.3 Conjecture C1 to VP 6= VNP: Proof of Theorem 3

In the proof of Theorem 3 we need the notion of CH-definable sequences that we define first.
Let p(n), q(n) be polynomials. Let a = (a(n, k))n∈N, k≤2p(n) be a sequence of nonnegative

integers such that a(n, k) has exponential bitsize, i.e., a(n, k) ≤ 2q(n) for all k.
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With the sequence, we associate a language that determines the bits of a(n, k) in binary,

Bit(a) = { (1n, k, j, b) | the j-th bit of a(n, k) equals b } .

In case when k = 1, we write a(n) as a shorthand for a(n, 1).

Definition 14. The sequence a = (a(n, k))n,k of integers of exponential bitsize is CH-definable if
Bit(a) ∈ CH.

The sequences of integers that are definable in CH are closed under exponential additions
and multiplication [Bür09, Thm.3.10]. Koiran et al. [KP11, Thm.2.14] used the binary version
of the same theorem.

Theorem 15. [Bür09, KP11] Let p(n) be a polynomial and suppose (a(n, k))n∈N,k≤2p(n) isCH-definable.
Then the sum- and product-sequences b(n) and c(n) are CH-definable, where

b(n) =
2p(n)

∑
k=0

a(n, k) and c(n) =
2p(n)

∏
k=0

a(n, k) .

We show that the binomial coefficients are definable in CH. The argument is very similar to
the proof that the family ∏i∈[d](x + i) is CH-definable [Bür09, Cor.3.12].

Theorem 16. Let p(n) be a polynomial and dn ≤ 2p(n). The sequence a(n, k) = (dn
k ) is CH-definable.

Proof. Let d = dn. Consider the identity (x + 1)d =
d

∑
k=0

(
d
k

)
xk. For x = 2d we get

v(d) = (2d + 1)d =
d

∑
k=0

(
d
k

)
2dk .

Note that (d
k) < 2d. Thus the bits of (d

k) in the binary representation of v(d) do not overlap for
different k’s, Hence the bits of (d

k) can be read off the bit-vector of v(d). It is therefore sufficient
to show that v(d) is definable in CH.

Note that each bit of 2d + 1 can be computed in polynomial time. By Theorem 16, we get
that v(d) is definable in CH.

Proof of Theorem 3. Let GRH and Conjecture C1 be true for some r ≥ 25, δ1 > 0, and δ2 ≥ 1.
For non-constant n let x := (x1, . . . , xn). For all large n ∈ N, there exists exactly one d := d(n)
such that d ∈ Ir ∩ [(2n − 1)/(r + 1), 2n − 1]. This follows from the fact that the ratio of two
consecutive elements in Ir is at most (r`+1− 1)/(r` − 1) < r + 1, for ` ≥ 2. Thus, n = Θ(log d).

Define the polynomial family Pn(x) := ψn,d( fd) via the inverse Kronecker map applied to
fd = (x + 1)d. Note that Pn is an n-variate multilinear polynomial. This is ensured because the
individual degree dn := d(d + 1)1/ne − 1 = 1, because (2n − 1)/(r + 1) ≤ d ≤ 2n − 1. Hence,
Pn has total degree n.

For the sake of contradiction, assume that VP = VNP. First we show that then {Pn}n ∈ VP.

Claim 17. VP = VNP =⇒ {Pn}n ∈ VP.

Proof of Claim 17. Let bin(i) =: (i1, . . . , in) so that i = ∑n
j=1 ij 2j−1. By definition,

Pn(x) =
2n−1

∑
i=0

φ(i) xbin(i) ,
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where φ(i) := (d
i). Clearly, φ(i) < 2d ≤ 22n−1 < 22n − 1. Write φ(i) in binary, i.e. φ(i) =:

∑2n−1
j=0 γi,j 2j, where γi,j ∈ {0, 1}. From Theorem 16, we know that the sequence of coefficients

φ(i) = (d
i) isCH-definable. This means that the γi,j’s are computable inCH, and hence inP/poly,

by our assumptions together with Theorem 6.
Introduce new variables y = (y1, . . . , yn) and consider the auxiliary polynomial φ̃i(y) :=

∑2n−1
j=0 γi,j ybin(j). Let y0 = (220

, 221
, . . . , 22n−1

). Note that ybin(j)
0 = 2j. Therefore φ̃i(y0) = φ(i).

Now define

P̃n(x, y) :=
2n−1

∑
i,j=0

γi,j ybin(j) xbin(i) .

Then we have Pn(x) = P̃n(x, y0). Since γi,j ∈ P/poly, we have {P̃n}n ∈ VNP = VP, by Valiant’s
criterion. AsVP is closed under substitution we have {Pn}n ∈ VP as well. This proves Claim 17.

On the other hand, we show next that Conjecture C1 implies that {Pn}n /∈ VP.

Claim 18. C1 =⇒ {Pn}n /∈ VP.

Proof of Claim 18. This proof is very similar to the hardness part of Theorem 1, i.e. Claim 11.
However, the parameter setting is slightly different (e.g. there is no k here), so we need to go
through the details. Let µ > 3r/δ1. We prove that size(Pn) > d1/µ = 2Ω(n).

Assume that this is not the case. Then there exists an infinite subset J ⊂ N such that
size(Pn) ≤ d1/µ, for all n ∈ J. We will show that Conjecture C1 is false over an infinite subset
Jr := {d(n) | n ∈ J} ⊆ Ir which is a contradiction.

Let C be a circuit of size ≤ d1/µ that computes Pn, for some n. Recall that Pn is multilinear.
Hence, by Theorem 7, there exists an equivalent normal-form circuit C′ of size s′ := d3/µ n6.
Similar as in Claim 11, we cut the circuit C′ after the t-th layer of multiplication gates from the
top, for a constant t such that 5t ≤ r < 5t+1. This divides C′ into two parts, both of them we
express as ΣΠ-circuits. Transforming the two parts into ΣΠ-circuits, we get a top part of size
s0 = (s′+5t

5t ). The bottom part consists of at most s′ many circuits of total size s1 := (n+n2−t

n ).
Then we apply again Fischer’s formula and Lemma 9 to write Pn as in (7) (on page 11) as

Pn = ∑
i∈[s̃]

c̃i g̃r
i ,

where s̃ := s0 (r + 1) 25t and c̃i ∈ F, and each g̃i is an n-variate polynomial of degree ≤ n/2t.
The support-union size is |⋃i supp(g̃i)| ≤ s1.

