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Abstract

Despite the interest in the complexity class MA, the randomized analog of NP, there is just
a few known natural (promise-)MA-complete problems. The first such problem was found by
Bravyi and Terhal (SIAM Journal of Computing 2009); this result was then followed by Crosson,
Bacon and Brown (PRE 2010) and then by Bravyi (Quantum Information and Computation
2015). Surprisingly, two of these problems are defined using terminology coming from quantum
computation, while the third is inspired by quantum computation and still keeps a physical
terminology. This fact makes it hard for classical complexity theorists to study these problems,
and prevents potential progress, e.g., on the important question of derandomizing MA.

In this note we define two new natural combinatorial problems and we prove their MA-
completeness. The first problem, that we call approximately-clean approximate-connected-
component (ACAC), gets as input a succinctly described graph, some of whose vertices are
marked. The problem is to decide whether there is a connected component whose vertices are
all unmarked, or the graph is far from having this property. The second problem, called SetCSP,
generalizes in a novel way the standard constraint satisfaction problem (CSP) into constraints
involving sets of strings.

Technically, our proof that SetCSP is MA-complete is a fleshing out of an observation made
in (Aharonov and Grilo, FOCS 2019), where it was noted that a restricted case of Bravyi
and Terhal’s MA complete problem (namely, the uniform case) is already MA complete; and,
moreover, that this restricted case can be stated using classical, combinatorial language. The
fact that the first, arguably more natural, problem of ACAC is MA-hard follows quite naturally
from this proof as well; while containment of ACAC in MA is simple, based on the theory of
random walks.

We notice that this work, along with a translation of the main result of Aharonov and Grilo to
the SetCSP problem, implies that finding a gap-amplification procedure for SetCSP (in the spirit
of the gap-amplification procedure introduced in Dinur’s PCP proof) would imply MA=NP. In
fact, the problem of finding gap-amplification for SetCSP is equivalent to the MA=NP problem.
This provides an alternative new path towards the major problem of derandomizing MA. De-
riving a similar statement regarding gap amplification of a natural restriction of ACAC remains
an open question.
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1 Introduction

The complexity class MA is a natural extension of NP proof systems to the probabilistic set-
ting [Bab85]. There is a lot of evidence towards the fact that these two complexity classes are actu-
ally equal [IKW02, GZ11, HILL99, BFNW93, NW94, IW97, STV01, KI04], however the proof re-
mains illusive. It is even open to show that every problem in MA can be solved in non-deterministic
sub-exponential time.

Surprisingly, the very first natural MA-complete1 problem, found by Bravyi and Terhal [BT09]
only close to 25 years after the definition of the class (!), is defined using quantum terminology.
Though why would randomized NP have anything to do with quantum? Bravyi and Terhal show
that deciding if a given stoquastic k-Local Hamiltonian2 is frustration-free or at least inverse poly-
nomially frustrated, is promise-MA-complete. Bravyi [Bra14] also proved MA-completeness of yet
another quantum Hamiltonian problem. A third MA-complete problem was proposed by Crosson,
Bacon and Brown [CBB10], inspired by quantum adiabatic computation.3

This leaves us in a situation in which the known MA complete problems are not stated using
natural or standard complexity theory terminology. Natural complete problems for the class MA
might enable access to the major open problem of derandomization of MA; and possibly to other
related problems such as PCP for MA [AG19]4. However, though the problems proposed in [BT09,
Bra14] are very natural within quantum complexity theory, the fact that they are defined within
the area of quantum computation seems to pose a language and conceptual barrier that might delay
progress on them, and make it hard for classical complexity theorists to study them.

The goal of this work is to provide classically, combinatorially-defined complete problems for
MA. We hope that these definitions lead to further understanding of the class MA and the MA vs.
NP question.

One of these problems, SetCSP, is morally based on the MA complete problem of [BT09], while
the other problem, ACAC, seems to be a rather natural problem on graphs.

The definition of SetCSP as well as the proof of its MA-completeness rely on a simple but
crucial insight: we can translate “testing history states”, a notion familiar in quantum complexity
theory, into constraints on sets of strings. This idea is used here throughout, but in fact can be
used to translate also other quantum results related to stoquastic Hamiltonians, to the classical
combinatorial language of constraints on sets of strings (see Section 4.4.1 as well as Figure 1 for
more intuition). However though this translation idea can be viewed as standing at the heart of

1 For PromiseMA, it is folklore that one can define complete problems by extending NP-complete problems (see,
e.g. [SW]): we define an exponential family of 3SAT formulas (given as input succinctly) and we have to decide if
there is an assignment that satisfies all of the formulas, or for every assignment, a random formula in the family will
not be satisfied with good probability.

2Stoquastic Hamiltonians sit between classical Hamiltonians (CSPs) and general quantum Hamiltonians.
3Crosson et. al.’s problem asks about the properties of the Gibbs distribution corresponding to the temperature

T of a specific family of classical, rather than quantum, physical systems, defined using local classical Hamiltonians.
Though inspired by adiabatic quantum computation, this problem is in fact defined using classical terminology, since
the classical Hamiltonians can be viewed as constraint satisfaction systems. Yet, we note that its definition uses
a layer of physical notation, involving Gibbs distribution and temperature. Moreover, when stated using classical
terminology, the input to this problem is restricted, in a fairly contrived way, to sets of classical constraints which
can be associated with a (noisy) deterministic circuit. Both of these aspects seem to make handling this problem
using standard combinatorial tools difficult or at least not very natural.

4We notice that Drucker [Dru11] proves a PCP theorem for AM; in the definition he uses for AM, the coins are
public and the prover sees them (See Section 2.3 in [Dru11]); but his result does not hold when the coins are private,
namely for MA.

1



many of the definitions and results presented here, it is in fact not needed to understand it in order
to understand the proofs.

Based on this idea, as well as a simple observation made in [AG19] which says that the problem
of [BT09] remains promise-MA complete even when restricted to what is referred to in [AG19] as
uniform stoquastic Hamiltonians, we can prove the MA-hardness proof of the SetCSP problem as a
translation of the MA-hardness proof given in [BT09] into a classical language. We notice that the
proof of [BT09] on its own heavily relies on the Quantum Cook-Levin proof of Kitaev [KSV02].

It turns out that there is an easy reduction from the problem SetCSP to that of ACAC, and
therefore the proof that ACAC is MA-hard follows immediately.

Interestingly, the proof of containment in MA is rather simple for ACAC (it is an easy application
of a known result from random walk theory.) Finally, using the same reduction, we arrive at a proof
that the SetCSPproblem is also in MA5.

We stress that we present all proofs here avoiding any quantum notation or quantum jargon
what-so-ever. The main contribution of this work is in the definitions themselves, initiated by
the small but important conceptual idea of the translation mentioned above; this translation thus
provides two new, combinatorial, natural MA-complete problems, which we believe are amenable
to research in a language familiar to (classical) computer scientists.

We now describe the problems. In the ACAC problem, we consider an exponentially large graph,
accompanied with a function on the vertices that marks some of them. Both graph and the function
on the vertices are given implicitly (and succinctly) by a polynomial size circuit. We then ask if
there exists a connected component of the graph that is “clean” (meaning that all of its vertices
are unmarked) or if the graph is ε-far from having this property. The notion of “far” is defined as
follows: every set of vertices which is close to being a connected component (i.e. its expansion is
smaller than ε) must have at least an ε-fraction of its vertices marked. In other words, either a set
is ε-far from a connected component (i.e. has large expansion) or at least ε fraction of its vertices
are marked. We call this problem approximately-clean approximate-connected-component (ACACε).

Our second MA-complete problem, called the Set-Constraint Satisfaction Problem, or SetCSP,
is a somewhat unexpected generalization of the standard Constraint Satisfaction Problem (CSP).
While a constraint in CSP acts on a single string (deciding if it is valid or not), the generalized
constraints act on sets of strings. We call the generalized constraints set-constraints (see Section 4
for the exact definition of a set-constraint.). The input to the SetCSP problem is a collection of such
set-constraints, and the output is whether there is a set of strings S that satisfies all set-constraints
in this collection, or any set of strings S is ε-far from satisfying this set-constraint collection (see
Definitions 4.2 and 4.8 for formal definitions of “satisfying a set-constraint” and “far”). We denote
this problem by SetCSPε.

Following the ideas of [BT09, KSV02], we show the following three claims: i) for every inverse
polynomial ε, we have that ACACε is in MA (Corollary 3.5); ii) there exists an inverse polynomial
function ε = ε(n) such that SetCSPε is MA-hard (Lemma 4.9); and iii) for all functions ε = ε(n) >
0, there is a polynomial-time reduction from SetCSPε to ACACε/2.Together, these facts imply the
following results (which are proven in Section 5).

Theorem 1.1. There exists some polynomial p(x) = Θ(1/x3) such that for every inverse polynomial
p′ < p, the problems SetCSPp′(m) and ACACp′(m)/2 are MA-complete, where m is the size of the
SetCSP or ACAC instance.

