
Improved lifting theorems via robust sunflowers

Shachar Lovett∗

Computer Science Department
UC San Diego

slovett@cs.ucsd.edu

Raghu Meka
Computer Science Department

UC Los Angeles
email@email.edu

Jiapeng Zhang†

Computer Science Department
Harvard University

jpeng.zhang@gmail.com

April 16, 2020

Abstract

Lifting theorems are a generic way to lift lower bounds in query complexity to lower bounds in
communication complexity, with applications in diverse areas, such as combinatorial optimization, proof
complexity, game theory. Lifting theorems rely on a gadget, where smaller gadgets give stronger lower
bounds. However, existing proof techniques are known to require somewhat large gadgets.

We focus on one of the most widely used gadgets, the index gadget. For this gadget, existing lifting
techniques are known to require at least a quadratic gadget size. We develop a new approach to prove
lifting theorems for the indexing gadget, based on a novel connection to the recently developed robust
sunflower lemmas. We show that this allows to reduce the gadget size to linear. We conjecture that it
can be further improved to poly-logarithmic, similar to the known bounds for the corresponding robust
sunflower lemmas.

1 Introduction

A lifting theorem is a meta-theorem which characterizes the communication complexity of a task in terms of
an easier property such as query complexity. Within communication complexity, most functions of interest—
e.g., equality, set-disjointness, inner-product, gap-hamming (c.f. [18, 20])—are lifted functions of the form
F ≡ f ◦ gn where f : {0, 1}n → {0, 1} and g : X × Y → {0, 1} is a small two-party function, often called
a gadget. Here, Alice and Bob are given inputs x ∈ Xn, y ∈ Y n respectively; their goal is to compute
F (x, y) = f ◦ gn(x, y).

A longstanding goal has been to characterize the communication complexity of lifted functions F as
above in terms of a suitable complexity-measure of the “outer” function f . We want gadgets g such that for
each boolean function f : {0, 1}n → {0, 1} that has large decision tree complexity, the two-party function
F = f ◦ gn has large communication complexity.

As analyzing complexity of functions is often easier than analyzing communication problems, lifting
theorems give generic ways to prove lower bounds in various models. Further, lifted functions (and closely
related variants) are one of the main techniques we have to separate complexity classes and construct hard
functions.

∗Research supported by NSF Award CCF-1909634.
†Research Supported by NSF grant CCF-1763299 and Salil Vadhan’s Simons Investigator Award.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 48 (2020)

The framework of lifting theorems has been extensively studied in last two decades [4,7,11–13,16,25,27,
28, 30] and several important advances in communication complexity in the past few years have used such
an approach. These include the resolution of the clique vs independent set [10] problem of Yannakakis [31],
exponential lower bounds for linear secret-sharing schemes [26], sub-exponential lower bounds on the size
required for LPs to solve CSPs [19], refutation of the log approximate-rank conjecture [6], lower bound on the
communication complexity of Nash equilibrium [2, 17]. In addition, study of lifting theorems has catalyzed
a new wave of progress in query complexity [16].

The most commonly used gadget is the indexing gadget (e.g., [3, 15, 21, 25, 27]) and this is what we will
work with. Another commonly used gadget is the inner-product gadget ([13, 19]; see also [5] for related
but more general gadgets). The indexing gadget (formally defined below) is a universal gadget in the sense
that if a lifting theorem is true for some gadget, then it also implies a similar result for indexing with
different parameters. Further, the indexing gadget is more useful in applications (e.g., [11], [3], [21], [19]) as
it preserves the underlying combinatorial structure1.

The main point of our paper is to reduce the ‘size’ of a gadget g : X×Y → {0, 1} defined as min(|X|, |Y |).
Gadget size is a fundamental parameter in lifting theorems and their applications. This is because often in
applications, one loses factors that depend polynomially on the gadget size (as defined above). An ideal lift-
ing theorem – one with constant gadget size – would give a unified way to prove tight lower bounds for most
functions. Taking [19] as an example, improving their gadget size from poly(n) to O(1) (or even poly(log n))

would improve their lower bounds for extended formulations from 2n
Ω(1)

to 2Ω(n) (or 2Ω(n/poly(logn)) respec-
tively). This would be quite remarkable.

In spite of the tremendous progress in lifting theorems, most generic lifting theorems require gadget sizes
that are polynomial in n.2 For example, we now have lifting theorems for the three classical models of
communication: deterministic [16, 25], non-deterministic [13] and randomized [15]. In each of these results
(and related ones), the gadget size has to be at least Ω(n2).

Can we circumvent this quadratic barrier? Our main result is such a lifting theorem for almost linear-size
indexing gadget for deterministic communication complexity. Moreover, our approach does not seem to have
the same bottleneck as previous approaches, and we conjecture that it can be pushed to poly-logarithmic
gadget sizes. We discuss this more in Section 1.3.

1.1 Our contribution

The indexing gadget Indq : [q] × {0, 1}q is defined as Indq(x, y) = yx. When q is clear in the context, we
write it succinctly as Ind. We study lifting for P, namely, lifting deterministic decision tree complexity to
deterministic communication complexity. Lifting for P was first studied by Raz and McKenzie [25], where
they used this lifting theorem to prove monotone circuit lower bounds. More recently, Göös, Pitassi and
Watson [16] refined their approach, and gave further applications in communication complexity. Formally,
they proved the following theorem.

Theorem 1.1 ([16, 25]). Let n ≥ 1, q ≥ nc where c > 0 is a large constant. For any boolean function
f : {0, 1}n → {0, 1} it holds that

Pcc(f ◦ Indnq) = Θ
(
Pdt(f) · log n

)
.

Here Pcc(f ◦ Indnq) means the deterministic communication complexity of f ◦ Indnq , and Pdt(f) means
the deterministic decision tree complexity of f .

As mentioned above, we want to minimize the gadget size q in Theorem 1.1, which currently needs to
be polynomially large in n. It is an open problem whether a similar theorem holds for smaller q, ideally of
constant size, but even the sub-polynomial case is widely open.

1For instance, [19] proves a lifting theorem for the inner-product gadget, but then translate it to the indexing gadget for the
application.

2Some notable exceptions for specific models of communication with better gadget size are [14,23,28,29].

2

There are two main approaches used in previous query-to-communication lifting theorems. The first
approach is the Raz-McKenzie’s simulation approach [16, 25, 30]. The second one is the related extractor-
based approach introduced in [13] (also see [4, 12]). Either of these two approaches can be used to prove
Theorem 1.1, however, both of them can be shown to fail if q is not large enough; concretely, if q = o(n2).
We discuss this in more detail in Section 1.3. Therefore, a new approach seems necessary to reduce gadget
size significantly.

