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Abstract

We show that there is an equation of degree at most poly(n) for the (Zariski closure of the) set
of the non-rigid matrices: that is, we show that for every large enough field F, there is a non-zero
n2-variate polynomial P ∈ F[x1,1, . . . , xn,n] of degree at most poly(n) such that every matrix M
which can be written as a sum of a matrix of rank at most n/100 and a matrix of sparsity at most
n2/100 satisfies P (M) = 0. This confirms a conjecture of Gesmundo, Hauenstein, Ikenmeyer
and Landsberg [GHIL16] and improves the best upper bound known for this problem down from
exp(n2) [KLPS14, GHIL16] to poly(n).

We also show a similar polynomial degree bound for the (Zariski closure of the) set of all
matrices M such that the linear transformation represented by M can be computed by an
algebraic circuit with at most n2/200 edges (without any restriction on the depth). As far as
we are aware, no such bound was known prior to this work when the depth of the circuits is
unbounded.

Our methods are elementary and short and rely on a polynomial map of Shpilka and
Volkovich [SV15] to construct low degree “universal” maps for non-rigid matrices and small
linear circuits. Combining this construction with a simple dimension counting argument to
show that any such polynomial map has a low degree annihilating polynomial completes the
proof.

As a corollary, we show that any derandomization of the polynomial identity testing problem
will imply new circuit lower bounds. A similar (but incomparable) theorem was proved by
Kabanets and Impagliazzo [KI04].

1 Introduction

1.1 Equations for varities in algebraic complexity theory
Let V ⊆ Fn be a (not necessarily irreducible) affine variety and let I(V ) denote its ideal.1. A
non-zero polynomial P ∈ I(V ) is called an equation for V . An equation for V may serve as a
“proof” that a point x ∈ Fn is not in V , by showing that P (x) 6= 0.

A fundamental observation of the Geometric Complexity Theory program is that many
important circuit lower bounds problems in algebraic complexity theory fit naturally into the
setting of showing that a point x lies outside a variety V [MS01, BIL+19]. In this formulation,
one considers V to be the closure of a class of polynomials of low complexity, and x is the
coefficient vector of the candidate hard polynomial.
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1For completeness, we provide the formal (standard) definitions for these notions in Section 1.4.
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Let ∆(V ) := min0 6=P∈I(V ){deg(P )}. The quantity ∆(V ) can be thought of as a measure
of complexity for the geometry of the variety V . The quantity ∆(V ) is a very coarse com-
plexity measure. A recent line of work regarding algebraic natural proofs [FSV18, GKSS17]
suggests to study the arithmetic circuit complexity of equations for varieties V that correspond
to polynomials with small circuit complexity. Having ∆(V ) growing like a polynomial in n is a
necessary (but not a sufficient) condition for a variety V to have an algebraic natural proof for
non-containment.

1.2 Rigid matrices
A matrix M is (r, s)-rigid if M cannot be written as a sum R + S where rank(R) ≤ r and S
contains at most s non-zero entries. Valiant [Val77] proved that if A is (εn, n1+δ)-rigid for some
constants ε, δ > 0 then A cannot be computed by arithmetic circuits of size O(n) and depth
O(log n), and posed the problem of explicitly constructing rigid matrices with these parameters,
which is still open. It is easy to prove that most matrices have much stronger rigidity parameters:
over algebraically closed fields a generic matrix is (r, (n− r)2)-rigid for any target rank r.

Let F be an algebraically closed field. Let Ar,s ⊆ Fn×n denote the set of matrices which are
not (r, s)-rigid. Let Vr,s = Ar,s denote the Zariski closure of Ar,s. A geometric study of Vr,s was
initiated by Kumar, Lokam, Patankar and Sarma [KLPS14]. Among other results, they prove
that for every s < (n − r)2, ∆(Vr,s) ≤ n4n

2

. A slightly improved (but still exponential) upper
bound was obtained by Gesmundo, Hauenstein, Ikenmeyer and Landsberg [GHIL16], who also
conjectured that for some ε, δ > 0, ∆(Vεn,n1+δ) grows like a polynomial function in n. The
following theorem which we prove in this note confirms this conjecture.