5This in fact gives a significantly simpler version than[BBT06] of the proof of containment in MA, in the restricted
case of uniform stoquastic Hamiltonians.
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We stress that the definitions of both these problems and the proofs presented in this paper
only use standard combinatorial concepts from set- and graph-theory.

1.1 Conclusions, future work and open questions

In a similar way to what is done in this note, we claim that it is possible to translate several other
results from the stoquastic local Hamiltonian language to the SetCSP language, bringing us to very
interesting conclusions.

First, one could strengthen the MA-hardness of SetCSP (Lemma 4.9), whose proof is a transla-
tion of the proof of the quantum Cook-Levin theorem [KSV02], to the restricted case in which the
constraints are set on a 2D lattice. To do this, one could consider the result of [AvDK+08] where
they prove the QMA-hardness of local Hamiltonians on a 2D lattice (considering only the restricted
family of stoquastic Hamiltonians), and translate it to the SetCSP language. In this way, it can be
proven that SetCSPε with inverse polynomial ε, and with set-constraints arranged on a 2D-lattice
with constant size alphabet is still MA-hard.6 We omit here the details of the proof, since it is a
straight forward translation of [AvDK+08], similarly to what’s done in Lemma 4.9. This leads to
the following statement.

Lemma 1.2. There exists some polynomial p such that for every inverse polynomial p′ < p,
SetCSPp′ is MA-hard even when each bit participates in O(1) set-constraints, and each set-constraint
acts on O(1) bits.

We also claim that the main result of [AG19], which states that some problem called stoquastic
local Hamiltonian with constant gap is in NP, can be translated to SetCSP language, using again
the same translation. This means that the gapped version of the SetCSP problem is in NP. By the
gapped version of the problem, we mean SetCSPε when ε is a constant; and where we also require
that the locality k (number of bits in a set-constraint) and degree d (number of set-constraints each
bit participates in) are bounded from above by a constant. More concretely, we have the following.

Lemma 1.3. For any constant ε and constants k and d, SetCSPε is in NP if each bit participates
in d set-constraints, and each set-constraint acts on k bits.

Together these two results lead to a very important and surprising equivalence7:

Proposition. MA=NP iff there is a gap amplification reduction8 for SetCSP. The existence of a
gap amplification reduction means that there exists a constant ε > 0, such that for every polyno-
mial p, there is a polynomial time reduction from SetCSP1/p(n) to SetCSPε.

We note that it is easy to see that MA=NP implies such gap-amplification for SetCSP: if
MA = NP, then we can reduce SetCSP1/poly, which is in MA-complete by Theorem 1.1, to CSPO(1),
which is NP-complete by the PCP theorem [Din07]; then, since every CSP instance is also a SetCSP
instance with the same parameters, we have the gap-amplification. It is the other direction of
deriving MA=NP from gap-amplification for SetCSP, that is the new contribution. This implication
suggests a new path to the long standing open problem of derandomizing MA.

6We conjecture that this hardness result works even with binary alphabet and we leave such a statement for future
work.

7This equivalence was highlighted in [AG19] in a quantum language of stoquastic Hamiltonians
8In the same sense as Dinur’s gap amplification reduction for CSP[Din07]
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Finally, we leave as an open problem deriving such a natural statement regarding gap ampli-
fication for the ACAC problem. Though the two problems are technically very related, defining a
natural restricted version of the gapped ACACproblem, so that the [AG19] result would apply to
show containment in NP (similarly to SetCSP with constant ε, locality k and degree d) remains
open. The problem is that the locality notions don’t have a very natural analogues in the graph
language of ACAC.

Organization We provide notation and a few basic notions in Section 2. In Section 3, we define
the Approximately-clean approximate-connected-component problem and prove its containment in
MA. The definition of SetCSP and the proof of its MA-hardness are in Section 4. The reduction from
SetCSP to ACAC appear in Section 5. In Appendices A to C we provide some basic background on
computational complexity and random walks, and prove some standard technical results we need.
In Appendix D, we also prove the PSPACE-completeness of the exact version of the ACAC problem.

2 Preliminaries

For n ∈ N+, we denote [n] = {0, ..., n− 1}. For any n-bit string, we index its bits from 0 to n− 1.
For x ∈ {0, 1}n and J ⊆ [n], we denote x|J as the substring of x on the positions contained in J .

For x ∈ {0, 1}|J |, y = {0, 1}n−|J | and J ⊆ [n], we define xJyJ to be the unique n-bit string w such
that w|J = x and w|J = y, where J = [n] \ J . For two strings, x and y, we denote by x || y their
concatenation. For a string of bits x, |x| denotes the number of bits in x.

2.1 Complexity classes

A (promise) problem A = (Ayes, Ano) consists of two non-intersecting sets Ayes, Ano ⊆ {0, 1}∗. For
completeness, we add in Appendix A the definitions of the two main complexity classes that are
considered in this work: NP and MA.

The standard definition of MA [Bab85] requires yes-instances to be accepted with probability
at least 2

3 , but it has been shown that there is no change in the computational power if we require
the verification algorithm to always accept yes-instances [ZF87, GZ11].

2.2 Reversible circuits

It is folklore that the verification algorithms for NP and MA can be converted into a uniform family
of polynomial-size Boolean circuits, made of reversible gates, {NOT,CNOT,CCNOT} by making
use of additional auxiliary bits initialized to 0, with only linear overhead. For randomized circuits,
we can also assume the circuit uses only reversible gates, by assuming that the random bits are
part of input. See Appendix B for more details.

Let G ∈ {NOT,CNOT,CCNOT} be a gate to be applied on the set of bits J out of some n-bit

input x. We slightly abuse notation (but make it much shorter!) and denote G(x)
def
= x|J

J
G(z|J)J .

Namely, we understand the action of the k-bit gate G on an n > k bit string x by applying G only
on the relevant bits, and leaving all other bits intact.
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3 Approximately-clean approximate-connected-component prob-
lem

In this section, our goal is to present the approximately-clean approximate-connected-component
problem and prove its containment in MA. But before that, we explain the exact version of this
problem.

For a fixed parameter n, we consider a graph G of 2n nodes, which is described by a classical
circuit CG of size (number of gates) poly(n), as follows. For simplicity, we represent each vertex
of G as an n-bit string, and CG, on input x ∈ {0, 1}n, outputs the (polynomially-many) neighbors
of x in G.9 We are also given a circuit CM , which when given input x ∈ {0, 1}n, outputs a bit
indicating whether the vertex x is marked or not.

We define the clean connected component problem (CCC) which, on input (CG, CM ), asks if G
has a connected component where all vertices are unmarked or if all connected components have
at least one marked element. We give now the formal definition of this problem.

Definition 3.1 (Clean connected component(CCC)). Fix some parameter n. An instance of the
clean connected component problem consists of two classical poly(n)-size circuits CG and CM . CG
consists of a circuit succinctly representing a graph with G = (V,E) where V = {0, 1}n and each
vertex has degree at most poly(n). On input x ∈ {0, 1}n, CG outputs all of the neighbors of x. CM
is a circuit that on input x ∈ {0, 1}n, outputs a bit. The problem then consists of distinguishing
the two following cases:
Yes. There exists one non empty connected component of G such that CM outputs 0 on all of its
vertices.
No. In every connected component of G, there is at least one vertex for which CM outputs 1.

We show in Appendix D that this problem is PSPACE-complete. Our focus here is to study
the approximate version of CCC, where we ask whether G has a clean connected component or it is
far from having this property, meaning that for every set of vertices S, the boundary10 of S is at
least ε|S| (and therefore S is far from being a connected component), or, if the boundary is small
(i.e. S is close to a connected component) it contains at least ε|S| marked elements. Here is the
definition of the problem.

Definition 3.2 (Approximately-clean approximate-connected-component(ACACε)). Same as Def-
inition 3.1 with the following difference for no-instances:
No. For all non empty S ⊆ V , we have that either

|∂G(S)| ≥ ε|S| or |{x ∈ S : CM (x) = 1}| ≥ ε|S|.

In the remainder of this section, we show that ACACε is in MA for every inverse-polynomial ε.

3.1 Inclusion in MA

The idea of the proof is as follows. The prover sends a vertex that belongs to the (supposed) clean
connected component and then the verifier performs a random-walk on G for sufficiently (but still
polynomially-many) steps and rejects if the random walk encounters a marked element.

9We notice that usually we succinctly describe graphs by considering a circuit that, on input (x, y), outputs 1 iff
x is connected to y. In our result it is crucial that given x, we are able to efficiently compute all of its neighbors.

10 The boundary of a set of vertices S ⊆ V is defined as ∂G(S) = {{u, v} ∈ E : u ∈ S, v 6∈ S}.
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In order to prove that this verification algorithm is correct, we first prove a technical lemma
regarding the random-walk on no-instances.

