
Unexpected Hardness Results for Kolmogorov Complexity

Under Uniform Reductions

Shuichi Hirahara

National Institute of Informatics

s hirahara@nii.ac.jp

April 18, 2020

Abstract

Hardness of computing the Kolmogorov complexity of a given string is closely tied to a
security proof of hitting set generators, and thus understanding hardness of Kolmogorov com-
plexity is one of the central questions in complexity theory. In this paper, we develop new proof
techniques to show hardness of computing Kolmogorov complexity under surprisingly efficient
reductions, which were previously conjectured to be impossible. It is known that the set RK

of Kolmogorov-random strings is PSPACE-hard under polynomial-time Turing reductions, i.e.,
PSPACE ⊆ PRK , and that NEXP ⊆ NPRK , which was conjectured to be tight by Allender [All12].
We prove that EXPNP ⊆ PRK , which simultaneously improves these hardness results and refutes
the conjecture of Allender under the plausible assumption that EXPNP 6= NEXP. At the core
of our results is a new security proof of a pseudorandom generator via a black-box uniform
reduction, which overcomes an impossibility result of Gutfreund and Vadhan [GV08].

Our proof techniques have further consequences, including:

1. Applying our proof techniques to the case of resource-bounded Kolmogorov complexity,
we obtain NP-hardness of the problem MINcKTSAT of computing conditional polynomial-
time-bounded SAT-oracle Kolmogorov complexity under polynomial-time deterministic re-
ductions. In contrast, the Minimum SAT-Oracle Circuit Size Problem cannot be NP-hard
under polynomial-time deterministic reductions without resolving EXP 6= ZPP. Our hard-
ness result is the first result that overcomes the non-NP-hardness results of MCSP. We also
prove DistNP-hardness of MINKTSAT, which is a partial converse of the approach of Hira-
hara [Hir18] for proving the equivalence between worst-case and average-case complexity
of NP.

2. We prove Sp2-hardness of Kolmogorov complexity under quasi-polynomial-time nonadaptive
reductions. This is the first result that overcomes a P/poly barrier result of Allender,
Buhrman, Friedman, and Loff [ABFL14].

We also establish a firm link between non-trivial satisfiability algorithms and the immunity
of random strings, and we obtain the following unconditional lower bounds.

1. It has been a long-standing open question whether the set of subexponential-time-bounded
Kolmogorov-random strings is decidable in P. We resolve this open question, by showing
that the set of super-polynomial-time-bounded Kolmogorov-random strings is P-immune,
which is a much stronger lower bound than an average-case lower bound.

2. The set of Levin’s Kolmogorov-random strings is (P-uniform ACC0)-immune.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 50 (2020)

mailto:s_hirahara@nii.ac.jp

Contents

1 Introduction 1

2 Kolmogorov-Randomness versus Pseudorandomness 2

2.1 Conjectures on Limits of Hardness of Kolmogorov-Random Strings 3

3 Overview of Our Results 4

3.1 NP-Hardness of SAT-Oracle MINcKT . 5
3.2 Hardness of Kolmogorov Complexity Under Nonadaptive Reductions 7
3.3 Non-Trivial Satisfiability Algorithms and Immunity of Random Strings 8
3.4 Proof Techniques . 9
3.5 Summary and Concluding Remarks . 11

4 Preliminaries 12

5 Randomized Enumeration Lemma for Functions 13

6 Hardness Under Randomized Reductions 16

7 Deterministic Enumeration Lemma for Strings 19

8 Hardness Under Deterministic Reductions 21

8.1 Hardness of MINcKT with SAT Oracle . 21
8.2 Symmetry of Information and Hardness of Kolmogorov Complexity 24
8.3 Average-Case NP-Hardness of SAT-Oracle MINKT 25

9 Satisfiability Algorithms and Immunity of Random Strings 27

1 Introduction

The holy grail of complexity theory is to separate complexity classes such as P and NP. Owing to
the Cook–Levin theorem [Coo71, Lev73] which shows the NP-completeness of SAT, the P versus NP
question reduces to the question of proving a lower bound for an arbitrary NP-complete problem.
As reported in [BM97, BT00], Kolmogorov, however, suggested that

NP-complete problems are probably too structured to be good candidates for separating
P from NP. One should rather focus on the intermediate less structured sets that
somehow are complex enough to prove separations.

As a specific candidate of less structured sets, he proposed to consider the set of resource-bounded
Kolmogorov-random strings.

The Kolmogorov complexity K(x) of a finite string x ∈ {0, 1}∗ is defined as the length of the
shortest program that prints x. More formally, fix a universal Turing machine U and define KU (x)
as the length of the shortest program d such that U outputs x on input d; the subscript U is often
omitted. Given a time bound t : N → N, the t-time-bounded Kolmogorov complexity Kt(x) of a
string x is defined as the length of the shortest program that prints x in t(|x|) steps. The notion of
Kolmogorov complexity induces the notion of randomness of a finite string. We say that a string x
is random (with respect to Kt) if Kt(x) ≥ |x| − 1; we denote by RKt the set of all random strings.

The approach of Kolmogorov can be stated as proving that RKt 6∈ P for some polynomial time
bound t(n) = nO(1). Note here that RKt is a problem in coNP; thus, RKt 6∈ P implies that P 6= NP.

Since the introduction of resource-bounded Kolmogorov-random strings ([Sip83, Har83, Ko86]),
the set of resource-bounded Kolmogorov-random strings has been well investigated. However, the
approach of Kolmogorov has not been fulfilled even for sub-exponential-time-bounded Kolmogorov
complexity. It is easy to see that RKt 6∈ P for any time bound t(n) = 2n

c
for any constant c > 1.

(Indeed, if RKt ∈ P, then one could print a random string of length n by an exhaustive search in
time 2n+O(logn), which is a contradiction.) For any constant 0 < ǫ ≤ 1, it has been a long-standing
open question1 to prove RKt 6∈ P for a time bound t(n) := 2n

ǫ
.

One of our results is to resolve this open question.

Theorem 1.1. RKt 6∈ P for any super-polynomial time bound t(n) = nω(1).

A natural approach for showing Theorem 1.1 is to present an efficient reduction from any
problem DTIME(nω(1)) to RKt . For example, it is easy to see that any EXP-complete problem
under polynomial-time Turing reductions is not computable in P using the time hierarchy theorem
[HS65]. Previously, it was known that RKt is EXP-complete under non-uniform polynomial-time
reductions or NP-Turing reductions for t(n) = 2n

ǫ
with a constant ǫ > 0 [ABK+06b]; however,

these reductions are not efficient enough to prove the unconditional lower bound of Theorem 1.1
(because EXP 6⊆ P/poly and EXP 6⊆ NP are open).

We herein develop new proof techniques for showing hardness of computing Kolmogorov com-
plexity under surprisingly efficient reductions, which were previously conjectured to be impossible.
In Section 2, we present the importance of understanding hardness of Kolmogorov complexity while
reviewing the literature. We state our results in Section 3 in more detail.

1 According to Eric Allender and Osamu Watanabe (personal communication).

1

2 Kolmogorov-Randomness versus Pseudorandomness

A line of work uncovered a close relationship between Kolmogorov-randomness and pseudoran-
domness, or more specifically, the equivalence between hardness of deciding the set of Kolmogorov-
random strings and a security proof of hitting set generators. A family of functions G = {Gn :
{0, 1}s(n) → {0, 1}n}n∈N is called a hitting set generator secure against a circuit class C if, for
every n-input circuit C ∈ C such that C accepts at least a half of n-bit inputs, there exists a seed
z ∈ {0, 1}s(n) such that C accepts G(z). We say that an algorithm C is a distinguisher for a hitting
set generator G if C violates this condition, i.e., C rejects every string in the range of G whereas
C accepts at least a half of strings. The existence of an efficient hitting set generator enables us
to derandomize a one-sided-error randomized C-algorithm by simply trying all seeds z ∈ {0, 1}s(n)

and using G(z) as a source of randomness.
The following two directions exhibit the close connection between Kolmogorov-randomness and

pseudorandomness.

1. (Kolmogorov-randomness is easy =⇒ no pseudorandomness)

The set RK of Kolmogorov-random strings is a distinguisher for a hitting set generator.
Indeed, for any computable hitting set generator G = {Gn}n∈N, the Kolmogorov complexity
of Gn(z) is small: K(Gn(z)) ≤ s(n) + O(logn) for any z ∈ {0, 1}s(n); thus Gn(z) 6∈ RK. On
the other hand, by a simple counting argument, most strings are random: w ∈ RK holds with
high probability over the choice of a uniformly at random w.

Allender, Buhrman, Koucký, van Melkebeek, and Ronneburger [ABK+06b] exploited this fact
and presented a number of hardness results of Kolmogorov complexity.

2. (no pseudorandomness =⇒ Kolmogorov-randomness is easy)

Conversely, any efficient distinguisher for a hitting set generator gives rise to an efficient al-
gorithm for “approximating” the set of Kolmogorov-random strings. Hirahara [Hir18] proved
this direction for time-bounded Kolmogorov complexity via a non-black-box reduction.

According to Item 1, any computable hitting set generator construction whose security is
based on hardness of some function f gives rise to an efficient reduction from f to RK. Allen-
der et al. [ABK+06b] used a pseudorandom generator2 constructed by Babai, Fortnow, Nisan, and
Wigderson [BFNW93] to show that the halting problem is reducible to RK via polynomial-size cir-
cuit reductions. Using the pseudorandom generator constructed by Trevisan and Vadhan [TV07]
based on a uniform hardness assumption on a PSPACE-complete problem, they also showed that
PSPACE ⊆ PRK , which improves an earlier result of Buhrman and Torenvliet [BT00]. Similarly,
Allender, Buhrman, and Koucký [ABK06a] showed that NEXP ⊆ NPRK .

According to Item 2, the approach taken by Allender et al. [ABK+06b] for showing hardness
of RK is likely to be a universal approach — at least in a resource-bounded and non-black-box
reduction setting. In particular, any hardness result of approximating time-bounded Kolmogorov
complexity can be converted to a security proof of some hitting set generator.

To summarize, understanding hardness of Kolmogorov complexity is central to the study of
pseudorandomness because it clarifies the types of problems whose hardness can give rise to a
hitting set generator.

2 A pseudorandom generator is a stronger notion than a hitting set generator that can derandomize a two-sided-
error randomized algorithm.

2

2.1 Conjectures on Limits of Hardness of Kolmogorov-Random Strings

The PSPACE-hardness and NEXP-hardness results mentioned above were conjectured to be
“tight” in a certain formal sense. Allender [All12] conjectured that the NEXP-hardness result of
RK under NP-Turing reductions is tight; Allender, Buhrman, and Koucký [ABK06a] speculated that
PSPACE could be characterized by an efficient reduction to RKU

by “factoring out” a particular
choice of universal Turing machine U ; here, a machine U is said to be universal if, for any machine
M , there exists a constant c such that KU (x) ≤ KM (x) + c for any x ∈ {0, 1}∗. The hardness
results mentioned before hold for an arbitrary universal Turing machine. That is, for any universal
Turing machine U , the following hold.

• PSPACE ⊆ PRKU [ABK+06b].

• NEXP ⊆ NPRKU [ABK06a].

• EXPNP ⊆ PNP
RKU and EXPH ⊆ PHRKU [Hir20].

A typical pattern in these previous results is that the set of random strings provides (at most)
exponential-time speed up. The conjectures of [ABK06a, All12] can be formally stated as follows.3

Hypothesis 2.1 (Allender, Buhrman, and Koucký [ABK06a]).

PSPACE =
⋂

U

PRKU .

Conjecture 2.2 (Allender [All12]).

NEXP =
⋂

U

NPRKU .

Here, the intersections are taken over all universal Turing machines U .

Allender, Friedman, and Gasarch [AFG13] (together with the result of [CDE+14]) showed that⋂
U NPRKU ⊆ EXPSPACE, where the intersection is taken over all prefix-free universal Turing

machines.4 That is,

PSPACE ⊆
⋂

U

PRKU ⊆ EXPSPACE.

Conjecture 2.2 states that the EXPSPACE upper bound is probably too loose, and that the class⋂
U PRKU is much closer to the lower bound. The reader is referred to a recent survey of Allender

[All17] for more background.
While the original work of [ABK06a] provided little evidence supporting Hypothesis 2.1, their

hypothesis is in fact quite plausible from the perspective of derandomization under uniform hardness
assumptions. Subsequent to [ABK06a], Gutfreund and Vadhan [GV08] showed that the pseudo-
random generator construction of Trevisan and Vadhan [TV07] is not likely to be improved beyond
PSPACE. Specifically, they showed that there exists no hitting set generator whose security can be
based on any problem outside PSPACE/poly via a black-box mildly-adaptive reduction.

3While the authors of [ABK06a] speculated that Hypothesis 2.1 might be true, they stopped short of calling it a
“conjecture.”

4 For the sake of simplicity, we ignore a potential difference between prefix-free Kolmogorov complexity and plain
Kolmogorov complexity because Hirahara and Kawamura [HK18] proved that the same EXPSPACE upper bound can
be obtained for plain universal Turing machines by imposing a very mild restriction on a reduction.

3

Theorem 2.3 (Limits of a Black-Box Security Proof; Gutfreund and Vadhan [GV08]). Let L 6∈
PSPACE/poly be an arbitrary problem. Then, there exists no hitting set generator G = {G :
{0, 1}s(n) → {0, 1}n}n∈N with s(n) < n/4 such that there exists a randomized polynomial-time
mildly-adaptive reduction from L to R, where R is an arbitrary distinguisher for G.

