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Abstract

Hegedűs’s lemma is the following combinatorial statement regarding polynomials over finite fields.
Over a field F of characteristic p > 0 and for q a power of p, the lemma says that any multilinear
polynomial P ∈ F[x1, . . . , xn] of degree less than q that vanishes at all points in {0, 1}n of Hamming
weight k ∈ [q, n− q] must also vanish at all points in {0, 1}n of weight k + q. This lemma was used by
Hegedűs (2009) to give a solution to Galvin’s problem, an extremal problem about set systems; by Alon,
Kumar and Volk (2018) to improve the best-known multilinear circuit lower bounds; and by Hrubeš,
Ramamoorthy, Rao and Yehudayoff (2019) to prove optimal lower bounds against depth-2 threshold
circuits for computing some symmetric functions.

In this paper, we formulate a robust version of Hegedűs’s lemma. Informally, this version says that
if a polynomial of degree o(q) vanishes at most points of weight k, then it vanishes at many points of
weight k + q. We prove this lemma and give the following three different applications.

• Degree lower bounds for the coin problem: The δ-Coin Problem is the problem of distinguishing
between a coin that is heads with probability ((1/2)+δ) and a coin that is heads with probability
1/2. We show that over a field of positive (fixed) characteristic, any polynomial that solves the
δ-coin problem with error ε must have degree Ω( 1

δ log(1/ε)), which is tight up to constant factors.

• Probabilistic degree lower bounds: The Probabilistic degree of a Boolean function is the minimum
d such that there is a random polynomial of degree d that agrees with the function at each point
with high probability. We give tight lower bounds on the probabilistic degree of every symmetric
Boolean function over positive (fixed) characteristic. As far as we know, this was not known even
for some very simple functions such as unweighted Exact Threshold functions, and constant error.

• A robust version of the combinatorial result of Hegedűs (2009) mentioned above.

1 Introduction

The Polynomial Method is a technique of great utility in both Theoretical Computer Science and Combi-
natorics. The idea of associating polynomials with various combinatorial objects and then using algebraic
or geometric techniques to analyze them has proven useful in many settings including, but not limited
to, Computational Complexity (Circuit lower bounds [Raz87, Smo87a, Bei93, Wil14c], Pseudorandom
generators [Bra10]), Algorithm design (Learning Algorithms [LMN93, KS04, KOS04], Satisfiability algo-
rithms [Wil14c, Wil14b], Combinatorial algorithms [Wil18, AWY15, AW15]), and Extremal Combina-
torics [Gut16, CLP17, EG17].

The engine that drives the proofs of many of these results is our understanding of combinatorial and
algebraic properties of polynomials. In this paper, we investigate another such naturally stated property
of polynomials defined over the Boolean cube {0, 1}n and strengthen known results in this direction. We
then apply this result to sharpen known results in theoretical computer science and combinatorics.
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The question we address is related to how well low-degree polynomials can ‘distinguish’ between
different layers of the Boolean cube {0, 1}n. For m ∈ {0, . . . , n}, let {0, 1}nm be the elements of {0, 1}n
of Hamming weight exactly m. As a first approximation, let us say that a polynomial P ∈ F[x1, . . . , xn]
(here F is some field) distinguishes between level sets {0, 1}nk and {0, 1}nK if it vanishes at all points in
the former set and at no point of the latter. Note that the ability of low-degree polynomials to do this
depends on the properties of the underlying field F: when F = Q (or any field of characteristic 0), the
simple polynomial (

∑n
i=1 xi) − k does the job. However, if the field F has positive characteristic p and

more specifically if K − k is divisible by p, then this simple polynomial no longer works and the answer
is not so clear.

In this setting, a classical theorem of Lucas tells us that if q is the largest power of p dividing K − k,
then there is a polynomial of degree q that distinguishes between {0, 1}nk and {0, 1}nK . A very interesting
lemma of Hegedűs [Heg09] shows that this is tight even if we only require P to be non-zero at some point
of {0, 1}nK . More precisely, Hegedűs’s lemma shows the following.1

Lemma 1 (Hegedűs’s lemma). Let F be a field of characteristic p > 0. Fix any positive integers n, k, q
such that k ∈ [q, n − q], and q a power of p. If P ∈ F[x1, . . . , xn] is any multilinear polynomial that
vanishes at all a ∈ {0, 1}nk but does not vanish at some b ∈ {0, 1}nk+q, then deg(P ) ≥ q.

This lemma was first proved in [Heg09] using Gröbner basis techniques. An elementary proof of this
was recently given by the author and independently by Alon (see [HRRY19]) using the Combinatorial
Nullstellensatz.

Hegedűs’s lemma has been used to resolve various questions in both combinatorics and theoretical
computer science.

• Hegedűs used this lemma to give an alternate solution to a problem of Galvin, which is stated as
follows. Given a positive integer n divisible by 4, what is the smallest size m = m(n) of a family F of
(n/2)-sized subsets of [n] such that for any S ⊆ [n] of size n/2, there is a T ∈ F with |T ∩S| = n/4?
It is easy to see that m(n) ≤ n/2 for any n. A matching lower bound was given by Enomoto, Frankl,
Ito and Nomora [EFIN87] in the case that t := (n/4) is odd. Hegedűs used the above lemma to
give an alternate proof of a lower bound of n in the case that t is an odd prime. His proof was
subsequently strengthened to a linear lower bound for all t by Alon et al. [AKV18] and more recently
to a near-tight lower bound of (n/2)− o(n) for all t by Hrubeš et al. [HRRY19]. Both these results
used the lemma above.

• Alon et al. [AKV18] also used Hegedűs’s lemma to prove bounds for generalizations of Galvin’s
problem. Using this, they were able to prove improved lower bounds against syntatically multilinear
algebraic circuits. These are algebraic circuits that compute multilinear polynomials in a “trans-
parently multilinear” way (see e.g. [SY10] for more). Alon et al. used Hegedűs’s lemma to prove
near-quadratic lower bounds against syntactically multilinear algebraic circuits computing certain
explicitly defined multilinear polynomials, improving on an earlier Ω̃(n4/3) lower bound of Raz,
Shpilka and Yehudayoff [RSY08].

• Hrubeš et al. [HRRY19] also used Hegedűs’s lemma to answer the following question of Kulikov and
Podolskii [KP17] on depth-2 threshold circuits. What is the smallest k = k(n) such that there is a
depth-2 circuit made up of Majority2 gates of fan-in at most k that computes the Majority function
on n bits? Using Hegedűs’s lemma, Hrubeš et al. showed an asymptotically tight lower bound of
n/2− o(n) on k(n).

1The lemma is usually stated [Heg09, AKV18, HRRY19] for a more restricted choice of parameters. However, the known
proofs extend to yield the stronger statement given here.

2The Majority function is the Boolean function f which accepts exactly those inputs that have more 1s than 0s.
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Main Result. Our main result in this paper is a ‘robust’ strengthening of Hegedűs’s lemma. Proving
‘robust’ or ‘stability’ versions of known results is standard research direction in combinatorics. Such
questions are usually drawn from the following template. Given the fact that objects that satisfy a
certain property have some fixed structure, we ask if a similar structure is shared by objects that ‘almost’
or ‘somewhat’ satisfy the property.

In our setting, we ask if we can recover the degree lower bound in Hegedűs’s lemma even if we have
a polynomial P that ‘approximately’ distinguishes between {0, 1}nk and {0, 1}nk+q: this means that the
polynomial P vanishes at ‘most’ points of weight k but is non-zero at ‘many’ points of weight k + q.
Our main lemma is that under suitable definitions of ‘most’ and ‘many’, we can recover (up to constant
factors) the same degree lower bound as in Lemma 1 above.

Lemma 2 (Main Result (Informal)). Assume that F is a field of characteristic p. Let n be a growing
parameter and assume we have positive integer parameters k, q such that 100q < k < n− 100q and q is a
power of p. For ε = ε(n, k, q), if P ∈ F[x1, . . . , xn] that vanishes at a (1− ε)-fraction of points of {0, 1}nk
but does not vanish at an ε0.0001 fraction of points of {0, 1}nk+q, then deg(P ) = Ω(q).

Remark 3. 1. To keep the exposition informal, we have not specified exactly what ε is in the above
lemma. However, we note below that the ε chosen is nearly the best possible in the sense that if ε is
appreciably increased, then there is a sampling-based construction of a polynomial P of degree o(q)
satisfying the hypothesis of the above lemma (see Section 3.3).

2. The reader might wonder why the lemma above is a strengthening of Hegedűs’s lemma, given that we
require the polynomial P to be non-zero at many points of weight k+q, which is a seemingly stronger
condition than required in Lemma 1. However, this is in fact a weaker condition. This is because
of the following simple algebraic fact: if there is a polynomial P of degree at most d satisfying the
hypothesis of Lemma 1 (i.e. vanishing at all points of weight k but not at some point of weight
k + q), then there is also a polynomial Q of degree at most d that vanishes at all points of weight k
but does not vanish at a significant fraction (at least a (1− 1/p) fraction) of points of weight k+ q.
We give a short proof of this in Appendix A. Hence, the above lemma is indeed a generalization of
Lemma 1 (up to the constant-factor losses in the degree lower bound).

Applications. Our investigations into robust versions of Hegedűs’s lemma were motivated by questions
in computational complexity theory. Using our main result, we are able to sharpen and strengthen known
results in complexity as well as combinatorics.

1. Degree bounds for the Coin Problem: For a parameter δ ∈ [0, 1/2], we define the δ-coin
problem as follows. We are given N independent tosses of a coin, which is promised to either be of
bias 1/2 (i.e. unbiased) or (1/2)− δ, and we are required to guess which of these is the case with a
high degree of accuracy, say with error probability at most ε.

The coin problem has been studied in a variety of settings in complexity theory (see, e.g. [ABO84,
Val84, Vio09, SV10, BV10, CGR14]) and for various reasons such as understanding the power
of randomness in bounded-depth circuits, the limitations of blackbox hardness amplification, and
devising pseudorandom generators for bounded-width branching programs. More recently, Limaye
et al. [LSS+18] proved optimal lower bounds on the size of AC0[⊕] 3 circuits solving the δ-coin
problem with constant error, strengthening an earlier lower bound of Shaltiel and Viola [SV10].
This led to the first class of explicit functions for which we have tight (up to polynomial factors)
AC0[⊕] lower bounds. These bounds were in turn used by Golovnev, Ilango, Impagliazzo, Kabanets,

3Recall that these are bounded-depth circuits made up of AND, OR and ⊕ gates.
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Kolokolova and Tal [GII+19] to resolve a long-standing open problem regarding the complexity of
MCSP in the AC0[⊕] model, and by Potukuchi [Pot19] to prove lower bounds for Andreev’s problem.

A key result in the lower bound of Limaye et al. [LSS+18] was a tight lower bound on the degree of
any polynomial P ∈ F[x1, . . . , xN ] that solves the δ-coin problem with constant error: they showed
that any such polynomial P must have degree at least Ω(1/δ). As noted by Agrawal [Agr19], this is
essentially equivalent to a recent result of Chattopadhyay, Hatami, Lovett and Tal [CHLT19] on the
level-1 Fourier coefficients of low-degree polynomials over finite fields, which in turn is connected to
an intriguing new approach [CHLT19] toward constructing pseudorandom generators secure against
AC0[⊕].

Using the robust Hegedűs lemma, we are able to strengthen the degree lower bound of [LSS+18] to
a tight degree lower bound for all errors. Specifically, we show that over any field F of fixed positive
characteristic p, any polynomial P that solves the δ-coin problem with error ε must have degree
Ω(1

δ log(1/ε)), which is tight for all δ and ε.

2. Probabilistic degrees of symmetric functions: In a landmark paper [Raz87], Razborov showed
how to use polynomial approximations to prove lower bounds against AC0[⊕]. The notion of poly-
nomial approximation introduced (implicitly) in his result goes by the name of probabilistic poly-
nomials, and is defined as follows. An ε-error probabilistic polynomial of degree d for a Boolean
function f : {0, 1}n → {0, 1} is a random multilinear polynomial P of degree at most d that agrees
with f at each point with probability at least 1 − ε. The ε-error probabilistic degree of f is the
least d for which this holds. (Roughly speaking, a low-degree probabilistic polynomial for f is an
efficient randomized algorithm for f , where we think of polynomials as algorithms and degree as a
measure of efficiency.)