Lemma 3.3 (In NO-instances the random walk reaches marked nodes quickly). Let ε be an inverse-
polynomial function of n. If (CG, CM ) is a no-instance of ACACε, then there exist polynomials q1
and q2 such that for every x ∈ {0, 1}n, a q1(n)-step lazy random walk11 starting at x reaches a
marked vertex with probability at least 1

q2(n)
.

Proof. Let x be some initial (unmarked) vertex (notice that we can assume that x is unmarked
since otherwise the lazy random walk reaches a marked vertex with probability 1). Let Gx be the
connected component of x in G and Vx be the set of vertices in the connected component of x. We
partition Vx into A, the unmarked vertices in Vx and B = Vx \A, the marked vertices in Vx.

We want to upper bound the size of the edge boundary of any set S ⊆ A which contains only
unmarked strings. We claim that by the conditions of the lemma, it must be that for any S ⊆ A,
we have the following bound:

|∂G(S)| ≥ ε|S|, (1)

otherwise S would contradict the fact that (CG, CM ) is a no-instance, since it only contains un-
marked vertices.

We can now ask how fast does a lazy random walk starting from x, reach an element in B. This
is a well known question from random walk theory, and it can be stated as follows.

Lemma 3.4 (Escaping time of high conductance subset). Let G = (V = A∪B,E) be a simple (no
multiple edges) undirected connected graph, such that for every v ∈ A dG(v) ≤ d , and such that for

some δ < 1
2 , for all A′ ⊆ A, we have that |∂G(A′)| ≥ δ|A′|. Then a

(
16d2

δ2
ln 2d|V |

δ

)
-step lazy random

walk starting in any v ∈ A reaches some vertex u ∈ B with probability at least δ
4d .

We defer the proof of this lemma to Appendix C and we apply it using G = Gx, A, B, d is the

(poly(n)-large) maximum degree of G, and δ ≥ ε. It follows that a
(
16d2

ε2
(n+ ln (2d/ε))

)
-step lazy

random walk starting on any x ∈ Gx reaches a marked vertex with probability at least ε
4d . �

From the previous lemma, we can easily achieve the following.

Corollary 3.5. For any inverse-polynomial ε, ACACε is in MA.

Proof. The witness for the ACAC instance consists of some string x, which is supposed to be in a
clean connected component of G. Define q1 and q2 as the same polynomials of Lemma 3.3, namely,

let q1 =
(
16d2

ε2
(n+ ln (2d/ε))

)
and q2 = 4d

ε . The MA-verification algorithm consists of repeating

nq2(n) times the following process: start from x, perform a q1(n)-step lazy random walk in G,
reject if any of these walks encounters a marked vertex, otherwise accept.

If (CG, CM ) is a yes-instance, then the prover can provide a vertex x which belongs to the clean
connected component. Any walk starting from x remains in its connected component and therefore
it will never encounter a marked vertex and the verifier accepts with probability 1.

If (CG, CM ) is a no-instance, from Lemma 3.3, each one of the random walks will find a marked
vertex with probability at least 1

q2(n)
, and therefore if we perform nq2(n) lazy random walks, the

probability that at least one of them finds a marked vertex is exponentially close to 1. �
11As is defined in Appendix C, in a lazy random walk, at every step we stay in the current vertex with probability

1
2
, and with probability 1

2
we choose a random neighbor of the current vertex uniformly at random and move to it.
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4 Set-Constraint Satisfaction Problem

In this section we present the Set Constraint Satisfaction Problem (SetCSP), and then prove its
MA-hardness.

4.1 Definition of the SetCSP problem

We start by recalling the standard Constraint Satisfaction Problem (CSP). We choose to present
CSP in a way which is more adapted to our generalization (but still equivalent to the standard
definition). An instance of k-CSP is a sequence of constraints C1, ..., Cm. In this paper, we see each
constraint Ci as a tuple (J(Ci), Y (Ci)), where J(Ci) ⊆ [n] is a subset of at most k distinct elements
of [n] (these are referred to as “the bits on which the constraint acts”) and Y (Ci) is a subset of
k-bit strings, namely Y (Ci) ⊆ {0, 1}|J(Ci)| (these are called the “allowed strings”). We say that a
string x ∈ {0, 1}n satisfies Ci if x|J(Ci) ∈ Y (Ci). The familiar problem of k-CSP, in this notation,
is to decide whether there exists an n-bit string x which satisfies Ci, for all 1 ≤ i ≤ m.

In k-SetCSP, our generalization of k-CSP, the constraints Ci are replaced by what we call
“set-constraints” which are satisfied by (or alternatively, that allow), sets of strings S ⊆ {0, 1}n.

Definition 4.1 (Set constraint). A k-local set-constraint C consists of a) a tuple of k distinct
elements of [n], denoted J(C) (we have |J(C)| = k, and we refer to J(C) as the bits which the set-
constraint C acts on), and b) a collection of sets of strings, Y (C) = {Y1, ..., Y`}, where Yi ⊆ {0, 1}k
is a set of k-bit strings and Yi ∩ Yj = ∅ for all distinct 1 ≤ i, j ≤ `.

Definition 4.2 (A set of strings satisfying a constraint). We say that a set of strings S ⊆ {0, 1}n
satisfies the k-local set-constraint C if first, the k-bit restriction of any string in S to J(C) is
contained in one of the sets in Y (C), i.e., for all x ∈ S, x|J(C) ∈

⋃
j Yj . Secondly we require that if

x ∈ S and x|J(C) ∈ Yj , then for every y such that y|J(C) ∈ Yj and y|
J(C)

= x|
J(C)

, then y ∈ S. In

other words, for any string s ∈ S, one can replace its k-bit restriction to the bits J(C), which is a
string in some Yj ∈ Y (C), with a different k-bit string in Yj , and the resulting string s′ must also
be in S.

An instance of k-SetCSP consists of m such k-local set-constraints, and we ask if there is some
non-empty S ⊆ {0, 1}n that satisfies each of the set constraints, or if any set S of n-bit strings is
far from satisfying the collection of set-constraints. How to define far? We quantify the distance
from satisfaction using a generalization of the familiar notation of unsat from PCP theory [Din07];
we denote the generalized notion by set-unsat(C, S). Intuitively, this quantity captures how much
we need to modify S in order to satisfy the collection of set-constraints. Making this definition
more precise will require some work; However we believe it already makes some sense intuitively,
so we present the definition of the SetCSP problem now, and then provide the exact definition of
set-unsat(C, S) in Section 4.2.

Definition 4.3 (k-local Set Constraint Satisfaction problem (k-SetCSPε)). Fix the two constants
d, k ∈ N+, as well as a monotone function ε : N+ → (0, 1) to be some parameters of the problem.
An instance to the k-local Set Constraint Satisfaction problem is a sequence of m(n) k-local set-
constraints C = (C1, ..., Cm) on {0, 1}n, where m is some polynomial in n. Under the promise that
one of the following two holds, decide whether:
Yes. There exists a non-empty S ⊆ {0, 1}n that satisfies all set constraints in C: set-unsat(C, S) = 0
No. For all S ⊆ {0, 1}n, set-unsat(C, S) ≥ ε(n).
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4.2 Satisfiability, frustration and the definition of set-unsat(C, S).

We present some concepts required for the formal definition of set-unsat(C, S).

Definition 4.4 (C-Neighboring strings). Let C be some set-constraint. Two distinct strings x and
y are said to be C-neighbors if x|

J(C)
= y|

J(C)
and x|J(C), y|J(C) ∈ Yi, for some Yi ∈ Y (C). We call

a string x a C-neighbor of S if there exists a string y ∈ S such that x is a C−neighbor of y.

We also define the C-longing strings in a set of strings S: these are the strings that are in S
but are C-neighbors of some string that is not in S.

Definition 4.5 (C-Longing strings). Given some set S ⊆ {0, 1}n and a set-constraint C, x ∈ S is
a C-longing string with respect to S if x is a C-neighbor of some y 6∈ S.

A useful definition is that of bad strings for some set-constraint C, which in short are the strings
that do not appear in any subset of Y (C).

Definition 4.6 (C-Bad string). Given a set-constraint C, with Y (C) = {Y1, ...Y`}, a string x ∈
{0, 1}n is C-bad if x|J(C) 6∈ ∪iYi. We abuse the notation and whenever x is C-bad, we say x 6∈ Y (C).

The following complementary definition will be useful:

Definition 4.7 (Good string). We say that a string is C-good if it is not C-bad. We say that it
is a ”good string for the set-constraint collection C” if it is C-good for all set-constraints C ∈ C.
When the collection C is clear from context (as it is throughout this note), we omit mentioning of
the set-constraints collection C and just say that the string is “good”.

Given Definitions 4.5 and 4.6 above, it is easy to see that a set of strings S ⊆ {0, 1}n satisfies a
set-constraint C (by Definition 4.2) iff S contains no C-bad strings and no C-longing strings.

