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Abstract

Despite the interest in the complexity class MA, the randomized analog of NP, there is just
a couple of known natural (promise-)MA-complete problems, the first due to Bravyi and Terhal
(SIAM Journal of Computing 2009) and the second due to Bravyi (Quantum Information and
Computation 2015). Surprisingly, both problems are stated using terminology from quantum
computation. This fact makes it hard for classical Complexity Theorists to study these problems,
and prevents possible progress, e.g., on the important question of derandomizing MA.

In this note we define a natural combinatorial problem called SetCSP and prove its MA-
completeness. The problem generalizes the constraint satisfaction problem (CSP) into con-
straints on sets of strings.

This note is in fact a combination of previously known works: the brilliant work of Bravyi
and Terhal, together with an observation made in our previous work (Aharonov and Grilo,
FOCS 2019) that a restricted case of the Bravyi and Terhal’s MA complete problem (namely,
the uniform case) is already complete, and moreover, that this restricted case can be stated
using a classical, combinatorial description. Here we flesh out this observation.

This note, along with a translation of the main result of Aharonov and Grilo to the SetCSP
language, implies that finding a gap-amplification procedure for SetCSP problems (namely a
generalization to SetCSPs of the gap-amplification used in Dinur’s PCP proof) would imply
MA=NP. This would provide a resolution of the major problem of derandomizing MA; in fact,
the problem of finding gap-amplification for SetCSP is in fact equivalent to the MA=NP problem.

1 Introduction

The complexity class MA is a natural extension of NP proof systems to the probabilistic set-
ting [Bab85]. There is a lot of evidence towards the fact that these two complexity classes are
actually equal [IKW02, GZ11, HILL99, BFNW93, NW94, IW97, STV01, KI04], but it is an open
question if every problem in MA can be solved even in non-deterministic sub-exponential time.

Surprisingly, the very first natural MA-complete1 problem, found by Bravyi and Terhal [BT09]
only close to 25 years after the definition of the class (!), is defined using quantum terminology.
Though why would randomized NP have anything to do with quantum? Bravyi and Terhal show

1 For PromiseMA, it is folklore that one can define complete problems by extending NP-complete problems (see,
e.g. [SW]): we define an exponential family of 3SAT formulas (given as input succinctly) and we have to decide if
there is an assignment that satisfies all of the formulas, or for every assignment, a random formula in the family will
not be satisfied with good probability.
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that deciding if a stoquastic k-Local Hamiltonian2is frustration-free or inverse polynomially frus-
trated is promise-MA-complete. Later, Bravyi [Bra14] proved MA-completeness of yet another
quantum Hamiltonian problem.

This leaves us in a situation in which the only natural MA complete problems known are stated
and proved in quantum computational complexity language. Natural complete problems for the
class MA might enable access to the major open problem of derandomization of MA; and possibly
to other related problems such as PCP for MA [AG19]3. However, though the problems proposed
in [BT09, Bra14] are very natural within quantum complexity theory, the fact that they are defined
within the area of quantum computation seems to pose a language and conceptual barrier that
might prevent progress on them, and make it hard for classical complexity theorists to study them.

The goal of this note is to provide a classically, combinatorially-defined complete problem for
MA. The problem we suggest is based on the problem of [BT09]; in order to turn it into a classically
stated problem, one needs to rely on a simple observation made in [AG19] which says that the
problem of [BT09] remains promise-MA complete even when restricted to what is referred to in
[AG19] as uniform stoquastic Hamiltonians. From that point, almost everything we prove in this
note is simply translating into classical language results and observations given in [BT09]. We
present the results from scratch avoiding any quantum notation or quantum jargon what-so-ever.
We mention that this note can be viewed as a fleshing out of the hint given in [AG19], of how to
extract from [BT09] a combinatorial MA-complete problem.

The new MA complete problem, called the Set-Constraint Satisfaction Problem, or SetCSP,
is a generalization of the standard Constraint Satisfaction Problem (CSP), except we consider
constraints that act on sets of strings instead of on a single string - we call those set-constraints
(see Section 3 for the exact definition of a set-constraint.). The input to the SetCSP problem is a
collection of such set-constraints, and the output is whether there is a set of strings S that satisfies
all set-constraints in this collection, or any S is ε-far from satisfying this set-constraint collection
(see Definitions 3.2 and 3.9 for formal definitions of “satisfying a set-constraint” and “far”). We
denote this problem by SetCSPε. Following the ideas of [BT09, KSV02], we then show that there
exists some inverse polynomial function ε, such that this problem is MA-complete. We stress that
the definition of the problem and the proof of MA-completeness only use standard combinatorial
concepts from set- and graph-theory.

We hope that this definition leads to further understanding of the class MA and the MA vs.
NP question.

1.1 Future work and open questions

In a similar way to what is done in this note, it turns out that it is possible to translate several other
results from Hamiltonian complexity to the SetCSP language; this brings us to a very interesting
conclusion.

First, by following the lines of [AvDK+08], it can be proved that SetCSP with set-constraints
arranged on a 2D-lattice is still MA-hard. This means that the problem remains MA-hard even
when each bit participates in O(1) set-constraints, and each set-constrain acts on O(1) bits.

2Stoquastic Hamiltonians sit between classical Hamiltonians (CSPs) and general quantum Hamiltonians.
3We notice that Drucker [Dru11] proves a PCP theorem for AM; in the definition he uses for AM, the coins are

public and the prover sees them (See Section 2.3 in [Dru11]); but his result does not hold when the coins are private,
namely for MA.
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In addition, we claim that the result of [AG19] can also be translated to SetCSP language,
implying that the gapped version of the same SetCSP problem is in NP. More precisely, in the
previous notation, the problem of SetCSP when ε is a constant, the locality k (number of bits in a
set-constraint) and degree d (number of set-constraints each bit participates in) are bounded from
above by a constant, is in NP.

We leave writing up the details for these two translations to the SetCSP language to future
work, but we highlight that together they lead to a very important and surprising equivalence4:

Proposition: There is a gap amplification reduction 5 for SetCSP, if and only if MA=NP.

We note that it is easy to see that MA=NP implies such gap-amplification for SetCSP, by
the PCP theorem[Din07]; it is the other direction of deriving MA=NP from gap-amplification for
SetCSP, that is the new contribution. This implication suggests a new path to the major open
problem of derandomizing MA.

Organization

We define some notation and recall basic concepts and results of complexity theory in Section 2.
Then we define the Set-Constraint Satisfaction Problem in Section 3, and then we show its MA-
completeness in Section 4. We remind some standard concepts of graph theory which are required
for our main proof, in Appendix A.

2 Preliminaries

2.1 Notation

For n ∈ N+, we denote [n] = {0, ..., n− 1}. For any n-bit string, we index its bits from 0 to n− 1.
For x ∈ {0, 1}n and J ⊆ [n], we denote x|J as the substring of x on the positions contained in J .