This results can be seen as evidence supporting Hypothesis 2.1: There is a PSPACE/poly upper
bound on the class of problems that are mildly-adaptive-reducible to an arbitrary distinguisher R
(instead of RKU

) for a hitting set generator, which is a subclass of
⋂

U PRKU .5

3 Overview of Our Results

In this work, we develop new proof techniques for showing the security of a hitting set generator
under surprisingly efficient reductions, which overcome the impossibility result of Gutfreund and
Vadhan.6 We prove

Theorem 3.1 (Unexpected Power of Polynomial-Time Reductions to RK).

EXPNP ⊆ PRK .

Theorem 3.1 shows EXPNP-hardness ofRK under polynomial-time Turing reductions, which were
conjectured to be impossible in light of Conjecture 2.2. More specifically, Theorem 3.1 refutes both
Hypothesis 2.1 and Conjecture 2.2 simultaneously under the plausible assumption that EXPNP 6=
NEXP. It is also worth mentioning that all of the previous results [ABK+06b, ABK06a, Hir20] on
hardness of RK under uniform reductions provided at most exponential-time speed up by using
efficient PCP-type proof systems; Theorem 3.1 is the first result showing that RK provides more
than exponential-time speed up.

How do we overcome the impossibility result of Gutfreund and Vadhan? The point is that the
impossibility result of Theorem 2.3 is known to hold only for s(n) < n/4, that is, a hitting set
generator that stretches its seed by a factor of 4. At the core of Theorem 3.1 is the following new
construction of a pseudorandom generator that stretches its seed by a small amount; its security is
based on a uniform hardness assumption on EXPNP and can be proved by a black-box reduction.

Theorem 3.2. There exists an EXPNP-computable pseudorandom generator

G = {Gn : {0, 1}n−O(logn) → {0, 1}n}n∈N

such that EXPNP ⊆ BPPD for any distinguisher D for G.

It is worth mentioning that Theorem 3.2 is nearly tight. Indeed, in our previous work [Hir20],
we showed an almost matching upper bound

⋂
D BPPD ⊆ S

exp
2 , where the intersection is taken over

all distinguishers D for an arbitrary function G. Here, Sexp2 is the exponential-time analogue of the
class S

p
2 of problems that admit a two-competing-prover system, and it is known that EXPNP ⊆

S
exp
2 ⊆ ZPEXPNP ([RS98, Cai07]). In the same paper [Hir20], we proved a much weaker result

5 This upper bound holds even if the reduction is assumed to be randomized because PRKU = BPP
RKU [ABK+06b].

6 Impagliazzo and Wigderson [IW01] constructed a pseudorandom generator based on a uniform hardness assump-
tion of EXP. As noted in [GV08], their security proof is a non-black-box reduction, and thus the result of [IW01]
does not refute Conjecture 2.2. In contrast, our focus here is a black-box security proof.

4

showing that EXPNP ⊆ PNPRK , which is not sufficient for refuting Conjecture 2.2; Theorem 3.1
significantly improves the reducibility notion from PNP-Turing reductions to P-Turing reductions.

Theorem 3.2 is not subject to the impossibility result of Theorem 2.3 because of the following
two reasons. First, the seed length of our pseudorandom generator is close to the output length.
Second, the security reduction of Theorem 3.2 is not necessarily mildly adaptive; however, the latter
reason does not seem to be essential. Indeed, even in the case of nonadaptive reductions, we will
show that NEXP and coNEXP are reducible to RK. Hirahara and Watanabe [HW19] improved the
impossibility result of Theorem 2.3 to NP/poly ∩ coNP/poly for nonadaptive reductions; therefore,
our proof techniques overcome the impossibility result because our pseudorandom generator extends
its seed by a small amount (unless NEXP ⊆ NP/poly ∩ coNP/poly).

3.1 NP-Hardness of SAT-Oracle MINcKT

Our proof techniques behind Theorem 3.1 are applicable to a wide range of questions about
hardness of Kolmogorov complexity, including resource-bounded Kolmogorov complexity.

Understanding hardness of time-bounded Kolmogorov complexity is closely connected to one
of the central questions of complexity theory — an equivalence between average-case and worst-
case complexity of NP. Hirahara [Hir18] showed that NP-completeness of GapMINKT implies
an equivalence between average-case and worst-case complexity of NP. Here, GapMINKT is an
approximation version of the problem of deciding whether Kt(x) ≤ s given (x, 1t, 1s) as input. The
proof technique of [Hir18] is not subject to the well-known black-box reduction barrier of Bogdanov
and Trevisan [BT06], and thus, proving NP-completeness of GapMINKT is a reasonable approach
for establishing an equivalence between average-case and worst-case complexity of NP.

We herein establish NP-hardness of a problem closely related to MINKT, thereby making a
progress towards better understanding of hardness of MINKT.

Theorem 3.3 (NP-hardness of a conditional version of MINKTSAT).

MINcKTSAT is PNP-hard under polynomial-time nonadaptive reductions.

Here, MINcKTSAT is a problem of deciding whether Kt,SAT(x|y) ≤ s given (x, y, 1t, 1s) as input,
where Kt,SAT(x|y) is the minimum size of a program that outputs x given y as input and oracle
access to SAT; we assume that t is “sufficiently large,” as otherwise Kt might largely depend
on a particular choice of universal machines.7 (We defer a precise definition of MINcKTSAT to
Section 8.1.) It is easy to see that MINcKTSAT is a problem in Σ

p
2 = NPNP.

Now we review several results related to Theorem 3.3, and then explain its importance. A
closely related question is NP-hardness of the Minimum Circuit Size Problem (MCSP), which is
the problem of asking, given the truth table of a Boolean function f and a size parameter s as
input, whether there exists a circuit of size at most s that computes f . The minimum circuit size
of a function represented by a string x can be regarded as a “sublinear-time-bounded Kolmogorov
complexity” of x, in the sense that each bit of a string can be efficiently described (cf. KT-complexity
[ABK+06b]). While NP-hardness of MCSP is widely open, there has been a line of work which
proves NP-hardness of variants of MCSP, such as MCSP for DNF formulas [Mas79, AHM+08],
MCSP for DNF ◦ XOR circuits [HOS18], and an oracle variant of MCSP [Ila20]. These results

7We mention that Vazirani and Vazirani [VV83] proved NP-hardness of a version of MINcKT for a specific choice
of U and a time bound t fixed to be linear.

5

exploit the fact that an underlying computational model is “weak” in the sense that one can prove
some lower bound (for DNF ◦ XOR circuits or a limited access to an oracle).

In contrast, our proofs exploit the fact that the underlying computational model is strong in
the sense that a satisfying assignment is computable in PSAT. Our proof techniques are more rel-
evant to a result of Allender et al. [ABK+06b], which shows PSPACE-completeness of MCSPQBF

(and MINKTQBF) under ZPP-Turing reductions, where QBF is a PSPACE-complete problem. Im-
pagliazzo, Kabanets, and Volkovich [IKV18] generalized it to A-hardness of MCSPA for complete
problems A of several complexity classes (such as PP,#P, and ⊕P). It has been an open question
to present a strong hardness result8 of MCSPA, MINKTA or MINcKTA for any oracle A within
PH. Theorem 3.3 resolves this question for MINcKTSAT.

In addition, a surprising fact is that Theorem 3.3 is a hardness result under deterministic re-
ductions. A line of work [KC00, AHK17, MW17, HP15, HW16, AH17] showed that NP-hardness
of MCSP or time-bounded Kolmogorov complexity under deterministic reductions implies circuit
lower bounds (or a contradiction), which suggests that deterministic reductions are too strong a re-
ducibility notion to prove hardness results for time-bounded Kolmogorov complexity. Theorem 3.3
is the first hardness result of polynomial-time-bounded Kolmogorov complexity that overcomes
these “non-NP-hardness” results. Indeed, prior to this work, the only hardness results of Kol-
mogorov complexity under deterministic reductions we are aware of were (1) BPP-hardness of RK

under nonadaptive reductions [BFKL10], and (2) PSPACE-hardness of RK under adaptive reduc-
tions [ABK+06b]. Their proof techniques do not work for exponential-time-bounded Kolmogorov
complexity.9

A key to overcoming the non-NP-hardness barrier is that (1) MCSP is a problem about sublinear-
time-bounded Kolmogorov complexity (whereas MINcKT is not), and that (2) one can compute a
satisfying assignment in PSAT. Both of these conditions are indispensable. Indeed, by adapting the
proof techniques of [MW17, HW16], we show that it is impossible to improve the NP-hardness of
MINcKTSAT to MCSPSAT or MINcKT without resolving the notorious open question that EXP 6=
ZPP.

Proposition 3.4 (Tightness of Theorem 3.3). If either

• MCSPSAT is NP-hard under polynomial-time nonadaptive reductions, or

• MINcKT is NP-hard under polynomial-time nonadaptive reductions,

then EXP 6= ZPP.

It is natural to ask whether a similar hardness result can be proved for an “unconditional”
version MINKTSAT of MINcKTSAT. We prove that MINKTSAT is average-case NP-hard in the
following sense.

Theorem 3.5 (DistNP-hardness of MINKTSAT).

If MINKTSAT ∈ BPP, then DistNP ⊆ HeurBPP.

8 One of the best hardness results of MCSP is the SZK-hardness shown by Allender and Das [AD17], where
SZK ⊆ AM ∩ coAM.

9 The hardness result of Buhrman, Fortnow, Koucký, and Loff [BFKL10] works for RKt where t(n) = 22
2n

;

however, it is impossible to prove a BPP-hardness result for t(n) = 2n
2

without resolving BPP 6= EXP because of a
result of Buhrman and Mayordomo [BM97] (see [BFKL10]).

6

This suggests that the approach of [Hir18] for establishing an equivalence between worst-case
and average-case complexity of NP is likely to be a “universal approach.” Indeed, Theorem 3.5
implies that it is impossible to prove the implication that NP 6⊆ BPP ⇒ DistNP 6⊆ HeurBPP (i.e., an
equivalence between worst-case to average-case complexity of NP) without proving NP 6⊆ BPP ⇒
MINKTSAT 6∈ BPP (i.e., NP-hardness of MINKTSAT under non-black-box reductions). That is,
proving NP-hardness of MINKTSAT is a prerequisite for establishing the equivalence between worst-
case and average-case complexity of NP; Note that, conversely, proving NP-hardness of GapMINKT
is sufficient for establishing a worst-case-and-average-case equivalence of NP [Hir18].

3.2 Hardness of Kolmogorov Complexity Under Nonadaptive Reductions

In the case of resource-unbounded Kolmogorov complexity, we can dispense with conditional
Kolmogorov complexity using symmetry of information. Specifically, we prove that Sp2

(
⊇ PNP

)
is

reducible to computing Kolmogorov complexity via a quasipolynomial-time nonadaptive reduction.

Theorem 3.6. S
p
2 ⊆ quasiP

K(-)
‖ , where K(-) is an oracle that answers K(q) for any query q ∈ {0, 1}∗

and the class quasiPA
‖ denotes the class of problems nonadaptively reducible to A in quasipolynomial

time.

We briefly explain below the context of Theorem 3.6 and its importance. A line of work
attempted to characterize BPP in terms of nonadaptive reductions to the set RK of Kolmogorov-
random strings. We summarize known lower bounds and upper bounds below.

Theorem 3.7 ([BFKL10, AFG13, CDE+14]).

BPP ⊆
⋂

U

P
RKU

‖ ⊆
⋂

U

P
KU (-)
‖ ⊆ PSPACE,

where the intersections are taken over all prefix-free universal Turing machines U .

Allender [All12] and others [BFKL10, ADF+13, ABFL14, HK18] conjectured that the BPP

lower bound for
⋂

U P
RK

‖ is tight. One of the main intuitions behind this conjecture is that, in the
case of reductions to the set RKt of time-bounded Kolmogorov complexity, the upper bound can
be improved to PSPACE ∩ P/poly. Specifically,

Theorem 3.8 (Allender, Buhrman, Friedman, and Loff [ABFL14]). For any time bound t0, there
exists a time bound t such that, for any language A ∈ DTIME(t0)∩ PRKt , it holds that A ∈ P/poly.

This can be seen as a strong barrier result: It is impossible to reduce any problem in EXP\P/poly
to RKt via a deterministic reduction for a sufficiently large t. In particular, in order to reduce, for
example, NP to RK via a deterministic reduction, we need to rely on a property of K that does not
hold for Kt for a sufficiently large t.

In our previous work [Hir20], we essentially refuted the conjecture of Allender [All12], by show-
ing that any sparse language in PH is quasipolynomial-time nonadaptively reducible to RK; in

particular, BPP 6=
⋂

U P
RKU

‖ unless EXPH = BPEXP. However, any sparse language is trivially in

P/poly, and thus, the reduction is subject to the barrier of Theorem 3.8.
Theorem 3.6 is the first hardness result under nonadaptive deterministic reductions that over-

comes the barrier of Theorem 3.8 (unless NP ⊆ P/poly). A key for overcoming the barrier is the

7

usage of symmetry of information. Note that symmetry of information of Kolmogorov complexity
does not necessarily hold in a time-bounded settings.10

3.3 Non-Trivial Satisfiability Algorithms and Immunity of Random Strings

Inspired by our efficient reductions, we obtain new lower bounds for the set of time-bounded
Kolmogorov-random strings. For a complexity class C, a language R ⊆ {0, 1}∗ is called C-immune
(or immune to C) if R is infinite and there exists no infinite set L ∈ C such that L ⊆ R. The notion
of immunity is a much stronger lower bound than an average-case lower bound: The P-immunity of
R implies that any errorless polynomial-time heuristic algorithm can solve R on only finitely many
inputs in R. We herein show P-immunity of RKt .

Theorem 3.9. RKt is P-immune for any super-polynomial t.

Previously, Ko [Ko91] observed that RKt is immune to the class of P-printable languages; a
P-printable language is, by the definition, contained in the set of nonrandom strings. Theorem 3.9
significantly strengthens this, and it resolves the open question mentioned in Section 1 (i.e., Theo-
rem 3.9 implies Theorem 1.1).