We now provide a way to quantify how far S is from satisfying C.

Definition 4.8 (Satisfiability of set-constraints). Let S ⊆ {0, 1}n and C be a k-local set-constraint.
Let BC be the set of C-bad strings in S and LC be the set of C-longing strings in S. Note that
LC∩BC = ∅. The set-unsat-value (which we sometimes refer to as the frustration) of a set-constraint
C with respect to S, is defined by

set-unsat(C, S) =
|BC |
|S|

+
|LC |
|S|

(2)

Given a collection of m k-local set-constraints C = (C1, ..., Cm), its set-unsat-value (or frustration)
with respect to S is defined as average frustration of the different set-constraints:

set-unsat(C, S) =
1

m

m∑
i=1

set-unsat(Ci, S). (3)

We also define the frustration of the set collection C:

set-unsat(C) = min
S⊆{0,1}n
S 6=∅

{set-unsat(C, S)}. (4)

We say that C is satisfiable if set-unsat(C) = 0 and for ε > 0, we say that C is ε-frustrated if
set-unsat(C) ≥ ε.
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Notice that the normalization factors in Equation (2) guarantees that the set-unsat-value lies
between 0 and 1.12

4.3 Intuition and standard CSP as special case

We can present a standard k-CSP instance consisting of constraints C1, C2, ..., Cm as an instance of
k-SetCSP in the following way: For each constraint C`, ` ∈ {1, ...,m} out of the m constraints in the
k-CSP instance, we consider the following set-constraint C ′`: for every k-bit string s that satisfies
C`, add the subset Ys = {s} to C ′`. We arrive at a collection C of m set-constraints, where each
set-constraint C ′` in C consists of single-string sets Yi corresponding to all strings which satisfy C`.

We claim that the resulting SetCSP instance has set-unsat(C) = 0 if and only if the original
CSP instance was satisfiable. First, if the original CSP instance is satisfiable, we claim that for
any satisfying string s we can define the set S = {s} consisting of that single string, and S indeed
satisfies the collection of set-constraints defined above. To see this, note that in our case, there is no
notion of C-neighbors (See Definition 4.4), since all Yi’s contain only a single string. Hence, there
are no longing strings; By the definition of set-unsat (Equation (2)) in this case set-unsat(C, S) = 0
if all strings in S are good for all set-constraints C ′, namely each of them satisfies all constraints
C in the original k-CSP instance, which is indeed the case if we pick a satisfying assignment. For
the other direction, assume set-unsat(C, S) = 0 for some set S. This in particular means that all
strings in S are C-good for all set-constraints in C. By definition of our C, this means any string
s ∈ S is a satisfying assignment.

We give now some intuition about the set-unsat quantity (Equation (2)). We first note that it
generalizes the by-now-standard notion of (un)satisfiability in CSP, which for a given string, counts
the number of unsatisfied constraints, divided by m. We note that in Equation (2), if S = {s},
then |BC | is either 0 or 1, depending on whether s satisfies the constraint or not. As previously
remarked, in CSP the notion of neighboring and longing strings does not exist, and so LC will
always be empty. Thus, in the case where S = {s} and all set-constraints containing single strings,
Equation (3) is indeed the number of violated constraints by the string, divided by m - which is
exactly the standard CSP unsat used in PCP contexts [Din07]. (In the case of S containing more
than one string, but all Yis are still single-strings, Equation (3) will just be the (non-interesting)
average of the unsat of all strings in S).

The interesting case is the general SetCSP case, when the Yi’s contain more than a single string,
i.e., when the notions of neighbors and longing strings become meaningful. In this case, the left
term in the RHS of Equation (2) quantifies how far the set S is from the situation in which it
contains only “good” (not “bad”) strings (this can be viewed as the standard requirement) but it
adds to it the right term, which quantifies how far S is from being closed to the action of adding
neighbors with respect to the set-constraints13. Loosely put, the generalization from constraints to
set-constraints imposes strong “dependencies” between different strings, and the number of longing
strings, LC , counts to what extent these dependencies are violated.

12The lower bound is trivial since the value cannot be negative. For the upper-bound, notice that BC , LC ⊆ S and
BC ∩LC = ∅. This is because bad strings have no neighbors whereas longing strings do. Hence |BC |

|S| + |LC |
|S| ≤

|S|
|S| = 1.

13Notice that we could have also chosen to define ”far” here, by counting the number of strings outside of S that
are neighbors of S. But since the degree of each string in the graph is bounded, the exact choice of the definition
does not really matter; we chose the one presented in this note since it seems most natural.
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4.4 MA-hardness of SetCSP1/poly(n)

In this subsection, we show the MA-hardness of SetCSP1/poly.

Lemma 4.9. There exists some polynomial p(x) = Θ(1/x3) such that for every inverse polynomial
p′ < p, the problem SetCSPp′(m) is MA-hard.

To prove this lemma, we show how to reduce any language L ∈ MA to a 6-SetCSP instance.
Our approach here is to “mimic” the Quantum Cook-Levin theorem due to Kitaev [KSV02], but
given that we only need to deal with set of strings and not arbitrary quantum states, our proof can
in fact be stated in set-constraints language.

4.4.1 Intuition for how set-constraints can check histories

In the celebrated proof of the (classical) Cook-Levin theorem, an instance of an NP-language is
mapped to an instance for 3-SAT problem. More precisely, the verifier V of the NP-problem, which
runs on an n-bit input string x and a poly(n) bit witness y, is mapped to a 3-SAT formula. To do
this, a different variable is assigned to the value of each location of the tape of the Turing machine
of V at any time step; these variables are used to keep track of the state of the computation of V
(namely what is written on the tape) at the different time steps (see Figure 1 for an example). The
formula acts on strings of bits, which can be viewed as assignments to all these variables; such an
assignment encodes the entire history of a single possible computation. The clauses of the Boolean
formula check if the history given by the assignment, indeed corresponds to a correct propagation
of an accepted computation. More precisely, the constraints check that a) the assignment to the
n Boolean variables at the first time step, associated with the input to the NP-problem, is indeed
correct (namely equal to the true input x); b) the assignment of the variables corresponding to
any two subsequent time steps is consistent with a correct evolution of the appropriate gate in the
computation; and c) the output bit, namely the value of the output variable in the last time step,
is indeed accept. There exists a valid history which ends with accept (i.e., x is in the language
accepted by the verifier), iff the resulting k-CSP is satisfiable; in which case a satisfying assignment
encodes a history of a correct computation of the verifier.

Now, suppose we want to apply a similar construction for some MA verification. The random
bits are also given to the verification circuit as an input, and one could hope that the reduction
of the Cook-Levin theorem would still work. However, the problem is that there could be some
choice of random coins that makes the verification algorithm accept even for no-instances, because
the soundness parameter is not 0. Hence, the CSP would be satisfiable in this case, even though
the input is a NO instance. It is thus not sufficient to verify the existence of a single valid history.
In order to distinguish between YES and NO instances of the problem, we have to check in the
YES case that all (or at least many of the) initializations of the random bits lead to accept. The
key difficulty is how to check that not only a single string satisfies the constraints, but many.

This is exactly the reason for introducing the set-constraints. These set-constraints are able to
verify that the random bits are indeed uniformly random; then the standard Cook-Levin approach
described above can verify that (given the right witness) most of them leads to acceptance.

In order to implement such an approach, we first explain how to modify the original Cook-
Levin proof, of the NP completeness of satisfiability, so that the strings that we check are not entire
histories of a verification process of some NP problem; rather, the strings represent snapshots of
the tape (or evaluations of all bits involved in the circuit at a certain time) for different time-steps
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of the computation. A satisfying assignment is no longer a single string but a whole collection of
strings, denoted S, which would be the collection of all snapshots of a single valid computation, at
different times.14

In this case (note that we have still not included random bits in the discussion) we need to
show how to create set-constraints that verify that the set S really does contain all snapshots, and
it also needs to verify that S contains nothing else. More precisely, we need to verify that a) the
strings in S are consistent with being snapshots of a valid evolution of the computation b) the
input is correct in the string corresponding to the first snapshot, and the output is accept in the
string corresponding to the last snapshot, and c) the set S indeed contains the whole history of the
computation, i.e. all the snapshots in a correct evolution, and without any missing step.

It turns out that this can be done using set-constraints; We depict the differences between the
“original” Cook-Levin proof and the “set-constraints” one in Figure 1.

In reality, we need to do this not just for a single evolution but for the evolution over all possible
assignments to the random strings. Moreover, we need to enforce that the random bits are indeed
random; this requires further set-constraints (technically, this is done below in Equation (5)).

We note that the essence of the translation idea mentioned in the introduction appears already
when there are no random bits involved at all; the reader is recommended to pretend that no
random bits are used, at her first reading.