Theorem 1.1. Let ε < 1/25, and let F be a field of size at least n2. For every large enough
n, there exists a non-zero polynomial Q ∈ F[x1,1, . . . , xn,n], of degree at most n3, which is a
non-trivial equation for matrices which are not (εn, εn2)-rigid. That is, for every such matrix
M , Q(M) = 0.

In fact, the conjecture of [GHIL16] was slightly weaker: they conjectured that ∆(U) is
polynomial in n for every irreducible component U of Vεn,n1+δ . As shown by [KLPS14], the
irreducible components are in one-to-one correspondence with subsets of [n] × [n] of size n1+δ
corresponding to possible supports of the sparse matrix S.

As we observe in Remark 2.3, it is somewhat simpler to show that each of these irreducible
components has an equation with a polynomial degree bound. However, since the number of
such irreducible components is exponentially large, it is not clear if there is a single equation
for the whole variety which is of polynomially bounded degree. We do manage to reverse the
order of quantifiers and prove such an upper bound in Theorem 1.1. This suggests that the
set of non-rigid matrices is much less complex than what one may suspect given the results of
[KLPS14, GHIL16].

1.3 Circuits for linear transformations
The original motivation for defining rigidity was in the context of proving lower bounds for
algebraic circuits [Val77]. If A ∈ Fn×n is an (εn, n1+δ)-rigid matrix, for any ε, δ > 0, then the
linear transformation represented by A cannot be computed by an algebraic circuit of depth
O(log n) and size O(n).

Every algebraic circuit computing a linear transformation is without loss of generality a linear
circuit. A linear circuit is a directed acyclic graph that has n inputs labeled X1, . . . , Xn and n
output nodes. Each edge is labeled by a scalar α ∈ F. Each node computes a linear function in
X1, . . . , Xn defined inductively. An internal node u with children, v1, . . . , vk, connected to it by
edges labeled α1, . . . , αk, computes the linear function

∑
i αi`vi , where `vi is the linear function

computed by vi, 1 ≤ i ≤ k. The size of the circuit is the number of edges in the circuit.
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It is possible to use similar techniques to those used in the proof of Theorem 1.1 in order to
prove a polynomial upper bound on an equation for a variety containing all matrices A ∈ Fn×n
whose corresponding linear transformation can be computed by an algebraic circuit of size at
most n2/200 (even without restriction on the depth). Note that this is nearly optimal as any
such linear transformation can be computed by a circuit of size n2. More formally, we show the
following.

Theorem 1.2. Let F be a field of size at least n2. For every large enough n, there exists a
non-zero polynomial Q ∈ F[x1,1, . . . , xn,n], of degree at most n3, which is a non-trivial equation
for matrices which are computed by algebraic circuit of size at most n2/200.

Our proofs are based on a dimension counting arguments, and are therefore non-constructive
and do not give explicit equations for the relevant varieties. It thus remains a very interesting
open problem to provide explicit low-degree equations for any of the varieties considered in
this paper. Here “explicit” means a polynomial which has arithmetic circuits of size poly(n).2
The question of whether such equations exists has a win-win flavor: if they do, this can aid
in explicit constructions of rigid matrices, and on the other hand, if all equations are hard,
we have identified a family of polynomials which requires super-polynomial arithmetic circuits.
Assuming the existence of a polynomial time algorithm for polynomial identity testing, we are
able to make this connection formal.

Let PIT denote the set of strings which describe arithmetic circuits (say, over C) which
compute the zero polynomial. It is well known that PIT ∈ coRP. Kabanets and Impagliazzo
[KI04] proved that certain circuit lower bounds follow from the assumption that PIT ∈ P. As a
corollary to Theorem 1.2, we are able to prove theorem of a similar kind.

Corollary 1.3. Suppose PIT ∈ P. Then at least one of the following is true:

1. There exists a family of n-variate polynomials of degree poly(n) over C, which can be
computed (as its list of coefficients, given the input 1n) in PSPACE, which does not have
polynomial size constant free arithmetic circuits.

2. there exists a family of matrices, constructible in polynomial time with an NP oracle (given
the input 1n), which requires linear circuits of size Ω(n2).

A constant free arithmetic circuit is an arithmetic circuit which is only allowed to use the
constants {0,±1}.

