Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 47 (2020)

Explicit Uniquely Decodable Codes for Space Bounded Channels
That Achieve List-Decoding Capacity

Ronen Shaltiel* Jad Silbak®
November 16, 2020

Abstract

We consider codes for space bounded channels. This is a model for communication under noise
that was introduced by Guruswami and Smith (J. ACM 2016) and lies between the Shannon
(random) and Hamming (adversarial) models. In this model, a channel is a space bounded
procedure that reads the codeword in one pass, and modifies at most a p fraction of the bits of
the codeword.

e Explicit uniquely decodable codes for space bounded channels: Our main result is that for
every 0 < p < i, there exists a constant 6 > 0 and a uniquely decodable code with rate
1 — H(p) for channels with space n’. This code is explicit (meaning that encoding and
decoding are in poly-time).
This improves upon previous explicit codes by Guruswami and Smith, and Kopparty, Shaltiel
and Silbak (FOCS 2019). Specifically, we obtain the same space and rate as earlier works,
even though prior work gave only list-decodable codes (rather than uniquely decodable
codes).
e Complete characterization of the capacity of space bounded channels: Together with a
result by Guruswami and Smith showing the impossibility of unique decoding for p > %,
our techniques also give a complete characterization of the capacity R(p) of space nt—o)
channels, specifically:
R(p) = {1 H(p) 0<p<1/4
0 p>1/4.

This capacity is strictly larger than the capacity of Hamming channels for every 0 < p < %,
and matches the capacity of list decoding, and binary symmetric channels in this range.
Curiously, this shows that R(-) is not continuous at p = 1/4.

Our results are incomparable to recent work on casual channels (these are stronger channels
that read the codeword in one pass, but there is no space restriction). The best known codes
for casual channels, due to Chen, Jaggi and Langberg (STOC 2015), are shown to exist by the
probabilistic method, and no explicit codes are known.

A key new ingredient in our construction is a new notion of “evasiveness” of codes, which is
concerned with whether a decoding algorithm rejects a word that is obtained when a channel
induces few errors to a uniformly chosen (or pseudorandom) string. We use evasiveness (as well
as several additional new ideas related to coding theory and pseudorandomness) to identify the
“correct” message in the list obtained by previous list-decoding algorithms.

*Department of Computer Science. University of Haifa, Email: ronen@cs.haifa.ac.il. Supported by ISF grant
1628/17.

TSchool of Computer Science, Tel Aviv University. Email: jadsilbak@mail.tau.ac.il. Supported by ERC starting
grant 638121 and ISF grant 1628/17

ISSN 1433-8092

Contents

1 Introduction

1.1
1.2

1.3

1.4

Codes and channels oL
Ourresults L
1.2.1 Explicit uniquely decodable codes for space bounded channels with rate 1 — H(p)
1.2.2 The capacity of space bounded channels
Overview of the technique 0.
1.3.1 Evasive codes for space bounded channels
1.3.2 Arguing that codes are evasive
1.3.3 Evasiveness on pseudorandom strings

1.3.4 A high level overview of the list decodable stochastic codes of [GS16, KSS19]

1.3.5 Using evasiveness to reject incorrect candidates
More related work on codes for bounded channels
1.4.1 Stochastic codes for other classes of channels

1.4.2 Other coding scenarios with randomized encoding or bounded channels

2 Preliminaries, and ingredients used in the construction

2.1
2.2

2.3
2.4
2.5

Permuting strings
Read once branching programs
2.2.1 Formal definition of ROBPs and bounded space channels
222 PRGsfor ROBPs.
Averaging Samplers
Almost t-wise independent permutations L.
Error-Correcting Codes
2.5.1 Standard notions of error correcting codes
2.5.2 Locally-correctable and locally-testable codes
2.5.3 Concatenated codes and outer distance
2.5.4 Stochastic Codes for a class of channels

3 Evasive codes for BSC channels and related variants

3.1
3.2

3.3
3.4

4.1
4.2
4.3

4.4
4.5
4.6

Road map for this section L o L
Evasiveness of concatenated codes
3.2.1 Statement of evasiveness theorem
3.2.2 Concatenated codes are evasive: proof of Theorem 3.3

Concatenated codes for binary-symmetric channels and related variants

Approximating the outer distance by a small space ROBP..

Stochastic control codes

Definition and properties of control codes
Discussion and comparison to [GS16, SS16, KSS19]
Constructions of control codes
4.3.1 Different tradeoffs in parameters
Extending the control codes of [KSS19] to have repetition decoding . . .
Repetition decoding from distance and list-decoding: proof of Lemma 4.7
Stochastic control code in near linear time

© O© 3O O i W = =

10
13
13
13

14
14
14
14
15
15
16
16
16
17
18
20

20
21
22
23
23
27
28

30
31
32
32
33
34
35
36

5 Explicit stochastic codes for space bounded channels

5.1
5.2
5.3
5.4
5.5
5.6

The construction L L
Stating the correctness of the construction
High level intuition and comparison to [KSS19]
Deriving Theorem 1.1 e
Deriving Theorem 1.2 e
Discussion of other possible tradeoffs 0.

6 Analysis of the construction of stochastic codes for space bounded channels

6.1
6.2
6.3

6.4
6.5

Bounding the rate and running time of Enc,Dec
Road map for arguing the correctness of decoding
The correct message is list-decoded
6.3.1 The milestones lemmas of [KSS19]
6.3.2 Milestones imply list-decoding Lo
Strategy for proving that the correct message survives the pruning
Behavior on data blocks: Proof of Lemma 6.11
6.5.1 The adversarial experiment L oo
6.5.2 Road map for proving Lemma 6.13.
6.5.3 The simulated adversarial experiment
6.5.4 Bounding the probability that the adversary wins with a light candidate . . .
6.5.5 The fixed candidate adversary Lo
6.5.6 Using evasiveness to bound the success probability of the fixed candidate ad-

VETSALY « v v v v e e e e e e e e e e e e e e
6.5.7 Putting things together: Proof of Lemmas 6.13 and 6.11

7 Conclusion and Open Problems

1 Introduction

1.1 Codes and channels

Coding theory studies transmission of messages using noisy channels. In this paper we are interested
in binary codes, and prefer to focus on decoding properties of a code, rather than combinatorial
properties like minimal distance. More specifically, given a family C of (possibly randomized) func-
tions C' : {0,1}" — {0,1}" (which we call “channels”) the goal is to design a code (namely, a pair
(Enc, Dec) of an encoding map Enc : {0,1}* — {0,1}" and a decoding map Dec : {0, 1}" — {0, 1}*)
such that for every message m € {0,1}* and every channel C' € C, decoding is successful, namely:

Dec(Enc(m) @ C(Enc(m))) = m.

The rate of a code is R = % For a family C of channels, we use R(C) to denote the capacity of the
family, which is the best possible rate of a code for this family.! For a family C of channels, there
are two main goals:

1. Determine the capacity R(C).

2. Construct explicit codes (namely codes with poly-time encoding and decoding algorithms).

Let us review some coding scenarios and channel families. In all examples below 0 < p < % is a
parameter.

Binary symmetric channels. A binary symmetric channel (denoted by BSC,) is the randomized
function that ignores its input and produces n i.i.d. random bits, where each of them is one with
probability p. This is a special case of an extensively studied class of randomized channels (often
referred to as “Shannon channels”). A celebrated theorem of Shannon shows that R(BSC,) =
1 — H(p).? Later work on code concatenation (due to Forney [For65]) produced codes with explicit
and even linear time algorithms [GIO05].

Hamming channels. The class of Hamming channels (denoted by Ham,,) is the class of all functions
such that for every input x, the relative Hamming weight of C(x) is at most p.> This is probably
the most studied class of channels, and yet, its capacity R(Ham,) is not precisely understood. It
is known that R(Ham,) = 0 for p > %, and that for 0 < p < i, R(Ham,) < 1 — H(p).* The
Gilbert-Varshamov bound shows that R(Ham,) > 1 — H(2p), but explicit codes with this rate are

unknown.

List-decoding. In the relaxed goal of list-decoding, the decoding map is allowed to output a list
of L = O(1) messages, and decoding is considered successful if Dec(Enc(m) @ C(Enc(m))) > m.
Unlike the case of unique decoding, the list decoding capacity of Hamming channels (denoted by
RUs*(Hamy,)) is known to be RU'(Ham,) = 1— H(p),® which allows positive rate even for + < p < 1
(in contrast to unique decoding). Explicit constructions of such codes are unknown.

!More formally, R(C) is the largest number R such that for every € > 0, there exist infinitely many n, for which
there exists a code Enc : {0,1}* — {0,1}™ for C, with rate at least R —e. We mostly use the term “rate” for a specific
(family of) codes, and “capacity” for a class of channels, but these terms are interchangeable in this paper.

*Here H(p) = p-log(1/p) + (1 — p) - log(1/(1 — p)) is Shannon’s entropy function.

3The relative Hamming weight of a string z € {0,1}"™ is wt(z) = M

4This follows because by the Elias-Bassalygo bound, which states that R(Ham,) < RElias—Bassalygo(p) where the
latter is strictly smaller than 1 — H(p). We remark that the Elias-Bassalygo bound gives a stronger result, and that
later work by McEliece, Rodemich, Rumsey and Welch [MRRW77] improves this bound in some ranges. We state the
bound R < 1 — H(p) to stress that R(Ham,) < R(BSC,) =1— H(p).

5This formally means that for every e > 0, there exists a constant L. such that there are infinitely many n, for
which there exists a code with rate R =1 — H(p) — € and a list-decoding map with list size L.

Intermediate classes of channels. It is natural to consider intermediate classes of channels that lie
between binary symmetric channels and Hamming channels. One such example was studied by
Guruswami and Smith [GS16] that considered the class of additive channels. This class (denoted by
Add,) contains all constant functions C' € Ham,. This means that an additive channel C': {0,1}" —
{0,1}™ has a predetermined noise vector e € {0,1}" of Hamming weight at most p, and the channel
C uses this noise vector regardless of its input. In particular, the channel does not choose the noise
vector as a function of the transmitted codeword.

It turns out that with the standard definition of codes, every code for additive channels is also a
code for Hamming channels.® In order to take advantage of restricted families of channels, one needs
to consider a different coding scenario. Several such scenarios were considered in the literature, see
Section 1.4 on related work. In this paper, we follow the approach of Guruswami and Smith [GS16]
and consider stochastic codes.

Stochastic codes. These are codes where the encoding algorithm is randomized, and decoding only
needs to succeed with high probability. More precisely, an encoding map of a stochastic code, is a
function Enc : {0,1}* x {0,1}¢ — {0,1}" and it is required that for every m € {0,1}*, and every
channel C in the considered class:
Pr [Dec(Enc(m,S) ® C(Enc(m,S)) =m] >1—v,
S+Uy

where v is an error parameter. (A precise formal definition is given in Definition 2.17). Note that
the decoding algorithm does not need to receive S, and so, these codes can be used in the standard
coding communication scenario. The rate of a stochastic code is R = % Stochastic codes do not give
an improvement in capacity in the case of Hamming channels (as it is easy to show that a stochastic
code for Hamming channels yields a standard code with the same rate) but they do allow improved
capacities for other classes.

Additive channels. Recall that an additive channel C' € Add,, is a channel that ignores the transmit-
ted codeword, and always uses a predetermined noise vector. Guruswami and Smith [GS16] showed
that the stochastic capacity, RStOC(Addp) = 1— H(p), while also providing explicit encoding and
decoding algorithms for the stochastic code. Jumping ahead, we mention that prior to our work, the
(weak) class of additive channels is the strongest class for which explicit stochastic codes with rate
1 — H(p) are known. All the channel classes that we consider below are stronger (and can simulate
additive channels). Therefore, an upper bound of R < 1 — H(p) on the stochastic capacity holds for
all such classes.

Space bounded channels. Guruswami and Smith [GS16], and later work [SS16, KSS19] also con-
sidered space bounded channels (sometimes called “online channels”). The class of space s channels
(denoted by Spcy) is the class of all functions C : {0,1}" — {0,1}" such that C € Ham,, and
furthermore, C' can be implemented by a space s procedure that reads its input in one pass. More
precisely, C' is a procedure that reads its input in one pass, and maintains a state of at most s bits.
Whenever the channel reads an input bit, it updates its internal state, and produces an output bit.
Both actions are done as a function of the previous internal state and the read input bit. (A precise
definition is given in Definition 2.3.)

Note that unlike additive channels or binary symmetric channels, this allows channels to choose
the error pattern as a function of the transmitted codeword. Additive channels are a subclass of
space zero channels.

5This follows as if there is a message m € {0,1}* and a channel C' € Ham,, such that Dec(Enc(m)®C (Enc(m))) # m,
then the channel C'(z) = C(Enc(m)) is a channel in Add, on which decoding is not successful.

Guruswami and Smith [GS16] showed that RStOC(SpC;,Og”) = 0, for p > 1. This means that
(similar to the case of standard codes for Hamming channels) unique decoding is impossible for

1
p> 3.

Previous works on explicit stochastic codes for space bounded channels [GS16, SS16, KSS19] did
not achieve unique decoding and settled for list-decoding. Kopparty, Shaltiel and Silbak [KSS19]
(building on [GS16, SS16]) show that for every 0 < p < %, there exists a constant § > 0 such that

RLiSt’StOC(Spcgé) = 1— H(p). Furthermore, this is achieved by explicit encoding and list-decoding
algorithms.

Casual channels. The class of casual channels (denoted by Cas)) is Spcy,, namely the class of all

channels that read the codeword in one pass, but have no space restriction. No nontrivial explicit
codes (even for the case of list-decoding) are known for casual channels. Chen, Jaggi and Langberg
[CJL15] used the probabilistic method to show existence of codes that match earlier upper bounds
by Dey, Jaggi, Langberg and Sarwate [DJLS13]. Together, this gives that R5%¢(Cas,) = f(p) for:
F) = {minpe[o,p][u ~4(p -)1 — H(g=l=y))] 0<p<1/4
0 p>1/4.

It is known that there exists a number py ~ 0.0804 such that f(p) = 1 — H(p) for p < po, and
f(p) < 1— H(p) for p > pg. This means that for p > pg, R5°¢(Cas,) < 1 — H(p).

We summarize all theses surveyed results (as well as our new results) in Table 1. In the case of
results that produce codes, we list whether or not the codes are explicit.

Table 1: Summary of surveyed known results. The results of this paper appear in bold text

Channel Decoding | Stochastic? Range Rate Explicit? | Reference
BSC, Unique No 0<p<gy R=1-H(p) Yes [For65]
Ham,, Unique No 0<p<jy R<1—H(p) N/A | [MRRW77]
Ham,, Unique No % <p< % R=0 N/A Easy
Ham,, List No 0<p<j R=1—-H(p) No Easy
Add, Unique Yes 0<p<j R=1-H(p) Yes [GS16]

Spc}?g" Unique Yes 1<p<i R= N/A [GS16]

Spcge(l) List Yes 0<p<3 R=1-H(p) Yes [KSS19]

Casp = Spcy, | Unique Yes 0<p<0.0804 | R=1—-H(p) No [CJL15]
Cas, = Spcy | Unique Yes 0.0804<p<z| R<1-—H(p) No [DJLS13]
Spcge(l) Unique Yes 0<p< % R=1-H(p) Yes Here
Spcglfo(l) Unique Yes 0<p< % R=1-H(p) No Here

1.2 Our results

In this paper we study uniquely decodable stochastic codes for space bounded channels. Previous
work on this class considered list-decoding, and the best known lower bound on the capacity of
uniquely decodable codes is given by non-explicit codes for casual channels. Natural questions are:

1. What is the unique decoding capacity of space bounded channels? Is it larger than that of
casual channels?

2. Can we explicitly construct uniquely decodable stochastic codes matching this capacity with
poly-time encoding and decoding?

In this paper we answer both questions affirmatively, and show that:

1. The unique decoding capacity for space bounded channels (with space as high as nl_o(l)) is
1— H (p), matching the capacity of binary symmetric channels (and list-decoding) for 0 < p < %.
This capacity is strictly larger than the capacity of casual channels for p > py ~ 0.0804.
Curiously, this shows that:

e The capacity of space bounded channels is not continuous at p = %.

o Unlike casual channels which do not achieve rate 1 — H(p) for p > po, space bounded
channels are “better behaved” and achieve rate 1 — H(p) all the way up to i.

2. More importantly, we can achieve this capacity with explicit stochastic codes for slightly smaller
space of s = n®W (which is exactly the same space bound considered in previous explicit
constructions of list-decodable codes for space bounded channels).

Perspective: Prior to this work, the best explicit uniquely decodable stochastic code with rate
1 — H(p) could handle additive channels [GS16] (which do not get to look at the transmission).
This work gives an explicit, uniquely decodable code for the much stronger class of space bounded
channels.

It was pointed out by Guruswami and Smith [GS16] that many of the “stochastic channels”
studied in Shannon’s framework are captured by space bounded channels (in fact even with space
O(logn)). Our results gives explicit codes in all these cases.”

On a more philosophical level, one may postulate that the behavior of most conceivable channels
that are not “fully adversarial” is captured by space bounded channels, which can now be explicitly
uniquely decoded with rate 1 — H(p) that matches that of binary symmetric channels for p < i.
This rate beats the best possible rate for uniquely decodable codes for Hamming channels or casual
channels (even if one is satisfied with non-explicit codes).

Prior to this work, explicit stochastic codes [GS16, SS16, KSS19] for space bounded channels
only achieved list-decoding rather than unique decoding. We stress that there is no difference in
list-decoding capacities between Hamming channels and space bounded channels. In contrast, in
the more natural and standard case of uniquely-decodable codes there is a difference between the
capacities of Hamming channels and space bounded channels, and our codes achieve rate of 1 — H(p),
which is impossible to achieve in the case of uniquely decodable codes for Hamming channels.

Our results are listed in detail below, together with a comparison to relevant previous work.

1.2.1 Explicit uniquely decodable codes for space bounded channels with rate 1 — H(p)
The main result of this paper is that for every 0 < p < i, there exists & > 0, and an explicit uniquely
decodable stochastic code for Spcﬁts with rate 1 — H(p).

Theorem 1.1 (Explicit uniquely decodable codes with optimal rate for Spczé). For every constant
0<p< i there exists a constant & > 0 such that for every constant ¢ > 0, for infinitely many n,

"Our results clearly extend to any channel that is a convex combination of space s = n®1) channels. Furthermore,

with an additional logn space, a channel can count the number of error that it induces, and avoid inducing more than
pn errors. This means that our theorems handle any distribution over space s channels, in which the probability of
inducing significantly more than pn errors is small.

there is a stochastic code (Enc, Dec) for Spcgé, with rate R =1 — H(p) — €, and success probability

1 — v for v = 27POY108(™) " Fyurthermore, Enc and Dec run in time poly(n).

Theorem 1.1 is stated in a more general way in Theorem 5.1. Theorem 1.1 achieves the same rate
and same space bound as the results of [KSS19] with the significant advantage of achieving unique
1

decoding rather than list-decoding. In both cases, the constant § = ¢ - ((; — p)?) for some universal

constant ¢ > 0. Our result does not completely subsume the list-decoding of [KSS19] because the
latter has three additional advantages: It works for % <p< % which is impossible for unique
decoding. It works against channels that can select the order in which they read the bits of the
codeword, whereas our result does not. The running time of encoding and decoding is quasilinear
(namely T'(n) = n - polylog(n)). Using optimized components in our construction, it is possible to
achieve time T'(n) = n!T°(1) in Theorem 1.1, but we are not sure whether some of the components
can be made to run in quasilinear time (and we plan to look into that in future versions). See remark

2.13 and Section 5.6.

1.2.2 The capacity of space bounded channels

Before our work, it was known that the capacity R(p) of space bounded channels is zero for p > %
[GS16], and at most 1 — H(p) for 0 < p < i. Theorem 1.1 implies that for space s = n’®) the
capacity is:

1-H(p) 0<p<1l/4
0 p>1/4.

This capacity is larger than that of Cas, = Spc,, for p > pg ~ 0.0804. A natural question is whether
this capacity applies also for channels with space s that approaches n. The next theorem shows that

the capacity is 1 — H(p) even for space s = pl—ol),

Theorem 1.2 (The capacity of space pl—o) channels). There exists a function s = n'=°() such that

for every constant 0 < p < i and every constant € > 0, for infinitely many n, there is a stochastic code
(Enc, Dec) for Spc,, with rate R = 1 — H(p) — ¢, and success probability 1 — v for v = g2-polylog(n),

In many cases, existence of good codes follows by a simple analysis of a random code. In the case
of space bounded channels, it is not immediately clear how to analyze a random stochastic code.
Theorem 1.2 follows by using the construction used for Theorem 1.1, and replacing a certain explicit
code with one that is shown to exist by the probabilistic method. An advantage of this approach is
that it gives a strategy to constructing explicit codes for larger space.® We remark that the space
bound s in Theorem 1.2 can be pushed to s = n/polylog(n) if we allow more components in our
construction to be nonexplicit. See Section 5.5.

Summing up we have that for every 0 < p < i

RStoc (Spcnl_o(l)

.) =1— H(p) = R(BSC,) = R"*"(Ham,).

This shows a separation between casual channels and space bounded channels with space n*=°(1).

8More specifically, the component that is needed is a linear code Enc : {0,1}* — {0,1}" that has distance ap-
proaching %, its dual has distance r, and Enc has explicit list decoding from slightly less than % relative errors. Loosely
speaking, our construction can take such a code and transform it into a stochastic code for space s = r1=°W channels.
The current best explicit construction of Kopparty, Shaltiel and Silbak [KSS19] shows that for every p < %, there exists
8 > 0 and a code with r = n’, and this translates into the final parameters of Theorem 1.1. If one gives up explicit
list-decoding, then by standard calculations, it is easy to show existence of such codes that give s = =M and imply
Theorem 1.2. See discussion in Section 7.

Other tradeoffs in explicit codes. We have chosen the space and success probability in Theorem 1.1
to match the parameters of [KSS19]. However, other tradeoffs can also be achieved. Specifically:

e For every p < é the space in Theorem 1.1 can be increased to s = ns—o@),

o In [KSS19], the error parameter v was chosen to be 2-Polylog(n) - This is because the con-
struction has steps that inherently run in time n - log(1/v), and it was desired to get time
n-polylog(n). However, it is also possible to obtain much smaller v. For example, it is possible

to obtain v = 9—n®W

o We can get explicit codes for channels with larger space (specifically, space nl_o(l)), for 0 <
p < pp for some constant p; > 0.

1.3 Overview of the technique

Our construction relies on the recent construction of list-decodable stochastic code for space bounded
channels by Kopparty, Shaltiel and Silbak [KSS19] (which in turn builds on the approach of Gu-
ruswami and Smith [GS16]). The high level idea is that in order to obtain a unique decoding
algorithm, we will first apply the list decoding algorithm of [KSS19] (which produces a constant size
list of messages) and then apply a pruning procedure which will identify the correct message. (Note
that while this approach is very natural, it cannot work for Hamming channels).

In order to distinguish the correct message in the list from incorrect ones, we introduce a new
concept of “evasiveness” of codes. Specifically, in the case of standard (that is non-stochastic) codes
for binary symmetric channels, we will be interested in whether a space bounded channel that gets
access to a uniform string Z < U, can induce pn errors in a way that will lead the decoding algorithm
to correctly decode. We will say that the channel “wins” if the decoding algorithm correctly decodes.

Our first step is constructing explicit evasive code with rate 1 — H(p) (and our final stochastic
codes will inherit this rate). This argument is outlined in Sections 1.3.1, 1.3.2 and the formal
treatment is in Section 3.

We then want to argue that a space bounded channel cannot win even in an experiment where it
receives a string Z that was generated by a pseudorandom generator that fools small space algorithms
(rather than a uniform string Z < U,,). This does not follow immediately from the pseudorandom-
ness of the generator, because whether or not the channel wins is also determined by the actions of
the decoding algorithm that does not run in small space. Nevertheless, by using recent construc-
tions of locally-correctable and locally-testable codes by Guo, Kopparty and Sudan [GKS13] and
Kopparty, Meir, Ron-Zewi and Saraf [KMRS17] we are able to construct codes that are also evasive
on pseudorandom strings. This argument is outlined in Section 1.3.3 and the formal treatment is in
Section 3.

Our next step is to modify the construction of Kopparty, Shaltiel and Silbak [KSS19] hoping
to argue that when list-decoding, all incorrect messages in the list were obtained in a scenario that
corresponds to the evasiveness experiment on pseudorandom strings, and are therefore rejected. This
argument is outlined in Sections 1.3.4, 1.3.5, and the formal treatment is in Section 5 and 6.

In the remainder of this section we give a more detailed high level overview of the ideas and
techniques that we use. We allow ourselves to be informal and imprecise (in order to highlight the
main ideas). The reader can safely skip this section, as complete definitions, theorem statements
and proofs, appear in later sections (and these do not rely on the informal description given in this
section).