14 For quantum readers, we note that this reflects the main step in Kitaev’s modification of the Cook-Levin theorem,
which enabled him to test that entangled quantum states evolved correctly.
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(a) In the Cook-Levin theorem, a fresh new
variable is assigned to every wire of the cir-
cuit, and the evolution of the computation can
be described as an assignment to the variable
such that their values are consistent accord-
ing to the circuit. In this example, we see a
(very simple) circuit, and then the history of
the computation on input 01111101. The CSP
instance derived from the Cook-Levin theo-
rem ensures that the assignment is indeed the
evolution of the circuit for some input (and of
course, that the circuit accepts at the end).

s0 s1 s2 s3
y1

CCNOT

output

y2

CCNOTy3 NOT

y4

H = {0001110,1001100,1101110,1111111}

(b) In this work, we consider reversible circuits and
the history of the computation is described by a
set of strings. We define then the history-set of the
computation that contains the snapshot of every
stage of the computation. Each such a string is
augmented with a prefix (marked in bold) identifying
the timestep, in unary, of the snapshot. These bits,
called the “clock”, are necessary in order to check
the evolution. In this example, we see a very simple
circuit that has no auxiliary nor random bits. We
show the history-set of the computation on input
1110 and the prefix indicating the number of the
timestep (here, 0 to 3), counted in unary. The SetCSP
instance derived here ensures that a satisfying set of
strings contains the snapshots for all timesteps of the
computation.

Figure 1: Comparison between the evolution of a circuit in the Cook-Levin proof and in our work.

We next explain the reduction from MA-verification algorithms to 6-SetCSP in Section 4.4.2,
and then prove its correctness in Section 4.4.3.

4.4.2 The reduction

We assume, without loss of generality, that the MA verification algorithm is reversible, as described
in Section 2.2: Given an input x ∈ {0, 1}n, we assume a verification circuit Cx whose input is
y || 0a(n) || r, where y ∈ {0, 1}p(n) is the polynomial-size MA witness, the middle register consists
of the circuit auxiliary bits (needed for reversibility) and r ∈ {0, 1}q(n) are the polynomially many
random bits used during the MA verification. The circuit Cx consists of T gates G1, ..., GT , where
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Gi ∈ {NOT,CNOT,CCNOT}.15 At the end of the circuit, we assume WLOG that the first bit as
the output bit.

We describe now the reduction from the MA problem into a SetCSP instance C. We will show
in the next section that if there is an MA witness that makes the verification algorithm accept
with probability 1, then C is satisfiable, whereas if every witness makes the verifier reject with
probability at least 1

2 , then C is at least inverse polynomially frustrated.
We start with an MA verification circuit Cx (assumed to be reversible, as described in Sec-

tion 2.2) acting on an input consisting of a(n) 0-bits, witness y of p(n) bits and q(n) random bits.
Thus, the number of bits which the reversible verification circuit acts on is w(n) = a(n)+p(n)+q(n).
The number of gates is T (n); denote these gates by G1, ..., GT . Our set-constraint instance C will
act on strings of s(n) = T (n) +w(n) many bits. We omit n from such functions from now on, since
it will be clear from the context.

We call the T first bits of such strings the clock register and the last w bits the work register. The
work register comprises of three sub-registers: the witness register (first p(n) bits), the auxiliary
register (middle a(n) bits) and the randomness register (last q(n) bits). We want to create set-
constraints which force all the strings to be of the form z ∈ {0, 1}s such that z|[T ] = unary(t) for
some t ∈ [T + 1] (where unary(t) denotes the integer t written in unary representation), and z|[s]\[T ]
represents the snapshot of the computation at time t (as explained in Section 4.4.1 above) for the
initial string y || 0a(n) || r, for some witness y and some choice of random bits r.

We will construct C in such a way that S ⊆ {0, 1}s satisfies C if and only if i) it contains all
snapshots of the computation for some witness y and for all bit strings r input to the randomness
register; and ii) the computations whose snapshots are contained in S are not only correct (meaning
also that the auxiliary bits are all initialized to 0) but that they are accepted computations (meaning
that the output is 1).

We do this by providing set-constraints of four types, as follows.

Clock consistency. We first impose that if z ∈ S, then z|[T ] = unary(t), for some t ∈ [T + 1].
Notice that a string is a valid unary encoding iff it does not contain 01 as a substring. To

guarantee that the clock bits are consistent with some unary representation of an allowed t, we add
for every t ∈ [T ] the set-constraint Cclockt defined by:

Y (Cclockt ) = ({{00}, {10}, {11}}) and J(Cclockt ) = (t, t+ 1).

Example: The string 010T−2 || z is a bad string for Cclock1 since w|J(Cclock
1 ) = 01 6∈ Y (Cclock1 ).

Initialization of Input bits and Random bits. Here, we want to check that 0T || y || z || r is
not in S whenever z 6= 0a, which enforces the ancillary bits to be initialized to 0. In addition, we
want to check that for any witness y, if one string of the form 0T || y || 0a || r for some r is in S,
then for all r′ ∈ {0, 1}q, we have 0T || y || 0a || r′ in S. In conclusion, we need to check two things:
that all auxiliary bits are initialized to 0 and that all possible initializations of the random bits are
present.

For each auxiliary bit j ∈ [a] we add a set-constraint Cauxj and for every random bit j ∈ [q] we

add the set constraint Crandj as follows.

15Recall that the gate CNOT on input a, b outputs a, b ⊕ a, and the gate CCNOT on input bits a, b, c, outputs
a, b, c⊕ ab.
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We define
Y (Cauxj ) = {{00}, {10}, {11}} and J(Cauxj ) = (0, T + p+ j),

which forces that for t = 0 (notice that the unique value of t for which unary(t) has the first bit 0 is
t = 0), the j-th auxiliary bit must be 0, because the string (01) is forbidden. For t 6= 0 this is not
enforced by allowing any value of the j-th auxiliary bit when the first clock bit is 1 (and therefore
t 6= 0).

Example: The string 0T || y || 10a−1 || r ∈ S is bad for Caux0 .

For the random bits, we want to make sure that the j-th random bit has both values 0 and 1,
over all the random bits. Therefore we define the constraints Crandj by

Y (Crandj ) = {{00, 01}, {10}, {11}} and J(Crandj ) = (0, T + p+ a+ j). (5)

These constraints will be useful in the following way. First, the propagation set-constraints that
we will define soon, constrain S to make sure that there exists a string 0T || y || 0a || r representing
a snapshot at time 0 with some value of the random bits, r, which is indeed in S. The Crand

constraints enforce that given the existence of such a string in S, then for any other assignment to
the random bits, r′, the string 0T || y || 0a || r′ ∈ S. Then, if many of these other strings are not in
S, the frustration will be high.
Example: If s1 = 0T || y || 0a || 0r ∈ S but s2 = 0T || y || 0a || 10r−1 6∈ S, then s1 is a Crand1 -longing

string in S since s1 and s2 are Crand1 -neighbors.

Propagation. Here we want to check that if unary(t − 1) || z ∈ S for some 0 < t < T , then
unary(t) ||Gt (z) ∈ S.

Let us consider the propagation constraint associated with the t-th timestamp (the one corre-
sponding to the application of the tth gate, Gt), for 1 < t < T . Let us assume that the t-th gate
acts on bits bt,1, ..., bt,k. For this we add the set-constraint Cpropt defined as follows:

Y (Cpropt ) =
⋃

z∈{0,1}k
{{100 || z, 110 ||Gt(z)}} and J(Cpropt ) = (t− 1, t, t+ 1, bt,1, bt,2, ..., bt,k).

For t = 1 we simply erase the left clock bit from the above specification:

Y (Cprop1 ) =
⋃

z∈{0,1}k
{{00 || z, 10 ||G1(z)}} and J(Cprop1 ) = (1, 2, b1,1, b1,2, ..., b1,k).

Likewise if t = T erase the right most clock bit from the above.
Example: If s1 = unary(t) || z ∈ S but s2 = unary(t + 1) ||Gt+1(z) 6∈ S, s1 is a Cpropt+1 -longing string
in S, since the two strings are Cpropt+1 - neighbors.

Output. Finally, we need to check that for all strings of the form 1T || z, the first bit of z is 1,
namely, the last snapshot corresponds to accept. We define Cout such that

Y (Cout) = {{00}, {01}, {11}} and J(Cout) = (T, T + 1).

Here we use the fact that the T -th bit of unary(t) is 1 iff t = T . In this case, if this value is 1, we
require that the output bit is 1, otherwise it could have any value.
Example: The string 1T || 0 || z is bad for Cout.
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4.4.3 Correctness

Given some MA-verification circuit Cx, we consider the following 6-SetCSP instance

Cx = (Cclock1 , ...., CclockT , Caux1 , ..., Cauxa , Crand1 , ...Crandq , Cprop1 , ..., CpropT , Cout}.