Many applications of polynomial approximation in complexity theory [Bei93] and algorithm de-
sign [Wil14a] use probabilistic polynomials and specifically bounds on the probabilistic degrees of
various symmetric Boolean functions.4 Motivated by this, in a recent result with Tripathi and
Venkitesh [STV19], we gave a near-tight characterization on the probabilistic degree of every sym-
metric Boolean function. Unfortunately, however, our upper and lower bounds were separated by
logarithmic factors. This can be crucial: in certain algorithmic applications (see, e.g., [AW15, Foot-
note, Page 138]), the appearance or non-appearance of an additional logarithmic factor in the degree
can be the difference between (say) a truly subquadratic running time of N2−ε and a running time
of N2−o(1), which might be less interesting.

In the case of characteristic 0 (or growing with n), such gaps look hard to close since we don’t even
understand completely the probabilistic degree of simple functions like the OR function [MNV16,
HS16, BHMS18]. However, in positive (fixed) characteristic, there are no obvious barrriers. Yet,
even in this case, the probabilistic degree of very simple symmetric Boolean functions like the
Exact Threshold functions (functions that accept inputs of exactly one Hamming weight) remained
unresolved until this paper.

In this paper, we resolve this question and more. We are able to give a tight (up to constants) lower
bound (matching the upper bounds in [STV19]) on the probabilistic degree of every symmetric
function over fields of positive (fixed) characteristic.

3. Robust version of Galvin’s problem: Given that Hegedűs’s lemma was used to solve Galvin’s
problem, it is only natural that we consider the question of using the robust version to solve a robust
version of Galvin’s problem. More precisely, we consider the minimum size m = m(n, ε) to be the

4Recall that a Boolean function f : {0, 1}n → {0, 1} is said to be symmetric if its output depends only on the Hamming
weight of its input.
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minimum size of a family F of (n/2)-sized subsets of [n] such that for all but an ε-fraction of sets
S of size n/2, there is a set T ∈ F such that |S ∩ T | = n/4.

Following the proof of Galvin’s theorem from Hegedűs’s lemma, we can prove a lower bound of
Ω(
√
n log(1/ε)) for the above version of Galvin’s problem for any ε ∈ [2−n, 1/2]. Note that this

interpolates smoothly between a bound of Ω(
√
n) for constant ε and Ω(n) for ε = 2−Ω(n), both of

which are tight. For general ε in between these two extremes, we do not know if our bounds are
tight (we suspect they are). However, our bounds are tight for every ε for a natural generalization
of the above problem, where we allow intersections of any size (and not just n/4). We refer the
reader to Section 4.3 for details.

1.1 Proof Outline

The Main Lemma. Assume for simplicity that the error parameter ε is a constant and that k+q = n/2.
In this case, the main lemma says the following. If P ∈ F[x1, . . . , xn] is a polynomial that vanishes on
most inputs of weight (n/2) − q and is non-zero on most inputs of weight n/2, where q = Θ(

√
n) is a

power of p, then the degree of P is Ω(q).
We view the lemma as a strengthening of the classical lower bounds of Smolensky [Smo87a, Smo93].

Smolensky’s results imply a tight lower bound on the degree of any polynomial that approximates certain
Boolean functions such as the Majority function.5 In our setting too, we are proving lower bounds on
the degree of polynomials that approximate certain symmetric Boolean functions.6 However, these are
‘promise’ symmetric Boolean functions: we require that they take the value 0 at Hamming weight (n/2)−q
and 1 at Hamming weight n/2. Clearly, the Majority function is one such function, but there are many
others. (This increased flexibility of our lower bound will serve us well later, when we try to prove lower
bounds on the probabilistic degrees of symmetric Boolean functions.)

Given the parallel to Smolensky’s theorem, it is natural that we follow the strategy of Smolen-
sky’s [Smo87a] proof (we follow the ‘dual’ form of this proof strategy as in [ABFR94, KS18]). In the
case of the Majority function, the crux of this proof is to show that if E ⊆ {0, 1}n is a set of size at
most 2n/100 consisting of points of weight less than n/2, then there is a polynomial Q of degree at most
(n/2) − Ω(q) that vanishes on E, while at the same time not vanishing at some point a of Hamming
weight more than n/2. This is easy to ensure: as q = Θ(

√
n), the number of monomials of degree at most

D = (n/2) − Ω(q) is greater than |E|, and standard linear algebra then yields that there is a non-zero
polynomial Q of degree at most D that vanishes at all the points of E; further, Q cannot vanish at all
points of weight greater than n/2, since it is known that any polynomial of degree at most D cannot
vanish at all points of a Hamming ball of radius D.

In our setting, however, we end up having the stronger constraint that Q must not vanish at some
point a of weight exactly n/2. This is not clear, since it is not true that every non-zero polynomial of degree
at most D is non-zero at some point a ∈ {0, 1}nn/2; in fact, this is not even true for polynomials of degree
1. However, since we are free to choose our polynomial of degree at most D as we wish, it is conceivable
that we can avoid such bad polynomials. To do this, we try to understand the degree-D closure clD(E) of
the set E, which is the set of points where any degree-D polynomial Q vanishing throughout E is forced
to vanish. This is a well-studied object in coding theory [Wei91] and combinatorics [CL69, KS05, NW15],
and we know how large clD(E) can be, given our upper bounds on |E|. We use a theorem of Nie and

5This is the symmetric function which accepts exactly those inputs that have weight at least n/2. Strictly speaking,
Smolensky [Smo87a] proved lower bounds for the MODq functions, which accept inputs whose Hamming weight is divisible
by q, where q is relatively prime to p. However, his proof can be easily adapted to the Majority function. As far as we know,
this fact first appeared in Szegedy’s PhD thesis [Sze89].

6Here, the polynomial approximates the Boolean function in the sense that it is zero at most zeroes of the Boolean function
and non-zero at most ones of the Boolean function. This is similar to the notion of approximation considered in [Smo93].
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Wang [NW15] to bound |clD(E)|. Note that if |clD(E)| <
(
n
n/2

)
, then we would be done as then there

would be a point a ∈ {0, 1}nn/2 that is not in the degree-D closure of E, meaning that there is a polynomial
Q that vanishes at all points of E but not at a.

It turns out that |clD(E)| is not much larger than E in this setting, but this is still much larger
than |{0, 1}nn/2| =

(
n
n/2

)
, so this does not yet yield the kind of polynomial Q we need. However, this is

where the characteristic p and the choice of q come in. We note that (by a polynomial construction
from [Lu01, STV19]) there is a simple polynomial Q1 of degree at most q that vanishes exactly at
points of weights w 6≡ n/2 (mod q). Hence, it suffices to choose a polynomial Q2 of degree at most
D′ = D − q = (n/2)−Θ(

√
n) that vanishes at all points in

E′ := E ∩

 ⋃
j<n/2:

j≡n/2 (mod q)

{0, 1}nj

 .

Now, for the parameters we have chosen |E′| is much smaller7 than
(
n
n/2

)
and hence an application of the

result of Nie and Wang, yields that |clD′(E
′)| <

(
n
n/2

)
. In particular, we thus get that there is a polynomial

Q2 of degree at most D′ that vanishes at all points of E′ but not at some point of weight n/2. Setting
Q = Q1 ·Q2 yields the polynomial Q we need for the proof.

Degree lower bounds for the Coin Problem. The lower bounds for the Coin problem follow almost
immediately from the statement of the robust Hegedűs lemma. Consider again the case of constant ε
discussed above (note that this is for illustration only: tight lower bounds for solving the coin problem with
constant error are already known from [LSS+18, CHLT19, Agr19]). Assume that there is a polynomial
Q(x1, . . . , xN ) of degree d for solving the δ-coin problem with error ε. We show how to use Q to distinguish
between {0, 1}nn/2 and {0, 1}n(n/2)−q where q = Θ(

√
n) is a power of p and n is chosen suitably.

This is done by sampling. More precisely, imagine that we sample N uniformly random bits (chosen
with replacement) from an n-bit input a and feed them into Q. If |a| = n/2, then the input to Q are
independent uniformly distributed bits; if |a| = (n/2) − q, however, the input to Q is ((1/2) − (q/n))-
biased, which is ((1/2)− δ)-biased if we choose n = Θ(1/δ2). Thus, using the fact that Q solves the δ-coin
problem, we obtain a probabilistic polynomial P on n variables of degree at most d that accepts inputs
of weight n/2 with probability 1 − ε and rejects inputs of weight ((n/2) − q) with probability 1 − ε. By
averaging, there is a fixed polynomial P of degree at most d that accepts most inputs of weight n/2 and
rejects most inputs of weight ((n/2) − q). However, the main lemma now implies that the degree of P
must be at least Ω(

√
n) = Ω(1/δ). This implies the desired lower bound on d.

For smaller ε, this basic template remains the same, except that we choose n = Θ( 1
δ2

log(1/ε)).

Comparison with previous bounds. It may be worth noting that, given the robust Hegedűs
lemma, even in the constant-error regime, this proof is quite a bit simpler than the corresponding proofs
in [LSS+18, CHLT19]. The former required a considerable amount of computation, while to deduce the
degree lower bound from the latter result, some non-trivial ideas are necessary [Agr19].

Furthermore, it is not clear how to use the proof methods of [LSS+18, CHLT19] to deduce a stronger
lower bound depending on the error parameter ε. The informal reason for this is as follows. For a degree-d
polynomial Q(x1, . . . , xN ) solving the δ-coin problem with error ε, let us define ΓQ : [0, 1]→ [0, 1] so that
ΓQ(α) is the probability that Q accepts an N -bit input where each bit is set to 1 independently with

7Actually, this is not true for every set E of size 2n/100. However, it is true for, say, random sets E of this size. In the
actual application, we will have that |E ∩ {0, 1}nn/2−q| is quite small and this will be enough to guarantee that |E′| is small.
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probability α. The results of [CHLT19, LSS+18] essentially imply that the derivative Γ′Q is bounded
pointwise by O(d) in absolute value. As |ΓQ(1/2) − ΓQ(1/2 − δ)| ≥ (1 − 2ε) = Ω(1), the mean-value
theorem from Calculus implies that d = Ω(1/δ). However, note that this proof cannot take advantage of
the small error: it is not clear how to modify it to use the fact that |ΓQ(1/2)− ΓQ(1/2− δ)| ≥ 1− 2ε.

Probabilistic Degree lower bounds for symmetric Boolean functions. In a recent paper with
Tripathi and Venkitesh [STV19], we gave upper and lower bounds on the probabilstic degree of any
Boolean function over any field F. Unfortunately, however, these bounds differed from each other by
logarithmic factors over every field, even for simple families of functions such as, say, the Exact Threshold

function EThr
n/2
n which accepts only inputs of weight n/2. As far as we know, before this result, there

was no proof (over any field) that the probabilistic degree of this function is Ω(
√
n) for constant error.

Note that the robust Hegedűs lemma immediately implies such a lower bound for EThr
n/2
n over fixed

positive characteristic. As noted above, the robust Hegedűs lemma implies that any polynomial P that
accepts most inputs of weight n/2 and rejects most inputs of weight (n/2) − q (where q = Θ(

√
n) is a

power of p) must have degree Ω(
√
n). But any probabilistic polynomial P of degree d for EThr

n/2
n yields

such a polynomial P (also of degree d) by averaging. This immediately implies that the probabilistic

degree of EThr
n/2
n is Ω(

√
n). Similarly, we can also obtain optimal lower bounds for Boolean functions

that count modulo r for r that is relatively prime to p (previous lower bounds [Smo87a] were optimal
when r is a constant, but not for growing r as far as we know).