We also show a lower bound against P-uniform ACC0 for another variant of time-bounded
Kolmogorov complexity. The Levin’s Kt-complexity [Lev84] of a string x ∈ {0, 1}∗ is defined as

Kt(x) := min{ |d|+ log t | U outputs x in t steps on input d }.

The set RKt of random strings with respect to Kt is known to be EXP-complete under P/poly
reductions or NP-Turing reductions [ABK+06b]. It is an open question to prove a strong lower
bound for RKt, such as RKt 6∈ P. For other variants of RKt such as RKNt and RrKt (which are NEXP-
complete and BPEXP-complete variants of RKt, respectively), lower bounds against NP∩ coNP and
BPP, respectively, are known [AKRR11, AS12, Oli19]. The original question about RKt, however,
remains elusive. We make a progress towards understanding the complexity of RKt by showing

Theorem 3.10. RKt is (P-uniform ACC0)-immune.

These results are obtained by establishing a firm link between a non-trivial satisfiability algo-
rithm and immunity. Here, by a non-trivial satisfiability algorithm for a circuit class C, we mean
that an algorithm that takes an n-input size-s circuit C ∈ C as input and outputs a satisfying assign-
ment for C, if exists, in time poly(s) ·2n−ω(log n). In the celebrated work of Williams [Wil13, Wil14],
he showed that a non-trivial satisfiability algorithm for C implies NEXP 6⊆ C, and he presented
a non-trivial satisfiability algorithm for non-uniform ACC0, thereby establishing an algorithmic
approach for circuit lower bounds.

How do we compare the approach of Kolmogorov mentioned in Section 1 with Williams’ ap-
proach? At a first glance, these approaches seem to be quite orthogonal in that Williams’ approach
focuses on the satisfiability problem, which is a canonical NP-complete problem. Somewhat sur-
prisingly, we make a connection among these different approaches: The existence of a non-trivial
satisfiability algorithm is equivalent to proving a strong lower bound (immunity) for the set of
random strings with respect to Levin’s Kt-complexity.

10 We mention that symmetry of information for resource-bounded Kolmogorov complexity studied in, e.g., [LW95,
LR05] is not enough for our reductions to work. We also mention that symmetry of information provably does not
hold for Kt [Ron04].

8

Theorem 3.11. For any circuit class C, the following are equivalent.

1. There exists a non-trivial satisfiability algorithm for P-uniform C-circuits.

2. There exists a time-constructible function s : N → N satisfying s(n) = n− ω(log n) such that
the set of strings x such that Kt(x) ≥ s(|x|) is immune to P-uniform C.

3.4 Proof Techniques

EXPNP-Hardness. We sketch a basic proof idea of Theorem 3.1 below. For simplicity, we provide
a proof sketch for EXPNP ⊆ BPPRK . To this end, we aim at constructing a pseudorandom generator
whose security is based on a uniform hardness assumption of EXPNP (e.g., EXPNP 6⊆ BPP).

Let f = {fn : {0, 1}n → {0, 1}}n∈N denote a computable function supposed to be hard. At the
core of our results is the following well-known construction of a pseudorandom generator:

DPfn
k (z1, · · · , zk) = (z1, · · · , zk, f̃n(z1), · · · , f̃n(zk)).

Here, f̃n is a version of f encoded by some appropriate locally-list-decodable error-correcting
code. We refer DPfn

k as a k-wise direct product generator. This is a pseudorandom generator

DPfn
k : {0, 1}d → {0, 1}d+k that extends a seed of length d = O(nk) to a pseudorandom sequence of

length d+k. As mentioned in Section 2, the set RK of Kolmogorov-random strings is a distinguisher
for DPfn

k when k is large enough; indeed, for any seed z̄ of length d,

K(DPfn
k (z̄)) ≤ d+O(log n) ≪ d+ k,

where we choose the parameter k = O(logn) large enough so that the last inequality holds. There-

fore, RK can distinguish the output distribution of DPfn
k (-) from the uniform distribution of (d+k)-

bit strings.
At a high level, our key idea is that the k-wise direct product generator is a pseudorandom

generator construction with very small advice complexity ; the advice complexity is so small that
one can exhaustively search all advice strings efficiently. We explain the details below.

Recall the following standard security proof of the k-wise direct product generator DPfn
k . By

using a standard hybrid argument, it can be shown that, if there exists a distinguisher D for DPfn
k ,

then there exists a small D-oracle circuit C̃D that approximates f̃n. By using a locally-list-decoding
algorithm, the circuit C̃D can be converted to a small D-oracle circuit CD that computes fn on
every input. Therefore, if fn is indeed a hard function in the sense that no small circuit can compute
fn, then the circuit size of D must be large; in other words, DPfn

k is a pseudorandom generator
secure against small circuits.

Unfortunately, the proof sketch above is not enough for obtaining a pseudorandom generator
based on uniform hardness assumptions. Recall that our hardness assumption is that there exists a
function f ∈ EXPNP such that f is not computable by efficient uniform algorithms (e.g., f 6∈ BPP).
In contrast, the security proof above produces a small circuit that computes a hard function f .

Impagliazzo and Wigderson [IW01] and Trevisan and Vadhan [TV07] constructed a pseudo-
random generator based on uniform hardness assumptions of a problem in PSPACE, by exploiting
downward self-reducibility and an instance checkability of f ∈ PSPACE. Unfortunately, since any
downward-self-reducible function f is in PSPACE, their proof ideas are not enough for overcoming
the barrier of Gutfreund and Vadhan [GV08] in the black-box security reduction setting.

9

Our new insight is this: The “advice complexity” of the reconstruction procedure for the k-wise
direct product is roughly at most k bits. In other words, given a distinguisher D for DPfn

k , one
can produce at most 2k small D-oracle circuits C1, · · · , C2k , one of which is guaranteed to compute
the hard function fn. The following “Enumeration Lemma for Functions” encapsulates the key
property of DPfn

k .

Lemma 5.5 ((A corollary of) Enumeration Lemma for Functions). Let f := {fn : {0, 1}n →
{0, 1}}n∈N be a computable family of functions. Then, there exists a randomized polynomial-
time algorithm that, given 1n as input, with high probability, outputs a list of RK-oracle circuits
CRK
1 , · · · , CRK

m one of which computes fn.

It remains to compute f by a randomized polynomial-time algorithm with the help of oracles
C1, · · · , Cm, one of which is guaranteed to compute f . This property is exactly captured by the
notion of (oracle) selector, which was introduced in [Hir15]. The main result of [Hir15] is that
there exists a randomized polynomial-time selector for any EXPNP-complete problem. A selector
for a function f is an efficient oracle algorithm that computes f , given oracle access to C1, · · · , Cm

one of which is guaranteed to compute f . The claim EXPNP ⊆ BPPRK follows by combining the
Enumeration Lemma and the selector for an EXPNP-complete problem.

Enumeration Lemma for Auxiliary-Input Functions. In order to prove the NP-hardness
of MINcKTSAT (i.e., Theorem 3.3), we generalize the Enumeration Lemma for a function family
f = {fx : {0, 1}ℓ(|x|) → {0, 1}}x∈{0,1}∗ indexed by an auxiliary input x ∈ {0, 1}∗: Assume that

there exists an oracle D such that D(x, -) distinguishes the output distribution of DPfx
k (-) from

the uniform distribution. Then, by using the fact that the advice complexity of the direct product
generator is small, given x as input, one can efficiently produce a list of D-oracle circuits one of
which compute fx. We call this “Enumeration Lemma for Auxiliary-Input Functions.”

A key idea for obtaining NP-hardness of MINcKTSAT is as follows. For a formula ϕ and a string
w, define an oracle D as D(ϕ,w) := 1 iff Kt,SAT(w|ϕ) < |w| − 1 for a sufficiently large polynomial
t. Then, it can be shown that the oracle D(ϕ, -) distinguishes the output distribution of DP

aϕ
k (-)

from the uniform distribution for k = O(1), where aϕ is a function that encodes a satisfying
assignment of ϕ ∈ SAT. By applying the Enumeration Lemma for Auxiliary-Input Functions, we
obtain a randomized algorithm that enumerates a list of circuits one of which encodes a satisfying
assignment for ϕ, which enables us to reduce SAT to MINcKTSAT.

Hardness Under Deterministic Reductions. The outline above provides NP-hardness of
MINcKTSAT under randomized reductions. By inspecting the proof carefully, the number of ran-
dom bits used in the Enumeration Lemma for Auxiliary-Input Functions f = {fx : {0, 1}ℓ(|x|) →
{0, 1}}x∈{0,1}∗ can be reduced to O(k · ℓ(|x|)) bits, where k is the parameter of the direct product
generator. Therefore, if the input length ℓ(|x|) of fx is logarithmic and k is constant, one can simply
exhaustively search random bits in polynomial time, which enables us to obtain NP-hardness of
MINcKTSAT under deterministic reductions. To summarize the discussion above, a key to our hard-
ness results under deterministic reductions is the following “Deterministic Enumeration Lemma for
Strings.”

Lemma 7.3 (Deterministic Enumeration Lemma for Strings). Let D be an oracle, k, p : N →
N be polynomials. Let y := {yx ∈ {0, 1}p(|x|)}x∈{0,1}∗ be an indexed family of strings such that
D(x, -) is a distinguisher for DPyx

k(|x|)(-), for every x ∈ {0, 1}∗, where we regard yx as a function

yx : {0, 1}
⌈log p(|x|)⌉ → {0, 1}. Then, there exists a deterministic nO(k(n))-time oracle algorithm that,

10

given x ∈ {0, 1}∗ of length n as input and oracle access to D, outputs a list Y ⊆ {0, 1}∗ of strings
that contains yx.

In the case of resource-unbounded Kolmogorov complexity, it is possible to define a distinguisher
D without using conditional Kolmogorov complexity. Define D as D(x,w) = 1 if and only if
K(x,w) ≤ K(x)+ |w|−O(log |x|) for x,w ∈ {0, 1}∗. Using symmetry of information of Kolmogorov
complexity, it can be shown that D(x, -) is a distinguisher for the k-wise direct product generator
DPyx

k (-), where k = O(log |x|) and y = {yx ∈ {0, 1}p(|x|)}x∈{0,1}∗ is an arbitrary computable indexed
family of strings.

Proof Idea for the Unconditional Lower Bounds. We originally found a complicated proof
outline for proving the lower bound RKt 6∈ P of Theorem 1.1 for a sub-exponential time bound
t(n) = 2n

ǫ
with a constant ǫ > 0, based on our efficient reductions. The original idea was, using

our hardness results under deterministic reductions, to obtain a contradiction with the average-case
hierarchy theorem of [Wil83, GW00], which states that there exists a problem L ∈ DTIME(2n

ǫ
) \

Heur-quasiP. Then we were able to significantly simplify the proof and strengthen the lower bound,
based on the connection between non-trivial satisfiability algorithms and immunity. The main idea
for proving RKt 6∈ P is to have an advice string a ∈ {0, 1}n−O(logn), and to then try to solve the
satisfiability problem for the remaining O(log n)-bits input by an exhaustive search. This can be
shown to be a “non-trivial satisfiability algorithm” with respect to the definition of Kt.

3.5 Summary and Concluding Remarks

We presented new hardness results of Kolmogorov complexity under surprisingly efficient reduc-
tions, which overcome several barrier results. We summarize hardness results and corresponding
barriers below.

1. EXPNP ⊆ PRK (Theorem 3.1), which overcomes the barrier result of Gutfreund and Vad-
han [GV08] (Theorem 2.3). A key to overcome the barrier is to consider a pseudorandom
generator that stretches its seed by a small amount.

2. MINcKTSAT is NP-hard under deterministic reductions (Theorem 3.3), which overcomes the
non-NP-hardness results of [KC00, AHK17, MW17, HP15, HW16, AH17] on MCSP. A key
to overcome the barrier is that

(a) MINcKTSAT is a problem about polynomial-time-bounded Kolmogorov complexity, whereas
MCSPSAT is a problem about a sublinear-time-bounded Kolmogorov complexity, and
that

(b) one can compute a satisfying assignment in PSAT.

Note that both of these conditions are indispensable, as shown in Proposition 3.4.

3. S
p
2 ⊆ quasiP

K(-)
‖ (Theorem 3.6), which overcomes the P/poly barrier result of Allender,

Buhrman, Friedman, and Loff [ABFL14] (Theorem 3.8). A key to overcome the barrier
is to exploit symmetry of information of resource-unbounded Kolmogorov complexity.

It is worth emphasizing that our proof techniques provide nearly tight results from several
perspectives. Theorem 3.2 is nearly tight in the sense that EXPNP ⊆

⋂
D BPPD ⊆ S

exp
2 , where

the intersection is taken over all distinguishers D for the pseudorandom generator of Theorem 3.2.

11

Theorem 3.3 is tight in the sense of Proposition 3.4. These facts suggest that the direct product
generator, one of the simplest constructions of a pseudorandom generator, is a key to understanding
hardness of Kolmogorov complexity.

Organization

The rest of this paper is organized as follows. After reviewing some standard notions in Sec-
tion 4, we prove the Enumeration Lemma in Section 5. Section 6 contains the applications of
the Enumeration Lemma. We prove the Deterministic Enumeration Lemma in Section 7 and pro-
vide its application in Section 8. In Section 9, we establish the connection between a non-trivial
satisfiability algorithm and immunity.

4 Preliminaries

Notation. A language L ⊆ {0, 1}∗ is often identified with its characteristic function L : {0, 1}∗ →
{0, 1}. We denote by quasiP := DTIME(2polylog(n)). Let [n] := {1, . . . , n} for n ∈ N. A function
t : N → N is referred to as a time bound if t is non-decreasing and time-constructible. We often
regard an integer t ∈ N as a constant function t : N → N always mapping to t.