Let m be the number of terms in Cx and when it is more convenient to us, we will refer to
the set-constraints in Cx as Ci for i ∈ [m], where the terms have an arbitrary order. We show
now that Cx is satisfiable if x is a positive instance, and if x is a negative instance, then C is at
least 1

10(T+1)qm -frustrated (where we remember that q is the number of random coins used by Cx).

Notice that m, the number of constraints in Cx, is polynomial in T , which is also polynomial in |x|.

We start by proving completeness.

Lemma 4.10 (Yes-instances lead to satisfiable SetCSP instances). If x ∈ L, then Cx is satisfiable.

Proof. Let y be the witness that makes Cx accept with probability 1, and let

S = {unary(t) ||Gt...G1(y, 0
a, r) : r ∈ {0, 1}q, t ∈ [T + 1]} .

By construction, the initialization, clock and propagation constraints are satisfied by S. By the
assumption that the MA verification circuit accepts with probability 1, the output constraints are
also satisfied by S. �

Next we prove soundness.

Lemma 4.11 (NO-instances lead to frustrated SetCSP instances). If x 6∈ L, then set-unsat(Cx, S) ≥
1

10(T+1)qm for every non-empty S ⊆ {0, 1}n.

Proof. Let S ⊆ {0, 1}n be a non-empty set, B the set of bad strings in S (namely a string in S
which is C-bad for at least one set-constraint C) and L the set of longing strings in S (namely the
strings in S which are C-longing for at least one set-constraint C). Our goal here is to consider a

partition {Ki} of S, such that for every Ki, |Ki ∩ (B ∪ L)| ≥ |Ki|
10(T+1)q , and from this we will show

that set-unsat(Cx, S) ≥ 1
10(T+1)qm .

Let us start by defining Sic ⊆ S to be the subset of S with invalid clock register. Notice that
every x ∈ Sic is bad for at least one clock constraint and therefore |Sic ∩B| = |Sic|.

Now we notice that all other strings correspond to some valid clock register whose value (when
read as a unary representation of some integer) is in [T + 1]. Let us partition the strings in S \ Sic
into disjoint sets H1,...,H` (which indicate different history-sets to which the strings belong) as
follows. We define the initial configuration of some string in S \ Sic like this. The string must
be of the form unary(t) || z for some t and z. Then initial(unary(t) || z) = unary(0) ||G−11 ...G−1t (z),
which is the assignment of the initial bits that leads to the configuration z at the t’th step. We
say then that two strings s1, s2 ∈ Hi iff initial(s1) = initial(s2) and we abuse the notation and call
initial(Hi) = initial(s1). Notice that for i 6= j, Hi and Hj are disjoint because the computation
is reversible; thus the Hi’s constitute a partition of S \ Sic. Notice also that each Hi contains at
most T + 1 strings, and the different strings in each Hi have different values of the clock register.
We call these Hi history-sets for the reason that they correspond to a correct propagation of the
computation of the circuit Cx for some initialization of all its bits.16

16 More precisely, Hi is just a subset of the correct propagation because it involves only the snapshots in S.

15



Let us first consider the history-sets whose initial configuration is not valid, i.e., it contains
invalid (or non-zero) auxiliary bits: Hia = {Hi : initial(Hi) = 0T || y || z || r for some z 6= 0a}. We
note that for any Hi ∈ Hia, initial(Hi) is a Cauxj -bad string in Hi for some j. If this string is in Hi,

then we indeed have |Hi∩(B∪L)| ≥ |Hi∩B| ≥ 1 ≥ |Hi|
T+1 . However, if Hi does not contain its initial

string, then consider the minimal t such that unary(t) || z ∈ Hi for some z, and by assumption we
have t > 0. This means that the string unary(t) || z is a Cpropt -longing string, because it is a neighbor

of unary(t − 1) ||G−1t (z) 6∈ S. Hence, for such Hi we have |Hi ∩ (B ∪ L)| ≥ |Hi ∩ L| ≥ 1 ≥ |Hi|
T+1 .

This completes handling all the strings in S within a history set Hi with invalid auxiliary bits in
initial(Hi).

We now need to consider history sets in {Hi}\Hia, namely, the history sets whose initial string
is of the form 0T || y || 0a || r for some value of y and r. Let us group these history sets according
to y, the value of the witness register. In other words, let us consider the sets of history sets:
Hy = {Hi : Hi’s initial string is of the form 0T || y || 0a || r}. We fix now some y and the following
arguments hold for each y separately. Notice that each Hi ∈ Hy corresponds to a computation
corresponding to a different initial random string for the witness y. Let us denote the union of
strings in all sets in Hy by Sy =

⋃
Hi∈Hy

{s|s ∈ Hi}. To finish handling all strings, we need to

provide a bound on |Sy ∩ (L ∪B)| for all witnesses y.
To proceed, we need some additional notation. We note that Hy can be written as the union of

the history sets which contain their initial string, denoted Hstart
y , and the rest, denoted Hnostart

y .
We proceed by considering two cases separately:

1. Let us first consider the simpler case in which |Hnostart
y | > |Hy |

10 . As above, we have that each
Hi ∈ Hnostart

y has a longing string, and therefore we have that |Sy ∩ (L ∪ B)| ≥ |Sy ∩ L| ≥
|Hnostart

y | > |Hy |
10 ≥ |Sy |

10(T+1) . The last inequality is due to the fact that each Hi ∈ Hy

contains at most T + 1 strings. This finishes the treatment of all strings in S, in the case

|Hnostart
y | > |Hy |

10 .

2. In the second case |Hstart
y | ≥ 9|Hy |

10 . We further denote Sinity = {s|s = initial(Hi), Hi ∈ Hstart
y }

as the set of the initial strings of each Hi ∈ Hstart
y . Again (and for the last time) there are

two cases.

(a) First, let us consider the case when |Sinity | ≥ 2q−1. This means that for this fixed y,

for most values r of the random bits, the initial string 0T || y || 0a || r of the history set
corresponding to this y and r is present in Sy. We use the facts that x /∈ L, and that
at least 2/3 of the history sets must lead to rejection by Definition A.2. From these
observations, we will conclude that there will be either many bad strings due to the final
accept constraint Cout, or many longing strings.

Let Accy = {Hi ∈ Hy : 1T || z ∈ Hi and z = 1 || z′} be the set of history sets in Hy that
accept in the last step. We have that |Accy| is at most the number of r ∈ {0, 1}q which
leads the circuit Cx to accept the witness y; since x 6∈ L, we have that the probability

to accept for any y is most 1/3. Hence |Accy| ≤ 2q

3 ≤ 2
|Hy |
3 ≤ 20|Hstart

y |
27 , where we used

the fact that 2q−1 ≤ |Sinity | = |Hstart
y | ≤ |Hy|, and in the last inequality, the fact that we

are in the case |Hstart
y | ≥ 9|Hy|/10. Hence, there are at least 2q

10 history sets in Hstart
y

which do not end in accept. Such Hi either contains the string 1T || 0 || z (which is bad
for Cout), or does not contain a final state at all, namely does not contain a state of the
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form 1T || z for some z, resulting in a longing string. Thus, there are at least 2q

10 strings in
|Sy ∩ (B ∪L)|; and since |Sy| ≤ (T + 1)|Hy| and |Hy| ≤ 2q, resulting in |Sy| ≤ 2q(T + 1),

we have that |Sy ∩ (B ∪ L)| ≥ 2q

10 ≥
|Sy |

10(T+1) .

(b) Finally, let us consider the case where |Sinity | ≤ 2q−1. This is where we will need to
apply conductance arguments. Let G0

y be the subgraph of GC
17 induced by the vertices

Ry = {0T || y || 0a || r : r ∈ {0, 1}q}. Notice that G0
y is isomorphic to the q-dimensional

hypercube. This is true because the only remaining edges on G0
y come from the set-

constraints Crandj . Notice also that Sinity is a subset of the vertices of G0
y. We now

apply Lemma C.2 which states that the conductance of the q-dimensional hypercube is
1
q . Applying this lemma to the graph G0

y and the subset of its vertices, Sinity we conclude

that
|∂

G0
y
(Sinit

y )|

q|Sinit
y | ≥ 1

q , where we have used the fact that all vertices in G0
y have the same

degree, q, and the fact that we are now considering the case |Sinity | ≤ 2q−1. We can

conclude then that there exists at least |Sinity | edges in the cut (Sinity , Ry \ Sinity ). Since

each vertex in G0
y (in particular, each vertex in Sinity ) has q neighbors, it means that

there exists at least
|Sinit

y |
q longing strings in Sinity . We conclude this case by noticing

that

|Sy ∩ (L ∪B)| ≥ |Sy ∩ L| ≥
|Sinity |
q

=
|Hstart

y |
q

≥ 9|Hy|
10q

≥ 9|Sy|
10q(T + 1)

,

where in the second inequality we use the fact that Sinity ⊆ Sy and there are at least
|Sinit

y |
q

longing strings in Sinity , the equality follows since |Hstart
y | = |Sinity |, the third inequality

follows from our assumption that |Hstart
y | ≥ 9|Hy |

10 and finally we have that |Hi| ≤ T + 1

(and therefore |Hy| ≥ |Sy |
T+1).