Applying the Kronecker map φn,1 to Pn yields

fd = φn,1(Pn) =
s̃

∑
i=1

c̃i φn,1(g̃i)
r ,

and we have |⋃i supp(φk,n (g̃i))| ≤ s1, and therefore UF( fd, r, s̃) ≤ s1.
We want to show that s̃ < dδ1 and s1 < d/rδ2 , for all large enough n. Then we have

UF( fd, r, dδ1) < d/rδ2 , for all large d ∈ Jr ⊆ Ir which contradicts Conjecture C1.
For a bound on s0, we have similar to (8) that s0 < c

(
d

3
µ n6

)r
, for large enough n and a

constant c different to the one in (8) because there is no k here. Then, with d = O(log n), we
get

s̃ = (r + 1) 25t
s0 < (r + 1) 25t

c d3r/µ (log d)6r < dδ1 .

For the last inequality note that r, t, c are constants and δ1 > 3r/µ, by our choice of µ.
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Finally, we show that s1 < d/rδ2 , for all large enough d.

s1 =

(
n + n2−t

n2−t

)
<
(
e
(
1 + 2t))n2−t

<

(
7
2
· 2t
)n2−t

. (17)

Note that the last expression in (17) decreases with increasing t ≥ 2. At t = 2, it is 14n/4 =
o(2n) = o(d). For the last equality, recall that d ≥ (2n − 1)/(r + 1) and therefore 2n = O(d).
Combining this with (17), we conclude that s1 < d/rδ2 , for all large enough d. This proves
Claim 18.

Since Claim 18 contradicts Claim 17, we conclude that VP 6= VNP, as claimed in Theorem 3.

Remarks. 1. We can consider f ′d(x) := ∑d
i=0 2i2

xi and redefine Pn as above. Consider the poly-
nomial P̃n(x, y) defined on 3n variables x = (x1, . . . , xn), y = (y1, . . . , y2n) by P̃n(x, y) :=
∑2n−1

i=0 φ(i) · ybin(i2) · xbin(i), where φ(i) := 1 for all 0 ≤ i ≤ d, and 0 otherwise. Note that,
substituting yj = 22j−1 for all j ∈ [2n] in P̃n, we get Pn.

We also see: P̃n(x, y) = ∑2n−1
i=0 ∑22n−1

j=0 φ(i, j) · xbin(i) · ybin(j), such that φ(i, j) := 1 when
j = i2 with 0 ≤ i ≤ d, and 0 otherwise. Note that bit-size of the exponent vector (i.e. sum
of bit-size of each co-ordinate) in x and y is O(n). Given bin(i) and bin(j), one can easily
calculate whether j = i2 or not in O(n2) time. Hence, φ ∈ FP. As, FP ⊂ #P/poly, therefore
by Valiant’s criterion, we have {P̃n}n ∈ VNP. As VNP is closed under substitution, we get
{Pn}n ∈ VNP as well!
The hardness part for {Pn}n follows similarly as in the above proof. Thus, we do not need
GRH for this particular polynomial!

2. The same proof works for ∏i∈[d](x± i) as for (x + 1)d. The hardness part does not change.
The only non-trivial part is to show that {Pn}n ∈ VP, assuming GRH and VP = VNP. The
polynomial family ∏i∈[d](x ± i) is CH-explicit ([Bür09, Cor.3.12]) and the rest follows
similarly.

3.4 Conjecture C1 to matrix rigidity: Proof of Theorem 4

We argue via linear circuits which we define first. An arithmetic circuit is called linear if it uses
only addition gates and multiplications by scalars. As a graph, the nodes of a linear circuits are
either input nodes or addition nodes, and the edges are labeled by scalars. If an edge from u
to v is labeled by c ∈ F, then the output of u is multiplied by c and then given as input to v.

Linear circuits can compute linear or affine functions (see [KV19, Sec.1.2]). We give some
examples.

1. Let a = (a1, . . . , an) be a vector. Consider a as a linear function Fn → F. It can be
computed by a linear circuit of depth 1 with n inputs and one addition-gate as output
gate. The edge from the i-th input is labeled by ai. The size of the circuit is n. However,
we omit edges labeled by 0. Hence, the size of the circuit is actually sp(a) ≤ n, the sparsity
of a.
Similarly, we consider an n× n matrix A as a linear transformation Fn → Fn. For each
row vector of A we get a linear circuit as described above. Hence we represent A by circuit
of depth 1 with n output gates and size sp(A) ≤ n2.
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2. The model gets already interesting for linear circuits of depth 2. Suppose A = BC, where
B is a n× r matrix and C is a r× n matrix. Then we can take the depth-1 circuit for C at
the bottom as in item 1 and combine it with the depth-1 circuit for B on top. The resulting
depth-2 circuit is layered: all edges go either from the bottom to the middle layer, or from
the middle to the top layer. The size of the circuit is sp(B) + sp(C) ≤ 2rn.
In particular, there is a representation A = BC with r = rank(A). Hence the rank of A
is involved in the circuit size bound for A. Also note that r is bounded by the size of the
circuit because be omit all zero-edges.
Note that any layered linear circuit of depth 2 in turn gives a factorization of A as a product
of 2 matrices, A = BC, where the top edges define B and the bottom edges C.

3. Let A = BC+D, where B, C are as above and D is a n× n matrix. Then we can represent A
by a depth-2 circuit for BC as in item 2 plus edges from the inputs directly to the output
nodes to represent D as in item 1. The resulting circuit has depth 2 and size sp(B) +
sp(C) + sp(D) ≤ 2rn+ n2, but it would not be layered. We can transform it into a layered
circuit by writing A as A = BC + ID, where I is the n× n identity matrix. Then we get a
depth-2 circuit for ID similar to BC and can combine the two circuits into one. The size
increases by ≤ n edges for I.

4. Now consider matrix A that is not (r, s)-rigid, for some r, s. Hence, we can write A as
A = R + S, where rank(R) = r and sp(S) = s. Then R can be written as as R = BC,
where B is a n× r matrix and C is a r× n matrix. From item 3, we have that A = BC + S
has a layered linear circuit of depth 2 of size ≤ 2rn + s + n.

Proof of Theorem 4. The assumption of the theorem is that UF( fd, 2, d) ≥ d/2δ2 , for some δ2 ≥ 1
and for d =: n2 − 1 =: 22` − 1 ∈ I2, for some n, l ∈ N. Define the bivariate polynomial
gn ∈ F[x, y] from fd via the inverse Kronecker map, gn(x, y) = ψ2,d( fd). Recall that gn has
individual degree ≤ n− 1. Equivalently, we can write gn(x, y) = ψ2,d( fd). By definition of the
Kronecker map, that means gn(x, xn) = fd(x).

Let gn(x, y) = ∑1≤i,j≤n ai,j xi−1yj−1. By the definition of fd, we have ai,j = ( d
i−1+(j−1)n).

Define the n× n matrix An =
(
ai,j
)

1≤i,j≤n and vectors

[x]n =
(
1 x · · · xn−1)

[y]n =
(
1 y · · · yn−1)

Then we have gn(x, y) = [x]n An[y]Tn . Next we show a lower bound on the linear circuit size
of An.