For a Boolean function f : {0, 1}n → {0, 1}, we denote by tt(f) the truth table of f , i.e., the
concatenation of f(x) for all x ∈ {0, 1}n in the lexicographical order. Conversely, for a string
y ∈ {0, 1}N , the function fn(y) : {0, 1}⌈logN⌉ → {0, 1} is defined as fn(y)(i) := (the ith bit of y) if
i ≤ N and fn(y)(i) := 0 otherwise, where i ∈ [2⌈logN⌉] is identified with a binary representation in
{0, 1}⌈logN⌉.

We often identify a circuit C with the function computed by C. For a circuit C, denote by |C|
the size of a circuit. For a string x and an oracle A, we denote by sizeA(x) the size of a minimum
A-oracle circuit that computes fn(x).

For strings x, y ∈ {0, 1}∗ of the same length, we denote by Dist(x, y) the fraction of indices i
such that xi 6= yi.

Kolmogorov Complexity. Let Kµ be any variant of Kolmogorov complexity. For a function
s : N → N, a string x ∈ {0, 1}∗ is said to be s(-)-random with respect to Kµ if Kµ(x) ≥ s(|x|).
We denote by Rs

Kµ
the set of s-random strings with respect to Kµ, i.e., R

s
Kµ

:= {x ∈ {0, 1}∗ |

Kµ(x) ≥ s(|x|) }. Our results (except for Section 9) hold for any randomness threshold s such that
n−O(1) ≤ s(n) ≤ n−1; for the sake of simplicity, we assume that s(n) := n−1 by default, and we
drop the superscript s in this case, i.e., RKµ := {x ∈ {0, 1}∗ | Kµ(x) ≥ |x| − 1 }. A simple counting
argument shows:

Fact 4.1. |{0, 1}n \RKµ | ≤ 2n−1 for any n ∈ N.

Proof. The number of non-s(-)-random strings is bounded by the number of programs of length

less than s(n), which is at most
∑s(n)−1

i=0 2i ≤ 2s(n) = 2n−1. �

For a time bound t : N → N and an oracle A, the conditional Kolmogorov complexity of x given
y is defined as

Kt,A(x|y) := min{ |d| | UA(d, y) outputs x in t(|x|+ |y|) steps. },

12

where U is a universal Turing machine. By default, we assume A = ∅ and omit the superscript A.

Pseudorandomness. Let G : {0, 1}d → {0, 1}m and D : {0, 1}m → {0, 1} be functions. We say
that D distinguishes the output distribution of G(-) from the uniform distribution if

Pr
z∼{0,1}d

[D(G(z)) = 1]− Pr
w∼{0,1}m

[D(w) = 1] ≥
1

2
.

Reduction. For an oracle complexity class C, we denote by C
R
‖ the class of languages that are

reducible to R via a nonadaptive C-reduction, which is also known as a truth-table reduction in the
case of C = P. (Here, the subscript ‖ stands for a parallel query.)

5 Randomized Enumeration Lemma for Functions

In this section, we prove the Enumeration Lemma by using a direct product generator. First,
we abstract the property of a pseudorandom generator construction. Following Trevisan and Vad-
han [TV07], we define the notion of black-box pseudorandom generator construction (in a slightly
different way).

Definition 5.1 (Black-Box Pseudorandom Generator Construction [TV07]). Let G(-) : {0, 1}d →
{0, 1}m be an oracle algorithm that expects an oracle of the form f : {0, 1}ℓ → {0, 1}.

The oracle algorithm G(-) is said to be a black-box pseudorandom generator construction with
advice complexity a if there exists a deterministic nonadaptive oracle algorithm Rec such that, for
every function f : {0, 1}ℓ → {0, 1} and every function D : {0, 1}m → {0, 1}, if

Pr
z∼{0,1}d

[
D(Gf (z)) = 1

]
− Pr

w∼{0,1}m
[D(w) = 1] ≥

1

2
,

then there exists an advice function A : {0, 1}r → {0, 1}a such that

Pr
s∼{0,1}r

[
∀x ∈ {0, 1}ℓ, RecD(x; s,A(s)) = f(x)

]
≥

1

8(m− d)
.

The algorithm Rec is referred to as a reconstruction algorithm that uses r random bits.

We will use the following construction of a locally-list-decodable error-correcting code.

Lemma 5.2 (Locally-List-Decodable Error-Correcting Code; Sudan, Trevisan and Vadhan [STV01]).
There exists a function Enc such that:

1. Enc(x;N, ǫ) outputs a string of length N̂ = poly(N, 1/ǫ) for any x ∈ {0, 1}N , and is com-
putable in time poly(N, 1/ǫ).

2. There exists a randomized nonadaptive oracle algorithm Dec(-)(N, ǫ) running in time poly(logN, 1/ǫ)

that, given oracle access to r ∈ {0, 1}N̂ , outputs a list of deterministic oracle circuits C1, · · · , CL

such that, for every x ∈ {0, 1}N satisfying Dist(r,Enc(x)) ≤ 1
2 − ǫ, with high probability over

the choice of coin flips of Dec, there exists an index j ∈ [L] such that C
fn(r)
j computes the ith

bit of x on input i ∈ [N].

13

Now we present a construction of a k-wise direct product generator.

Definition 5.3 (Direct Product Generator). Let k ∈ N be a parameter and f : {0, 1}ℓ → {0, 1} be a

function. We denote by f̂ : {0, 1}ℓ̂ → {0, 1} the function specified by the truth table Enc(tt(f); 2ℓ, ǫ :=

1/4k) ∈ {0, 1}2
ℓ̂
, where ℓ̂ = O(ℓ+ log k), and Enc is the locally-list-decodable error-correcting code

of Lemma 5.2.

The k-wise direct product generator DPf
k : {0, 1}

ℓ̂k → {0, 1}ℓ̂k+k is defined as

DPf
k(x

1, · · · , xk) := (x1, · · · , xk, f̂(x1), · · · , f̂(xk))

for (x1, · · · , xk) ∈
(
{0, 1}ℓ̂

)k
.

By using a standard hybrid argument, it can be shown that DPf
k is a black-box pseudorandom

generator construction. The important property of this construction is that the advice complexity
is quite small.

Theorem 5.4. For a parameter k ∈ N and a function f : {0, 1}ℓ → {0, 1}, the k-wise direct product

generator DPf
k : {0, 1}

kℓ̂ → {0, 1}kℓ̂+k is a black-box pseudorandom generator construction such that

1. DPf
k has advice complexity a := k +O(log(kℓ)), and

2. DPf
k has a poly(ℓ, k)-time reconstruction algorithm that uses poly(ℓ, k) random bits.

Proof. We define hybrid distributions between the output distribution of DPf
k(-) and the uniform

distribution on {0, 1}kℓ̂+k. For any i ∈ {0, · · · , k}, define the ith hybrid distribution Hi as the
distribution of

(x1, · · · , xk, f̂(x1), · · · , f̂(xi), bi+1, · · · , bk),

where x̄ = (x1, · · · , xk) ∼
(
{0, 1}ℓ̂

)k
and bi+1, · · · , bk ∼ {0, 1}. By this definition, H0 is identically

distributed with the uniform distribution, and Hk is an identical distribution with DPf
k(x

1, · · · , xk).
Therefore, if

Pr
x̄

[
D(x1, · · · , xk, f̂(x1), · · · , f̂(xk)) = 1

]
− Pr

x̄,b

[
D(x1, · · · , xk, b1, · · · , bk) = 1

]
≥

1

2
,

then

E
i∼[k]
x̄,b

[D(Hi)−D(Hi−1)] ≥
1

2k
.

By an averaging argument, we obtain

Pr
i∼[k],b

x1,··· ,xi−1,xi+1,··· ,xk

[
E

xi∼{0,1}ℓ̂
[D(Hi)−D(Hi−1)] ≥

1

4k

]
≥

1

4k
. (1)

Consider the following deterministic algorithm RecD0 (x; s,A0(s)): The coin flip sequence s is

regarded as i ∼ [k], x1, · · · , xi−1, xi+1, · · · , xk ∼ {0, 1}ℓ̂, and b ∼ {0, 1}k. We set xi := x and
A0(s) := (f̂(x1), · · · , f̂(xi−1), bi, · · · , bk). Then, the output of Rec

D
0 is defined asD(x̄, A0(s))⊕1⊕bi.

14

By a standard calculation (see, e.g., [Vad12]), it follows from (1) that

Pr
x

[
RecD0 (x, s, A0(s)) = f̂(x)

]
≥

1

2
+

1

4k

with probability at least 1/4k over the random choice of s = (i, x[k]\{i}, b).
The final reconstruction algorithm RecD(x; s, s′, A(s, s′)) operates as follows. It simulates the

decoding algorithm Dec(-)(2ℓ, 1/4k) of Lemma 5.2 with oracle access to O(-) := RecD0 (-, s, A0(s))
using s′ as randomness of Dec, and obtains a list of oracle circuits C1, · · · , CL. We define the
advice function A as A(s, s′) := (A0(s), j), where j ∈ [L] is an index such that CO

j computes f ; by
Lemma 5.2, with high probability over the choice of s′, such an index j exists; j is chosen arbitrarily
if there exists no such an index j. The algorithm RecD outputs CO

j (x).

Overall, the algorithm RecD(x; s, s′, A(s, s′)) computes f(x) for every x with probability at least
1
8k . The advice function A outputs at most k +O(logL) = k +O(log(kℓ)) bits. �

As a consequence of the black-box pseudorandom generator construction with small advice
complexity, given a distinguisher D for DPf

k , one can efficiently enumerate D-oracle circuits, one
of which computes f . In a typical application of the following lemma, we will set I := {1n}n∈N.

Lemma 5.5 (Randomized Enumeration Lemma for Functions). Let D be an oracle, and let
k, ℓ : N → N be time-constructible functions. Let f := {fx : {0, 1}ℓ(|x|) → {0, 1}}x∈I be an auxiliary-
input function indexed by I ⊆ {0, 1}∗. Assume that D(x, -) distinguishes the output distribution

of DPfx
k(|x|)(-) from the uniform distribution for every x ∈ I. Then, there exists a randomized

poly(n, 2k(n), ℓ(n))-time algorithm that, given a string x ∈ I of length n as input and oracle access
to D, with high probability, outputs nonadaptive oracle circuits C1, · · · , CL such that there exists
an index i ∈ [L] such that CD

i (z) = fx(z) for every z ∈ {0, 1}ℓ(n).

Proof. Fix n ∈ N and an input x ∈ I of length n. Let k := k(n) and ℓ = ℓ(n). By the assumption,
we have

Pr
z̄

[
D(x,DPfx

k (z̄)) = 1
]
− Pr

w
[D(x,w) = 1] ≥

1

2
.

Let Rec be the reconstruction algorithm of the direct product generator from Theorem 5.4.
By the property of the reconstruction algorithm (Definition 5.1), there exists an advice function
A : {0, 1}r → {0, 1}a such that

Pr
s∼{0,1}r

[
∀z ∈ {0, 1}ℓ, RecD(x,-)(z; s,A(s)) = fx(z)

]
≥

1

8k
, (2)

where a = k +O(log(kℓ)).
Here is a randomized algorithm E that enumerates candidate oracle circuits that compute fx:

Repeat the following O(k) times. Pick s ∼ {0, 1}r randomly. For each α ∈ {0, 1}a, output an
oracle circuit CO

s,α defined as CO
s,α(z) := RecO(x,-)(z; s, α) for z ∈ {0, 1}ℓ. The running time of this

algorithm is at most O(k) · poly(n, ℓ, 2a) ≤ poly(n, ℓ, 2k).
We claim the correctness of the algorithm E. Consider one iteration of E. It follows from (2)

that, with probability at least 1
8k over the choice of s ∼ {0, 1}r, there exists α := A(s) such that

RecD(x,-)(z; s, α) = fx(z) for every z ∈ {0, 1}ℓ. Therefore, CD
s,α(x) = RecD(x,-)(z; s, α) = fx(z) for

every z ∈ {0, 1}ℓ; that is, Cs,α is a D-oracle circuit that computes fx correctly. Since E repeats
this O(k) times, with high probability, E enumerates at least one D-oracle circuit that computes
fx. �

15

6 Hardness Under Randomized Reductions

In this section, we provide applications of the Enumeration Lemma (Lemma 5.5). We first show
that there exists an EXPNP-computable pseudorandom generator whose security can be based on
a uniform hardness assumption of EXPNP.

Restatement of Theorem 3.2. For any constant c ∈ N, there exists an EXPNP-computable
function G = {Gn : {0, 1}n−c logn → {0, 1}n}n∈N such that EXPNP ⊆ BPPD for any distinguisher D
for G.

For the proof of Theorem 3.2, we make use of a selector for an EXPNP-complete problem.

Definition 6.1 (Selector; [Hir15]). For a language L, an oracle algorithm M is referred to as a
selector for L if, for any input x and any oracles A0, A1 one of which is equal to L, MA0,A1(x)
computes L(x) correctly.

Lemma 6.2 ([Hir15]). For any EXPNP-complete problem L, there exists a randomized polynomial-
time selector S for L. That is, PrS [S

A0,A1(x) = L(x)] ≥ 1− 2−|x| for any input x and any oracles
A0, A1 such that L ∈ {A0, A1}.

Proof of Theorem 3.2. Take any paddable EXPNP-complete problem L, and a randomized polynomial-
time selector S for L. By padding queries of a selector, we may assume without loss of generality
that, on inputs of length n, S makes queries of length exactly ℓ(n), where ℓ is some polynomial. As
was shown in [Hir15], a selector S for L can be converted to another algorithm S′ that computes
L given oracle access to polynomially many oracles one of which is correct (instead of just two
oracles).11

Define a family of functions f := {fn : {0, 1}n → {0, 1}}n∈N so that fn : {0, 1}
n → {0, 1} is the

characteristic function of L∩ {0, 1}n for each n ∈ N. Let k(n) := c log n for a large constant c, and

define the pseudorandom generator Gn := Dfn
k(n). The pseudorandom generator Gn takes a seed

of length O(nk(n)) and extends it by k(n) bits.12 Applying Lemma 5.5 to f , for any distinguisher
for D, there exists a randomized polynomial-time algorithm E that, on input 1n, outputs oracle
circuits CD

1 , · · · , CD
m one of which computes fn, with high probability over the internal randomness

of E.
The overall D-oracle algorithm for computing L is as follows. On input x ∈ {0, 1}∗ of length

n, run E on input 1ℓ(n) and obtain D-oracle circuits CD
1 , · · · , CD

m one of which computes fℓ(n).