We can extend these ideas to prove tight lower bounds for all symmetric Boolean functions f and
all errors ε. To do this, we follow the proof ideas of [STV19] but with one crucial change. The bot-
tleneck to proving tight lower bounds in [STV19] was that we used classical probabilistic degree lower
bounds [Smo87a, Smo93] for the Majority and MODr functions as a starting point, with an overall strat-
egy of ‘reducing’ one of these hard functions to the symmetric Boolean function f at hand. In this paper,
our starting point is an equally strong lower bound for a much easier ‘promise’ symmetric function. More
precisely, the robust Hegedűs lemma implies that any symmetric function h on n Boolean variables that
takes different values at weights n/2 and (n/2)− q where q is a power of p, must have probabilistic degree
Ω(q). Note that this assumes very little about the function h (only its values at two different weights).
Consequently, it becomes much easier to use this to prove lower bounds for other symmetric functions.
Indeed, in all cases, by suitably restricting the symmetric function f , we are able to obtain a function h
of the type above, leading to the desired lower bound. In particular, unlike in [STV19], we do not need to
consider many distinct restrictions of f to construct the hard function, which makes it possible to avoid
the log-factor losses in the lower bounds from that paper.

2 Preliminaries

We use the notation [a, b] to denote an interval in R as well as an interval in Z. The distinction will be
clear from context.

Multilinear polynomials and Multilinearization. Fix any field F. Throughout, we work with
functions f : {0, 1}n → F which are represented by multilinear polynomials. Recall that each such
function has a unique multilinear polynomial representation. Further, given a (possibly non-multlinear)
polynomial P (x1, . . . , xn) representing f (i.e. P (a) = f(a) for all a ∈ {0, 1}n), we can obtain a multilinear
representation Q by simply replacing each xri for r > 1 by xi in the polynomial P . This preserves the
underlying function as br = b for b ∈ {0, 1}. We call this process multilinearization.
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Bernstein’s inequality. The following standard deviation bound can be found in, e.g., the book of
Dubhashi and Panconesi [DP09, Theorem 1.2].

Lemma 4 (Bernstein’s inequality). Let X1, . . . , Xm be independent and identically distributed Bernoulli
random variables with mean q. Let X =

∑m
i=1Xi. Then for any θ > 0,

Pr [|X −mq| > θ] ≤ 2 exp

(
− θ2

2mq(1− q) + 2θ/3

)
.

2.1 Symmetric Boolean functions

Let n be a growing integer parameter which will always be the number of input variables. We use sBn
to denote the set of all symmetric Boolean functions on n variables. Note that each symmetric Boolean
function f : {0, 1}n → {0, 1} is uniquely specified by a string Spec f : [0, n] → {0, 1}, which we call the
Spectrum of f , in the sense that for any a ∈ {0, 1}n, we have

f(a) = Spec f(|a|).

Given a f ∈ sBn, we define the period of f , denoted per(f), to be the smallest positive integer b such
that Spec f(i) = Spec f(i + b) for all i ∈ [0, n − b]. We say f is k-bounded if Spec f is constant on the
interval [k, n− k]; let B(f) denote the smallest k such that f is k-bounded.

Standard decomposition of a symmetric Boolean function [Lu01]. Fix any f ∈ sBn. Among
all symmetric Boolean functions f ′ ∈ sBn such that Spec f ′(i) = Spec f(i) for all i ∈ [dn/3e+ 1, b2n/3c],
we choose a function g such that per(g) is as small as possible. We call g the periodic part of f . Define
h ∈ sBn by h = f ⊕ g. We call h the bounded part of f .

We will refer to the pair (g, h) as a standard decomposition of the function f . Note that we have
f = g ⊕ h.

Observation 5. Let f ∈ sBn and let (g, h) be a standard decomposition of f . Then, per(g) ≤ bn/3c and
B(h) ≤ dn/3e.

Some symmetric Boolean functions. Fix some positive n ∈ N. The Majority function Majn on
n Boolean variables accepts exactly the inputs of Hamming weight greater than n/2. For t ∈ [0, n], the
Threshold function Thrtn accepts exactly the inputs of Hamming weight at least t; and similarly, the Exact
Threshold function EThrtn accepts exactly the inputs of Hamming weight exactly t. Finally, for b ∈ [2, n]
and i ∈ [0, b − 1], the function MODb,i

n accepts exactly those inputs a such that |a| ≡ i (mod b). In the
special case that i = 0, we also use MODb

n.

2.2 Probabilistic polynomials

Definition 6 (Probabilistic polynomial and Probabilistic degree). A probabilistic polynomial is a random
multilinear polynomial P (with some distribution having finite support) over F[x1, . . . , xn].We say that
the degree of P , denoted deg(P ), is at most d if the probability distribution defining P is supported on
polynomials of degree at most d

Given a Boolean function f : {0, 1}n → {0, 1} and an ε > 0, an ε-error probabilistic polynomial for f
is a probabilistic polynomial P such that for each a ∈ {0, 1}n,

Pr
P

[P (a) 6= f(a)] ≤ ε.
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We define the ε-error probabilistic degree of f , denoted pdegFε (f), to be the least d such that f has an
ε-error probabilistic polynomial of degree at most d.

When the field F is clear from context, we use pdegε(f) instead of pdegFε (f).

Fact 7. We have the following simple facts about probabilistic degrees of Boolean functions. Let F be any
field.

1. (Error reduction [HS16]) For any δ < ε ≤ 1/3 and any Boolean function f , if P is an ε-error
probabilistic polynomial for f , then Q = M(P1, . . . ,P`) is a δ-error probabilistic polynomial for f
where ` = O(log(1/δ)/ log(1/ε)), M is the exact multilinear polynomial for Maj`, and P1, . . . ,P`
are independent copies of P . In particular, we have pdegFδ (f) ≤ pdegFε (f) · O(log(1/δ)/ log(1/ε)).
(Note that the reason this is not obvious is that the polynomial P is not necessarily Boolean-valued
at points when P (a) 6= f(a). Hence, it is not clear that composing with a polynomial that computes
the Boolean Majority function achieves error-reduction.)

2. (Composition) For any Boolean function f on k variables and any Boolean functions g1, . . . , gk on a
common set of m variables, let h denote the natural composed function f(g1, . . . , gk) on m variables.
Then, for any ε, δ > 0, we have pdegFε+kδ(h) ≤ pdegFε (f) ·maxi∈[k] pdegFδ (gi).

3. (Sum) Assume that f, g1, . . . , gk are all Boolean functions on a common set of m variables such that
f =

∑
i∈[k] gi. Then, for any δ > 0, we have pdegFkδ(f) ≤ maxi∈[k] pdegFδ (gi).

Building on work of Alman and Williams [AW15] and Lu [Lu01], Tripathi, Venkitesh and the au-
thor [STV19] gave upper bounds on the probabilistic degree of any symmetric function. We recall below
the statement in the case of fixed positive characteristic.

Theorem 8 (Known upper bounds on probabilistic degree of symmetric functions [STV19]). Let F be a
field of constant characteristic p > 0 and n ∈ N be a growing parameter. Let f ∈ sBn be arbitrary and let
(g, h) be a standard decomposition of f . Then we have the following for any ε > 0.

1. If per(g) = 1, then pdegε(g) = 0.

If per(g) is a power of p, then pdegFε (g) ≤ per(g),

2. pdegε(h) = O(
√
B(h) log(1/ε) + log(1/ε)) if B(h) ≥ 1 and 0 otherwise, and

3. pdegε(f) =


O(
√
n log(1/ε)) if per(g) > 1 and not a power of p,

O(min{
√
n log(1/ε), per(g)}) if per(g) a power of p and B(h) = 0,

O(min{
√
n log(1/ε), per(g)+ otherwise.√

B(h) log(1/ε) + log(1/ε)})

2.3 A string lemma

Given a function w : I → {0, 1} where I ⊆ N is an interval, we think of w as a string from the set {0, 1}|I|
in the natural way. For an interval J ⊆ I, we denote by w|J the substring of w obtained by restriction to
J .

The following simple lemma can be found, e.g. as a special case of [BK03, Theorem 3.1]. For
completeness, we give a short proof in Appendix B.

Lemma 9. Let w ∈ {0, 1}+ be any non-empty string and u, v ∈ {0, 1}+ such that w = uv = vu. Then
there exists a string z ∈ {0, 1}+ such that w is a power of z (i.e. w = zk for some k ≥ 2).
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Corollary 10. Let g ∈ sBn be arbitrary with per(g) = b > 1. Then for all i, j ∈ [0, n − b + 1] such that
i 6≡ j (mod b), we have Spec g|[i,i+b−1] 6= Spec g|[j,j+b−1].

Proof. Suppose Spec g|[i,i+b−1] = Spec g|[j,j+b−1] for some i 6≡ j (mod b). Assume without loss of generality
that i < j < i + b. Let u = Spec g|[i,j−1], v = Spec g|[j,i+b−1], w = Spec g|[i+b,j+b−1]. Then u = w and the

assumption uv = vw implies uv = vu. By Lemma 9, there exists a string z such that uv = zk for k ≥ 2
and therefore per(g) < b. This contradicts our assumption on b.

2.4 Lucas’s theorem

Theorem 11 (Lucas’s theorem). Let A,B be any non-negative integers and p any prime. Then(
A

B

)
=
∏
i≥0

(
Ai
Bi

)
(mod p)

where Ai (resp. Bi) is the (i+ 1)th least significant digit of A (resp. B) in base p.

The following is a standard application of Lucas’s theorem, essentially observed by Lu [Lu01] and
Hegedűs [Heg09], showing that Hegedűs’s lemma is tight.

Corollary 12. Fix any prime p and positive integer n. Assume i is a non-negative integer and q a power
of p such that i + q ≤ n. Then, there is a symmetric multilinear polynomial Q ∈ Fp[x1, . . . , xn] of degree
q such that Q vanishes at all points of {0, 1}ni but at no point of {0, 1}ni+q.

Proof. Assume q = p`. Let a`, b` ∈ {0, . . . , p − 1} be the (` + 1)th least significant digit of i and i + q
respectively in base p. Note that b` = a` + 1 (mod p).

Define the polynomial

Q(x1, . . . , xn) =

 ∑
S⊆[n]:|S|=q

∏
i∈S

xi

− a`,
which we consider an element of Fp[x1, . . . , xn]. Note that at any input c ∈ {0, 1}n of Hamming weight w,
we have

Q(c) =

(
|c|
q

)
− a`

where the right hand side is interpreted modulo p. Lucas’s theorem then easily implies that Q(c) = 0 if
w = i and 1 if w = i+ q.

3 The Main Lemma

In this section, we prove the main lemma, which is a robust version of Lemma 1.

Lemma 13 (A Robust Version of Hegedűs’s Lemma). Assume that F is a field of characteristic p. Let n
be a growing parameter and assume we have positive integer parameters k, q such that 100q < k < n−100q
and q is a power of p. Define α = min{k/n, 1 − (k/n)} and δ = q/n. Assume P ∈ F[x1, . . . , xn] is a
multilinear polynomial such that for some K ∈ {k + q, k − q},

Pr
a∼{0,1}nk

[P (a) 6= 0] ≤ min{e−100δ2n/α, 1/1000} (1a)

Pr
a∼{0,1}nK

[P (a) 6= 0] ≥ e−δ2n/100α. (1b)

Then, deg(P ) = Ω(q), where the Ω(·) hides an absolute constant.
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One can ask if the above lemma can be proved under weaker assumptions: specifically, if the upper
bound in (1a) can be relaxed. It turns out that it cannot (up to changing the constant in the exponent)
because for larger error parameters, there is a sampling-based construction of a polynomial with smaller
degree that is zero on most of {0, 1}nk and non-zero on most of {0, 1}nK . We discuss this construction in
Section 3.3.

We first prove a special case of the lemma which corresponds to the case when K = k + q = bn/2c
and q sufficiently larger than

√
n. This case suffices for most of our applications. The general case is a

straightforward reduction to this special case.

3.1 A special case

Lemma 14 (A special case of Lemma 13). Let n be a growing parameter and assume ε ∈ [2−n/100, e−200].
Assume t is an integer such that t is a power of p and furthermore, t =

√
n` for some ` ∈ R such that

100 ≤ ` ≤ 1
2 · ln(1/ε). Let P ∈ F[x1, . . . , xn] be any polynomial such that

Pr
a∼{0,1}nbn/2c−t

[P (a) 6= 0] ≤ ε (2a)

Pr
a∼{0,1}nbn/2c

[P (a) 6= 0] ≥ e−`/2. (2b)

Then, deg(P ) ≥ t/25.