For x ∈ {0, 1}|J |, y = {0, 1}n−|J | and J ⊆ [n], we define xJyJ to be the unique n-bit string w such
that w|J = x and w|J = y, where J = [n] \ J . For two strings, x and y, we denote x || y their
concatenation. For a string of bits x, |x| denotes the number of bits in x.

2.2 Complexity classes

A (promise) problem A = (Ayes, Ano) consists of two non-intersecting sets Ayes, Ano ⊆ {0, 1}∗. We
define now the main complexity classes that are considered in this work.

Definition 2.1 (NP). A problem A = (Ayes, Ano) is in NP if and only if there exist two polynomials
p, q and a deterministic algorithm D, where D takes as input a string x ∈ Σ∗ and a p(|x|)-bit witness
y, runs in time q(|x|) and outputs a bit 1 (accept) or 0 (reject) such that:
Completeness. If x ∈ Ayes, then there exists a witness y such that D outputs accept on (x, y).
Soundness. If x ∈ Ano, then for any witness y, D outputs reject on (x, y).

We can then generalize this notion, by giving the verification algorithm the power to flip random
coins, leading to the complexity class MA.

4This equivalence was highlighted in [AG19] in a quantum language
5In the same sense as Dinur’s gap amplification reduction for CSP[Din07]
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Definition 2.2 (MA). A (promise) problem A = (Ayes, Ano) is in MA if and only if there exist
two polynomials p, q and a probabilistic algorithm R, where R takes as input a string x ∈ Σ∗ and
a p(|x|)-bit witness y, runs in time q(|x|) and decides on acceptance or rejection of x such that:
Completeness. If x ∈ Ayes, then there exists a witness y such thatR accepts (x, y) with probability
1.
Soundness. If x ∈ Ano, then for any witness y, R accepts (x, y) with probability at most 1

3 .

The standard definition of MA [Bab85] requires yes-instances to be accepted with probability
at least 2

3 , but it has been shown that there is no change in the computational power if we require
the verification algorithm to always accept yes-instances [ZF87, GZ11].

2.3 Reversible circuits

In classical complexity theory, we usually describe the verification procedure for NP and MA as
algorithms. Such polynomial time algorithms can be converted into a uniform family of polynomial-
size circuits, which usually are described using AND, OR and NOT gates. As we will see later,
these circuits are not suitable in our context because we need our circuits to be reversible, namely
made of reversible gates. By this we mean that for every output of some gate, it should be possible
to compute the corresponding input by applying the inverse of this gate. Clearly, we can also invert
the entire circuit made of such gates by running all inverses of the gates in reverse order.

Circuits can be made reversible by using the universal gateset {NOT,CNOT,CCNOT},6 and
additional auxiliary bits initialized to 0 are provided. It is folklore that the overhead for this
conversion is linear in the number of gates. We will assume all verifiers considered are reversible.

For randomized circuits, we can also assume the circuit uses only reversible gates, in the following
way: we assume that the random bits are provided as part of the initial string on which the circuit
acts; we can view it as part of the input. The rest of the circuit is reversible.

For decision problems, we use the convention that the first bit is used as the output of the
circuit, namely, accept or reject.

Finally, let G ∈ {NOT,CNOT,CCNOT} be a gate to be applied on the set of qubits J out of

some n-bit input x. We slightly abuse notation (but make it much shorter!) and denote G(x)
def
=

x|J
J
G(z|J)J . Namely, we understand the action of the k-bit gate G on an n > k bit string x by

applying G only on the relevant bits, and leaving all other bits intact.

3 Set-Constraint Satisfaction Problem

The goal of this section is to present the central problem of this note, the Set Constraint Satisfaction
Problem (SetCSP).

We start by recalling the standard Constraint Satisfaction Problem (CSP). We choose to present
CSP in a way which is more adapted to our generalization (but still equivalent to the standard
definition). An instance of k-CSP is a sequence of constraints C1, ..., Cm. In this paper, we see each
constraint Ci as a tuple (J(Ci), Y (Ci)), where J(Ci) ⊆ [n] is a subset of at most k distinct elements
of [n] (these are referred to as “the bits on which the constraint acts”) and Y (Ci) is a subset of

6NOT is the 1-bit gate that on input a outputs 1⊕a; CNOT is the 2-bit gate that on input (a, b) outputs (a, b⊕a);
finally CCNOT is the 3-bit gate that on input (a, b, c) outputs (a, b, c ⊕ ac), i.e., it flips the last bit iff a = b = 1.
Notice that {NOT,CCNOT} is already universal for classical computation and we just add CNOT for convenience.
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k-bit strings, namely Y (Ci) ⊆ {0, 1}|J(Ci)| (these are called the “allowed strings”). We say that a
string x ∈ {0, 1}n satisfies Ci if x|J(Ci) ∈ Y (Ci). The familiar problem of k-CSP, in this notation,
is to decide whether there exists an n-bit string x which satisfies Ci, for all 1 ≤ i ≤ m.

In k-SetCSP, our generalization of k-CSP, the constraints Ci are replaced by what we call “set-
constraints” that are satisfied by (or alternatively, that allow), sets of strings S ⊆ {0, 1}n. The
most important definitions in this note are the following two.

Definition 3.1 (Set constraints). A k-local set-constraint C consists of a) a tuple of k distinct
elements of [n], denoted J(C) (we have |J(C)| = k, and we refer to J(C) as the bits which the
set-constraint C acts on), and b) a collection Y (C) = {Y1, ..., Y`} where Yi ⊆ {0, 1}k and Yi∩Yj = ∅
for all distinct 1 ≤ i, j ≤ `.

Definition 3.2 (A set of strings satisfying a constraint). We say that a set of strings S ⊆ {0, 1}n
satisfies the k-local set-constraint C if first, the k-bit restriction of any string in S to J(C) is
contained in one of the sets, i.e., for all x ∈ S, x|J(C) ∈

⋃
j Yj . Secondly we require that if x ∈ S

and x|J(C) ∈ Yj , then for every y such that y|J(C) ∈ Yj and y|
J(C)

= x|
J(C)

, then y ∈ S. In other

words, all elements of the subset Yj appear together in S (with the same extension to the remaining
bits) or none of them appears.

An instance of k-SetCSP consists of m such k-local set-constraints, and we ask if there is some
non-empty S ⊆ {0, 1}n that satisfies each of the set constraints, or if all sets of n-bit strings are
far from satisfying them. How to define far? We quantify the distance from satisfaction using a
generalization of the familiar notation of unsat from PCP theory [Din07]; we denote the generalized
notion by set-unsat(C, S). Intuitively, this quantity captures how much we need to modify S in
order to satisfy the set-constraints. Making this definition more precise will require some work;
However we believe it already makes some sense intuitively, so we present the definition of the
SetCSP problem now, and then state our main result. The exact definition of set-unsat(C, S) is
given in Section 3.1.