Simulate the selector S′ on input x with oracle access to CD
1 , · · · , CD

m , and output the answer of
S′. �

Since RK is a distinguisher for any computable hitting set generator, we obtain the following
corollary.

Reminder of Theorem 3.1. EXPNP ⊆ PRK .

11 Proof Sketch: S′A1,··· ,Am(x) simulates SAi,Aj (x) for every i, j ∈ [m], finds an index i ∈ [m] and a bit b ∈ {0, 1}
such that SAi,Aj (x) outputs b for every j ∈ [m], and outputs b.

12 While this defines a pseudorandom generator that outputs O(nk(n))+k(n), one can extend it to a pseudorandom
generator G′

m : {0, 1}m−O(logm) → {0, 1}m for every m ∈ N.

16

Proof. It was shown in [ABK+06b] that BPPRK = PRK ; thus it suffices to prove EXPNP ⊆ BPPRK .
Let s(n) = n−3 logn, and take the pseudorandom generator G = {Gn : {0, 1}s(n) → {0, 1}n}n∈N

of Theorem 3.2. We claim that ¬RK is a distinguisher for G. Indeed, since G is computable, for
each n ∈ N and z ∈ {0, 1}s(n), the string Gn(z) can be described by n ∈ N and z; thus,

K(Gn(z)) ≤ 2 log n+ s(n) +O(1) < n− 1,

where 2 log n+O(1) is an upper bound on a self-delimiting encoding of n. Therefore,

Pr
z∼{0,1}s(n)

[Gn(z) 6∈ RK]− Pr
w∼{0,1}n

[w 6∈ RK] ≥ 1−
1

2
=

1

2
.

By Theorem 3.2, we obtain that EXPNP ⊆ BPPRK . �

The reason why the security reduction of Theorem 3.2 is adaptive is that the selector for an
EXPNP-complete problem is adaptive. In the case of randomized nonadaptive reductions, one can
reduce NEXP to RK based on the MIP = NEXP theorem of Babai, Fortnow, and Lund [BFL91].

Theorem 6.3. For any constant c ∈ N, there exists an EXPNP-computable function G = {Gn :
{0, 1}n−c logn → {0, 1}n}n∈N such that NEXP ⊆ BPPD

‖ for any distinguisher D for G.

For the proof of Theorem 6.3, we will use the following efficient proof system for NEXP. More-
over, a certificate for the proof system can be found in EXPNP.

Lemma 6.4 (cf. [BFL91, BFLS91, BGH+05]). For any L ∈ NEXP, there exists a randomized
nonadaptive oracle algorithm V such that, for any x ∈ {0, 1}∗, the following holds.

1. If x ∈ L, then PrV
[
V Ox(x) = 1

]
= 1 for some oracle Ox. Moreover, given x ∈ L and

y ∈ {0, 1}∗ as input, the output Ox(y) of the oracle can be computed in EXPNP.

2. If x 6∈ L, then PrV
[
V O(x) = 1

]
≤ 2−|x| for any oracle O.

Proof of Theorem 6.3. We use the same construction G with Theorem 3.2. That is, for a paddable
EXPNP-complete function f = {fn : {0, 1}n → {0, 1}}n∈N, we define Gn := DPfn

k(n) for k(n) =
c logn. Applying Lemma 5.5 to f , for any distinguisher for D, we obtain a randomized polynomial-
time algorithm E that, on input 1n, with high probability, outputs oracle circuits CD

1 , · · · , CD
m one

of which computes fn. In light of this, our goal is to compute any L ∈ NEXP with the help of
oracles CD

1 , · · · , CD
m one of which computes an EXPNP-complete problem.

Let L ∈ NEXP, and take the efficient verifier V of Lemma 6.4. Let ℓV : N → N be a polynomial
that bounds the running time of V . Fix any input x ∈ L of length n ∈ N. Take an oracle Ox such
that V Ox(x) accepts with probability 1. Since f is EXPNP-complete, there exists a polynomial-time
computable function R such that Ox(y) = fℓ(n)(R(x, y)) for any string y of length at most ℓV (n),
where ℓ : N → N is some polynomial.

Consider the following nonadaptive D-oracle algorithm A for computing L. Let x be an input
of length n. Run E on input 1ℓ(n) and obtain nonadaptive oracle circuits CD

1 , · · · , CD
m one of which

computes fℓ(n). Then, for each i ∈ [m], check whether V CD
i (R(x,-))(x) = 1. Accept if this holds for

some i; otherwise reject.
The correctness of A can be proved as follows. For any x 6∈ L, the algorithm A rejects with

high probability because of the soundness of Lemma 6.4. Now consider any x ∈ L. By Lemma 5.5,

17

with high probability, there exists i ∈ [m] such that CD
i (z) = fℓ(n)(z) for any z ∈ {0, 1}ℓ(n). In

particular, CD
i (R(x, y)) = fℓ(n)(R(x, y)) = Ox(y) for any y of length at most ℓV (n); therefore,

V CD
i (R(x,-))(x) = V Ox(-)(x) = 1. Thus, the algorithm A accepts with probability 1. �

Corollary 6.5. NEXP ⊆ BPP
RK

‖ .

Proof Sketch. Since RK is a distinguisher for any computable hitting set generator, the result follows
from Theorem 6.3. �

Theorem 6.3 can be compared with the following limit of black-box security reductions of a
pseudorandom generator (or more generally, a hitting set generator):

Theorem 6.6 (Hirahara and Watanabe [HW19]). Let G = {Gn : {0, 1}(1−ǫ)n → {0, 1}n}n∈N be
any function, where ǫ > 0 is a constant. Then,

⋂

D

BPPD
‖ ⊆ NP/poly ∩ coNP/poly,

where the intersection is taken over all distinguishers D for a hitting set generator G.

That is, when the seed is extended by a factor of Ω(1), there exists no hitting set generator con-
struction whose security is based on any problem outside NP/poly ∩ coNP/poly via a nonadaptive
reduction. Theorem 6.3 bypasses this impossibility result by exploiting the fact that the pseudo-
random generator construction extends a seed by a small amount.

Applying our proof techniques to the case of RKt with t(n) = 2n
ǫ
for a constant ǫ > 0, we

obtain the following EXP-completeness under efficient reductions.

Theorem 6.7. Let ǫ > 0 be any constant, and t(n) := 2n
ǫ
. Then,

• EXP ⊆ BPP
RKt

‖ , and

• EXP ⊆ ZPPRKt .

Allender et al. [ABK+06b] proved EXP-completeness of RKt under NP-Turing reductions or
P/poly reductions; Theorem 6.7 improves the efficiency of these reductions.

We will use a randomized nonadaptive selector for an EXP-complete problem.

Lemma 6.8. For any EXP-complete problem L, there exists a BPP‖-selector for L.

Proof. There exists a nonadaptive instance checker for an EXP-complete problem in the sense
of Blum and Kanan [BK95], which follows from an EXP-version of the efficient proof system of
Lemma 6.4. As shown in [Hir15], a selector for L can be constructed from an instance checker
for L. Since the existence of a selector is closed under polynomial-time reductions, there exists a
randomized polynomial-time nonadaptive selector for an arbitrary EXP-complete problem. �

Proof of Theorem 6.7. Using the pseudorandom generator construction of [IW97], it was shown in

[ABK+06b] that BPPRKt = ZPPRKt ; thus it suffices to prove EXP ⊆ BPP
RKt

‖ .

18

Take an arbitrarily paddable EXP-complete problem f = {fn : {0, 1}n → {0, 1}}n∈N. Let c be a
constant such that fn is computable in 2n

c
. By Lemma 6.8, there exists a randomized polynomial-

time nonadaptive selector for f ; thus, our goal is to use the Enumeration Lemma to enumerate
RKt-oracle circuits one of which computes f . Let ℓ : N → N be some polynomial chosen later.
Define a padded version f ′ = {f ′

n : {0, 1}ℓ(n) → {0, 1}}n∈N of f :

f ′(x, y) := f(x),

where x ∈ {0, 1}n and y ∈ {0, 1}ℓ(n)−n. Let k(n) := 3 log n. We claim that the direct product

generator DP
f ′
n

k(n) : {0, 1}
ℓ̂(n)k(n) → {0, 1}ℓ̂(n)k(n)+k(n) can be distinguished by using the RKt oracle,

where ℓ̂(n) ≥ ℓ(n). Indeed, for any seed z̄ of length ℓ̂(n)k(n), DPk(n)(z̄) can be described by the

self-delimiting encoding of n ∈ N and z̄ in time 2O(nc) ≤ 2ℓ(n)
ǫ
= t(ℓ(n)) for a large polynomial

ℓ(n) = O(nc/ǫ). Therefore,

Kt(DP
f ′
n

k(n)(z̄)) ≤ |z̄|+ 2 log n+O(1) < ℓ̂(n)k(n) + k(n)− 1,

which means that DP
f ′
n

k(n)(z̄) 6∈ RKt . By combining this with the counting argument of Fact 4.1,
we conclude that

Pr
z̄

[
DP

f ′
n

k(n)(z̄) 6∈ RKt

]
− Pr

w
[w 6∈ RKt] ≥ 1−

1

2
=

1

2
.

Applying Lemma 5.5 to RKt , we obtain a randomized polynomial-time algorithm that, on input 1n,
with high probability, enumerates RKt-oracle circuits one of which computes f ′

n. Combining this
algorithm with the nonadaptive selector for f , we obtain a randomized polynomial-time nonadaptive
reduction from f to RKt . �

7 Deterministic Enumeration Lemma for Strings

The Randomized Enumeration Lemma for Functions (i.e., Lemma 5.5) provides a randomized
algorithm that produces a list of RK-oracle circuits that contains any function f of low Kolmogorov
complexity K(f). The main reason why we need randomized algorithms in Lemma 5.5 is that the
input length of a function f might be polynomially large.

In this section, we focus on the case when the input size of f is logarithmic. Identifying f with
its truth table tt(f), we aim at computing a list of polynomial-length strings of low Kolmogorov
complexity by a deterministic algorithm, which leads us to Deterministic Enumeration Lemma for
Strings.

To this end, we replace the usage of the randomized -locally-list-decodable error-correcting code
with a deterministic-list-decodable error-correcting code, which can be obtained by concatenating
the Reed-Solomon code with the Hadamard code.

Lemma 7.1 (List-Decodable Error-Correcting Code; cf. [Sud97, KS99]). There exists a function
Enc such that:

1. Enc(x;N, ǫ) outputs a string of length N̂ = poly(N, 1/ǫ) for any x ∈ {0, 1}N , and is com-
putable in time poly(N, 1/ǫ).

19

2. There exists a deterministic algorithm Dec(-;N, ǫ) running in time poly(N, 1/ǫ) such that,

given any r ∈ {0, 1}N̂ , outputs a list of all the strings x ∈ {0, 1}N such that Dist(r,Enc(x;N, ǫ)) ≤
1
2 − ǫ.

Using this error-correcting code, we provide a black-box pseudorandom generator construction
whose randomness complexity is small; this will be a key property for obtaining the Deterministic
Enumeration Lemma (by simply exhaustively searching all the random bits).

Theorem 7.2. Let f : {0, 1}ℓ → {0, 1} be a function, and k ∈ N. There exists a black-box pseudo-

random generator construction Gf
k : {0, 1}

kℓ̂ → {0, 1}kℓ̂+k for some ℓ̂ = O(ℓ+ log k) such that

1. Gf
k(x̄) is computable in time poly(2ℓ, k) on input x̄ ∈ {0, 1}kℓ̂ and f .

2. There exists a poly(2ℓ, k)-time reconstruction algorithm for Gf
k that uses O(kℓ+ k log k) ran-

dom bits.

3. Gf
k has advice complexity a := k +O(log k + ℓ).

Proof. The pseudorandom generator construction Gk is the same with Definition 5.3, except that
we use the error-correcting code of Lemma 7.1.

Specifically, let Enc denote the error-correcting code of Lemma 7.1, and let f̂ : {0, 1}ℓ̂ → {0, 1}

be the function specified by the truth table Enc(f ; 2ℓ, ǫ := 1/4k) ∈ {0, 1}2
ℓ̂
, where ℓ̂ = O(ℓ+ log k).

The pseudorandom generator construction Gf
k : {0, 1}

ℓ̂k → {0, 1}ℓ̂k+k is defined as

Gf
k(x

1, · · · , xk) := (x1, · · · , xk, f̂(x1), · · · , f̂(xk))

for (x1, · · · , xk) ∈
(
{0, 1}ℓ̂

)k
.

We prove that Gf
k is a black-box pseudorandom generator construction with the claimed pa-

rameters, by using an almost identical proof with Theorem 5.4. Assume that D satisfies

Pr
x̄

[
D(x1, · · · , xk, f̂(x1), · · · , f̂(xk)) = 1

]
− Pr

x̄,b

[
D(x1, · · · , xk, b1, · · · , bk) = 1

]
≥

1

2
.