Claim 19. C1 (with δ1 = 1, r = 2) =⇒ any layered linear circuit of depth 2 that computes An has
size > d/2δ2+1.

Proof of Claim 19. Assume that the claim is false. Then we can write An = BC, where B ∈ Fn×t,
C ∈ Ft×n, such that t ≤ sp(B) ∪ sp(C) ≤ d/2δ2+1.

Denote

[x]n B =
(
`1(x) `2(x) · · · lt(x)

)
and C [y]Tn =

( ˜̀1(y) ˜̀2(y) · · · ˜̀t(y)
)T .

Then
gn(x, y) = [x]n An[y]Tn = [x]n B C[y]Tn =

t

∑
i=1

`i(x) ˜̀ i(y) .
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Since sp(B) ∪ sp(C) ≤ d/2δ2+1, we have ∑t
i=1(|`i|1 + | ˜̀ i|1) ≤ d/2δ2+1. In particular, the

support-union size |⋃t
i=1
(
supp(`i) ∪ supp( ˜̀ i)

)
| ≤ d/2δ2+1. Substituting y = xn we get

fd(x) = g(x, xn) =
t

∑
i=1

`i(x) ˜̀ i(xn) =
t

∑
i=1

(
`i(x) + ˜̀ i(xn)

2

)2

−
t

∑
i=1

(
`i(x)− ˜̀ i(xn)

2

)2

.

Thus, we have a representation of fd as ≤ 2t ≤ d/2δ2 sum of squares. Note that addition and
subtraction does not increase the support size and thus, we have for the support-union size

|
t⋃

i=1

supp(`i ± ˜̀ i)| ≤ |
t⋃

i=1

supp(`i) ∪ supp( ˜̀ i)| ≤ d/2δ2+1 . (18)

On the other hand, if Conjecture C1 is true, then we have

|
t⋃

i=1

supp(`i ± ˜̀ i)| ≥ d/2δ2 . (19)

Hence, by (18) and (19), we have a contradiction. This proves Claim 19.

We want to show that An is (n/2δ2+3, n1+δ)-rigid, for any δ < 1. For the sake of contradic-
tion, assume that this is false. Then there is a δ < 1 and a decomposition An = R + S, where
rank(R) = r = n/2δ2+3 and sp(S) = s = n1+δ. By item 4 from above, An has a layered linear
circuit Cn of depth 2 of size

size(Cn) ≤ 2rn + s + n ≤ 2n2

2δ2+3 + 2n1+δ . (20)

Recall that δ2 is a constant. Hence, for large enough n, we have 2n1+δ ≤ 2n2−4
2δ2+3 . Then we can

continue the inequalities in (20) by

size(Cn) ≤
4n2 − 4

2δ2+3 =
d

2δ2+1 . (21)

For the last equation, recall that d = n2− 1. The bound in (21) contradicts Claim 19. Therefore
we conclude that An is (n/2δ2+3, n1+δ)-rigid.

3.5 Other models and measures

Kumar and Volk [KV19] showed a strong connection between matrix rigidity and depth-2 linear
circuit lower bound. They argued (similarly done in [Pud94] in a different language) that
depth-2 Ω(n2) lower bound for an explicit matrix is necessary and sufficient for proving super-
linear lower bound for general O(log n)-depth circuits (or matrix rigidity).

Symmetric depth-2 circuit. Over R, it is a circuit of the form BT · B, for some B ∈ Rm×n.
[Over C, one should take the conjugate-transpose B∗ instead of BT.] Symmetric circuits are a
natural computational model for computing a positive semi-definite (PSD) matrix.
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Invertible depth-2 circuit. It is a circuit B ·C, where at least one of the matrices B, C is invert-
ible. We stress that invertible circuits can compute non-invertible matrices. Invertible circuits
generalize many of the common matrix decompositions, such as QR decomposition, eigen de-
composition, singular value decomposition (SVD), and LUP decomposition.

[KV19, Thms.1.3 & 1.5] also prove asymptotically optimal lower bounds for both the mod-
els.

Theorem 20. [KV19] There exists an explicit family of real n× n PSD matrices {An}n∈N such that
every symmetric circuit (resp. invertible circuits) computing An (over R) has size Ω(n2).

We present a simple, alternative proof of this theorem using SOS representation of fd over
R. For details, see Theorems 33 and 36.

Sparsity-sum measure. We define another natural complexity measure–sparsity-sum, SF( f , r, s),
with some parameters r, s for a univariate polynomial f (x). It is the minimal sum of sparsity
of `i’s in sum-of-rth-powers: f = ∑i∈[s] ci`

r
i . Formally,

SF( f , r, s) := min

(
∑

i∈[s]
|`i|1 : f = ∑

i∈[s]
ci `

r
i , where ci ∈ F , ∀ i ∈ [s]

)
.

If such representation does not exist, then it is defined to be ∞. Note that UF(·) ≤ SF(·).
We note that our Theorems 2–4 hold for the ‘larger’ measure SF (see Theorem 41). However,

it is not clear whether some lower bound on SF could give an efficient HSG for VP-circuits.
In Theorem 40, we prove a lower bound of SR( f , r, s) ≥ Ω(d1/rlog(4/3)

), for a bivariate d-
sparse polynomial f (x, y) of individual degree d. This is better than the trivial lower bound of
Ω(d1/r), as log2(4/3) < 1.

4 Conclusion

Since our Conjecture C1 and its underlying framework is new, many lines of investigation have
opened up. Here are some immediate questions of interest.

1. Is Conjecture C1 true for a ‘generic’ polynomial f with rational coefficients?

2. Prove, or disprove, Conjecture C1 for constants r, s. In particular, can we say that UR((x +
1)d, 2, s) ≥ Ω(d), for all constants s? What about SR(·)?

3. Prove UZ((x + 1)d, r, s) ≥ Ω(d/r), for all large enough d (i.e. for the ones outside Ir too).

4. Can we show that the connection between conjecture and PIT ∈ P holds, for smaller
prime-powers r < 25. In particular, does SOS lower bounds solve PIT, or VP 6= VNP ?

5. Can we remove the GRH assumption for the polynomial (x + 1)d (in Theorem 3)?
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A Bounds for sum of constant-powers: Details for Section 1.1

By Lemma 9, we already showed an upper bound for univariate polynomials represented as
sum of few, namely (r + 1) many r-th powers of polynomials over F of characteristic 0 or large,
thus showing that it is a complete model.

A.1 (x + 1)d as sum of r + 1 many r-th powers

Using Lemma 9, we show an upper bound on UF((x + 1)d, r, r + 1).

Lemma 21. For any r ≤ d ∈N, we have UF

(
(x + 1)d, r, r + 1)

)
≤ d/r + r.