1.3.1 Evasive codes for space bounded channels

A key new ingredient in our construction is a notion of “evasive codes” that we now explain. Let
Enc: {0,1}* — {0,1}" and Dec : {0,1}" — {0,1}* be a code where Dec is a decoding algorithm for
some communication scenario. To make things less abstract, let us start by focusing on the case that
Dec decodes from BSC,,, and rejects words that have relative distance slightly more than p from any
codeword. The evasiveness experiment is concerned with corrupting and decoding a uniform string
(rather than a codeword):

The evasiveness experiment: Given a channel C' that induces at most p relative errors:
e Choose uniform Z <« U,.
o Treat Z as a “codeword”. That is, let V = Z @& C(Z) be corrupted by the channel C.
o The channel C “wins” if Dec(V') does not reject.

We say that a code is evasive for C if the probability that C' wins is small.? In this paper we design
codes for BSC,, that have rate 1 — H(p), and are evasive against space s = o(n) channels. This is
stated informally below (and the formal statement and treatment is in Section 3).

Informal Theorem 1.3 (Evasive codes for BSC,,). For every p < %, there are explicit codes for BSC,,
with rate 1 — H(p) that are evasive against Spc;, for s = o(n).

These codes are an important ingredient in our construction of stochastic codes for space bounded
channels. Our final code inherits the rate of these codes.

1.3.2 Arguing that codes are evasive

We now outline the proof of informal theorem 1.3. A standard way to construct codes for BSC,
is to concatenate a rate 1 — € outer code over constant size alphabet that corrects from a constant
A = A(e) > 0 fraction of errors, with a constant length inner code with rate 1 — H(p) — e that decodes
from BSC,. The concatenated code has rate approaching 1 — H(p) and decodes from errors induced
by BSC,

We are interested in showing that this concatenated code is evasive against space bounded chan-
nels. It turns out that for this, it is sufficient to focus on the outer code, and show that it is evasive.
Specifically, it will be sufficient to prove:

Informal Theorem 1.4 (Evasive codes with high rate). For every p < % and every € > 0, there exists
A > 0 and explicit codes with constant size alphabet, rate 1 — € that decode from A relative errors,
and are evasive for Spc;, for s = o(n).

We will now focus on this task. We consider a code Enc : ¥¥ — %", where we take some slack,
and assume that there is a decoding algorithm Decgy that decodes from 2\ relative errors (rather
than just A relative errors). This makes no difference in our setup where A is small. We consider
a modified version Dec of the decoding algorithm Decsy, that rejects an input v, if the relative
Hamming distance between Enc(Decsoy(v)) and v is larger than A\. We can safely reject such strings,
as we only want Dec to decode from A relative errors.

9A straightforward observation is that any code with rate R slightly smaller than 1 — H(2p) (for example, a code
with R = 1— H(2p) — e that match the Gilbert-Varshamov bound) is evasive against the class of all channels C' € Ham,,.
This is because w.h.p., a uniform Z <« U, has distance larger than 2p from any codeword. Consequently, no matter
how the unbounded channel C' uses its ability to inject p relative errors, it cannot make V = Z & C(Z) be within
distance p to a codeword.

We will show that Enc is evasive (using the decoding algorithm Dec) if p < % — 2\ (which we can
arrange). We will divide the n symbols of a string in X" into u = O(1) blocks of length £ = n/u, we
will choose the parameters so that s < £ < X-n. We will denote the i’th block of a string z € ™ by
z[i].

For every channel C' € Spcy, the evasiveness experiment considers Z < Uy, V =2 & C (Z), and
Y = Enc(Decgy(V)). Our goal is to show that w.h.p. the relative Hamming distance between Y and
V is at least A. For this purpose we consider the following mental experiment: For every i € [u], we
consider the random variable V() which is obtained by taking V and replacing the #’th block V]
with a constant string (say a sequence of zeros). Let Y = Enc(Decyy (V).

A weakness of a space s channel is that whenever it leaves the i’th block of an input z, it
remembers only s bits of infromation about the ¢ > s symbols it read in the block.

An oversimplifying assumption. Let us make an oversimplifying assumption and pretend that we
are dealing with a channel C that “wipes its memory” whenever it leaves a block. This means that
the errors injected on each block are determined by the content of that block (and does not depend
on previous blocks). In this case, we claim that:

o For every i € [u], Y is independent of Z[i].
« Whenever Dec(V) does not reject, we have that for every i € [u], Y =Y.

For the first item we observe that having erased the i’th block, V() is determined by V[1],...,V[i —
1,V]i + 1],...,V]u] which in turn is independent of Z[i]. (The latter follows by the simplifying
assumption that the error induced by C on blocks 1,...,i—1,i+1,...,u does not depend on Z[i]).
As Y@ is determined by V® it is independent of Z[i].

For the second item, we note that the absolute Hamming distance between V and V® is at most
¢ (as they agree on all blocks except the i’th block) and we have chosen ¢ so that an absolute distance
of £ is a relative distance smaller than A. Therefore, if Dec did not reject V, then V is within relative
distance A to a codeword, and so, for every i € [u], V(@ is within relative distance 2\ to the same
codeword. This gives that Decay(V#)) = Decyy(V) and Y = Y. This completes the proof of the
second item.

However, by the first item, the expected relative distance between the y® [i] and an independent
random string Z[i] is half. By a union bound and a Chernoff bound, w.h.p. for every i € [u], this
distance is very close to half. This cannot hold together with the second item, because then, for every
i, the relative Hamming distance between Y'[i] and Z[i] is very close to half, which means that the
relative distance between Y and Z is very close to half. This is impossible, because Y was obtained
from Z by injecting p relative errors, and then correcting to a codeword that is within distance 2.
This is impossible as p 4+ 2\ < %

Removing the simplifying assumption. We have made a simplifying assumption that C' “wipes
its memory” whenever it leaves a block. In order to justify this assumption, we will perform the
previous analysis for every fixing of the states of C' at the end of all u blocks. For every such fixing,
the assumption holds (as the states of C' at the end of blocks are fixed). Furthermore, the blocks
Z[1],..., Z[u] remain independent under such a fixing. For a typical fixing, the (min)-entropy of a
block Z[i] is at least £-log |X| —s = (1 —o(1)) - £-log |¥], and the previous analysis can be repeated
using the fact that every event that happens with low probability over the uniform distribution, also
happens with slightly larger, but still low probability, in a high (min)-entropy distribution. This
allows us to remove the oversimplifying assumption.

1.3.3 Evasiveness on pseudorandom strings

We will now consider a version of the evasiveness experiment, in which rather than choosing a uniform
7 + U, we will choose Z = G(U,) where G : {0,1}¢ — {0,1}" is a pseudorandom generator against
small space ROBPs with seed length d < n.'19 We would like to argue that if a code is evasive, then
it is also evasive on pseudorandom strings. At first glance, it may seem that this follows because G
fools small space ROBPs and C' is a space bounded channel. However, this is not the case, because in
the evasiveness experiment, in order to determine whether C wins, one needs to apply the decoding
algorithm Dec (which is not implementable by a small space ROBP) and is not fooled by G.

One way to think about this, is that the “adversary” that we need G to fool is an adversary A(Z)
that is more powerful than C', and in addition to applying C', A(Z) runs an additional computation
that is not a small space ROBP.

This problem is a recurring theme in this paper, and will also come up later on. Fortunately,
at this point, we can use locally correctable and locally testable codes in order to show that a
pseudorandom generator G for small space ROBPs suffices and prove that:

Informal Theorem 1.5. The codes of informal theorems 1.4 and 1.3 remain evasive when Z = G(Uy)
where G is a pseudorandom generator for small space ROBPs.

For this, we use the recent remarkable results of Guo, Kopparty and Sudan [GKS13] and Kop-
party, Meir, Ron-Zewi and Saraf [KMRS17]. These results allow to take an explicit high rate code
Enc in informal theorem 1.4 that is locally correctable and locally testable with Q = n°®) queries.™!
A space O(Q) ROBP can simulate both local correcting and local testing algorithms on an input v
by reading v in one pass, and storing all the) symbols required by the (non-adaptive) local tester
or local corrector. Using these local correcting and local testing capabilities, a space n°Y) ROBP
can w.h.p. approximate the distance between a given string v and the closest codeword, and deter-
mine whether that distance is smaller than A\, which determines whether C' wins (without having to
actually run decoding).

This means that the “combined adversary” A(Z) (that on input Z applies the channel to obtain
V = Z & C(Z) and determines whether V' is within distance A from a codeword) can be compute
by a small space ROBP. This means that A(Z) is fooled by the pseudorandom generator G, and we
obtain that the codes of informal theorems 1.4 and 1.3 are evasive on pseudorandom strings.

1.3.4 A high level overview of the list decodable stochastic codes of [GS16, KSS19]

We are planning to use the evasive codes explained in the earlier section as a component in our
construction of uniquely decodable stochastic codes for space bounded channels. This construction
will build on the earlier list decodable stochastic codes for space bounded channels by [GS16, KSS19].
We will modify this construction in several key ways. We start by giving a high level description
of the list-decodable codes of [GS16, KSS19] (focusing on issues that are important to explain our
results).

Codes with shared private randomness. The first ingredient in this construction is a uniquely de-
codable code with shared private randomness for space bounded channels. This is a pair of functions
Encgata : {0,1}* x {0,1}¢ — {0,1}MNaata and Decqaga : {0, 1}Maata x {0,1}¢ — {0,1}* such that for

19A read once branching program (ROBP) A(z) is a procedure that reads the input z in one pass using bounded
space. A precise definition is given in Section 2.2. We use “channel” for the case where the ROBP outputs one bit for
every input bit, and “ROBP” for the case of one bit output. A formal definition of pseudorandom generators is given
in Section 2.2.2.

11 A precise definition of locally correctable codes and locally testable codes appears in Section 2.5.2.

every message m € {0, 1}* and for every C' € Spcs, let Y = Encgata(m, S) be the codeword, and
Y =Y ®C(Y) be the “received word”. It is guaranteed that:

Pr [Decgata(Y,S) =m] >1—v.
S«Uy

Note that unlike the setup of stochastic codes, in this setup of shared private randomness, the
decoding algorithm Dec, does receive the randomness S chosen by the encoding procedure. This
gives the decoding a huge advantage over the case of stochastic codes (as the channel does not
receive S). Indeed, it is much easier to construct such codes than stochastic codes (in which the
decoding algorithm does not receive S). Explicit codes with this property, and rate 1 — H(p) were
constructed in [GS16, KSS19] (based on earlier ideas due to Lipton [Lip94], see also [Smi07]). These
constructions are based on codes for BSC,,. Using the codes of informal theorem 1.3, and informal
theorem 1.5, we can get that this code is evasive on pseudorandom strings.

From codes for shared randomness to list decodable stochastic codes. In order to convert a code
with shared private randomness into a stochastic code, the encoding algorithm needs to send the
seed S to the decoding algorithm in a way that the channel will not be able to learn S, or to prevent
the decoding algorithm from recovering S.

The idea in [GS16, KSS19] is to combine Y and S together into one word Z = Combine(Y, S) of
length N = (14 0(1)) Ngata- It is then shown that after a small space channel C' € Spc;, corrupts the
codeword Z. The decoding algorithm that receives Z = Z @ C(Z), can still recover a small list of
candidate that contains the original seed S.

More formally, the list-decoding algorithms of [GS16, KSS19] work by designing such a (random-
ized) procedure Combine together with a list-decoding procedure Recover, that given Z produces a
list (Y1, S1),..., (YT, SE) such that there exists i € [L] for which S = S and Y is a string Y that is
obtained by applying the channel C on Y. Consequently, a list-decodable stochastic code (Enc, Dec)
with rate 1 — H(p) can be constructed by:

Encoding: On a message m and randomness S, Enc(m, S) does the following:
o Compute Y = Encgata(m, S).
o Compute Z = Combine(Y,.S), and output Z.

List-Decoding: On a received word Z = Z @ C(Z), Dec(Z) does the following:
« Apply Recover on Z to obtain a list of pairs (S, Y1),..., (S, Y1),
« For every i € [L], output the candidate message Decqata (Y, S%).

It is guaranteed that w.h.p. there exists an i* € [L] for which S = 8, and then, Decgaia(Y?,87) =
Decgata(Y,S) = m. This means that w.h.p. the original message m indeed appears in the list.

1.3.5 Using evasiveness to reject incorrect candidates

We would like to use evasiveness to design a pruning procedure that rejects all incorrect messages in
the list. The key will be to identify a property that will allow us to distinguish (S% Y?) for i # i*,
from (S, V"),

We will modify the constructions of the functions Combine and Recover so that we can argue
that for every i # i*, S* is independent of S = S%". (We remark that that here we are oversimplifying

10

and we are not able to achieve this goal as stated).!? Quite a bit of the technical work in the paper
is devoted to this step. Nevertheless, in this high level overview, we will not elaborate on these ideas,
as this require delving into the precise implementation of Combine and Recover. We will now show
how to use evasiveness to identify i* assuming that for every i # i*, S? is independent of S = S*".

We will append an additional short random seed (which we denote by Sprg) to S. This means
that S is composed of two short seeds S = (Sqata, SPRG), Where Sgata is the seed used for the data
code. We will use a pseudorandom generator G that upon receiving a short seed Sprg produces
a “pseudorandom string” W = G(Sprg) of length Ngata. (We will discuss the pseudorandomness
properties that we require from G shortly). We will then “mask” the data encoding by xoring it
with W (prior to combining it with §). This leads to the following stochastic encoding/list-decoding
scheme.

Encoding: On a message m and randomness S = (Spra, Sdata), Enc(m,.S) does the following:
o Compute X = Encgata(m, Sqata)-
o Compute W = G(Sprg)-
e Compute Y =XpW.
o Compute Z = Combine(Y,.S), and output Z.

List-Decoding: On a received word Z = Z @ C(Z), Dec(Z) does the following:
« Apply Recover on Z to obtain a list of pairs (S*,Y1),..., (S, Y1),
o For every i € [L],
— Compute Wi = G(Shrq)-
— Compute X* =Y"*p W
— Output the candidate message Decqata (X", S,4.)-

This scheme also achieves list decoding, because on the correct i*, S* = S, meaning that W =
G(S") = G(S) = W, and the two strings W* and W cancel each other when i = i*. Consequently,
the correctness of list-decoding follows from the correctness of the previously described list decoding
scheme.

Connecting this scheme to the evasiveness of the data code. We now observe that in this scheme,
there is indeed a big difference between ¢* and i # i*, specifically:

e For i = i*, we have that X = X @ E, where X is the data codeword, and E has relative
Hamming weight at most p, and was generated by a space s channel.

This follows because on the correct i*, S* = S and so the W = W and the two strings cancel
each other when list-decoding.

e For i # i*, we have that X* = R @ E* where R is a pseudorandom string, and E° has relative
Hamming weight at most p, and was generated by a space s channel.

This loosely follows because on i # i*, S? and S are independent. Therefore, the two strings
W* and W that are being xored in the list-decoding algorithm, are independent. Furthermore,

121t turns out that due to the structure of previous constructions, the channel C has quite a bit of control on the L
candidates (S*,Y"),..., (8%, YF). More specifically, the channel can control many of these candidates and set them to
any fixed value of his choice. Furthermore, while the channel does not know the correct seed S, it can pick in advance
a function f, and guarantee that some of the candidates in the list will be set to f(S). By modifying the construction
of Combine and Recover we will be able to argue that the number of i for which S¢ and S = 5" are correlated is small.
This means that we still need to handle the few ¢ which are correlated, and we ignore this problem in this high level

overview.

11

we have that W = G(Sprg) is a pseudorandom string, and so it remains pseudorandom when
xored with independent strings. This gives that the string X* is a string that was obtained by
corrupting a pseudorandom string with a space s channel.!?

We would like to use the “evasiveness on pseudorandom strings” of the data code (Encgata, Decgata)
to argue that in the last step of the decoding, for i # i*, Decgata is applied on a pseudorandom string
that was corrupted by a small space channel and is therefore rejected.

Unfortunately, we once again run into the problem that the “adversary” A(W) that we are dealing
with is not a small space ROBP. This is because the computation performed in this experiment on
the string W = G(Sprg) (which we denote by A(W)) includes steps that cannot be computed by a
small space ROBP. Specifically, this computation applies the pseudorandom generator G (as well as
other steps hidden in the procedure Recover) and cannot be computable by a small space ROBP.14

Using evasiveness for strings that are pseudorandomness for ROBPs. We now explain how we
overcome these difficulties. By making some additional modifications to the functions Combine and
Recover (which we will not explain here) we will be able to argue that for every channel C, there
exists a not too large set Hc of fixed candidates 5, such that every candidate S? for i # *, is with
high probability in He. This means that if we want to simulate A(W) by a small ROBP (that
depends on C'), we can guess in advance which candidates will come up during the computation of
A, and for every s € He, we can consider a “fixed candidate adversary” Az(W) that is hardwired
with (the constants) § and G(Sprg). This “fixed candidate adversary” Az(WW) can now be simulated
by a small space ROBP (as it does not need to run G of Recover).

It follows using the evasiveness of Encgat, that the probability that Az(W) wins is small. We
can do a union bound over all the choices of § € H¢ to get that the probability that one of these
adversaries win is small, and this gives a bound on the probability that A(W) wins. Overall, this
shows that the probability that an incorrect ¢ # i* is not rejected is small, meaning that we can
identify the correct candidate 7*.

Finally, we stress once again that this high level explanation is oversimplified, and ignores many
issues that come up in the construction and analysis. The reader is referred to the technical section
for precise details. In particular, Section 5.3 has a high level intuition of the construction.

Organization of this paper

In Section 1.4 we survey some additional related work that is not directly comparable to our work (and
was not surveyed before). In Section 2 we give preliminaries and formal definitions. We also state past
work on the tools and ingredients that are used in our construction. In Section 3 we construct evasive
codes for BSC,, with rate 1 — H(p) and list additional properties of these codes that will be used in
our construction. In Section 4 we discuss stochastic control codes. These are an important ingredient
in our construction, and in order to achieve unique decoding, we need to introduce a property of
“repetition decoding” that was not considered in earlier work [GS16, SS16, KSS19], and construct
codes with this property. Our main construction of stochastic codes for space bounded channels is
presented in Section 5. In that section, we also explain the difference between our construction and
the previous list-decodable codes of [GS16, KSS19]. In Section 6 we prove the correctness of our
construction.

13We remark that here we are oversimplifying, and this clean statement doesn’t follow precisely as stated. However,
a very similar statement does follow using some additional properties of Combine and Recover.

4VWe remark that a pseudorandom generator G that fools adversaries that can compute the pseudorandom generator,
immediately implies one way functions, if it fools strong adversaries. Therefore, such pseudorandom generators are not
expected to exist unconditionally, and require cryptographic assumptions in our current state of knowledge.

12

1.4 More related work on codes for bounded channels

In this section we survey some additional related work that is not directly comparable to our work
(and was not surveyed before).

1.4.1 Stochastic codes for other classes of channels

poly-size circuits. Guruswami and Smith [GS16] also gave constructions of stochastic codes with
rate approaching 1 — H (p) that are list-decodable for channels that are circuits of size n¢, and induce
pn errors. They achieved success probability n™¢. A significant drawback of these results is that the
running time of the encoding algorithm was polynomial in n¢, for a large and unspecified polynomial
(meaning that efficiency quickly deteriorates even for conservative estimates on channel complexity).
The construction of [GS16] is “Monte-Carlo”. Meaning that it requires a preprocessing stage, in
which a random string of length poly(n¢) is shared between the encoding and decoding algorithm.
The correctness of encoding and decoding algorithms is guaranteed w.h.p. over the choice of this
string. (This string need not be kept secret from the channel).

Shaltiel and Silbak [SS16] removed the need for a preprocessing stage by slightly modifying
the construction of Guruswami and Smith, and providing explicit constructions for the modified
components. They give results for size n® circuits (here a complexity assumption that there are
functions in DTIME(29(™) that are hard for small circuits is used, and is necessary).

Non malleable codes. Non-malleable codes (introduced by Dziembowski, Pietrzak, and Wichs [DPW18])
consider channels that are not restricted in the number of errors that they induce. Instead, channels
are assumed to come from some limited class of functions (or complexity class). Codes are stochastic
(meaning that the encoding procedure is randomized) and it is required that following the corruption

by the channel, the decoder either reproduces the encoded message, or an “unrelated” message. The
definition of “unrelated” is given using the simulation paradigm from cryptography. Several classes
have been considered, and some of the constructions rely on cryptographic assumptions. The reader

is referred to [DPW18] and the references therein for precise definition and a survey of results in
non-malleable codes.

1.4.2 Other coding scenarios with randomized encoding or bounded channels

The notion of computationally bounded channels was also studied in other setups. We mention some
of these works below.

Shared private randomness. We start with the notion of codes with “shared private randomness”.
While this setup was considered before the notion of stochastic codes, in this paper, it is natural to
view it as a version of stochastic codes in which the decoding algorithm does receive the randomness
S chosen by the encoding algorithm. This corresponds to a standard symmetric cryptography setup
in which honest parties (the encoder and decoder) share a uniform private key S, and the bad party
(the channel) does not get the key. Lipton [Lip94] and following work (see [Smi07] for more details)
gave explicit constructions of uniquely decodable codes against computationally bounded channels,
in this setup, with rate approaching 1 — H(p), under cryptographic assumptions.

Note that the setup of stochastic codes is lighter. The encoder and decoder do not need to share a
private random key. Moreover, a fresh key can be chosen on the spot every time the encoder encodes
a message.

A related notion of “private codes” was studied by Langberg [Lan04]. This is also in the setup
of shared private randomness. Here channels are computationally unbounded, codes are existential

13

rather than explicit, and have rate approaching 1 — H(p). The focus is on minimizing the length of
the shared key. Langberg provides asymptotically matching upper and lower bounds of ©(logn +
log(1/v)), on the amount of randomness that needs to be shared for unique decoding in this setup,
where v is the error parameter.

Public key setup. Micali et al. [MPSW10] considered computationally bounded channels, and a
cryptographic public key setup. Their focus is to use this setup to convert a given (standard) explicit
list-decodable code into an explicit uniquely decodable codes (in this specific public key setup).

2 Preliminaries, and ingredients used in the construction

In this section we give formal definitions of the notions and ingredients used in the construction. We
also cite previous results from coding theory and pseudorandomness that are used in the construction.

General notation. We use H(p) to denote the Shannon binary entropy function: H(p) = p-log(1/p)+
(1 —p)-log(1/(1 —p)). We use U, to define the uniform distribution on n bits. The statistical
distance between two distributions P, Q) over € is maxacq |P(A) — Q(A)|. The min-entropy of P is
H(P) = minseq(log ﬁ.

We sometimes use the notation O,(-) to emphasize that the constant hidden in the O(-) notation
may depend on .

Definition 2.1 (Hamming distance and weight). The Hamming weight of = € [¢]" is WT(z) =
|{i:2; # 0}|. The relative Hamming weight of z is wt(x) = %(w) The Hamming distance between
z,y € [q" is A(z,y) = |[{i:2; #vyi}|. The relative Hamming distance between z,y € [¢]"

S(a,y) = S,

- n

is

2.1 Permuting strings

We will use a permutation 7 : [n] — [n] to “reorder” the bits of a string « € {0,1}": The ¢’th bit in
the rearranged string will be 7(i)’th bit in x. This is captured in the definition below.

Definition 2.2 (Permuting strings). Given a string = € {0,1}" and a permutation 7 : [n] — [n]. Let
7(x) denote the string 2’ € {0,1}" with z} = x,(;).

2.2 Read once branching programs

2.2.1 Formal definition of ROBPs and bounded space channels

We give a formal definition of bounded space computation and channels. The model that we consider
is that of oblivious read once branching programs (ROBP). In the definition below, we will consider
several variants depending on whether the ROBP outputs a single bit, or one bit per any input bit
(which is the case for channels that are function C : {0,1}" — {0,1}").

Definition 2.3 (Read Once Branching Programs (ROBP) and channels). A space s ROBP C which

receives input in {0,1}" is defined by picking n transition functions d1,...,d, where for each 1,
9; {0,1}* x {0,1} — {0,1}*. On input =z € {0,1}", the computation path of C is the sequence
70, ...,y Of states defined by ro = 0° and for ¢ > 1, r; = d;(r;—1,x;). We distinguish between two

types of ROBPs:

o IfC:{0,1}" — {0,1} is an ROBP that outputs a single bit, then C' also has an output function
0:{0,1}* — {0,1} and C(x) is defined to be o(r,).

14

o If C:{0,1}" — {0,1}" is an ROBP that outputs n bits, then C also has n output functions
01,...,0, where for each i, o; : {0,1}* — {0,1} and C(x) is defined by the n bit string
01(71)y -+, 0n(Tn).

The class Spc,, is the class of all space s ROBPs C : {0,1}" — {0, 1}" such that for every input z,
C(x) has Hamming weight at most pn. We will say that such channels “induce pn errors”.

