
Understanding the Relative Strength of QBF CDCL Solvers and

QBF Resolution

Olaf Beyersdorff Benjamin Böhm

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Abstract

QBF solvers implementing the QCDCL paradigm are powerful algorithms that success-
fully tackle many computationally complex applications. However, our theoretical under-
standing of the strength and limitations of these QCDCL solvers is very limited.

In this paper we suggest to formally model QCDCL solvers as proof systems. We de-
fine different policies that can be used for decision heuristics and unit propagation and
give rise to a number of sound and complete QBF proof systems (and hence new QCDCL
algorithms). With respect to the standard policies used in practical QCDCL solving, we
show that the corresponding QCDCL proof system is incomparable (via exponential sepa-
rations) to Q-resolution, the classical QBF resolution system used in the literature. This is
in stark contrast to the propositional setting where CDCL and resolution are known to be
p-equivalent.

This raises the question what formulas are hard for standard QCDCL, since Q-resolution
lower bounds do not necessarily apply to QCDCL as we show here. In answer to this question
we prove several lower bounds for QCDCL, including exponential lower bounds for a large
class of random QBFs.

We also introduce a strengthening of the decision heuristic used in classical QCDCL,
which does not necessarily decide variables in order of the prefix, but still allows to learn
asserting clauses. We show that with this decision policy, QCDCL can be exponentially
faster on some formulas.

We further exhibit a QCDCL proof system that is p-equivalent to Q-resolution. In
comparison to classical QCDCL, this new QCDCL version adapts both decision and unit
propagation policies.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 53 (2020)



1 Introduction

SAT solving has revolutionised the way we perceive and approach computationally complex
problems. While traditionally, NP-hard problems were considered computationally intractable,
today SAT solvers routinely and successfully solve instances of NP-hard problems from virtually
all application domains, and in particular problem instances of industrial relevance [47]. Starting
with the classic DPLL algorithm from the 1960s [19,20], there have been a number of milestones
in the evolution of SAT solving, but clearly one of the breakthrough achievements was the
introduction of clause learning in the late 1990s, leading to the paradigm of conflict-driven
clause learning (CDCL) [38, 49], the predominant technique of modern SAT solving. CDCL
ingeniously combines a number of crucial ingredients, among them variable decision heuristics,
unit propagation, clause learning from conflicts, and restarts (cf. [37] for an overview).

Inspired by the success of SAT solving, many researchers have concentrated on the task to
extend the reach of these technologies to computationally even more challenging settings with
quantified Boolean formulas (QBF) receiving key attention. As a PSPACE-complete problem,
the satisfiability problem for QBFs encompasses all problems from the polynomial hierarchy
and allows to encode many problems far more succinctly than in propositional logic (cf. [45] for
applications).

One of the main techniques in QBF solving is the propositional CDCL technique, lifted to
QBF in the form of QCDCL [50]. However, solving QBFs presents additional challenges as the
quantifier type of variables (existential and universal) needs to be taken into account as well
as the variable dependencies stemming from the quantifier prefix.1 This particularly impacts
the variable selection heuristics and details of the unit propagation within QCDCL. In addition
to QCDCL there are further QBF solving techniques, exploiting QBF features absent in SAT,
such as expanding universal variables in expansion solving [30] and dependency schemes in
dependency-aware solving [35,46]. Compared to SAT solving, QBF solving is still at an earlier
stage. However, QBF solving has seen huge improvements during the past 15 years [43], and
there are problems of practical relevance where QBF solvers outperform SAT solvers [22].

The enormous success of SAT and QBF solving of course raises theoretical questions of
utmost importance: why are these solvers so successful and what are their limitations? The
main approach through understanding these questions comes from proof complexity [15,41]. The
central problem in proof complexity is to determine the size of the smallest proof for a given
formula in a specified proof system, typically defined through a set of axioms and inference rules.
Traces of runs of SAT/QBF solvers on unsatisfiable instances yield proofs of unsatisfiability,
whereby each solver implicitly defines a proof system. In particular, SAT solvers implementing
the DPLL and CDCL paradigms are based on resolution [41], which is arguably the most studied
proof system in proof complexity.

Propositional resolution operates on clauses and uses the resolution rule

C ∨ x D ∨ x̄
C ∨D

(1.1)

as its only inference rule to derive a new clause C ∨D from the two parent clauses C ∨ x and
D ∨ x̄. There is a host of lower bounds and lower bound techniques available for propositional
resolution (cf. [5, 32,44] for surveys).

While it is relatively easy to see that the classic DPLL branching algorithm [19, 20] ex-
actly corresponds to tree-like resolution (where resolution derivations are in form of a tree),
the relation between CDCL and resolution is far more complex. On the one hand, resolution
proofs can be generated efficiently from traces of CDCL runs on unsatisfiable formulas [4], a
crucial observation being that learned clauses are derivable by resolution [4, 38]. The opposite
simulation is considerably more difficult, with a series of works [1, 4, 28, 42] culminating in the

1In this paper we focus on prenex QBFs with a CNF matrix.

2



result that CDCL can efficiently simulate arbitrary resolution proofs, i.e., resolution and CDCL
are equivalent. This directly implies that all known lower bounds for proof size in resolution
translate into lower bounds for CDCL running time. In addition, other measures such as proof
space model memory requirements of SAT solvers, thereby implying lower bounds on memory
consumption [40].

Exciting as this equivalence between CDCL and resolution is from a theoretical point of view,
it has to be interpreted with care. Proof systems are inherently non-deterministic procedures,
while CDCL algorithms are largely deterministic (some randomisation might occasionally be
used). To overcome this discrepancy, the simulations of resolution by CDCL [4,42] use arbitrary
decision heuristics and perform excessive restarts, both of which diverge from practical CDCL
policies. Indeed, in very recent work [48] it was shown that CDCL with practical decision
heuristics such as VSIDS [49] is exponentially weaker than resolution, and similar results have
been obtained for further decision heuristics [39]. Regarding restarts there is intense research
aiming to determine the power of CDCL without restarts from a proof complexity perspective
(cf. [14, 16]).

On the QBF level, this naturally raises the question what proof system corresponds to
QCDCL. As in propositional proof complexity, QBF resolution systems take a prominent place
in the QBF proof system landscape, with the basic and historically first Q-resolution system [31]
receiving key attention. Q-resolution is a refutational system that proves the falsity of fully
quantified prenex QBFs with a CNF matrix (QCNFs). The system allows to use the proposi-
tional resolution rule (1.1) under the conditions that the pivot x is an existential variable and
the resolvent C ∨D is non-tautological. In addition, Q-resolution uses a universal reduction rule

C ∨ u
C

, (1.2)

where u is a universal literal that in the quantifier prefix is quantified right of all variables
in C, i.e., none of the literals in C depends on u. For Q-resolution we have a number of lower
bounds [3,6,10] as well as lower bound techniques, some of them lifted from propositional proof
complexity [11, 12], but more interestingly some of them genuine to the QBF domain [6, 8]
that unveil deep connections between proof size and circuit complexity [9], unparalleled in the
propositional domain.

Unlike in the relation between SAT and CDCL, it is has been open whether QCDCL runs
can be efficiently translated into Q-resolution. Instead, QCDCL runs can be simulated by
the stronger QBF resolution system of long-distance Q-resolution [2, 50]. In fact, this system
originates from solving, where it was noted that clauses learned from QCDCL conflicts can
be derived in long-distance Q-resolution [50]. Long-distance Q-resolution implements a more
liberal use of the resolution rule (1.1), which allows to derive certain tautologies (cf. Section 2.3
for details). In general, allowing to derive tautologies with (1.1) is unsound, an example is
given in Section 2.3. However, the tautologies allowed in long-distance Q-resolution do not
present problems for soundness and are exactly those clauses needed when learning clauses
in QCDCL. Hence long-distance Q-resolution simulates QCDCL [2, 50]. However, it is known
that long-distance Q-resolution allows exponentially shorter proofs than Q-resolution for some
QBFs [6, 7, 21].