Definition 3.3 (k-local Set Constraint Satisfaction problem (k-SetCSPε)). Fix the two constants
d, k ∈ N+, as well as a monotone function ε : N+ → (0, 1) to be some parameters of the problem.
An instance to the k-local Set Constraint Satisfaction problem is a sequence of m(n) k-local set-
constraints C = (C1, ..., Cm) on {0, 1}n, where m is some polynomial in n. Under the promise that
one of the following two holds, decide whether:
Yes. There exists some S ⊆ {0, 1}n such that set-unsat(C, S) = 0
No. For all S ⊆ {0, 1}n, set-unsat(C, S) ≥ ε(n).

We can now state the main theorem in this note:

Theorem 3.4. There exists some ε = 1/poly(n) function, such that k-SetCSPε is promise-MA
complete, for k ≥ 6.

3.1 Satisfiability, frustration and the definition of set-unsat(C, S).

We present some concepts required for the formal definition.

Definition 3.5 (Neighboring strings). Let C be some set-constraint. Two distinct strings x and y
are said to be C-neighbors if x|

J(C)
= y|

J(C)
and x|J(C), y|J(C) ∈ Yi, for some Yi ∈ Y (C). We call

a string x a C-neighbor of S if there exists a string y ∈ S such that x is a C−neighbor of y.
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We also define the C-longing strings in a set of strings S: these are the strings that are in S
but are C-neighbors of some string that is not in S.

Definition 3.6 (Longing string). Given some set S ⊆ {0, 1}n and a set-constraint C, x ∈ S is a
C-longing string if x is a C-neighbor of some y 6∈ S.

A useful definition is that of bad strings for some set-constraint C, which in short are the strings
that do not appear in any subset of Y (C).

Definition 3.7 (C-Bad string). Given a set-constraint C, with Y (C) = {Y1, ...Y`}, a string x ∈
{0, 1}n is C-bad if x|J(C) 6∈ ∪iYi. We abuse the notation and whenever x is C-bad, we say x 6∈ Y (C).

The following complementary definition will be useful:

Definition 3.8 (Good string). We say that a string is C-good if it is not C-bad. We say that it
is a ”good string for the set-constraint collection C” if it is C-good for all set-constraints C ∈ C.
When the collection C is clear from context (as it is throughout this note), we omit mentioning of
the set-constraints collection and just say that the string is “good”.

Given Definitions 3.6 and 3.7 above, it is easy to see that a set of strings S ⊆ {0, 1}n satisfies a
set-constraint C (by Definition 3.2) iff S contains no C-bad strings and no C-longing strings.

We now provide a way to quantify how far S is from satisfying C.

Definition 3.9 (Satisfiability of set-constraints). Let S ⊆ {0, 1}n and C be a k-local set-constraint.
Let BC be the set of C-bad strings in S and LC be the set of C-longing strings in S. Note that
LC∩BC = ∅. The set-unsat-value (which we sometimes refer to as the frustration) of a set-constraint
C with respect to S, is defined by

set-unsat(C, S) =
|BC |
|S|

+
|LC |
|S|

(1)

Given a collection of m k-local set-constraints C = (C1, ..., Cm), its set-unsat-value (or frustration)
with respect to S is defined as

set-unsat(C, S) =
1

m

m∑
i=1

set-unsat(Ci, S). (2)

We also define

set-unsat(C) = min
S⊆{0,1}n
S 6=∅

{set-unsat(C, S)}. (3)

We say that C is satisfiable if set-unsat(C) = 0 and for ε > 0, we say that C is ε-frustrated if
set-unsat(C) ≥ ε.

Notice that the normalization factors in Equation (1) guarantees that the set-unsat-value lies
between 0 and 1.7

7The lower bound is trivial since the value cannot be negative. For the upper-bound, notice that BC , LC ⊆ S and
BC ∩LC = ∅. This is because bad strings have no neighbors whereas longing strings do. Hence |BC |

|S| + |LC |
|S| ≤

|S|
|S| = 1.
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3.2 Intuition and standard CSP as special case

We can present a standard k-CSP instance consisting of constraints C1, C2, ..., Cm as an instance
for k-SetCSP in the following way: For each constraint C`, ` ∈ {1, ...,m} of the m constraints in the
k-CSP instance, we consider the following set-constraint C ′`: for every k-bit string s that satisfies
C`, add the subset Ys = {s} to C ′`. We arrive at a collection C of m set-constraints, where each
set-constraint C ′` in C consists of single-string sets Yi corresponding to all strings which satisfy C`.

We claim that the resulting SetCSP instance has set-unsat(C) = 0 if and only if the original CSP
instance was satisfiable. Note that in our case, there is no notion of C-neighbors (See Definition
3.5), since all Yi’s contain only a single string. Hence, there are no longing strings; By the definition
of set-unsat (Equation (1)) the set-unsat(C, S) = 0 if and only if all strings in S are good for all
set-constraints C ′, namely each of them satisfies all constraints C in the original k-CSP instance;
and moreover, in this case, choosing S′ = {s} for any string s ∈ S, will give set-unsat(C, S′) = 0 as
well. Hence, there exists a non empty S such that set-unsat(C, S) = 0, if and only if there exists a
string which satisfies all constraints in the original k-CSP instance.

We give now some intuition about the set-unsat quantity (Equation (1)). We first note that it
generalizes the by-now-standard notion of (un)satisfiability in CSP, which for a given string, counts
the number of unsatisfied constraints, divided by m. We note that in Equation (1), if S = {s},
then |BC | is either 0 or 1, depending on whether s satisfies the constraint or not. As previously
remarked, in CSP the notion of neighboring and longing strings does not exist, and so LC will
always be empty. Thus, in the case where S = {s} and all set-constraints containing single strings,
Equation (2) is indeed the number of violated constraints by the string, divided by m - which is
exactly the standard CSP unsat used in PCP contexts [Din07]. (In the case of S containing more
than one string, but all Yis are still single-strings, Equation (2) will just be the (non-interesting)
average of the unsat of all strings in S).

The interesting case is the general SetCSP case, when the Yi’s contain more than a single string,
i.e., when the notions of neighbors and longing strings become meaningful. In this case, the left
term in the RHS of Equation (1) quantifies how far the set S is from the situation in which it
contains only “good” (not “bad”) strings (this can be viewed as the standard requirement) but it
adds to it the right term, which quantifies how far S is from being closed to the action of adding
neighbors with respect to the set-constraints8. Loosely put, the generalization from constraints to
set-constraints imposes strong “dependencies” between different strings, and the number of longing
strings, LC , counts to what extent these dependencies are violated.

4 MA-completeness of SetCSP1/poly(n)

In this section, we show that there is an inverse polynomial ε such that SetCSPε is MA-complete.
We show in Section 4.1 that for all polynomials p and constant k, k-SetCSP 1

p
is contained in MA.

Then we show in Section 4.2 that there exists some polynomial p such that 6 − SetCSP 1
p(n)

is

MA-hard.