A different way to interpret Corollary 1.3 is as saying that at least one of the following three
lower bound results hold: either PIT 6∈ P, or (at least) one of the two circuit lower bounds
stated in the corollary. We emphasize that the result holds under any (even so-called white box )
derandomization of PIT.

Our statement is similar to, but incomparable with the result of Kabanets and Impagliazzo
[KI04] who proved that if PIT ∈ P then either the permanent does not have polynomial size
constant free arithmetic circuits, or NEXP 6⊆ P/poly.

Since (εn, εn2)-rigid matrices have linear circuit of size 3εn2, the last item of Corollary 1.3 in
particular implies a conditional construction of (Ω(n),Ω(n2))-rigid matrices (it is also possible
to directly use Theorem 1.1 instead of Theorem 1.2 to deduce this result). Unconditional
constructions of rigid matrices in polynomial time with an NP oracle were recently given in
[AC19, BHPT20]. However, the rigidity parameters in these papers are not enough to imply
circuit lower bounds (furthermore, even optimal rigidity parameters are not enough to imply
Ω(n2) lower bounds for general linear circuits).

Since it is widely believed that PIT ∈ P, the answer to which of the last two items of
Corollary 1.3 holds boils down to the question of whether there exists an equation for non-rigid

2Although one may consider other, informal notions of explicitness which could nevertheless be helpful.
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matrices of degree poly(n) and circuit size poly(n). If determining if a matrix is rigid is coNP-
hard (as is known for some restricted ranges of parameters [MS10]), it is tempting to also believe
that the equations should not be easily computable, as they provide “proof” for rigidity which
can be verified in randomized polynomial time. However, it could still be the case that those
equations that have polynomial size circuits only prove the rigidity of “easy” instances.

1.4 Some basic notions in algebraic geometry
For completeness, in this section we define some basic notions in algebraic geometry. A reader
who is familiar with this topic may skip to the next section.

Let F be an algebraically closed field. A set V ⊆ Fn is called an affine variety if there exist
polynomials f1, . . . , ft ∈ F[x1, . . . , xn] such that V = {x : f1(x) = f2(x) = · · · = ft(x) = 0}.
For convenience, in this paper we often refer to affine varieties simply as varieties.

For each variety V there is a corresponding ideal I(V ) ⊆ F[x1, . . . , xn] which is defined as

I(V ) := {f ∈ F[x1, . . . , xn] : f(x) = 0 for all x ∈ V }.

Conversely, for an ideal I ⊆ F[x1, . . . , xn] we may define the variety

V(I) = {x : f(x) = 0 for all f ∈ I}.

Given a set A ⊆ Fn we may similarly define the ideal I(A). The (Zariski) closure of a set
A, denoted A, is the set V(I(A)). In words, the closure of A is the set of common zeros of all
the polynomials that vanish on A. It is also the smallest variety with respect to inclusion which
contains A. By construction, A is a variety, and a polynomial which vanishes everywhere on A
is also vanishes on A.

Over C, it is instructive to think of the Zariski closure of A as the usual Euclidean closure.
In fact, for the various sets A we consider in this paper (which correspond to sets of “low
complexity” objects, e.g., non-rigid matrices or matrices which can be computed with a small
circuit), it can be shown that these two notions of closure coincide (see, e.g., Section 4.2 of
[BI17]).

A variety V is called irreducible if it cannot be written as a union V = V1 ∪ V2 of varieties
V1, V2 that are properly contained in V . Every variety can be uniquely written as a union
V = V1 ∪ V2 ∪ · · · ∪ Vm of irreducible varieties. The varieties V1, . . . , Vm are then called the
irreducible components of V .

2 Degree Upper Bound for Non-Rigid Matrices
In this section, we prove Theorem 1.1. A key component of the proof is the use of the following
construction, due to Shpilka and Volkovich, which provides an explicit low-degree polynomial
map on a small number of variables, which contains all sparse matrices in its image. For
completeness, we provide the construction and prove its basic property.

Lemma 2.1 ([SV15]). Let F be a field such that |F| > n. Then for all k ∈ N, there exists an
explicit polynomial map SVn,k(x,y) : F2k → Fn of degree at most n such that for any subset
T = {i1, . . . , ik} ⊆ [n] of size k, there exists a setting y = α such that SV(x,α) is identically
zero on every coordinate j 6∈ T , and equals xj in coordinate ij for all j ∈ [k].