By using the same argument with Theorem 5.4, there exists an efficient oracle algorithm R0 and
an advice function A0 such that

Pr
x

[
RD

0 (x, s, A0(s)) = f̂(x)
]
≥

1

2
+

1

4k

with probability at least 1/4k over the random choice of s = (i, x[k]\{i}, b) ∼ [k]×
(
{0, 1}ℓ̂

)[k]\{i}
×

{0, 1}k. By evaluating RD
0 (x, s, A0(s)) for every x ∈ {0, 1}ℓ̂, we obtain a string f ′ ∈ {0, 1}2

ℓ̂
that

encodes a function that agrees with f̂ on at least a 1/2 + 1/4k fraction of inputs.
The final reconstruction algorithm RD(x; s,A(s)) runs the decoding algorithm Dec(f ′; 2ℓ, 1/4k)

of Lemma 7.1, and obtains a list of strings f1, · · · , fL. We define the advice function A as A(s) :=
(A0(s), j), where j ∈ [L] is an index such that fj coincides with the truth table of f . The algorithm
RD(x; s,A(s)) outputs the xth position of fj .

The number |s| of random bits used by the reconstruction algorithm is at most O(log k+ ℓ̂(k−
1) + k) = O(kℓ+ k log k). The advice complexity is at most |A0(-)|+ logL = k +O(ℓ+ log k). �

20

Lemma 7.3 (Deterministic Enumeration Lemma for Strings). Let D be an oracle, k, p : N → N be
polynomials. Let y := {yx ∈ {0, 1}p(|x|)}x∈{0,1}∗ be an indexed family of strings such that D(x, -)

distinguishes the output distribution of G
fn(yx)
k(|x|) (-) from the uniform distribution for every x ∈ {0, 1}∗,

where G(-) is the black-box pseudorandom generator construction of Theorem 7.2. Then, there exists
a deterministic nO(k(n))-time nonadaptive oracle algorithm that, given x ∈ {0, 1}∗ of length n as
input and oracle access to D, outputs a list Y ⊆ {0, 1}∗ of strings such that yx ∈ Y .

Proof. Fix any n ∈ N and any input x ∈ {0, 1}n of length n. Let k := k(n). By the assumption,
we have

Pr
z

[
D
(
x,G

fn(yx)
k (z)

)
= 1

]
− Pr

w
[D(x,w) = 1] ≥

1

2
.

Let Rec be the reconstruction algorithm of G(-) from Theorem 7.2. By the property of the
reconstruction algorithm (Definition 5.1), there exists an advice function A : {0, 1}r → {0, 1}a such
that

Pr
s∼{0,1}r

[
∀i ∈ {0, 1}ℓ, RecD(i; s,A(s)) = fn(yx)(i)

]
≥

1

8k
, (3)

where ℓ := ⌈log |yx|⌉ = O(logn), a = k +O(log k + ℓ), and r = O(kℓ+ k log k).
Here is a D-oracle algorithm E that enumerates candidate strings of yx: On input x of length

n ∈ N, for each random bit s ∈ {0, 1}s and each advice string α ∈ {0, 1}a, output the string
obtained by concatenating RecD(i; s, α) for each i ∈ [p(n)]. Obverse that the running time of this
algorithm is at most poly(n, 2r, 2a) = poly(nk(n)).

It is easy to see that yx is contained in the list of strings enumerated by the algorithm E.
Indeed, it follows from (3) that there exists a random bit s ∈ {0, 1}s such that RecD(i; s,A(s)) is
equal to the ith bit of yx for any i ∈ [p(n)]. Therefore, for α := A(s), the output of E coincides
with yx. �

8 Hardness Under Deterministic Reductions

Now we apply the Deterministic Enumeration Lemma (Lemma 7.3) in order to obtain hardness
of Kolmogorov complexity under deterministic reductions. In Section 8.1, we present NP-hardness
of MINcKTSAT along with its tightness. In Section 8.2, we make use of symmetry of information and
show how to eliminate the usage of conditional Kolmogorov complexity; In Section 8.3, we prove
DistNP-hardness of MINKTSAT, which is another approach for eliminating conditional Kolmogorov
complexity.

8.1 Hardness of MINcKT with SAT Oracle

We extend the definition of MINKT (Ko [Ko91]) to a conditional Kolmogorov complexity ver-
sion. As mentioned in Section 3, we assume that a time bound t is sufficiently large, as otherwise
the definition of t-time-bounded Kolmogorov complexity might depend on a particular choice of a
universal Turing machine. In the following definition, we introduce a parameter t0, which specifies
a minimum time bound for any query to MINcKT.

Definition 8.1 (Minimum Conditional Time-Bounded Kolmogorov Complexity Problem). For a
time bound t0 : N → N and an oracle A, MINcKTA

t0 is defined as follows:

MINcKTA
t0 := { (x, y, 1s, 1t) | Kt,A(x|y) ≤ s and t ≥ t0(|x|+ |y|) }.

21

Our hardness of MINcKTSAT
t is “stable” with respect to the choice of a time bound t: For any

polynomial time bound t, PNP is reducible to MINcKTSAT
t via a nonadaptive reduction. (In fact,

our hardness results hold for a version of GapMINcKTSAT where there is a large gap between the
time bounds of Yes and No instances.)

Restatement of Theorem 3.3. For any polynomial t0, MINcKTSAT
t0 is PNP-hard under

polynomial-time nonadaptive reductions.

We will reduce the following canonical PNP-complete problem to MINcKTSAT
t

Lemma 8.2 (Lexicographically First Satisfying Assignment; Krentel [Kre88]). For a formula ϕ
of n variables, denote by aϕ ∈ {0, 1}∗ its lexicographically first satisfying assignment; if ϕ is not
satisfiable, define aϕ := 1n. The following problem, denoted by LexSat, is PNP-complete.

LexSat := { (ϕ, i) | the ith bit of aϕ is 1 }.

Proof of Theorem 3.3. By Lemma 8.2, it suffices to prove that there exists a polynomial-time non-
adaptive oracle algorithm that computes aϕ, given ϕ as input and oracle access to MINcKTSAT

t0 .
The idea is to enumerate a list of candidates for aϕ by using the Deterministic Enumeration Lemma.
To this end, we claim that the MINcKTSAT

t0 oracle gives rise to a distinguisher D(ϕ, -) for the k-wise

direct product generator G
fn(aϕ)
k , where k is a constant. Details follow.

Let k be some parameter chosen later. Let z ∈ {0, 1}d be any seed of G
fn(aϕ)
k : {0, 1}d →

{0, 1}d+k, where G
(-)
k is the black-box pseudorandom generator construction of Theorem 7.2. We

claim that Kt,SAT(G
fn(aϕ)
k (z) | ϕ) is relatively small for a large time bound t. Observe that

Kt,SAT(aϕ|ϕ) = O(1) for some polynomial t. Indeed, by using the SAT oracle and the down-
ward self-reducibility of SAT, one can compute the lexicographically first satisfying assignment aϕ

of ϕ in PSAT. The string G
fn(aϕ)
k (z) can be described by using the integer k ∈ N, the seed z, and

the program of size Kt,SAT(aϕ|ϕ) = O(1); therefore, for a sufficiently large polynomial t ≥ t0,

Kt,SAT(G
fn(aϕ)
k (z) | ϕ) ≤ d+O(log k).

We choose a constant k large enough so that this is bounded above by d+ k − 2. Define an oracle

D so that D(ϕ, y) := 1 if and only if Kt,SAT(y|ϕ) ≤ |y| − 2. Then we have D(ϕ,G
fn(aϕ)
k (z)) = 1 for

any seed z ∈ {0, 1}d. Note that D is reducible to MINcKTSAT
t0 because t ≥ t0.

On the other hand, for a string w ∼ {0, 1}d+k uniformly chosen at random, we have D(ϕ,w) = 0
with probability at least 1

2 by Fact 4.1. Therefore,

Pr
z

[
D
(
ϕ,G

fn(aϕ)
k (z)

)
= 1

]
− Pr

w
[D(ϕ,w) = 1] ≥

1

2
.

By Lemma 7.3, given nonadaptive oracle access to MINcKTSAT
t0 , one can output a list Yϕ of strings

such that aϕ ∈ Yϕ in time |ϕ|O(k) = poly(|ϕ|).
The algorithm for computing aϕ with the MINcKTSAT

t0 oracle is as follows: On input ϕ, compute
Yϕ and output a′ := min{ a ∈ Yϕ | ϕ(a) = 1 }. It is easy to see that the output a′ is equal to aϕ
using the minimality of aϕ and aϕ ∈ Yϕ. �

A natural question is whether Theorem 3.3 can be improved to MINcKT without any oracle.
We show that this is impossible without proving EXP 6= ZPP, based on the proof techniques of
[MW17, HW16].

22

Proposition 8.3. There exists a polynomial t0 such that, if MINcKTt0 is ZPP-hard under polynomial-
time nonadaptive reductions, then EXP 6= ZPP.

Proof. Assume, towards a contradiction, that EXP = ZPP. Then we also have EXP ⊆ P/poly.
Under this assumption, Allender, Koucký, Ronneburger, and Roy [AKRR11] showed that size(x) ≤
poly(Kt(x), log |x|) for every string x.

Fix any language L ∈ ZPEXP. We claim that L ∈ EXP. Let c ≥ 1 be a constant such that 2n
c

is an upper bound on the running time of a ZPEXP algorithm for L. Let L′ := {x102
|x|c

| x ∈ L }
be a padded version of L. Since L′ ∈ ZPP, by the assumption, L′ is reducible to MINcKTt0 via
some polynomial-time nonadaptive reduction R.

Fix any input y := x102
|x|c

of L′. Let q = (q0, q1, 1
s, 1t) be an arbitrary query of the reduction R

on input y. Since R is a nonadaptive reduction, any query q can be described by the string x (whose
length is O(log |y|)) and the index of q in polynomial time; thus, Kt(q) ≤ O(log |y|), and hence
size(q) ≤ polylog(|y|). Since a circuit can be evaluated efficiently, we have Kt′0(q) ≤ Õ(size(q)) ≤
polylog(|y|) for some polynomial t′0. In particular, Kt0(q0|q1) ≤ Kt′0(q) + O(log |q|) ≤ polylog(|y|)
for any sufficiently large polynomial t0.

We now present a quasipolynomial-time algorithm for deciding L′ by simulating the reduction
R. Let q = (q0, q1, 1

s, 1t) be any query of R. If t < t0(|q0| + |q1|), by the definition of MINcKTt0 ,
the query can be answered with “No.” Otherwise, in order to answer the query q, it suffices to
perform an exhaustive search of a description d of length at most polylog(|y|) such that U(d, q1)
outputs q0 in time t. Indeed, since Kt(q0|q1) ≤ polylog(|y|), this exhaustive search correctly finds
the conditional Kolmogorov complexity Kt(q0|q1). Therefore, L

′ ∈ quasiP. It follows that L can be

solved in time 2polylog(2
|x|c) = 2|x|

O(1)
on input x; that is, L ∈ EXP.

Since L is an arbitrary language in ZPEXP, we obtain that ZPEXP = EXP = ZPP, which is a
contradiction. (Indeed, since EXP = ZPP, we also have EEXP = ZPEXP by a padding argument;
thus EEXP = ZPEXP = ZPP = EXP, which contradicts the time hierarchy theorem.) �

By using an almost identical proof, we show that MCSPSAT cannot be NP-hard under polynomial-
time nonadaptive reductions without proving EXP 6= ZPP. Recall the definition of the Minimum
A-Oracle Circuit Size Problem ([KC00, AHK17]). The Minimum A-Oracle Circuit Size Problem is
defined as

MCSPA := { (f, s) ∈ {0, 1}∗ × N | sizeA(f) ≤ s }.

Proposition 8.4. Let A ∈ EXP be an arbitrary oracle. If MCSPA is NP-hard under polynomial-
time nonadaptive reductions, then EXP 6= ZPP.

Proof Sketch. Assume that EXP = ZPP. Following the proof of Proposition 8.3, we take any
language L ∈ ZPEXP, and consider a padded version L′ ∈ ZPP, where L′ is a sparse language.
It suffices to claim that L′ ∈ quasiP by simulating a polynomial-time nonadaptive reduction R to
MCSPA.

Fix any input y of length n ∈ N for L′. Consider any query q = (f, s) of the reduction R on
the input y. Since L′ is sparse and R is nonadaptive, it follows that Kt(f) ≤ O(logn). Under the
assumption that EXP = ZPP ⊆ P/poly, we have size(f) ≤ poly(Kt(f), log |f |) ≤ polylog(n). In
particular, sizeA(f) ≤ size(f) ≤ s(n) for some bound s(n) = polylog(n). In order to answer a query
q of the reduction R to MCSPA, one can exhaustively search all the A-oracle circuits of size at most
s(n). Note that one can evaluate any A-oracle circuit of size s(n) in time 2s(n)

O(1)
, because the

23

length of any query of an A-oracle circuit is at most s(n) and A ∈ EXP. Therefore, the reduction
R can be simulated in quasipolynomial time; hence, L′ ∈ quasiP. �

Summarizing Proposition 8.3 and Proposition 8.4, we obtain the following.

Restatement of Proposition 3.4. There exists a polynomial t0 such that, if either

• MCSPSAT is NP-hard under polynomial-time nonadaptive reductions, or

• MINcKTt0 is NP-hard under polynomial-time nonadaptive reductions,

then EXP 6= ZPP.

8.2 Symmetry of Information and Hardness of Kolmogorov Complexity

In the case of resource-unbounded Kolmogorov complexity, we can exploit symmetry of infor-
mation and dispense with the conditional Kolmogorov complexity.

Lemma 8.5 (Symmetry of Information; cf. [LV08]). For any x, y ∈ {0, 1}∗, it holds that

K(x, y) ≥ K(x) + K(y|x)−O(logK(x, y)).

Reminder of Theorem 3.6. S
p
2 ⊆ quasiP

K(-)
‖ .