8Notice that we could have also chosen to define ”far” here, by counting the number of strings outside of S that
are neighbors of S. But since the degree of each string in the graph is bounded, the exact choice of the definition
does not really matter; we chose the one presented here since it seems most natural.
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4.1 Inclusion in MA

We show in this section that k-SetCSP 1
p

is in MA for every constant k and polynomial p. For that,

given an instance C of k-SetCSP 1
p
, we consider the (undirected) graph GC = ({0, 1}n, E), where

{x, y} ∈ E if there exists a set-constraint C ∈ C such that x and y are C-neighbors.

Lemma 4.1 (Satisfiable SetCSP instances imply good paths). If there exists a non-empty S ⊆
{0, 1}n such that set-unsat(S, C) = 0, then the connected component of any string x ∈ S in GC
contains only good strings.

Proof. We prove that S is the union of connected components of GC . In this case, there are no
longing strings. The claim will follow since by set-unsat(S, C) = 0, all strings in S are good.

Suppose towards contradiction that there exists a string x in S which is connected to a string
y outside of S via an edge in GC ; that means that x and y are C-neighbors for some set-constraint
C. But this means that x is a C-longing string for S, and this contradicts set-unsat(S, C) = 0. �

The above implies that in the case of set-unsat(S, C) = 0, any path starting from x ∈ S (x must
be a good string in this case) remains in the set of good strings for ever. This is a very important
observation for this note. On the other hand:

Lemma 4.2 (Frustrated SetCSP instances implies bad paths). If for all S, set-unsat(C, S) ≥ 1
p(n) ,

then there exist polynomials q1 and q2 such that for every x ∈ {0, 1}n, a q1(n)-step lazy random
walk9 starting at x reaches a bad string with probability at least 1

q2(n)
.

Proof. Let x be some initial (good) string (notice that we can assume that x is a good string since
otherwise the lazy random walk reaches a bad string with probability 1). Let Gx be the connected
component of x in GC , Vx be the set of vertices (strings) in the connected component We partition
Vx to V g

x , the good strings in Vx (we denote A = V g
x ) and B = Vx \ V g

x , the bad strings in Vx (a
string is bad if it is not good).

We now make a few claims about the parameters of this lazy random walk starting at x. First,
notice that each string has at most m2k neighbors in GC . Secondly, we want to upper bound the
size of the edge boundary of S, defined as ∂G(S) = {{u, v} ∈ E : u ∈ S, v 6∈ S}. We claim that by
the conditions of the lemma, it must be that for any A′ ⊆ A, we have the following bound:

|∂G(A′)| ≥ |A
′|

p(n)
. (4)

Assume towards contradiction that |∂G(A′)| < |A′|
p(n) . We have that

set-unsat(C, A′) =
1

m

m∑
i=1

set-unsat(Ci, A
′) =

1

m

m∑
i=1

|LCi |
|A′|

≤ m∂G(A′)

m|A′|
<

1

p(n)
, (5)

where LCi ⊆ A′ is the set of Ci-longing strings in A′. In the second equality we use the fact that
there are no bad strings in A′, and in the first inequality we use |LCi | ≤ |∂G(A′)|. This follows from
the fact that each vertex (string) in LCi corresponds to a different edge in ∂G(A′). We arrive at
Equation (5) which is a contradiction to our assumption in the Lemma.

9As is defined in Appendix A, in a lazy random walk, at every step we stay in the current vertex with probability
1
2
, and with probability 1

2
we choose a random neighbor of the current vertex and move to it.
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We can now ask how fast does a lazy random walk starting from x, reach an element in B. This
is a well known question from random walk theory, and it can be stated as follows.

Lemma 4.3 (Escaping time of high conductance subset). Let G = (V = A∪B,E) be a simple (no
multiple edges) undirected connected graph, such that for every v ∈ A dG(v) ≤ d , and such that for

some δ < 1
2 , for all A′ ⊆ A, we have that |∂G(A′)| ≥ δ|A′|. Then a

(
16d2

δ2
ln 2d|V |

δ

)
-step lazy random

walk starting in any v ∈ A reaches some vertex u ∈ B with probability at least δ
4d .

We defer the proof of this lemma to Appendix A. We apply this lemma for G = Gx, A = V g
x ,

B = Vx \ V g
x , d = m2k, and δ ≥ 1

p(n) , it follows that a
(
16m222kp(n)2 ln

(
m2n+k+1p(n)

))
-step lazy

random walk starting on any x ∈ Gx reaches a bad string with probability at least 1
4m2kp(n)

. �

From the two previous lemmas, we can easily achieve the following.

Corollary 4.4. For any constant k and polynomial p, k-SetCSP 1
p

is in MA.

Proof. The witness for the k-SetCSP instance consists of some string x. Define q1 and q2 as the
same polynomials of Lemma 4.2. The MA-verification algorithm consists of repeating nq2(n) times
the following process: start from x, perform a q1(n)-step lazy random walk in GC , reject if any of
these walks encounters a bad string, otherwise accept.

If C is a yes-instance, then the prover can provide a string x which belongs to the set S which
satisfies the SetCSP instance. From Lemma 4.1, any walk starting from x will never encounter a
bad string.

If C is a no-instance, from Lemma 4.2, each one of the random walks will find a bad string with
probability 1

q2(n)
, and therefore if we perform nq2(n) lazy random walks, the probability that at

least one of them finds a good string is exponentially close to 1. �

4.2 MA-hardness

In this section we show how to reduce any language L ∈ MA to a 6-SetCSP instance. More
concretely, we provide a reduction from an arbitrary MA-verification algorithm to an instance of
6-SetCSP problem.

Our approach here is to “mimic” the Quantum Cook-Levin theorem due to Kitaev [KSV02],
but given that we only need to deal with set of strings and not arbitrary quantum states, our proof
can in fact be stated in set-constraints language.

4.2.1 Intuition

In the (classical) Cook-Levin theorem, the verification algorithm for an instance of an NP-language
is reduced to a instance of the 3-SAT problem. In this reduction, a different variable is assigned
to the value of each location of the tape of the Turing machine at any time step; these variables
are used to keep track of the state of the computation at different stages. See Figure Figure 1.
Each string, namely an assignment to all these variables, encodes the value of the entire history of
a single possible computation. The clauses of the Boolean formula check that the history indeed
corresponds to a correct propagation of an accepted computation. More precisely, the constraints
check if a) the input (namely the assignment to the variables associated with the input string in the
first time step) is correct; b) the assignment of the variables corresponding to any two subsequent
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time steps is consistent with a correct evolution of each gate in the computation; and c) the output
bit, namely the value of the output variable in the last time step, is indeed accept. If there is a
single valid history which ends with accept (namely if x is in the language accepted by the verifier),
the resulting k-CSP is satisfiable; the satisfying string encodes the entire history of the computation
of the verifier. If the k-CSP is satisfiable, it must be a history of an input string accepted by the
verifier.