Motivated by this goal, we initiate a different approach to prove lifting theorems, which builds on a
new connection between lifting theorems and the robust sunflower lemma [1, 24]. The following is our main
theorem, which shows promise of this approach, by allowing us to decrease the gadget size to near-linear.

Theorem 1.2. Let n ≥ 1, q = Ω(n · log2 n). For any f : {0, 1}n → {0, 1} it holds

Pcc(f ◦ Indnq) = Ω
(
Pdt · log(q/n)

)
.

If we assume that q ≥ n1+ε for any ε > 0 then

Pcc(f ◦ Indnq) = Θ
(
Pdt · log q

)
.

We note that, similar to Theorem 1.1, Theorem 1.2 holds in more general settings: f can have a non-
boolean output, be a partial function or a relation, in which case the protocol for f ◦ Ind should satisfy the
analogous guarantees.

Possibly more interesting than the concrete result, the new approach has potential to go below previous
bottlenecks. In fact, we conjecture that it can be pushed to gadget size q = O(log n), which is the limit of the
robust sunflower lemmas. We discuss this and some promising initial results in this direction in Section 1.3.

1.2 Proof overview

Our proof follows the main framework of the Raz-McKenzie simulation [16,25]. The main difference is that
we use robust sunflowers to maintain a disperser property. Given any communication protocol that computes
f ◦ Indnq , we simulate this protocol and convert it to a decision tree that computes f . We use X ∈ [q]n and
Y ∈ ({0, 1}q)n to denote the inputs of Alice and Bob, respectively, and z ∈ {0, 1}n to denote the input to f .

During each simulation step, we maintain two sets X ⊆ [q]n and Y ⊆ ({0, 1}q)n of inputs that are
consistent with the current simulation step. We call X k-spread3 if for any I ⊂ [n] and S ∈ [q]I , it satisfies

|{X ∈ X : XI = S}| ≤ k−|I| · |X|.

Spreadness is a crucial notion in the following lemma, which is a direct corollary of the recent robust
sunflower lemmas [1, 9, 24].

Lemma 1.3 (Robust sunflowers, see Theorem 2.11). Let γ > 0 and assume that X is O(log(n/γ))-spread.
Then for each z ∈ {0, 1}n,

Pr
Y∼({0,1}q)n

[∃X ∈ X, Ind(X,Y) = z] > 1− γ.

Notice that this lemma is non-trivial already for k = Ω(log n). However in this paper, we choose k = Ω(n),
because in this regime we have the following strong corollary.

Corollary 1.4 (Disperser property, see Lemma 3.1). Assume that X is Ω(n)-spread and |Y| ≥ 2−n · 2qn.
Then

{Ind(X,Y) : X ∈ X, Y ∈ Y} = {0, 1}n.

In order to ensure the correctness of our simulation process, we preserve the following properties of X and
Y in each simulation step,

3This is closely related to blockwise-denseness from [13].

3

• X is k-spread, for a k that is slightly larger than n;

• |Y| ≥ 2−n · 2qn.

At a high level, as long as these properties are preserved, the current set of inputs X,Y project to all
possible inputs z to the boolean function f . It is simple to maintain the property that Y is big; however,
it could be the case that X loses the k-spread property. In this case, we show that we can query a set of
input bits zi and maintain the k-spread property. This increases the density of X in its ambient space, which
allows us to bound the total number of bits queried as a function of the communication complexity of the
lifted function. Implementing this strategy turns out to be more intricate and more details are provided in
the actual proofs (which are not too technical).

1.3 Discussions and future directions

Comparison to Raz-McKenzie simulation. The idea of the Raz-McKenzie simulation [16, 25] is to
convert a communication protocol for f ◦ Ind into a decision tree for f . In each simulation step, let X =
(X1, . . . , Xn) ⊂ [q]n be a set of “consistent” inputs for Alice. Raz-McKenzie checks the min-entropy H(Xi |
X1, . . . , Xi−1, Xi+1, . . . , Xn) for each i. There are two possible cases,

1. For each i, H(Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn) is very close to maximal, namely, log q.

2. There is an i, such that H(Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn) is much smaller than log q.

In the first case, they are able to simulate the communication without making a query in the decision tree
protocol. On the other hand, if there exists a coordinate Xi such that H(Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn)
is small, then we can query the i-th coordinate in the decision tree model. In the Raz-McKenzie simulation,
there is a crucial average-to-worst reduction (known as the “thickness lemma”), which requires q = Ω(n2)
to maintain the correctness of the simulation.

In comparison to our approach, we use a higher moment argument in the following sense. Raz-McKenzie’s
simulation checks H(Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn) for each single i ∈ [n]. In our approach, we check
H∞(XI) each set I ⊆ [n]. If there is a set of coordinates I that has small min-entropy, then we query
all of these coordinates. One of the main advantage of using this high moment argument is to avoid the
average-to-worst reduction. Therefore we are able to avoid the main bottleneck of Raz-McKenzie. A side
bonus is that our simulation is also simpler than Raz-McKenzie simulation.

In Erdős and Rado [8] proof of the sunflower lemma, it also checks only the links of size 1. In this
sense, Raz-McKenzie’s simulation is an analogue of Erdős and Rado proof of the sunflower lemma. By
contrast, our simulation is an analogue of Alweiss-Lovett-Wu-Zhang [1] new proof with improved bounds.
We believe our method can further improve the gadget size to q = (log n)O(1), similar to the improvement
for the sunflower lemma of [1]. The general approach is to replace the assumption that Y is large with some
pseudo-randomness property. This could remove the requirement of taking k = Ω(n), and would allow us
to get closer to the k = O(log n) limit of the robust sunflowers lemma. We leave exploring this direction to
future work.

Extractors vs Dispersers. The second approach of lifting theorems is based on extractors [4, 12, 13].
The main structural lemma in this approach is the following. Let q ≥ nc for a large constant c, let X be a
distribution on [q]n and Y be distribution on ({0, 1}q)n. If both X and Y have large spreadness (think X
being (k ∼ q0.9)-spread), then the distribution Ind(X,Y) is multiplicatively close to the uniform distribution.
In particular, Supp(Ind(X,Y)) = {0, 1}n.