We are stating this definition in the terminology of “transition functions” and “output functions”
which is more convenient when discussing ROBPs that output more than one bit. However, we stress
that this definition is equivalent to the more common definition of width w = 2% ROBPs in terms of
a layered graph with n + 1 layers of “width” w, where the ¢’th transition function specifies the edges
from the (i — 1)’th level to the i’th level.

2.2.2 PRGs for ROBPs

We need the following standard definition of pseudorandom distributions and generators.

Definition 2.4 (Pseudorandom generators). A distribution X on n bits is e-pseudorandom for a class
C of functions from n bits to one bit, if for every C € C, |Pr[C(X) = 1] = Pr[C(U,)] =1]| < e A
function G : {0,1}¢ — {0,1}" is an -PRG for C if G(Uy) is e-pseudorandom for C.

A long line of work is concerned with pseudorandom generators for small space ROBPs. Some of
the considerations that we make in this paper are reminiscent of [Nis92, NZ96, INW94, RR99]. We
will use the following PRG by Forbes and Kelly [FK18]. The furthermore part is proven in [KSS19].
(We remark that earlier constructions also have these properties, and we use [FK18] because the
furthermore part was verified in [KSS19)).

Theorem 2.5. For every logn < s < n, there exists an ePRG G : {0,1}¢ — {0,1}" for space s
ROBPs that output one bit, with d = O((s +log 1) - log? n). Furthermore, G can be computed in
time O(n - polylog(n)).

2.3 Averaging Samplers

The reader is referred to Goldreich’s survey [Gol97] on averaging samplers.

Definition 2.6 (Averaging Samplers). A function Samp : {0,1}" — ({0,1}™) is an (€, d)-Sampler if
for every f:{0,1}" — [0, 1],

Pr \{jf = > @ >€d<s

Jees2t) S (Un)
(z1,- amp(Un) ielt] a:e{01}m

A sampler has distinct samples if for every x € {0,1}", the ¢ elements in Samp(x) are distinct.

The next theorem follows from the “expander sampler”. This particular form can be found (for
example) in [Vad04].

Theorem 2.7. For every sufficiently large m and every ¢ > § > 0 such that m < log(1/6) there is
an (e, 8)-sampler with distinct samples, Samp : {0, 1}OUes(1/8)poly(1/€)) _ (£ 1}™)¢ for any t < 2™
such that ¢ > poly(1/e) - log(1/d). Furthermore, Samp is computable in time ¢ - poly(1/¢,log(1/6))
and has distinct samples.

15

2.4 Almost t-wise independent permutations

We also need the following notion of almost ¢-wise permutations.

Definition 2.8 (Almost ¢-wise independent permutations). A function 7 : {0,1}% x [n] — [n] is an
(e, t)-wise independent permutation if:

o For every s € {0,1}% the function 74(i) = 7(s,) is a permutation over [n).

o For every distinct i1,...,4; € [n], the random variable R = (Ry,...,R;) defined by R; =
7(s,4j): s = Ug, is e-close to t uniform samples without repetition from [n].

Theorem 2.9. [KNR09] For every ¢ and every sufficiently large n, there exists an (e,t)-wise inde-
pendent permutation with d = O(t - logn + log(1/¢)). Furthermore, computing m(s,4) on inputs
5€{0,1}% and i € [n] can be done in time poly(d, logn).'?

2.5 Error-Correcting Codes

In this section we give formal definitions of some of the various notions of error correcting codes used
in this paper. We will also introduce less standard definitions in the next sections.

A code is pair (Enc, Dec) of encoding and decoding algorithms, and different notions are obtained
by considering the requirements on the decoding algorithm.

2.5.1 Standard notions of error correcting codes

We start by giving definitions of error correcting codes that covers the standard cases of Hamming
channels and binary symmetric channels. In the definition below we consider codes that are not
necessarily binary (as we will use non-binary codes as components in our construction).

Definition 2.10 (Codes for Hamming channels). Let k,n,q be parameters and let Enc : {0, 1}”f —
({0,1}°80)" be a function. We say that Enc is an encoding function for a code that is:

« decodable from ¢ errors, if there exists a function Dec : ({0,1}°69)" — {0,1}* such that for
every m € {0,1}¥ and every v € ({0,1}!°69)" with A(Enc(m),v) < t, Dec(v) = m.

e L-list-decodable from t errors, if the function Dec is allowed to output a list of size at most L,
and for every m € {0,1}* and every v € ({0,1}!°69)" with A(Enc(m),v) < t, Dec(v) > m.

+ decodable from P, with success probability 1 — v, if P is a distribution over ({0,1}1°8)",
0 < v < 1, and there exists a function Dec : ({0,1}°69)" — {0,1}* such that for every
m € {0,1}*, Pro._p[Dec(Enc(m) ®e) =m] >1—v.

In the definitions above, we use “J relative errors” to mean “t = dn errors”.

A code has encoding time [resp. decoding time] T'(+), if Enc [resp. Dec| can be computed in time
T(nlogq). The code is explicit if both encoding and decoding run in polynomial time. (Naturally,
this makes sense only for a family of encoding and decoding functions with varying block length n,
message length k(n), and alphabet size q(n)).

The rate of the code is the ratio of the message length and output length of Enc, where both

lengths are measured in bits. That is the rate R = n~11(§gq'

15We will be interested in the time it takes to compute the permutation on all i € [n] (namely given s, we want to
compute (7(s,1))ic[n)) and will use n - poly(d) as a bound on the time for this task. Note that this also gives that
computing (7' (s,));c[n) can be done within the same time bound.

16

The notion of “decoding from errors” corresponds to Hamming channels, where the decoding
algorithm needs to decode (or list-decode) from a certain distance. We remark that it is standard
that a code is decodable from ¢ errors if and only if the Hamming distance between every two
codewords is at least 2¢ 4 1.

The notion of decoding from P covers the case of BSC channels, by choosing ¢ = 2 and P to be
the distribution BSC,, of n i.i.d. bits where each bit has probability p to be one.

2.5.2 Locally-correctable and locally-testable codes

We will rely on constructions of locally-corerctable and locally-testable codes with high rate by Kop-
party, Meir, Ron-Zewi and Saraf [KMRS17]. For our application it is crucial that these constructions
have a non-adaptive local corrector. This can be verified by inspecting the construction.'® In the
definition below, we restrict ourselves to locally correctable codes and locally testable codes with
non-adaptive local correctors.

Definition 2.11 (Locally-correctable and locally testable codes with non-adaptive queries). Let k,n, g
be parameters and let Enc : {0,1}* — ({0, 1}!°89)" be a function.

o We say that Enc is an encoding function for a code that is non-adaptively locally-correctable
from ¢t errors using @) queries, if there exists a randomized local-correcting procedure Dec(')(-)
such that for every m € {0,1}*, every i € [n] and every v € ({0, 1}1°89)" with A(Enc(m),v) < t,
we have that when Dec receives input 4, it makes at most Q nonadaptive oracle calls to v, and:

Pr[Dec”(i) = Enc(m);] >

Wl N

o We say that Enc is an encoding function for a code that is non-adaptively locally-testable
from t errors using) queries, if ¢t € [n], and there exists a randomized local-testing procedure
Dec()(-) such that for every v € ({0,1}1°69)" the following holds:

— If there exists m € {0, 1}* such that v = Enc(m) then Pr[Dec’
— If for every m € {0,1}*, A(v, Enc(m)) > t then Pr[Dec’ = 1] <

1] >

W= ||
wino

In the definitions above, we use “J relative errors” to mean “t = dn errors”.

Theorem 2.12 (High rate locally-correctable and locally-testable codes [KMRS17]). For every con-
stants 0 < r < 1 and € > 0, there exists a constant ¢ = 2P°¥(1/€) guch that for infinitely many n,
there is a function Enc : {0, 1}7™1°849 — ({0,1}!°89)" (that is, Enc has rate r) such that:

e Enc is computable in polynomial time.

1—r—e¢

 Enc is decodable from =~ relative errors, by a decoding algorithm that runs in polynomial

time.

1—r—e¢
2

Q = n°M queries, and a local-correcting and local testing algorithms that run in time poly(Q).

e Enc is non-adaptively locally correctable and locally-testable from relative errors, using

Remark 2.13 (The parameters needed in our construction). The statement of Theorem 2.12 asks
for codes that are simultaneously locally correctable and locally testable. Such codes are stated

Y6We remark that by the work of Ben-Sasson, Harsha and Raskhodnikova [BHRO5], it follows that every linear code
that is locally testable has a non-adaptive tester. We are not sure whether this also holds for locally-correctable codes.

17

in Section 1.3 in [KMRS17]. These codes are exceptional as they match the Singleton bound and
achieve Q = n°M) queries.

For our purposes, this is not necessary and (using a slightly more careful analysis) our results
follow from codes with weaker parameters. More specifically:

e We do not require codes that match the singleton bound. It is sufficient that for every ¢ > 0
there exists a constant € > 0 and a code with rate 1 — e that is locally-correctable and locally
testable from ¢ > 0 relative errors. We can also allow the alphabet to be any large constant
that only depends on e.

o It is not important that the number of queries is Q = n°1), and our results hold even if Q = n®
for a constant o > 0, as long as we can choose this « to be sufficiently small. We can also
allows the constant ¢’ and the alphabet size in the previous item to depend on a.

The codes of Guo, Kopparty and Sudan [GKS13] already achieve this weaker property, and are in
fact a component in the stronger result of [KMRS17] (which amplifies their parameters).

The method of [KMRS17] is known to produce codes with nearly linear time encoding (See
Remark 2.6 in [HRW19] by Hemenway, Ron-Zewi and Wootters). Therefore, it seems likely that
a better bound of n*t°(M) also applies for the encoding time in Theorem 2.12. For this to follow
directly, one needs to make a careful inspection of the encoding time of the codes of Guo, Kopparty
and Sudan [GKS13] when set up as locally-correctable codes. It seems very likely that these codes
can be encoded in near linear time, but we have not carefully verified this.

Plugging codes with encoding time n'T°() into our construction gives a stochastic code with
(randomized) encoding and decoding time n'*t°(1). As we have not examined the codes of [GKS13]
carefully, we now explain an alternative, indirect approach that achieves time encoding time plito(),

A less direct approach that gives a code that achieves the parameters mentioned in the second
item is given by “tensored codes”. More specifically, by tensoring a code with itself ¢ times, one can
start with a linear locally-correctable code with @) queries, that has rate larger than R = 1— /¢, and
obtain a code with rate roughly 1— 3, while still having local correction with roughly Q! queries. The
advantage of such a transformation is that if the initial code is explicit, then the obtained code has
time n'+tO0/Y) encoding and decoding. An additional advantage is that Viderman [Vid15] showed
that tensored linear codes are also locally correctable with NO(/*) queries (where N is the block
length of the target code).

This procedure can be applied on the multiplicity codes of Kopparty, Saraf and Yekhanin [KSY14],
or the aforementioned codes of Guo, Kopparty and Sudan [GKS13]. The rate of these codes can be
taken to be larger than say 1 — O(t%)7 in order to allow the transformation described above for any
large constant t. It is also possible to push ¢ further, by taking versions of these codes that have sub-
constant distance, to get better initial rate. Then, after applying the tensoring transformation, one
can increase the distance (without harming the other parameters by too much) using the methods
of Kopparty, Meir, Ron-Zewi and Saraf [KMRS17]. We defer the exact details to the final version.

2.5.3 Concatenated codes and outer distance

We give the following standard definition of concatenated codes.
Definition 2.14 (Concatenated code). Given functions:

o Encoy : {0, 1}k0ut — ({0, 1}10gQOut)nout’ and
o Enci, : {0, 1}Fn — ({0, 1}108 g)nin

18

such that log gout = kin we define the concatenated encoding function Enc : {0, 1}Feut — ({0, 1}108 @in)moucnin
denoted by Encey o Encyy as follows: For dgus € [Nout], tin € [Nin), and 4 = (igut — 1) - nin + iin We
define Enc(m); = Encin(Encout (1))

%n *

Concatenated codes can be decoded by “concatenated decoding” which is the “natural decoding
algorithm” that decodes each block using a decoding algorithm for the inner code, and then applies
a decoding algorithm of the outer code. This algorithm is defined below. (We remark that in
this definition, we don’t care about the decoding properties of the outer and inner codes, and the
concatenated decoding is defined, without mentioning the decoding properties of the code.

We also define a notion of relative outer distance. This measure will play an important role in
later sections. The relative outer distance of a “received word” z € {0, 1}" is the relative Hamming
distance between Encqyt(Dec(z)) and the string that came up in the concatenated decoding algorithm
after decoding the inner code.

Definition 2.15 (Concatenated decoding and outer distance). Let Enc = Encyy o Enci, be a con-
catenated code, and let Decoy : ({0, 1}‘1(’%“‘1““)”0“t — {0, 1}Feut | Decyy, @ ({0, 1}1084in)min — [0, 1}Fin be
functions. For i € [now] we define Dec?, : ({0, 1}108 dn)rouenin —y L0 1}Fin by:

Deciin(z) = Decin(z(i_l).nin+1, ce 7zi'nin)'
The concatenated decoding function Dec : ({0, 1}10% Gin Ynout Min . {(), 1}kout is defined by:

Dec(z) = Decoyt (Deci (2), ..., Decl™(2)).

in

Under the same conditions, given z € {0,1}", the relative outer distance of z (for a specific choice
of Enciy, Encoyt, Deci, and Decgyt) is defined by:

_ | {Z S [nout] : Decfn(Z) 7é Encout(DeC(z))i} |

outdist(z)
Tout

Meaning and usefulness of outer distance. We will use a concatenated code Enc = Encyy 0 Encyy
such that Encqyt is decodable from A relative errors, and Enc;, will have a decoding algorithm Decy,
with properties that we don’t discuss at this point. We will use the concatenated decoding algorithm
Dec as a decoding algorithm for Enc.

The relative outer distance outdist(z) measures the fraction of errors that Decoys corrected, when
the concatenated decoding algorithm Dec was applies on z. We will be using an inner code Encj,
in which ¢, = 2 and njy, is small. We will now argue that in such a setup, even though we’re not
sure what Dec;, is doing, we can still obtain some properties of Dec with respect to relative outer
distance that are analogous to properties of Encqyt with respect to relative distance.

Specifically, In the case that Enc,y; decodes from A\ relative errors, it is standard that if while
running Decoyt(2), the fraction of errors that were corrected is X < X and if §(z,2') < X\ —)\ then
Decout (2') = Decout(z). The following lemma stated that this holds for the concatenated code Enc,
with respect to relative outer distance, while paying a cost that depends on nj,.

Lemma 2.16. Under the setup of Definition 2.15, assume further that Decgyt is a decoding algorithm
showing that Encyyt is decodable from A relative errors. For every z, 2z’ such that:

o outdist(z) < XN <\ and
. 0(z,2) < AN

we have that Dec(z’) = Dec(z), and outdist(z’) < outdist(z) + §(z, 2’) - nip.

19

Proof. Let ¢’ = §(z,2"). The strings z and 2’ differ in at most ¢’ - n bits, and so when thinking of
them as neyut blocks of length ny,, they differ in at most 8’n = (8’ - nin) - nout blocks. This means
that when the concatenated decoding algorithm is applied on z and 2’ the word obtained after inner
decoding of z differs from the word obtained by inner decoding of 2’ in a ¢’ - ny, fraction of the ngyt
symbols. We have that when concatenated decoding was applied on z, the outer code corrected \
relative errors, and so the fraction of errors that is added is ¢’ - ny,. Together, the fraction of errors
is at most
A—=N

Nin

)\/+6/'nin§>\/+ “nip <A,
and this means that the concatenated decoding algorithm decodes 2’ to the same word that z was
decoded to, and the outer relative distance is bounded by X + ¢ - njy. O

2.5.4 Stochastic Codes for a class of channels

In this section we give a precise formal definition of the notion of stochastic codes for a class of
channels (that was already explained in the introduction).

Definition 2.17 (Stochastic codes for channels). Let k,n,d be parameters and let Enc : {0, 1}* x
{0,1}% — {0,1}" be a function. Let C be a class of functions from n bits to n bits. We say that Enc
is an encoding function for a stochastic code that is:

o decodable for “channel class” C, with success probability 1 — v, if there exists a (possibly
randomized) procedure Dec : {0,1}" — {0,1}* such that for every m € {0,1}* and every
C € C, setting X = Enc(m,Uy), we have that Pr[Dec(X @& C(X)) = m] > 1 — v, where the
probability is over coin tosses of the encoding and decoding procedures.

e L-list-decodable for “channel class” C, with success probability 1 — v, if the procedure Dec is
allowed to output a list of size at most L, and Pr[Dec(X & C(X)) 2 m] > 1 — v, where the
probability is over coin tosses of the encoding and decoding procedures.

A code has encoding time [resp. decoding time] T'(-), if Enc [resp. Dec| can be computed in time
T(k+n+d). The code is explicit if both encoding and decoding run in polynomial time. (Naturally,
this makes sense only for a family of encoding and decoding functions with varying block length n,
message length k(n) and seed length d(n)).

The rate of the code is the ratio of the message length and output length of Enc, where both
lengths are measured in bits. That is the rate R = %

Remark 2.18 (Stochastic codes with randomized decoding). Definition 2.17 assumes that the decoding
algorithm is deterministic. However, as we are allowing the encoding algorithm to be randomized,
and allowing success probability smaller than one, we may as well allow the decoding algorithm to
be randomized.

This approach was used in [KSS19] to speed up the time of the decoding algorithm. Allowing
randomized decoding also allows us to speed up the decoding time from polynomial to almost linear.
We will elaborate on this in Section 5.6.

3 Evasive codes for BSC channels and related variants

In this section, we construct explicit codes with the following properties:

 Explicit decoding from BSC,,. (In fact, we will need a related, but stronger property of decoding
from “almost t-wise independent errors” that we will explain later).

20

o Rate 1 — H(p).

 “Evasiveness” against Spc),.

We start by giving an informal definition of the evasiveness property (we will state things more
precisely below). This description is similar to the one given in Section 1.3.2.

The evasiveness experiment: Given Enc : {0,1}* — {0,1}" and Dec : {0,1}" — {0,1}* U {1}, and
a channel C: rather than giving the channel C' a codeword of Enc to corrupts, we will be interested
in the behavior of the channel and decoding algorithm on a uniformly chosen string. Specifically, we
consider the following experiment:

e A uniform Z < U, is chosen.
o The “received word” V = Z & C(Z) is obtained when the channel C' “corrupts” Z.

o We apply Dec(V) and will say that the code (Enc,Dec) is evasive if the probability that
Dec(V) # L is small.

Naturally, evasiveness is only interesting when coupled with some additional decoding properties
of the code, like in our case decoding from BSC,,. Previous work on codes for space bounded channels
(starting with Guruswami and Smith [GS16]) uses codes for BSC,, with rate approaching 1 — H (p),
and the additional evasiveness notion that we introduce will be key in converting the earlier list
decoding algorithms to unique decoding.

Remark 3.1 (Evasiveness and the Gilbert-Varshamov bound). Loosely speaking, evasiveness is one
of the keys that allows us to achieve unique decoding while beating the Gilbert-Varshamov bound.
More specifically, it is easy to see that any code with rate R < 1 — H(2p) (and in particular, a code
that achieves the rate R = 1 — H(2p) — € for every € > 0, namely a code that achieves the Gilbert
Varshamov bound) is evasive against the class of all channels. This is because with high probability
a random word Z has relative distance larger than 2p from any codeword. This means that if (an
unbounded channel) examines Z and induces p relative errors, the corrupted word is still not within
distance p to a codeword, and therefore will be rejected by a decoding algorithm that decodes from
p relative errors.

Indeed, one of the keys to our unique decoding algorithm is a code with rate approaching 1— H(p)
(rather than 1 — H(2p)) while still achieving evasiveness, and decoding from BSC,,.

3.1 Road map for this section

Following [GS16, SS16, KSS19] we will require a code with many additional properties (in addition
to having rate 1 — H(p) from BSC,). In this paper, we introduce the notion of evasiveness, and will
also require that the code is evasive. Following [GS16] our starting point are concatenated codes for
BSC,, channels, that for every e > 0 achieve rate R > 1 — H(p) — e. Such codes Enc are constructed
by concatenating;:

o An outer code Enceys with rate 1 —€/10 that is decodable from A = €(e) errors. The alphabet
of this outer code (which determines the message length of the inner code) is a constant that
depends on e.

« A binary inner code Enc;, with constant message length that decodes from BSC, and has rate
1 — H(p) — €¢/10. The existence of such a code follows by the probabilistic method, and the
decoding algorithm is maximum likelihood decoding.

21

This gives an explicit code from BSC,, where the decoding algorithm for the concatenated code
is the concatenated decoding algorithm from Definition 2.15. We will specify this more formally
below in Theorem 3.10, and in fact, some additional properties of this code is required by [KSS19]
and also here. We start by focusing on the notion of evasiveness and how to achieve it. We will list
the additional required properties of the code as we go along.

Evasiveness of (concatenated) codes. In Section 3.2 we will show that this decoding algorithm is
evasive. More precisely, during the computation of concatenated decoding on a received word v, the
concatenated decoding algorithm Dec also computes outdist(v) (which is the relative outer distance
from Definition 2.15). The relative outer distance of v is the fraction of errors that were corrected
by the decoding algorithm Dec,y; of the outer code. In our setup, when decoding from BSC,, the
outer distance will be smaller than % - A with high probability.

We will show that the probability that a small space channel C' can make the decoding algorithm
have outer distance at most < 0.99)\ is small. This means that the code Enc can be made evasive
(by rejecting whenever the outer distance during decoding is larger than % “A).

Concatenated codes for BSC and related variants. In Section 3.3 we review the constructions of
concatenated codes for BSC,. We observe that we can take the outer code to be the high rate locally
correctable and testable code of Kopparty, Meir, Ron-Zewi and Saraf [KMRS17]. Furthermore,
following [Smi07, GS16, KSS19] we observe that the construction is also decodable from t-wise
independent errors (that is defined formally in that section). This part is identical to [KSS19]
(except for the different choice of outer code).

Approximating the outer distance by a small space ROBP. We will later be concerned with a
“pseudorandom version” of the evasiveness experiment (which was explained in Section 1.3) in which
rather than choosing a uniform Z < U, the string Z is chosen by Z < G(U;) where G is a PRG
for small space ROBPs.

This version of the experiment will be crucial in our actual construction, as we will want to argue
that except for the correct message, many other messages that are considered in the list decoding
algorithm are obtained by decoding pseudorandom codewords. We will want to argue that evasiveness
(on uniform strings) implies evasiveness on pseudorandom strings. This will enable us to argue that
many incorrect messages are rejected by the decoding algorithm (and will be a key step in achieving
unique decoding).

At first glance, it may appear that because C is a space bounded channel, and G fools small
space ROBPs, then evasiveness implies evasiveness on pseudorandom strings. This isn’t the case,
because in the evasiveness experiment, one needs to run the decoding algorithm in order to decide
whether or not the channel succeeds (and decoding algorithms are inherently not implemented by
small space ROBPs).

Fortunately, the way we presented our notion of evasiveness does not require the full power of
decoding. Instead, it is sufficient to compute the outer distance outdist by a small space ROBP.

In Section 3.4 we show that if the outer code Encyyy is locally correctable and locally testable then
the outer distance outdist can be approximated by a small space ROBP (where the space depends
on the number of queries in the local correcting and locale testing algorithm). This will be sufficient
to argue later on that evasiveness implies evasiveness on pseudorandom strings.

3.2 Evasiveness of concatenated codes

In Theorem 3.3 below, we state conditions under which a concatenated code is evasive. For this
statement, we need the following notion of a “decoding reach”.

22

Definition 3.2 (Decoding reach of a code). For a pair of functions Enc : {0,1}* — {0,1}" and
Dec : {0,1}" — {0, 1}*, the relative decoding reach of Enc and Dec is

ver?oaj(}n d(v, Enc(Dec(v))).

Note that a code that decodes from A-relative errors, can w.l.o.g. have relative decoding reach
at most A (by re-encoding the decoded message and computing the distance). Note also that if
Enc = Encgy 0 Encyy, is a concatenated code, and Dec is the concatenated decoding algorithm, then
the relative decoding reach of Enc and Dec is bounded by the sum of the relative decoding reaches
of the outer and inner codes.

3.2.1 Statement of evasiveness theorem

In this section, we state and prove a theorem showing that any concatenated code with certain
parameters is evasive. In our application, we will need a stronger evasiveness property (than the one
stated before) that holds even if the channel C is allowed to choose a permutation o : [n] — [n] that
is applied to V = Z @ C(Z) before it is decoded.

The theorem below shows that under certain conditions, a small space channel that induces few
errors cannot make the concatenated decoding algorithm decode with small relative outer distance.
This means that we can obtain evasiveness of Dec by rejecting strings v € {0, 1}" for which outdist(v)
is large. (Jumping ahead we comment that when decoding from a corrupted codeword (rather than
a corrupted uniform string) we will have the property that the relative outer distance is small, and
this will allow us to distinguish between the case that the channel was applied on a uniform string,
from the case that the channel was applied on a codeword).