Now, suppose we want to apply a similar construction for some MA verification. The random
bits are also given to the verification circuit as an input, and one could hope that the reduction of
the Cook-Levin theorem would still work. However, the problem is that there could be some choice
of random coins that make the verification algorithm to accept even for no-instances, because the
soundness parameter is not 0 but some fraction. Hence, the CSP would be satisfiable in this case,
even though the input is a NO instance. It is thus not sufficient to verify the existence of a single
valid history. In order to distinguish between YES and NO instances of the problem, we have to
check in the YES case that all (or at least many of the) initializations of the random bits lead to
accept. The key difficulty is how to check that not only a single string satisfies the constraints, but
many.

This is exactly the reason for introducing the set-constraints. These set-constraints are able to
verify that the random bits are indeed uniformly random; then the standard Cook-Levin approach
described above can verify that (given the right witness) each of them leads to acceptance.

In order to implement such an approach, we first explain how to modify the original Cook-
Levin proof, of the NP completeness of satisfiability so that the strings that we check are not entire
histories of a verification process of some NP problem; rather, the strings represent snapshots of
the tape (or evaluations of all bits involved in the circuit at a certain time) for different time-steps
of the computation. A satisfying assignment is no longer a single string but a whole collection of
strings, denoted S, which would be the collection of all snapshots of a single valid computation, at
different times.10

In this case (note that we have still not included random bits in the discussion) we need to
show how to create set-constraints that verify that the set S really does contain all snapshots, and
it also needs to verify that S contains nothing else. More precisely, we need to verify that a) the
strings in S are consistent with being snapshots of a valid evolution of the computation b) the
input is correct in the string corresponding to the first snapshot, and the output is accept in the
string corresponding to the last snapshot, and c) the set S indeed contains the whole history of the
computation, i.e. all the snapshots in a correct evolution, and without any missing step.

It turns out that this can be done using set-constraints; We depict the differences between the
“original” Cook-Levin proof and the “set-constraints” one in Figure 1.

In reality, we need to do this not just for a single evolution but for the evolution over all possible
assignments to the random strings. Moreover, we need to enforce that the random bits are indeed
random; this requires further set-constraints (technically, this is done below in Equation (6)). This
corresponds to the additional step d) which verifies that all evolutions - for all possible random
coins - are indeed contained in S.

We note that the essence of the idea appears already when there are no random bits involved
at all; the reader is recommended to pretend that no random bits are used, in first reading.

10 For quantum readers, we note that this reflects the main step in Kitaev’s modification of the Cook-Levin theorem,
which enabled him to test that entangled quantum states evolved correctly.
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(a) In the Cook-Levin theorem, a fresh new
variable is assigned to every wire of the cir-
cuit, and the evolution of the computation can
be described as an assignment to the variable
such that their values are consistent accord-
ing to the circuit. In this example, we see a
(very simple) circuit, and then the history of
the computation on input 01111101. The CSP
instance derived from the Cook-Levin theo-
rem ensures that the assignment is indeed the
evolution of the circuit for some input (and of
course, that the circuit accepts at the end).

s0 s1 s2 s3
x1

CCN

output

x2

CCNx3 NOT

x4

H = {0001110,1001100,1101110,1111111}

(b) In this work, we consider reversible circuits and
the history of the computation is described by a set of
strings. We define then the history-set of the compu-
tation that contains the snapshot of every stage of the
computation. Each such a string is augmented with
a prefix (marked in bold) identifying the timestep, in
unary, of the snapshot. These bits, called the “clock”,
are necessary in order to check the evolution. In this
example, we see a very simple circuita that has no aux-
iliary nor random bits. We show the history-set of the
computation on input 1110 and the prefix indicating
the number of the timestep (here, 0 to 3), counted in
unary. The SetCSP instance derived from the our re-
sult ensures that this set contains the snapshots for all
timesteps of the computation.

aThe gate CCN is the CCNOT gate which receives
some input (a, b, c) and outputs (a, b, c⊕ ab).

Figure 1: Comparison between the evolution of a circuit seen in the Cook-Levin proof and in our
work.
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We next explain the reduction from MA-verification algorithms to 6-SetCSP in Section 4.2.2
and then we prove its correctness in Section 4.2.3.

4.2.2 The reduction

We assume, without loss of generality, that the MA verification algorithm is reversible, as described
in Section 2.3: Given an input x ∈ {0, 1}n, we assume a verification circuit Cx whose input is
y || 0a(n) || r, where y ∈ {0, 1}p(n) is the polynomial-size MA witness, the middle register consists
of the circuit auxiliary bits (needed for reversibility) and r ∈ {0, 1}q(n) are the polynomially many
random bits used during the MA verification. The circuit Cx consists of T gates G1, ..., GT , where
Gi ∈ {NOT,CNOT,CCNOT}.11 At the end of the circuit, we assume WLOG that the first bit as
the output bit.

We describe now the reduction from the MA verification algorithm (compiled in the form
described above) into a SetCSP instance C. We will show in the next section that if there is an
MA witness that makes the verification algorithm accept with probability 1, then C is satisfiable,
whereas if every witness makes the verifier reject with probability at least 1

2 , then C is at least
inverse polynomially frustrated.

We start with an MA verification circuit Cx (assumed to be reversible, as described in Sec-
tion 2.3) acting on an input consisting of a(n) 0-bits, witness y of p(n) bits and q(n) random bits.
Thus, the number of bits which the reversible verification circuit acts on is w(n) = a(n)+p(n)+q(n).
The number of gates is T (n); denote these gates by G1, ..., GT . Our set-constraint instance C will
act on strings of s(n) = T (n) +w(n) many bits. We omit n from such functions from now on, since
it will be clear from the context.

We call the T first bits of such strings the clock register and the last w bits the work register. The
work register comprises of three sub-registers: the witness register (first p(n) bits), the auxiliary
register (middle a(n) bits) and the randomness register (last q(n) bits). We want to create set-
constraints which force all the strings to be of the form z ∈ {0, 1}s such that z|[T ] = unary(t) for
some t ∈ [T + 1] (where unary(t) denotes the integer t written in unary representation), and z|[s]\[T ]
represents the snapshot of the computation at time t (as explained in Section 4.2.1 above) for the
initial string y || 0a(n) || r, for some witness y and some choice of random bits r.

We will construct C in such a way that S ⊆ {0, 1}s satisfies C if and only if i) it contains all
snapshots of the computation for some witness y and for all bit strings r input to the randomness
register; and ii) the computations whose snapshots are contained in S are not only correct (meaning
also that the auxiliary bits are all initialized to 0) but that they are accepted computations (meaning
that the output is 1).

We do this by providing set-constraints of four types, as follows.

Clock consistency. We first impose that if z ∈ S, then z|[T ] = unary(t), for some t ∈ [T + 1].
Notice that a string is a valid unary encoding iff it does not contain 01 as a substring. To

guarantee that the clock bits are consistent with some unary representation of an allowed t, we add
for every t ∈ [T ] the set-constraint Cclockt defined by:

Y (Cclockt ) = ({{00}, {10}, {11}}) and J(Cclockt ) = (t, t+ 1).

Example: The string 010T−2 || z is a bad string for Cclock1 since w|J(Cclock
1 ) = 01 6∈ Y (Cclock1 ).