The uniformity of Ind(X,Y) implies several nice properties allowing us to simulate the communication
protocol with few queries. Interestingly, Li, Lovett and Zhang [22] also used this lemma to reprove the
Erdős-Rado sunflower lemma. The journal version of that paper contains examples giving barriers to this
approach, showing that q = Ω(n) is necessary.

In this paper, we first replace extractors with dispersers. That is, we seek conditions on X,Y such that
Ind(X,Y) has full support, but without requiring the distribution to be close to uniform. This is in fact very

4

similar to the approach used in [1] towards the sunflower conjecture. However, this introduces several other
challenges in using earlier simulation arguments. For readers familiar with the literature, at a high-level,
“extractor-like” properties make conditioning on partial assignments easier; whereas, this is problematic with
disperser like conditions. However, we can overcome this hurdles to lift P using robust sunflower lemmas
leading to much smaller gadgets.

Toward lifting theorems with a smaller gadget. As we mentioned, it is a main open problem to
improve the gadget size. Hence it is very important to ask what is the limitation of our new approach.
Similar to the robust sunflower lemma, we believe that our approach is able to further improve the gadget
size to (log n)O(1). In fact, there is some evidence to show this may be possible.

Lifting theorems for NP are analogous to lifting theorems for P, except that decision tree complexity
is changed to certificate complexity, and deterministic communication complexity is changed to rectangle
covering number (cf., [20] for definitions). In an ongoing work of the authors, we can show that in the same
regime of parameters as Theorem 1.2, namely when q = Ω(n log2 n), it holds that

NPcc(f ◦ Indq) = Ω
(
NPdt(f) · log q

)
.

In addition, if we assume that f is monotone, then this results holds even for q = (log n)O(1). We believe that
it might be possible to push this for a lifting theorem for NP for any function breaking the polynomial-gadget
size bottleneck. However, it shows that the limitations of previous approaches (which also hold for their NP
analogs) do not hold in our new approach, at least in some settings.

We decided to not include this proof in the current version. The reason is that in this paper we use the
robust sunflower lemma of [1, 24] as a black box, and focus on connecting it to lifting theorems. To get the
lifting result for NP, one needs to “open the box”, prove a generalized version of the robust sunflower lemma,
and apply the stronger lemma to the NP lifting setting. In specific, current robust sunflower lemma studied
the case Y is uniform, and in a generalized version, we study the case Y is “pseudo-uniform”. We postpone
presenting the details to future work, where hopefully we can prove it for any outer function f .

Paper organization. We present background and results on set systems and robust sunflower lemmas in
Section 2. We adapt these to the indexing gadget in Section 3. We prove our main theorem, Theorem 1.2,
in Section 4.

2 Set systems

2.1 Notation

We denote the ground set by [N] = {1, . . . , N}. We use capital letters S for sets S ⊂ [N] and bold letters S for
set systems (families of sets). We say that S is an n-set system if all sets S ∈ S have size |S| ≤ n. A weighted
set system is a pair (S,D), where S is a set system and D a distribution supported on S. Given S ∈ S, we
denote by D(S) the probability that D assigns to S. Given S′ ⊂ S, we denote D(S′) =

∑
S∈S′ D(S). Given

a set system S, we denote by US the uniform distribution over S. We shorthand PrS∼US [·] with PrS∈S[·].

2.2 Spread set systems

Informally, spread set systems are set systems where no element, or a small number of elements, is contained
in too many sets in the set system.

Definition 2.1 (Spread set systems). Let α, k ≥ 1. A weighted set system (S,D) is (α, k)-spread if for any
set T ⊂ [N]:

Pr
S∼D

[T ⊂ S] ≤ α · k−|T |.

A set system S is (α, k)-spread if there exists a distribution D supported on S such that (S,D) is (α, k)-spread.

5

We shorthand (1, k)-spread as k-spread throughout. Note that if a set system is (α, k)-spread then it is
also (k/α)-spread.

Definition 2.2 (Link). Let S be a set system, T ⊂ [N]. The link of S at T is

(S)T = {S \ T : S ∈ S, T ⊂ S}.

Definition 2.3 (Uniform spread set systems). Let α, k ≥ 1. A set system S is uniform (α, k)-spread if
(S,US) is (α, k)-spread. Equivalently, if for any set T ⊂ [N] it holds that

|(S)T | ≤ α · k
−|T ||S|.

The following claim shows that large subsets of uniform spread set systems are also uniform spread.

Claim 2.4. Let S be a set system which is uniform (α, k)-spread. Let S′ ⊂ S of size |S′| = c|S|. Then S′ is
uniform (α/c, k)-spread.

Proof. For any T ⊂ [N] we have |(S′)T | ≤ |(S)T | ≤ αk−|T ||S| ≤ (α/c)k−|T ||S′|.

2.3 Covers

Definition 2.5 (Cover). Let S,R be set systems. We say that R is a cover for S if for any S ∈ S there is
R ∈ R such that R ⊆ S.

The next claim shows that covers of spread set systems are themselves spread4.

Claim 2.6. Let S,R be set systems, where R is a cover of S. Assume that S is (α, k)-spread. Then R is
also (α, k)-spread.

Proof. Let D be a distribution supported on S so that (S,D) is (α, k)-spread. Let π : S → R be a map so
that π(S) ⊂ S for all S ∈ S. Define a distribution D′ on R as follows:

D′(R) = D(π−1(R)).

We claim that (R,D′) is (α, k)-spread. To see that, fix T ⊂ [N]. We have:

Pr
R∼D′

[T ⊂ R] = Pr
S∼D

[T ⊂ π(S)] ≤ Pr
S∼D

[T ⊂ S] ≤ α · k−|T |.

We next refine the definition of cover to tight covers, where each element in the cover covers a large
fraction of the set system.

Definition 2.7 (Tight cover). Let β ≤ 1, k ≥ 1. Let S,R be set systems where R is a cover of S. We say
that R is a tight (β, k)-cover of S if for any R ∈ R it holds that

|(S)R| ≥ β · k
−|R||S|.

If S is uniform spread and R is a tight cover of S, then we get tight control over links of sets in R.

Corollary 2.8. Let S be a uniform (α, k)-spread set system, and let R be a tight (β, k)-cover for S. Then
for every R ∈ R it holds

β · k−|R||S| ≤ |(S)R| ≤ α · k
−|R||S|.

The next lemma shows that any set system contains either a large sub set system which is uniform spread;
or a large sub set system with a tight cover, whose corresponding links are uniform spread.

4In the application to lifting, we will apply Claim 2.6 to set systems S which are uniform spread. Note that the cover R is
spread, but not uniform spread.