Proof. Arbitrarily pick distinct α1, . . . αn ∈ F, and let u1, . . . , un be their corresponding La-
grange’s interpolation polynomials, i.e., polynomials of degree at most n−1 such that ui(αj) = 1

if j = i and 0 otherwise (more explicitly, ui(z) =
∏
j 6=i(z−αj)∏
j 6=i(αi−αj)

).
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Let Pi(x1, . . . , xk, y1, . . . , yk) =
∑k
j=1 ui(yj) · xj , and finally let

SVn,k(x,y) = (P1(x,y), . . . , Pn(x,y)).

It readily follows that given T = {i1, . . . , ik} as in the statement of the lemma, we can set
yj = αij for j ∈ [k] to derive the desired conclusion. The upper bound on the degree follows by
inspection.

As a step toward the proof of Theorem 1.1, we show there is a polynomial map on much
fewer than n2 variables with degree polynomially bounded in n such that its image contains
every non-rigid matrix. In the next step, we show that the image of every such polynomial map
has an equation of degree poly(n).

Lemma 2.2. There exists an explicit polynomial map P : F4εn2 → Fn×n, of degree at most n2,
such that every matrix M which is not (εn, εn2) rigid lies in its image.

Proof. Let k = εn2 and let u,v,x,y denote disjoint tuples of k variables each.
Let U be a symbolic n×εn matrix whose entries are labeled by the variables u, and similarly

let V be a symbolic εn × n matrix labeled by v. Let UV(u,v) : F2k → Fn×n be the degree 2
polynomial map defined by the matrix multiplication UV .

Finally, let P : F4k → Fn×n be defined as

P (u,v,x,y) = UV(u,v) + SVn2,k(x,y),

where SVn2,k is as defined in Lemma 2.1.
Suppose now M is a non-rigid matrix, i.e., M = R + S for R of rank εn and S which is

εn2-sparse. Decompose R = U0V0 for n× εn matrix U0 and εn×n matrix V0. Let T denote the
support of S. For convenience we may assume |T | = k (otherwise, pad with zeros arbitrarily).
Let α ∈ Fk denote the setting for y in SVn2,k which maps x1, . . . , xk to T , and let s = (s1, . . . , sk)
denote the non-zero entries of S. Then

P (U0, V0, s,α) = U0V0 + S = R+ S = M.

To complete the proof of Theorem 1.1, we now argue that the image of any polynomial map
with parameters as in Lemma 2.2 has an equation of degree at most n3.

Proof of Theorem 1.1. Let V1 denote the subspace of polynomials over F in n2 variables of
degree at most n3. Let V2 denote the subspace of polynomials over F in 4εn2 variables of degree
at most n5. Let P be as in Lemma 2.2, and consider the linear transformation T : V1 → V2
given by Q 7→ Q◦P , where Q◦P denotes the composition of the polynomial Q with the map P ,
i.e., (Q ◦P )(x) = Q(P (x)) (indeed, observe that since deg(Q) ≤ n3 and deg(P ) ≤ n2, it follows
that degQ ◦ P ≤ n5).

We have that dim(V1) =
(
n3+n2

n2

)
≥ nn

2

, whereas dim(V2) =
(
4εn2+n5

4εn2

)
≤ (2n5)4εn

2

<
dim(V1) by the choice of ε, so that there exists a non-zero polynomial in the kernel of T , that
is, 0 6= Q0 ∈ V1 such that Q0 ◦ P ≡ 0.

It remains to be shown that for any non-rigid matrix M , Q0(M) = 0. Indeed, let M
be a non-rigid matrix. By Lemma 2.2, there exist β ∈ F4εn2

such that P (β) = M . Thus,
Q0(M) = Q0(P (β)) = Q0 ◦ P (β) = 0, as Q0 ◦ P ≡ 0.