We also remark that there are further QBF resolution systems (cf. [10] for an overview),
some of them corresponding to other solving approaches in QBF, such as the system ∀Exp+Res
that captures expansion QBF solving [30].

In summary, it is fair to say that the relations between QCDCL solving and QBF resolution
(either Q-resolution or long-distance Q-resolution) are currently not well understood. In particular,
an analogue of the equivalence of CDCL SAT solving and propositional resolution [1, 4, 42] is
currently absent in the QBF domain. This brings us to the topic of this paper.

3



1.1 Our contributions

We state and explain our main contributions and provide pointers to where these are proven in
the main part.

1.1.1 QCDCL and Q-resolution are incomparable

Our first contribution establishes that QCDCL and Q-resolution are incomparable by exponential
separations, i.e., there exist QBFs that are easy for QCDCL, but require exponential-size Q-
resolution refutations, and vice versa. As explained above, this is in stark contrast to the
propositional setting, where CDCL and resolution are equivalent.

Theorem 1.1 (Thm 4.8). The systems Q-resolution and QCDCL are incomparable.

Proving Theorem 1.1 requires two families of QBFs. For the first we take the parity formulas.

Definition 1.2 ([10]). The QCNF QParityn consists of the prefix ∃x1 . . . xn∀z∃t2 . . . tn and the
matrix

x1 ∨ x2 ∨ t̄2, x1 ∨ x̄2 ∨ t2, x̄1 ∨ x2 ∨ t2, x̄1 ∨ x̄2 ∨ t̄2,
xi ∨ ti−1 ∨ t̄i, xi ∨ t̄i−1 ∨ ti, x̄i ∨ ti−1 ∨ ti, x̄i ∨ t̄i−1 ∨ t̄i,
tn ∨ z, t̄n ∨ z̄

for i ∈ {2, . . . , n}.

The formulas assert that there is an input x1, . . . , xn such that the parity
⊕

i∈[n] xi is not
equal to z. Since z is universally quantified, this means that

⊕
i∈[n] xi should be neither 0 nor 1,

an obvious contradiction. The parity computation is encoded by using variables ti for the prefix
sums

⊕
j∈[i] xj . Using strategy extraction for Q-resolution [2, 10] and the result that the parity

function is hard for bounded-depth circuits [23, 27], one can show that the QParityn formulas
require exponential-size Q-resolution refutations [10].

Here we show that QParityn is easy for QCDCL.

Proposition 1.3 (Prop. 4.2). QParityn has polynomial-size proofs in QCDCL.

This requires to formally state QCDCL in terms of a proof system (we will denote this
by QCDCL and explain it in Sections 1.1.3 and 3) and to construct specific trails and clauses
learned from these trails that together comprise a short QCDCL proof of the formulas.

For the opposite separation we consider the following QBFs:

Definition 1.4 (Def. 4.5). Let PHPn+1
n be the set of clauses for the pigeonhole principle with n

holes and n+ 1 pigeons using variables x1, . . . , xsn. Let Trapdoorn be the QCNF with the prefix
∃y1, . . . , ysn∀w∃t, x1, . . . , xsn∀u and the matrix

PHPn+1
n (x1, . . . , xsn) (1.3)

ȳi ∨ xi ∨ u, yi ∨ x̄i ∨ u (1.4)

yi ∨ w ∨ t, yi ∨ w ∨ t̄, ȳi ∨ w ∨ t, ȳi ∨ w ∨ t̄ (1.5)

for i = 1, . . . , sn.

We show that these formulas Trapdoorn require exponential-size QCDCL refutations (Propo-
sition 4.6). In QCDCL, variables have to be decided in order of the quantifier prefix, hence each
QCDCL trail for Trapdoorn has to start with the y variables, which by unit propagation (used
together with universal reduction) propagates xi = yi for i ∈ [sn] by clauses (1.4). Therefore
the trail runs into a conflict on the PHP clauses (1.3). This happens repeatedly, forcing QCDCL

4



to produce a resolution refutation of the clauses (1.3), which by the propositional resolution
lower bound by Haken [26] has to be of exponential size. On the other hand, it is easy to obtain
short Q-resolution refutations of Trapdoorn by just using the clauses (1.5) (Proposition 4.7).

This establishes the separation of QCDCL and Q-resolution. We remark that in earlier work,
Janota [29] showed that QCDCL with a specific asserting learning scheme requires large running
time on some class of QBFs, whereas the same formulas are easy for Q-resolution. Of course,
this raises the question whether another learning scheme might produce short QCDCL runs. In
contrast, our Theorem 1.1 rules out any simulation of Q-resolution by QCDCL (or vice versa),
regardless of the learning scheme used.

1.1.2 Lower bounds for QCDCL

The incomparability of Q-resolution and QCDCL raises the immediate question of what formulas
are hard for QCDCL. Previous research has largely concentrated on showing lower bounds for
Q-resolution (e.g. [6, 10, 31]). However, by our results from the last subsection, these lower
bounds do not necessarily apply to QCDCL, and prior to this paper no dedicated lower bounds
for QCDCL (with arbitrary learning schemes) were known.

Here we show that several formulas from the QBF literature, including the equality formulas
and a large class of random QBFs [6] are indeed hard for QCDCL. The equality formulas from [6]
are arguably one of the simplest families of QBFs that are interesting from a proof complexity
perspective. The formula Equalityn is defined as the QCNF

∃x1 . . . xn∀u1 . . . un∃t1 . . . tn · (t̄1 ∨ . . . ∨ t̄n) ∧
n∧
i=1

((x̄i ∨ ūi ∨ ti) ∧ (xi ∨ ui ∨ ti)).

These formulas are of the type Σb
3, i.e., they have two quantifier alternations starting with ∃.

Inspired by this construction, [6] considered a class of randomly generated QCNFs, again of
type Σb

3.

Definition 1.5 ( [6]). For each 1 ≤ i ≤ n let C
(1)
i , . . . , C

(cn)
i be clauses picked uniformly at

random from the set of clauses containing 1 literal from the set Ui = {u(1)
i , . . . , u

(m)
i } and

2 literals from Xi = {x(1)
i , . . . , x

(n)
i }. Define the randomly generated QCNF Q(n,m, c) as:

Q(n,m, c) := ∃X1, . . . , Xn∀U1, . . . , Un∃t1, . . . , tn ·
n∧
i=1

cn∧
j=1

(t̄i ∨ C(j)
i ) ∧ (t1 ∨ . . . ∨ tn)

Suitably choosing the parameters c and m, we obtain false QBFs with high probability.
Both the equality and the random formulas require exponential-size proofs in Q-resolution

(the random formulas whp) [6]. This is shown in [6] via the size-cost-capacity technique, a
semantically grounded QBF lower-bound technique that infers Q-resolution hardness for for-
mulas Φn (and in fact hardness for even stronger systems) from lower bounds for the size of
countermodels for Φn.

It is not clear how to directly apply this technique to QCDCL. Instead, we identify a property,
which we term the XT -property (Definition 5.2), that we can use to lift hardness from Q-
resolution to QCDCL. Intuitively, it says that in a Σb

3 formula Φ with quantifier prefix of the
form ∃X∀U∃T with blocks of variables X, U , T , there is no direct connection between the X
and T variables, i.e., Φ does not contain clauses with X and T variables, but no U variables
(there are some further condition on clauses containing only T variables (Definition 5.2)).

We can then prove that QCDCL runs on formulas with this XT -property can be efficiently
transformed into Q-resolution refutations, not only into long-distance Q-resolution refutations.
Thus for formulas with the XT -property we can lift the Q-resolution lower bounds to QCDCL,
yielding the next theorem.

5



Theorem 1.6 (Thm 5.6). If Φ fulfils the XT -property and requires Q-resolution refutations of
size s, then each QCDCL refutation of Φ has size at least s as well.

It is quite easy to check that both the equality formulas as well as the random formulas
above have the XT -property. Thus we obtain:

Corollary 1.7 (Cor. 5.9 & Cor. 5.13).

• Equalityn requires QCDCL refutations of size 2n.