6

Lemma 2.9. Let S be a set system and let k ≥ 1. Then there exists a set system S∗ ⊂ S of size |S∗| ≥ |S|/2
for which one of the following holds:

(i) S∗ is uniform k-spread; or

(ii) There exists a (1/2, k)-tight cover R = {R1, . . . , Rt} of S∗. Moreover, for each Ri ∈ R there exists
Si ⊂ S∗ of size |Si| ≥ |S|/2 such that

(
Si
)
Ri

is uniform k-spread.

Proof. We define a nested sequence of set systems S0 ⊃ S1 ⊃ · · · ⊃ St as follows. Initialize S0 = S. Given
Sm for m ≥ 0, we proceed as follows. First, if |Sm| < |S|/2 then set t = m and terminate. Next, if Sm is
uniform k-spread, then set S∗ = Sm and terminate. The remaining case is that Sm is not uniform k-spread.
In this case, by definition there exists some non-empty set T ⊂ [N] such that |(Sm)T | > k−|T ||Sm|. We
choose Rm+1 to be such T of maximal size, and set Sm+1 = {S ∈ Sm : Rm+1 6⊂ S} to be all the elements in
Sm not covered by Rm+1.

Clearly, if during the process some Sm is uniform k-spread then we are in case (i). So consider the case
where no Sm is uniform k-spread, and so the process ends with St of size |St| < |S|/2. In this case we define
Si = Si−1 \ Si for i = 1, . . . , t; S∗ = S1 ∪ . . . ∪ St = S \ St; and R = {R1, . . . , Rt}. By construction, R is a
cover of S∗, as all sets in Si are supersets of Ri. Moreover, R is a (1/2, k)-tight cover for S∗ since

|(S∗)Ri
| ≥ |

(
Si
)
Ri
| = |(Si−1)Ri

| > k−|Ri||Si−1| ≥ k−|Ri||S|/2 ≥ k−|Ri||S∗|/2.

To conclude, we claim that
(
Si
)
Ri

is uniform k-spread. Assume not. In this case there is a set T ⊂ [N]
disjoint from Ri, such that

|
(
Si
)
Ri∪T

| > k−|T ||
(
Si
)
Ri
|.

However, as all the sets in Si do not contain Ri by construction, we have (Si)Ri
= ∅ and hence

(
Si
)
Ri

=

(Si−1)Ri
and

(
Si
)
Ri∪T

= (Si−1)Ri∪T . Thus we have

|(Si−1)Ri∪T | > k−|T ||(Si−1)Ri
| > k−(|Ri|+|T |)|Si−1|.

This violates the maximality of Ri, as we could have chosen instead Ri ∪ T .

2.4 Satisfiability

Definition 2.10. Let S be a set system over [N]. We say that S is γ-satisfiable if the following holds. Let
W ⊂ [N] be a uniformly sampled subset. Then

Pr
W

[∃S ∈ S, S ⊂W] > 1− γ.

The following theorem of Alweiss et al. [1], refined by Frankston et al. [9] and Rao [24], shows that spread
set systems are satisfying. Below K > 0 is an absolute constant.

Theorem 2.11 (Spread set systems are satisfiable [1, 9, 24]). Let S be an n-set system. Let γ > 0 and
assume that S is k-spread for k ≥ K log(n/γ). Then S is γ-satisfiable.

Corollary 2.12. Let S,Y be set systems over [N]. Assume that |Y| ≥ γ · 2N and that S is an n-set system
which is k-spread for k ≥ K log(n/γ). Then there exists S ∈ S and Y ∈ Y so that S ⊂ Y .

Proof. Apply Theorem 2.11 to S to derive that S is γ-satisfiable. Define W = {W ⊂ [N] : ∃S ∈ S, S ⊂W},
so that |W| > (1− γ)2n. As |Y| ≥ γ2n, it must be that Y,W intersect.

We will need a generalization of Theorem 2.11 for DNFs.

Definition 2.13. A DNF is a function f : {0, 1}N → {0, 1} given as f(x) = C1(x) ∨ . . . ∨ Cm(x), where
each clause Ci is a conjunction (AND) of variables xi or their negation ¬xi. The width of the DNF is the
maximal number of variables appearing in a clause.

7

Let f be a DNF with clauses C1, . . . , Cm. We associate with it the set system S(f) = {S1, . . . , Sm},
where Si are the variables appearing in the clause Ci (either negated or not, it doesn’t matter). Note that
if f has width n then S(f) is an n-set system.

Lemma 2.14. Let f : {0, 1}N → {0, 1} be a DNF of width at most n, and let S(f) be its associated set
system. Let γ > 0 and assume that S(f) is k-spread for k ≥ K log(n/γ). Then

Pr
x∈{0,1}N

[f(x) = 1] > 1− γ.

Before proving Lemma 2.14, we note that Theorem 2.11 is equivalent to a special case of monotone DNFs,
where there are no negated variables.

Proof. The proof is by reduction to Theorem 2.11. Let f be a DNF, and let S = S(f) be its associated set
system. Let fmon be the monotone DNF corresponding to S, namely

fmon(x) =
∨
S∈S

∧
i∈S

xi.

In other words, if we associate x ∈ {0, 1}N with its corresponding set X ⊂ [N], then fmon(x) = 1 iff exists
S ∈ S such that S ⊂ X. Theorem 2.11 then tells us that

Pr[fmon(x) = 1] > 1− γ.

In order to prove that lemma, we will show that the monotone case minimizes the satisfiability probability;
namely that

Pr[f(x) = 1] ≥ Pr[fmon(x) = 1].

In order to prove the lemma, we will iterate over i = 1, . . . , n, and in the i-th iteration replace all negated
variable ¬xi with xi. We will show that this process can only decrease the satisfiability probability. Fix
some i ∈ [n], let g denote the DNF before switching ¬xi with xi, and h denote the DNF after the switch.
Let x 6=i denote all variables other than xi, and consider any assignment a ∈ {0, 1}N−1 to x 6=i. Define
ga(xi) = g(xi, x6=i = a) and ha(xi) = h(xi, x6=i = a) to be the restricted DNFs. We claim that for each
choice of a it holds that

Pr[ga(xi) = 1] ≥ Pr[ha(xi) = 1].