Remark 2.3. If the support of the sparse matrix is fixed a-priori to some set S ⊆ [n] × [n] of
cardinality at most εn2, then it is easier to come up with a universal map P̃ from F3εn2 7→ Fn×n
such that every matrix M whose rank can be reduced to at most εn by changing entries in the
set S is contained in the image of P̃ . Just consider P̃ (w,x,y) = UV(u,v) + W , where W
is a matrix such that for all (i, j) ∈ [n] × [n], if (i, j) ∈ S, then W (i, j) = wi,j and W (i, j)
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is zero otherwise. Here, each wi,j is a distinct formal variable. Combined with the dimension
comparison argument we used in the proof of Theorem 1.1, it can be seen that there is a non-zero
low degree polynomial Q̃ such that Q̃ ◦ P̃ ≡ 0. This argument provides a (different) equation of
polynomial degree for each irreducible component of the variety of non-rigid matrices. ♦

Remark 2.4. It is possible to use the equation given in Theorem 1.1, and using the methods
of [KLPS14], to construct “semi-explicit” (εn, εn2)-rigid matrices. These are matrices whose
entries are algebraic numbers (over Q) with short description, which are non-explicit from the
computational complexity point of view. However, such constructions are also known using
different methods (see Section 2.4 of [Lok09]). ♦

3 Degree Upper bound for Matrices with a Small Circuit
In this section, we prove Theorem 1.2. Our strategy, as before, is to observe that all matrices
with a small circuit lie in the image of a polynomial map P on a small number of variables and
small degree. Circuits of size s can have many different topologies and thus we first construct
a “universal” linear circuit, of size s′ ≤ s4, that contains as subcircuits all linear circuits of size
s. Importantly, s′ will affect the degree of P but not its number of variables. We note that this
construction of universal circuits is slightly different from similar constructions in earlier work,
e.g., in [Raz10]; the key difference being that a naive use of ideas in [Raz10] to obtain the map
P seems to incur an asymptotic increase in the number of variables of P , which is unacceptable
in our current setting.

3.1 A construction of universal map for small linear circuits
We now define a map U(x,y) which is “universal” for size s linear circuits, i.e., it contains in
its image all n× n matrices A whose corresponding linear transformation can be computed by
a linear circuit of size at most s.

Let s ≥ n. We first define a universal graph G for size s. G has a set V0 of n input nodes
labeled X1, . . . Xn and a set Vs+1 of n designated output nodes. In addition, G is composed of
s disjoint sets of vertices V1, . . . , Vs, each contains s vertices.

Each vertex v ∈ Vi, for 0 ≤ i ≤ s+ 1, has as its children all vertices u ∈ Vj for all 0 ≤ j < i.
It is clear than every directed acyclic graph with s edges (and hence at most s vertices, and
depth at most s) can be (perhaps non-uniquely) embedded in G as a subgraph.

We now describe the edge labeling. Let s′ ≤ s4 be the number of edges in V and let ei denote
the i-th edge, 1 ≤ i ≤ s′. The edge ei is labeled by the i-th coordinate of the map SVs′,s(x,y)
given in Lemma 2.1.

Thus, the graph G with this labeling computes a linear transformation (over the field F(x,y))
in the variablesX1, . . . , Xn. More explicitly, the (i, j)-th entry of the matrix U(x,y) representing
this linear transformation is given by the sum, over all paths from Xi to the j-th output node,
of the product of the edge labels on that path. This entry is a polynomial in x,y, so that we
can think of U as a polynomial map from F2s to Fn2

.

Lemma 3.1. The map U(x,y) defined above contains in its image all n× n matrices A whose
corresponding linear transformation can be computed by a linear circuit of size at most s. The
degree of U is at most s′ · (s+ 1).

Proof. Let A be a matrix whose linear transformation is computed by a size s circuit C. The
graph of C can be embedded as a subgraph in the graph G constructed above (if the embedding
is not unique, pick one arbitrarily). Let ei1 , . . . , eis be the edges of this subgraph, and let
β = (β1, . . . , βs) be their corresponding labels in C. By the properties of the map SVs′,s(x,y)
given in Lemma 2.1, it is possible to set the tuple of variables y to field elements α1, . . . , αs such
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that the j-th coordinate of SV(β,α) equals βi if j = ik for some 1 ≤ k ≤ s the 0 otherwise.
Observe that under this labeling of the edges, the circuit G computes the same transformation
as the circuit C. Hence U(β,α) = A.