11Recall that the gate CNOT on input a, b outputs a, b ⊕ a, and the gate CCNOT on input bits a, b, c, outputs
a, b, c⊕ ab.
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Initialization of Input bits and Random bits. Here, we want to check that 0T || y || z || r is
not in S whenever z 6= 0a, which enforces the ancillary bits to be initialized to 0. In addition, we
want to check that for any witness y, if one string of the form 0T || y || 0a || r for some r is in S,
then for all r′ ∈ {0, 1}q, we have 0T || y || 0a || r′ in S. In conclusion, we need to check two things:
that all auxiliary bits are initialized to 0 and that all possible initializations of the random bits are
present.

For each auxiliary bit j ∈ [a] qubit we add a set-constraint Cauxj and for every random bit j ∈ [q]

we add the set constraint Crandj as follows.
We define

Y (Cauxj ) = {{00}, {10}, {11}} and J(Cauxj ) = (0, T + p+ j),

which forces that for t = 0 (notice that the unique value of t for which unary(t) has the first bit 0 is
t = 0), the j-th auxiliary bit must be 0, because the string (01) is forbidden. For t 6= 0 this is not
enforced by allowing any value of the j-th auxiliary bit when the first clock bit is 1 (and therefore
t 6= 0).

Example: The string 0T || y || 10a−1 || r ∈ S is bad for Caux0 .

For the random bits, we want to make sure that the j-th random bit has both values 0 and 1,
over all the random bits. Therefore we define the constraints Crandj by

Y (Crandj ) = {{00, 01}, {10}, {11}} and J(Crandj ) = (0, T + p+ a+ j). (6)

These constraints will be useful in the following way. First, the propagation set-constraints that
we will define soon, constrain S to make sure that there exists a string 0T || y || 0a || r representing
a snapshot at time 0 with some value of the random bits, r, which is indeed in S. The Crand

constraints enforce that given the existence of such a string in S, then for any other assignment to
the random bits, r′, the string 0T || y || 0a || r′ ∈ S. Then, if many of these other strings are not in
S, the frustration will be high.
Example: If s1 = 0T || y || 0a || 0r ∈ S but s2 = 0T || y || 0a || 10r−1 6∈ S, then s1 is a Crand1 -longing

string in S since s1 and s2 are Crand1 -neighbors.

Propagation. Here we want to check that if unary(t − 1) || z ∈ S for some 0 < t < T , then
unary(t) ||Gt (z) ∈ S.

Let us consider the propagation constraint associated with the t-th timestamp (the one corre-
sponding to the application of the tth gate, Gt), for 1 < t < T . Let us assume that the t-th gate
acts on bits bt,1, ..., bt,k. For this we add the set-constraint Cpropt defined as follows:

Y (Cpropt ) =
⋃

z∈{0,1}k
{{100 || z, 110 ||Gt(z)}} and J(Cpropt ) = (t− 1, t, t+ 1, bt,1, bt,2, ..., bt,k).

For t = 1 we simply erase the left clock bit from the above specification:

Y (Cprop1 ) =
⋃

z∈{0,1}k
{{00 || z, 10 ||G1(z)}} and J(Cprop1 ) = (1, 2, b1,1, b1,2, ..., b1,k).

Likewise if t = T erase the right most clock bit from the above.
Example: If s1 = unary(t) || z ∈ S but s2 = unary(t + 1) ||Gt+1(z) 6∈ S, s1 is a Cpropt+1 -longing string
in S, since the two strings are neighbors.
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Output. Finally, we need to check that for all strings of the form 1T || z, the first bit of z is 1,
namely, the last snapshot corresponds to accept. We define Cout such that

Y (Cout) = {{00}, {01}, {11}} and J(Cout) = (T, T + 1).

Here we use the fact that the T -th bit of unary(t) is 1 iff t = T . In this case, if this value is 1, we
require that the output bit is 1, otherwise it could have any value.
Example: The string 1T || 0 || z is bad for Cout.

4.2.3 Correctness

Given some MA-verification circuit Cx, we consider the following 6-SetCSP instance

Cx = (Cclock1 , ...., CclockT , Caux1 , ..., Cauxa , Crand1 , ...Crandq , Cprop1 , ..., CpropT , Cout}.

Let m be the number of terms in Cx and when it is more convenient to us, we will refer to
the set-constraints in Cx as Ci for i ∈ [m], where the terms have an arbitrary order. We show
now that Cx is satisfiable if x is a positive instance, and if x is a negative instance, then C is at
least 1

10(T+1)qm -frustrated (where we remember that q is the number of random coins used by Cx).

Notice that m, the number of constraints in Cx, is polynomial in T , which is also polynomial in |x|.

We start by proving completeness.

Lemma 4.5 (Yes-instances lead to satisfiable SetCSP instances). If x ∈ L, then Cx is satisfiable.

Proof. Let y be the witness that makes Cx accept with probability 1, and let

S = {unary(t) ||Gt...G1(y, 0
a, r) : r ∈ {0, 1}q, t ∈ [T + 1]} .

By construction, the initialization, clock and propagation constraints are satisfied by S. By the
assumption that the MA verification circuit accepts with probability 1, the output constraints are
also satisfied by S. �

Next we prove soundness.

Lemma 4.6 (NO-instances lead to frustrated SetCSP instances). If x 6∈ L, then set-unsat(Cx, S) ≥
1

10(T+1)qm for every non-empty S ⊆ {0, 1}n.

Proof. Let S ⊆ {0, 1}n be a non-empty set, B the set of bad strings in S (namely a string in S
which is C-bad for at least one set-constraint C) and L the set of longing strings in S (namely the
strings in S which are C-longing for at least one set-constraint C). Our goal here is to consider a

partition {Ki} of S, such that for every Ki, |Ki ∩ (B ∪ L)| ≥ |Ki|
10(T+1)q , and from this we will show

that set-unsat(Cx, S) ≥ 1
10(T+1)qm .

Let us start by defining Sic ⊆ S to be the subset of S with invalid clock register. Notice that
every x ∈ Sic is bad for at least one clock constraint and therefore |Sic ∩B| = |Sic|.