To finish the proof, notice that S = Sic ∪
⋃
H∈Hia H ∪

⋃
y Sy. Since each of these subsets has

at least a 1
10(T+1)q -fraction of bad strings or longing strings, we have that |B ∪ L| ≥ |S|

10(T+1)q . It
follows that

set-unsat(Cx, S) =
1

m

∑
i

(
|BCi |
|S|

+
|LCi |
|S|

)
≥ |B|
m|S|

+
|L|
m|S|

≥ |B ∪ L|
m|S|

≥ 1

10(T + 1)qm
,

finishing the proof. �

From the two previous lemmas, we have the following.

Lemma 4.9 (restated). There exists some polynomial p(x) = Θ(1/x3) such that for every inverse
polynomial p′ < p, the problem SetCSPp′(m) is MA-hard.

Proof. It follows directly from Lemma 4.10, together with the fact that, regarding the parameters
in Lemma 4.11, we have that T, q ≤ m. �

17Here, we use the same notation as Section 3.1.
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5 Reduction from SetCSP to ACAC

In this section we reduce the SetCSP problem to the ACAC, showing the containment of SetCSP in
MA and the MA-hardness of ACAC.

Before showing the reduction, we prove a technical lemma that shows how, for a fixed S, the
value of set-unsat(C, S) and the number of bad and longing strings for C are related.

Lemma 5.1. For some fixed non-empty S ⊂ {0, 1}n, let BC =
⋃
iBCi and LC =

⋃
i LCi, the union

of bad and longing strings for all set-constraints in C, respectively. We have that set-unsat(C, S) ≤
1
|S|(|BC |+ |LC |).

Proof. By definition of set-unsat(C, S) and set-unsat(Ci, S), we have that

set-unsat(C, S) =
1

m

m∑
i=1

set-unsat(Ci, S) =
1

m|S|

m∑
i=1

|BCi |+ |LCi | ≤
1

m|S|

m∑
i=1

|BC |+ |LC |

=
1

|S|
(|BC |+ |LC |),

where in the inequality we use the fact that BCi ⊆ BC and LCi ⊆ LC . �

For some inverse-polynomial ε, we consider an instance C of k-SetCSPε. From C, we construct
the graph GC = ({0, 1}n, E), where (x, y) ∈ E if there exists a set-constraint C ∈ C such that x
and y are C-neighbors. We can define CGC that on input x ∈ {0, 1}n, outputs all neighbors of x by
inspecting all set-constraints of C. Finally, we define CM as the circuit that on input x ∈ {0, 1}n,
outputs if x is a bad string for C, again by inspecting all of its set-constraints.

Lemma 5.2 (Reduction from SetCSP to ACAC). For every ε we have that:

• If C = (C1, ..., Cm) is a yes-instance of k-SetCSPε, then (CGC , CM ) is a yes-instance of
ACACε/2.

• If C = (C1, ..., Cm) is a no-instance of k-SetCSPε, then (CGC , CM ) is a no-instance of ACACε/2.

Proof. To prove the first part, we show that a non-empty S ⊆ {0, 1}n such that set-unsat(S, C) = 0
implies that the connected component of any string x ∈ S in GC contains only good strings. To
show this, we notice that S is a union of connected components of GC . In this case, any of these
connected components imply that (CGC , CM ) is a yes-instance of ACAC.

Suppose towards contradiction that there exists a string x in S which is connected to a string
y outside of S via an edge in GC ; that means that x and y are C-neighbors for some set-constraint
C. But this means that x is a C-longing string for S, and this contradicts set-unsat(S, C) = 0.
We finish this part of the proof by stressing that, by assumption, no elements in S are marked,
otherwise there would be a bad string in it.

For the second part, we show that if there is a set of vertices S such that ∂(S, S) < ε|S|/2 on
GC and the number of marked elements in S is strictly less than ε|S|/2, then set-unsat(S, C) < ε.
In this case, if C is a no-instance of k-SetCSPε, then (CGC , CM ) must be a no-instance of ACACε/2.

Notice that if there are at most ε|S|/2 edges between S and S, then there are at most ε|S|/2
vertices in S that are connected to S and, by definition of the edges in GC , we have that S has at
most ε|S|/2 C-longing strings. We also have that the number of bad strings in S is, by definition,
the number of marked elements which is also strictly less than ε|S|/2. Therefore, by Lemma 5.1,
we have that set-unsat(C, S) < ε. �
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We can now finally prove Theorem 1.1:

Theorem 1.1 (restated). There exists some polynomial p(x) = Θ(1/x3) such that for every
inverse polynomial p′ < p, the problems SetCSPp′(m) and ACACp′(m)/2 are MA-complete, where m
is the size of the SetCSP or ACAC instance.

Proof. From Lemma 4.9 we have that SetCSPp′ is MA-hard18 and from Corollary 3.5 we have that
ACACp′/2 is in MA.

In Lemma 5.2, we show a reduction SetCSPp′ to ACACp′/2, which implies, together with the
aforementioned results, that SetCSPp′ is in MA and that ACACp′/2 is MA-hard, finishing the proof.

�
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A Complexity classes

Definition A.1 (NP). A problem A = (Ayes, Ano) is in NP if and only if there exist two polynomials
p, q and a deterministic algorithm D, where D takes as input a string x ∈ Σ∗ and a p(|x|)-bit witness
y, runs in time q(|x|) and outputs a bit 1 (accept) or 0 (reject) such that:
Completeness. If x ∈ Ayes, then there exists a witness y such that D outputs accept on (x, y).
Soundness. If x ∈ Ano, then for any witness y, D outputs reject on (x, y).

We can then generalize this notion, by giving the verification algorithm the power to flip random
coins, leading to the complexity class MA.

Definition A.2 (MA). A (promise) problem A = (Ayes, Ano) is in MA if and only if there exist
two polynomials p, q and a probabilistic algorithm R, where R takes as input a string x ∈ Σ∗ and
a p(|x|)-bit witness y, runs in time q(|x|) and decides on acceptance or rejection of x such that:
Completeness. If x ∈ Ayes, there exists a witness y such that R accepts (x, y) with probability 1.
Soundness. If x ∈ Ano, for any witness y, R accepts (x, y) with probability at most 1

3 .

B Reversible Circuits

In classical complexity theory, we usually describe the verification procedure for NP and MA as
algorithms. Such polynomial time algorithms can be converted into a uniform family of polynomial-
size Boolean circuits, which are usually described using AND, OR and NOT gates [AB09]. As we
will see later, these circuits are not suitable in our context because we need our circuits to be
reversible, namely made of reversible gates. By this we mean that the output string of the gate is a
one-to-one function of the input string, and thus an inverse gate exists. Clearly, we can also invert
the entire circuit made of such gates by running all inverses of the gates in reverse order.

Boolean circuits consisting of the universal gateset {NOT,CNOT,CCNOT},19 can be made
reversible, by making use of additional auxiliary bits initialized to 0. It is folklore that the overhead

19NOT is the 1-bit gate that on input a outputs 1⊕a; CNOT is the 2-bit gate that on input (a, b) outputs (a, b⊕a);
finally CCNOT is the 3-bit gate that on input (a, b, c) outputs (a, b, c ⊕ ac), i.e., it flips the last bit iff a = b = 1.
Notice that {NOT,CCNOT} is already universal for classical computation and we just add CNOT for convenience.

21
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for this conversion is linear in the number of gates. We will assume all verifiers considered are
reversible Boolean circuits.

For randomized circuits, we can also assume the circuit uses only reversible gates, in the following
way: we assume that the random bits are provided as part of the initial string on which the circuit
acts; we can view it as part of the input. The rest of the circuit is reversible.

For decision problems, we use the convention that the first bit is used as the output of the
circuit, namely, accept or reject.

C Graph theory and random walks

For some undirected graph G = (V,E), and v ∈ V , let dG(v) = |{u ∈ V : {v, u} ∈ E}| be the
degree of v. We may define a weight function for the edges w : E → R+, and if it is not explicitly
defined, we assume that w({u, v}) = 1 for all {u, v} ∈ E. We slightly abuse the notation and for
some E′ ⊆ E, we denote w(E′) =

∑
e∈E′ w(e).

For some set of vertices S ⊆ V , we define the boundary of S as ∂G(S) = {{u, v} ∈ E : u ∈
S, v 6∈ S}, the neighbors of S as NG(S) = {u ∈ S : v ∈ S, {u, v} ∈ E} (where NG(u) for some u ∈ V
is shorthand for NG({u})); and finally the volume of S volG(S) =

∑
u∈S,v∈NG(u)w({u, v}) and the

conductance of S, φG(S) = w(∂G(S))
volG(S) .