Proof. Let d = rk + t, where t = d mod r and k = bd/rc. Then, from Lemma 9, it follows that
there exist ci, λi ∈ F such that

(x + 1)d =
(
(x + 1)k

)r
(x + 1)t

=
(
(x + 1)k

)r r

∑
i=0

ci
(
(x + 1)t + λi

)r

=
r

∑
i=0

ci

(
(x + 1)t+k + λi(x + 1)k

)r
=:

r

∑
i=0

ci `
r
i

where `i := (x + 1)t+k + λi(x + 1)k. Note that |⋃r
i=0 supp(`i)| ≤ t + k + 1 ≤ d/r + r.

A.2 Sum of powers of small support-union

We give a second way how a univariate polynomials can be represented as sum of r-th powers
of polynomials. It is a bit more complicated than the one from Lemma 9.

Here we use the notion of sumset. In additive combinatorics, the sumset, also called the
Minkowski sum of two subsets A and B of an abelian group G is defined to be the set of all sums
of an element from A with an element from B,

A + B = { a + b | a ∈ A, b ∈ B } .

The n-fold iterated sumset of A is nA = A + · · · + A, where there are n summands.
We want a small support-union representation of a d-degree polynomial f as a sum of r-th

powers, where r is constant. We consider a small B such that rB covers {0, 1, . . . , d}. Let t be the
unique non-negative integer such that (t− 1)r < d + 1 ≤ tr. Define the set B as

B = { ai tk | 0 ≤ ai ≤ t− 1, 0 ≤ k ≤ r− 1 } .

So |B| = rt = O(d1/r). Let k ∈ {0, 1, . . . , d}. The base-t representation of k is a sum of at most
elements from B. Hence, {0, 1, . . . , d} ⊆ rB.

The largest element in B is m = (t − 1)tr−1. Note that, for any ε > 0, we have t < (1 +
ε)(d + 1)1/r, for all large enough d. Thus, for any constant c > 1 and large enough d, we have
m < c(d + 1). Therefore, the largest element in rB is at most mr < cr(d + 1) = O(d).

Lemma 22. Let F be a field of characteristic 0 or large. For any f (x) ∈ F[x] of degree d, there exist
`i ∈ F[x] with supp(`i) ⊆ B and ci ∈ F, for i = 0, 1, . . . , mr, such that f (x) = ∑mr

i=0 ci `
r
i .
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Proof. Consider `i(zi, x) = ∑j∈B zijxj, for distinct indeterminates zij, for all i, j. Surely, degx(`i) =
m. There exists mr + 1 many degree-r polynomials Qj over |B| = rt many variables, such that

`i(zi, x)r =
mr

∑
j=0

Qj(zi) xj ∀i ∈ [mr] .

Note that from any monomial in Qj we could recover j uniquely. Thus, we could conclude that
Qj(zi) (0 ≤ j ≤ mr) are F-linearly independent.

Suppose f (x) = ∑d
i=0 fi xi. Define f̃ ∈ Fmr+1 and A ∈ F[z](mr+1)×(mr+1) as

f̃ =
(

f0 f1 · · · fd 0 · · · 0
)

, A =


Q0(z0) Q1(z0) · · · Qmr(z0)
Q0(z1) Q1(z1) · · · Qmr(z1)

...
... · · ·

...
Q0(zmr) Q1(zmr) · · · Qmr(zmr)

 .

We want to find c =
(
c0 c1 · · · cmr

)
∈ Fmr+1 and α = (αij)i,j such that

mr

∑
i=0

ci `i(α, x)r =
d

∑
i=0

fi xi ⇐⇒ c · A|z=α ·


1
x
...

xmr

 = f̃ ·


1
x
...

xmr

 ⇐⇒ c · A|z=α = f̃ .

As the zi’s are distinct variables, the first column of A consists of different variables at each
coordinate. Moreover, the first row of A contains F-linearly independent Qj’s. Thus, for random
αij ∈ F, matrix A|z=α has full rank over F. Fix such an α. This fixes c = f̃ · (A|z=α)

−1.
From the above construction, it follows that f (x) = ∑mr

i=0 ci `i(α, x)r .

Thus, for any d-degree f , UF( f , r, s := mr + 1) ≤ O(d1/r). As seen before, mr = Θ(d); when
s ≥ c · (d + 1) where c > r, we have a small base representation for large enough d, as mr can
be made smaller than any constant (> r) multiple of d + 1. It is unclear, though, whether even
for s ≤ d, such a small support-union representation exists.
Remarks. 1. The above calculation does not give small sparsity-sum representation of f , as

the top fan-in is already Ω(d).

2. Both the above representations (small s resp. small support-union) crucially require a
field F. E.g. they do not exist for fd over the ring Z by Theorem 2.

A.3 (x + 1)d as sum of two r-th powers

We show a strong lower bound of Ω(d/r) for fd(x) := (x + 1)d when written as sum of two r-th
powers. W.l.o.g., we consider F algebraically closed, as UF(·) ≤ UF(·). Note that, c1 · `r

1 + c2 ·
`r

2 = ˜̀r
1− ˜̀r

2 where ˜̀1 = c1/r
1 · `1 and ˜̀2 = (−c2)1/r · `2. Also, |⋃2

i=1 supp(`i)| = |
⋃2

i=1 supp( ˜̀ i)|.
Thus, it suffices to prove the bounds when fd is written as `r

1 − `r
2. Before that, we prove the

following.

Lemma 23. For a fixed d ≥ 1 and r ≥ 3, if (x + 1)d = `r
1 − `r

2 , for some `i ∈ F[x], then `1 and `2
must share a non-trivial gcd.
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Proof. Suppose, gcd(`1, `2) = 1. Note that, `r
1 − `r

2 has the following factorization over F[x],

(x + 1)d = (`1 − `2)(`1 − ζr`2) . . . (`1 − ζr−1
r `2)

where ζr is a primitive r-th root of unity. If (x + 1) | (`1 − ζ i
r`2) and (`1 − ζ

j
r`2), for i 6= j,

then subtraction would imply: (x + 1) | `1, `2. This contradicts our assumption; hence, there
must exist i: `1 − ζ i

r`2 = c · (x + 1)d. In particular, it means: `1 − ζ
j
r`2 is constant, for all j 6= i.

Subtracting two such equations immediately gives us: `1, `2 are constants; a contradiction again
as d ≥ 1.

Corollary 24. For 3 ≤ r ≤ d : (x + 1)d = `r
1 − `r

2 iff r|d. In that case, ∃α1, α2 ∈ F such that
`i = αi · (x + 1)d/r.

Proof. By Lemma 23, gcd(`1, `2) =: p(x) is non-constant. Therefore, pr | (x + 1)d; implying
that p(x) is a power of x + 1. After dividing out, we can again apply the lemma; eventually, we
deduce r|d. It also implies: `i = αi · (x + 1)d/r, for some αi ∈ F.