• Let 1 < c < 2 be a constant and m ≤ (1 − ε) log2 n for some constant ε > 0. With
probability 1− o(1) the random QCNF Q(n,m, c) is false and requires QCDCL refutations
of size 2Ω(nε).

Our findings so far reveal an interesting picture on QCDCL hardness. Firstly, Proposition 1.3
and Corollary 1.7 imply that not all Q-resolution hardness results lift to QCDCL: the lower
bounds for equality and random formulas shown via size-cost-capacity [6] do, but the lower
bounds for parity shown via circuit complexity [10] do not.

Secondly, it is worth to compare the QCDCL hardness results for Trapdoor from the previous
subsection to the QCDCL hardness results shown here for equality and random formulas. The
hardness of Trapdoor lifts from propositional hardness for PHP, while the hardness of equality
and random formulas lifts from Q-resolution hardness. In fact, this can be made formal by
using a model of QBF proof systems with access to an NP oracle [13], which allows to collapse
propositional subderivations of arbitrary size into just one oracle inference step. Hardness under
the NP-oracle version of Q-resolution guarantees that the hardness is ‘genuine’ to QBF and not
lifted from propositional resolution. We show here that this notion of ‘genuine’ QBF hardness,
tailored towards QCDCL, also holds for the QCDCL lower bounds for equality and the random
QBFs (Proposition 5.16).

On the other hand, the parity formulas also exhibit ‘genuine’ QBF hardness, as they are hard
in the NP-oracle version of Q-resolution [8]. Since they are easy for QCDCL (Proposition 1.3),
this means that not all genuine Q-resolution lower bounds lift to QCDCL.

Thirdly, hardness for QCDCL can of course also stem from hardness for long-distance Q-
resolution, since the latter system simulates the former.2 However, there are only very few
hardness results for long-distance Q-resolution known in the literature [3,10], hence our hardness
results shown here should be also valuable for practitioners, in particular the hardness results
for the large class of random QCNFs. It is also worth noting that the equality formulas are easy
for long-distance Q-resolution [7], hence our results imply an exponential separation between
QCDCL and long-distance Q-resolution (Corollary 5.10).

1.1.3 Our framework: QCDCL as formal proof systems

Technically, this paper hinges on the formalisation of QCDCL solving as precisely defined proof
systems, which can subsequently be analysed from a proof-complexity perspective. This involves
formalising a number of QCDCL ingredients (cf. Section 2.4 for an informal account on how
QCDCL works). We will just sketch this here, the full formal details are given in Section 3.

We start with the notion of a QCDCL trail T for a QCNF Φ. The trail T is a sequence of
literals, which we typically denote as

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr)).

Here d1, . . . , dr are the decision variables and the p variables are propagated by unit propagation.
While decisions can be either existential or universal, propagated variables are always existential.
In classical QCDCL, the following decision policy is adopted:

2A proof system P p-simulates a proof system S if each S proof can be efficiently transformed into a P proof
of the same formula [18]. If the systems p-simulate each other, they are p-equivalent.

6



• LEV-ORD - For each di ∈ T , all variables from quantifier blocks left of di in the prefix
of Φ appear left of di in T , i.e., all variables on which di depends have been decided or
propagated before di is decided.

This decision policy therefore follows the order of quantification in the prefix, for which reason
we call it level ordered (LEV-ORD).

In addition to LEV-ORD, we consider three more decision policies. The first one stems from
propositional CDCL where the order of decisions is completely arbitrary:

• ANY-ORD - Given a trail T , we can choose any remaining literal as the next decision.

Before defining the remaining two decision policies, we explain our policies for unit propagation.
The first comes again just from propositional CDCL:

• NO-RED - For each propagated literal p(i,j) ∈ T there has to be a clause C in Φ such
that C becomes a single-literal clause under the sub-trail T [i, j− 1] of T that contains all
decisions and propagations in T before p(i,j).

To illustrate this with a small example, assume that Φ contains a clause C = x ∨ ȳ ∨ z and T
contains the decisions x̄, y. Then C is simplified to the single literal z under the assignment T ,
and hence z is propagated and included as the next variable in T .

This is just CDCL propagation. It is, however, not what is done in QCDCL. Assume again
we have a clause C = x ∨ ȳ ∨ z ∨ u in Φ and ∃x, y, z∀u appears in the prefix of Φ. If the trail
contains x̄, y, we cannot propagate z with the policy NO-RED. However, we can use universal
reduction on u as in rule (1.2) of Q-resolution to reduce the clause z ∨ u (the clause C under
the assignment corresponding to T ) to the single-literal clause z. Hence we can immediately
propagate z with the following unit propagation policy:

• RED - For each propagated literal p(i,j) ∈ T there is a clause C in Φ such that C becomes
a single-literal clause under the trail T [i, j − 1] using universal reduction.

In (Q)CDCL, whenever a trail T runs into a conflict, i.e., a clause C from Φ is falsified, we
perform conflict analysis in the form of clause learning. This results in a clause D that follows
from Φ and describes a reason for the conflict. Such conflict clauses are obtained by performing
resolution (for CDCL) and long-distance Q-resolution (for QCDCL), starting from the conflict
clause C and resolving along the propagated variables in T in reverse order (skipping resolution
steps when the pivot is missing).

We prove that this learning process works independently from our policies, e.g., even when
ANY-ORD or NO-RED is used, we can correctly perform long-distance Q-resolution for clause
learning as in QCDCL (Proposition 3.7). For practical (Q)CDCL, it is important that we do
not just learn any clause, but an asserting clause D, which means that D becomes unit after
backtracking.

We notice that though the policy ANY-ORD is sound, it does not always allow to learn as-
serting clauses (Remark 3.10). Therefore, we introduce further policies, which are intermediate
between LEV-ORD and ANY-ORD and still guarantee that asserting clauses can be learned (Lem-
mas 3.13 and 3.14). We define two policies ASS-ORD and ASS-R-ORD, to be used with the unit
propagation policies NO-RED and RED, respectively.

• ASS-ORD - Let (d1, . . . , dr) be the decision literals of T and dk be the rightmost universal
literal in T . Then we have lv(d1) ≤ . . . ≤ lv(dk).

3

• ASS-R-ORD - We can only decide an existential variable x next, if and only if we already
decided all universal variables u with lv(u) < lv(x) before in T .

7



QCDCLLEV-ORD
RED = QCDCL

QCDCLASS-R-ORD
RED

QCDCLANY-ORD
RED

QCDCLLEV-ORD
NO-RED

QCDCLASS-ORD
NO-RED

QCDCLANY-ORD
NO-RED

Q-resolution

long-distance Q-resolution

Figure 1: Overview of the defined QCDCL proof systems. Lines denote p-simulations and follow
by definition and Theorem 1.8.

Combining the two policies RED and NO-RED for unit propagation and the four policies
ANY-ORD, LEV-ORD, ASS-ORD, and ASS-R-ORD, we obtain six QCDCL systems. These are
depicted in Figure 1 (we are not interested in the systems QCDCLASS-ORD

RED and QCDCLASS-R-ORD
NO-RED ).

As mentioned, combining LEV-ORD with RED yields the standard QCDCL system. The other
five variants are introduced here for the first time.

To actually show that these systems are sound and to proof-theoretically analyse their
strength, we turn these six systems into formal refutational proof systems for QBF (Defini-
tion 3.5). A proof of a clause Cm from a QCNF Φ = Q · φ in the calculus QCDCLPR is of the
form

(T1, . . . , Tm), (C1, . . . , Cm), (π1, . . . , πm)

where

• Ti are trails under the decision policy P and unit-propagation policy R,

• Ci is a clause learnable from Ti, and

• πi is a long-distance Q-resolution derivation of the clause Ci from Q · (φ∪ {C1, . . . , Ci−1}).

The proofs πi are not arbitrary, but are defined recursively by resolving along the trails Ti
(Definition 3.3). If Cm is the empty clause, then we speak of a refutation of Φ.

We establish that all these systems are sound and complete QBF proof systems.