To upper bound the degree of U , note that each edge label in G is a polynomial of degree
s′, and each path is of length at most s+ 1.

3.2 Low degree equations for small linear circuits
Analogous to the proof of Theorem 1.1, we now observe via a dimension counting argument
that the image of the polynomial map U(x,y) has a equation of degree at most n3. This would
complete the proof of Theorem 1.2.

Proof of Theorem 1.2. As before, let V1 denote the subspace of polynomials over F in n2 vari-
ables of degree at most n3. Let V2 denote the subspace of polynomials over F in n2/100 variables
of degree at most n30. Let U be the map given by Lemma 3.1 for s = n2/200 so that s′ ≤ n8, and
the degree of U is at most s′(s+ 1) ≤ n10. Now, consider the linear transformation T : V1 → V2
given by Q 7→ Q ◦ U .

Once again, we compute that dim(V1) =
(
n3+n2

n2

)
≥ nn

2

, whereas dim(V2) =
(
n2/100+n30

n2/100

)
≤

(2n30)n
2/100 < dim(V1), so that there exists a non-zero polynomial in the kernel of T , that is,

0 6= Q0 ∈ V1 such that Q0 ◦ U ≡ 0.
By Lemma 3.1, if A has a circuit of size n2/200, it is in the image of U , so that Q0(A) = 0.

4 Degree Upper Bound for Three Dimensional Tensors
Another algebraic object which is closely related to proving circuit lower bounds is the set of
three dimensional tensors of high rank. A three dimensional tensor of rank at least r implies a
lower bound of r on an arithmetic circuit computing the bi-linear function associated with the
tensor. Our arguments also provide polynomial degree upper bounds for the set of tensors of
(border) rank at most n2/300.

Lemma 4.1. Let F be any field. There is a polynomial map P : Fn2/100 → Fn3

of degree at
most 3 such that for every 3 dimensional tensor τ : [n]3 → F of rank at most n2/300 lies in its
image.

Proof. This follows immediately from the definition.
Indeed, let r = n2/300. Let u1, . . . ,ur,v1, . . . ,vr,w1, . . . ,wr be disjoint n tuples of vari-

ables. Let U be a tensor of rank at most r over the ring F[u1, . . . ,ur,v1, . . . ,vr,w1, . . . ,wr]
defined as follows.

U(u,v,w) =

r∑
i=1

ui ⊗ vi ⊗wi .

From the definition of U , it can be readily observed that for every tensor τ : F[n]3 → F of
rank at most r, there is a setting α,β,γ of the variables in u,v,w respectively such that
U(α,β,γ) = τ . Moreover, each of the coordinates of U is a polynomial of degree equal to three
in the variables in u,v,w. Let P be the degree three polynomial map which maps the variables
u1, . . . ,ur,v1, . . . ,vr and w1, . . . ,wr to the coordinates of U .

We now argue that for every polynomial map P given by Lemma 4.1 has an equation of not
too large degree.

Theorem 4.2. Let F be any field. There exists a non-zero polynomial Q ∈ F[x1,1,1, . . . , xn,n,n],
of degree at most n4, which is a non-trivial equation for three dimensional tensors τ : [n]× [n]×
[n] 7→ F of rank at most n2/300.
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Proof. As before, let V1 denote the subspace of polynomials over F in n3 variables of degree
at most n4 and let V2 denote the subspace of polynomials over F in n3/100 variables of degree
at most 3n4. Let P be the map given by Lemma 4.1. Now, consider the linear transformation
T : V1 → V2 given by Q 7→ Q ◦ P .

Observe that dim(V1) =
(
n4+n3

n3

)
≥ nn

3

, whereas dim(V2) =
(
n3/100+3n4

n3/100

)
≤ (2n4)n

3/100 <

dim(V1), so that there exists a non-zero polynomial in the kernel of T , that is, 0 6= Q0 ∈ V1 such
that Q0 ◦ P ≡ 0.

By Lemma 4.1, if τ is a tensor of rank at most n2/300, then it is in the image of P , and thus
Q0(τ) = 0.

The arguments here also generalize to tensors in higher dimensions. In particular, the fol-
lowing analog of Lemma 4.1 is true.