Theorem 3.3 (Evasiveness of concatenated codes). For every constant y; > 0, there exists a constant
~v2 > 0 such that for every sufficiently large noyt and a concatenated code Enc = Encgyt o Encyy, :
{0,1}™ — {0, 1} with n = ngyt - i such that:

o Encoyg : {0, 1}Feut — ({0, 1}198 %out)mout that is decodable from A relative errors by a decoding
algorithm Decoys @ ({0, 1}198 dout)oue 5 £), 1 }Kout

o Ency, : {0, 1}Fm=logdou 5 £0 1}"n and Deci, : {0,1}"» — {0,1}¥n is a function such that
Enciy, Deciy have relative decoding reach (.

Let Dec and outdist be the concatenated decoding algorithm and relative outer distance from Defi-
nition 2.15. If A+ B+p < 1 —v1 and s < 42+ A noy then for every channel C : {0,1}" — {0, 1}" such
that C' € Spc;, and every permutation o : [n] — [n], if we choose Z < U, and set X = o(Z @ C(2)),
we have that:

Proutdist(X) < 0.99 - \] < 27 % (A nout)

In the remainder of this section we prove Theorem 3.3. A high level explanation of this argument
was given in Section 1.3.2.

3.2.2 Concatenated codes are evasive: proof of Theorem 3.3

We will divide Z € {0,1}" into blocks. Specifically, let u = %% and v = n/u = %. For
a string y € {0,1}" and ¢ € [u], we use y[i] to denote the v bit long, i’th block of y, namely
Yi = Y(i—1)v+1s- -1 Y(i—1)v+v- We now define the probability space that will be used in the proof.
We refer to this experiment as expr.

23

e We choose: Z < U, and set:
o« E =C(Z) to be the error induced by C.

o Let go be the starting state of C, and for ¢ € [u], let @Q; € {0,1}® be the state that C arrives at
after reading Z[1],..., Z[i]. Let Q € ({0,1}*)" be defined by @ = (Q1,...,Qu).

e Y =Z@&E. For every i € [ul], let Y (i) be the string obtained from Y by replacing the i’th
block with zeros. Namely, Y (¢)[j] = Y[j] for j # ¢ and Y (i)[i] = 0".

e X =0(Y), and for every i € [u], X (i) = (X (4)).

o M = Dec(X), and for every i € [u], M (i) = Dec(X (7)).

e W =o0"YEnc(M)), and for every i € [u], W (i) = o~} (Dec(M(i))).

In addition to the probability space of the experiment expr, for every ¢ € ({0,1}°)* such that
Pr[@ = ¢] > 0, we consider the probability space expr? = (expr|@Q = ¢). The random variables in
this experiment will be denote by adding the superscript q. Thus, for example, Z¢ = (Z|Q = q), and
Bl = (E|Q = q)=C(Z7).

We start by proving several claims about these experiments.

Claim 3.4. The following holds:

o For every ¢ such that Pr[Q = ¢] > 0, Z9[1],..., Z9u| are independent.

 For every ¢ such that Pr[@Q = ¢q] > 0, there exist functions C7,...,C# such that for every
i € [u], E[i] = C} (Z7[3]).

e Let p =3 A nous. With probability at least 1 — up over the choice of ¢ +— @), we have that ¢
is “good”, meaning that for every i € [u], Hoo(Z[i]) > v — s —1log(1/p) > QX - nout)-

Proof. By the definition of ROBPs, for every 1 < i < u, @; is determined by @Q;—1 and Z[i — 1]. For
i € [u] and ¢ € ({0,1}%)%, let D! : {0,1}" — {0,1} be the space s ROBP that on input z € {0,1}?,
interprets x as the i’th block of an n bit input string to C, and applies C' on z € {0,1}" starting as
if C begins at the i’th block (that is, at layer (i — 1) - v + 1) from the state ¢;_;. The ROBP D/
accepts x if this simulation concludes in state ¢;. It follows that:

21 = (Z[)|DU(Z[1]) = 1), (Z[u]| DL(Z[u]) = 1)

Showing that the blocks of Z9 are independent, proving the first item.

Note that by the definition of ROBPs, E[i] is determined by @;—1 and Z[i]. This means that
E1[4] is determined by Z[i] (as QY is fixed to ¢;) proving the second item.

Note that the definition of the ROBP D depends only on ¢i,...,¢ and not on git1,...,qqy.
Thus, we will allow ourselves to write D% and this is well defined.

We say that ¢ € ({0,1}%)7 is good at position i < j if

Pr[DI(U,) =1] > p-27°.
We say that ¢ € ({0,1}°)" is good, if it is good at every position i € [u]. We claim that:
Pr[@ is good] > 1 — u - p.

For this, it is sufficient to prove that for every ¢ € [u] and every q1,...,q;i—1 € {0,1}® such that
(q1,-..,qi—1) is good at positions 1,...,7 — 1, we have that:

Pr[(Q1,...,Q;) is not good at position i|Q1 = q1,...,Qi—1 = ¢i—1] < p.

24

In order to show this, for fixed qi, ..., g;—1, we define:

Byoqis = L PAD () = 1) < o270}

i
and by a union bound over at most 2° choices of ¢; € By, ... 4,_, We have that:
Pr(Qi € By, .qi 1 |Q1=q1,..., Qi1 = qi—1] <2°-(p-27°) = p.

Finally, for every good ¢ € ({0,1}*)%, we have that:

Hoo(Z7[i]) = Hoo (ZI)IDU(Z[i]) = 1) > v — log(——) = v — s — log(1/p).

p-27°

Claim 3.5. For every good ¢ € ({0,1}*)%, and every i € [u], M%(i) is independent of Z7[i].

Proof. The message M9(i) is a function of Y(i), that was obtained after the i’th block of Y was
erased, and is therefore determined by:

Y],.... Y =1, Yi+ 1],...,Yu].
We have that Y? = Z9 @ EY, meaning that Y[i] = Z%[i] ® E?[i]. By the second item of Claim 3.4,
for every i € [u], E1[i] is determined by Z9[i]. This means that Y9[i] is determined by Z?[i]. This
means that M?(7) is determined by:

Z),..., 2% = 1], 2 + 1], ..., Zul,
and the latter is independent of Z9[i] by the first item of Claim 3.4. O

Claim 3.6. For every v; > 0, every good ¢ € ({0,1}%)%, and every i € [u],
1
Pr(o(W(@)[i], Z?1i]) < 5-—v1]522_g”ﬁxﬂm“x
Proof. Let us imagine that the probability space expr? contains an additional random variable U,
which is uniform on {0,1}", and independent of all random variables. As W4(i)[i] is independent of

U, we have that the expected relative distance between W4(7)[i] and U is half. By a Chernoff bound:

Pr[o(Wi(i)[i],U) < = —m1] < 920E0) < 9=y (Anour)

N =

The claim will follow if we argue that:

1 1
PHSWI(i)], Z71]) < & —] < PrSWI()[i,0) < L —] - 22747 1)
We first note that by Claim 3.5, just like U, Z9[i] is independent of W4(7)[i]. Furthermore, by Claim
3.4 we have that Hy(Z9]i]) = v — log(%). It follows that for every x € {0,1}",

28

Pr[Z9i] = v] < Pr[U = v] - — < Pr[U = v] - 2272 A Mout
p

and this implies (1) and the claim. O

25

Claim 3.7. For every good ¢ € {0,1}*, if outdist(X 0.99 - A then for every i € [u], M9(i) = M1.

Nin

1) <
Proof. We have chosen u = %, so that 0.99 - A < X\ — % By definition, for every i € [u],
A(Y1(3),YY9) < v, meaning that §(X9(i), X?) = o(Y (),Y9) < 2 = 1 By Lemma 2.16 we get
that if outdist(X9) < A — Z» and §(X?,X9(i)) < L, then Dec(X9) = Dec(X(i)), meaning that
M? = M1(3), for every i € [u]. O

3|

Claim 3.8. For every v; > 0, and every good ¢ € {0, 1},
Pr[6(W4, Z9) > % — 1] > Proutdist(X?) < 0.99\] — 27 % (Anout),
Proof. By Claim 3.6 and a union bound over all i € [u] we have that:
Pr[3i € [u] : S(W4(3)[i], Z[i]) < % — 1] < w27 o) — 9=y mour)

By Claim 3.7, whenever the event {outdist(X?) < 0.99 - A} occurs, we have that for every i € [u],
M4(i) = M9, which implies that W9(i) = W9, and in particular W9(i)[i] = W9[i]. When this event
occurs, we have that for every i € [u], §(WY[i], Z1[i]) = 6(W4(3)[d], Z9[i]), meaning that

s(W, Z9) Z S(W(i)[d], 29[i)),
i€u]
and the claim follows. O
We are finally ready to prove Theorem 3.3.
Proof. (of Theorem 3.3) By Claim 3.4, Pr[Q is not good] < u - p < 27 (Anout) - Therefore,
Proutdist(X) < 0.99 - AN Q is good] > Prloutdist(X) < 0.99 - A] — 27 %1 (A nout),

By averaging, there exists a good ¢ such that:

Proutdist(X?) < 0.99 - A] > Proutdist(X) < 0.99 - X] — 271 (7out)
For this ¢, by Claim 3.8 we have that:

Pr[s(W4, 2%) > % —] > Prioutdist(X) < 0.99 - \] — 27 (Amoue),
We claim that: .
Prio(W?, Z%) > 5~ 1] =0,

which implies Prfoutdist(X) < 0.99 - \] < 2% (Ameut) and proves the theorem. The claim follows
because by the triangle inequality:

1
S(W, 2% < S(W9YT) +6(Y, Z) S A+ B+p < 5 — .

The second inequality holds (with probability one) because §(Y?, Z9) < p, and §(W?, Z9) is bounded
by the relative decoding reach of Enc, Dec, which in turn is bounded by the sum of the relative
decoding reaches of Decoyt (which is A) and Decy, (which is f3). O

26

3.3 Concatenated codes for binary-symmetric channels and related variants

We will make use of known constructions of codes for binary symmetric channels.

Definition 3.9 (Binary symmetric channel). Let BSC} denote the distribution over n bit strings in
which individual bits are i.i.d. and each is one with probability p.

There are constructions of explicit (and even linear time) codes with rate approaching 1 — H(p)
that are decodable from BSC) with very high success probability [For65, GI05].

Following [Smi07, GS16, KSS19] we are interested in codes for a somewhat similar scenario of
“t-wise independent errors” in which the error distribution is obtained by:

o Taking an arbitrary string e € {0, 1}" with wt(e) < p.
o Taking an (e, t)-wise independent permutation 7 : {0,1}% x [n] — [n].

o The error distribution is €' = m,(e).

In this distribution, each noise bit has probability p to be one, and the bits have “negative
correlation”. This negative correlation can be used to argue that current constructions for BSC,
(which are based on concatenating a high rate outer code that decodes few relative errors, with
a random inner code with rate approaching 1 — H(p) on constant block length) also work in this
scenario.

We will require a code that (in addition to being decodable from t-wise independent errors in
the sense explained above) also has many additional properties. Theorem 3.10 below was proven
in [KSS19] for a different choice of outer code, and very similar arguments were previously made
by Smith [Smi07] and in an early version of [GS16]. The theorem revisits the code construction of
[For65, GI05] for BSCj, and observes that the constructed concatenated code has some properties
that we will use later on. The theorem is also stated so that Theorem 3.3 applies, and that in
addition to all the properties listed in Theorem 3.10, the code is also evasive.

The statement of Theorem 3.10 below is essentially identical to that in [KKSS19]. A difference is
that we will use an outer code that is also locally correctable and locally testable. Such codes were
recently constructed by Kopparty, Meir, Ron-Zewi and Saraf [KMRS17] and decode from the same
fraction of errors than the codes of Guruswami and Indyk [GI05] which was proved in [KKSS19] (and
so the proof of [KSS19] also proves this theorem).

Theorem 3.10 (Similar to [KSS19]). For every constant 0 < p < 1/2, and every sufficiently small
constant € > 0, there exist integer constants ki,, nin, gout and real constants A1, Ag, A3 > 0 such that
kin = log gout < poly(%), and for infinitely many choices of ngy; there exist functions:

o Encoy : {0, 1}”“0ut — ({0, 1}10gQOut)nout7
o Ency, : {0, 1}k — {0, 1}"n,

such that:

e Rout = W‘{gﬁqmw >1-— ﬁ, and Encgyy is the code from Theorem 2.12, that is decodable and

non-adaptively locally correctable from A; relative errors, the local corrector and local tester
make Q = (nout)°M) queries, and runs in time poly(Q).

e Ry = Zi“ > 1— H(p) —€/10, and Enc;, is decodable from BSCji» with probability 1— 2~ A2 Min

in T

This decoding is achieved by a function Dec;, that implements “maximum likelihood decoding”
from relative distance p + €”’, where €’ > 0 is a constant that depends on e.

27

o Consequently, setting n = noyt - nin, and g, = 2, the concatenated code Enc = Encyys 0 Encyy, :
{0, 1}keue — £0,1}" is well defined, has rate R = %eut > 1 — H(p) — ¢, and is encodable and in
time O(T'(n)) for a universal polynomial 7', and the constant ¢ hidden in the O(-) depends on e,
specifically c(e) = 2P°Y(1/€) The concatenated decoding algorithm also runs in time O(T'(n)).

o Let t <n%' and let 7 : {0,1}7 x [n] — [n] be a (2710 ¢)-wise independent permutation. Let
m € {0, 1}Feut and let A, : {0,1}" — {0, 1} be the function that on input €’ € {0,1}", outputs
one iff

| {i € [nout] : Decl, (Enc(m) @ €) # Encout(m); } | < A+ nout.-

Note that for A < A1, if A} (¢/) =1 then:

— Applying concatenated decoding on v = Enc(m) & €’ indeed recovers m.
— outdist(v) < A

For every e € {0,1}" of Hamming weight at most pn,

Pr[AN/ (7 (e)) = 1] > 1 — 272,

o Consequently, for every e € {0,1}" of Hamming weight at most pn, the code Enc is decodable
from 7y, (e) with probability 1 — 2723,

The final item in Theorem 3.10 follows from the penultimate item. However, as in [KSS19], for
our purposes, the final item will not be sufficiently strong, and we will need to use the penultimate
item (as well as the previous items).

Preparing ahead, we list the following corollary of Theorem 3.10.

Claim 3.11. Using the notation of Theorem 3.10, for every A < A1, every message m € {0, 1}*out and
every error vector e € {0,1}", if A} (¢/) = 1 then outdist(Enc(m) @ e’) < .

Proof. We have that Af,(¢/) = 1 and A < A\;. This implies that for z = Enc(m) & €' it holds that
Dec(z) = m. This gives that outdist(z) < . O

3.4 Approximating the outer distance by a small space ROBP.

In this section we show that the relative outer distance of the concatenated code Enc from the
previous section can be approximated by a small space (randomized) ROBP. Thinking ahead, we
will show that this holds even if the ROBP reads the bits in a different order, after a permutation o
was applied on the input v. In the statement below we approximate min(outdist, A1), as when using
this approximation we will only care whether the real outer distance is smaller than say % - 1.

Lemma 3.12. Let Enc be the code constructed in Theorem 3.10 using all the choices in the statement
of Theorem 3.10. There exists a function a(n) = n°1) such that for every s(n) > a(n), there exists
a distribution D over ROBPs of space s(n) such that for every v € {0,1}", and every permutation
o:[n] — [n]:

M\ s(n)

DEIDHD(J(U))) — min(outdist(v), A\1)| > m] <2 at),

Z

In the remainder of this section we prove Lemma 3.12. Loosely speaking, the lemma follows
because a small space ROBP can decode the inner code (which has constant size alphabet) and
simulate a nonadaptive local testing and correcting algorithms of the outer code, allowing it to
compute the outer distance. Details follow.

28

For every v € {0,1}", let
w(v) = Deci(i)(v), ey Dec-(no“t)(v)

m

denote the first step of the concatenated decoding algorithm. We first observe that by investing nj,
queries, one can simulate oracle access to w(v) when given oracle access to v.

Claim 3.13. There is an algorithm A that given input i € [noy] and oracle access to o(v) € {0,1}",
(4)

computes w(v); = Dec, ’(v) using ni, non-adaptive queries.

Proof. The algorithm A (that knows o) simply queries o(v) at the bits corresponding to v(; 1., 415 - -
and computes:

Dec%n(v) = Deciﬂ(v(i—l)'nin-l-l) L) Ui"nin)a
O
We now observe that using local-correcting and local-testing with relative distance Aj, it is

possible to check whether a word w € ({0, 1}l°8%ut)nout js within distance A\; to a codeword of
Encoyt.

Claim 3.14. There is an algorithm B that given oracle access to w € ({0, 1}198dout)mout makes O(Q? -
log Q) = n°) non-adaptive queries, and:

o If there exists m € {0, 1}¥eut such that ¢ = §(Encey(m), w) < A then Pr[|BY —§| < 16\60] > 2.
o Otherwise, Pr[B* = A\1] > %

Proof. The algorithm B acts as follows:

o It simulates the local tester (reducing the failure probability from 1/3 to 1/10). This requires
O(Q) queries of the tester.

e Whenever the local tester makes a query ¢, the algorithm calls the local correcting algorithm
with input ¢ and oracle w, and returns the answer to the local tester. Each application of
the local correcting algorithm will be amplified so that the error is less than ~;, and requires

@7
O(Qlog Q) queries.

o If the local tester rejects, then B answers \j.

e Choose t = O(1/A?) = O(1) uniform indices i1, ...,i; € [nou). For each j € [t], B queries w at
ij, and applies the local correcting algorithm with input i; to obtain a string a;.

« Compute the fraction § of j € [t] for which w;, and the a; differ.
« Output min(é, \1).

The total number of queries of algorithm B is O(Q?log Q) = n°(1) as required.

The first item follows because if there exists m € {0, 1}*ut such that & = §(Enceut(m), w) < A
then by a union bound, with probability at least 1 — 1/@Q, each of the queries of local correcting
algorithm returns the correct symbol in Enceyt(m). When this occurs, the local testing algorithm
accepts with probability at least 9/10, and by a Chernoff bound, B gives a suitable approximation
S of 0.

The second item follows because we can imagine that there is a pre-processing step in which the
local correcting algorithm is applied not only on a subset of the nqyy indices, but in fact, for every
i € [nout) (with independent choices of random coins that is chosen in advance and fixed). For every
fixed random coins (for all these applications) this process induces a word w’ which at index i is

29

-5 Vinyy

the output of the local correcting algorithm. Whenever, the local correcting algorithm makes a real
query 4, we can imagine that it is answered by w,. This means that for every fixed choice of the
random coins of all applications of the local correcting algorithm in algorithm B, the local testing
algorithm is receiving oracle access to w’. For every such word w’ we have that the local tester rejects
w’ with probability 9/10 if it is not within relative distance A\; to a codeword of Encoyt. This means
that if w’ is not rejected and is a codeword, then w’ is not within relative distance A1 to w (as w
isn’t within distance A; to any codeword). This means that if the tester does not reject, then the
approximated distance ¢ will be at least —= - A;. Overall, with probability at least 2/3, the algorithm

- 100
B outputs § which is very close to Aj. O

We are ready to prove Lemma 3.12.

Proof. (of Lemma 3.12) We first consider an amplified version of the algorithm B of Claim 3.4, where

the error is amplified to 275("/a(") This takes %
We then consider a version of B which receive oracle access to v and uses Claim 3.13 to sim-
ulate access to w(v). This multiplies the number of queries by nj, and takes njy, - "Tns)(") < s(n)

non-adaptive queries.

non-adaptive queries for some choice of w(n) = n°1) . The obtained algorithm computes the approx-
imation that is required in the lemma.

Finally, a randomized ROBP with space s(n) (which is a distribution over space s(n) ROBPs)
that reads o(v) (and knows o) can simulate an algorithm with non-adaptive oracle access to v by
tossing the coins in advance, and capturing the required bits while reading o (v). This gives an ROBP
with space s(n) that computes the desired approximation. O

4 Stochastic control codes

An important ingredient in the previous constructions of [GS16, SS16, KSS19] is a special type of a
stochastic code that is called “control code” This is a stochastic code Enc : {0, 1}¥x {0,1}¢ — {0,1}"
which (in addition to certain decoding properties) also has some pseudorandom properties. In our
construction of stochastic codes for space bounded channels, the control code will be used to encode
the seed s of the main construction, using randomness r. It will therefore be convenient to call the
message, and randomness of the control code s and r respectively.

In this paper we will require (and make use of) additional properties of control codes that were
not required in [GS16, SS16, KSS19]. Fortunately, we will show that the construction of control
codes in [KSS19] (which is based on a linear error correcting code called there “raw Reed-Solomon
code” also has these additional properties).

Repetition decoding and it’s usefulness. The main new property that we require is “repetition
decoding”. This says that for every seed s that is encoded ¢ times, using an arbitrary choice od
r1,...,7¢, to produce the “repetition codeword”,

EnCCtrl(S, Tl)v s 7EnCctrl<3; Tf);

we require that given any sequence vy, ..., v, € {0,1}", such that the average of the relative distances
between Encc,1(s,7;) and v; is smaller than p, one can uniquely decode and obtain the original seed
s.

This repetition decoding property is one of the keys that allow us to obtain unique decoding all
the way up to 1/4 in our final stochastic codes. More specifically, we will be able to obtain codes with
repetition decoding up to 1/4. This will be useful, because while an adversary that picks vy,..., vy

30

can make a majority of the ¢ individual decodings decode to some s # s (by choosing a subset of
more than half the indices, and injecting a large fraction of errors on indices in that subset) it cannot
lead the repetition decoding algorithm to decode to a different string s # s.

4.1 Definition and properties of control codes

We start by extending the notion of Hamming distance to stochastic codes. More precisely, in a
stochastic code, each message s has many possible codewords Enc(s,r) for the 2¢ choices of r €
{0,1}%. The definition below says that the distance of a stochastic code is the minimum over all
choices of s,s" and 7,7’ of the distance between Enc(s,r) and Enc(s’,r’).

Definition 4.1 (Hamming distance for stochastic codes). Let Enc : {0,1}* x {0,1}¢ — {0,1}" be a
function, and let s, s’ € {0,1}* and v € {0,1}".

o We define AF2¢(s,v) = Min,c (o134 (A(Enc(s, r),v)), and AEne(y, 5) = AEC(s v) (this is done,
so that A" is symmetric). We define 6¥¢(s,v) = %, and 0¥7¢(v, s) = §5¢(s, v).

« We define AP (s, ') = min, e (o,1y0 (A(Bnc(s, 1), Buc(s',1"))), and §70<(s, /) = 2200,

n

It is standard that these definitions satisfy the triangle inequality.

o The distance of Enc is A(Enc) = Ming g e o1}k AFne(s. s') and the relative distance of Enc is
6(Enc) = ming y¢egoqyx sEne (s, s").

In the definition below we list several useful properties of control codes.

Definition 4.2 (Pseudorandom stochastic codes decodable from errors). Let k, n, d be parameters and
let Enc : {0,1}* x {0,1}¢ — {0,1}" be a function. We say that Enc is an encoding function for a
stochastic code that is:

« e-pseudorandom for a class C of functions from n bits to one bit, if for every s € {0,1}%,
Enc(s,Uy) is e-pseudorandom for C.

o decodable from t errors, if t € [n], and there exists a function Dec : {0,1}" — {0, 1}* such that
for every s € {0,1}*, and v € {0,1}" such that AF"(s,v) < t, we have that Dec(v) = 5. We
say that the code is decodable from t errors, with an a-approximation if in addition to s, Dec
also outputs a number w such that |w — A(s,v)| < a.

e L-list-decodable from t-errors, if the function Dec is allowed to output a list of messages of
size at most L, and for every s € {0,1}*, and v € {0,1}" such that AF"(s,0) < ¢, we
have that Dec(v) o s. We say that the code is L-list-decodable from ¢ errors, with an a-
approximation if for every message s’ in the output list, Dec also outputs a number w’ such
that |w' — AFC(s' v)| < a.

o repetition-decodable from ¢ errors, if there exists a function rDec such that for every s €

{0,1}*, if rDec receives as input a number ¢ < 2" and vy,...,v, € {0,1}" such that % .
Zz’e[é] AFP(s, v;) < t, we have that rDec(¢,vy,...,v) = s,

In the definitions above, we use “d relative errors” to mean “t = dn errors”, and “n-relative approxi-
mation” to mean “a-approximation for a = nn”.

A code has encoding time [resp. decoding time] T'(+), if Enc [resp. Dec| can be computed in time
T(k+n+d). A code has repetition decoding amortized time 7T'(-) if when given input £, v1, ..., vy,
rDec can be computed in time ¢ - T'(k +n + d). (Naturally, this makes sense only for a family of
encoding and decoding functions with varying block length n, message length k(n) and seed length

d(n)).