Theorem 1.8 (Thm 3.8 & Thm 3.15). All defined QCDCL proof systems are sound and com-
plete. In particular, all QCDCL calculi are p-simulated by long-distance Q-resolution and the
proof systems with NO-RED are even p-simulated by Q-resolution.

Soundness is shown via efficiently constructing long-distance Q-resolution proofs from QCDCL
proofs. Crucially, when using the unit-propagation policy NO-RED, then no long-distance steps
are actually needed and we just construct Q-resolution proofs. The resulting simulations are
depicted in Figure 1. Simulations between the QCDCL calculi follow by definition. We remark
already here that this simulation order simplifies further due to our results in the next two
subsections (cf. Figure 2).

Proving that QCDCL decisions do not necessarily need to follow the order of quantification
(as is done in practical QCDCL with policy LEV-ORD), might be a somewhat surprising discovery.

3Under a prefix Q1X1Q2X2 . . . QsXs with disjoint blocks of variables Xi and alternating blocks of quanti-
fiers Qi ∈ {∃,∀}, the quantifier level of a variable x is lv(x) = i, if x ∈ Xi.

8



It seems to us that inside the QBF community there is the wide-spread belief that following the
quantification order in decisions is needed for soundness (cf. e.g. [24,36,50]).4 While this is true
for QDPLL [17,24],5 we show here that this is actually not needed in QCDCL: the quantification
order is immaterial for the decisions as long as the quantification order is correctly taken into
account when deriving learned clauses (Theorem 1.8). Hence our theoretical work also opens the
door towards new solving approaches in practice (cf. the discussion in the concluding Section 9).

From a theoretical point of view, formalising the QCDCL ingredients into proof systems
enables a precise proof-theoretic analysis of the QCDCL systems and their comparison to Q-
resolution. This already was the underlying feature of our results in the previous two subsections,
showing the incomparability of Q-resolution and QCDCL (Section 1.1.1) and the lower bounds
for QCDCL (Section 1.1.2). We will now use it further to obtain a version of QCDCL that is
even p-equivalent to Q-resolution.

1.1.4 A QCDCL system that characterises Q-resolution

In one of our main results we obtain a QCDCL characterisation of Q-resolution. Of course, given
that Q-resolution and QCDCL are incomparable (Section 1.1.1), we cannot hope to achieve such
a characterisation by simply strengthening some of the QCDCL policies.6 As explained in the
previous subsection, traditional QCDCL is using the decision policy LEV-ORD and the unit-
propagation policy RED. To obtain a QCDCL system equivalent to Q-resolution, we will have to
change both policies. We will strengthen the decision policy and replace LEV-ORD by ANY-ORD

(we could also replace it with the intermediate version ASS-ORD). In addition, we will somewhat
weaken the unit propagation policy from RED to NO-RED.7

This leads to the following characterisation of Q-resolution.

Theorem 1.9 (Thm 6.9). Q-resolution, QCDCLANY-ORD
NO-RED , and QCDCLASS-ORD

NO-RED are p-equivalent
proof systems.

In particular, each Q-resolution refutation π of a QCNF in n variables can be transformed
into a QCDCLASS-ORD

NO-RED -refutation of size O(n3 · |π|) that uses an arbitrary asserting learning
scheme.

One part of the simulation above was already shown in Theorem 1.8, where we proved
that all QCDCL systems with NO-RED are p-simulated by Q-resolution. The technically most
challenging part is the reverse simulation where we need to construct QCDCLASS-ORD

NO-RED trails from
Q-resolution proofs. The main conceptual notion we use is that of reliable clauses (Definition 6.1).
Intuitively, a reliable clause C can be used to form a QCDCLASS-ORD

NO-RED trail by using all negated
literals from C as decisions. This way we progress through the Q-resolution proof, successively
learning clauses and making all clauses C in the Q-resolution proof unreliable until we obtain
the empty clause.

This construction bears some similarities to the simulation of Q-resolution by CDCL [42], but
poses further technical challenges due to quantification and the additional rules of Q-resolution.
In the inductive argument we therefore need to distinguish three cases on whether C is an axiom
or derived by resolution or reduction, each requiring its own lemma (6.6, 6.7, and 6.8).

We also point out that in comparison to the notion of 1-empowering clauses from [42], our
argument via reliability yields somewhat better bounds on the simulation, thereby implying a
slight quantitative improvement by a factor of n in the simulation in [42] (cf. the more elaborate
discussion in Section 7):

4In fact we thought so too, prior to this paper.
5The fact that the earlier QDPLL algorithm [17] needs to obey the quantifier order might have been the reason

why this policy was adopted in QCDCL as well [50].
6Such hope might not have seemed totally implausible prior to this paper, e.g. [29] states that ‘CDCL QBF

solving appears to be quite weak compared to general Q-resolution.’
7While intuitively NO-RED might indeed appear weaker then RED (it produces fewer unit propagations), we

show in the next subsection that they are in fact incomparable, cf. Figure 2.

9



Q-resolution≡p QCDCLASS-ORD
NO-RED ≡p QCDCLANY-ORD

NO-RED

QCDCLLEV-ORD
NO-RED

LD-Q-resolution

4

5

1

2

strictly stronger
(p-simulation + exponential separation)

incomparable (exponential separations
in both directions)

p-simulation
(equivalence/separation open) QCDCLASS-R-ORD

RED

QCDCLLEV-ORD
RED = QCDCL

3

1 Theorem 4.8 (QParityn, Trapdoorn)

2 [6,10,21] (Equalityn, QParityn, KBKFn)

3 Theorem 8.6 (Equalityn)

4 Proposition 8.2 (Lonn)

5 Theorem 8.4 (QParityn, Trapdoorn)

Figure 2: The simulation order of QCDCL and QBF resolution systems. The table contains
pointers to the separating formulas.

Theorem 1.10 (Thm 7.2). Let φ be a CNF in n variables and let π be a resolution refutation
of φ. Then φ has a CDCL refutation of size O(n3|π|).

1.1.5 The simulation order of QCDCL proof systems

We can now analyse the simulation order of the defined QCDCL and QBF resolution systems,
cf. Figure 2 which almost completely determines the simulations and separations between the
systems involved (cf. Section 9 for the open cases).

We highlight the most interesting findings (in addition to the results already described).
Firstly, we show that the unit-propagation policies RED and NO-RED are incomparable when

fixing the decision policy LEV-ORD used in practical QCDCL.

Theorem 1.11 (Thm 8.4). The systems QCDCLLEV-ORD
NO-RED and QCDCLLEV-ORD

RED are incomparable.

For the separations we use the QBFs QParityn and Trapdoorn. For practice, this results
means that it is a priori not clear that the unit-propagation policy as used in practical QCDCL
is actually preferable to the simpler unit-propagation policy from CDCL (which would work in
QCDCL as well).

Secondly, we show that replacing the decision policy LEV-ORD in QCDCL with the more lib-
eral decision policy ASS-R-ORD yields exponentially shorter QCDCL runs, which we demonstrate
on the Equalityn formulas.

Theorem 1.12 (Thm 8.6). QCDCLASS-R-ORD
RED is exponentially stronger than QCDCLLEV-ORD

RED .

Again, this theoretical result identifies potential for improvements in practical solving (cf.
also the discussion in the concluding Section 9).

10



1.2 Organisation

The main part of the article is organised slightly differently from the order of results as outlined
above. We start in Section 2 with reviewing relevant notions concerning quantified Boolean
logic, QBF proof systems, and QCDCL.

Section 3 formalises QCDCL with a number of different policies for variable decision and
unit propagation as proof systems. This constitutes the formal framework for the rest of the
paper. The proof systems are shown to be sound and complete.

Section 4 shows the incomparability of QCDCL and Q-resolution by exponential separations.
This is followed in Section 5 by further hardness results for QCDCL.

In Section 6 we obtain the characterisation of Q-resolution in terms of the new QCDCL proof
system QCDCLANY-ORD

NO-RED . We discuss implications of this result to the equivalence of propositional
resolution and CDCL in Section 7.