Hence also Pr[g(x) = 1] ≥ Pr[h(x) = 1].
To see that, consider all clauses in g that survive when we set x 6=i = a. If none survive that ga = ha = 0,

and if a clause is satisfied then ga = ha = 1. Otherwise, if ga contains only clauses with xi then ha = ga,
and if ga contains only clauses with ¬xi then ha = ¬ga. In all of these cases Pr[ga(xi) = 1] = Pr[ha(xi) = 1].
The remaining case is where ga contains a clause with xi and a clause with ¬xi, whereas ha in this case
contains only clauses with xi. In this case Pr[ga(xi) = 1] = 1 ≥ 1/2 = Pr[ha(xi) = 1].

The following corollary is analogous to Corollary 2.12, where we identify Y ⊂ [N] with its indicator
vector y ∈ {0, 1}N . The proof is identical so we omit it.

Corollary 2.15. Let f : {0, 1}N → {0, 1} be a DNF of width at most n, and let S(f) be its associated
set system. Let Y ⊂ {0, 1}N be a set system of size |Y | ≥ γ · 2N . Assume that S(f) is k-spread for
k ≥ K log(n/γ). Then there exists Y ∈ Y such that f(Y) = 1.

3 Set systems for lifting the index gadget

In this section, we specialize the discussion of set systems to those that arise in the study of lifting of the
index gadget.

8

3.1 Basic setup and definitions

Basic set systems. Fix q, n ≥ 1, set N = qn and identify the ground set [N] with [n] × [q]. We will
work with X ⊂ [q]n and Y ⊂ ({0, 1}q)n. We identify X ∈ [q]n with the set SX = {(i,Xi) : i ∈ [n]} and
Y ∈ ({0, 1}q)n with the set SY = {(i, j) : (Yi)j = 1} (so basically Y is the indicator vector of SY). Thus we
view both X,Y as set systems over [n]× [q]. Note that X is an n-set system. We shorthand Yi,j = (Yi)j .

Partial assignments. Let I ⊂ [n] and let Ic = [n] \ I. We denote partial assignments to X by X ′ ∈ [q]I

(sometimes we use R instead of X ′). Given X ′ ∈ [q]I , X ′′ ∈ [q]I
c

we denote by X ′ ◦ X ′′ ∈ [q]n their
concatenation. Given a set X ′ ∈ [q]I and a set system X′′ ⊂ [q]I

c

define their concatenation to be the set
system

X ′ ◦X′′ = {X ′ ◦X ′′ : X ′′ ∈ X′′} ⊂ [q]n.

We define partial assignments and concatenation for Y analogously.

Links. Let X ⊂ [q]n and X ′ ∈ [q]I be a partial assignment. The link of X at X ′ is the set of all elements
X ∈ X which are consistent with X ′, restricted to coordinates outside I:

(X)X′ = {X ′′ ∈ [q]I
c

: X ′ ◦X ′′ ∈ X}.

Note that this is consistent with the link of the set system {SX : X ∈ X} at SX′ . We define links for Y
analogously.

Index function. Given X ∈ [q]n and Y ∈ ({0, 1}q)n, their index function is

Ind(X,Y) = (Yi,Xi
: i ∈ [n]) ∈ {0, 1}n.

More generally, if X ′ ∈ [q]I for I ⊂ [n] define

Ind(X ′, Y) =
(
Yi,X′i : i ∈ I

)
∈ {0, 1}I .

Restrictions. Given Y ⊂ ({0, 1}q)n, R ∈ [q]I and v ∈ {0, 1}I , define the restriction of Y to R, v to be

[Y]R,v = {Y ∈ Y : Ind(R, Y) = v}.

Note that restrictions of Y is defined over the same domain as Y, whereas links are defined over a small
domain.

3.2 Useful lemmas

Given γ > 0 we set k(γ) = 4K log(2n/γ), where K is the absolute constant from Theorem 2.11.
The first lemma shows that if X is spread and Y is large, then Ind(X,Y) for X ∈ X, Y ∈ Y attains all

possible values.

Lemma 3.1. Let X ⊂ [q]n,Y ⊂ ({0, 1}q)n,γ > 0 and set k = k(γ). Assume that X is k-spread and
|Y| ≥ γ · 2qn. Then

{Ind(X,Y) : X ∈ X, Y ∈ Y} = {0, 1}n.

Proof. Fix z ∈ {0, 1}n. We will show that there exists X ∈ X, Y ∈ Y such that Ind(X,Y) = z. Given
Y ∈ Y, define a new set Yz ∈ ({0, 1}q)n by (Yz)i,j = Yi,j ⊕ zi⊕ 1. Observe that Ind(X,Y) = z iff SX ⊂ SYz .
Define a set system Yz = {Yz : Y ∈ Y} and note that |Yz| = |Y|. Now, Corollary 2.12 implies that there is
X ∈ X, Yz ∈ Yz such that SX ⊂ SYz

. This implies that Ind(X,Y) = z.

The next lemma shows that given Y, we can remove at most half its elements, such that in the resulting
set system each restriction is either empty or large.

9

Lemma 3.2. Let Y ⊂ ({0, 1}q)n. Then there exists a set system Y′ ⊂ Y of size |Y′| ≥ |Y|/2 with the
following property. For every non-empty I ⊂ [n], partial assignment R ∈ [q]I and value v ∈ {0, 1}I , the
restriction [Y′]R,v is either empty or satisfies

|[Y′]R,v| ≥ |Y|/(8qn)|I|.

Proof. We apply a greedy pruning procedure. Set m = 8qn. Initialize Y′ = Y. As long as there exists a
non-empty I ⊂ [n], partial assignment R ∈ [q]I and value v ∈ {0, 1}I such that 0 < |[Y′]R,v| < |Y|/m|I|,
remove the elements in [Y′]R,v from Y′. We claim that this process stops after removing at most half the
elements from Y, giving us the claimed Y′.

To see why, note that at each phase, if we consider a partial assignment R ∈ [q]I and value v ∈ {0, 1}I ,
then we remove at most |Y|/m|I| elements. Clearly, each pair (R, v) can be used at most once. The number
of pairs (R, v) with |I| = k is

(
n
k

)
(2q)k. Thus we can bound the fraction of elements removed by

|Y \Y′|
|Y|

≤
n∑
k=1

(
n

k

)
(2q)km−k ≤

n∑
k=1

(2qn/m)k ≤
n∑
k=1

4−k ≤ 1/2.

The final lemma shows that if X,Y are such that X is somewhat spread, then we can restore spreadness
by restricting to a partial assignment for which the restriction of Y is large.