Lemma 4.3. Let F be any field. Then, for all n, d ∈ N, there is a polynomial map P :

Fnd−1/100 → Fnd of degree at most d such that for every d dimensional tensor τ : [n]⊗d → F of
rank at most nd−1/100d lies in its image.

Combining this lemma with a dimension comparison argument analogous to that in the proof
of Theorem 4.2 gives the following theorem. We skip the details of the proof.

Theorem 4.4. For every field F and for all n, d ∈ N, there exists a non-zero polynomial Q on
nd variables and degree at most n2d, which is a non-trivial equation for d dimensional tensors
τ : [n]⊗d → F of rank at most nd−1/100d.

We remark that a similar methods can be used to prove the existence of an equation of degree
poly(n) for three dimensional tensors of slice rank (see, e.g., [BIL+19]) at most, say, n/1000.
The existence of such an equations was proved (using different techniques) in [BIL+19].

5 Applications to Circuit Lower Bounds
In this section we prove Corollary 1.3. The strategy of the proof is simple: the proof of The-
orem 1.2 implies a PSPACE algorithm which produces a sequence of polynomials which are
equations for the set of matrices with small linear circuits. If those equations require large cir-
cuits, we are done, and if not, then there exists an equation with small circuits which (assuming
PIT ∈ P) can be found using an NP-oracle. Using, once again, the assumption that PIT ∈ P,
we can also find deterministically a matrix on which the equation evaluates to non-zero, which
implies the matrix requires large linear circuits.

There are some technical difficulties involved with this plan which we now describe. The first
problem is that even arithmetic circuits of small size can have large description as bit strings,
due to the field constants appearing in the circuits. To prevent this issue, we only consider
constant free arithmetic circuits, which are only allowed inputs labeled by {0,±1} (but can still
compute other constants in the circuit using arithmetic operations).

The second problem is that, in order to be able to find a non-zero of the equation in the last
step of the algorithm (using the mere assumption that PIT ∈ P), we need not only the size of the
circuit but also its degree to be bounded by poly(n). Of course, by Theorem 1.2 the exists such
a circuit, but we need to be able to prevent a malicious prover from providing us with a poly(n)
size circuit of exponential degree, and it is not known how to compute the degree of a circuit
in deterministic polynomial time, even assuming PIT ∈ P. To solve this issue, we use an idea
of Malod and Portier [MP08], who showed that any polynomial with circuit of size poly(n) and
degree d also has a multiplicatively disjoint (MD) circuit of size poly(n, d). An MD circuit is a
circuit in which any multiplication gates multiplies two disjoint subcircuits. This is a syntactic
notion which is easy to verify efficiently and deterministically, and an MD circuit of size s is
guaranteed to compute a polynomial of degree at most s.
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A final technical issue is that the notion of MD circuits does not fit perfectly within the
framework of constant free circuits. Therefore we use the notion of “almost MD” circuits, which
allow for the case which the inputs to a multiplciation gates are not disjoint, as long as at least
one of them is the root of a subcircuit in which only constants appear.
Definition 5.1. We say a gate v in a circuit is constant producing (CP) if in the subcircuit
rooted at v, all input nodes are field constants.

An almost-MD circuit is a circuit where every multiplication gate either multiplies two dis-
joint subcircuits, or at least one of its children is constant producing. ♦

Lemma 5.2. Suppose f is an n-variate polynomial of degree poly(n) which has a constant
free arithmetic circuit of degree poly(n). Then f has a constant free almost-MD circuit of size
poly(n).

Proof. Let C0 be a constant free arithmetic circuit for f . We first homogenize the circuit
C0 to obtain a circuit C1 (a homogeneous circuit is a circuit in which every gate computes
a homogeneous polynomial [SY10]). Since C1 is homogeneous, all the gates which compute
non-zero field constants are CP gates. We then eliminate all gates which compute constants by
allowing the edges entering sum gates to be labeled by field scalars, and interpreting a sum gate
as computing a linear combination whose coefficients are given by the edge labels. We call this
circuit C2. This step does not maintain constant-freeness. However, every label appearing on
the edges of C2 was computed in C1, so it can be computed by a constant-free arithmetic circuit
of polynomial size.