Section 8 reveals the full picture of the simulation order of the defined QCDCL proof systems.
We conclude in Section 9 with some open questions and a discussion of the potential impact of
our results for practice.

2 Preliminaries

2.1 Propositional and quantified formulas

We will consider propositional and quantified formulas over a countable set of variables. Vari-
ables and negations of variables are called literals, i.e., for a variable x we can form two literals:
x and its negation x̄. Sometimes we write x1 instead of x and x0 instead of x̄. We denote the
corresponding variable as var(x) := var(x̄) := x.

A clause is a disjunction `1 ∨ . . . ∨ `m of some literals `1, . . . , `m. We will sometimes view
a clause as a set of literals, i.e., we will use the notation ` ∈ C if the literal ` is one of the
literals in the clause C. If m = 1, we will often write (`1) to emphasize the difference between
literals and clauses. The empty clause is the clause consisting of zero literals, denoted by (2).
For reasons of consistency it is helpful to define an empty literal, denoted by 2 in our case. As
a consequence, we have 2 ∈ (2), although we define the empty clause as a clause with zero
literals.

The negation of a clause C = `1 ∨ . . . ∨ `m is called a term, i.e., terms are conjunctions
¯̀
m∧. . .∧ ¯̀

m of literals. Similarly terms can be considered as sets of literals. A CNF (conjunctive
normal form) is a conjunction of clauses.

Let C = `1∨. . .∨`m. We define var(C) := {var(`1), . . . , var(`m)}. For a CNF φ = C1∧. . .∧Cn
we define var(φ) :=

⋃n
i=1 var(Ci).

A clause or a set C of literals is called tautological, if there is a variable x with x, x̄ ∈ C.
An assignment σ of a set of variables X is a non-tautological set of literals, such that for

all x ∈ X there is ` ∈ σ with var(`) = x. The restriction of a clause C by an assignment σ is
defined as

C|σ :=


> (true) if C ∩ σ 6= ∅,∨
`∈C
¯̀6∈σ

` otherwise.

One can interpret σ as an operator that sets all literals from σ to the boolean constant 1. We
denote the set of assignments of X by 〈X〉. Assignments can also operate on CNFs in the
natural sense. A CNF φ entails another CNF ψ if each assignment that satisfies φ also satisfies
ψ (denoted by φ � ψ).

A QBF (quantified Boolean formula) Φ = Q · φ is a propositional formula φ (also called
matrix ) together with a prefix Q. A prefix Q1x1Q2x2 . . . Qkxk consists of variables x1, . . . , xk

11



and quantifiers Q1, . . . , Qk ∈ {∃, ∀}. We obtain an equivalent formula if we unite adjacent
quantifiers of the same type. Therefore we can always assume that our prefix is in the form of

Q = Q′1X1Q
′
2X2 . . . Q

′
sXs

with nonempty sets of variables X1, . . . , Xs and quantifiers Q′1, . . . , Q
′
s ∈ {∃, ∀} such that Q′i 6=

Q′i+1 for i ∈ [s − 1]. For a variable x in Q we denote the quantifier level with respect to Q
by lv(x) = lvΦ(x) = i, if x ∈ Xi. Variables from Φ are called existential, if the corresponding
quantifier is ∃, and universal if the quantifier is ∀. We denote the set of existential variables
from Φ by var∃(Φ), and the set of universal variables by var∀(Φ).

A QBF whose matrix is a CNF is called a QCNF. We require that all clauses from a matrix of
a QCNF are non-tautological, otherwise we would just delete these clauses. This requirement is
crucial for the correctness of the derivation rules we define later for our proof systems. Since we
will only discuss refutational proof systems, we will always assume that all QCNFs we consider
are false.

A QBF can be interpreted as a game between two players: The ∃-player and the ∀-player.
These players have to assign the respective variables one by one along the quantifier order from
left to right. The ∀-player wins the game if and only if the matrix of the QBF gets falsified by
this assignment. It is well known that for every false QBF Φ = Q · φ there exists a winning
strategy for the ∀-player.

2.2 Proof systems

A proof system for a language L is a polynomial-time computable surjective function f :
{0, 1}∗ → L [18]. A proof for φ ∈ L is some π ∈ {0, 1}∗ such that f(π) = φ. In our case,
the language L will be mostly UNSAT (unsatisfiable formulas) or FQBF (false QBFs). For
unsatisfiable or false formulas we often call the system refutational.

To show that such a polynomial-time function f is actually a proof system for L, we have
to verify two properties:

• soundness: f({0, 1}∗) ⊆ L.

• completeness: f({0, 1}∗) ⊇ L.

A proof system f for a language L is simulated by another proof system g for L, if there
exists a function h : {0, 1}∗ → {0, 1}∗ such that g ◦ h = f (denoted f ≤ g) [33]. If h is
polynomial-time computable, then we say that g p-simulates f (denoted f ≤p g) [18]. If two
systems p-simulate each other, they are p-equivalent (denoted f ≡p g).

2.3 Q-resolution and long-distance Q-resolution

Let C1 and C2 be two clauses of a QCNF Φ. Let also ` be an existential literal with var(`) 6∈
var(C1) ∪ var(C2). Then the resolvent of C1 ∨ ` and C2 ∨ ¯̀ over ` is defined as

res(C1 ∨ `, C2 ∨ ¯̀, `) := C1 ∨ C2.

Let C := u1∨ . . .∨um∨x1∨ . . .∨xn∨v1∨ . . .∨vs be a clause from Φ, where u1, . . . , um, v1, . . . , vs
are universal literals, x1, . . . , xn are existential literals and

{v ∈ C : v is universal and lv(v) > lv(xi) for all i ∈ [n]} = {v1, . . . , vs}.

Then we can perform a reduction step and obtain

red(C) := u1 ∨ . . . ∨ um ∨ x1 ∨ . . . ∨ xn.

12



For a CNF φ = {C1, . . . , Ck} we define

red(φ) := {red(C1), . . . , red(Ck)}.

Q-resolution [31] is a refutational proof system for false QCNFs. A Q-resolution proof π of a
clause C from a QCNF Φ = Q · φ is a sequence of clauses π = C1, . . . , Cm with Cm = C. Each
Ci has to be derived by one of the following three rules:

• Axiom: Ci ∈ φ;

• Resolution: Ci = res(Cj , Ck, x) for some j, k < i and x ∈ var∃(Φ), and Ci is non-
tautological;

• Reduction: Ci = red(Cj) for some j < i.

Note that none of our axioms are tautological by definition. A refutation of a QCNF Φ is a
proof of the empty clause (2).

For the simulation of the original version of QCDCL, the proof system long-distance Q-
resolution was introduced in [2, 50]. This extension of Q-resolution allows to derive universal
tautologies under specific conditions. As in Q-resolution, there are three rules by which a clause
Ci can be derived. The axiom and reduction rules are identical to Q-resolution, but the resolution
rule is changed to

• Resolution (long-distance): Ci = res(Cj , Ck, x) for some j, k < i and x ∈ var∃(Φ). The
resolvent Ci is allowed to contain a tautology u ∨ ū if u is a universal variable. If u ∈
var(Cj) ∩ var(Ck), then we additionally require lv(u) > lv(x).

Note that a long-distance Q-resolution proof without tautologies is just a Q-resolution proof.
Creating universal tautologies without any assumptions is unsound in general. For example,

consider the true QCNF Ψ := ∀u∃x · (u ∨ x̄) ∧ (ū ∨ x). There is a winning strategy for the
∃-player by assigning x equal to u. Hence, the step red(res(u ∨ x̄, ū ∨ x, x)) = (2) is unsound
since we resolved over an existential literal x with lvΨ(x) > lvΨ(u) while generating u ∨ ū.

2.4 QCDCL

Quantified conflict-driven clause learning (QCDCL) is the quantified version of the well-known
CDCL algorithm (see [37,49] for further details on CDCL, and [25,34,50] for QCDCL). Let Φ =
Q · φ be a false QCNF. Roughly speaking, QCDCL consists of two processes: The propagation
process and the learning process.