We define notions related to random walks on weighted graphs; definitions are taken from
[GT12]. One step in the random walk on the weighted graph G starting on vertex v is defined

by moving to vertex u with probability pv,u =

{
w({u,v})
volG({v}) , if {u, v} ∈ E
0, otherwise

. One step in the lazy

random walk on G starting on v is defined by staying in the same vertex with probability 1
2 , or

with probability 1
2 , moving according to the above random walk. The conductance of the weighted

graph is defined as
φ(G) = min

S⊆V
volG(S)≤ volG(V )

2

φG(S).

The (unique) stationary distribution πG of the lazy random walk on a connected weighted graph

G is given by the following probability distribution on the vertices: πG(v) = volG({v})
volG(V ) . The following

lemma connects the conductance of a graph and its mixing time, i.e., the number of steps of a lazy
random walk on G starting at an arbitrary vertex such that the distribution on the vertices is close
to the stationary distribution.

Lemma C.1 (High conductance implies small mixing time [JS89]). Let G = (V,E) be a undirected

connected graph. For any u, v ∈ V , a
(

2
φ(G)2/4

ln 1
εmin{πG(v)}

)
-step lazy-random walk starting in u

ends in v with probability pTu,v ∈ [πG(v)− ε, πG(v) + ε]. 20

We now prove Lemma 3.4

20 We use Corollary 2.2 of [JS89], along with the remark (a) after it. The latter states that the conductance of a
graph is divided by 2 when we consider the weighted graph induced by the lazy random walk (this induced graph is
naturally defined by adding a self loop to each vertex, and giving it the same weight as the sum of the weight of all
other edges going out of the node). In Lemma C.1, we use the conductance of the original graph G and account for
the fact that we are applying a lazy random walk on it by dividing the conductance by 2. Importantly, the stationary
distribution remains the same.
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Lemma 3.4 (restated) (Escaping time of high conductance subset). Let G = (V = A∪B,E) be
a simple (no multiple edges) undirected connected graph such that for every v ∈ A dG(v) ≤ d , and

such that for some δ < 1
2 , for all A′ ⊆ A, we have that |∂G(A′)| ≥ δ|A′|. Then a

(
16d2

δ2
ln 2d|V |

δ

)
-step

lazy random walk starting in any v ∈ A reaches some vertex u ∈ B with probability at least δ
4d .

Proof. Let us consider the graph G′ = (V ′, E′) where V ′ = A ∪ {b∗} and E′ = {{u, v} ∈ E : u, v ∈
A} ∪ {{u, b∗} : u ∈ A, v ∈ B, {u, v} ∈ E} (as a set, duplicate edges are removed). In other words,
G′ can be seen as the graph derived when we contract all vertices in B to one vertex (and call
this vertex b∗) and contract the parallel edges that appear when we perform the contraction of the
vertices into a single edge. For some u ∈ A, we define the weight of the edge {u, v} ∈ E′ as

w({u, v}) =

{
1, if v ∈ A
|{{u, v′} : {u, v′} ∈ E, v′ ∈ B}| , if v = b∗

.

Notice that the probability that a T -step weighted lazy random walk on G′ starting in v ∈ A
passes by the vertex b∗ is exactly the same as the probability that a T -step lazy random walk on
G starting in v passes by some vertex in B. Therefore, we continue by lower bounding the former,
and the statement will follow.

Let us start by analyzing φ(G′). Notice that for all A′ ⊆ A, it follows that

φG′(A′) =
|∂G′(A′)|
volG′(A′)

=
|∂G(A′)|∑
v∈A′ 2dG(v)

≥ δ|A′|
d|A′|

=
δ

d
. (6)

Let S = {b∗} ∪A′ for some A′ ⊆ A such that vol(S) ≤ volG′ (V ′)
2 , we have that

φG′(S) =
w(∂G′(S))

volG′(S)
≥ w(∂G′(S))

volG′(S)
=

|∂G(S)|∑
v∈S dG(v)

≥ |∂G(S)|
d|S|

≥ δ|S|
d|S|

=
δ

d
, (7)

where in the first inequality we use the fact that ∂G′(S) = ∂G′(S) and volG′(S) ≤ volG′(S), in the
second equality we use the definition of w, in the second inequality we use the fact that S ⊆ A and
every vertex in A has degree at most d, and the third inequality follows since S ⊆ A, and so we
can use the assumption of the lemma. From Equations (6) and (7), we have that φ(G′) ≥ δ

d .
We now analyze the stationary distribution of the lazy random walk associated with G′. Since

δ|A| ≤ volG′({b∗}) ≤ d|A| and for any v ∈ A, 1 ≤ volG′({v}) ≤ d, we have that volG′(V ) ≤
(δ + d)|A| ≤ 2d|A|,

πG′(b∗) =
volG′({b∗})
volG′(V )

≥ δ|A|
2d|A|

=
δ

2d
,

and for any v ∈ A,

πG′(v) =
volG′({v})
volG′(V )

≥ 1

2d|A|
≥ 1

2d|V |
.

We now apply Lemma C.1, using ε = δ2

2d , min{πG′(v)} ≥ 1
2d|V | and φ(G′) ≥ δ

d . We have that for

T =
8

φ(G′)2
ln

1

εmin{πG′(v)}
≤ 8 · d2

δ2
ln

4d2|V |
δ2

≤ 16d2

δ2
ln

2d|V |
δ

,

a T -step lazy random walk starting from any vertex end in b∗ with probability at least δ−δ2
2d ,

which is a lower bound on the probability that the lazy random walk passes by b∗. Since δ−δ2
2d ≥

δ
4d

this finishes the proof. �
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C.1 Hypercube

Given some parameter q, the q-dimensional hypercube is the graph where the vertices are all
possible q-bit strings and two vertices are connected if the corresponding strings differ on exactly
one bit.

We use the following well-known fact about the expansion of the hypercube.

Lemma C.2 ([RV11]). Let G be the q-dimensional hypercube. Then φ(G) = 1
q .

D PSPACE-completeness of CCC

In this section we give a sketch of proof that the CCC problem is PSPACE-complete.

Lemma D.1. CCC is in PSPACE.

Proof sketch. In order to prove containment, we can follow two steps

1. A variant of CCC, called FCCC, is in PSPACE.

2. The containment of FCCC in PSPACE implies the containment of CCC in PSPACE.

The problem FCCC consists of deciding if the connected component of a fixed node contains
only unmarked elements. More concretely, it corresponds to the language

{(x,CG, CM ) : the connected component of x in the graph G contains only unmarked elements},

where CG and CM are defined as in CCC. We argue that FCCC is in PPSPACE,21 and since
PPSPACE=PSPACE [Lad89], this proves the first claim. The PPSPACE algorithm consists of a
2n-step random walk on G starting from x which rejects iff a marked element is encountered. If
the connected component of x has no marked elements, so the algorithm never rejects, whereas for
no-instances, the random walk finds the marked element with non-zero probability.

We can devise a polynomial-space algorithm for CCC that iterates over all x ∈ {0, 1}n and
accept iff for at least one of such x’s, (x,CG, CM ) is a yes-instance of FCCC (which can be decided
in PSPACE as described before). �

Lemma D.2. CCC is PSPACE-hard.

Proof sketch. Let L be a language in PSPACE. Since we can assume that any problem in PSPACE
can also be solved in polynomial space by a reversible Turing machine [LMT00], we fix the reversible
Turing Machine M that decides if x belongs to L in p(|x|)-space, for some polynomial p. A
configuration of M consists of its internal state, the content of its tape and the position of the
tape-head. For some configuration w, we denote pred(w) as the preceding configuration of w and
succ(w) as its following configuration (and both can be efficiently computed from w since M is
reversible).

In the reduction to CCC, we set n = p(|x|) + S, where S = O(p(|x|)) is the amount of memory
to store a snapshot of the computation of M (meaning the current state of the Turing machine,
the tape and the position of the head). Each string y ∈ {0, 1}n can be split in two parts: the first

21PPSPACE is the complexity class of randomized algorithms that run in polynomial space and non-zero com-
pleteness/soundness gap

24



one is the “clock”-substring and the second one is the “working”-substring. The clock substring
represents, in binary, a value in t ∈ [2p(|x|)] (notice that M runs in time at most 2p(n)) and the
working substring represents an arbitrary state of the Turing Machine at time t.

We define then instance (CG, CM ) of CCC as follows:

• On t ||w ∈ {0, 1}n, CG outputs the string t − 1 || pred(w) and t + 1 || succ(w) (if t = 0 or
t = 2n, CG only outputs the meaningful neighbors).

• On t ||w ∈ {0, 1}n, CM outputs 1 if t = 0 and w does not consist of the state of M at the
beginning of the computation or if t = 2p(|x|) and w does not consist of the state of M that
would lead to acceptance.

It is not hard to see that if x ∈ L, then the connected component of 0 ||x is clean, whereas if
x 6∈ L, all connected components have at least one marked element. �
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