Lemma 3.3. Let X ⊂ [q]n,Y ⊂ ({0, 1}q)n, γ > 0 and set k = k(γ). Assume that X is uniform (2, k)-spread
and |Y| ≥ γ2qn. Then there exists a partial assignment R ∈ [q]I and a subset X̃ ⊂ X of size |X̃| ≥ |X|/2
such that the following holds:

1. Let X′ =
(
X̃
)
R

. Then |X′| ≥ (1/4)k−|I||X| and X′ is uniform k-spread.

2. For any v ∈ {0, 1}I we have |[Y]R,v| ≥ (8qn)−|I||Y|.

Proof. Apply Lemma 2.9 to X and let X∗ ⊂ X be the guaranteed subset of size |X∗| ≥ |X|/2. If case (i)
holds, namely X∗ is uniform k-spread, then we take X̃ = X∗ and R to be the empty partial assignment. In
this case I = ∅, X′ = X̃, Y′ = Y and both conditions hold.

So, assume that case (ii) holds. Namely, there is a (1/2, k)-tight cover R = {R1, . . . , Rt} of X∗, such
that for every Ri there exists Xi ⊂ X∗ of size |Xi| ≥ |X|/2 for which

(
Xi
)
Ri

is uniform k-spread. Observe
that each Ri corresponds to a partial assignment since each Ri is a subset of SX for some X ∈ X. Thus we
identify Ri with an element of [q]Ii for some non-empty Ii.

Next, apply Lemma 3.2 to Y to obtain the claimed sub set system Y′ ⊂ Y. Our goal will be to find
R = Ri ∈ R with the following property: for each v ∈ {0, 1}I where I = Ii, the set [Y′]R,v is non empty.

Assume for a minute we can guarantee the existence of such R. In this case we set X̃ = Xi. Note that
X′ =

(
Xi
)
Ri

and hence X′ is guaranteed to be uniform k-spread. By the assumption on R, for each

v ∈ {0, 1}I we know that [Y′]R,v is not empty, and hence by the property of Y′ guaranteed by Lemma 3.2

we have that |Y′| ≥ (8qn)−|I||Y|. Lastly, we need to verify that |X′| ≥ (1/4)k−|I||X|. This follows since R
is a (1/2, k)-tight cover of X∗, and hence |X′| ≥ (1/2)k−|I||X∗|, combined with the fact that |X∗| ≥ |X|/2.

Finally, we need to show that there exists Ri ∈ R as claimed. Assume not; then for every Ri ∈ R with
Ri ∈ [q]Ii , there exists vi ∈ {0, 1}Ii such that Y′Ri,vi

is empty. We next construct a DNF checking this.

Recall that N = qn and that we identify Y ∈ ({0, 1}q)n with y ∈ {0, 1}N . Given each (Ri, vi), let Ci(y)
be the clause specifying that Ind(Ri, Y) = vi. Note that Ci is a conjunction of |Ii| variables yi,j or their
negations. Define

f(y) = C1(y) ∨ · · · ∨ Ct(y)

and note that f is a DNF of width at most n. By assumption, f(Y) = 0 for all Y ∈ Y′. On the other hand,
we will show that S(f) is spread, and obtain a contradiction by using Corollary 2.15.

10

Note that S(f) = R. We know that R is a cover of X∗, that X∗ is a subset of X with at least
half the elements, and then X is uniform (2, k)-spread. Thus by Claim 2.4 we have that X∗ is uniform
(4, k)-spread, and by Claim 2.6 that R is (4, k)-spread. This implies that R is (k/4)-spread. In addition
|Y′| ≥ |Y|/2 ≥ (γ/2)2N . Hence we can apply Corollary 2.15 to it, as we set k = k(γ) = 4K log(2n/γ). This
shows that it is impossible that f(Y) = 0 for all Y ∈ Y′, completing the proof.

4 Lifting for P

We use the properties of set systems from previous sections to prove a deterministic lifting theorem when
the gadget size is nearly linear. Let f : {0, 1}n → {0, 1} be an arbitrary boolean function. We define a
two-party function (f ◦ Ind)(X,Y) = f(Ind(X,Y)) where X ∈ [q]n, Y ∈ ({0, 1}q)n.

Theorem 4.1 (Main lifting theorem). Let f : {0, 1}n → {0, 1}, q = Ω(n log2 n) and set F = f ◦ Indnq . Then

Pcc(F) = Ω(Pdt(f)) · log

(
q

n log2 q

)
.

Before proving Theorem 4.1, we make a couple of comments. It is straightforward that Pcc(F) =
O(Pdt(f) log q), and hence our bound is tight up to logarithmic factors. Furthermore, if q ≥ n1+c for any
c > 0 then we obtain Pcc(F) = Ω(Pdt(f) log q), in which case our bound is tight up to constants. This in
particular recovers the result of Raz and McKenzie [25].

We now move the prove Theorem 4.1. Our goal is to show that if F has a low communication protocol,
then f has low depth decision tree. Suppose we have a protocol Π for F with at most ∆ bits of communication.
For ease of notation, we assume (without loss of generality) that in each round only one bit is communicated.
We will use the protocol Π for F to simulate a decision tree for f with small depth. Consider an arbitrary
input string z ∈ {0, 1}n on which we are trying to compute f . Fix a parameter k = Θ(n log2 n) ≤ q/2 to be
chosen later.

Setup. We maintain set systems X ⊂ [q]n,Y ⊂ ({0, 1}q)n, corresponding to inputs consistent with the
current execution of the protocol. In addition, we maintain a restriction ρ ∈ {0, 1, ∗}n which specifies which
input bits were read, and what values they have. We denote by Fix(ρ) = ρ−1({0, 1}) and Free(ρ) = ρ−1(∗)
the partition of [n] to coordinates fixed by ρ or that are still free.

Consistency. We will maintain consistency of the restriction ρ with the the sets X,Y and the input z.

Definition 4.2 (X-consistency). We say that X ⊂ [q]n is consistent with ρ ∈ {0, 1, ∗}n if X = X ′ ◦ X′′,
where X ′ ∈ [q]Fix(ρ) and X′′ ⊂ [q]Free(ρ).

Definition 4.3 (Y-consistency). We say that Y ⊂ ({0, 1}q)n is consistent with ρ ∈ {0, 1, ∗}n if Y = Y ′◦Y′′,
where Y ′ ∈ ({0, 1}q)Fix(ρ) and Y′′ ⊂ ({0, 1}q)Free(ρ).