31

4.2 Discussion and comparison to [GS16, SS16, KSS19]

Following [GS16], in the construction of stochastic codes for space bounded channels, given a message
m and a seed s, we will use a control code to encode s. More specifically, we will choose seeds
Tl Tney &t random, and we will put Enc(s,71),...,Enc(s,ry_,,,) as blocks in the final codeword.
These (few) blocks are called “control blocks”, and the rest of the blocks are called “data blocks”.

Pseudorandomness. The notion of pseudorandomness was introduced by Guruswami and Smith
[GS16]. Loosely speaking, pseudorandomness guarantees that when a channel C' from C reads
Enc(s,r) it learns no information about s. Furthermore, the construction will arrange it so that
all blocks are pseudorandom, which loosely means that the channel cannot distinguish control blocks
from non-control blocks.

Decoding and list-decoding. The notion of decoding considered in Definition 4.2 is tailored to decode
even against Hamming channels. More precisely, the decoding algorithm is required to decode (or
list decode) from a received word v that is close to some encoding Enc(s,r) in Hamming distance.
Note however, that when Dec is applied on v, it is only required to retrieve s, and is not required
to retrieve the seed r. (The usefulness of this notion was demonstrated in [SS16] and later used in
[KSS19], whereas the initial paper of [GS16] required the decoding algorithm to also retrieve the seed

).

Approximation. We will use the construction of control codes by [KSS19]. In that construction
decoding algorithms are not able to retrieve the seed r (although they can obtain a lot of information
about it). This means that even when unique decoding Dec(v) = s, we cannot necessarily efficiently
compute the distance AF"¢(s,v). (Of course, we can compute Enc(s,r) for all » € {0,1}% and find
the closest one, but this may take exponential time). We will need to be able to estimate these
distances, and this is why we introduce the notion of an a-approximation (that was not used in
previous works). We will observe that the decoding and list-decoding algorithms for the control code
of [KSS19] indeed have such a a-relative approximation for a = o(1).

Repetition decoding. Finally, another component that we introduce in this paper is the notion of
repetition decoding of a control code. This is done because if we restrict our attention to control
blocks, this corresponds to encoding the same message s using many independent seeds. When
decoding against space bounded channels, if we could identify which of the blocks are control blocks,
then it makes sense to run repetition decoding on these blocks in order to obtain s. (Jumping ahead,
we remark that identifying the control blocks will be quite tricky).

Using repetition decoding is a key idea in which our use of control codes deviates from previous
work (and is crucial for achieving unique decoding, together with our approach to identify the control
blocks).

We will argue below that the task of repetition decoding can be reduced to the task of list-decoding
with a good approximation.

4.3 Constructions of control codes

In our main construction of stochastic codes for space bounded channels that induce p relative
errors, we will require stochastic control codes that are pseudorandom, and repetition decodable
from slightly more than p relative errors. The theorem below states the control code that will be
used to prove Theorem 1.1.

32

Theorem 4.3 (Stochastic control codes with repetition decoding up to %) For every constant 8 > 0
there exists a constant 0 < o < 0.1 such that for every sufficiently large m, setting n = (2™ —1) - m,
{4: =n® d=mnlogn, and s = lo’g‘—%, there is a stochastic code Enc : {0, 1}* x {0,1}¢ — {0,1}" that
is:

e Computable in time n° for a constant ¢ that does not depend on .

27 %-pseudorandom for space s ROBPs.

¢ Repetition decodable from i — [relative errors in amortized time n¢ (and in particular decod-
able from I — 3 relative errors in time n°).

4.3.1 Different tradeoffs in parameters

In the two theorems below, we consider different tradeoffs between the parameters (that lead to
alternative tradeoffs in our main result).

Achieving almost linear time encoding and (randomized) decoding. We can push the running time of
the encoding and repetition decoding to almost linear time. For this, we need to allow the repetition
decoding algorithm to be randomized, and err with small probability.

Theorem 4.4 (Stochastic control codes with almost linear time encoding and repetition decoding).
For every constant S > 0 there exists a constant 0 < a < 0.1 such that for every sufficiently large
m, setting n = ((2™ — 1) - m)® (for a universal constant c), k = n®, d = nlogn, and s = —%—, there

log®n’
is a stochastic code Enc : {0, 1}* x {0,1}¢ — {0,1}" that is:

« Computable in time n - log® n.
o 27%-pseudorandom for space s ROBPs.

¢ Repetition decodable from i — B relative errors by a randomized algorithm that runs in amor-
tized time O(n) and is guaranteed to perform repetition decoding correctly on any ¢ and

V1, ...,0p € {0,1}" with probability at least 1 — ¢ - 27" Where ¢ is a universal constant.
Using a control code with a randomized repetition decoding algorithm in our main construc-

tion translates into a stochastic code for space bounded channels where the decoding algorithm is
randomized. There is no reason not to allow this, see Remark 2.18.

Achieving codes that are pseudorandom for larger space for p < %. A weakness of Theorems 4.3 and
4.4 is that they obtain pseudorandomness for space roughly s = n® where a > 0 is an unspecified
constant, that depends on 3. (An inspection of the proof of [KSS19] reveals that a = (3?)). We

can do better if p < 1/8 and obtain a code that is pseudorandom for space s that is roughly n2.

Theorem 4.5 (Stochastic control codes for larger space with repetition decoding up to %) For every
constant 0 < a < %, and for every sufficiently large m, setting n = (2™ — 1) -m, k =n®, d = nlogn,
and s = log—in, there is a stochastic code Enc : {0,1}* x {0,1}¢ — {0,1}" that is:
e Computable in time n¢ for a constant c.
o 27%-pseudorandom for space s ROBPs.
o For every constant p < 1/8, Enc is repetition decodable from p relative errors in amortized
time n¢ (and in particular decodable from p relative errors in time n¢).

In the remainder of this section we prove Theorems 4.3, 4.4 and 4.5.

33

4.4 Extending the control codes of [KSS19] to have repetition decoding

Kopparty, Shaltiel and Silbak [KSS19] used a binary code which they call the “Raw Reed-Solomon
code” to construct control codes with the following properties:

1
5, and for every

o . k
71023 - there is a stochastic

Theorem 4.6 (Stochastic control codes of [KSS19]). For every constant 0 < a <
sufficiently large m, setting n = (2™ —1)-m, k = n®, d = nlogn, and s =

code Enc : {0,1}* x {0,1}¢ — {0,1}" that is:
e Computable in time n¢ for a constant ¢ that does not depend on «.
e 27 %-pseudorandom for space s ROBPs.
e §(Enc) > 3 —o(1).

o For every constant p < 1/4, Enc is decodable from p relative errors, with an O(@)—relative
approximation in time n°.

o There exists a universal constant b such that for every 8 > by/a, Enc is O(1/3?)-list decodable
from (3 — B) relative errors, with an O(@)—relative approximation, and this list-decoding
algorithm runs in time n°.

o If & < 0.1 then encoding n¢ inputs takes “amortized time” O(n - log?n), namely, for every
n¢ pairs, (m1,51),. .., (Mue, spe) € {0,1}* x {0,1}4, computing (Enc(m;, Si))(iene)) takes time
n®-O(n -log”n).

Theorem 4.6 is stated in [KSS19] without the statement on “distance” and “relative approxima-
tion” which were not considered in [KSS19]. Nevertheless, the proof of [KSS19] gives that the code
has large distance, and that whenever decoding (or list-decoding), one obtains a O(@) relative
approximation.'”

Theorems 4.3, 4.4 and 4.5 guarantee repetition decoding (which does not appear in Theorem
4.6). In order to prove them, we prove the following lemma which shows that repetition decoding

follows if the code has large distance and list-decoding with a good approximation.

Lemma 4.7 (repetition decoding from distance and list-decoding with a good approximation). Let
p >0 and let Enc: {0,1}* x {0,1}¢ — {0, 1}" be a stochastic code such that:

e Enc is L-list decodable from p = 2p + 37 relative errors, with an n-relative approximation.

o Enc has relative distance 6(Enc) > p.

It follows that Enc is repetition decodable from p relative errors. Furthermore, the amortized time
of the repetition decoding algorithm rDec is bounded O(Tpec) where Tpe. is the running time of the
list-decoding algorithm.

The proof of Lemma 4.7 is given in Section 4.5. Theorem 4.3 immediately follows from Theorem
4.6 and Lemma 4.7. Theorem 4.5 follows by using the decoding algorithm in Theorem 4.6 as a
1-list-decoding algorithm from slightly less than 1/4 relative errors, and applying Lemma 4.7. The
proof of Theorem 4.4 (which is not used in this paper) is deferred to a later version (see Section 5.6
for a discussion of potential uses of this theorem).

"Loosely speaking the control code Enc(s,r) of [KSS19] works by treating r = (r1,72) as two independent seeds,
and Enc(s,r) = Enc?®*?3(r) 0 §) @ f(r2) where Encf®*%S is an encoding map for a (standard) error correcting code
that is decodable from 1/4 — o(1) relative errors (which implies that it has relative distance 1/2 — o(1)), and f(r2) is
a string of relative hamming weight at most n = loén. This implies that Enc has §(Enc) = 1/2 — o(1), and that when
decoding (or list-decoding) a received word v € {0,1}", one can retrieve s,r1 such that for every r2, Enc(s,r1 o r2) is
within relative Hamming distance 7 from v. This gives an n-relative approximation to the distance §="¢(s, v).

34

4.5 Repetition decoding from distance and list-decoding: proof of Lemma 4.7
In this section we prove Lemma 4.7. We consider the following repetition decoding algorithm:
Algorithm rDec: On input ¢ and vy, ...,vp € {0,1}", rDec does the following:

o For i € [¢] apply Dec(v;) to obtain a list of L pairs (s{,w}),..., (s,w?) of a message and
relative approximation.

« Overall, we obtained at most £ - L such pairs. Let A be the set of s € {0,1}* such that
for at least half of i € [¢], there exists a j € [L] such that sé = s. Note that |A| <2 L.

o For each s € A, and for each i € [(] compute a number p;; as follows: If s appears in the
i’th list with an approximation w’, then p,; = w'. Otherwise, we set ps; = p.

o We output the s that has the minimal p; = Zie[e] Ps,i out of all strings that were consid-
ered. (If there does not exist such a unique s the algorithm fails).

In order to analyze the algorithm we need the following notion of truncated distance.

Definition 4.8 (truncated distance). For a function (-, -) and a number p > 0 we define d,(x,y) =
min(6(z,y), p)-

With this notation, it immediately follows that:
Claim 4.9. For every s € A, |ps — Zie[ﬁ] 5pEnC(s,vi)| <.

It is standard that if is a function that satisfies the triangle inequality, then J, also satisfies the
triangle inequality for every p > 0. As a corollary we get that:

Claim 4.10. If §(Enc) > p, then for every s, s’ € {0,1}*, and v1,...,v, € {0,1}™,
1 1 i
720 3w+ g D (v s) 2 p.
i€[(] ic[f]

Proof. (of Claim 4.10) We have that §¥"¢(s, s') > p, which means that (55“(3, s') = p. This means
that for every v € {0,1}",

55“(3,1}) + 55“0(11, s') > 55”0(3, sy = p.
The claim follows by applying the inrquality above seperately for each ¢, and taking the average. [

We need to show that under the conditions of Lemma 4.7, the algorithm rDec is a correct
repetition decoding algorithm. This is done in the next claim.

Claim 4.11. For every s € {0,1}*, if rDec receives as input a number ¢ and vy, ..., v, € {0,1}" such
that § - 2iclq §5¢(s,v;) < p, then:

e s€ A, and ps <p+n.
o For every s’ # s, such that s’ € A, pys > p+1n.

Together, this implies that rDec(¢,v1,...,v;) = s as required.

35

Proof. (of Claim 4.11). By Markov’s inequality, for at least half of i € [¢] we have that §%"(s, v;) <
2p < p. For such an i, s is one of the L strings obtained when applying Dec(v;). This means that
s € A. The first item now follows using Claim 4.9:

Ps < D65 (s,05) + 1)
i€[¢)

< Z S (s, 0;) + 1
i€[¢)

<p+n.

For the second item, we apply Claim 4.9 and Claim 4.10 to conclude that:

1
P2 5o 2 OF () -

i€[{]
1 nc
> p— g DO (s) —
1€[{]
>(2p+3n)—-p—n
=p+2n.

O]

We now consider the amortized running time of the repetition decoding algorithm rDec. We are
assuming that ¢ < 2" so that log¢ < n. The running time Tpe. of the list-decoding algorithm is
at least n + L as it needs to read an input of length n and output a list of size L. The algorithm
rDec calls Dec ¢ times (taking amortized time Tpec). For each of the 2L = O(Tpec) elements in A,
the algorithm rDec sums up ¢ numbers. It follows that this step also takes amortized time O(Tpec)-
Overall, the amortized running time of the repetition decoding algorithm is O(Tpec) as required.

4.6 Stochastic control code in near linear time

In this section we provide a sketch of the proof of Theorem 4.4. The starting point is once again the
code of Theorem 4.6. Let Enc be the code from this theorem (choosing the parameter § in Theorem
4.4 to be say 108 where this occurrence of 3 is the constant that is chosen in Theorem 4.4). Let ¢
be the constant guaranteed in Theorem 4.4.

Let u = n°. The code that we will construct will be denoted by Enc’ : {0, 1}* x {0, 1}%¢ — {0, 1}V
for N = un, and will be defined as follows:

Enc'(s, (r1,...,74)) = (Enc(s,71),...,Enc(s,1,)).

First of all, we note that k = n® = N for a constant o/ = o/(c +1).

By the last item of Theorem 4.6 Enc’ can be computed in time O(u - n - log?n) = O(N -log? N),
giving that Enc’ can be computed in the required time.

By a standard hybrid argument, we have that Enc’ is (u-27*)-pseudorandom for space s ROBPs.
Note that s = na/log?’n > Na//log?’ N. This also means that u27° < 27%/2, and so by choosing
o’ > 0 to be slightly smaller, we can use it as o in Theorem 4.4, and meet the requirement.

So far, we have seen that Enc’ has sufficiently efficient encoding, and is sufficiently pseudorandom.
We would like to show that Enc’ has sufficiently efficient repetition decoding. This would follow from

36

the argument in Lemma 4.7 if we could show that Enc’ has sufficiently large distance and is also
list-decodable with good parameters.

The distance property of Enc’ follows immediately. We have already seen that bundling many
copes of a code preserves relative distance, and so §(Enc’) = §(Enc) > 1 — o(1).

While for technical reasons, we can’t use Lemma 4.7 directly, it is possible to imitate the algo-
rithm at the basis of Lemma 4.7 using the list-decoding algorithm of Theorem 4.6 and randomized
subsampling that saves time, and allows us to read a sample of the blocks of the codeword of Enc’
rather than reading all of them. The exact details are deferred to a later version.

5 Explicit stochastic codes for space bounded channels

In this section we give our main construction of codes for space bounded channels, and prove Theorem
1.1. We start by restating the theorem in a more general way:

Theorem 5.1 (Explicit stochastic codes for space bounded channels). For every constants p < %,

and ¢, > 1, there exists a constant § > 0 such that for every sufficiently small constant ¢ > 0, for
infinitely many N, there is a stochastic code for Spcév * with rate R = 1 — H (p) — €, and success
probability 1 — v for v = 2~ (g N)*
polynomial in N.

More specifically, there exists a universal polynomial Tp(N) such that encoding and decoding
algorithms run in time Ty (V) for every sufficiently large N (where the choice of which N is sufficiently

large depends on p and).

. Furthermore, the encoding and decoding algorithms run in time

5.1 The construction

In this section we present our construction of stochastic codes for bounded channels. The construc-
tion is detailed in three figures: Figure 1 lists parameters and ingredients, Figure 2 describes the
encoding algorithm, and Figure 3 describes the decoding algorithm. We start with some notation
and definitions. We remark that an intuitive explanation of the construction appears in Section 1.3.

Partitioning codewords into control blocks and data blocks. The construction will think of code-
words ¢ € {0,1}" as being composed of 7 = Nyl + Ndata blocks of length b = N/n. Given a subset
I C [n] of nety distinct indices, we can decompose ¢ into its data part cgata € {0, l}Ndata:”data'b and
its control part c.;; € {0, 1}thr1:”°t“‘b. Similarly, given strings cqata and c.y1 We can prepare the
codeword ¢ (which we denote by (Cdata; Cetz1)! by the reverse operation. This is stated formally in
the definition below.

Definition 5.2 (Data and control portion of a codeword). We view strings ¢ € {0,1}" as composed
of n blocks of length b = N/n, so that ¢ € ({0,1}*)", and ¢; denotes the b bit long i’th block of c.
Let I ={i1,...,in,,} C [n] be a subset of indices of size negy.

o Given strings cqata € {0,1}Vdate and ¢y € {0, 1} Ve we define an N bit string ¢ denoted by
(Cdatas Cetr1)! as follows: We think of cgata, Cetrl, ¢ as being composed of blocks of length b (that
is Cgata € ({0,1}0)aata coiy € ({0, 1}0)"t and ¢ € ({0,1}°)"). We enumerate the indices in

}) | (cetn)r if £ =iy for some k;
[n] \ I by]17 AR ’jndata and Set Cé - { (Cdata)k; lf Z _]k; fOI" some k:

o Given a string ¢ € {0,1}" (which we think of as ¢ € ({0,1}°)") we define strings ¢! ., L,
by ¢l = ¢y and c},,, = c|pmp1, (namely the strings restricted to the indices in I, [n] \ 1,
respectively).

37

We omit the superscript I when it is clear from the context.

5.2 Stating the correctness of the construction

In this section we state a general theorem stating the correctness of the construction, assuming that
it is supplied with the right ingredients.

Theorem 5.3 (correctness of the construction). For every constants § > 0, 0 < p < %, ¢y > 1, and
every sufficiently small constant e > 0, there exist constants € > 0, €samp > 0 such that for infinitely
many N, we have that for every choice of £, s’, and every choice of Encey : {0, 1} x {0,1}¢ — {0,1}?
that satisfiy the requirements in Figure 1, the following holds: The encoding and decoding functions
Enc : {0, 1} x {0,1}+7ewd 5 10,1}V and Dec : {0,1} — {0, 1}7V specified in Figures 2 and 3
using the ingredients and parameter choices in Figure 1 satisfy the following properties:

e Enc hasrate R>1— H(p) —e.

 Dec is a decoding algorithm showing that Enc is decodable for space s = N°® channels that
induce at most pN errors, with probability 1 — v for v = 2~ (leg)

o If Ence1, Decey1 can be computed in polynomial time, then Enc,Dec can be computed in
polynomial time.

More specifically, there exists a universal constant ¢y > 1 such that the time of Enc, Dec is
bounded by O(N - (log N) % +n - Teyyg + Tyata) Where Tyaea is @ bound on the running time on
the encoding and decoding time of Encgsc and T¢t,1 is a bound on the running time of running
Encc,1 and on the amortized running time of the repetition decoding algorithm rDec,1, where
both Enc, rDec are applied with block length b = N/n. (Here, the constant hidden in the O(-)
depends on the p, €,).

We prove Theorem 5.3 in Section 6. In the next section, we plug in specific ingredients to prove
our main theorems.

5.3 High level intuition and comparison to [KSS19]

Our construction heavily builds on the list-decodable code of Kopparty, Shaltiel and Silbak [KSS19]
(which in turn heavily builds on the construction of Guruswami and Smith [GS16] and the modifica-
tions made by Shaltiel and Silbak [SS16]). The high level intuition is that we repeat the list-decoding
algorithm of [KSS19], to end up with a constant size list of candidate messages, and unique decoding
is achieved by pruning the list using additional steps.

Indeed, using our terminology (modulu some small changes to explain later on) the construction
of [KSS19] achieves list decoding by taking all viable candidates 5 € viable (defined in the second
step of the operation of the decoding algorithm) and outputting the list of messages

{m(5) : § € viable}.

The proof of [KSS19] shows that the original message is in this list w.h.p.
Somewhat oversimplifying, our high level plan is to show that:

o Data blocks (namely blocks in [n] \ control) are unlikely to be successful, and therefore, are
unlikely to be declared active. In order to achieve this we will argue that on data candidates,
the evasiveness of the code Encggc will make these candidates unsuccessful. This requires
many additional ideas that are explained later on.

38

o We will also show that at least 7 of the control blocks (namely blocks in control) will choose
the correct candidate s as their candidate §. This support of 7 blocks will make this candidate
viable. Furthermore, we will show that s is successful, and so these 7 blocks will be declared
active.

e We will show that any other control block is either not active, or within relative distance
roughly p to Encey(s, Ug).

e Overall, we will get that if we apply repetition decoding on active blocks, we obtain the correct
candidate s. This will allow us to identify the correct candidate s in the set viable, and we will
output m(s) which is the correct message (w.h.p.).

e The actual argument is more complicated as we cannot rule out that few data blocks will be
successful and declared active.

We now point out a few additional differences in the choice of parameters and ingredients relative
to [KSS19] that are crucial to our approach, and will allow us to implement the plan above.

Evasiveness of the data encoding: The code from Theorem 3.10 meets the requirements of Theorem
3.3 and is therefore evasive. This means that when decoding is applied on uniform strings, it
is unlikely to be successful. A significant portion of the analysis below is used to argue that
each data block is sufficiently pseudorandom so that we can argue that w.h.p. data blocks are
not successful.

Unique decoding of control blocks: In [KSS19] the decoding algorithm of the control code is list-
decoding from slightly less than % relative errors, and so, every block has several candidates.
We are interested in p < % and therefore can replace this by unique decoding (which is used to
specify the candidate 5 of each block). Unique decoding is a special case of repetition decoding.

Repetition decoding of control blocks: We will be able to guarantee that the correct candidate s is
valid. However, it is no hard to see that the channel can inject a related candidate 5 (that
depends on s) so that § is also valid. Moreover, the channel can inject several such strings. How
can we identify the correct candidate amongst all valid candidates? This is where repetition
decoding comes in. We argue that although the incorrect candidate s is valid, and was decoded
on at least 7 of the control blocks, the correct candidate is the only valid candidate that
is within small average distance from all the active blocks. This is key to achieving unique
decoding for p > %. The high level intuition for the correctness of repetition decoding is that
the channel has a budget of roughly p to spend on control blocks. Initially, the control portion
of the codeword consists of control encodings of the correct string s. The channel can place
1/4 fraction of errors on almost all blocks, leading them to decode to some other related string
5. However, in doing so, on all these blocks, the received word will be pretty far from a control
encoding of 5, and so, when we repetition decode, we will still get s (even though on most
internal specific decdoings we get 3).

PRG with truly independent blocks: We want different blocks of G(Uy) to be truly independent
(and not just indistinguishable from truly independent). This will allow us to argue that even
though Dec;) cannot be implemented by a small space ROBP, it’s behavior on different blocks
is independent. This will be crucial in showing that candidates of data blocks are not successful.
The need to keep the seed short dictates using fewer longer blocks.

Shorter control piece: The method devised in [GS16] and used in [KKSS19] is to have the encoding
consist of a long data piece of length Ngat, = (1—¢€)N, and a short control piece of length ¢’ N.
In these works the final list size is roughly polynomial in the fraction €, and so it is natural

39

to choose € = Q(€) to minimize the list size. For our pruning technique, it is beneficial if ¢’ is
much smaller. Loosely speaking, this allows us to account for a deletion of an €’-fraction of the
data, as an additional “few errors” that can be later decoded. This leads us to choose €’ to be
much smaller than in [KSS19].

5.4 Deriving Theorem 1.1

We now show that Theorem 5.1 (which generalizes Theorem 1.1) follows by picking specific compo-
nents in Theorem 5.3. We are given constant p < %, ¢y > 1 and a sufficiently small constant € > 0.
Throughout we will assume that p + € < %.

We want to choose parameters /, s’, as well as a control code to plug into Theorem 5.3. We start
with choosing the control code. Our plan is to use Theorem 4.3 as a control code. Theorem 4.3 allows
us to choose 8 > 0, and we choose to be sufficiently small so that p+e€ < % — 8. By theorem 4.3 we
obtain a constant a > 0 so that we can obtain a control code Encgy : {0, 1}°% x {0, 1}018% — {0, 1}°.
Recall that we need to set b = N/n. We are allowed to choose b of the form (2™ — 1) - m and such
numbers are sufficiently dense so that by slightly changing n by a constant factor (which makes no
difference in the construction and analysis) we can make sure that b = N/n is of this form. The
code we obtain has poly(b) time encoding and repetition decoding. This code is repetition decodable
from pei;1 = p + € relative errors. We choose £ = b® and s’ = W. It follows that Encc, is

2~ _pseudorandom for space ' ROBPs. This means that Ence : {0, 1} % {0, 1}¢ — {0, 1} satisfies
the requirements from a control code in Figure 1.
We have that

Na
s = bog® N > — > N2,
n -log® N

We choose § = & = N*/* and set s = N%. We indeed have that s’ > N%*¢ as required in Figure 1.
This means that the requirements in Figure 1 are met by our choices of £ and s’. It follows that we
meet all the conditions of Theorem 5.3 and obtain that:

e Enc hasrate R >1— H(p) —e.

e There is a decoding algorithm Dec showing that Enc is list decodable for space s channels that
induce at most pN errors, with probability 1 — v.

e The running time of Enc and Dec is some fixed polynomial Tj.