Proof. Let L ∈ S
p
2 , and V be an S

p
2-type verifier for L. That is, V is a polynomial-time algorithm

such that, for some polynomial p, for every input x ∈ {0, 1}∗ of length n ∈ N,13

1. ∃y ∈ {0, 1}p(n), ∀z ∈ {0, 1}p(n), V (x, y, z) = L(x), and

2. ∃z ∈ {0, 1}p(n), ∀y ∈ {0, 1}p(n), V (x, y, z) = L(x).

For each x ∈ {0, 1}∗, denote by yx the lexicographically first string such that V (x, yx, z) = L(x) for
all z ∈ {0, 1}p(n). Similarly, denote by zx the lexicographically first string such that V (x, y, zx) =
L(x) for all y ∈ {0, 1}p(n). We will enumerate candidate strings for yx (and zx) by using Lemma 7.3.

In order to apply Lemma 7.3, we construct a distinguisher D(x, -) for G
fn(yx)
k (-) for some k =

O(logn). Let G
fn(yx)
k : {0, 1}d → {0, 1}d+k be the black-box pseudorandom generator construction

of Theorem 7.2.
Fix any input x ∈ {0, 1}∗ of length n ∈ N. Let c0 ∈ N be some absolute constant chosen later.

We define D so that D(x,w) := 1 if and only if K(x,w) ≤ K(x) + d+ c0 · log |x| for w ∈ {0, 1}d+k.
Note that D is efficiently computable given nonadaptive oracle access to the K(-) oracle.

Observe that yx is computable; thus K(yx|x) = O(1). For any seed z ∈ {0, 1}d of G
fn(yx)
k ,

the string (x,G
fn(yx)
k (z)) can be described by the shortest program for x and its length, the seed

z ∈ {0, 1}d, and the program of size K(yx|x); therefore,

K(x,G
fn(yx)
k (z)) ≤ K(x) + d+ c0 logn

13 We follow the definition of Sp
2 given by [Can96], which is equivalent to that of [RS98] (cf. [Cai07]).

24

for some universal constant c0, and hence D(x,G
fn(yx)
k (z)) = 1.

Now consider K(x,w) for a string w ∼ {0, 1}d+k chosen uniformly at random. By symmetry of
information (Lemma 8.5), we obtain

K(x,w) ≥ K(x) + K(w|x)−O(logn).

By the counting argument of Fact 4.1, we have K(w|x) ≥ |w| − 1 with probability at least 1
2 .

Therefore,

Pr
w∼{0,1}d+k

[K(x,w) ≥ K(x) + d+ k −O(logn)] ≥
1

2
.

This means that we can choose k = O(logn) large enough so that Prw[D(x,w) = 0] ≥ 1
2 .

To summarize, we have established that

Pr
z
[D(x,G

fn(yx)
k (z)) = 1]− Pr

w
[D(x,w) = 1] ≥

1

2
.

Applying Lemma 7.3, on input x ∈ {0, 1}∗, one can output a list Yx of strings such that yx ∈ Yx in
time nO(k) = nO(logn). Similarly, one can output a list Zx of strings such that zx ∈ Zx.

The algorithm M for deciding L by using the K(-) oracle is as follows. On input x ∈ {0, 1}∗,
enumerate the lists Yx and Zx. Accept if and only if there exists y ∈ Yx such that V (x, y, z) = 1

for every z ∈ Zx. This algorithm runs in time 2O(log2 n).
We claim the correctness of this algorithm. Suppose that x ∈ L. Then V (x, yx, z) = L(x) = 1

for every z; thus M accepts. Now consider the case when x 6∈ L. We have V (x, y, zx) = L(x) = 0
for every y; thus M rejects. �

8.3 Average-Case NP-Hardness of SAT-Oracle MINKT

In the case of resource-bounded Kolmogorov complexity, symmetry of information does not
necessarily hold. It is, however, still possible to prove some hardness results without conditional
Kolmogorov complexity. Specifically, we prove “DistNP-hardness of MINKTSAT.” Here MINKTSAT

is an unconditional version of MINcKT, defined as:

MINKTSAT := { (x, 1s, 1t) | Kt,SAT(x) ≤ s }.

DistNP is the class of distributional problems (L,D) such that L ∈ NP and D is efficiently samplable.
(The reader is referred to the survey of Bogdanov and Trevisan [BT06] for more background on
average-case complexity.) HeurBPP is defined as follows.

Definition 8.6 (Randomized Heuristic Scheme; cf. [BT06]). We say that a distributional problem
(L,D) is in HeurBPP if there exists a randomized polynomial-time algorithm M such that, for all
n ∈ N,

Pr
x,M

[M(x; 1m) = L(x)] ≥ 1−
1

m
,

where the probability is taken over a random choice of an input x ∼ Dn as well as an internal
randomness of M .

Restatement of Theorem 3.5. If MINKTSAT ∈ BPP, then DistNP ⊆ HeurBPP.

25

Proof. Let U = {Un}n∈N denote the family of the uniform distributions Un on {0, 1}n. Impagliazzo
and Levin [IL90] showed that NP × {U} ⊆ HeurBPP implies that DistNP ⊆ HeurBPP; thus it
suffices to prove a randomized heuristic scheme for an arbitrary language L ∈ NP under the uniform
distribution.

Fix any input (x, 1m), where x is an input of length n ∈ N and m is a precision parameter of
HeurBPP. Let V be a polynomial-time verifier that witnesses L ∈ NP. For each x ∈ L, we denote
by yx the lexicographically first certificate yx such that V (x, yx) = 1. Note that yx is computable
in PNP; thus Kt,SAT(yx|x) = O(1) for a large polynomial t.

We will use the Randomized Enumeration Lemma (Lemma 5.5). To this end, we define an
oracle D as

D(x,w) := 1 ⇐⇒ Kt,SAT(x,w) < |x|+ |w| − logm− 1,

for any x,w ∈ {0, 1}∗, where t is some sufficiently large polynomial.

Consider the direct product generator DP
fn(yx)
k : {0, 1}d → {0, 1}d+k of Definition 5.3, where

d = d(n,m) is the seed length of DP
fn(yx)
k and k = k(n,m) is some parameter chosen later.

By using the counting argument of Fact 4.1, we obtain

Pr
x∼{0,1}n

w∼{0,1}d+k

[D(x,w) = 1] ≤
1

2m
.

Define I := {x ∈ {0, 1}∗ | Prw [D(x,w) = 1] ≤ 1
2 }. Then, it follows from Markov’s inequality that

Pr
x
[x ∈ I] ≥ 1−

1

m
. (4)

We claim that, for every x ∈ I, the oracle D(x, -) distinguishes the output distribution of

DP
fn(yx)
k(n) from the uniform distribution. Indeed, for any seed z ∈ {0, 1}d, the output DP

fn(yx)
k (z)

can be described by a self-delimiting encoding of n ∈ N, the input x ∈ {0, 1}n, and the seed
z ∈ {0, 1}d; therefore,

Kt,SAT(x,DP
fn(yx)
k (z)) ≤ n+ d+O(logn).

We choose a sufficiently large k = logm+O(logn) so that this is less than n+ d+ k − logm− 1.

By the definition of D, we have D(x,DP
fn(yx)
k (z)) = 1. Therefore, for any x ∈ I,

Pr
z

[
D(x,DP

fn(yx)
k (z)) = 1

]
− Pr

w
[D(x,w) = 1] ≥ 1−

1

2
=

1

2
.

Applying Lemma 5.5 to the auxiliary-input function family {fn(yx)}x∈I,m∈N, we obtain a ran-
domized D-oracle algorithm E, running in time poly(n, 2k) = poly(n,m), that, given x ∈ I and
m ∈ N as input, outputs a list of strings that contains yx with high probability.

Under the assumption that MINKTSAT ∈ BPP, the oracle D can be computed in BPP. Re-
placing the D-oracle of E with the BPP algorithm, we obtain a randomized algorithm E′ that
enumerates a list Y of strings such that yx ∈ Y , with high probability.

A randomized heuristic algorithm M for computing (L,U) is as follows. On input (x, 1m),
simulate E′ to obtain a list Y of strings. Accept if and only if V (x, y) = 1 for some y ∈ Y .

We claim the correctness of M . It is clear that the randomized heuristic algorithm M rejects
every input x 6∈ L. Now consider any input x ∈ L. By (4), with probability at least 1− 1/m over

26

the choice of x ∼ {0, 1}n, we have x ∈ I. Under this event, Lemma 5.5 guarantees that E′ outputs
a list Y such that yx ∈ Y with high probability (say, at least 1 − 1/m) over the choice of internal
randomness of E′. Therefore, with probability at least 1− 1/2m, the algorithm M accepts. �

9 Satisfiability Algorithms and Immunity of Random Strings

In this section, we forge a firm link between satisfiability algorithms for a uniform circuit class
C and C-immunity of resource-bounded Kolmogorov-random strings.

Definition 9.1 (Immunity). For a complexity class C, a language L ⊆ {0, 1}∗ is called C-immune
(or immune to C) if L is infinite and there exists no infinite subset L′ ⊆ L such that L′ ∈ C.

Theorem 9.2 (Non-trivial SAT =⇒ Immunity of RKt). Let C be an arbitrary circuit class. Suppose
that C admits a non-trivial satisfiability algorithm, i.e., there exists an algorithm C that, given an
n-input circuit C ∈ C as input, outputs an assignment a ∈ {0, 1}n such that C(a) = 1 (if exists),
and runs in time |C|O(1) ·2n/nω(1). Then, the set Rs

Kt of s-random strings is immune to P-uniform
C for some time-constructible function s(n) = n− ω(log n).

Proof. Let M be the non-trivial satisfiability algorithm for C. Assume, towards a contradiction,
that there exists an infinite subset R ⊆ RKt such that R is in P-uniform C. Let R0 be a polynomial-
time algorithm that, on input 1n, prints a description of a C-circuit Cn that accepts R ∩ {0, 1}n.
Since R is infinite, there are infinitely many inputs n ∈ N such that Cn has at least one satisfying
assignment. Fix such an input length n ∈ N.

Now consider the output of the algorithm M on input Cn. Since Cn is satisfiable, M finds some
assignment an ∈ {0, 1}n such that Cn(an) = 1. By the assumption that R ⊆ RKt and Cn accepts
R ∩ {0, 1}n, we have an ∈ RKt and thus Kt(an) ≥ s(n).

On the other hand, one can efficiently describe an in the following way: Given n ∈ N, run R0

on input 1n to generate a circuit Cn. Run M on input Cn to obtain the assignment an ∈ {0, 1}n,
and output an. This algorithm runs in time 2n−ω(logn). Hence,

Kt(an) < O(log n) + log(2n−ω(logn)) = n− ω(log n) =: s(n),

which is a contradiction for a sufficiently large n. �

Next, we prove the converse direction of Theorem 9.2. We will show that C-immunity of random
strings implies the existence of a non-trivial SAT algorithm for C. Since the notion of immunity
is meaningful only for uniform circuit classes (cf. Remark 9.5), we formalize the notion of SAT
algorithms for uniform circuit classes.

Definition 9.3 (Non-trivial SAT for P-uniform circuits). For a circuit class C, an algorithm A
is said to be a non-trivial satisfiability algorithm for P-uniform C if, for any family of P-uniform
C-circuits C := {Cn}n∈N, for all sufficiently large n ∈ N, given a description of Cn as input, A
outputs an assignment a ∈ {0, 1}n such that Cn(a) = 1 when C has a satisfying assignment.

Theorem 9.4 (Immunity of RKt =⇒ Non-trivial SAT). Let s : N → N be a time-constructible
function such that s(n) = n − ω(log n) for n ∈ N. Let C be any (uniform) circuit class. Suppose
that the set Rs

Kt of s-random strings is C-immune. Then, there exists a non-trivial satisfiability
algorithm for C.

27

Proof. The idea is to make use of the strategy of Levin’s universal search algorithm. Namely, we
enumerate all non-s-random strings with respect to Kt in time 2s(n)+O(logn), and we argue that one
of them is a satisfying assignment (if exists).

Consider the following algorithm A for solving the satisfiability of C. Given an n-input circuit
C ∈ C as input, for each string d of length at most s(n), simulate the universal machine U on input
d for 2s(n)−|d| time steps, and let a denote the output of U if U halts. If a ∈ {0, 1}n and C(a) = 1,
then output a and halt. (That is, A enumerates all the strings a ∈ {0, 1}n such that Kt(a) ≤ s(n)
and check whether a is a satisfying assignment.) The running time of A can be bounded above by∑

k≤s(n) 2
k · 2s(n)−k · |C|O(1) ≤ 2s(n)+O(logn) ≤ 2n−ω(logn).

We claim that the algorithm A is a non-trivial SAT algorithm for C. Take any family of circuits
C = {Cn}n∈N ∈ C. Assume, towards a contradiction, that Cn has a satisfying assignment whereas
A cannot find any satisfying assignment for Cn, for an infinitely many n ∈ N. This means that
the set C−1

n (1) of satisfying assignments is non-empty, and that C−1
n (1) ⊆ {0, 1}n is a subset of

s-random strings Rs
Kt. However, this contradicts the assumption that Rs

Kt is C-immune. Thus A
finds a satisfying assignment of Cn for all sufficiently large n ∈ N. �

Remark 9.5. Theorem 9.4 holds for any (not necessarily uniform) circuit class C. However, for any
reasonable non-uniform circuit class C, the hypothesis of Theorem 9.4 is always false, i.e., RKt is
not C-immune. This is because of the fact that one random string can be provided as non-uniform
advice. Therefore, Theorem 9.4 is meaningful only for uniform circuit classes.

These two directions can be used to show the equivalence between the existence of a non-trivial
SAT algorithm for P-uniform C and (P-uniform C)-immunity of RKt.

Proof of Theorem 3.11. We apply Theorem 9.2 and Theorem 9.4 to P-uniform C. Since P-uniform
(P-uniform C) is equal to P-uniform C, we obtain the equivalence between non-trivial SAT and
immunity for P-uniform C. �

Using the non-trivial SAT algorithm of Williams [Wil14], we will present a P-uniform ACC0

circuit lower bound.