Remark 15. By negating inputs (i.e. replacing xi with 1− xi for each i), the above lemma also implies
the analogous statements where bn/2c − t and bn/2c are replaced by dn/2e+ t and dn/2e respectively.

Before we prove this lemma, we need to collect some technical facts and lemmas.
The following is standard. See, e.g., [KS18, Lemma 3.3] for a proof.

Fact 16. Let R ∈ F[x1, . . . , xn] be a non-zero multilinear polynomial of degree at most d ≤ n. Then R
cannot vanish at all points in any Hamming ball of radius d in {0, 1}n.

Lemma 17. Let n, r, s be any non-negative integers with r ≤ s ≤ n/4. Then we have

e−8s(r−s)/n ≤

(
n

bn/2c−s
)(

n
bn/2c−r

) ≤ e−2r(r−s)/n.

Proof. Note that(
n

bn/2c−s
)(

n
bn/2c−r

) =
(bn/2c − s+ 1) · · · (bn/2c − r)
(dn/2e+ s) · · · (dn/2e+ r + 1)

≤
(
bn/2c − r
dn/2e+ r

)r−s
≤
(

1− 2r

n

)r−s
≤ e−2r(r−s)/n,

which implies the right inequality in the statement of the claim. We have used the inequality 1− x ≤ ex
to deduce the final inequality above.

For the left inequality, we similarly have(
n

bn/2c−s
)(

n
bn/2c−r

) ≥ (dn/2e − s
dn/2e+ s

)r−s
≥

((
1− 2s

n

)2
)r−s

≥ e−8s(r−s)/n.

where the final inequality follows from the fact that (1− x) ≥ e−2x for x ∈ [0, 1/2].
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Given a set E ⊆ {0, 1}n, and a parameter D ≤ n, we define ID(E) to be the set of all multilinear
polynomials Q of degree at most D that vanish at all points of E. Further, we define the degree-D closure
of E, denoted clD(E) as follows.

clD(E) := {a ∈ {0, 1}n | Q(a) = 0 ∀Q ∈ ID(E)}.

Note that clD(E) ⊇ E but could be much bigger than E. The following result of Nie and Wang [NW15]
gives a bound on |clD(E)| in terms of |E|. (This particular form is noted and essentially proved in [NW15],
and is explicitly stated and proved in [KS18, Theorem A.1].)

Theorem 18. For any E ⊆ {0, 1}n and any D ≤ n, we have

clD(E)

2n
≤ |E|
ND

where ND =
∑D

j=0

(
n
j

)
, the number of multilinear monomials of degree at most D.

We now begin the proof of the Lemma 14.

Proof of Lemma 14. Assume that P is as given. Let m = bn/2c.
Let E0, E1 be defined as follows.

E0 = {a ∈ {0, 1}nm−t | P (a) 6= 0}
E1 = {a ∈ {0, 1}nm | P (a) = 0}

We show that there are polynomials Q1, Q2 ∈ F[x1, . . . , xn] such that the following conditions hold.

(Q1.1) Q1(a) 6= 0 if and only if |a| ≡ m (mod t).

(Q2.1) Q2(a) = 0 for all a ∈ E0.

(Q2.2) Q2(a) = 0 for all a such that |a| < m− t and |a| ≡ m (mod t).

(Q2.3) Q2(a) 6= 0 for some a ∈ {0, 1}nm \ E1.

Given polynomials Q1, Q2 as above, we construct the polynomial R to be the multilinear polynomial
obtained by computing the formal product P ·Q1 ·Q2 and replacing xri by xi for each r > 1. Note that
R(a) = P (a)Q1(a)Q2(a) for any a ∈ {0, 1}n.

We observe that R(a) = 0 for all |a| < m. This is based on a case analysis of whether |a| ≡ m (mod t)
or not. In the latter case, we see that Q1(a) = 0 and hence R(a) = 0. In the former case, we have either
a ∈ {0, 1}nm−t \ E0, in which case P (a) = 0, or not, in which case Q2(a) = 0. Hence, R(a) = 0 for all
|a| < m.

On the other hand, we note that R is a non-zero polynomial. This is because by (Q2.3), we know that
there is some a′ ∈ {0, 1}nm \ E1 where Q2(a′) 6= 0. Further, Q1(a′) 6= 0 and P (a′) 6= 0 by (Q1.1) and the
definition of E1 respectively. Hence, R(a′) 6= 0, implying that R is a non-zero multilinear polynomial.

By Fact 16, we thus know that R has degree at least m. In particular, we obtain

deg(P ) ≥ deg(R)− deg(Q1)− deg(Q2) ≥ m− deg(Q1)− deg(Q2).

Hence, to finish the proof of the lemma, it suffices to prove the following claims.

Claim 19. There is a Q1 of degree at most t satisfying property (Q1.1).

12



Claim 20. There is a Q2 of degree at most m − t − t1 satisfying properties (Q2.1)-(Q2.3), where t1 =
dt/25e.

We now prove the above claims.

Proof of Claim 19. This follows immediately from the upper bound for periodic functions in Theorem 8.
Consider the t-periodic function that takes the value 1 at point a ∈ {0, 1}n if and only if |a| ≡ m (mod t).
Since this function is t-periodic, it can be represented exactly as a polynomial of degree at most t. This
yields the claim.

Proof of Claim 20. Let D denote m− t− t1. Let E = E0 ∪
⋃
j<m−t:j≡m (mod t){0, 1}nj . We want to show

the existence of a polynomial Q2 of degree at most D such that Q2 vanishes at all points of E but Q2 does
not vanish at some point in Ē1 := {0, 1}nm \ E1. Note that this is equivalent to saying that clD(E) + Ē1.
To show this, it suffices to show that

|clD(E)| < e−`/2 ·
(
n

m

)
(3)

since by hypothesis we have |Ē1| ≥ e−`/2 ·
(
n
m

)
.

To do this, we use Theorem 18. Note that we have

|E| ≤ |E0|+
∑

j<m−t:j≡m (mod t)

(
n

j

)

≤ ε ·
(

n

m− t

)
+
∑
k≥1

(
n

m− t− k · t

)

≤ ε ·
(

n

m− t

)
+

(
n

m− t

)
·
(
e−2` + e−4` + . . .

)
≤
(

n

m− t

)
· (ε+ 2 · e−2`) ≤

(
n

m− t

)
· (3e−2`) (4)

where the third inequality is a consequence of Lemma 17 (with r = t and s = (k + 1)t for various k) and
the final inequality uses ε ≤ e−2`.

On the other hand, the parameter ND from the statement of Theorem 18 can be lower bounded as
follows.

ND =

D∑
j=0

(
n

D − j

)
≥ t1

(
n

m− t− 2t1

)

≥ t1e−` ·
(

n

m− t

)
> e−` ·

√
n

3
·
(

n

m− t

)
where the second inequality follows from Lemma 17 (with r = t and s = t+ 2t1) and the final inequality
uses the fact that t1 > t/30 =

√
n`/30 ≥

√
n/3.

Putting the above together with (4) immediately yields

|E|
ND

< 9e−` ·
(
n

m−t
)

√
n ·
(
n

m−t
) = 9e−` · n−1/2.

Using Theorem 18, we thus obtain

clD(E) < 9e−` · 2n√
n
≤ e−`/2 · 2n

2
√
n
≤ e−`/2 ·

(
n

m

)
13



where the last inequality follows from Stirling’s approximation. Having shown (3), the claim now follows.

3.2 The General Case

We start with some preliminaries.
We first show a simple ‘error-reduction’ procedure for polynomials. For any multilinear polynomial

P ∈ F[x1, . . . , xn] and any m ∈ [0, n], let NZm(P ) denote the set of points of {0, 1}nm where P does not
vanish. Let ψm(P ) denote |NZm(P )|/

(
n
m

)
.

Lemma 21. For any multilinear Q ∈ F[x1, . . . , xn] and any r ≥ 1, there is a probabilistic polynomial
Q(r) of degree at most r · deg(Q) such that for all m ∈ [0, n], EQ(r) [ψm(Q(r))] = ψm(Q)r.

Proof. For a permutation π ∈ Sn, and a ∈ {0, 1}n, define aπ = (aπ(1), . . . , aπ(n)).Also, defineQπ(x1, . . . , xn) =
Q(xπ) = Q(xπ(1), . . . , xπ(n)).

For a uniformly random π ∈ Sn, and any a ∈ {0, 1}nm, the probabilistic polynomial Qπ satisfies

Pr
π

[Qπ(a) 6= 0] = Pr
π

[Q(aπ) 6= 0] = Pr
π

[aπ ∈ NZm(Q)] = ψm(Q)

as aπ is uniformly distributed over {0, 1}nm.
Choose π1, . . . ,πr i.u.a.r. from Sn, and define Q(r) =

∏r
i=1Q

πi . For any a ∈ {0, 1}nm

Pr
Q(r)

[
Q(r)(a) 6= 0

]
= (ψm(Q))r.

In particular, the above holds for a uniformly random a chosen from {0, 1}nm. Hence, we have

E
Q(r)

[ψm(Q(r))] = Pr
Q(r),a∼{0,1}nm

[
Q(r)(a) 6= 0

]
= ψm(Q)r.

We are now ready to prove the main lemma in its full generality.

Proof of Lemma 13. W.l.o.g. we assume that k ≤ n/2. (To prove the lemma for k > n/2, consider the
polynomial Q(x) = P (1− x1, . . . , 1− xn) instead.)

We first reduce to the case where K = n/2.
More precisely, note that there exist non-negative integers r ≤ 2q and s so that 2(K − r) = n− r− s.

This can be seen by a simple case analysis. If K = k − q, we can choose r = 0, s = n − 2k + 2q; if
K = k+ q and n− 2k ≥ 2q, we can choose r = 0 and s = n− 2k− 2q; and if K = k+ q and n− 2k < 2q,
we can choose r = 2q − (n− 2k) and s = 0.

Having chosen r, s as above, we set K ′ = K − r, k′ = k − r and n′ = n− r − s. Let S be a uniformly
random subset of [n] of size r+ s and y a uniformly random point in {0, 1}r+sr . We set PS,y(xi : i 6∈ S) to
be the probabilistic polynomial obtained by setting all the variables indexed by S according to y. Note
that we have

E
S,y

[ψk′(PS,y)] = ψk(P ) =: ε0 and E
S,y

[ψK′(PS,y)] = ψK(P ) =: ε1.

By Markov’s inequality, we have

Pr
S,y

[
ψk′(PS,y) >

2ε0

ε1

]
<
ε1

2
and Pr

S,y

[
ψK′(PS,y) >

ε1

2

]
≥ ε1

2
.
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Hence, with positive probability over the choice of S and y, we have both ψk′(PS,y) ≤ 2ε0/ε1 and
ψK′(PS,y) > ε1/2. We fix such a choice S, y for S,y and let P ′ denote PS,y. Clearly, deg(P ) ≥ deg(P ′)
and hence it suffices to lower bound deg(P ′).

We will now use Lemma 14 to obtain the desired lower bound on deg(P ′). First of all, note that
`′ := q2/n′ satisfies

`′ =
q2

n′
≤ k2

10000n′
≤ n′

10000
,

by the bounds on q in the statement of the lemma and the fact that k ≤ 2K = n′.
We consider now two cases.