Theorem 25. For any d ≥ 1 and any r ≥ 2, we have

UF( fd, r, 2) =

{
dd/re+ 1 if r | d or r = 2 ,
∞ otherwise.

Proof. We prove this in two separate cases.

Case I: For r ≥ 3, the above corollary implies that r|d and that support-union is d/r + 1.

Case II: Consider r = 2. In this case, we have (x + 1)d = (`1 + `2) · (`1− `2). Thus, there exists
c1, c2 ∈ F and 0 ≤ t ≤ d such that (`1 + `2) = c1(x + 1)t and (`1 − `2) = c2(x + 1)d−t.

This implies: |⋃2
i=1 supp(`i)| ≥ max(d − t + 1, t + 1) ≥ d/2 + 1. In fact, one can choose

t = bd/2c; in that case UF(·) = dd/2e+ 1.

B Hitting-set for VP: Details for Section 3.1

Here we study hitting-set for the approximative class VP. Before doing that, it is important to
recall the meaning of approximation in the algebraic setting.

Definition 26 (Approximative computation). A circuit C over F(ε)[x] is said to approximate a
polynomial P(x), if we can write C(x, ε) = εM P(x) + εM+1 Q(x, ε), for some polynomial Q(x, ε) ∈
F[x, ε] and M ∈N. In other words,

lim
ε→0

1
εM C(x, ε) = P(x) .

We denote by size(P), the approximative circuit complexity of P to be the size of the smallest
circuit that approximates P. The class VP contains the families of n-variate polynomials of
degree nO(1) over F of approximative complexity nO(1).

B.1 Tools for VP

We point out that the log-depth reduction [VSBR83, AJMV98] works over approximative cir-
cuits as well.
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Theorem 27. Suppose f (x) ∈ F[x] is a polynomial of degree d which can be approximated by a s size
circuit C. Then, there exists a normal-form circuit C ′ of size O(s3d6) approximating the same f .

Proof sketch. Suppose f is approximated by a circuit which computes C(x, ε). One can show
that each homogeneous part of C (w.r.t. x) can be approximated by a circuit of size s′ = O(sd2).
Hence, it suffices to depth-reduce homogeneous circuits and show that O(s′3) size normal-form
circuits compute the same polynomial C.

Kumar et al. [KSS19] proved that the hardness of constant-variate polynomials in the ap-
proximative sense, suffices to construct an HSG for VP.

Theorem 28. [KSS19, Thm.1.6] Let P ∈ F[x] be a k-variate polynomial of degree d. Suppose size(P) >
sDdn10k, for parameters n, D, s, then there is a poly(s)-time HSG for any (n + 1)-variate polynomial
Q(x0, . . . , xn) of degree D such that size(Q) ≤ s.

B.2 Hitting-set for VP: Approximative version of Theorem 1

Let field F be Q, Qp (or their fixed extensions), or a finite field of large characteristic. Let us
first formalize Conjecture C1 in the approximative setting. For a ring R, we define support-union
approximative size UR( f , r, s) as the number of distinct monomials required to approximate f as
sum-of-rth-powers. In particular, define

UR( f , r, s) := min

(∣∣∣∣ s⋃
i=1

supp(`i)

∣∣∣∣ : g(x, ε) =
s

∑
i=1

ci`
r
i and lim

ε→0

1
εM · g = f , for some M ≥ 0

)
.

Obviously, UR(·) ≤ UR(·). We conjecture that even UF( fd, r, s) is large for fd := (x + 1)d.

Conjecture 2 (C2). There exist positive constants δ1 ≤ 1, δ2 ≥ 1 and a constant prime-power r such
that UF

(
fd, r, dδ1

)
≥ d/rδ2 , for all large enough d ∈ Ir.

Theorem 29. If Conjecture C2 holds true for an r ≥ 25, then there is a poly-time HSG for VP-circuits.

Proof sketch. The proof is almost the same as that of Theorem 1. We define Pn similarly (i.e. in-
verse Kronecker applied on fd where d was chosen uniquely from an interval based on n). We
claim that size(Pn) > d1/µ, where µ ≥ 3/(δ1/r− 7/k) (same as in Section 3.1).

Hardness of Pn: We assume that there is a circuit C of size at most d1/µ computing a poly-
nomial C(x, ε) ∈ F(ε)[x], which approximates Pn over large enough n ∈ J, where J ⊆ N

is an infinite subset. Using Theorem 27, there exists a normal-form circuit C′ of size at most
s′ := d3/µ · (kn)6 approximating Pn. Assume that, C′(x, ε) =: εM · Pn + εM+1 ·Q(x, ε), for some
M ∈N≥0.

We can depth-reduce C′ to depth-4 with some constant t (as done in the proof of Theorem
1) so that C′(x, ε) = ∑s̃

i=1 c̃i · g̃r
i , where s̃ := s0 · 25t · (r+ 1) , and each g̃i is a k-variate polynomial

of degree at most k · n · 2−t over F(ε)[x]. We apply φk,n on C′(x, ε). As, φk,n ◦ ψk,d = id, over
F[x]≤d. Thus,

εM · fd + εM+1 · Q̃ := (φk,n ◦ ψk,d)(C′) =
s̃

∑
i=1

c̃i · (φk,n (g̃i))
r

where we have used that φk,n(Pn) = fd and φk,n(Q(x, ε)) = Q̃(x, ε), for some Q̃ ∈ F[x, ε]. It is
important to observe that |⋃i supp(g̃i)| ≤ s1 := (k+k·n·2−t

k ). Since Kronecker map can not in-
crease the support size, therefore |⋃i supp((φk,n (g̃i)))| ≤ m. Thus, we must have UF( fd, r, s̃) ≤
s1 from the definition of UF(·).
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We can show that s̃ < dδ1 and s1 < d/rδ2 , for all large enough n, where k ≥ 17(δ2 + 1)
and t ≥ 2 (as shown in Section 3.1). Therefore, we have UF( fd, r, dδ1) < d/rδ2 , over all large
d ∈ Jr := {d(n) ∈ Ir | n ∈ J} ⊆ Ir. This contradicts Conjecture C2. Thus, size(Pn) > d1/µ, for a
suitable constant µ and all large enough n.

Like in Section 3.1, Pn is explicit and hard; thus Theorem 28 gives us a poly(s)-time HSG for
size-s degree-s polynomials.

C SOS with restrictions: Details for Section 3.5

In this section, we will prove two lower bounds of SOS representation (with restriction), and
give our alternative proof of Theorem 20.

C.1 Lower bound for symmetric circuits over R: Proof of the first part of Thm.20

We state a lemma from classical mathematics for the study of fewnomials and give a simple
proof.