In the propagation process we generate assignments to the end that we obtain a conflict. We
start with clauses from φ that force us to assign literals such that we do not falsify these clauses
(subsequently called unit clauses). The underlying idea of this process is unit propagation. One
can think of a clause x1 ∨ . . . ∨ xn as an implication (x̄1 ∧ . . . ∧ x̄n−1) → xn. That is, if we
already assigned the literals x̄1, . . . , x̄n−1, then we are forced to assign xn in order to verify this
clause. If xn was universal, this would already be a conflict since this clause must be true for
both assignments of xn in order to not get falsified. In general, we also have to insert reduction
steps into this process. Hence we are interested in clauses that become unit after reduction.
For example, the clause (x̄1 ∧ . . .∧ x̄n−1)→ (xn ∨u) for an existential literal xn and a universal
literal u with lv(xn) < lv(u) can also be used as an implication of xn for unit propagation.

Of course we could also assign x̄n, immediately leading to a conflict by falsifying the clause
x1 ∨ . . . ∨ xn, but this conflict would have been solely caused by this clause and would not give
us any new information for the learning process. Our goal is to prolong a conflict as long as
possible in the hope of learning something helpful from it. However, it is not guaranteed that
we can even perform any unit propagations by just starting with the formula.

13



Therefore we will make decisions, i.e., we assign literals without any solid reason. With the
aid of these decisions (one can also think of assumptions) we can provoke further unit propaga-
tions. Since decision making is one of the non-deterministic components of the algorithm, we
will try to keep its influence as low as possible. In detail, this means we will only make decisions
if there are no more unit propagations available. In the classical QCDCL these decisions have
to follow a level-order. This means we always have to decide the next available variable with
the lowest quantifier level. However, we will later show that this condition is not necessary for
soundness or completeness. There are even QCNFs whose hardness are based simply on this
level-order, so leaving out this limitation would actually strengthen the algorithm. In our model
these two policies will be denoted by LEV-ORD and ANY-ORD.

After we obtained a conflict, we can start the clause learning process. Here the underlying
idea is to use Q-resolution resp. long-distance Q-resolution. We start with the clause that caused
our conflict and resolve it with clauses that implied previous literals in the assignment in the re-
versed propagation order. At the end we get a (hopefully) new clause such that each assignment
that falsifies this clause also leads to a conflict. In addition we get a long-distance Q-resolution-
derivation of this learned clause from Φ. We will add the learned clause to φ, backtrack to a
state before we assigned all literals of this clause and start with the propagation process again.
The algorithm ends as soon as we learn the empty clause (2) and therefore obtain a refutation
of Φ.

In our work we want to formalize this algorithm as a proof system and slightly modify
the system such that this new proof system becomes equivalent to Q-resolution. To ensure
we actually construct a Q-resolution proof out of the learning process, we have to prevent the
introduction of universal tautologies. As will become clear later, the reasons for these tautologies
are reductions in the propagation process. This is the only way where both literals of universal
variables can be introduced. This motivates disallowing these reductions in the propagation
process. Later in the definitions we will denote these policies by RED and NO-RED.

Usually QCDCL has to handle both refutations of false formulas as well as proving the
validity of true formulas. For this purpose one would need to implement the so called cube
learning (or term learning) for fulfilling assignments. But since we are only interested in the
refutation of formulas (otherwise we could not compare this system to Q-resolution), we will
omit this aspect of QCDCL.

3 Our framework: versions of QCDCL as proof systems

In this section we define formal proof systems that capture QCDCL solving. For this we need
to formally define central ingredients of QCDCL solving, including trails, decision policies, unit
propagation, and clause learning. For decisions and unit propagation we will consider different
policies: those corresponding to QCDCL solving in practice and new policies, yet unexplored.
We will show that the corresponding QCDCL proof systems are all sound and complete.

We start with defining trails, decisions, unit propagations and our collection of policies.

Definition 3.1 (trails and policies for decision/unit propagation). Let Φ = Q · φ be a QCNF
in n variables. A trail T for Φ is a sequence of literals (or 2) of variables from Φ with some
specific properties. We distinguish two types of literals in T : decision literals, that can be both
existential and universal, and propagated literals, that are either existential or 2. Most of the
time we write a trail T as

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr)).

We typically denote decision literals by di and propagated literals by p(i,j). To emphasize de-
cisions, we will set decision literals in the trail in boldface and put a semicolon at the end of
each decision level. The literal p(i,j) represents the jth propagated literal in the ith decision level,

14



determined by the corresponding decision di. The decision level 0 is the only level where we do
not have a decision literal. Similarly to clauses, we can view T as a set of literals or as an
assignment and use the notation x ∈ T if the literal x is contained in T .

Let s ∈ {0, . . . , r} and t ∈ {0, . . . , gs}. The subtrail of T at the time (s, t) is the trail
consisting of all literals from the leftmost literal in T up to (including) p(s,t), if t 6= 0, or ds
otherwise. We denote this subtrail by T [s, t]. The subtrail T [0, 0] is defined as the empty trail.

Now, we need some further requirements for T to be a trail for a QCNF Φ.
The decisions have to be non-tautological and non-repeating, i.e., we require var(di) 6=

var(dk) for each i 6= k ∈ {0, . . . , r}. If 2 ∈ T , then this must be the last (rightmost) literal in
T . In this case we will say that T has run into a conflict.

We define four policies, concerning the decision of literals, from which we can choose exactly
one at a time:

• LEV-ORD - For each di ∈ T we have lv(di) ≤ lv(x) for all x ∈ var(φ)\var(T [i − 1, gi−1]).
That means we have to decide the variables along the quantification order.

• ASS-ORD - Let (d1, . . . , dr) be the decision literals of T and dk be the rightmost universal
literal in this order. Then we have lv(d1) ≤ . . . ≤ lv(dk).

• ASS-R-ORD - We can only decide an existential variable x next, if and only if we already
decided all universal variables u with lv(u) < lv(x) before.

• ANY-ORD - We can choose any remaining literal as the next decision.

We define two more policies concerning unit propagation. Again, we have to choose exactly
one:

• RED - For each p(i,j) ∈ T there has to be a clause C ∈ φ such that red(C|T [i,j−1]) = (p(i,j)).

• NO-RED - For each p(i,j) ∈ T there has to be a clause C ∈ φ with C|T [i,j−1] = (p(i,j)).

These clauses C as described in the policies are called antecedent clauses, which will be denoted
by anteT (p(i,j)) := C. There could be more than one such suitable clause, in this case we will just
choose one of them arbitrarily. These antecedent clauses clearly depend on the unit propagation
policy we use.

The size of a trail T can be measured by |T | (i.e., the cardinality of T as a set). Because
each trail can at most contain all variables, we always have |T | ∈ O(n).

The policies RED and NO-RED determine the notion of unit clauses, which are important for
unit propagation.

Definition 3.2 (unit clauses). Let C be a clause. In the policy RED, we call C a unit clause if
red(C) = (x) for an existential literal x or x = 2.

Otherwise, for NO-RED, we call C a unit clause if C = (x) for an existential literal x or
x = 2.

Note that (u) is not a unit clause under the policy NO-RED for a universal literal u.
Next we will formalise the process of clause learning from trails that run into a conflict. The

idea is to resolve all antecedent clauses, starting from the end of the trail, until we stop at some
point. We will always resolve over the corresponding propagated literal and skip literals not
used for the implication of the conflict.

Definition 3.3 (learnable clauses). Let Φ = Q · φ be a QCNF and let

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr))

15



be a trail with p(r,gr) = 2 that follows policies P ∈ {LEV-ORD,ASS-ORD,ANY-ORD} and R ∈
{RED,NO-RED}. We call a clause learnable from T if it appears in the sequence

LT := (C(r,gr), . . . , C(r,1), . . . , C(1,g1), . . . , C(1,1), C(0,g0), . . . , C(0,1))

where C(r,gr) := red(ante(p(r,gr))),

C(i,j) :=

{
red[res(C(i,j+1), red(ante(p(i,j))), p(i,j))] if p̄(i,j) ∈ C(i,j+1),

C(i,j+1) otherwise

for i ∈ {0, . . . , r}, j ∈ [gi − 1], and

C(i,gi) :=

{
red[res(C(i+1,1), red(ante(p(i,gi))), p(i,gi))] if p̄(i,gi) ∈ C(i+1,1),

C(i+1,1) otherwise

for i ∈ {0, . . . , r − 1}.