Case 1: Assume first that `′ ≥ 100. Using the bounds on ε0 and ε1 in the lemma statement and the
bounds above, P ′ is a polynomial in n′ variables satisfying

ψk′(P
′) ≤ 2ε0

ε1
≤ 2ε0.99

0 ≤ 2 exp(−99δ2n/α) = 2 exp(−99δ2n2/(αn)) ≤ 2 exp(−99q2/n′), and

ψK′(P
′) ≥ ε1

2
≥ 1

2
exp(−(1/100) · δ2n/α) =

1

2
exp(−(1/100) · δ2n2/(αn)) ≥ 1

2
exp(−(1/25) · q2/n′).

where we have used the inequalities n′ ≥ 2(k − q) ≥ αn and n′ = 2K ′ ≤ 2(k + q) ≤ 4αn.
Define ε = exp(−2`′). Note that we have ε ≥ exp(−n′/5000) by the bound on `′ above. Further,

ψ(n′/2)−q(P
′) = ψk′(P

′) ≤ 2 exp(−99q2/n′) = 2 exp(−99`′) ≤ exp(−2`′) = ε, and

ψn′/2(P ′) = ψK′(P
′) ≥ 1

2
exp(−(1/25) · q2/n′) ≥ exp(−`′/2).

Applying Lemma 14 to P ′ (see also Remark 15), we immediately obtain deg(P ′) ≥ q/25 and hence we
are done in this case.

Case 2: Now consider the case when `′ < 100. In this case, the hypothesis of the lemma assures us that
ε0 ≤ 1/1000 and ε1 ≥ exp(−q2/100αn) ≥ exp(−`′/25) ≥ e−4 where the second inequality uses n′ ≤ 4αn
as argued above. Then, we have

ψk′(P
′) ≤ 2ε0

ε1
≤ 2ε0.99

0 ≤ 1

400
, (5a)

ψK′(P
′) ≥ ε1

2
≥ ε0.01

0

2
≥ 1

2100/99
· ψk′(P ′)1/99 ≥ ψk′(P ′)1/7, (5b)

ψK′(P
′) ≥ ε1

2
≥ e−5. (5c)

where (5b) uses ε0.01
0 ≥ (ψk′(P

′)/2)1/99 and ψk′(P
′) ≤ 1/400, both of which follow from (5a).

Let r be a large constant that will be fixed below. By Lemma 21, we know that there is a probabilistic
polynomial P ′(r) of degree at most r·deg(P ′) such that for eachm ∈ {k′,K ′}, we have EP ′(r) [ψm(P ′(r))] =
ψm(P ′)r.

The proof will proceed by another restriction to n′′ variables, where n′′ is defined to be the largest
even integer such that 100n′′ ≤ q2. We assume that n′′ is greater than a large enough absolute constant,
since otherwise q is upper bounded by a fixed constant, in which case the degree bound to be proved is
trivial. Note that `′′ := q2/n′′ ≥ 100 by definition. We also have n′′ = (q2/100) − 2, which implies that
`′′ ≤ 100 +O(1)/q2 ≤ 101, as long as q is greater than a large enough absolute constant.

Relabel the variables so that P ′ is a polynomial in x1, . . . , xn′ . Let T be a uniformly random subset
of [n′] of size n′ − n′′ and let z be a uniformly random point in {0, 1}n′−n′′(n′−n′′)/2. Define the probabilistic
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polynomial P
′(r)
T ,z obtained by setting the variables indexed by T according to z in the probabilistic

polynomial P ′(r). Let K ′′ := n′′/2 and k′′ := k′ − (n′ − n′′)/2. As above, we have

E
P ′(r),T ,z

[ψk′′(P
′(r)
T ,z )] = ψk′(P

′)r =: ε′0 and E
P ′(r),T ,z

[ψK′′(P
′(r)
T ,z )] = ψK′(P

′)r =: ε′1.

Let r be the smallest positive integer so that ε′0 = ψk′(P
′)r ≤ e−300. Note that r is upper bounded by

an absolute constant, as ψk′(P
′) ≤ 1/400 by (5a). Further, we have ψk′(P

′)r−1 > e−300 and hence

ε′1 = ψK′(P
′)r = ψK′(P

′)r−1 · ψK′(P ′) ≥
(
(ψk′(P

′))r−1
)1/7 · e−5 > e−48

where the first inequality uses (5).
By Markov’s inequality as above, there is a fixed choice of P ′(r),T , and z such that the corresponding

polynomial P ′′ is a polynomial on n′′ variables satisfying

ψk′′(P
′′) ≤ 2ε′0

ε′1
< e−210 < e−2`′′ and ψK′′(P

′′) ≥ ε′1
2
> e−50 ≥ e−`′′/2.

Applying Lemma 14 to P ′′ with error parameter ε =
2ε′0
ε′1

yields deg(P ′′) ≥ q/25. As deg(P ′′) ≤ r ·deg(P ′),

we also get deg(P ′) = Ω(q), finishing the proof in this case as well. (Note that the Ω(·) hides an absolute
constant.)

3.3 Tightness of the Main Lemma (Lemma 13)

In this section, we discuss the near-optimality of Lemma 13 w.r.t. to the various parameters. Fix
n, k, q, α, δ and F as in the statement of Lemma 13. Assume that K = k+ q (the case when K = k− q is
similar) and that k ≤ n/2. Let ε ∈ (0, 1) be arbitrary.

First of all, we note that the degree lower bound obtained cannot be larger than q, because by
Corollary 12, it follows that there is a degree-q polynomial that vanishes at all points of weight k but no
points of weight K.

In Lemma 13, we try to understand if this continues to be true (up to constant factors in the degree)
even if the polynomial is forced to be zero only on most (say a 1− ε fraction) of {0, 1}nk and non-zero on
most (say a 1− ε fraction) of {0, 1}nK . (Lemma 13 is a stronger statement, but the parameters are even
tight for this weaker version.)

To understand why ε is set as in (1), we analyze a different polynomial construction to achieve this
based on sampling. We will need the following interpolation lemma that can be found in a paper of Alman
and Williams [AW15].

Lemma 22. Let n be arbitrary and I ⊆ [0, n] be any interval of integers. Given any f : I → {0, 1}, there
is a multilinear polynomial Q ∈ Z[x1, . . . , xn] of degree at most |I| − 1 such that Q(a) = f(|a|) for each
a ∈

⋃
i∈I{0, 1}ni .

Fix any positive integer m. By Lemma 22, it follows that there is a multilinear polynomial Q ∈
Z[y1, . . . , ym] of degree O(δm) such that Q(b) = 0 for each b ∈ {0, 1}m such that |b| ∈ ((α− δ/2)m, (α +
δ/2)m) and Q(b) = 1 for each b ∈ {0, 1}m such that |b| ∈ ((α + δ/2)m, (α + 3δ/2)m). Reducing the
coefficients modulo p, we obtain a polynomial Q̃ ∈ F[y1, . . . , ym] with the same property. Fix this Q̃.

Consider the probabilistic polynomial P (x1, . . . , xn) defined as follows. Choose i1, . . . , im i.u.a.r. from
[n] where m = C ·(α/δ2) log(1/ε) for a large enough constant C we will fix below. We define P (x1, . . . , xn)
to be the multilinear polynomial obtained from Q̃(xi1 , . . . , xim) by multilinearization (i.e. replacing each
xri by xi for r > 1). Note that deg(P ) ≤ deg(Q) = O(δm) = O((α/δ) log(1/ε)).
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Let a ∈ {0, 1}nk be arbitrary. We analyze the random variable P (a). Note that as long as the
Hamming weight of b = (ai1 , . . . , aim) is in the interval ((α− δ/2)m, (α+ δ/2)m), we have P (a) = 0. As
each co-ordinate of b is 1 with probability k/n = α ∈ [0, 1/2], Bernstein’s inequality (Lemma 4) yields

Pr
P

[P (a) 6= 0] ≤ Pr
i1,...,im

[||b| − αm| > δm/3] ≤ exp(−Ω(δ2m/α)) < ε/2

as long as C is a large enough constant. In a similar way, we also see that for any a ∈ {0, 1}nK , we have
PrP [P (a) 6= 1] < ε/2 and hence, in particular, PrP [P (a) 6= 0] > 1− (ε/2), as long as C is a large enough
constant.

In particular, by Markov’s inequality and the union bound, we see that there is a P of degree at most
deg(P ) such that

ψk(P ) ≤ ε and ψK(P ) ≥ 1− ε.

Thus, we have a polynomial P that satisfies conditions similar to the hypothesis of Lemma 13. Note,
however, that the degree of P is O((α/δ) log(1/ε)) which can be much smaller than the trivial upper
bound of q unless ε < exp(−Ω(δ2n/α)). This motivates why the error parameters are set as they are in
(1) (specifically (1a)).

4 Applications

4.1 Tight Degree Lower Bounds for the Coin Problem

We start with a definition.

Definition 23 (The δ-Coin Problem). For any α ∈ [0, 1] and integer n ≥ 1, let µnα be the product
distribution over {0, 1}n obtained by setting each bit to 1 independently with probability α. Let δ ∈ (0, 1)
be a parameter.

Given a function g : {0, 1}n → {0, 1}, we say that g solves the δ-coin problem with error ε if

Pr
x∼µn

(1/2)−δ

[g(x) = 1] ≤ ε and Pr
x∼µn

1/2

[g(x) = 1] ≥ 1− ε. (6)

(This definition is sometimes [LSS+18] stated in terms of the distributions µ(1/2)−δ and µ(1/2)+δ. This is
essentially equivalent to the definition above.)

Let F be a prime field of characteristic p, where p is a fixed constant. We consider here the minimum
degree of a polynomial P ∈ F[x1, . . . , xn] that solves the δ-coin problem with error ε.

By Lemma 22, for any n ≥ 1, there is a polynomial P ∈ F[x1, . . . , xn] of degree O(δn) that outputs
0 on all inputs of weight w ∈ (n((1/2) − 3δ/2), n(1/2 − δ/2)) and 1 on all inputs of weight (n(1/2 −
δ/2), n(1/2 + δ/2)). Using Lemma 4 (Bernstein’s inequality), it can be easily checked that P solves the
δ-coin problem with error ε as long as n ≥ C 1

δ2
log(1/ε) for some large enough constant C > 0. This

yields a polynomial P of degree O(1
δ log(1/ε)).

In earlier work [LSS+18], we showed that this was tight for constant ε. That is, we showed that any
polynomial P that solves the δ-coin problem with error at most 1/10 (say) must have degree Ω(1/δ).
This was also implied by an independent result of Chattopadhyay, Hosseini, Lovett and Tal [CHLT19]
(see [Agr19]). Both proofs relied on slight strengthenings of Smolensky’s [Smo87b] lower bound on poly-
nomials approximating the Majority function. It is not clear from these proofs, however, if this continues
to be true for subconstant ε. The main lemma (Lemma 13), or even its simpler version Lemma 14, shows
that this is indeed true.
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Theorem 24 (Tight Degree Lower Bound for the δ-coin problem for all errors). Assume F is as above
and δ, ε are parameters going to 0. Let N ≥ 1 be any positive integer. Any polynomial P ∈ F[x1, . . . , xN ]
that solves the δ-coin problem with error ε must have degree Ω(1

δ log(1/ε)).

Proof. We assume that ε is smaller than some small enough constant ε0 (for larger ε, we can just appeal
to the lower bound of [LSS+18]).

Assume for now that δ = 1/k for some integer k ≥ 1. Fix n to be the least even integer such
that n ≥ C

δ2
log(1/ε) for a large constant C and q := δn is a power of the characteristic p. Note

that n ≤ O(p) · C
δ2

log(1/ε) = O( 1
δ2

log(1/ε)) as p is a constant. Define the probabilistic polynomial
Q ∈ F[y1, . . . , yn] obtained from P by randomly replacing each variable of P by a uniformly random
variable among y1, . . . , yn (followed by multilinearization). For any a ∈ {0, 1}nn/2, we have

Pr
Q

[Q(a) = 0] = Pr
b∼µ1/2

[P (b) = 0] ≤ ε,

and similarly for a ∈ {0, 1}n(n/2)−q, we have PrQ [Q(a) 6= 0] ≤ ε. In particular, by Markov’s inequality,

there is a fixed polynomial Q of degree at most deg(P ) that satisfies

Pr
a∼{0,1}n

n/2

[Q(a) = 0] ≤ 2ε and Pr
a∼{0,1}n

(n/2)−q

[Q(a) 6= 0] ≤ 2ε.

Hence, by Lemma 14, we have deg(P ) = Ω(δn) = Ω(1
δ log(1/ε)).