This completes the proof of Theorem 5.1

5.5 Deriving Theorem 1.2

In order to prove Theorem 1.2 we will use a nonexplicit stochastic code. More specifically, using
the probabilistic method, it is easy to show that if we take ¢ and d to be sufficiently large as a
function of b, but set ¢,d = o(b), (for example, say ¢,d = ©(b/loglogb)) and if furthermore, we
choose s’ = Q(¢), then a uniformly chosen stochastic code (that is a code where for every s € {0, 1}
and r € {0,1}%, the output Ence(s,) is chosen uniformly and independently in {0, 1}?) is likely to
have the following properties:

o Encey is 270 pseudorandom for space Q(¢) ROBPs.

This follows because it is standard that for every family of M functions on b bits, and every e,
a uniformly chosen subset of size t = O(lOgTM) is with probability 1 — 272®) a discrepancy set
against the family, meaning that a uniformly chosen element from the subset is e-pseudorandom

40

for the family. The number of ROBPs of space s’ is at most M = 200V '223/), and for every seed

s, the set Encety1(s, -) was chosen uniformly. This means that assuming that s’ > log N, if we
choose s’ < /{/c and ¢ < d/c for a sufficiently large constant ¢ > 1, we can argue that that for
every s, with probability 1 —2-%%) Enc(s, Uy) is e-pseudorandom for space s’ ROBPs. We can
do a union bound over all 2¢ < 294 choices of s, and obtain the pseudorandomness property.

o Encyy is repetition decodable from 1/4 — o(1) relative errors.

This follows because if we view Enc;i(s,7) as a function Enc(s o r), then by standard results
on random codes, as we have taken the rate (which is £+ d/b) to be o(1), the relative distance
of such a code will be 1/2 —0(1). This means that it is possible to uniquely decode (s,r) when
given a received word v that is within distance 1/4 — o(1) from Enc(s,r). This immediately
implies the existence of (a nonexplicit) repetition decoding algorithm up to 1/4 — o(1) relative
errors.

This means that we obtain a stochastic control code which allows encoding of a string s of length
¢ = Q(b) = QN/n) = N'=°() and fool ROBPs of size Q(¢) = N'=°(). Plugging such a code in
our construction yields a final code with space s = N'=°(1). We do not go into the precise details of
Theorem 5.3, because as we will soon explain that it is possible to improve Theorem 5.3 and achieve
s = N/polylog(N) by using a nonexplicit PRG Giopyp, instead of the choice made in Figure 1. We
describe this approach below.

Linear codes with large dual distance. The argument above uses the nonexplicitness of Encc,; in
a very strong way. However, we remark that the results of Koppparty, Shaltiel and Silbak [KKSS19],
together with the reduction from list-decoding to repetition decoding in Section 4, reduce the task
of constructing control codes to that of constructing linear codes with distance roughly 2p and
dual distance roughly s, with explicit list-decoding from roughly 2p relative errors. The control
codes of [KSS19] are based on such a construction called the “Raw Reed-Solomon code” which only
achieves £ = b* where a > 0 is a constant that deteriorates when i — p approaches zero. An explicit
construction of codes that achieves larger dual distance (a probabilistic argument show that achieving
s = bW ig possible) will translate into stochastic codes for space N 1-o(1),

Using PRGs that fool size 2° circuits. The proof of Theorem 5.3 becomes much easier if the generator
Grobp from Figure 1, fools circuits rather than ROBPs. In that case, we needn’t worry about
“simulating adversaries by ROBPs” and can fool them directly.

This means that we no longer need to use locally-correctable and testable codes, and leads
to a tighter connection between s and s’, Specifcally, this allows s = s’'/polylogN rather than
s = (s’ /polylogN)'~¢ that is given by our analysis. This observation is useful in two setups:

Nonexplicit codes: It is standard that a uniformly chosen function G,y will be 2*Q(£)—pseudorandom
for circuits of size 2*(¥). Using such nonexplicit PRGs, gives the space bound s = N/(log N)¢
for some universal constant ¢ > 1, and translates into a nonexplicit code for space N/polylogIV
channels. We defer the precise details to a later version.

Explicit codes assuming one-way functions: Under the widely believed cryptographic assumption
that one-way functions for subexponential size circuits exist, there are explicit PRGs that
stretch ¢ bits into M = 2" bits, and are ﬁ pseudorandom for size M circuits. As explained
earlier, using such PRGs removes the need for locally correctable and locally testable codes,
meaning that the outer code in Theorem 3.10 can be chosen to be a code that is linear time
encodable and decodable (as in [KSS19]). At the moment, assuming cryptographic assumptions
give no advantage in final results over unconditional results, but we mention this possibility,

as it may help in future research.

41

5.6 Discussion of other possible tradeoffs

In Section 1 we mention that it is possible to achieve explicit codes with some additional tradeoffs.
We now sketch how to achieve these tradeoffs.

Codes for space s = N 3701 for p < %: As we have explained in the previous section, the reason that
out explicit codes don’t achieve space N1—°() is that we don’t have sufficiently good explicit
stochastic control codes. However, for p < %, Theorem 4.5 gives a stochastic control code which
can achieve any a < % Plugging these codes into Theorem 5.3 gives the desired result.

Codes for space s = N1=°() for p < p; for some constant p; > 0: For small p, there are better con-
structions of stochastic control codes in [KKSS19] (which are based on the algebraic geometric
codes of Garcia and Stichtenoth [GS96]). Using these codes, gives the desired result. We defer
the details to a later version.

Codes with almost linear time encoding and decoding: The list-decodable codes of Kopparty, Shaltiel
and Silbak [KSS19] achieved quailinear (that is N - polylog(N)) time encoding and (random-
ized) decoding. There are two reasons why the proof of Theorem 5.1 does not directly give the
same time bounds:

o We use the locally-correctable and locally testable codes of Kopparty, Meir, Ron-Zewi and
Saraf [KMRS17] from Theorem 2.12 rather than a code that is known to have linear time
encoding and decoding which was used by previous work. Nevertheless, as explained in
Remark 2.13, it is possible to obtain such codes with encoding and decoding time plitel),

o For technical reasons, we need to choose the block size b to be much larger than the
choice in [KSS19]. While this allows handling larger space (as can be seen in the code
with space s%”)(l)), it means that more work needs to be done in order to show that the
control code has near linear time encoding. It is possible to achieve such control codes,

with randomized (rather than deterministic) decoding. A precise statement was given in
Theorem 4.4.

With these two modifications, we can apply Theorem 5.3 and obtain the same results as in
Theorem 5.1 with encoding and (randomized) decoding in time N1+o(1),

6 Analysis of the construction of stochastic codes for space bounded channels

This section is devoted to proving Theorem 5.3, and show the correctness of the main construction.

The setup: Throughout the remainder of the section, we fix the setup of Theorem 5.3. Specifically,
let d >0,0<p< %, ¢, > 1 be constants, and let € > 0 be a sufficiently small constant. We will later
choose sufficiently small constants €', egamp > 0. In particular, we will choose €gamp to be sufficiently
small so that pey1 = p+ € > p + 3€samp- Let N be sufficiently large, such that Ngaa = (1 — €/)N is
one of the infinitely many block lengths that are guaranteed in Theorem 3.10, as explained in Figure
1. We also receive a stochastic code Encey @ {0,1} x {0,1}¢ — {0,1}", and we assume that all
requirements in Figure 1 are satisfied.

Let Enc : {0, 1}V x {0,1}+7eud 5 10,1} and Dec : {0,1}Y — {0,1}%" be the functions
specified in Figures 2, 3 using the ingredients and parameter choices in Figure 1.

42

6.1

Bounding the rate and running time of Enc, Dec

The rate of Enc. The rate R of Enc is given by:

R

_ Rpsc - Naata _ (1 - H(pesc) —€¢/3)-(1—¢)-N

~ N >(1—-Hp+a)—¢/3)-(1—¢/3).

We chose a = —<—, so that H(p +) < H(p) + €/10. This holds because the derivative H'(p) is

lOlog%7

decreasing in the interval (0, 1) and H'(p) < log(1/p). This means that H(p+«a) < H(p)+a-H'(p) <
H(p) + €/10. Consequently,

R>(1—-H(p)—€/3—¢/10)-(1—¢/3)>1—H(p) —e.

This proves the first item of Theorem 5.3

The running time of encoding. The encoding algorithm Enc of Figure 2 performs the following

tasks:

It applies the sampler of Theorem 2.7, to get n¢t;) < n samples. This takes time n-poly(log(N))
N - poly(log(N)).

It applies the encoding of of Encggc from Theorem 3.10. This takes time Tygata.

It applies the (2_10t,t)—wise independent permutation 7 from Theorem 2.9, Ngata < N times

for t = poly((log N)“). Each such application takes time poly(¢-log N) = poly((log N)*), and
overall, this takes time NV - poly((log N)).

It applies the PRG G, which in turn makes n calls to the PRG Gqp,p of Theorem 2.5. Each call
obtains a pseudorandom string of length at most N that is (2_103/)—pseudorandom for any-order
space s' ROBPs (and takes time N - poly(log N)). Overall, n calls take time N - (log N)e 01,
It applies Encegy on negl < n pairs (s,71), .-+, (8,7) € {0,1} x {0,1}9. Each application
takes time Tii; and the overall time is 1 - Tty

Overall, for a sufficiently large universal constant cg, the total running time of Enc is bounded by
N - (log N)?0® 4 n - Tey + Tyata- This proves the third item of Theorem 5.3.

The running time of decoding. The decoding algorithm Dec of Figure 3 performs additional steps
(compared to the encoding algorithm). The additional steps are:

It computes a list viable candidates. This list is of size at most n/7 which is a constant ¢ that
depends on €, €samp Which in turn depend on p, e.

For each of the ¢ candidates:

— It applies the sampler of Theorem 2.7 (with the same parameter used in the encoding) to
get ¢ samples where ¢t = ney; < n. This takes time n-poly(log(N)®) < N -poly(log(N)®).

— It applies the (271% ¢)-wise independent permutation 7 from Theorem 2.9 Ngan < N
times for t = poly((log N)®) (same parameters as in encoding). Each such application
takes time poly(¢-log N) = poly((log N)), and overall, this takes time N -poly((log N)).

— It applies the PRG Gyopp of Theorem 2.5 n times, to obtain a pseudorandom string
of length Nyaa < N that is (275)-pseudorandom for any-order space s’ ROBPs (same
parameters as in encoding). This takes time N - (log N)e 01,

— It applies Decggc from Theorem 3.10. This takes time Tyata.

— It computes repetition decoding using a < n blocks, which takes time at most n - Teip.

Overall, for a sufficiently large universal constant cg, the total running time of Enc is bounded by
O(N - (log N)® + n - Teyq + Tgata)- This proves the fourth item of Theorem 5.3.

43

<

6.2 Road map for arguing the correctness of decoding

The main part in proving Theorem 5.3 is showing that the decoding algorithm is correct. The
remainder of this section is devoted to this proof, and in this subsection we give a roadmap of this
proof.

The setup:
o Let m € {0,1}N be a message.
o Let C:{0,1}" — {0,1}" be a space s channel that induces at most p/N errors.

We will keep these choices of m, C fixed throughout this section.

We need to show that w.h.p. the message m is decoded correctly when applying encoding, channel
and decoding. We will refer to this experiment as the encoding/decoding experiment, and will denote
it by expr®d(m,C). This experiment is described in full detail in Figure 4. Below is a brief sketch:

In this experiment S € {0,1}* and R € ({0,1}%)" are chosen uniformly at random. Z =
Enc(m, S, R) is the codeword, E = C(Z) is the error pattern chosen by the channel, V = Z @ E is
the received word given to the decoding, and M = Dec(V) is the message returned by the decoding.
We use the convention that capital letters denote the random variables associated with small letters
used in the construction, and a complete specification of experiment expr®d(m, C) is given in Figure
4.

In order to complete the proof of Theorem 5.3 we need to show that the probability that the
decoded message M is equal to m is large. That is, that:

Pr [M=m]>1-w (2)
expred(m,C)

Recall that in the experiment, every candidate control string s € VIABLE C CANDIDATES is
used to produce a candidate message M (3). We first claim that w.h.p. the correct control string S
is in VIABLE and that when decoding using this candidate we obtain the correct message m. (The
earlier work of [KSS19] stopped here, and outputted the list of messages {M(5) : 5 € VIABLE}).
The next lemma is stating that this list indeed contains the original message m.

Lemma 6.1 (The correct message is list-decoded).

Pr [S € VIABLE and M(S) =m] >1-v/2.
expred(m,C)

Loosely speaking, this follows by the correctness of the list-decoding algorithm of [KSS19] which
guarantees that the correct candidate control string appears in the list VIABLE, and that when
decoding with this candidate, the original message m is obtained. We explain the technique of
previous work [GS16, SS16, KSS19] in the next section.

The main contribution of this paper is that we achieve unique decoding. That is, our decoding
algorithm is able to output a single candidate control string S*, and we will show that w.h.p. S* =S
(namely, that we identify the correct candidate). This is formally stated in the next lemma.

Lemma 6.2 (The correct candidate survives pruning).

Pr [S*"=5]>1-v/2.
expred(m,C)

Together, Lemmata 6.1 and 6.2 imply that with probability at least 1 — v, we have that S* = S
and M = M(S*) = M(S) = m. This means that (2) holds, and the correct message is decoded with
probability 1 — v, concluding the proof of Theorem 5.3.

It remains to prove Lemmas 6.1 and Lemma 6.2. The former is proven in Section 6.3 and the
latter is proven in Section 6.4.

44

6.3 The correct message is list-decoded

In this subsection we prove Lemma 6.1. Loosely speaking, this follows because as the first step in
our decoding, we use the list-decoding algorithm of [KSS19]. Specifically, we use the “milestones”
technique of [KSS19] to prove that two “milestone events” (called the “control milestone” and “data
milestone”) occur with high probability in our experiment.

6.3.1 The milestones lemmas of [KSS19]
We first state the control milestone.
Lemma 6.3 (Control milestone from [KSS19]).

v
< —.
— 100

1
Pro[—-) wt(E)>p+ 2esam]
expred(m,C) Nctrl 1€CONTROL

The control milestone states that the fraction of errors that were induced on the “control part”
(namely the indices in CONTROL) is very close to p. Lemma 6.3 would follow immediately from
the sampler guarantee if C is an additive channel (meaning that there exists a fixed e € {0, 1} such
that C(Z) = e). In that case, the error £ = e is independent of Sgump and so, when we sample a
subset CONTROL C [n] of size nct; using a sampler, we indeed obtain that:

1 Z wt(E;) ~ 1, Z wt(E;) < p.

n n
ctrl e CONTROL i€n

In our case, C' is not necessarily an additive channel, and so as Z depends on Sgamp (by construction),
it might be that £ = C(Z) depends on Sgamp, spoiling the argument above. Nevertheless, [KSS19]
(building on earlier ideas of [GS16]) show that the pseudorandomness of G and Enc.y,; can be used to
argue that the channel C' “cannot make £ = C(Z) depend on Sgamp”, so that the previous argument
applies. We explain this argument in Remark 6.5 below.

We now state the data milestone. Loosely speaking, another property that holds if the channels C
is additive and produces a fixed error pattern e is that when S; is chosen uniformly and Encpgc(m)
is permuted by a permutation 7r§ﬂ1 (as is the case in our encoding), then from the “point of view of
the decoding algorithm” the induced error pattern becomes distributed like ¢’ = 7y, (e) (which is the
scenario considered in Theorem 3.10).

Let A}, be the function from Theorem 3.10 when applied as in Figure 1 to give the code Encgsc.
Recall that this is a function that receives an error pattern e’ € {0, I}Nd&ta and for p < Aq, by
Lemma 3.11, if Af,(e’) = 1 then applying the decoding algorithm Decgsc on the “received word”
v' = Encpgc(m) @ €/, the message m is decoded, and that furthermore, during the concatenated
decoding, outdist(v’) is at most p.

In Theorem 3.10 it is stated that in such a scenario, both Prjoutdist(v’) < A;/10] and Pr[Ai‘nl/w (e) =
1] are very close to one. “The data milestone” below states that this holds also in the case that C
is not an additive channel. More precisely, the next lemma states that when applying the decod-
ing algorithm with the correct string S, and computing the received data word X(9), if we set
E' = Encgsc(m) @ X (S) to be the error pattern (relative to the encoding of the correct message m)

then Aﬁ%/ > (E") accepts with high probability. The precise statement follows:

Lemma 6.4 (Data milestone from [KSS19]). Let A\; > 0 be the constant guaranteed in Theorem
3.10, and let E' = Encggc(m) @ X (S). For a sufficiently small choice of the constant €gamp > 0 the
following holds:

45

o Proypredm,cloutdist(X (S)) < A1/5] > 1 — 5.
¢ Prexpred(m,c) [Ai\nl/B(E/) = 1] 1-—

Y

E

O

The proof of the milestones lemmas (Lemma 6.3 and Lemma 6.4) follows by the “milestones
argument” used in [KSS19] building on [GS16]. Unfortunately, we cannot formally derive it by
[KSS19] as we have made different parameter choices than the ones made in [KSS19] (but the proof
follows in precisely the same way). Below is a sketch of the argument, and the precise details are
deferred to the full version.

Remark 6.5 (High level intuition of the milestones argument). Loosely speaking, the milestones
argument works as follows: Consider an alternative experiment to the encoding/decoding experiment,
which we will call the “additive experiment”. In this experiment, when the channel C' produces the
error vector E, rather than running C on the codeword Z, we run it on a uniform and independent
string. This means that the error F generated in this experiment is independent of all other variables
in the experiment, and in particular of Ssamp, Sr. We claim that any property P(E) of the error
pattern such that:

o P(FE) holds with probability almost one in the additive experiment.
o P(FE) can be decided by a small space ROBP (that may depend on Ssamp, S and m).

We have that P(E) holds with probability almost one in the real encoding/decoding experiment.

In order to show this, one claims that if P does not hold with probability almost one in the real
encoding/decoding experiment, then P can be used to break the pseudorandomness of either G or
Encety. This follows using the fact that in the real encoding/decoding experiment, it can be argued
that for every fixing of m, Ssamp, Sx, Z is pseudorandom for small space ROBPs.

We have already observed earlier that the properties P(E) mentioned in Lemma 6.3 and Lemma
6.4 hold with probability almost one in the additive experiment, and it is not difficult to show that
a (randomized) small space ROBP can decide these properties (w.h.p.).

6.3.2 Milestones imply list-decoding

Following [KKSS19, GS16] the two milestone lemmas imply that the correct message is list-decoded.
We now explain this argument. We first claim that the probability that the correct control candidate
S is not viable is small.

and furhermore:

Corollary 6.6. Preygyred(m,)[S ¢ VALID] <

100
1{j € CONTROL: §;, = S} | <] < .
expred(m) 10
Proof. Lemma 6.3 says that:
pr [S wt(B) > p+ 2ecanp] < —
r : wt(E; €samp] < ——.
expred(m,C) Metrl ’ b samp 100

1€ CONTROL

By Markov’s inequality, if

Z Wt(Ez') <p+ 2€samp>

n
ctrl cCONTROL

then the fraction of ¢ € [nc] such that wt(E;) > p + 3€gamp is at most m <1-— m for a

sufficiently small choice of €samp > 0. This means that for at least 7 = W of i € CONTROL

46

we have that wt(E;) < p + 3€samp. We have already chosen egamp to be sufficiently small so that
P+ 3€samp < P+ € = pet1. For every i € [CONTROL], if wt(E;) < p + 3€samp < Petrl then by the
properties of decoding (or repetition decoding) of Encet,) we have that:

Decein(V;) = Decen (Enc(S,Uy) @ E;) = S,
because Decyi(+) = rDeceri(1,) decodes from peyy relative errors. It follows that:

Pr)H{jECONTROL:SQ:ZS}’<T]S

expred(m,C

i
10’
which proves the corollary. O

We now claim that when applying DecodeUsingCandidate on the correct control string S, we
decode to M (S) = m with high probability.

Corollary 6.7. Proyped(oy [M(S) =m] > 1 —v/10.

Proof. By the data milestone we have that for £’ = Encgsc(m) @ X(S), it holds that:

Pr [AMS(E)=1]>1- —.
expred(rm,C)[m ()]_ 10

By Theorem 3.10, whenever A;\nl/‘r’(e’) = 1 we have that Decggc(m @ €’) = m. By definition X (S) =
Encgsc(m) @ E' and the corollary follows. O

Together, Corollaries 6.6 and 6.7 imply Lemma 6.1.

6.4 Strategy for proving that the correct message survives the pruning

In this section we state a strategy for proving Lemma 6.2. This is the main technical contribution
of this paper, and it relies on the new machinery we have developped in Sections 3 and Section 4 as
well as several additional ideas. We will state several lemmas from which we can derive Lemma 6.2.
These lemmas will be proven in later sections.

Lemma 6.2 follows immediately from the next lemma by the repetition decoding properties of
Encctrl‘

Lemma 6.8 (Active part is close to the correct control string). With probability at least 1 — /2 in
the experiment expr®d(m, C') we have that:

1 N _
Z : Z 5E Ccm(57 ‘/z) < Dctrl-
i€ACTIVE

In order to prove Lemma 6.8 we will split active candidates s according to whether they came
from the data blocks or from the control blocks (it is also possible that they came from both). We
will argue that w.h.p. we have that:

e At least 7 of the control blocks are active.

o Furthermore, on these active blocks the relative error induced by the channel is roughly p
(which is smaller than pc,).

47

If we could show that no data block is active, then Lemma 6.8 would follow (because on i €
CONTROL, V; = Z; @ E; = Encen(S,Uy) @ E;, meaning that the average distance in Lemma
6.8 is bounded by roughly p). We cannot rule out the possibility that few data blocks are active, but
we will be able to show that:

¢ The number of data blocks that are active is small.

Together, the three properties will suffice to prove Lemma 6.8. These three properties are stated
formally in the next definition and lemma.

Definition 6.9. We will use the following notation:

e Let ACC = CONTROL N ACTIVE.
« Let ACD = ([n] \ CONTROL) N ACTIVE.

Lemma 6.10. With probability at least 1 — v//2 in the experiment expr®d(m, C) we have that:

€g N, € €n
° ’ACC‘ 2 T = samp2 ctrl __ Samg)

* \AéC| ' ZiGACC wt(E;) <p+ 2€samp-
. |JACD| < n

logn*

We first prove that Lemma 6.8 follows from Lemma 6.10.
Proof. (of Lemma 6.8) For every i € CONTROL, we have that
Vi = Z; & E; = Enceen(S, Ug).

It follows by Lemma 6.10 that:

1 e _ 1
Aca 2 ST S g 2 wE) < b 2esam,
i€ACC 1i€ACC

By definition ACTIVE = ACC U ACD and A = |ACTIVE|. It follows that:

1 Enceyr 7\ __ 1 Enceyr ¥/ 1 Enceir W
RGN CAOE B D R CAU RS S DR CA O
i€ACTIVE 1i€ACC 1€ACD\ACC
ACC 1

S ’14| : (er 2€samp) + Z . |ACD|

< p+ 26samp + 0(1)

<p+ 3€sampa

and we have chosen p + 3€samp < Petrl-]

The next lemma states that it is unlikely that many data blocks can agree on a successful
candidate 5. This means in particular that a candidate s cannot become valid if it only has support
from data blocks. More specifically, if a candidate does not “receive votes” from control blocks, then
either it does not receive enough votes from data blocks to make it viable, or, if it does, then it will
be unsuccessful, and will not be declared valid. For this purpose we introduce another threshold
parameter, 7/ that was already mentioned in Figure 1, and set to be:

7' = (log N)*+1,

48

Lemma 6.11 (Behavior on data blocks).

Pr it <. < jrr € [1]\CONTROL s.t. Sj, =...= 8, and outdist(X (5;,)) < A1/4] < T”O
expre(m,
We now prove that Lemma 6.10 follows from Lemma 6.11.
Proof. (of Lemma 6.10) By Lemma 6.3 we have that:
Pr [1 > t(E;) < p+ 2esamp] > 1 — —
: w 1) = €samp| = 1 — -
expred(m,C) Metrl - o SXTROL ’ 100
By Corollary 6.6 we have that:
Pr [|{j € [new] : Sp; = S}| = 7] 21— v/10.
expred(m,C)
By Lemma 6.4 we have that:
Pr Joutdist(X(S)) < A1/5] > 1 —v/100.
expred(m,C)
By Lemma 6.11 we have that:
];’(r C)[‘v’jl <...<jp € [n]\CONTROL if Sj, =...=5; ,, then outdist(X(Sj,)) > A1/4] > 1—1—VO.
expre(m,

Assume that these four events occur (this happens with probability at least 1 — 1/2). The second
event says that S is viable. The third event implies that S is successful. It follows that S is valid.
This means that every block i for which S; = S is active. In particular, there are at least 7 such
blocks in CONTROL and the first item follows.