Lemma 30 (Hajós Lemma). Suppose f (x) ∈ C[x] be a univariate polynomial with t ≥ 1 monomials.
Let α be a non-zero root of f (x). Then, the multiplicity of α in f can be at most t− 1.

Proof. We will prove this by induction on t. When t = 1, f (x) = amxm for some m. It has no
non-zero roots and we are trivially done. Assume that, it is true upto t. We want to prove the
claim for t + 1.

Suppose | f |1 = t + 1. There exists m ≥ 0 such that f (x) = xm.g(x) with |g|1 = t + 1
and g(0) 6= 0. It suffices to prove the claim for g. Let, α be a non-zero root of g(x). Suppose,
g(x) = (x − α)s · h(x), for some s ≥ 1 and h(α) 6= 0. Observe that, multiplicity of α in g′ is
s− 1. As g(0) 6= 0, |g′|1 = t. Therefore by induction hypothesis, s− 1 ≤ t− 1 =⇒ s ≤ t.
Hence, multiplicity of α in g (thus in f ) can be at most t. This finishes the induction step.

Corollary 31. Suppose f (x) = (x + α)t · g(x), for some non-zero α and g(·), then we must have
| f |1 ≥ t + 1.

We prove an important lower bound on SOS representation for a non-zero multiple of (x + 1)d;
it will be important to prove the first part of Theorem 20.

Lemma 32. Let f (x) be a non-zero polynomial in R[x]. Suppose, there exist non-zero `i ∈ R[x], for
i ∈ [m] such that (x + 1)d · f (x) = ∑m

i=1 `
2
i . Then, ∑i∈[m] |`i|1 ≥ m · (bd/2c+ 1).

Proof. Denote g(x) := gcd(`1, . . . , `m). We will prove that (x + 1)t | g(x) where t := bd/2c.
Suppose not, assume that (x + 1)k||g(x) (i.e (x + 1)k+1 - g(x)) such that k < t (and thus
d − 2k > 0). Then, g(x) = h(x) · (x + 1)k where h(x) ∈ R[x] with h(−1) 6= 0. Define ˜̀ i :=
`i/(x + 1)k. By assumption, (x + 1) - gcd( ˜̀1, . . . , ˜̀m) =: h(x). Thus,

k

∑
i=1

`i(x)2 = (x + 1)d · f (x) =⇒
m

∑
i=1

˜̀ i(x)2 = (x + 1)d−2k · f (x)

=⇒
m

∑
i=1

˜̀ i(−1)2 = 0

=⇒ ˜̀ i(−1) = 0 , ∀i ∈ [1, m]

=⇒ (x + 1) | ˜̀ i(x) , ∀i ∈ [1, m]

=⇒ (x + 1) | gcd( ˜̀1, . . . , ˜̀m) = h(x)
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which is a contradiction. Thus, k ≥ t.
This implies, each `i is non-zero polynomial multiple of (x + 1)t. Since Corollary 31 implies

that |`i|1 ≥ t + 1, for all i ∈ [m]; the lemma follows.

Recall that a symmetric depth-2 circuit (over R) is a circuit of the form BT · B for some B ∈
Rm×n. We prove the first part of Theorem 20.

Theorem 33 (Reproving Thm.1.3 of [KV19]). There exists an explicit family of real n × n PSD
matrices {An}n∈N such that every symmetric circuit computing An (over R) has size Ω(n2).

Proof. Denote [x]n :=
[
1 x . . . xn−1]. Denote k := bn/2c. Define gi(x) := (x + 1)k ·

xb(i−1)/2c, for i ∈ [n]. Note that, deg(gi) = k + b(i− 1)/2c ≤ k + b(n− 1)/2c = n− 1. Define
n× n matrix Mn such that

Mn · [x]Tn :=


g1(x)
g2(x)

...
gn(x)

 .

It is easy to see that g1, g3, g5, . . . are linearly independent over R. Therefore, rank(Mn) =
rankR(g1(x), . . . , gn(x)) = b(n− 1)/2c+ 1 = b(n + 1)/2c.

Define An := MT
n ·Mn. By definition, An is PSD and rank(An) = b(n + 1)/2c. This follows

from the classical fact that for any matrix A over R, rank(AT A) = rank(A). Also An is explicit
(entries are P-computable from definition). Now, assume there is some m× n matrix B such
that An = BT · B. Then, denote B[x]n :=

[
`1 `2 . . . `m

]T, where `i ∈ R[x] are univariate
polynomials of degree at most n− 1. Observe that number of non-zero entries in B is precisely
∑i∈[m] |`i|1. Thus, it suffices to show that ∑i∈[m] |`i|1 ≥ Ω(n2).

As rank(B) = rank(BTB) = rank(An) = b(n + 1)/2c, we must have m ≥ b(n + 1)/2c.
Thus,

An = BT · B =⇒ [x]n MT
n ·Mn[x]Tn = [x]nBT · B[x]Tn

⇐⇒
n

∑
i=1

gi(x)2 =
m

∑
i=1

`2
i

⇐⇒ (x + 1)2k · f (x) =
m

∑
i=1

`2
i , where f (x) :=

n

∑
i=1

x2·b(i−1)/2c

=⇒
m

∑
i=1
|`i|1 ≥ (b(n + 1)/2c) · (k + 1) ≥ n2

4
by Lemma 32.

C.2 Lower bound for invertible circuits over R: Proof of the second part of Thm.20

This subsection is devoted to proving the second part of Theorem 20. This proof uses SOS lower
bound for a bivariate polynomial. Before that, we state a weak form of a classical lemma due
to Descartes which will be used later.

Lemma 34 (Descartes rule of signs). Let p(x) ∈ R[x] be a polynomial with t many monomials.
Then, number of distinct positive roots in p(x) can be at most t− 1.

Investigating sum of product of two polynomials is similar to looking at the SOS; as, one
can write f · g = (( f + g)/2)2 − (( f − g)/2)2. The summand fan-in at most doubles. Thus,
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proving lower bound for sum of product of two polynomials is ‘same’ as proving SOS lower
bound. The following lemma proves certain lower bound on sum of sparsity when a specific
bivariate polynomial is written as sum of product of two polynomials (with certain restrictions).

Lemma 35. Let fd := fd,t(x, y) :=
(

∏i∈[d](x− i)(y− i)
)
· p(x, y), for some polynomial p ∈ R[x, y]

such that degx(p) = degy(p) = t. Suppose, fd = ∑i∈[d+t+1] `i(x) · ˜̀ i(y), where `i, ˜̀ i’s are polynomials
of degree at most d + t; with the additional property that ˜̀1, . . . , ˜̀d+t+1 are R-linearly independent.

Then, ∑d+t+1
i=1 |`i|1 ≥ m · (d + 1), where m is the number of non-zero `i.