Now, if δ is not of the assumed form, we consider k be the largest integer such that δ ≤ 1/k and set
δ′ := 1/k. Define α ∈ (0, 1) by α = δ/δ′. Note that if a, b ∈ {0, 1} are sampled independently from the
distributions µ1

1/2−δ′ and µ1
1/2−(α/2) respectively, then their parity a⊕b has the distribution µ1

1/2−δ. Now,

if we define the probabilistic polynomial R(x1, . . . , xn) by

R(x1, . . . , xn) = P (x1 ⊕ y1, . . . , xn ⊕ yn)

where y = (y1, . . . ,yn) is sampled from µn1/2−(α/2), then R solves the δ′-coin problem with error at most

ε. Note also that deg(R) ≤ deg(P ) as for each fixed y, each xi ⊕ yi is a linear function of xi.
Repeating the above argument withR instead of P yields that deg(R) = Ω( 1

δ′ log(1/ε)) = Ω(1
δ log(1/ε)).

We thus get the same lower bound for deg(P ).

4.2 Tight Probabilistic Degree Lower bounds for Positive Characteristic

We start with some basic notation and definitions and then state our result.
Throughout this section, let F be a field of fixed (i.e. independent of n) characteristic p > 0. The

main theorem of this section characterizes (up to constant factors) the ε-error probabilistic degree of every
symmetric function and for almost all interesting values of ε.

Theorem 25 (Probabilistic Degree lower bounds over positive characteristic). Let n ∈ N be a growing
parameter. Let f ∈ sBn be arbitrary and let (g, h) be a standard decomposition of f (see Section 2 for the
definition). Then for any ε ∈ [1/2n, 1/3], we have

pdegFε (f) =


Ω(
√
n log(1/ε)) if per(g) > 1 and not a power of p,

Ω(min{
√
n log(1/ε), per(g)}) if per(g) a power of p and B(h) = 0,

Ω(min{
√
n log(1/ε), per(g) otherwise.

+
√
B(h) log(1/ε) + log(1/ε)})

Here the Ω(·) notation hides constants depending on the characteristic p of the field F.

Note that this matches the upper bound construction from Theorem 8.
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4.2.1 Some Preliminaries

Definition 26 (Restrictions). Given functions f ∈ sBn and g ∈ sBm where m ≤ n, we say that g is a
restriction of f if there is some a ∈ [0, n−m] such that the identity

g(x) = f(x1a0n−m−a)

holds for every x ∈ {0, 1}n. Or equivalently, that g can be obtained from f by setting some inputs to 0
and 1 respectively.8

We will use the following obvious fact freely.

Observation 27. If g is a restriction of f , then for any δ > 0, pdegδ(g) ≤ pdegδ(f).

In earlier work with Tripathi and Venkitesh [STV19], we showed the following near-optimal lower
bound on the probabilistic degrees of Threshold functions.

Lemma 28 (Lemma 27 in [STV19]). Assume t ≥ 1. For any ε ∈ [2−n, 1/3],

pdegε(Thrtn) = Ω(
√

min{t, n+ 1− t} log(1/ε) + log(1/ε)).

(The corresponding lemma in [STV19] is only stated for t ≤ n/2. However, as Thrn+1−t
n (x) = 1 −

Thrtn(1− x1, . . . , 1− xn), the above lower bound holds for t > n/2 also.)
The following classical results of Smolensky prove optimal lower bounds on the probabilistic degrees

of some interesting classes of symmetric functions.

Lemma 29 (Smolensky’s lower bound for close-to-Majority functions [Sze89, Smo93]). For any field F,
any ε ∈ (1/2n, 1/5), and any Boolean function g on n variables that agrees with Majn on a 1− ε fraction
of its inputs, we have

pdegFε (g) = Ω(
√
n log(1/ε)).

Lemma 30 (Smolensky’s lower bound for MOD functions [Smo87a]). For 2 ≤ b ≤ n/2, any F such that
char(F) is either zero or coprime to b, any ε ∈ (1/2n, 1/(3b)), there exists an i ∈ [0, b− 1] such that

pdegFε (MODb,i
n ) = Ω(

√
n log(1/bε)).

We now show how to use our robust version of Hegedűs’s lemma to prove Theorem 25. In fact,
Lemma 14 will suffice for this application.

4.2.2 Strategy and two simple examples

The probabilistic degree lower bounds below will use the following corollary of Lemma 14.

Corollary 31. Let n be a growing parameter and assume ε ∈ [2−n/100, e−200]. Assume t is an integer
such that t is a power of p and furthermore, t =

√
n` for some ` ∈ R such that 100 ≤ ` ≤ 1

2 · ln(1/ε). Let
h ∈ sBn be any function such that Spech(bn/2c) 6= Spech(bn/2c − t). Then, pdegε(h) = Ω(t).

Proof. By error reduction for probabilistic polynomials (Fact 7 item 1), it suffices to prove an Ω(t) lower
bound on pdegε/2(h).

8Note that exactly which inputs are set to 0 or 1 is not important, since we are dealing with symmetric Boolean functions.
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Assume without loss of generality that Spech(bn/2c) = 1 and Spech(bn/2c − t) = 0. Let P be an
(ε/2)-error probabilistic polynomial for h. Then, we have

Pr
P ,a∼{0,1}nbn/2c

[P (a) 6= 1] ≤ ε/2

Pr
P ,b∼{0,1}nbn/2c−t

[P (b) 6= 0] ≤ ε/2

Thus, we have
E
P

[ Pr
a∼{0,1}nbn/2c

[P (a) 6= 1] + Pr
b∼{0,1}nbn/2c−t

[P (b) 6= 0]] ≤ ε,

and hence, by averaging, there is a polynomial P in the support of the distribution of P such that

Pr
a∼{0,1}nbn/2c

[P (a) 6= 1] + Pr
b∼{0,1}nbn/2c−t

[P (b) 6= 0] ≤ ε.

Applying Lemma 14 to P yields
deg(P ) ≥ deg(P ) = Ω(t).

To illustrate the usefulness of Corollary 31, we prove optimal lower bounds on the probabilistic degrees
for two interesting classes of functions (both of which will be subsumed by Theorem 25).

Corollary 32. Let ε ∈ (0, 1/3] be a constant. Let q be any integer relatively prime to p such that

q ≤ 0.99n. Then the ε-error probabilistic degrees of EThr
bn/2c
n and MODq

n are Ω(
√
n).

Known lower bounds (Lemmas 29 and 30) can be used to prove similar lower bounds to the one given
above, but with additional log-factor losses (see Lemma 30, which requires the error to be subconstant,
and [STV19]). However, we do not know how to prove the above tight (up to constants) lower bound
without appealing to Lemma 14. In particular, we do not know how to prove the above in characteristic
0.

Proof. We use Corollary 31. We will use EThr
bn/2c
n and MODq

n to construct functions that distinguish
between weights bn/2c and bn/2c− t for suitable t = Ω(

√
n). Corollary 31 then implies the required lower

bound.
For h = EThr

bn/2c
n , note that Spech(bn/2c) 6= Spech(bn/2c − t) for any t < bn/2c. In particular,

setting t to be the smallest power of p such that t ≥
√

100n and ε0 = e−2t2/n, we get by Corollary 31
that pdegε0(h) = Ω(t) = Ω(

√
n). By error-reduction for probabilistic polynomials (Fact 7 item 1), we also

have the same lower bound (up to constant factors) for any ε ≤ 1/3. This proves the claim in the case

that h = EThr
bn/2c
n .

For h = MODq
n, we make some minor modifications to the above idea. Let r ∈ [0, q − 1] be such that

r + b(n− q)/2c ≡ 0 (mod q). Define h′ ∈ sBn−q by

h′(x) = h(x1r0q−r).

Set t to be the smallest power of p such that t ≥
√

100(n− q) and ε0 = e−2t2/(n−q). Note that Spech′(b(n−
q)/2c) = Spech(r+b(n−q)/2c) = 1 as r+b(n−q)/2c ≡ 0 (mod q). On the other hand, r+b(n−q)/2c−t 6≡
0 (mod q) as t is a power of p and hence not divisible by q, which implies that Spech′(b(n−q)/2c−t) = 0.
Thus, by Corollary 31, we get pdegε0(h′) = Ω(t) = Ω(

√
n).
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4.2.3 Proof of Theorem 25

The proof of this theorem closely follows our probabilistic degree lower bounds in [STV19] with careful
modifications to avoid the log-factor losses therein.

Let f ∈ sBn be arbitrary and let (g, h) be a standard decomposition of f .
We start with a lemma that proves lower bounds on pdegε(f) as long as per(g) is large.

Lemma 33. Fix any ε ∈ [2−n, 1/3]. Assume that f is such that per(g) >
√
n log(1/ε). Then

pdegε(f) = Ω(
√
n log(1/ε)).

Proof. We first prove the lemma under the assumption that ε ∈ [2−n/1000, e−10000p2 ].
Fix m to be the largest power of p upper bounded by 1

4

√
n log(1/ε).

Since per(g) >
√
n log(1/ε) ≥ m, there is no function g′ ∈ sBn that has period m and agrees with

f on the interval I := [dn/3e + 1, b2n/3c]. Thus, there exists some r ∈ I such that r + m ∈ I and
Spec f(r) 6= Spec f(r +m).

Let k = dn/2e. Note that r ≥ dn/3e ≥ k/2 and r +m ≤ b2n/3c. Define F ∈ sBk by setting

F (x) = f(x1a0b)

where a = r +m− bk/2c and b = n− k − a (it can be checked that a, b are non-negative for parameters
r,m, k as above). Note that SpecF (bk/2c) = Spec f(bk/2c + a) = Spec f(r + m) and similarly that
SpecF (bk/2c −m) = Spec f(r). We thus obtain SpecF (bk/2c) 6= SpecF (bk/2c −m).

Note that by the bounds on ε assumed above

m ≥ 1

4p

√
n log(1/ε) ≥ 20

√
n. (7)

Using Corollary 31, we hence get

pdegε(f) ≥ pdegε/2(F ) = Ω(m) = Ω(
√
n log(1/ε))

which proves the lemma under the assumption on ε above. (We use the bounds on ε to ensure that
2−k/200 ≤ ε ≤ e−2m2/k, which is part of the hypothesis of Corollary 31.)

If ε ∈ [2−n, 2−n/10000p2 ], then for ε0 = 2−n/10000p2 , we have

pdegε(f) ≥ pdegε0(f) = Ω(
√
n log(1/ε0)) = Ω(

√
n log(1/ε))

which implies the desired lower bound.9

On the other hand, if ε > e−10000p2 , we proceed as follows. We construct F as above, but we may no
longer have m ≥ 20

√
n as implied by (7). However, for F ′ ∈ sBk′ defined by

F ′(x) = F (x0t1t)

for suitably chosen t ≤ k/2, we can ensure that m ∈ [10
√
k′, 20

√
k′]. Note that SpecF ′(bk′/2c) =

SpecF (bk/2c) and SpecF ′(bk′/2c − m) = SpecF (bk/2c − m). Hence, for ε1 = e−10000, Corollary 31
implies

pdegε1(f) ≥ pdegε1(F ′) = Ω(m) = Ω(
√
n log(1/ε1)).

By error reduction (Fact 7 item 1), the same lower bound holds for pdegε(f) as well.

9Note that we assume that the characteristic is a fixed positive constant and hence the Ω(·) can hide constants depending
on p.
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The next lemma allows us to prove a weak lower bound on pdegε(f) depending only on its periodic
part g.

Lemma 34. For any ε ∈ [2−n, 1/3],

pdegε(f) ≥

{
Ω(
√
n log(1/ε)), if per(g) is not a power of p

Ω(min{per(g),
√
n log(1/ε)}), if per(g) is a power of p.

Proof. By Fact 7 item 1 (error reduction), we know that pdegε(g) = Θ(pdegδ(g)) as long as δ = εΘ(1). In
particular, we may assume without loss of generality that ε ∈ [2−n/10000, e−10000p2 ].