Note that clause learning works independently from the used policy. Even if we choose the
policy NO-RED, we might have to make reduction steps in this process.

Next we formalise natural trails, where we are not allowed to skip unit propagations.

Definition 3.4 (natural trails). We call a trail T natural, if the following holds: For any time
(s, t), s ∈ {0, . . . , r} and t ∈ [gs], if {D1, . . . , Dh} are all clauses from the corresponding QCNF
that become unit under the assignment T [s, t − 1] with literals `1, . . . , `h, the next propagated
literal has to be one of the `i together with Di as antecedent clause. If one of the `i is 2, then
we have to choose this `i. I.e., conflicts have higher priority.

The next definition presents the main framework for the whole paper. After having defined
trails in a general sense, we want to specify the way a trail can be generated during a QCDCL
run. We will give the notion of QCDCL-based proofs consisting of three components: the
naturally created trails, the clauses we learned from each trail, and the proof of each learned
clause.

Definition 3.5 (QCDCL proof systems). Let Φ = Q · φ be a QCNF in n variables. We call a
triple of sequences

ι = ((T1, . . . , Tm), (C1, . . . , Cm), (π1, . . . , πm))

a QCDCLPR proof from Φ of a clause C for P ∈ {LEV-ORD,ASS-ORD,ASS-R-ORD,ANY-ORD} and
R ∈ {RED,NO-RED}, if for all i ∈ [m] the trail Ti follows the policies P and R and uses the
QCNF Q · (φ ∪ {C1, . . . , Ci−1}), where Cj ∈ LTj is a clause learnable from Tj and Cm = C.
Each πi is the derivation of the clause Ci from Q · (φ ∪ {C1, . . . , Ci−1}) as defined recursively
in Definition 3.3. Note that all these trails need to run into a conflict in order to start clause
learning. If C = (2) we call ι a refutation.

We also require that T1 is natural and for each i ∈ {2, . . . ,m} there exist indices (s, t) such
that the following holds:

• Ti[s, t] = Ti−1[s, t].

• For each subtrail Ti[a, b] with Ti[s, t] ⊆ Ti[a, b] and 2 6∈ Ti[a, b] let D1, . . . , Dh be all the
clauses in φ∪{C1, . . . , Ci−1} such that under the assignment Ti[a, b] these clauses get unit
(under the policy R) with corresponding literals `1, . . . , `h. Then we have to propagate one
of these literals next, i.e., `j ∈ Ti[a, b + 1] for some j ∈ [h], and take the corresponding
clause Dj as antecedent.

• In the situation above, if 2 ∈ {`1, . . . , `h}, then 2 ∈ Ti[a, b+ 1]. I.e., we have to run into
a conflict as soon as we find one.

16



We call that backtracking to Ti[s, t]. Backtracking to Ti[0, 0] is called restarting.
The size of such a proof ι is measured by |ι| :=

∑m
j=1 |Tj | ∈ O(mn).

The corresponding (refutational) proof system for false QCNFs is denoted QCDCLPR. We
will refer to these systems as QCDCL proof systems. A trail T that follows the policies P and
R is sometimes also called a QCDCLPR trail.

Note that the first trail T1 of each proof ι is always natural.
In combination with RED, the policy LEV-ORD represents the original QCDCL algorithm

without further modifications. The order policies ASS-ORD and ASS-R-ORD might seem slightly
unintuitive at first sight. We will show later that these policies guarantee the learning of so-
called asserting clauses (which will be defined in Definition 3.9) in association with NO-RED

resp. RED. Since ASS-ORD (resp. ASS-R-ORD) will only unfold its impact in combination with
NO-RED (resp. RED), we will not consider the systems QCDCLASS-ORD

RED or QCDCLASS-R-ORD
NO-RED .

We will show later that π1, . . . , πm in Definition 3.5 are valid long-distance Q-resolution proofs.
In order to prove the correctness of these proofs, we will now argue that in proof systems with
NO-RED we cannot derive any tautologies, while with RED we can at most derive universal
tautologies.

Lemma 3.6. It is not possible to create tautological clauses in any of the QCDCL proof systems
with NO-RED during the derivation of learnable clauses as described in Definition 3.3. If we use
the policy RED instead, we are at least able to avoid any tautologies with existential literals.

Proof. Let T be a trail and LT be the sequence of learnable clauses as described in Definition
3.3. It suffices to concentrate on the case C(i,j), in particular

C(i,j) = red[res(C(i,j+1), red(ante(p(i,j))), p(i,j))]

for i ∈ {0, . . . , r}, j ∈ [gi−1]. This is analogous to the case for C(i,gi) (the case C(r,gr) is trivial).
Assume there is a literal x with var(x) 6= var(p(i,j)) such that x ∈ C(i,j+1) and x̄ ∈

red(anteT (p(i,j))). If NO-RED is chosen, we need A|T [i,j−1] = (p(i,j)) for A := anteT (p(i,j))
and therefore x ∈ T [i, j − 1].

In case of RED we have red(A|T [i,j−1]) = (p(i,j)). Because we can assume that x is existential
in this case, we also conclude x ∈ T [i, j − 1] since existential literals cannot be reduced.

On the other hand, we have x ∈ C(i,j+1), where C(i,j+1) is a learnable clause which is
derived with the aid of antecedent clauses of literals occurring right of p(i,j) in the trail. In
particular, we can find some p(k,m) right of p(i,j) in the trail with x ∈ anteT (p(k,m)). Because
of x ∈ T [i, j − 1], this gives a contradiction since anteT (p(k,m)) must not become true before
propagating p(k,m).

We have seen that systems with NO-RED cannot contain tautologies in their extracted proofs.
It remains to show that the derivation of tautological clauses in systems with RED fulfils the
properties of long-distance Q-resolution.

Proposition 3.7. Let Φ be a QCNF and let

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr)).

be a trail under a QCDCL proof system with the policy RED. Then the corresponding derivation
of any learned clause is a valid long-distance Q-resolution derivation.

Proof. Let

LT := (C(r,gr), . . . , C(r,1), . . . , C(1,g1), . . . , C(1,1), C(0,g0), . . . , C(0,1))

be the sequence of learnable clauses. Because of Lemma 3.6 it remains to show that the deriva-
tion of clauses with universal tautologies are sound.

Assume otherwise. That means there are i ∈ {0, . . . , r}, j ∈ [gi] and u ∈ var∀(Φ) such that
lv(u) < lv(p(i,j)) and one of the following four cases holds, where we resolve over p(i,j):

17



(i) u ∈ C(i,j+1) and ū ∈ anteT (p(i,j)),

(ii) u ∨ ū ∈ C(i,j+1) and ū ∈ anteT (p(i,j)),

(iii) u ∈ C(i,j+1) and u ∨ ū ∈ anteT (p(i,j)),

(iv) u ∨ ū ∈ C(i,j+1) and u ∨ ū ∈ anteT (p(i,j)).

Consider case (i). Since u ∈ C(i,j+1) there has to be a propagated literal p(k,m) right of p(i,j)

in the trail such that u ∈ ante(p(k,m)). In order to become unit, the u in ante(p(k,m)) needed to
vanish. We distinguish two cases:

Case 1: ū was decided before p(k,m) was propagated, i.e., ū ∈ T [k,m− 1].
Then we have u 6∈ T since each variable can occur at most once in T . That means reducing

ū is the only way anteT (p(i,j)) could have become unit. But for the soundness of reduction we
need lv(u) > lv(p(i,j)). This gives a contradiction.