Proof. Suppose, g(x) := gcd(`1, . . . , `d+t+1). We claim that ∏d
i=1(x − i) | g(x). Note that, it

suffices to prove the claim; as, ∏d
i=1(x− i) | `i(x) for each non-zero `i implies |`i|1 ≥ d + 1 by

Lemma 34.
We prove the claim by contradiction. Suppose, there exists j ∈ [d] such that x− j - g(x), so

g(j) 6= 0. Fix this j. Hence, there exists i such that `i(j) 6= 0.
In particular, v :=

[
`1(j) `2(j) . . . `d+t+1(j)

]T 6= 0. Define the (d + t + 1)× (d + t + 1)
matrix A as

[y]d+t+1 · A :=
[ ˜̀1 ˜̀2 . . . ˜̀d+t+1

]
, where [y]d+t+1 :=

[
1 y . . . yd+t

]
.

Observe: rankR( ˜̀1, . . . , ˜̀d+t+1) = d + t + 1 ⇐⇒ A is invertible. But,

v 6= 0 and A is invertible =⇒ A · v 6= 0
=⇒ [y]d+t+1 · Av 6= 0

=⇒
d+t+1

∑
i=1

˜̀ i(y) · `i(j) 6= 0

=⇒ fd,t(j, y) 6= 0

which is a contradiction! Therefore, ∏d
i=1(x− i) | g(x) and so we are done.

Recall that an invertible depth-2 circuit computes a matrix A such that whenever A = BC,
either B or C has to be invertible. We prove the second part of Theorem 20.

Theorem 36 (Reproving Thm.1.5 of [KV19]). There exists an explicit family of n× n PSD matrices
{An}n∈N such that every invertible circuit over R computing An has size Ω(n2).

Proof. Denote k := bn/2c. Define gi(x) := ∏k
i=1(x − i) · xb(i−1)/2c, for i ∈ [n]. Note that

deg(gi) = k + b(i− 1)/2c ≤ k + b(n− 1)/2c = n− 1. Define the n× n matrix Mn as

Mn · [x]Tn :=


g1(x)
g2(x)

...
gn(x)

 .

It is easy to see that g1, g3, g5, . . . are linearly independent over R. Therefore, rank(Mn) =
rankR (g1(x), . . . , gn(x)) = b(n− 1)/2c+ 1 = b(n + 1)/2c.

Define An := MT
n ·Mn. By definition, An is PSD and rank(An) = b(n + 1)/2c. This follows

from the classical fact that for any matrix A, rank(AT A) = rank(A) over R. Also An is explicit
(entries are P-computable from definition).

Suppose, there exists n× n invertible matrix B and some n× n matrix C such that An = B ·C
(the other case where C is invertible is similar). Note that, from classical property of rank of

32



matrices, rank(C) ≥ rank(An) = b(n + 1)/2c. With the usual notation of [x]n and [y]n used
before, denote

[y]n · B :=
[ ˜̀1(y) ˜̀2(y) . . . ˜̀n(y)

]
and C · [x]Tn :=

[
`1(x) `2(x) . . . `n(x)

]T .

Note that the degree of each `i, ˜̀ i can be at most n− 1. Thus,

An = B · C =⇒ [y]n MT
n ·Mn[x]Tn = [y]n · B · C · [x]Tn

⇐⇒
n

∑
i=1

gi(x) · gi(y) =
n

∑
i=1

`i(x) · ˜̀ i(y)

⇐⇒
(

k

∏
i=1

(x− i)(y− i)

)
· p(x, y) =

n

∑
i=1

`i(x) · ˜̀ i(y)

where p(x, y) := ∑i∈[n] (xy)b(i−1)/2c. The LHS is actually of the form fk,b(n−1)/2c(x, y) as in
Lemma 35. From the lower bound on rank of C, we know that there must be at least b(n+ 1)/2c
many non-zero `i’s. Therefore, Lemma 35 gives us ∑n

i=1 |`i|1 ≥ b(n + 1)/2c · (k + 1) ≥
n2/4 .

C.3 Newton polygon and bivariate SOS lower bound

Consider a bivariate polynomial f ∈ F[X, Y]. To each monomial XiY j appearing in f with
a nonzero coefficient, we associate a point with coordinate (i, j) in the Euclidean plane. Let
Mon( f ) denotes this finite set of points. If A is a set of points in the plane, we denote by conv(A)
the convex hull of A. By definition, the Newton polygon of f , denoted by Newt( f ), is the convex
hull of Mon( f ), i.e., Newt( f ) = conv(Mon( f )). Note that Newt( f ) has at most t edges if f has
t monomials. The following result is well known in the literature.

Theorem 37. [Ost75] Newt( f g) = Newt( f ) + Newt(g) := {p + q | p ∈ Newt( f ), q ∈ Newt(g)}.

From the above theorem, one can deduce that Newt( f 2) = 2·Newt( f ). But, if S is a convexly
independent subset of 2·Newt( f ), how large can S be? [A set is called convexly independent if
its elements are exactly the vertices of its convex hull.]

This will be crucial in the next section. Here is an important theorem (which is optimal up
to constant factors) regarding the size of S; compare the bound with the trivial mn.

Theorem 38. [EPRS08] Let P and Q be two planar point sets with |P| = m and |Q| = n. Let S be a
convexly independent subset of the Minkowski sum P+Q. Then, we have |S| ≤ O(m2/3n2/3 +m+ n).

Corollary 39. Let P be a planar point set with |P| = n. Let S be a convexly independent subset of rP
(r is a constant). Then, |S| ≤ O(nrlog(4/3)

).

Proof. Let T(r) be the maximum size of convexly independent subset of rP. Thus, we must have
T(r) ≤ O(T(r/2)4/3) with T(1) ≤ n. Thus, T(r) ≤ O(n(4/3)log r

) = O(nrlog(4/3)
).

Using convexity theory, we establish the lower bound of Ω(d1/rlog(4/3)
) for the bivariate polyno-

mial ∑d
i=0 xiyi2 . This polynomial was studied in [KPTT15].

Theorem 40. For f (x, y) := ∑d
i=0 xiyi2 , we have SR( f , r, s) ≥ Ω(d1/rlog(4/3)

), for any s ≥ 1 and
constant r.

33



Proof sketch. Write f (x, y) = ∑i∈[s] `i(x, y)r. Let Si be the set of points in the plane correspond-
ing to the monomials of `r

i which appear in f with a nonzero coefficient. Since Newt( f ) is the
convex hull of ∪iconv(Si), it is enough to bound the number of vertices of conv(Si).

Of course, the vertices of conv(Si) is a convexly independent subset of Mon(`r
i ) ⊆ rMon(`i).