Lemma 9.6 (Williams [Wil14]). For every d,m > 1, there exist δ, ǫ > 0 and an algorithm that
decides the satisfiability of depth-d ACC0 circuits with MODm gates, n inputs, and 2n

ǫ
size in time

2n−Ω(nδ).

Reminder of Theorem 3.10. RKt is (P-uniform ACC0)-immune.

Proof. The algorithm of Lemma 9.6 solves the decision version of SAT; by using the downward
self-reducibility of SAT, the algorithm can be modified so that it solves the search version of SAT
(with at most poly(n)-factor overhead in the running time). Therefore, there exists a non-trivial
satisfiability algorithm for ACC0. The result follows from Theorem 9.2. �

Remark 9.7. By using the full power of Lemma 9.6, it is not hard to extend this result to the
following: For every d > 1,m > 1, there exist δ, ǫ > 0 such that, RKt is immune to DTIME(2n

δ
)/nδ-

uniform depth-d ACC0 circuits with MODm gates of size 2n
ǫ
.

28

We have presented that a non-trivial satisfiability algorithm with respect to Levin’s Kolmogorov
complexity corresponds to the non-trivial satisfiability algorithm in the sense of [Wil14]. Surpris-
ingly, in the case of Kt-complexity for a super-polynomial t, we can present a “non-trivial satisfia-
bility” algorithm for P with respect to the Kt-complexity measure.

Reminder of Theorem 3.9. Let t : N → N be a function such that t(n) = nω(1) for n ∈ N.
Then, RKt is P-immune.

Proof. At a high level, the idea is to have an advice string a and then try to solve the satisfiability
of M(a, -) by an exhaustive search for any polynomial-time algorithm M . We will show that this
is a “non-trivial satisfiability” algorithm in some sense. A formal proof follows.

Assume, towards a contradiction, that R ⊆ RKt is an infinite subset in P, and that M is a
polynomial-time algorithm that computes R.

Let m : N → N be some parameter chosen later (such that m(n) = O(logn)). Consider the
following algorithm A. The input of A consists of an “advice” string a ∈ {0, 1}n−m(n). The
algorithm A checks whether there exists a string x ∈ {0, 1}m(n) such that M(a, x) = 1 by an
exhaustive search, and outputs (a, x) ∈ {0, 1}n and halts if such a string x is found. The running
time of A is at most 2m(n)nO(1).

By the assumption, there exist infinitely many n ∈ N such that R ∩ {0, 1}n is not empty. Fix
such an integer n ∈ N. We take an arbitrary string rn ∈ R∩{0, 1}n, and let an ∈ {0, 1}n−m(n) be the
first n−m(n) bits of rn. Since the set R′

n := { (an, x) ∈ R∩{0, 1}n | x ∈ {0, 1}m(n) } is non-empty,
the algorithm A finds some x ∈ {0, 1}m(n) such that M(an, x) = 1, i.e., (an, x) ∈ R ∩ {0, 1}n. The
Kolmogorov complexity of the string (an, x) ∈ {0, 1}n is at most

K2m(n)nO(1)
(an, x) ≤ n−m(n) + 2 log n+O(1), (5)

because (an, x) can be described by using n ∈ N, a ∈ {0, 1}n−m(n), and A in time 2m(n)nO(1). We
choose m(n) = O(logn) large enough so that the upper bound of (5) is less than n − 1. For all
sufficiently large n ∈ N, we have 2m(n)nO(1) = nO(1) ≤ t(n), and thus

Kt(an, x) < n− 1.

However, since (an, x) ∈ R ⊆ RKt , we also have Kt(an, x) ≥ n− 1, which is a contradiction. �

References

[ABFL14] Eric Allender, Harry Buhrman, Luke Friedman, and Bruno Loff. Reductions to the set
of random strings: The resource-bounded case. Logical Methods in Computer Science,
10(3), 2014.

[ABK06a] Eric Allender, Harry Buhrman, and Michal Koucký. What can be efficiently reduced
to the Kolmogorov-random strings? Ann. Pure Appl. Logic, 138(1-3):2–19, 2006.

[ABK+06b] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef
Ronneburger. Power from Random Strings. SIAM J. Comput., 35(6):1467–1493, 2006.

[AD17] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Com-
put., 256:2–8, 2017.

29

[ADF+13] Eric Allender, George Davie, Luke Friedman, Samuel Hopkins, and Iddo Tzameret.
Kolmogorov Complexity, Circuits, and the Strength of Formal Theories of Arithmetic.
Chicago J. Theor. Comput. Sci., 2013, 2013.

[AFG13] Eric Allender, Luke Friedman, and William I. Gasarch. Limits on the computational
power of random strings. Inf. Comput., 222:80–92, 2013.

[AH17] Eric Allender and Shuichi Hirahara. New Insights on the (Non-)Hardness of Circuit
Minimization and Related Problems. In Proceedings of the International Symposium
on Mathematical Foundations of Computer Science (MFCS), pages 54:1–54:14, 2017.

[AHK17] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The Minimum Oracle Circuit
Size Problem. Computational Complexity, 26(2):469–496, 2017.

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks.
Minimizing Disjunctive Normal Form Formulas and AC0 Circuits Given a Truth Table.
SIAM J. Comput., 38(1):63–84, 2008.

[AKRR11] Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The perva-
sive reach of resource-bounded Kolmogorov complexity in computational complexity
theory. J. Comput. Syst. Sci., 77(1):14–40, 2011.

[All12] Eric Allender. Curiouser and Curiouser: The Link between Incompressibility and
Complexity. In Proceedings of the 8th Conference on Computability in Europe (CiE),
pages 11–16, 2012.

[All17] Eric Allender. The Complexity of Complexity. In Computability and Complexity -
Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, pages
79–94, 2017.

[AS12] Eric Allender and Holger Spakowski. Avoiding Simplicity is Complex. Theory Comput.
Syst., 51(3):282–296, 2012.

[BFKL10] Harry Buhrman, Lance Fortnow, Michal Koucký, and Bruno Loff. Derandomizing
from Random Strings. In Proceedings of the Conference on Computational Complexity
(CCC), pages 58–63, 2010.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-Deterministic Exponential Time
has Two-Prover Interactive Protocols. Computational Complexity, 1:3–40, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Com-
putations in Polylogarithmic Time. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 21–31, 1991.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP Has Subexpo-
nential Time Simulations Unless EXPTIME has Publishable Proofs. Computational
Complexity, 3:307–318, 1993.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Short PCPs Verifiable in Polylogarithmic Time. In Proceedings of the Conference on
Computational Complexity (CCC), pages 120–134, 2005.

30

[BK95] Manuel Blum and Sampath Kannan. Designing Programs that Check Their Work. J.
ACM, 42(1):269–291, 1995.

[BM97] Harry Buhrman and Elvira Mayordomo. An Excursion to the Kolmogorov Random
Strings. J. Comput. Syst. Sci., 54(3):393–399, 1997.

[BT00] Harry Buhrman and Leen Torenvliet. Randomness is Hard. SIAM J. Comput.,
30(5):1485–1501, 2000.

[BT06] Andrej Bogdanov and Luca Trevisan. On Worst-Case to Average-Case Reductions for
NP Problems. SIAM J. Comput., 36(4):1119–1159, 2006.

[Cai07] Jin-yi Cai. Sp2 ⊆ ZPPNP. J. Comput. Syst. Sci., 73(1):25–35, 2007.

[Can96] Ran Canetti. More on BPP and the Polynomial-Time Hierarchy. Inf. Process. Lett.,
57(5):237–241, 1996.

[CDE+14] Mingzhong Cai, Rodney G. Downey, Rachel Epstein, Steffen Lempp, and Joseph S.
Miller. Random strings and tt-degrees of Turing complete C.E. sets. Logical Methods
in Computer Science, 10(3), 2014.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 151–158, 1971.

[GV08] Dan Gutfreund and Salil P. Vadhan. Limitations of Hardness vs. Randomness un-
der Uniform Reductions. In Proceedings of the Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques (APPROX), pages 469–482,
2008.

[GW00] Oded Goldreich and Avi Wigderson. On Pseudorandomness with respect to Determin-
istic Observes. In ICALP Satellite Workshops, pages 77–84, 2000.

[Har83] Juris Hartmanis. Generalized Kolmogorov Complexity and the Structure of Feasible
Computations (Preliminary Report). In Proceedings of the Symposium on Foundations
of Computer Science (FOCS), pages 439–445, 1983.

[Hir15] Shuichi Hirahara. Identifying an Honest EXPNP Oracle Among Many. In Proceedings
of the Conference on Computational Complexity (CCC), pages 244–263, 2015.

[Hir18] Shuichi Hirahara. Non-black-box Worst-case to Average-case Reductions within NP.
In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
247–258, 2018.

[Hir20] Shuichi Hirahara. Unexpected Power of Random Strings. In Proceedings of the Inno-
vations in Theoretical Computer Science Conference (ITCS), pages 41:1–41:13, 2020.

[HK18] Shuichi Hirahara and Akitoshi Kawamura. On characterizations of randomized com-
putation using plain Kolmogorov complexity. Computability, 7(1):45–56, 2018.

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of Min-
imum Circuit Size Problem for OR-AND-MOD Circuits. In Proceedings of the Com-
putational Complexity Conference (CCC), pages 5:1–5:31, 2018.

31

[HP15] John M. Hitchcock and Aduri Pavan. On the NP-Completeness of the Minimum Circuit
Size Problem. In Proceedings of the Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS), pages 236–245, 2015.

[HS65] Juris Hartmanis and Richard E Stearns. On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society, 117:285–306, 1965.

[HW16] Shuichi Hirahara and Osamu Watanabe. Limits of Minimum Circuit Size Problem as
Oracle. In Proceedings of the Conference on Computational Complexity (CCC), pages
18:1–18:20, 2016.

[HW19] Shuichi Hirahara and Osamu Watanabe. On Nonadaptive Security Reductions of Hit-
ting Set Generators. 2019. ECCC TR19-025.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The Power of Natural
Properties as Oracles. In Proceedings of the Computational Complexity Conference
(CCC), pages 7:1–7:20, 2018.

[IL90] Russell Impagliazzo and Leonid A. Levin. No Better Ways to Generate Hard NP
Instances than Picking Uniformly at Random. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 812–821, 1990.

[Ila20] Rahul Ilango. Approaching MCSP from Above and Below: Hardness for a Conditional
Variant and AC0[p]. In Proceedings of the Innovations in Theoretical Computer Science
Conference (ITCS), pages 34:1–34:26, 2020.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E Requires Exponential Circuits:
Derandomizing the XOR Lemma. In Proceedings of the Symposium on the Theory of
Computing (STOC), pages 220–229, 1997.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs Time: Derandomization
under a Uniform Assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 73–79, 2000.

[Ko86] Ker-I Ko. On the Notion of Infinite Pseudorandom Sequences. Theor. Comput. Sci.,
48(3):9–33, 1986.

[Ko91] Ker-I Ko. On the Complexity of Learning Minimum Time-Bounded Turing Machines.
SIAM J. Comput., 20(5):962–986, 1991.

[Kre88] Mark W. Krentel. The Complexity of Optimization Problems. J. Comput. Syst. Sci.,
36(3):490–509, 1988.

[KS99] Ravi Kumar and D. Sivakumar. Proofs, Codes, and Polynomial-Time Reducibilities.
In Proceedings of the Conference on Computational Complexity (CCC), pages 46–53,
1999.

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi
Informatsii, 9(3):115–116, 1973.

32

[Lev84] Leonid A. Levin. Randomness Conservation Inequalities; Information and Indepen-
dence in Mathematical Theories. Information and Control, 61(1):15–37, 1984.

[LR05] Troy Lee and Andrei E. Romashchenko. Resource bounded symmetry of information
revisited. Theor. Comput. Sci., 345(2-3):386–405, 2005.

[LV08] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, Third Edition. Texts in Computer Science. Springer, 2008.

[LW95] Luc Longpré and Osamu Watanabe. On Symmetry of Information and Polynomial
Time Invertibility. Inf. Comput., 121(1):14–22, 1995.

[Mas79] William J Masek. Some NP-complete set covering problems. Unpublished manuscript,
1979.

[MW17] Cody D. Murray and R. Ryan Williams. On the (Non) NP-Hardness of Computing
Circuit Complexity. Theory of Computing, 13(1):1–22, 2017.

[Oli19] Igor Carboni Oliveira. Randomness and Intractability in Kolmogorov Complexity. In
Proceedings of the International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 32:1–32:14, 2019.

[Ron04] Detlef Ronneburger. Kolmogorov Complexity and Derandomization. 2004.

[RS98] Alexander Russell and Ravi Sundaram. Symmetric Alternation Captures BPP. Com-
putational Complexity, 7(2):152–162, 1998.

[Sip83] Michael Sipser. A Complexity Theoretic Approach to Randomness. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 330–335, 1983.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom Generators without
the XOR Lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Sud97] Madhu Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction Bound.
J. Complexity, 13(1):180–193, 1997.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and Average-Case Complexity
Via Uniform Reductions. Computational Complexity, 16(4):331–364, 2007.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

[VV83] Umesh V. Vazirani and Vijay V. Vazirani. A Natural Encoding Scheme Proved Prob-
abilistic Polynomial Complete. Theor. Comput. Sci., 24:291–300, 1983.

[Wil83] Robert E. Wilber. Randomness and the Density of Hard Problems. In Proceedings of
the Symposium on Foundations of Computer Science (FOCS), pages 335–342, 1983.

[Wil13] Ryan Williams. Improving Exhaustive Search Implies Superpolynomial Lower Bounds.
SIAM J. Comput., 42(3):1218–1244, 2013.

[Wil14] Ryan Williams. Nonuniform ACC Circuit Lower Bounds. J. ACM, 61(1):2:1–2:32,
2014.

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