Let b := per(g). If per(g) >
√
n log(1/ε), we are done by Lemma 33. So we assume that b ≤√

n log(1/ε). In particular, this implies that b ≤ n/100.
We have two cases.

b is not a power of p. Let n1 be the largest power of p upper bounded by 1
4

√
n log(1/ε). By the

constraints on ε, we have 10
√
n ≤ n1 ≤ n/100.

Let b1 ∈ [0, b−1] such that b1 ≡ n1 (mod b); note that b1 6= 0 as b is not a power of p. As b1 is smaller
than b = per(g), there must exist r ∈ [0, n− b1] such that

Spec g(r) 6= Spec g(r + b1).

Assume that we choose the smallest r ≥ n/2 so that this condition holds. Then we have r ≤ n/2 + b ≤
51 · n/100. Fix this r. As Spec g(r) 6= Spec g(r + b1), we also have Spec g(r) 6= Spec g(r + b1 + k · b)
for any integer k such that 0 ≤ r + b1 + kb ≤ n. In particular, as b1 ≡ n1 (mod b), we note that
Spec g(r) 6= Spec g(r + n1). As n1 ≤ n/100, we have

n/2 ≤ r ≤ r + n1 ≤ n/2 + n/50.

As Spec g(i) = Spec f(i) for all i ∈ [dn/3e+ 1, b2n/3c], we have Spec f(r) 6= Spec f(r+ n1). Without loss
of generality, we assume that Spec f(r) = 0 and Spec f(r + n1) = 1.

Let m = dn/2e. We define F ∈ sBm as follows.

F (x) = f(x1a0n−m−a)

where a is chosen so that SpecF (bm/2c) = Spec f(r + n1) = 1. This also implies that SpecF (bm/2c −
n1) = Spec f(r) = 0. By Corollary 31, we get pdegε(F ) = Ω(n1) = Ω(

√
n log(1/ε)), proving the lemma

in this case.

b is a power of p. In this case, we first choose parameters m, δ with the following properties.

(P1) m ∈ [n] with m ≥ 20b and m ≡ n (mod 2).

(P2) 1/3 ≥ δ ≥ max{ε, 1/2m}.

(P3)
√
m log(1/δ) < b.

(P4)
√
m log(1/δ) = Ω(min{b,

√
n log(1/ε)}) = Ω(b). (Recall that b ≤

√
n log(1/ε).)

We will show below how to find m, δ satisfying these properties. Assuming this for now, we first prove
the lower bound on pdegε(f).

Define F ∈ sBm as follows.
F (x) = f(x0t1t)
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for t = (n−m)/2. We observe that if (G,H) is a standard decomposition of F , then per(G) ≥ b. To see
this, note that by Corollary 10, we have

Spec g|[bn/2c,bn/2c+b−1] 6= Spec g|[bn/2c+i,bn/2c+i+b−1]

for any i ∈ [b− 1]. As f and g agree on inputs of weight from [bn/3c+ 1, b2n/3c], the same non-equality
holds for Spec f also. Further, as SpecF (bm/2c+ j) = Spec f(bn/2c+ j) for j ≤ m/2, we also get

SpecF |[bm/2c,bm/2c+b−1] 6= SpecF |[bm/2c+i,bm/2c+i+b−1].

for any i ∈ [b − 1] (we have used here the fact that m ≥ 20b which holds by (P1)). Finally, as F and G
agree on inputs of weight from [bm/3c+ 1, b2m/3c] ⊇ [bm/2c, bm/2c+ 2b], the above non-equality holds
for G as well. This implies that G cannot have period smaller than b.

By (P3), we have per(G) >
√
m log(1/δ). Lemma 33 above and (P4) now imply that pdegδ(F ) =

Ω(min{b,
√
n log(1/ε)}). However, as δ ≥ ε (by (P2)) and F is a restriction of f , the same lower bound

holds for pdegε(f) as well. This proves the lemma modulo the existence of m, δ as above. We justify this
now.

1. If b ≤ 10
√
n, we take m to be the largest integer such that m ≡ n (mod 2) and m ≤ b2/100. The

parameter δ is set to 1/3.

2. If 10
√
n < b ≤ n/100, then we take m to be the largest integer such that m ≡ n (mod 2) and

m ≤ n/2. The parameter δ = max{ε, 2−b2/2m}.

Note that as observed above, we have b ≤ n/100, and hence, the above analysis subsumes all cases.
In each case, the verification of properties (P1)-(P4) is a routine computation. (We assume here that

b is greater than a suitably large constant, since otherwise the statement of the lemma is trivial.) This
concludes the proof.

We now prove a lower bound on pdegε(h).

Lemma 35. Assume B(h) ≥ 1. Then, ε ∈ [2−n, 1/3],

pdegε(h) = Ω(
√
B(h) log(1/ε) + log(1/ε)).

Proof. Similar to the proof of Lemma 34, we may assume without loss of generality that ε ∈ [2−n/10000, e−10000p2 ].
Let B(h) = b. Recall (Observation 5) that B(h) ≤ dn/3e. Further, by definition of B(h), we have

either Spech(b− 1) = 1 or Spech(n− b+ 1) = 1. We assume that Spech(n− b+ 1) = 1 (the other case
is similar).

The lemma is equivalent to showing that pdegε(h) = Ω(max{
√
B(h) log(1/ε), log(1/ε)}). We do this

based on a case analysis based on the relative magnitudes of log(1/ε) and b.
Assume for now that ε ≤ 2−b/1000. In this case, we show a lower bound of Ω(log(1/ε)). To see this,

set m = dn/4e and consider the restriction H ∈ sBm obtained as follows.

H(x) = h(x1n−b+1−m0b−1).

Note that as Spech is the constant 0 function on the interval [b, n− b], the function H is computing the
AND function on m inputs. By Lemma 28, we immediately have pdegε(h) ≥ pdegε(H) = Ω(log(1/ε))
proving the lemma in this case.

Now assume that ε > 2−b/1000. In this case, we need to show a lower bound of Ω(
√
b log(1/ε)). To prove

this, consider the restriction H ∈ sB2b−2 defined by H(x) = h(x1n−2b+2). Since Spech is the constant 0
function on the interval [b, n − b] and Spech(n − b + 1) = 1, it follows that the periodic part of H has
period Ω(b). It then follows from Lemma 33 that pdegε(b) = Ω(

√
b log(1/ε)). This concludes the proof of

the lemma.
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Now, we are ready to prove Theorem 25.

Proof of Theorem 25. By Lemma 34, we already have the desired lower bound on pdegε(f) in any of the
following scenarios.

• per(g) is not a power of p, or

• per(g) is a power of p and per(g) ≥
√
n log(1/ε), or

• B(h) = 0.

So from now, we assume that per(g) is a power of p upper-bounded by
√
n log(1/ε) and that B(h) ≥ 1.

In this case, Lemma 34 shows that pdeg(f) = Ω(per(g)). On the other hand, since B(h) ≤ n and ε ≥ 2−n,
the lower bound we need to show is Ω(per(g) +

√
B(h) log(1/ε) + log(1/ε)). By Lemma 35, it suffices to

show a lower bound of Ω(per(g) + pdegε(h)).
The analysis splits into two simple cases.
Assume first that pdegε(h) ≤ 4 · per(g). In this case, we are trivially done, because we already have

pdeg(f) = Ω(per(g)), which is Ω(pdeg(g) + pdegε(h)) as a result of our assumption.
Now assume that pdegε(h) > 4 ·per(g). We know that f = g⊕h and hence h = f ⊕ g. Hence, we have

pdegε(h) ≤ 2(pdegε/2(f) + pdegε/2(g)) ≤ O(pdegε(f)) + 2per(g),

where the first inequality is a consequence of Fact 7 item 2 and the second follows from error-reduction
and Theorem 8. The above yields

pdegε(f) = Ω((pdegε(h)− 2 · per(g))) = Ω(pdegε(h)) = Ω(per(g) + pdegε(h)).

This finishes the proof.

4.3 A Robust Version of Galvin’s Problem

We recall here a combinatorial theorem of Hegedűs [Heg09] regarding set systems. The theorem (and also
our robust generalization given below) is easier to prove in the language of indicator vectors, so we state
it in this language.

Given any vectors u, v ∈ Fk for any field F, we define 〈u, v〉 :=
∑

j∈[n] ujvj .

Theorem 36. Assume n = 4p, for a large enouh prime p. Let u(1), . . . , u(m) ∈ {0, 1}nn/2 ⊆ Zn and

b1, . . . , bm ≤ (3/2−Ω(1)) ·p be such that for each v ∈ {0, 1}nn/2, there is an i ∈ [m] such that 〈u(i), v〉 = bi.
Then m ≥ p.

The above theorem is nearly tight as can be seen by taking the indicator vectors of the sets Si = {i
(mod n), (i + 1) (mod n), . . . , i + (n/2) − 1 (mod n)} for i ∈ [n/2] and setting b1 = · · · = bm = n/4.
Improvements on the above theorem (some of them asymptotically tight) were proved recently by Alon
et al. [AKV18] and Hrubeš et al. [HRRY19].

Using the robust version of Hegedűs’s lemma, we can prove tight robust versions of the above state-
ment.

Remark 37. The statement given above is a slight generalization of the theorem in the paper of Hegedűs [Heg09],
which proves the above only for the case when b1 = b2 = · · · = bm = n/4. However, the stronger result
stated above follows immediately from the proof techniques. Our robust generalization (stated below) is
tight for this stronger statement. However, if one we consider the robust versions of the original state-
ments in [Heg09], then while our lower bound continues to hold, it is not clear whether it is tight (except
in the settings where ε is either a constant or 2−Ω(n)). We conjecture that it is.
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We now prove a robust version of Theorem 36.

Theorem 38. Assume n is a growing even integer parameter and ε ∈ [2−n, 1/2].. Let u(1), . . . , u(m) ∈
{0, 1}nn/2 ⊆ Zn and b1, . . . , bm ≤ n be such that

Pr
v∼{0,1}n

n/2

[
∃i ∈ [m] s.t. 〈u(i),v〉 = bi

]
≥ 1− ε.

Then m = Ω(
√
n log(1/ε)).

The theorem can easily seen to be tight up to constant factors. For t = C ·
√
n log(1/ε), set m = 2t+1

and take u(1) = u(2) = · · · = u(m) = 1n/20n/2 and b1 = (n/4) − t, b2 = (n/4) − t + 1, . . . , bm = (n/4) + t.
By standard Chernoff bounds for the Hypergeometric distribution, we immediately get that this set of
hyperplanes satisfy the above condition for a large enough choice of the constant C.

We need the following standard bound on binomial coefficients. For completeness, we include the
proof in Appendix C.

Claim 39. Let n be an even integer and m a non-negative integer with m ≤ n/2. Then, for any
k, ` ∈ {0, . . . , bm/2c} with ` ≤ k, we have( n/2

bm/2c−k
)( n/2
dm/2e+k

)( n/2
bm/2c−`

)( n/2
dm/2e+`

) ≤ exp(−Ω((k2 − `2)/m)).

Given the above, we can prove Theorem 38 as follows.

Proof of Theorem 38. Recall that for any fixed u ∈ {0, 1}nn/2 and any b ∈ Z, the probability that a

uniformly random v ∈ {0, 1}n satisfies 〈u, v〉 = b is at most O(1/
√
n). In particular, we must have

m = Ω(
√
n) for any ε ≤ 1/2. This proves the result for ε = Ω(1).

Hence, we may assume that ε is smaller than any fixed constant. We can also assume that ε ≥ 2−δn

for a small enough constant δ. Assume that m ≤
√
n log(1/ε).

We call i ∈ [m] balanced if |bi− n
4 | ≤ t where t := C

√
n log(1/ε) for a large enough constant C. If i is

not balanced, then we have for a uniformly random v ∼ {0, 1}nn/2,

Pr
v

[
〈u(i),v〉 = bi

]
≤

( n/2
n/4+t

)( n/2
n/4−t

)(
n
n/2

) ≤ exp(−Ω(t2/n))

(n/2
n/4

)2(
n
n/2

) <
ε2

√
n
.