Now we notice that all other strings correspond to some valid clock register whose value (when
read as a unary representation of some integer) is in [T + 1]. Let us partition the strings in S \ Sic
into disjoint sets H1,...,H` (which indicate different history-sets to which the strings belong) as
follows. We define the initial configuration of some string in S \ Sic like this. The string must
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be of the form unary(t) || z for some t and z. Then initial(unary(t) || z) = unary(0) ||G−11 ...G−1t (z),
which is the assignment of the initial bits that leads to the configuration z at the t’th step. We
say then that two strings s1, s2 ∈ Hi iff initial(s1) = initial(s2) and we abuse the notation and call
initial(Hi) = initial(s1). Notice that for i 6= j, Hi and Hj are disjoint because the computation
is reversible; thus the Hi’s constitute a partition of S \ Sic. Notice also that each Hi contains at
most T + 1 strings, and the different strings in each Hi have different values of the clock register.
We call these Hi history-sets for the reason that they correspond to a correct propagation of the
computation of the circuit Cx for some initialization of all its bits.12

Let us first consider the history-sets whose initial configuration is not valid, i.e., it contains
invalid (or non-zero) auxiliary bits: Hia = {Hi : initial(Hi) = 0T || y || z || r for some z 6= 0a}. We
note that for any Hi ∈ Hia, initial(Hi) is a Cauxj -bad string in Hi for some j. If this string is in Hi,

then we indeed have |Hi∩(B∪L)| ≥ |Hi∩B| ≥ 1 ≥ |Hi|
T+1 . However, if Hi does not contain its initial

string, then consider the minimal t such that unary(t) || z ∈ Hi for some z, and by assumption we
have t > 0. This means that the string unary(t) || z is a Cpropt -longing string, because it is a neighbor

of unary(t − 1) ||G−1t (z) 6∈ S. Hence, for such Hi we have |Hi ∩ (B ∪ L)| ≥ |Hi ∩ L| ≥ 1 ≥ |Hi|
T+1 .

This completes handling all the strings in S within a history set Hi with invalid auxiliary bits in
initial(Hi).

We now need to consider history sets in {Hi}\Hia, namely, the history sets whose initial string
is of the form 0T || y || 0a || r for some value of y and r. Let us group these history sets according
to y, the value of the witness register. In other words, let us consider the sets of history sets:
Hy = {Hi : Hi’s initial string is of the form 0T || y || 0a || r}. We fix now some y and the following
arguments hold for each y separately. Notice that each Hi ∈ Hy corresponds to a computation
corresponding to a different initial random string for the witness y. Let us denote the union of
strings in all sets in Hy by Sy =

⋃
Hi∈Hy

{s|s ∈ Hi}. To finish handling all strings, we need to

provide a bound on |Sy ∩ (L ∪B)| for all witnesses y.
To proceed, we need some additional notation. We note that Hy can be written as the union of

the history sets which contain their initial string, denoted Hstart
y , and the rest, denoted Hnostart

y .
We proceed by considering two cases separately:

1. Let us first consider the simpler case in which |Hnostart
y | > |Hy |

10 . As above, we have that each
Hi ∈ Hnostart

y has a longing string, and therefore we have that |Sy ∩ (L ∪ B)| ≥ |Sy ∩ L| ≥
|Hnostart

y | > |Hy |
10 ≥ |Sy |

10(T+1) . The last inequality is due to the fact that each Hi ∈ Hy

contains at most T + 1 strings. This finishes the treatment of all strings in S, in the case

|Hnostart
y | > |Hy |

10 .

2. In the second case |Hstart
y | ≥ 9|Hy |

10 . We further denote Sinity = {s|s = initial(Hi), Hi ∈ Hstart
y }

as the set of the initial strings of each Hi ∈ Hstart
y . Again (and for the last time) there are

two cases.

(a) First, let us consider the case when |Sinity | ≥ 2q−1. This means that for this fixed y,

for most values r of the random bits, the initial string 0T || y || 0a || r of the history set
corresponding to this y and r is present in Sy. We use the facts that x /∈ L, and that
at least 2/3 of the history sets must lead to rejection by Definition 2.2. From these

12 More precisely, Hi is just a subset of the correct propagation because it involves only the snapshots in S.
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observations, we will conclude that there will be either many bad strings due to the final
accept constraint Cout, or many longing strings.

Let Accy = {Hi ∈ Hy : 1T || z ∈ Hi and z = 1 || z′} be the set of history sets in Hy that
accept in the last step. We have that |Accy| is at most the number of r ∈ {0, 1}q which
leads the circuit Cx to accept the witness y; since x 6∈ L, we have that the probability

to accept for any y is most 1/3. Hence |Accy| ≤ 2q

3 ≤ 2
|Hy |
3 ≤ 20|Hstart

y |
27 , where we used

the fact that 2q−1 ≤ |Sinity | = |Hstart
y | ≤ |Hy|, and in the last inequality, the fact that we

are in the case |Hstart
y | ≥ 9|Hy|/10. Hence, there are at least 2q

10 history sets in Hstart
y

which do not end in accept. Such Hi either contains the string 1T || 0 || z (which is bad
for Cout), or does not contain a final state at all, namely does not contain a state of the
form 1T || z for some z, resulting in a longing string. Thus, there are at least 2q

10 strings in
|Sy ∩ (B ∪L)|; and since |Sy| ≤ (T + 1)|Hy| and |Hy| ≤ 2q, resulting in |Sy| ≤ 2q(T + 1),

we have that |Sy ∩ (B ∪ L)| ≥ 2q

10 ≥
|Sy |

10(T+1) .

(b) Finally, let us consider the case where |Sinity | ≤ 2q−1. This is where we will need to
apply conductance arguments. Let G0

y be the subgraph of GC
13 induced by the vertices

Ry = {0T || y || 0a || r : r ∈ {0, 1}q}. Notice that G0
y is isomorphic to the q-dimensional

hypercube. This is true because the only remaining edges on G0
y come from the set-

constraints Crandj . Notice also that Sinity is a subset of the vertices of G0
y. We now

apply Lemma A.2 which states that the conductance of the q-dimensional hypercube is
1
q . Applying this lemma to the graph G0

y and the subset of its vertices, Sinity we conclude

that
|∂

G0
y
(Sinit

y )|

q|Sinit
y | ≥ 1

q , where we have used the fact that all vertices in G0
y have the same

degree, q, and the fact that we are now considering the case |Sinity | ≤ 2q−1. We can

conclude then that there exists at least |Sinity | edges in the cut (Sinity , Ry \ Sinity ). Since

each vertex in G0
y (in particular, each vertex in Sinity ) has q neighbors, it means that

there exists at least
|Sinit

y |
q longing strings in Sinity . We conclude this case by noticing

that

|Sy ∩ (L ∪B)| ≥ |Sy ∩ L| ≥
|Sinity |
q

=
|Hstart

y |
q

≥ 9|Hy|
10q

≥ 9|Sy|
10q(T + 1)

,

where in the second inequality we use the fact that Sinity ⊆ Sy and there are at least
|Sinit

y |
q

longing strings in Sinity , the equality follows since |Hstart
y | = |Sinity |, the third inequality

follows from our assumption that |Hstart
y | ≥ 9|Hy |

10 and finally we have that |Hi| ≤ T + 1

(and therefore |Hy| ≥ |Sy |
T+1).