Definition 4.4 (z-consistency). We say that z ∈ {0, 1}n is consistent with ρ ∈ {0, 1, ∗}n if ρi ∈ {∗, zi} for
all i ∈ [n].

Variables used in the simulation. We initialize X0 = [q]n, Y0 = ({0, 1}q)n, ρ0 = ∗n. At the end of
round r, we will have that Xr ⊂ [q]n,Yr ⊂ ({0, 1}q)n are subsets of the inputs consistent with the protocol
so far, and ρr ∈ {0, 1, ∗}n is a restriction.

Invariants. We will maintain the following invariant: Xr,Yr, z are consistent with ρr. We use the fol-
lowing notation: Xr = X ′r ◦ X′′r where X ′r ∈ [q]Fix(ρr),X′′ ⊂ [q]Free(ρr) and Yr = Y ′r ◦ Y′′r where Y ′r ∈
({0, 1}q)Fix(ρr),Y′′ ⊂ ({0, 1}q)Free(ρr). In addition, we maintain the invariant that Ind(X ′r, Y

′
r) = zFix(ρr),

and that X′′r is uniform k-spread.

11

Protocol structure. Assume we are at the beginning of round r, and have sets Xr−1,Yr−1 of possi-
ble inputs for Alice and Bob. If it is Alice’s turn, then the protocol Π partitions Xr−1 it into two sets
Xr−1,0,Xr−1,1, depending on the bit sent by Alice. Similarly, if it is Bob’s turn, then the protocol partitions
Yr−1 is split into Yr−1,0,Yr−1,1, depending on the bit sent by Bob.

Simulating the protocol. For each round r = 1, . . . ,∆ of the protocol Π, given Xr−1,Yr−1 which are
the output of the previous round, do the following:

1. If it is Bob’s turn in the protocol, then Bob sends a bit b ∈ {0, 1} that maximizes the size of Yr−1,b.
Set Xr = Xr−1,Yr = Yr−1,b and ρr = ρr−1.

2. If it is Alice’s turn in the protocol, then Alice sends a bit b ∈ {0, 1} that maximizes the size of
X̄r = Xr−1,b. Next, do the following:

(a) Observe that X̄r = X ′r−1 ◦ X̄′′r for some X̄′′r ⊂ X′′r−1.

(b) Apply Lemma 3.3 to X̄′′r ,Y
′′
r−1 (we will argue later that they satisfy the conditions of the lemma).

Find Rr ∈ [q]Ir , X̃r that satisfy the conclusions of the lemma.

(c) Query zi for i ∈ Ir.
(d) Define ρr as follows: (ρr)i = (ρr−1)i if i /∈ Ir, (ρr)i = zi for i ∈ Ir.

(e) Set Xr = X′r−1 ◦
(
X̃r

)
Rr

.

(f) Set Ȳr = {Y ∈ Yr−1 : Ind(Y,Rr) = zIr}. Choose Y ′r ∈ ({0, 1}q)Fix(ρr) to maximize the size of
Y′′r =

(
Ȳr

)
Y ′r

. Set Yr = Y ′r ◦Y′′r .

When the protocol terminates, we output the value computed by the protocol as the value of f(z). We
first show the following invariants about the simulation.

Lemma 4.5. There is a constant c1 such that if q > k > c1∆ log q, then the above algorithm maintains the
following invariants at all times r ≥ 0:

(1) Xr,Yr, z are consistent with ρr.

(2) Ind(X ′r, Y
′
r) = zFix(ρr).

(3) X′′r is uniform k-spread.

(4) |X′′r | ≥ 8−r(q/k)|Fix(ρr)| · q|Free(ρr)|. In particular, |Fix(ρr)| ≤ 3r/ log(q/k).

(5) |Y′′r | ≥ 2−r(8qn)−|Fix(ρr)| · 2q|Free(ρr)|.

Proof. The claim clearly holds for round 0. Suppose the conditions hold at the end of round r− 1. We next
argue that the conditions hold at the end of round r.

If it is Bob’s turn in the protocol, then the claim follows easily as |Yr| ≥ |Yr−1|/2 and the other quantities
do not change, so suppose it is Alice’s turn in the protocol. By parts (4) and (5) of the inductive assumption,

|Y′′r−1| ≥ 2−(r−1)(8qn)−3(r−1)/ log(q/k)2q|Free(ρr−1)| ≡ γ2q|Free(ρr−1)|,

where γ = 2−(r−1)(8qn)−3(r−1)/ log(q/k) ≥ q−O(r).
Observe that X̄′′r computed in step 2 is uniform (2, k)-spread by Claim 2.4, since |X̄′′r | ≥ |X′′r−1|/2 and

since by induction X′′r−1 is uniform k-spread. In order apply Lemma 3.3 as in Step 2 (b) of the simulation,
We further need k ≥ 4K log(2n/γ). Now,

4K log(2n/γ) = O(r log q) = O(∆ log q).

12

Therefore, if k > c1∆ log q for some absolute constant c1, then X̄′′r ,Y
′′
r−1 satisfy the conditions of

Lemma 3.3 as desired.
Finally, note that Fix(ρr) is the disjoint union of Fix(ρr−1) and Ir, and in particular |Fix(ρr)| =

|Fix(ρr−1)| + |Ir|. That the invariants hold after round r now follows easily. Part (1) follows from the
specific way Xr,Yr are chosen. Parts (2), (3), (4) then follow inductively from the guarantees of Lemma 3.3
as used in steps 2(b) - (e) of the algorithm.

For part (5), we have by Lemma 3.3 that |Ȳr| ≥ (8qn)−|Ir||Y′′r−1| = (8qn)−|Ir||Yr−1| and hence by

induction that |Ȳr| ≥ 2−r(8qn)−|Fix(ρr)| · 2q|Free(ρr−1)|. By averaging there must exist Y ′′′r ∈ ({0, 1}q)Ir such
that |

(
Ȳr

)
Y ′′′r
| ≥ 2−r(8qn)−|Fix(ρr)| · 2q|Free(ρr)|. To conclude, observe that the definition in step 2 (f) in the

protocol is equivalent to taking Y ′r = Y ′r−1 ◦ Y ′′′r , from which the bound holds.

Lemma 4.6. There is a constant c2 such that if q > k > c2∆ log q, then the above simulations computes
f(z) correctly and queries at most O(∆/ log(q/k)) bits of z.

Proof. We take c2 ≥ c1, so we can apply Lemma 4.5. Let I = Fix(ρ∆) and J = Free(ρ∆). Consider the
termination of the simulation. By part (4) of Lemma 4.5, the number of queries made on z is at most
|I| ≤ 3∆/ log(q/k).