For the second item, we note that for every i € CONTROL, if wt(F;) < pety then

Si = Decewt (Vi) = Decent (Zi ® Ei) = Decert (Encen (S, Ug) © Ei) = S.

Therefore, for every i € CONTROL, if wt(F;) < pey) then i is active, and ¢ € ACC. This means
that on every i € CONTROL \ ACC we have that wt(FE;) > pe1. It follows that:

doowt(E) = > wi(E) - > wt(E;)
1€ACC 1€CONTROL 1€CONTROL\ACC
< Netrl - (P + 2€samp) — (Netrl — [ACC) - Detrl
< Netrl - (P + 2€samp) — (Nt — |JACCY) - (p + 2€samp)
< |ACC| - (p + 2€samp)-

Where the second to last item uses that p 4+ 2€samp < Petr1. This gives the second item.

We now prove the third item. For a candidate § € CANDIDATES to become valid, it must
first be viable and have the support of at least 7 blocks (meaning that there are at least 7 blocks
i such that S; = 5). Secondly 5 needs to be successful. The number of candidates that collected
support from at least 7/2 blocks in CONTROL is bounded by % = @ By the fourth event,
any candidate that collected support from more than 7/2 > 7' candidates from [n] \ CONTROL is
not successful, and therefore not valid. It follows that the number of blocks i € [n] \ CONTROL for
which S; is valid is bounded by @ -7/, This is because every such block has to be successful, and

49

so, in order to be viable, must be equal to one of the @ candidates that received at least 7/2 votes
from blocks in CONTROL (as otherwise, the candidate cannot collect 7 votes and become viable).
For each choice of the @ candidates that received at least 7/2 votes from blocks in CONTROL,
there are at most 7’ blocks in [n] \ CONTROL which have the same candidate. Overall, we get
that |ACD]| (that is the number of active blocks in [n] \ CONTROL) is at most @ -7 < Toen &S
required.

This means that in order to prove Lemma 6.2, we now need to prove Lemma 6.11. The remainder
of this section is devoted to proving Lemma 6.11. This is done in Section 6.5.

6.5 Behavior on data blocks: Proof of Lemma 6.11

We will prove Lemma 6.11 by using the pseudorandomness properties of our ingredients to connect
the statement of Lemma 6.11 (which is in the encoding/decoding experiment, to a similar statement
that occurs in an experiment where the codeword Z is chosen uniformly. We will then argue that
the lemma holds in the latter experiment. In order to relate the two experiments, we will introduce
several hybrid experiments.

6.5.1 The adversarial experiment

In order to prove Lemma 6.11 we will show that for every choice of sgamp, Sx € {0, 1}4/ the lemma
holds conditioned on the event {Ssamp = Ssamp, Ox = Sz }. It will be convenient to describe the ex-
periment that comes up in the lemma as a separate experiment (with the additional conditioning on
specific values of sgamp, sx). We call “the adversarial encoding/decoding experiment” and denote it
by exprifmpy&r (m, C). This experiment is stated precisely, in Figure 5.

In this experiment, we imagine that there is an “adversary” which tries to choose a channel C' and
an implementation of the ingredients of our decoding algorithm so that the “bad event” in Lemma
6.11 occurs with probability that is not small. More specifically, in the adversarial experiment we
are only interested in a subset DCANDIDATES C CANDIDATES of candidates that came from
data blocks, and the adversary wins if there exists such a candidate § € DCANDIDATES that
was obtained on 7' data blocks, and is successful (meaning that: outdist(X(5)) < A;/4). Other
candidates in DCANDIDATES are said to be “rejected”.

The adversarial experiment is defined so that it immediately holds that:

Lemma 6.12. If for every sgamp, s= € {0, 1}”, Pr
6.11 holds.

d (m,c)[Adversary wins] < v/10 then Lemma

a
exprssamp sST

Therefore, in order to prove Lemma 6.11 it is sufficient to prove the following Lemma.

Lemma 6.13. If for every ssamp, sx € {0, l}el,

Pr [Adversary wins] < v/50.

exprad (m,C)

Ssamp,Sm

The remainder of this section is devoted to proving Lemma 6.13.

6.5.2 Road map for proving Lemma 6.13.

We want to prove that the probability that the adversary wins the adversarial experiment is small.
Our plan is the following:

50

e We will use the pseudorandomness of Enc.,; and G to argue that if the adversary wins the
adversarial experiment, then it wins in a version of the experiment where pseudorandom strings
are replaced with random strings.

o We will use the evasiveness of the code Encpgc to argue that the adversary cannot win the
experiment where pseudorandom strings are replaced by random strings. (Recall that evasive-
ness says that a small space channel cannot make the decoding algorithm Decggc decode when
the channel corrupts a random word).

If the adversary in the adversarial experiment could be implemented by a small space ROBP, then
the first step in our plan would follow directly from the pseudorandomness of Encc, and G.

A significant difficulty in implementing the first step in this plan is that the adversary (that tries
to win this experiment) is not a small space ROBP. More precisely, this adversary is a procedure
that receives the codeword Z, corrupts it by a space s channel C, and then performs additional
computation on the received word V = Z @ C(Z). In this additional computation (that is described
in detail in Figure 5):

o The adversary applies Dect, (to compute the set DCANDIDATES of data candidates).

e On every 5 € DCANDIDATES, the adversary applies the sampler Samp(Ssamp), permutation
s, and PRG G(ng(;).

 The adversary also needs to compute outdist(X (5)) on every candidate 3.

None of these steps are computable by small space ROBPs. Moreover, a generator G which needs
to fool polynomial time adversaries that are able to apply G, inherently implies cryptographic as-
sumptions such as one way functions, and therefore, we have no hope of arguing that the adversary
cannot distinguish unless we assume the existence of one-way functions. (We remark that under the
assumption that one-way functions exist, this argument can be performed).

Our goal is to argue that pseudorandomness against ROBPs (which we have unconditionally)
suffices. We will need additional ideas in order to implement the first step and connect the probability
that the adversary wins the adversarial experiment to the probability that it wins in a version of the
experiment in which pseudorandom strings are replaced with random strings. Here is an outline of
our plan (with pointers to relevant sections):

o We first consider a hybrid experiment (called the simulated adversarial experiment) in which
the (pseudorandom) control blocks are replaced with random strings. By carefully analyzing
the behavior of our decoding algorithm, and using the pseudorandomenss of Encct,;, we can
argue that if the adversary wins the adversarial experiment, then it also wins the simulated
adversarial experiment. (Here, a difficulty is that it is only the channel C' that is being fooled
by the pseudorandomness of Encc,), while later steps in the computation of the adversary are

B>

not fooled). This part of the argument is done in Section 6.5.3

o We then consider another hybrid experiment in which we replace (pseudorandom) data blocks
with random strings. We would like to argue that if the adversary wins the simulated adversarial
experiment, then it also wins this experiment. Again, a difficulty is that we cannot use the
pseudorandomness of G directly, as the adversary (which is not simulated by a small space
ROBP) is not fooled by G.

e We have chosen the generator G so that different data blocks are truly independent and not
just indistinguishable from independent by small space ROBPs. We will argue that (once Sy
and the states ST = (STy,,...,STy,) of the channel C' at the end of data blocks are fixed)

the error Ey,, ..., By, that the channel induces on data blocks are independent (as each

o1

such error Ey,; is determined by the state of C' at the beginning of the j’th data block, and
the content of the j’th data block). This intuitively means that the adversary cannot make
the candidates S’wj of 7/ different data blocks agree on the same value, unless this value can
be “guessed in advance”. This means that if the adversary wins the simulated adversarial
experiment, then (except for small probability) it wins with a string § that can be guessed in
advance. We call such strings “heavy” and it can be shown that their number is not too large.
This is done in Section 6.5.4.

For every fixed heavy string s, we can consider a weaker version of the adversary which is
hardwired with Samp(Ssamp), 75, and G(Spra), and only tries to win using 5. This “fixed
candidate adversary” does not need to compute Decg,1, Samp, m or G. However, it still needs
to compute outdist(X (5)).

We use the local correcting and testing properties of the outer code in the construction of

Encpsc to show that on a fixed string 8, a small space ROBP can approximate outdist(X (3)).
More precisely, by Lemma 3.12 a small space ROBP can approximate the outer distance.

This means that the “fixed candidate adversary” can be computed (at least approximately)
by a small space ROBP, and so we can use the pseudorandomness of G to argue that the
fixed candidate adversary cannot distinguish between the simulated adversarial experiment
and the uniform adversarial experiment. This implies that if the adversary wins the simulated
adversarial experiment, then one of a small number of fixed candidate adversaries wins the
adversarial uniform experiment. This part of the argument is done in Section 6.5.5.

Finally, we argue that by the evasiveness properties of Encgge for every fixed candidate ad-
versary, the probability that it wins the adversarial uniform experiment is small. By doing a
union bound over the small number of fixed candidate adversaries for heavy candidates, we
conclude that the probability that the initial adversary wins the initial adversarial experiment
is small, which is what we wanted to prove. This part of the argument is done in Section 6.5.6.

6.5.3 The simulated adversarial experiment

We will introduce several hybrid experiments in order to implement the plan sketched in Section
6.5.2. The first such experiment will be called the “simulated adversarial experiment” and denoted

by exprg (m,C). In this experiment we make two modifications (relative to the adversarial
experiment):
1. In the encoding phase, when preparing Z, rather than preparing Zg&rftml in the way specified

in the encoding algorithm, we will instead pick thorrllmﬂ € {0,1}New uniformly at random,
independently of all other variables.

. In the outcome of the experiment, rather than allowing the adversary to win if outdist(X (5)) <

A1/4, we will be more lenient and replace A1/4 by A;/2.

The next lemma states that in order to bound the probability that the adversary wins the
adversarial experiment (and prove Lemma 6.13), it is sufficient to bound the probability that the
adversary wins the simulated adversarial experiment.

Lemma 6.14. For every Sgqmp, S= € {0, l}el,

v
P Adversa ins] < P Adversa ins| + —.
cxprad r (m,C)[versary wins] < — r (m,C)[versary wins| + 100

Ssamp,Sm Ssamp,Sm

52

Proof. Consider a version of these two experiments in which we also fix Sprg to some constant sprg.
As Sprg is identically distributed in both experiments, it is sufficient to show the lemma for every
such fixing. Let us fix m, C, Ssamp, Sx, sSpra and to avoid clutter, we will denote by expr®d and expr®
the two experiments with all the fixings (including Sprg = SpPrG)-

We consider hybrid experiments between the adversarial experiment and the simulated experi-
ment. More specifically, for fixed m, C, ssamp, Sx, SPrRG (Which we will omit from the notation to avoid
clutter) for 0 < k < ncyy, let expr(k) denote the experiment which is like expr®d with the following
modifications:

1. In the encoding phase, when preparing Z, rather than preparing Z(‘fgr‘ftml in the way specified
in the decoding algorithm, we will do the following:

o For j <k, we set Z;; = Encctri((Ssamps 57, SPrRG), Rj) (as in experiment expr®d),
o For j >k, we set Z;, to be a uniform b bit string (as in experiment expr®).

kA1
Ancyrr

2. When deciding whether the adversary wins, we replace A;/4 by A\1/2 —
With these choices, it follows that:

e expr® = expr*®, and

o expr(en) = exprad,
Thus, by a hybrid argument, it is sufficient to show that for every 0 < k < ncg,1,

Pr [Adversary wins] < Pr [Adversary wins] + 2%
expr(k‘H) expr(k)

Let us use the superscript (k) for random variables from experiment expr(®). As is standard in
hybrid arguments we can imagine that all these experiments happen in the same probability space,
where initially, the only difference between the k’th experiment, and the (k + 1)’th experiment is in
the way the block Z;, | is selected. This view allows us to write events that mixes random variables
from different experiment.

The key observation is that w.h.p. the sequence of states that the ROBP C sees at the end of

blocks, is essentially identical in the two experiments. Specifically, we claim that:

Claim 6.15. The statistical distance between (STS’C), e ,STng)) and (STng), cee STngH)) is at most
27,

Proof. (of claim) Let i* = ixy1. The two distributions are identical on ST1, ..., ST;=_1, by definition.
On the block 7*, Zz(f + _ Enceui((Ssamp, S«, SPRG)s Rgf)) while Z Z(f) is uniform and independent.

It follows from the pseudorandomness property of Ence,; that the two distributions are 2~% -close
in statistical distance. This is because if the distributions of output states on the two distributions
were 2~ far, then C would give rise to a space s < s’ ROBP distinguishing Encetri ((Ssamp, 7> SPRG), Ud)
from uniform (contradicting the pseudorandomness of Encty).

The two experiments expr®) and expr(*+1) produce the same distribution of states STi41,...,9T,

if ST® = ST* and the claim follows. 0

We also have that:
Claim 6.16. If (ST, ..., STP) = (ST .. STEY) then:

o For every i # i1, EZ.(]’“) — Ei(’”l)’ and Vi(k) _ ‘7i(k+1)_

53

« DCANDIDATES®) = DCANDIDATES*+1),
o The Hamming distance of V*) and V*+Y is at most b.

« For every 5§ € DCANDIDATES®) | the Hamming distance of V;:t)a(§) and V(f:tzl)(5) is at most
b.

Proof. (of claim) Note that for all i # ix41, ZZ-(k) = ka+1). As C'is an ROBP, we have that the error
E; that it induces on the i’th block, is a function of it’s state at the beginning of the block (namely,
ST;_1) and of the block content (namely, Z;). We also have that V; = Z; @ E;. This gives the first
item.

In both experiments DCANDIDATES is a function only of chsf;ml and does not depend on Vj
This gives the second item.

The third item follows because except for the block iz, ; which is of length b, V is identical in
the two experiments.

The fourth item follows from the second and third item. O

k41"

We are finally ready to tackle the main claim, namely that:

Claim 6.17.

Pr [Adversary wins] < Pr [Adversary wins| + 277 .
expr(k+1) expr(¥)

Proof. By the two previous claims, except with probability 27", all the four consequences of the
previous claim hold. We will show that when this happens, if the adversary wins the (k + 1)’th
experiment then the adversary wins the k’th experiment, proving the claim.

If the (k+1)’th experiment is successful, then let 5 € DCANDIDATES**Y be the control string
that was used by the adversary to win the (k + 1)’th experiment. We will show that s (which also
belongs to DCANDIDATES®) = DCANDIDATES(k+1)) is not rejected in the k’th is experiment.

We have that the Hamming distance between V. ata and Vd(f;l)(’) is at most b. It follows that
the Hamming distance between X *)(5) and X (Hﬂ is at most b. We would like to express this
distance as a relative distance. We have that:

S(XW(s), X)) < L = L <

Nyata Ndata

1 2
n

Let nin be the (constant) block length from Theorem 3.10. We are allowed to choose the constant
€ > 0 as a function of A\; and ny,.
this choice we can continue and have that:

SX(5), X)) < o =

= / . -))
4€' - n - niy 4Ancirl - Nin

(where the last inequality follows because we can choose € > 0 to be sufficiently small as a function
of A1, Nin,). We know that in the (k + 1)’th experiment 5§ was used to win the
experiment. This means that

1
outdist(X (k’+1)(5)) < A M

= < At
2 4nctrl

We will use Lemma 2.16 to bound outdist(X (*) (5)) in terms of outdist(X *+1)(5)) and §(X *) (5), X k+1)(5)).
In order to apply the lemma we need to check that:

A1 — outdist(X #+1)(5))

Nin

3(XW(5), X+ (5)) <

54

We have set up the parameters so that this indeed holds, and we can conclude that:

ok A1 (B+ 1)\ A1 A1 kA1
(k) < —= — * Nin < —
outdist(X'¥(3)) 5 T + yE— n 5

4nctrl .
This means that the adversary wins the k’th experiment using s, and the claim and lemma follow. [

Overall, we obtain that:

Pr [Adversary wins] < Pr [Adversary wins] 4 neg - 27,
(m,C) exprid (m,C

ad
expr Ssamp,ST

Ssamp ST

and by our choice of parameters ng, - 25 < 160+ O
By Lemma 6.14 we are left with the task of bounding the probability that the adversary wins
the simulated uniform experiment.

6.5.4 Bounding the probability that the adversary wins with a light candidate

We are working in the simulated adversarial experiment exprey o (m,C) for some fixed Ssamp, Sr-

We now define a set H of candidate strings § which we call “heavy”. Recall that ST = (STy,...,ST,)
are the sequence of states of C' when reading Z, and note that ST is of length sn. For every
q € ({0,1}*)™ we consider the experiment expr? which will be defined as

exprl (m,C) = (expry (m,C)|ST = q).

Ssamp,St Ssamp,Sm

To avoid clutter, we will refer to this experiment as expr? within this section. We will use a superscript
of ¢ to denote the random variables of the experiment expr?. Random variables without superscripts
are in the experiment expri, . . (m,C).

We define the following sets:

- 1
Hy; = {E:Pr[Sg =35> 2}.

n
Hy = | Hy.
i[n]
H= |J H,
qe{0,1}sm

It immediately follows that:

Lemma 6.18. For every ¢ € ({0,1}*)" such that Pr[ST = ¢] > 0, |H,| < n?, and consequently
|H| <257 . n3.

Proof. By definition for every ¢ € ({0,1}*)" such that Pr[ST = ¢] > 0, and every i € [n], |Hy;| < n?,
and H, is the union of n such sets. O

We claim that in the experiment expr?, candidates are independent.

Lemma 6.19. For every ¢ € ({0,1}*)" such that Pr[ST = ¢] > 0, S, ..., S% are independent.

95

Proof. The definition of G’ was tailored so that (Zgata)1s - - -, (Zdata)naa.. are truly independent (and
not just indistinguishable from independent). As Z. is uniform and independent of Zg,1, we have
that Z1,...,Z, are independent. The variables Z{,..., Z are also independent, as the condition
{ST = ¢} can be seen as the conjunction of n separate conditions of the form {ST; = ¢;}. It also
follows that Ef,..., E} are independent. This is because having fixed the states in ST to ¢, the
error that the channel induces on a block is a function of the state at the beginning of the block
(which is fixed) and the contents of the block. This gives that each E is a function only of Z!.
As V1 = Z1 & EI, this gives that V/?,..., V;{ are independent. As S{ = Decctn(V;?), this gives that
S?, ..., 8% are independent. O

The next lemma shows that the contribution of § ¢ H to the win probability of the adversary.
This will allow us to focus on candidates in H.

Lemma 6.20. For every sgump, 5 € 0,1},

Pr [Adversary wins] < Pr [35 € H : The adversary wins with 5] + v/100.

exprid, o or (M,C) expri2, o sn (m,C)
Proof. We first claim that for every ¢ € ({0,1}*)" such that Pr[ST = ¢| > 0:

Pr [Adversary wins| < Pr [35 € H : The adversary wins with 5] + v/100.

exprd exprd
The lemma follows from this claim by noting that in the right hand side of the claim, ¢ can be
replaced by ST (as ST = ¢ in expr?), using the law of total probability.

We now prove the claim. Fix some ¢ € ({0,1}*)" such that Pr[ST = ¢| > 0. By Lemma 6.19
we have that S, ..., S} are independent. In order for the adversary to win expr?, there has to be a
value § € DCANDIDATESY, and a subset B of 7/ distinct indices in [n] \ control, such that for every
j € B, S’;-] = 5. We now show that the latter event has low probability if 5 ¢ H,.

For every i € [n] \ control, and 5 ¢ H,, we have that Pr[S{ = 5 < 1/n% For every fixed
subset B = {i},...,4,}, the probability that 5’?,1 =...= 5’?,/ = § for some 5 ¢ Hy, is smaller than

-

(n—12)7/*1 because conditioned on 5’;’, ¢ H,, each of the remaining 7/ — 1 independent candidates have
L = !
probability less than 1/n? to be equal Sg,. Taking a union bound over all (”) < n" subsets B of
1

7./

size 7/, the probability that 5’;1 =...= Sf, = 5 for some 5 € Hy, is smaller than:
1

7_/

T'—1 !
n 1 < n < 1 B 1 < v
o)) S S 5 = g = op

where the last inequality follows because 7/ > (log N)*1. The claim now follows, because if the
adversary wins expr?, then except for probability v/100, the adversary wins using an element s €
H. O

6.5.5 The fixed candidate adversary

We will now consider a version of the adversary that tries to win with some fixed candidate 5 € {0, 1}*.
This adversary doesn’t bother to check for viability or validity of s. It only checks whether 5 is
successful. This candidates is called “the fixed candidate adversary”.

The precise definition of the fixed candidate adversary Advgfmpsﬂ(Zdata) is given in Figure 6.
The definition of the fixed candidate adversary was tailored so that by a union bound over all s € H,

we have that:

56

Lemma 6.21. For every ssamp, 5z € {0,1}Y. Let 2 = Encgsc(m) and y = 7,1 (z) (as is done in the

simulated adversarial experiment expry® = . (m,C)).
Pr [35 € H : The adversary wins with 5] < Z Pr [Advsc;’fm s, (Y®G(Spra)) wins|.
expri‘zslamp,S‘rr (mvc) ScH SPRG(—UZ’ P’

More precisely, this follows because the fixed state adversary is more relaxed than the adversary
defined in the earlier experiment, and so whenever the latter wins, the former also wins.

Continuing with our plan, we now aim to bound the probability that the fixed candidate adversary
Adv wins when it receives input y @& G(Sprg). If we could argue that Adv can be implemented by
a space s’ ROBP, then (as we have that G is pseudorandom for space s ROBP) we could bound
this probability by the probability that Adv wins when it receives input Uy,,,,. While we won’t be
able to argue that Adv can be implemented by a small space ROBP, we can prove that Adv can be
approximated by a small space ROBP, which will allow us to use the argument above (accounting
for the approximation error). We first introduce the notion of approximation that we will use.
C,s

- Ssamp,Sm
(z), when computing outdist(X (5)) this outer distance is at

Definition 6.22 (Adversary achieves small outer distance). We say that Adv achieves distance

C,5

Ssamp,Sm

A on input z if when running Adv
most A.

With this definition, saying that Adv wins on z is equivalent to saying that Adv achieves distance
A1/2. We will prove that:

Lemma 6.23 (Fixed candidate adversary is approximated by ROBP). There exists a function p =

27~ such that for every 0 < 7 < 1, every Ssamp, sz € {0,1}, and every 5 € {0, 1}, there exist a
distribution Advé,i’:m7s7r’77 over space s’ ROBPs such that for every input w € {0,1}"dat, and every
1

o Pr[Adv®® _ (w) achieves distance - \;] < P

Ssamp,ST

v e . [D(w) = 1] + p.
ssamp,ST,N+ 100

O35 . .
. PrD%mscsfmp,sﬂ,n[D(w) = 1] < Pr[Adv,’ , (w) achieves distance (n + 55) A1) + p.
Proof. Lemma 6.23 follows directly from Lemma 3.12, by considering a distribution Advifmm sp,m OVET

ROBPs of space s’ which does the following: On input w, simulate AstCsfmp,sﬂ(w) while replacing
the step of computing outdist(X (5)) with the approximation guaranteed in Lemma 3.12 (that can
be performed by a space s’ ROBP) and outputting one if the obtained approximation is smaller than
n-)\1. OJ

We can now implement our plan, and bound the probability that Adv achieves small distance on
y @ G(Spra) by the probability that Adv achieves small distance on y @ Un,,,,. Specifically:

Lemma 6.24. For every Ssamp, S» € {0, 1} and every 5 € {0,1}¢,

Pr [AdvSS | (y®G(Sprg)) wins] < Pr [Adv(® (y®W) achieves distance 3 - Aj]+2~ ol

Ssamp,Sw Ssamp,S7

Spra Uy WUnNgapa

Proof. Within this proof, to avoid clutter, we omit the mention of C,Ssamp,s- and 5 which are
fixed throughout. By using Lemma 6.23 and the fact that G is 2725 -pseudorandom against space s’

57

ROBPs we have that:

Pr [Adv(y & G(Sprg)) wins] < Pr [Adv(y ® G(Spra)) achieves A1 /2]
SpRgFU[/ SpngU[/
< _ Pr [Dy®G(Serg)) =1 +p
SPEHUZ/
D%Adv%ﬁ_ 1

100

IN

P D W) =1 928’
webk PyeW)=1+p+
D<—Adv1+ 1

2T 100

< Pr [Adv(y ® W) achieves distance 2 - \{] + 2p + 27>

W—Ung.in

[N

/

< Pr [Adv(y ® W) achieves distance 2 - \] +2 oD

W—Ung.in

[N

O

Note that as W is uniform, the distribution y & W is uniform and identical to W, and therefore,
the input of Adv in the right hand side could be replaced by W. We are therefore left with the task
of bounding:

P Adv&s W) achieves distance 2 - \q].
B TAEL L (W) achieves distance § A

In this experiment, the channel is applied on a uniform input, and we need to bound the prob-
ability that the channel can achieve small outer distance. This is very similar to the evasiveness
experiment of Theorem 3.3. We will use Theorem 3.3 to argue that the evasiveness property Encpgc
gives a bound on this probability.