We now do the transformation detailed in [MP08] to C2 to obtain an MD circuit C3, which
has labels on the edges. This step does not produce new constants. Finally, we convert C3 to an
almost-MD constant free circuit C4, by re-computing every label appearing on the edge using a
fresh subcircuit for each label, and rewiring the circuit (which will convert the circuit from an
MD circuit to an almost MD circuit). These subcircuits are guaranteed to have polynomial size
constant free circuits since these constant were all computed in C0, which keeps the total size
poly(n).

For circuits which compute low-degree polynomials, the mere existence of an algorithm for
the decision version of PIT allows one to construct an algorithm for the search version.

Lemma 5.3. Suppose PIT ∈ P. Then there is a polynomial time algorithm that given a non-
zero almost-MD arithmetic circuit C of size s computing an n-variate polynomial, finds in time
poly(n, s) an element a ∈ Cn such that C(a) 6= 0.

Proof. We abuse notation by denoting by C also the polynomial computed by the circuit C.
Note that since C is almost-MD, the degree of C is at most s. Thus, there exists a1 ∈ {0, 1, . . . , s}
such that C(a1, x2, . . . , xn) is a non-zero polynomial in x2, . . . , xn. By iterating over those s+ 1
values from 0 to s and using the assumption that PIT ∈ P, we can find such a value for a1 in
time poly(n, s). We then continue in the same manner with the rest of the variables.

As we noted above, the assumption that C is almost-MD was used in Lemma 5.3 to bound
the degree of the circuit. It is also useful because it is easy to decide in deterministic polynomial
time whether a circuit is almost-MD. We now complete the proof of Corollary 1.3.

Proof of Corollary 1.3. For every n, the proof of Theorem 1.2 provides an equation Qn for the
set of n × n matrices with small linear circuits. This polynomial can be found by solving a
linear system of equations in a linear space whose dimension is exp(poly(n)). Using standard,
small space algorithm for linear algebra [BvzGH82, ABO99], this implies that there exists a
fixed PSPACE algorithm which, on input 1n, outputs the list of coefficients of the polynomial
Qn.
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Consider now the family {Qn}n∈N. If for any constant k ∈ N there exist infinitely many
n ∈ N such that Qn requires circuits of size at least nk, it follows (by definition) that the
PSPACE algorithm above outputs a family of polynomials with super-polynomial constant-free
arithmetic circuits.

We are thus left to consider the case that there exists a constant k ∈ N such that for all
large enough n ∈ N, Qn can be computed by circuits of size nk. By Lemma 5.2, we may assume
without loss of generality that these circuits are almost-MD circuits. Further suppose PIT ∈ P.
We will show how to construct a matrix in polynomial time with an NP oracle which requires
large linear circuits.

Consider the language L of pairs (1n, x) such that there exists a string y of length at most
nk such that xy describes an almost-MD circuit C such that C is non-zero, and C ◦ U ≡ 0,
where U is the polynomial map given in the proof of Theorem 1.2.

Assuming PIT ∈ P, the language L is in NP, and by assumption for every large enough n
there exists such a circuit. Thus, we can use the NP oracle to construct such a circuit C bit by
bit. Finally, using Lemma 5.3 we can output a matrix M such that C(M) 6= 0.

By the properties of the circuit C and the map U , M does not have linear circuits of size
less than n2/200.

Many variations of Corollary 1.3 can be proved as well, with virtually the same proof. By
slightly modifying the language L used in the proof, it is possible to prove the same result even
under the assumption PIT ∈ NP (recall that PIT ∈ coRP). A similar statements also holds over
finite fields of size poly(n), in which case the proof is simpler since there are no issues related
to the bit complexity of the first constants. Finally, an analog of Corollary 1.3 also holds for
tensor rank, by using Theorem 4.2 instead of Theorem 1.2: that is, assuming PIT ∈ P, either
there exists a construction of a hard polynomial in PSPACE, or an efficient construction with
an NP oracle of a 3-dimensional tensor of rank Ω(n2). We remark that for tensors of large rank
there are no analogs of [AC19, BHPT20], i.e., there do not exist even constructions with an NP
oracle of tensors with slightly super-linear rank.
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