In order to show correctness, we argue that z ∈ {Ind(X,Y) : X ∈ X∆, Y ∈ Y∆}. This implies the
simulation computes f(z) correctly. First, by part (2) of Lemma 4.5, we have that Ind(X ′, Y ′)I = zI . We
would next apply Lemma 3.1 to obtain that

{Ind(X ′′, Y ′′) : X ′′ ∈ X′′∆, Y
′′ ∈ Y′′∆} = {0, 1}J ,

and hence in particular z = Ind(X,Y) for some X ∈ X∆, Y ∈ Y∆.
We next verify the conditions needed to apply Lemma 3.1. Part (3) of Lemma 4.5 gives that X′′∆ is

k-spread. The above arguments and part (5) of Lemma 4.5 gives

|Y′′∆| ≥ 2−∆(8qn)−3∆/ log(q/k)2q|J| ≡ γ2q|J|,

where γ = 2−∆(8qn)−3∆/ log(q/k). In order to apply Lemma 4.5, we need k ≥ 4K log(2n/γ) = O(∆ log(q)).
Thus as long as k ≥ c1∆ log q for a large enough constant c1, the conditions holds.

Our main lifting theorem follows easily from the above:

Proof of Theorem 4.1. Let d = Pdt(f). Then, clearly Pcc(F) = ∆ ≤ d log q. Let Π be such a protocol and
run a simulation as outlined in the section for k = 2c1n log2 q for c1 as in the previous lemma. We can do so
as 2c1∆ log q ≤ 2c1d log2 q ≤ 2c1n log2 q < q if q > c2n log2 n for a sufficiently big c2.

The simulation gives us a decision tree for f with depth at most O(∆/ log(q/k)). Therefore, we must
have

∆ = Ω(Pdt(f) log(q/k)) = Ω(Pdt(f)) · log

(
q

n log2 q

)
.

References

[1] R. Alweiss, S. Lovett, K. Wu, and J. Zhang. Improved bounds for the sunflower lemma. arXiv preprint
arXiv:1908.08483, 2019.

[2] Y. Babichenko and A. Rubinstein. Communication complexity of approximate nash equilibria. In
H. Hatami, P. McKenzie, and V. King, editors, Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 878–889.
ACM, 2017.

13

[3] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. Approximate constraint satisfaction requires
large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.

[4] A. Chattopadhyay, Y. Filmus, S. Koroth, O. Meir, and T. Pitassi. Query-to-communication lifting for
bpp using inner product. arXiv preprint arXiv:1904.13056, 2019.

[5] A. Chattopadhyay, Y. Filmus, S. Koroth, O. Meir, and T. Pitassi. Query-to-communication lifting using
low-discrepancy gadgets. Electronic Colloquium on Computational Complexity (ECCC), 26:103, 2019.

[6] A. Chattopadhyay, N. S. Mande, and S. Sherif. The log-approximate-rank conjecture is false. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 42–53, 2019.

[7] S. F. de Rezende, O. Meir, J. Nordström, T. Pitassi, R. Robere, and M. Vinyals. Lifting with simple
gadgets and applications to circuit and proof complexity. arXiv preprint arXiv:2001.02144, 2020.

[8] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical
Society, 35(1):85–90, 1960.

[9] K. Frankston, J. Kahn, B. Narayanan, and J. Park. Thresholds versus fractional expectation-thresholds.
arXiv preprint arXiv:1910.13433, 2019.

[10] M. Göös. Lower bounds for clique vs. independent set. In V. Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 1066–1076. IEEE Computer Society, 2015.

[11] M. Göös, R. Jain, and T. Watson. Extension complexity of independent set polytopes. SIAM Journal
on Computing, 47(1):241–269, 2018.

[12] M. Göös, P. Kamath, T. Pitassi, and T. Watson. Query-to-communication lifting for p np. computational
complexity, 28(1):113–144, 2019.

[13] M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman. Rectangles are nonnegative juntas. SIAM
Journal on Computing, 45(5):1835–1869, 2016.

[14] M. Göös and T. Pitassi. Communication lower bounds via critical block sensitivity. In D. B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 847–856. ACM, 2014.

[15] M. Göös, T. Pitassi, and T. Watson. Query-to-communication lifting for BPP. Electronic Colloquium
on Computational Complexity (ECCC), 24:53, 2017.

[16] M. Göös, T. Pitassi, and T. Watson. Deterministic communication vs. partition number. SIAM Journal
on Computing, 47(6):2435–2450, 2018.

[17] M. Göös and A. Rubinstein. Near-optimal communication lower bounds for approximate nash equilibria.
In M. Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 397–403. IEEE Computer Society, 2018.

[18] S. Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer Science & Business
Media, 2012.

[19] P. K. Kothari, R. Meka, and P. Raghavendra. Approximating rectangles by juntas and weakly-
exponential lower bounds for LP relaxations of csps. In H. Hatami, P. McKenzie, and V. King, ed-
itors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 590–603. ACM, 2017.

[20] E. Kushilevitz. Communication complexity. In Advances in Computers, volume 44, pages 331–360.
Elsevier, 1997.

14

[21] J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite programming
relaxations. In R. A. Servedio and R. Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
567–576. ACM, 2015.

[22] X. Li, S. Lovett, and J. Zhang. Sunflowers and quasi-sunflowers from randomness extractors. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[23] T. Pitassi and R. Robere. Strongly exponential lower bounds for monotone computation. Electronic
Colloquium on Computational Complexity (ECCC), 23:188, 2016.

[24] A. Rao. Coding for sunflowers. arXiv preprint arXiv:1909.04774, 2019.

[25] R. Raz and P. McKenzie. Separation of the monotone nc hierarchy. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 234–243. IEEE, 1997.

[26] R. Robere, T. Pitassi, B. Rossman, and S. A. Cook. Exponential lower bounds for monotone span
programs. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
406–415. IEEE, 2016.

[27] A. A. Sherstov. The pattern matrix method for lower bounds on quantum communication. In C. Dwork,
editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 85–94. ACM, 2008.

[28] A. A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000, 2011.

[29] A. A. Sherstov. Communication lower bounds using directional derivatives. J. ACM, 61(6):34:1–34:71,
2014.

[30] X. Wu, P. Yao, and H. S. Yuen. Raz-mckenzie simulation with the inner product gadget.

[31] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Com-
puter and System Sciences, 43(3):441–466, 1991.

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