6.5.6 Using evasiveness to bound the success probability of the fixed candidate adversary

In this section we conclude the proof of Lemma 6.13 and Lemma 6.11 by bounding the probability
that the fixed state adversary achieves small distance. More specifically, we will prove that:

Lemma 6.25. For every Ssamp, = € {0, 1}5/, and every 5 € {0,1}¢,

Pr [Advc’g (W) achieves distance % “A1] < 9—QUN),

Ssamp,S7
VV(—UNdaLtaL ps

Proof. Within this proof, we will refer to Advs(’;fmp’sﬁ as Adv to avoid clutter. The adversary Adv
receievs an input W < Uy, and uses it to prepare Z. We will be considering two partitions of Z
into control and data. The first one is according to control and the second is according to control. In

order to avoid confusion let us use Z.,) = Zg&‘lltml, Zdata = Zg‘;?;ml = W (as is done in the description

of the adversary). We use Doyl = ngrrftml and Zgata = Zgﬁr‘}tml. This notation is consistent in the
sense that all “barred” variables use the partition control.

We will prove the lemma for every fixing of Z,1, and note that as Z.;1 and Zgaa are independent,
fixing Zety doesn’t affect Zgara. For every such fixing, we can think of C as space s ROBP C’ that
receives a uniformly chosen Zgai, (using the hardwired fixed choice of Z.1. The ROBP C’ induces

at most

PNa
pN = 1 _aet/a <p- (1 + 26/) * Naata < (p+€/) - Ndata

errors, meaning that it induces at most p+¢ < pggc relative errors (where the last inequality follows
by choosing € > 0 to be sufficiently small). Consequently, we can think about this experiment as

58

if Zgata is chosen uniformly, a channel ¢’ € Spc,,, is applied so that Viata(8) = Zaata © C'(Zgata)-

Then, Vgaia(3) is xored with a fixed string G(5) to obtain Y (5), and then a fixed permutation o = 75 _
is applied on Y (5) to give X (5).

This experiment is identical to the experiment in Theorem 3.3 except for xoring with a fixed string
G(5). We now explain that we can imagine that our experiment does not xor with the fixed string
G(5). More precisely, let us imagine a distribution W' = W @ G(Sprc) (which is also distributed
like Un,,,,) and a channel C”(w) = C'(w & G(5)) (which is also a space s channel). It follows that:

o The noise generated on W' is C"(W') = C"(W).
« The word that is obtained applying C” on W'is V(5) = W aC"(W') = WaC'(W)®G(5pra).-
o This means that when xoring with G(Sprg) we obtain

Y(5) = V(5) ® G(5prc)
=W e C"(W') ® G(5pra)
=W & C'(W) ® G(5pra) ® G(5pra)
=W o C'(W).

o This means that X (5) = o(W @ C'(W)) for a uniformly chosen W, and so, this is exactly the
experiment considered in Theorem 3.3.

The outer code of Encpgc corrects from A; relative errors (where A; is a constant that depends
on €). (This parameter is called A in Theorem 3.3). This means that if we meet the conditions
of Theorem 3.3, then the probability that outdist(X)(5)) < 0.99); in our experiment is at most
2 e(nout) — 9~2e(Naata) (where the last inequality is because in Encpgc the inner code has constant
block length nj,). We now verify that we meet all the conditions of Theorem 3.3.

e The code Encggc was obtained from Theorem 3.10 choosing pgsc = p + a.

e The constant A; is a constant that goes to zero when € goes to zero, and so we are allowed to
assume that it is sufficiently small as a function of e.

e The inner code in Encggc is using maximum likelihood decoding from pgsc + €” relative errors,
where €” is a constant that goes to zero with €, and so we are allowed to assume that it is
sufficiently small as a function of €. Overall, the decoding reach of the code Encggc is at most
p+a+e.

o We have chosen s so that s = 0o(N) = 0(neut) and so we meet the condition on s.

e Following this discussion, we indeed have that for sufficiently small € > 0, we can choose the
parameters so that:

1
Mtptatd)+pte)<g—m,

for some constant v; > 0 (that depends on €) and we indeed meet the conditions of Theorem
3.3.

We conclude that

Pr [Adv$® (W) achieves distance 3.0 < 9~ (N),
W%UNdata samp;ST

We are suppressing constants that depend on e and so for constant € > 0 this is 2720V, O

59

6.5.7 Putting things together: Proof of Lemmas 6.13 and 6.11

We finally have all the tools to Prove Lemma 6.13 which by Lemma 6.12 implies Lemma 6.11.

Proof. (of Lemma 6.13) For every ssamp, 8 € {0,1}*, we bound a := Pr oy prad (m,c)[Adversary wins]
Ssamp,ST ’

by applying Lemmas 6.14, 6.20, 6.21, 6.18, 6.24, 6.25 in sequence to get that for z = Encggc(m) and
—1
Yy =", (‘T)

a= Pr [Adversary wins|
exprid = op (m,C)
v
< Pr Adversary wins] + —
B exXprid o sn (m,C)[Y] 100
v
< Pr ds € H : The adversary wins with 5| +2 - —
T exprs? (m,C)[v W v] 100

Ssamp,Sm

< Z Pr [AdvS® . (y® G(Sprg)) wins| + 2 - v

icq Spra U Soamp, S 100
~ v
< 95m n3 . SPRIGD}-_U [AAstCS”aSmp’s7T (y &) G(SPRG)) Wil’lS] +2- ﬁ
él
< 9sn 3. P Adv%? w hi dist 3. 2” ey Q.L
< n <W<_U£data[Voomunsr (Y & W) achieves distance § - M] +2 ~ 2700
—9sn 3 P AdvEs %74 hi dist 3. 2° oD QL
n (WeUzdata[Vormn.s. (W) achieves distance 3 - A] +2 ~ + 100

< 9sn 3. 2—Q(N) Q_ﬁ QL
s a7 < N 2 100
< 2(25”_ N2(1)> 9. Y
= 2 100

v
< 1)
— 10

where the last inequality follows by our choice that %/ > N¢. O

7 Conclusion and Open Problems

Our construction give codes that for any 0 < p < % achieverate 1 — H(p) for space N ©(1) channels,
while achieving nearly linear time, (specifically time N'*t°(1)) algorithms for encoding and decoding.
Is it possible to get linear time algorithms? We remark that the method of [GS16, KSS19] (which
we also use) requires at least time N -log N when evaluating the ¢-wise independent permutation.
This means that additional ideas are needed in order to achieve this goal, and it cannot be achieved
by “optimizing the components”.

This paper completely resolves the capacity of space N'~°(1) channels (even for space N/polylog(N)).
A natural open problem is to achieve explicit construction of codes for space N'—°(1) channels, and
rate 1— H(p). In this paper, we give such constructions for any p < p; where p; > 0 is some universal
constant.

As explained in Section 1 and Section 5, our constructions rely on explicit constructions of list
decodable linear codes with large dual distance. Loosely speaking, plugging in a code that has
relative distance roughly 2p, absolute dual distance slightly larger than s, and explicit list decoding
from relative 2p errors, translates (using our machinery) to a stochastic code for Spc), channels with

60

rate 1 — H(p). Our main constriction utilizes the linear codes of Kopparty, Shaltiel and Silbak
[KSS19]. For every p < %, these codes achieve s = N° for a constant § > 0 that depends on p. The
additional aforementioned result (of handling large space channels for p < p;) follows by using the
algebraic geometric codes of Garcia and Stichtenoth [GS96] which achieve larger dual distance, but
smaller p. Any improvement in constructions of explicit list-decodable linear codes with large dual
distance, immediately implies improvements in our construction.

Acknowledgements

We thank Iftach Haitner, Swastik Kopparty, Or Meir, Noga Ron-Zewi and Tal Yankovich for helpful
discussions.

References

[BHRO5] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3cnf properties are
hard to test. SIAM Journal on Computing, 35(1):1-21, 2005. 17

[CJL15] Zitan Chen, Sidharth Jaggi, and Michael Langberg. A characterization of the capacity
of online (causal) binary channels. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 287-296, 2015. 3

[DJLS13] Bikash Kumar Dey, Sidharth Jaggi, Michael Langberg, and Anand D Sarwate. Upper
bounds on the capacity of binary channels with causal adversaries. IEEE Transactions
on Information Theory, 59(6):3753-3763, 2013. 3

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. J.
ACM, 65(4):20:1-20:32, 2018. 13

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pages 946-955, 2018. 15

[For65] G David Forney. Concatenated codes. PhD thesis, Massachusetts Institute of Technology,
1965. 1, 3, 27

[GIO5] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393-3400, 2005.
1, 27

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting.
In Proceedings of the 4th conference on Innovations in Theoretical Computer Science,
pages 529-540, 2013. 6, 9, 18

[Gol97] Oded Goldreich. A sample of samplers - a computational perspective on sampling (sur-
vey). Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997. 15

[GS96] A. Garcia and H. Stichtenoth. On the asymptotic behavior of some towers of function
fields over finite fields. Journal of Number Theory, 61(2):248-273, 1996. 42, 61

61

[GS16]

[HL11]

[HRW19)

[INWO4]

[KMRS17]

[KNRO09)

[KSS19]

[KSY14]

[Lan04]

[Lip94]

[MPSW10]

[MRRW?77]

[Nis92]

[NZ96]

Venkatesan Guruswami and Adam Smith. Optimal rate code constructions for compu-
tationally simple channels. Journal of the ACM (JACM), 63(4):35, 2016. 1, 2, 3, 4, 5,
6, 9, 10, 12, 13, 21, 22, 27, 30, 32, 38, 39, 44, 45, 46, 60

Ishay Haviv and Michael Langberg. Beating the gilbert-varshamov bound for online
channels. In 2011 IEEE International Symposium on Information Theory Proceedings,
ISIT 2011, St. Petersburg, Russia, July 31 - August 5, 2011, pages 1392-1396, 2011.

Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate
tensor codes and applications. SIAM Journal on Computing, (0):FOCS17-157, 2019. 18

R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms.
In Proceedings of the ACM Symposium on Theory of Computing, pages 356-364, 1994.
15

Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally
correctable and locally testable codes with sub-polynomial query complexity. Journal of
the ACM (JACM), 64(2):11, 2017. 6, 9, 17, 18, 22, 27, 42

E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica, 55(1):113-133, 2009. 16

Swastik Kopparty, Ronen Shaltiel, and Jad Silbak. Quasilinear time list-decodable codes
for space bounded channels. To appear in the 60th Annual Symposium on Foundations
of Computer Science (FOCS), 2019. 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 20, 21, 22, 27, 28, 30,
32, 33, 34, 38, 39, 40, 41, 42, 44, 45, 46, 60, 61

Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. Journal of the ACM (JACM), 61(5):1-20, 2014. 18

Michael Langberg. Private codes or succinct random codes that are (almost) perfect.
In 45th Symposium on Foundations of Computer Science (FOCS 2004), pages 325-334,
2004. 13

Richard J. Lipton. A new approach to information theory. In 11th Annual Symposium
on Theoretical Aspects of Computer Science, pages 699-708, 1994. 10, 13

Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correc-
tion for computationally bounded noise. IEEE Trans. Information Theory, 56(11):5673—
5680, 2010. 14

Robert McEliece, Eugene Rodemich, Howard Rumsey, and Lloyd Welch. New upper
bounds on the rate of a code via the delsarte-macwilliams inequalities. IEEE Transac-
tions on Information Theory, 23(2):157-166, 1977. 1, 3

N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449-461, 1992. 15

N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43-52, 1996. 15

62

[RR99]

[Smi07]

[SS16]

[Vad04]

[Vid15]

R. Raz and O. Reingold. On recycling the randomness of states in space bounded
computation. In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, pages 159-168, 1999. 15

Adam D. Smith. Scrambling adversarial errors using few random bits, optimal informa-
tion reconciliation, and better private codes. In Proceedings of the Eighteenth Annual
ACM-STAM Symposium on Discrete Algorithms, SODA, pages 395404, 2007. 10, 13,
22,27

Ronen Shaltiel and Jad Silbak. Explicit list-decodable codes with optimal rate for com-
putationally bounded channels. In APPROX/RANDOM, pages 45:1-45:38, 2016. 1, 2,
3,4, 12, 13, 21, 30, 32, 38, 44

Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the
bounded-storage model. J. Cryptology, 17(1):43-77, 2004. 15

Michael Viderman. A combination of testability and decodability by tensor products.
Random Structures & Algorithms, 46(3):572-598, 2015. 18

63

Figure 1: Parameters and ingredients for stochastic code

Constants:

e p > 0 - The fraction of errors we need to recover from.

o € > 0 - The final code will have rate R > 1 — H(p) — e. We assume that € > 0 is sufficiently small in
terms of p.

e & >0 - we are aiming to construct codes for space s := N? channels.
e ¢, >1-Weset =2 (logN)*™

Parameters that are allowed to vary with N:

e N - The length (in bits) of the codeword. Throughout, we assume that N is sufficiently large, and that
other parameters are chosen as a function of N. Later choices will also restrict N to be a number of a
special form. We divide the N output bits to n := (log N)¢* 10 blocks of length b = N/n.

o (- This is the total length of a “control seed”. Let ¢/ = £/3. This will be the length of individual “seeds”.
e s’ - Pseudorandom components will be 2_Sl—pseudorand0m for space s ROBPS.

Stochastic control code: The construction receives a stochastic code Ence @ {0,1} x {0,1}¢ — {0,1}® such
that:

e Enceiy is (2_8/)-pseudorandom for space s’ ROBPs.
e Enceyy is repetition decodable from pety := p + € relative errors with decoding algorithm rDecct,;.

Requirements: s’ < (and there exists a constant £ > 0 such that s’ > s - NE& = NO+¢,

4
log N)cv 151
Some more parameters:

e Let ¢ > 0 be a sufficiently small constant that will be chosen later as a function of p, €.

o Let neprl = € - N, Ndata = N — Nogrl-

o Let N = b - Nggrl ad Ngaga = b - Ndata- (Note that: n = neet + Ndatas N = Negt + Ndata)-

« Later on, in the decoding and analysis we introduce two parameters 7 = “ez2m2 and 7/ = (log N)e+.

Other ingredients that are used:

BSC code: Let a = m, pesc = p+ «, and Rgsc = 1 — H(pesc) — €/3. We apply Theorem 3.10 using
DPBSC, €/3, Naata as choices for p, €, n, respectively. Theorem 3.10 only guarantees the code for infinitely
many block lengths, and so we require that Ngata = (1 — €’) - N is one of these block lengths. This
translates into a restriction on N (which is satisfied for infinitely many N). We obtain an encoding
function Encpgc : {0, 1}#8sc-Naata — () 1} Nata,

t-wise independent permutation: Let t = (log N)* 2. We use a (2710, ¢)-wise permutation 7 : {0,1}¢ x
[Ndata] = [Ndata]- By Theorem 2.9 we have an explicit construction with seed length O(t -log N) < ¢'.

Averaging Sampler: Let €gamp > 0 be a sufficiently small constant to be chosen later. We use Theorem 2.7 to
obtain an (€samp, 7z)-sampler with distinct samples Samp : {0, 1}¢" — [n]™e=. By Theorem 2.7 we have
an explicit construction with seed length O(log N75) = O((log N)e*1) < ¢'. We use n., samples, and
indeed Ny = € -n > € - (log N) 19 > log N73 (as required in Theorem 2.7).

PRG for space ' ROBPs: Let Gyopp ¢ {0,1}0("(log Naata)*) — {0, 1}Nasta/ be the (27105)-PRG for space s’
ROBPs that is provided by Theorem 2.5. We define G(z1, ..., Zny...) = Grobp(Z1), - - - s Grobp(Tng..)s and
think of G as a function G : {0,1}* — {0,1}Nast= and for this we verify that indeed ¢/ > n - (s'(log N)3)

for sufficiently large N. By a hybrid argument, we have that G is 2_25/—pseudorandom for space s’
ROBPs.

64

Figure 2: Encoding algorithm for stochastic code

Input:

o A message m € {0,1}ffssc-Naata (This gives R = 7RBSCNN‘1W).
o A “random coin” for the stochastic encoding that consists of: a string s = (Ssamp, Sx; SPRG)
where Sqamp, 57, spra € {0,1}¢ so that s € {0,1}¢, and 71, ..., 7, € {0,1}%.

Output: A codeword ¢ = Enc(m; (s,r1,...,7n,,,)) of length N.

Operation:
Determine control blocks: Apply Samp(Ssamp) to generate control = {i1, ..., } € [n]. These
blocks will be called “control blocks”, and the remaining ng.t, blocks will be called “data
blocks”.

Prepare data part: We prepare a string cqata of length Ngat, as follows:

o Encode m by © = Encgsc(m).

e Generate an Ngata bit string y by reordering the Ngatn bits of the encoding using
the (inverse of) the permutation 7y () = w(sx,-). More precisely, y = n;'(z) =
7T;r1 (EHCBsc(m)).

« Mask y using PRG. That is, cqata = y ® G(spra) = 7, ' (Encgsc(m)) & G(spra).

Prepare control part: We prepare a string cey,1 of length Nty (which we view as neg,1 blocks of
length b) as follows:

i (Cctrl)j = Encctrl(sa Tj)-

Merge data and control parts: We prepare the final output codeword ¢ € {0, 1}N by merging cdata
and cetp1. That is, ¢ = (Cdata, Cctrl)contrOl.

65

Figure 3: Decoding algorithm for stochastic code

Input: A “received word” v € {0, 1}".
Output: A messages m € {0, 1} 7V,
Internal procedure DecodeUsingCandidate: On input 5 € {0,1}¢ (which we think of as a candi-
date for the control string) this procedure produces a message m(s) as follows:

Determine control blocks: Apply Samp(Ssamp) to generate control = {iy,..., i, }. Com-

7 __ ~control
pute Udata = Ugayy,

Unmask PRG: Compute § = Uqata ® G(5prG)-

Reverse permutation: Let & be the Ngat, bit string obtained by “undoing” the permutation.
More precisely, let w5_(+) = 7(5r,), and let T = 75 (§) = 75, (Vdata © G(5prG))-

Decode data: Compute m = Decpgc(T).

output: We wuse ¢(3), Z(5) and m(S) to denote the variables ¢,Z,m when
DecodeUsingCandidate is applied on s.

Operation of decoding algorithm: On input v € {0, 1}V:

Compute control candidates: For i € [n], let §; = Decet1(7;). (Here @; is the i’th block of o and
Decetr1 (9;) = rDecetn (1, 9;), recall that decoding is a special case of repetition decoding).
Let candidates = {§; : i € [n]}.

Compute viable candidates: We say that 5 € {0,1}* is viable if for at least 7 := "7 choices
of i € [n], § = §;. Let viable be the set of all § € candidates such that § is viable. Note that
viable is of size at most nc,1/7 which is a constant (that depends on egamp).

Compute valid candidates: We say that 5§ is successful, if when computing the procedure
DecodeUsingCandidate(s), we obtain Z(5) such that outdist(Z) < Ay/4. (Here Ay is the
constant from Theorem 3.10). Let valid be the set of 5 € viable which are successful, such a
string 5 is called valid.

Compute Active blocks: A block ¢ € [n] is active if s; is valid. Let a be the number of active
blocks, and denote their indices by j1, ..., j. € [n].

Perform repetition decoding: Compute s* = rDeccri(a; 5, - - -, Uj,)-

Output message: Compute DecodeUsingCandidate(s*) and output m = m(s*).

66

Figure 4: The encoding/decoding experiment expr®d(m, C).

Parameters: A message m € {0, 1}V

Encoding phase: Choose uniformly at random S € {0,1} and R € ({0,1}4)"u1, and let Z

Enc(m, S, R). More specifically, divide S into three parts of length ¢ = ¢/3, so that S
(Ssamp, SPRG, Sr) and perform the following:

and a space s channel C.

« CONTROL = {I; < ... < I,..,,} = Samp(Ssamp)-

o We denote the elements of [n] \ CONTROL by {W1y,...,W,....}-
* I = EHCBSC (m)

« YV = 7T§7r1 (IIJ)

o 7 c{0,1}" is defined as follows:

- ZEONTROL _y & (S,
- ZggNTROL is defined as follows: for every j € [ncwn], Z1; = Enceun (S, Rj).

Channel phase: Let E = C(Z). More specifically:

o Apply C on Z and for i € [n], let ST; € {0,1}* be the state of C after it reads the i’th block.
e Let E=C(Z)and V =Z @ E.
Decoding phase: Let M = Dec(V). More specifically:

Compute viable candidates:

e For every i € [n], let S; = Decer1 (Vi) = rDecein (1, V).
« Let CANDIDATES = {S; : i € [n]}.

« Let VIABLE = {5 € CANDIDATES : for at least 7 choices of i € [n], it holds that: S; =|s

Decode using viable candidates: For every § € VIABLE, compute DecodeUsingCandidate(s),
more specifically:

o Let m@) = Samp(8samp) and compute Viaea(5) = V(E)W.
o Let Y (5) = Viata(5) © G(5pra)-

o Let X(E) = T, (Y(E));
o Let M(5) = Decpsc(X(3)).

Compute valid candidates:

o For every 3 € VIABLE, determine whether 5 is successful, that is, if outdist(X(3)) <
A1 /4.
o Let VALID be the set of 5§ € VIABLE that are successful.

Compute active blocks:

o Let ACTIVE = {i: S; € VALID} and let A = |[ACTIVE]|.
e Let Ji,...,Ja be the indices in ACTIVE.

Perform repetition decoding: Let S* = rDeccun (4, Vy,, ..., V).
Output message: Compute DecodeUsingCandidate(S*) and output M = M(S*).

67

Figure 5: The adversarial experiment expr? m,C).

Ssamp Sy (

Parameters: A message m € {0,1}%V a space s channel C, a sampler seed Ssamp and a permutation
seed sj.

Encoding phase: Choose uniformly at random Spre € {0,1}* and R € ({0,1}%)", and let Z =
Enc(m, (Ssamp, =, Spra), R). More specifically:

o Let S = (Ssamp, S, Sprc). comment: In this experiment Sprg is chosen at random, while
Ssamp and s, are fixed.

o control = {i; <...<'ip,,} = Samp(Ssamp). comment: In this experiment CONTROL is
fixed to a constant control.

o We denote the elements of [n] \ control by {w1,...,wn,,,. }-
o z = Encgsc(m)

o y=m,(z). comment: In this experiment, y is constant.

o Z €{0,1}" is defined as follows:

Zcontrol =yP G(SPRG)-

data
— zeontrol ig defined as follows: for every j € [netn), Zi; = Enceen (S, Ry).

ctrl

Channel phase: Let E = C(Z). More specifically:

e Apply C on Z and for ¢ € [n], let ST; € {0, 1}® be the state of C after it reads the i’th block.
e Let E=C(Z)and V = Z @ E.

Decoding phase: Let M = Dec(V). More specifically:

Check whether candidates from data blocks are successful: comment: In this experiment, we will
only be interested in candidates from data blocks, and the adversary wins if there is a candi-
date 5 that is successful, and was decoded at least 7’ times in data blocks.

o For every i € [n], let S; = Decein(V;) = rDecern (1, V5).

« Let DCANDIDATES = {S; :i € [n]\ control}. comment: In this experiment, we are
only interested in candidates from data blocks.

o For every § € DCANDIDATES, compute DecodeUsingCandidate(s), more specifically:

— Let CONTROL(3) = Samp(5samp) and compute Viaga(3) = (§)g§1NTROL
— Let Y(5) = Vaata(5) © G(5pra)-
— Let X(5) = 75, (Y (3)).
Outcome of experiment: We say that the adversary wins if there exists s € DCANDIDATES such
that for at least 7/ choices of i € [n]\ control, we have that S; = 3, and outdist(X (3)) < A /4.
(Every s € DCANDIDATES that was not used to win the experiment is said to be “rejected”).

68

Figure 6: The fixed candidate adversary Advs e apssn (Zdata) -

Parameters: A space s channel C, a sampler seed Sgamp € {0, 1}4/, a permutation seed s, € {0, 1}‘217 a
control string s.

Input: A string Zgaga € {0, 1}Vdata,

Additional parameters: These additional parameters (which are functions of the parameters) are “hard-
wired” to the adversary.

o Let control = Samp(ssamp)
o Let m = Samp(gsamp)'
o G(Spra)-
o 7, (+)

Operation:

Encoding phase:
 Choose uniformly at random Z.,; € {0, 1}Vets,

o Prepare Z = (Zcty, Zdata)cont“’l. That is, prepare a string Z according to control where
placing Z.t;1 and Zgata in the control and data blocks.

Channel phase: Let E=C(Z)and V =Z @ E.
Decoding phase: Try to win with 5. That is:

o Let Vdata()= (g)fi(:tlgml'

o Let Y() Vddtd(g) (&) G(SpRg)

o Let X(5) =5, (Y (5))-
« Compute outdist(X (5)).

Outcome of experiment: We say that the adversary wins if outdist(X (5)) < A1 /2.

ECCC ISSN 1433-8092

69

https://eccc.weizmann.ac.il