Hence, by Corollary 39, we get that conv(Si) has at most O(|`i|1)rlog(4/3)
many vertices. Thus, the

convex hull of ⋃i conv(Si) has at most O(∑i ||`i||r
log(4/3)

) vertices. On the other hand, as y = x2

is a convex function, Newt( f ) has d + 1 many vertices. Therefore,

∑
i
(|`i|1)rlog(4/3)

≥ d + 1 =⇒ ∑
i
|`i|1 ≥ Ω(d1/rlog(4/3)

) .

By definition, we must have SR( f , r, s) ≥ Ω(d1/rlog(4/3)
), for any s ≥ 1.

Remark. As log(4/3) ≈ 0.415 < 1, the above is a better lower bound on SR(·) than the trivial
lower bound of sparsity( f )1/r = (d + 1)1/r.

D Large sparsity-sum measure also implies Theorems 2–4

Recall the measure SF(·) defined in Section 3.5. By definition, UF(·) ≤ SF(·). Let field F be
characteristic zero, or a finite field of characteristic > r. Thus, one can, as well conjecture the
following.

Conjecture 3 (C3). There exist positive constants δ1 ≤ 1, δ2 ≥ 1 and a constant prime-power r such
that SF

(
fd, r, dδ1

)
≥ d/rδ2 , for all large enough d ∈ Ir.

SF is large for ‘random’ polynomials f . We can easily argue that for a random polynomial f and
for some s ≥ 1, if f = ∑i∈[s] ci`

r
i , then ∑i∈[s] |`i|1 ≥ Ω(| f |1) (implying SF large). One can view

`i ∈ F[zi1, . . . , ziti ][x], where the transcendence degree (tr.deg) of the coefficient polynomials
of `i is ti. Observe that, this means |`i|1 ≥ ti, for all i. As coefficient of `r

i is generated by the
coefficient of `i, the tr.deg of coefficient polynomials produced in RHS is at most ∑i(ti + 1).
Now, as f is a ‘random’ polynomial, the coefficients of f are algebraically independent. In
particular, the tr.deg of the coefficient polynomials of f is | f |1. Thus, ∑i∈[s](|`i|1 + 1) ≥ ∑i(ti +
1) ≥ | f |1; implying that SF( f , r, s) ≥ Ω(| f |1).

One can show that Theorems 2–4 hold true assuming conjecture C3 (instead of conjecture
C1). The analogous proof for Theorem 2 (resp. Thm.4) is identical to the original one. However,
the proof of Theorem 3 slightly differs. For the sake of completeness, we give a proof sketch.

Theorem 41. If GRH and Conjecture C3, for some r ≥ 25, hold, then VP 6= VNP.

Proof sketch. Let Conjecture C3 be true for a fixed r ≥ 25, δ1, δ2. Define δ′1 ≤ min(0.71, δ1).We
consider non-constant n and let x := (x1, . . . , xn). For all large n ∈ N, there exists exactly one
d := d(n) such that d ∈ Ir ∩ [(2n − 1)/(r + 1), 2n − 1]. Thus, n = Θ(log d).

Define the polynomial family Pn(x) := ψn,d( fd), via the inverse Kronecker map applied on
fd = (x + 1)d. Note that, Pn is an n-variate multilinear polynomial. This is ensured because the
individual degree dn := d(d + 1)1/ne − 1 ≤ 1 (∵ d ≤ 2n − 1).

First, we claim: if GRH holds and VP = VNP, then {Pn}n ∈ VP.
Conditionally, {Pn}n ∈ VP : This part of the proof is same as proof of Theorem 3.

Next, we show: Conjecture C3 implies that, for µ > 3r/δ′1, size(Pn) > d1/µ = 2Ω(n). Thus,
{Pn}n /∈ VP. This contradiction would finish the proof of Theorem 41.
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Conditionally, {Pn}n /∈ VP : This proof is very similar to the hardness part of Theorem 3.
Except the parameter setting is slightly different (∵ sparsity-sum is usually larger than support-
union), so we need to go through the details. We prove that size(Pn) > d1/µ = 2Ω(n), where
µ > 3r/δ′1. Assume that this is not the case, then there exists an infinite subset J ⊂N such that
the algebraic circuit complexity of {Pn(x)}n is ≤ d1/µ, for n ∈ J. Consider Jr := {d(n) ∈ Ir |
n ∈ J} ⊆ Ir.

We use similar depth-4 reduction (with top/ bottom ΣΠ parts analysis as in the proof). Fix
the t such that 5t ≤ r < 5t+1. We know that Pn can be written as Pn = ∑s̃

i=1 c̃i · g̃r
i , where

s̃ := s0 · 25t · (r + 1) with s0 = (s′+5t

5t ) where s′ ≤ d3/µ · n6 and each g̃i is an n-variate polynomial
of degree ≤ n/2t. So, we bound the sparsity-sum ∑i∈[s̃] |g̃i|1 ≤ s̃ · s1 where s1 := (n+n·2−t

n ).
Apply the Kronecker map φn,1 on Pn. As, φn,1 ◦ ψn,d = id, over F[x]≤d, we get

fd = (φn,1 ◦ ψn,d)( fd) = φn,1(Pn) =
s̃

∑
i=1

c̃i · (φn,1 (g̃i))
r .

As Kronecker substitution can not increase the sparsity, we have ∑i∈[s̃] |φn,1 (g̃i) |1 ≤ s̃ · s1. Thus,
we have SF( fd, r, s̃) ≤ s̃ · s1, from the definition of SF(·). Using details of the proof of Theorem
3, we know that s̃ < dδ′1 , when µ > 3r/δ′1; and s1 < 13.6n/4, for all large enough n. We claim
that s̃ · s1 < d/rδ2 , for large d. Then, we shall have SF( fd, r, dδ1) < d/rδ2 over an infinite subset
Jr ⊆ Ir; which obviously contradicts Conjecture C1.

To prove the bound on s̃ · s1, note that
s̃ · s1 < dδ′1 · (13.6)n/4 < 2n·(δ′1+log(13.6)/4) < o(d) .

We used the fact: log(13.6)/4 < 0.284, δ′1 ≤ 0.71, and 2n = Θ(d). In particular, we deduce:
s̃ · s1 < d/rδ2 , for all large enough d.

This gives us: SF( fd, r, dδ1) < d/rδ2 , over an infinite subset Jr ⊆ Ir. The contradiction there-
fore implies: algebraic circuit complexity of {Pn(x)}n is > d1/µ = 2Ω(n). So, {Pn}n /∈ VP.

Eventually, the above two conclusions about {Pn}n are contradictory; thus, we get VP 6=
VNP under GRH and Conjecture C3.

Remark. We are not able to make the proof of Theorem 1 work with sparsity-sum measure.
Our naive attempt, to construct a k (=constant) variate Pn from fd, does not give the hardness
required to design an HSG.
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