To finish the proof, notice that S = Sic ∪
⋃
H∈Hia H ∪

⋃
y Sy. Since each of these subsets has

at least a 1
10(T+1)q -fraction of bad strings or longing strings, we have that |B ∪ L| ≥ |S|

10(T+1)q . It
follows that

set-unsat(Cx, S) =
1

m

∑
i

(
|BCi |
|S|

+
|LCi |
|S|

)
≥ |B|
m|S|

+
|L|
m|S|

≥ |B ∪ L|
m|S|

≥ 1

10(T + 1)qm
,

finishing the proof. �
13Here, we use the same notation as Section 4.1.
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A Graph theory and random walks

For some undirected graph G = (V,E), and v ∈ V , let dG(v) = |{u ∈ V : {v, u} ∈ E}| be the
degree of v. We may define a weight function for the edges w : E → R+, and if it is not explicitly
defined, we assume that w({u, v}) = 1 for all {u, v} ∈ E. We slightly abuse the notation and for
some E′ ⊆ E, we denote w(E′) =

∑
e∈E′ w(e).

For some set of vertices S ⊆ V , we define the boundary of S as ∂G(S) = {{u, v} ∈ E : u ∈
S, v 6∈ S}, the neighbors of S as NG(S) = {u ∈ S : v ∈ S, {u, v} ∈ E} (where NG(u) for some u ∈ V
is shorthand for NG({u})); and finally the volume of S volG(S) =

∑
u∈S,v∈NG(u)w({u, v}) and the

conductance of S, φG(S) = w(∂G(S))
volG(S) .

We define notions related to random walks on weighted graphs; definitions are taken from
[GT12]. One step in the random walk on the weighted graph G starting on vertex v is defined

by moving to vertex u with probability pv,u =

{
w({u,v})
volG({v}) , if {u, v} ∈ E
0, otherwise

. One step in the lazy

random walk on G starting on v is defined by staying in the same vertex with probability 1
2 , or
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with probability 1
2 , moving according to the above random walk. The conductance of the weighted

graph is defined as
φ(G) = min

S⊆V
volG(S)≤ volG(V )

2

φG(S).

The (unique) stationary distribution πG of the lazy random walk on a connected weighted graph

G is given by the following probability distribution on the vertices: πG(v) = volG({v})
volG(V ) . The following

lemma connects the conductance of a graph and its mixing time, i.e., the number of steps of a lazy
random walk on G starting at an arbitrary vertex such that the distribution on the vertices is close
to the stationary distribution.

Lemma A.1 (High conductance implies small mixing time [JS89]). Let G = (V,E) be a undirected

connected graph. For any u, v ∈ V , a
(

2
φ(G)2/4

ln 1
εmin{πG(v)}

)
-step lazy-random walk starting in u

ends in v with probability pTu,v ∈ [πG(v)− ε, πG(v) + ε]. 14

We now prove Lemma 4.3

Lemma 4.3 (restated) (Escaping time of high conductance subset). Let G = (V = A∪B,E) be
a simple (no multiple edges) undirected connected graph such that for every v ∈ A dG(v) ≤ d , and

such that for some δ < 1
2 , for all A′ ⊆ A, we have that |∂G(A′)| ≥ δ|A′|. Then a

(
16d2

δ2
ln 2d|V |

δ

)
-step

lazy random walk starting in any v ∈ A reaches some vertex u ∈ B with probability at least δ
4d .

Proof. Let us consider the graph G′ = (V ′, E′) where V ′ = A ∪ {b∗} and E′ = {{u, v} ∈ E : u, v ∈
A} ∪ {{u, b∗} : u ∈ A, v ∈ B, {u, v} ∈ E} (as a set, duplicate edges are removed). In other words,
G′ can be seen as the graph derived when we contract all vertices in B to one vertex (and call
this vertex b∗) and contract the parallel edges that appear when we perform the contraction of the
vertices into a single edge. For some u ∈ A, we define the weight of the edge {u, v} ∈ E′ as

w({u, v}) =

{
1, if v ∈ A
|{{u, v′} : {u, v′} ∈ E, v′ ∈ B}| , if v = b∗

.

Notice that the probability that a T -step weighted lazy random walk on G′ starting in v ∈ A
passes by the vertex b∗ is exactly the same as the probability that a T -step lazy random walk on
G starting in v passes by some vertex in B. Therefore, we continue by lower bounding the former,
and the statement will follow.

Let us start by analyzing φ(G′). Notice that for all A′ ⊆ A, it follows that

φG′(A′) =
|∂G′(A′)|
volG′(A′)

=
|∂G(A′)|∑
v∈A′ 2dG(v)

≥ δ|A′|
d|A′|

=
δ

d
. (7)

14 We use Corollary 2.2 of [JS89], along with the remark (a) after it. The latter states that the conductance of a
graph is divided by 2 when we consider the weighted graph induced by the lazy random walk (this induced graph is
naturally defined by adding a self loop to each vertex, and giving it the same weight as the sum of the weight of all
other edges going out of the node). In Lemma A.1, we use the conductance of the original graph G and account for
the fact that we are applying a lazy random walk on it by dividing the conductance by 2. Importantly, the stationary
distribution remains the same.
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Let S = {b∗} ∪A′ for some A′ ⊆ A such that vol(S) ≤ volG′ (V ′)
2 , we have that

φG′(S) =
w(∂G′(S))

volG′(S)
≥ w(∂G′(S))

volG′(S)
=

|∂G(S)|∑
v∈S dG(v)

≥ |∂G(S)|
d|S|

≥ δ|S|
d|S|

=
δ

d
, (8)

where in the first inequality we use the fact that ∂G′(S) = ∂G′(S) and volG′(S) ≤ volG′(S), in the
second equality we use the definition of w, in the second inequality we use the fact that S ⊆ A and
every vertex in A has degree at most d, and the third inequality follows since S ⊆ A, and so we
can use the assumption of the lemma. From Equations (7) and (8), we have that φ(G′) ≥ δ

d .
We now analyze the stationary distribution of the lazy random walk associated with G′. Since

δ|A| ≤ volG′({b∗}) ≤ d|A| and for any v ∈ A, 1 ≤ volG′({v}) ≤ d, we have that volG′(V ) ≤
(δ + d)|A| ≤ 2d|A|,

πG′(b∗) =
volG′({b∗})
volG′(V )

≥ δ|A|
2d|A|

=
δ

2d
,

and for any v ∈ A,

πG′(v) =
volG′({v})
volG′(V )

≥ 1

2d|A|
≥ 1

2d|V |
.

We now apply Lemma A.1, using ε = δ2

2d , min{πG′(v)} ≥ 1
2d|V | and φ(G′) ≥ δ

d . We have that for

T =
8

φ(G′)2
ln

1

εmin{πG′(v)}
≤ 8 · d2

δ2
ln

4d2|V |
δ2

≤ 16d2

δ2
ln

2d|V |
δ

,

a T -step lazy random walk starting from any vertex end in b∗ with probability at least δ−δ2
2d ,

which is a lower bound on the probability that the lazy random walk passes by b∗. Since δ−δ2
2d ≥

δ
4d

this finishes the proof. �

A.1 Hypercube

Given some parameter q, the q-dimensional hypercube is the graph where the vertices are all
possible q-bit strings and two vertices are connected if the corresponding strings differ on exactly
one bit.

We use the following well-known fact about the expansion of the hypercube.

Lemma A.2 ([RV11]). Let G be the q-dimensional hypercube. Then φ(G) = 1
q .
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