The second inequality above follows from Claim 39, and the third follows from the Stirling approximation
and using the fact that C is a large enough constant. In particular, if B is the set of balanced i, we have

Pr
v

[
∃i 6∈ B, 〈u(i),v〉 = bi

]
≤ m · ε

2

√
n
< ε

where we used the fact that m ≤
√
n log(1/ε). We can thus consider only {u(i) | i ∈ B}, which satisfy

the hypothesis with error probability ε1 := 2ε.
Now consider the polynomial

P (x1, . . . , xn) =
∏
i∈B

(〈u(i), x〉 − bi).
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We know that P vanishes at a random point of {0, 1}nn/2 with probability at least 1 − ε1. Now, fix any

prime p ∈ [10t, 20t] (such a prime exists by standard number-theoretic results). We claim that for any
i ∈ B and a uniformly random point v ∈ {0, 1}nn/2−p, we have

Pr
v

[
〈u(i),v〉 ≡ bi (mod p)

]
≤ ε2

√
n

(8)

for a large enough constant C. Informally speaking, the reason for this inequality is as follows: the
expected value of 〈u(i),v〉 is (n/4)− p/2 and any number b ≡ bi (mod p) is far from this expectation. To
prove this, let s = n/2− p. Using the fact that i is balanced, we note that

∆i := bi −
⌈s

2

⌉
≤ n

4
+ t−

(n
4
−
⌈p

2

⌉)
≤ 2p

3

∆i ≥
n

4
− t−

(n
4
−
⌈p

2

⌉)
≥ p

3
.

We thus have

Pr
v

[
〈u(i),v〉 ≡ bi (mod p) ∧ 〈u(i),v〉 ≥

⌈s
2

⌉]
=
∑
j≥0

Pr
v

[
〈u(i),v〉 = bi + jp

]
=
∑
j≥0

Pr
v

[
〈u(i),v〉 −

⌈s
2

⌉
= ∆i + jp

]

=
∑
j≥0

( n/2

d s2e+∆i+jp

)( n/2

b s2c−∆i−jp

)
(
n
s

)
(by Claim 39) =

(n/2
d s2e
)(n/2
b s2c
)

(
n
s

) ·
∑
j≥0

exp(−Ω((∆i + jp)2)/s))

(Stirling approximation and s = Ω(n) as long as
√
δC ≤ 1/100) ≤ O

(
1√
n

)
·
∑
j≥0

exp(−Ω(∆2
i + jp2)/s)

(p2/s ≥ C2 ) ≤ O
(

1√
n

)
· exp(−Ω(∆2

i /s)) ·
∑
j≥0

exp(−Ω(C2j))

(for large enough C ) ≤ O
(

1√
n

)
· exp(−Ω(∆2

i /s)) · 2

= O

(
1√
n

)
· exp(−Ω(p2/s)).

In a similar way, we also get

Pr
v

[
〈u(i),v〉 ≡ bi (mod p) ∧ 〈u(i),v〉 ≤

⌊s
2

⌋]
≤ O

(
1√
n

)
· exp(−Ω(p2/s)).

Overall, we thus obtain for any i ∈ B,

Pr
v

[
〈u(i),v〉 ≡ bi (mod p)

]
≤ O

(
1√
n

)
· exp(−Ω(p2/s)) ≤ ε2

√
n

as long as C is a large enough constant. Union bounding over the at most m ≤
√
n log(1/ε) elements of

B, we see that
Pr

v∈{0,1}n
n/2−p

[P (v) ≡ 0 (mod p)] ≤ ε.

26



From now on, we consider the polynomial P as an element of Fp[x1, . . . , xn]. At this point, we would
like to apply Lemma 13 to the polynomial P and finish the proof. Unfortunately, the error parameter
ε1 above is not small enough to apply Lemma 13 directly (we need ε1 ≤ exp(−200p2/n)). However, we
can do a simple error reduction as in Lemma 21 to ensure that Lemma 13 is applicable. More precisely,
choose r to be a large enough absolute constant so that εr1 ≤ 1

2 exp(−200p2/n). Now, by Lemma 21 there

is a probabilistic polynomial P (r) of degree at most r · deg(P ) such that

Pr
v∼{0,1}n

n/2
,P (r)

[
P (r)(v) = 0

]
≤ ε2r

1 ≤
1

2
exp(−200p2/n), and

Pr
v∼{0,1}n

n/2−p,P
(r)

[
P (r)(v) 6= 0

]
≥ (1− ε)r ≥ 1− rε ≥ 9

10

where for the last inequality we used the fact that ε is smaller than some absolute constant.
By a simple union bound, there is a fixed polynomial P ′ ∈ Fp[x1, . . . , xn] of degree r · deg(P ) = O(m)

such that

Pr
v∼{0,1}n

n/2

[
P ′(v) = 0

]
≤ exp(−200p2/n), and

Pr
v∼{0,1}n

n/2−p

[
P ′(v) 6= 0

]
≥ 1

2

Hence, applying Lemma 13 to the polynomial P ′, we get deg(P ′) = Ω(p) = Ω(
√
n log(1/ε)). This yields

the desired lower bound on m.
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Sci., 68(2):303–318, 2004.

[KS05] Peter. Keevash and Benny. Sudakov. Set systems with restricted cross-intersections and the
minimum rank ofinclusion matrices. SIAM Journal on Discrete Mathematics, 18(4):713–727,
2005.

[KS18] Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for
$\mathrm{AC}ˆ0[\oplus]$ circuits, with applications to lower bounds and circuit com-
pression. Theory of Computing, 14(1):1–24, 2018.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,
and learnability. J. ACM, 40(3):607–620, 1993.

[LSS+18] Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi, and
S. Venkitesh. The coin problem in constant depth: Sample complexity and parity gates.
Electronic Colloquium on Computational Complexity (ECCC), 25:157, 2018.

[Lu01] Chi-Jen Lu. An exact characterization of symmetric functions in qAC0[2]. Theoretical Com-
puter Science, 261(2):297–303, 2001.

[MNV16] Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for polynomials of independent
random variables. Theory of Computing, 12(1):1–17, 2016.

[NW15] Zipei Nie and Anthony Y. Wang. Hilbert functions and the finite degree zariski closure in
finite field combinatorial geometry. Journal of Combinatorial Theory, Series A, 134:196 – 220,
2015.

[Pot19] Aditya Potukuchi. On the $\text{AC}ˆ0[\oplus]$ complexity of andreev’s problem. Electronic
Colloquium on Computational Complexity (ECCC), 26:96, 2019.

29



[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987. (English
translation in Mathematical Notes of the Academy of Sciences of the USSR, 41(4):333–338,
1987).

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM J. Comput., 38(4):1624–1647, 2008.

[Smo87a] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 77–82. ACM, 1987.

[Smo87b] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
pages 77–82, 1987.

[Smo93] Roman Smolensky. On representations by low-degree polynomials. In Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science, pages 130–138. IEEE, 1993.

[STV19] Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh. On the probabilistic degrees of
symmetric boolean functions. Electronic Colloquium on Computational Complexity (ECCC),
26:138, 2019.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J.
Comput., 39(7):3122–3154, 2010.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[Sze89] M. Szegedy. Algebraic methods in lower bounds for computational models with limited com-
munication. PhD thesis, The University of Chicago, 1989.

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms, 5(3):363–
366, 1984.

[Vio09] Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity,
18(3):337–375, 2009.

[Wei91] V. K. Wei. Generalized hamming weights for linear codes. IEEE Transactions on Information
Theory, 37(5):1412–1418, Sep. 1991.

[Wil14a] Richard Ryan Williams. The polynomial method in circuit complexity applied to algorithm
design (invited talk). In 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2014.

[Wil14b] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
CoRR, abs/1401.2444, 2014.

[Wil14c] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.

[Wil18] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018.

30



A Lemma 1 is implied by Lemma 13 (up to constant factors)

The following claim shows that if there is a P satisfying the hypotheses of Lemma 1, then there is also a
polynomial Q of degree at most deg(P ) satisfying a stronger property, namely, that of not vanishing at
too many points of {0, 1}nk+q.

Claim 40. Let F be a field of characteristic p > 0. Fix any positive integers n, k, q such that k ∈ [q, n−q],
and q a power of p. If there is a polynomial P ∈ F[x1, . . . , xn] is any multilinear polynomial that vanishes
at all a ∈ {0, 1}nk but does not vanish at some b ∈ {0, 1}nk+q, then there is a multilinear Q ∈ F[x1, . . . , xn]
of degree at most deg(P ) such that Q vanishes at all a ∈ {0, 1}nk but is non-zero at at least a (1 − 1/p)
fraction of the points in {0, 1}nk+q.

Proof. Let d = deg(P ). Assume without loss of generality that P (b) = 1. Note that P is the solution to
the system of linear equations defined by the following constraints on polynomials of degree at most d.

|a| = k ⇒ P (a) = 0

P (b) = 1.

As the above linear system is over Fp ⊆ F, we note that we may assume that P ∈ Fp[x1, . . . , xn]. From
now on, we assume that F = Fp.

Consider the degree-d closure C = cld({0, 1}nk). By the existence of P , we see that b 6∈ C. However, by
symmetry, this implies that no point b′ ∈ {0, 1}nk+q lies in C.

Let Vd,k denote the vector space of all multilinear polynomials of degree at most d that vanish at all
points in {0, 1}nk . Let Q be a uniformly random element of Vd,k. For any c ∈ {0, 1}n \ C, standard linear
algebra implies that Q(c) is a uniformly random element of F = Fp. In particular, for any b′ ∈ {0, 1}nk+q,
we see that

Pr
Q

[
Q(b′) 6= 0

]
= 1− 1/p.

In particular, there is a Q ∈ Vd,k that is non-zero at at least a (1 − 1/p) fraction of points in {0, 1}nk+q.
This yields the statement of the claim.

B Proof of Lemma 9 (the string lemma)

We begin by recalling the statement of the lemma.

Lemma 9 (Restated). Let w ∈ {0, 1}+ be any non-empty string and u, v ∈ {0, 1}+ such that w = uv = vu.
Then there exists a string z ∈ {0, 1}+ such that w is a power of z (i.e. w = zk for some k ≥ 2).

Proof. Assume that |u| = `, |v| = m and |w| = ` + m = n. We will show in fact that both u and v are
powers of the same non-empty string z. This will clearly imply the lemma.

The proof is by induction on the length of w. The base case of the induction corresponds to n = 2,
which is obvious.

We now proceed with the inductive case. Assume w.l.o.g. that ` ≤ m. As uv = vu, we see that the
first ` symbols in v match those of u, and hence we have v = uv′ for some v′ ∈ {0, 1}m−`. If ` = m,
this implies that u = v and we are immediately done. Otherwise, we see that w = uv′u = v′uu for a
non-empty string v′. Hence, we have uv′ = v′u. By the induction hypothesis, we know that both u and
v′ are powers of some non-empty z. Hence, so is v. This concludes the proof.
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C Proof of Claim 39

Claim 39 (Restated). Let n be an even integer and m a non-negative integer with m ≤ n/2. Then, for
any k, ` ∈ {0, . . . , bm/2c} with ` ≤ k, we have( n/2

bm/2c−k
)( n/2
dm/2e+k

)( n/2
bm/2c−`

)( n/2
dm/2e+`

) ≤ exp(−Ω((k2 − `2)/m)).

Proof. It suffices to show that for each k ∈ {0, . . . , bm/2c − 1},( n/2
bm/2c−k−1

)( n/2
dm/2e+k+1

)( n/2
bm/2c−k

)( n/2
dm/2e+k

) ≤ exp(−Ω(k/m)). (9)

The claim then follows by a simple induction on k − `.
To prove (9), we proceed as follows. By an expansion of binomial coefficients in terms of factorials,

we see that ( n/2
bm/2c−k−1

)( n/2
dm/2e+k+1

)( n/2
bm/2c−k

)( n/2
dm/2e+k

) =
(bm/2c − k)(n/2− (dm/2e+ k))

(n/2− (bm/2c − k − 1))(dm/2e+ k + 1)

≤ bm/2c − k
dm/2e+ k + 1

≤ (m/2)− k
(m/2)

≤ 1− 2k/m ≤ exp(−2k/m).
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