Case 2: u ∈ anteT (p(k,m)) has vanished via reduction.
Assume that u was decided before p(i,j) was propagated, i.e., u ∈ T [i, j − 1]. But then

ante(p(k,m)) would have become true under T [k,m − 1] ⊇ T [i, j − 1]. Therefore anteT (p(k,m))
could not have been used for unit propagation. Thus ū ∈ anteT (p(i,j)) must have vanished via
reduction, which implies lv(u) > lv(p(i,j)), a contradiction.

The same reasoning works for case (ii). Cases (iii) and (iv) are easier since the only way for
u∨ ū to vanish in anteT (p(i,j)) is via reduction. Then we get the contradiction lv(u) > lv(p(i,j))
as well.

Also the same argumentation works if we consider C(i+1,1) and anteT (p(i,gi)) instead of
C(i,j+1) and anteT (p(i,j)).

We combine the two results above to an argument of soundness of the defined QCDCL proof
systems.

Theorem 3.8. All defined QCDCL proof systems are p-simulated by long-distance Q-resolution
and the systems with NO-RED are even p-simulated by Q-resolution. In fact, for a proof ι of a
clause C in the QCDCL system we can get a long-distance Q-resolution (resp. Q-resolution) proof
π with |π| ∈ O(|ι|).

In particular, all defined QCDCL proof systems are sound.

Proof. This follows directly from Lemma 3.6 and Proposition 3.7. Let

ι = ((T1, . . . , Tm), (C1, . . . , Cm), (π1, . . . , πm))

be a proof of a clause C in the QCDCL system. We get a long-distance Q-resolution (resp.
Q-resolution) proof by sticking together the proofs π1, . . . , πm.

Next we introduce asserting learning schemes. These are commonly used in practice since
they guarantee a kind of progression in a run. These learning schemes are important to prevent
a trail from backtracking too often (we will discuss this later).

Definition 3.9 (asserting clauses and asserting learning schemes). Let Φ := Q · φ be a QCNF
in any of the defined QCDCL systems. Let

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr) = 2)

be a trail which follows the corresponding policies and LT the sequence of learnable clauses. A
clause (2) 6= C ∈ LT is called an asserting clause, if it becomes unit after backtracking, i.e.,
there exists a time (s, t) with s ∈ {0, . . . , r − 1} and t ∈ [gs] such that C|T [s,t] is a unit clause
under the corresponding system.

18



Let T be the set of trails T for Φ such that 2 ∈ T . A learning scheme ξ is a map with
domain T, which maps each T to a clause ξ(T ) ∈ LT .

A learning scheme ξ is called asserting if it maps to asserting clauses or (2) as long as LT
contains such.

Remark 3.10. It is not guaranteed that we will always find asserting clauses for our trails.
For example consider the false QCNF ∀u∃x · (u ∨ x) ∧ (u ∨ x̄) ∧ (ū ∨ x) ∧ (ū ∨ x̄) and the trail
T = (x;u,2) under the system QCDCLANY-ORD

NO-RED . We can only learn the clause (ū ∨ x̄), which is
non-unit under T [0, 0] = ∅.

Therefore despite allowing any decision order, we still need some restrictions in order to be
able to learn asserting clauses.

Next we show that learning schemes return new clauses that have not been learned before.
This fact will help us later to prove the completeness of our systems.

Lemma 3.11. Let T be a natural trail for a QCNF Φ = Q · φ in any of the defined QCDCL
systems and A ∈ LT be an asserting clause. Then we have A 6∈ φ.

Proof. Let T be the trail

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr) = 2).

Since we learned an asserting clause, we obviously have r > 0 by definition.
Assume that A ∈ φ. Then there is a time (s, t) with s ∈ {0, . . . , r − 1} and t ∈ [gs] such

that A|T [s,t] is a unit clause with a literal `. This literal is either existential or 2. Because of
Definition 3.4 we are forced to propagate ` not later than level s. Since T has run into a conflict
at level r, we could not get a conflict before level r, hence ` 6= 2. Therefore ` = p(s,b) ∈ T for
some b ∈ [gs]. However, this is a contradiction because we need ` ∈ A, which is only possible if
¯̀∈ T by definition of clause learning.

Remark 3.12. In general, the above result is not true for arbitrary trails. For example, let
T = (x̄1; x̄2,2) be a trail for the false QCNF ∃x1, x2∀u · (x1 ∨ x2) ∧ (u). Then x1 ∨ x2 is an
asserting learnable clause, which is already an axiom.

Now we know that learning schemes always return new clauses. We also need to examine
the circumstances under which we are actually able to learn such asserting clauses.

Lemma 3.13. Let Φ = Q · φ be a QCNF and let

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr) = 2)

be a trail under the policies ASS-ORD and NO-RED. If (2) 6∈ LT , then there exists an asserting
clause D ∈ LT .

Proof. Consider the sequence of learnable clauses:

LT := (C(r,gr), . . . , C(r,1), . . . , C(1,g1), . . . , C(1,1), C(0,g0), . . . , C(0,1))

The learning scheme DEC that maps each trail to the rightmost clause in LT is asserting. In
particular we learn a clause D := red(C) such that C is a subclause of d̄1 ∨ . . . ∨ d̄r. Suppose
that D 6= (2). Write D = d̄h1 ∨ . . . ∨ d̄ha for some h1 < . . . < ha. Because of ASS-ORD the last
literal dha will always be existential. Then we can backtrack to the time (ha−1, 0) (resp. (0, 0)
if a = 1) and get D|T [ha−1,0] = (d̄ha).

19



The above result is not true for QCDCL systems with the policies ASS-ORD and RED. Con-
sider the following counterexample: Φ := ∃x∀u∃z · (x̄ ∨ u ∨ z̄) and the trail T = (x; z,2). We
can only learn the clause (x̄ ∨ u ∨ z̄). But since this is already an axiom, this clause cannot
become unit at an earlier level.

However, the next lemma shows that under the policy ASS-R-ORD we can always learn
asserting clauses.

Lemma 3.14. Let Φ = Q · φ be a QCNF and let

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr) = 2)

be a trail under the policies ASS-R-ORD and RED. If (2) 6∈ LT , then there exists an asserting
clause D ∈ LT .

Proof. Consider the sequence of learnable clauses:

LT := (C(r,gr), . . . , C(r,1), . . . , C(1,g1), . . . , C(1,1), C(0,g0), . . . , C(0,1))

If r = 0 or if all decision literals are universal, we can just take the rightmost clause in LT ,
which is (2). Hence we can assume that r > 0 and there exists at least one existential decision
literal.

Let k ∈ [r] be maximal with respect that d̄k is contained in some clause from LT . This must
exist since otherwise we could resolve over all propagation literals p(i,j) and reduce all universal
literals during the learning process. Then we would be able to learn (2).

Intuitively, dk is the last existential decision that contributed to the conflict. Let p(`,m) be
the next propagated literal right of dk in T (this does not necessarily have to be p(k,1)). Set
D := C(`,m).

We claim that this clause D is asserting. Let us learn this clause and backtrack to T [k −
1, gk−1]. It is easy to see that for all existential literals y ∈ D\{d̄k} we need ȳ ∈ T [k − 1, gk−1].
All universal variables z with lvΦ(z) < lvΦ(dk) are assigned earlier than dk in T because of the
policy ASS-R-ORD.

Now consider E := D|T [k−1,gk−1]. The only type of literals that can occur in E, aside from
d̄k, are universal literals u with lvΦ(u) > lvΦ(dk). Suppose there are such literals u1, . . . , um
with C = d̄k ∨ u1 ∨ . . . ∨ um and lvΦ(dk) < lvΦ(ui) for all i ∈ [m]. But then we can conclude
red(E) = (d̄k) and therefore E is a unit clause.

Now that we have clarified how to gain asserting clauses, we can finally prove the complete-
ness of all systems.

Theorem 3.15. All defined QCDCL proof systems are complete.

Proof. We will concentrate on the systems QCDCLLEV-ORD
RED and QCDCLLEV-ORD

NO-RED since all the other
systems are just strengthenings of these two proof systems.

Let Φ = Q · φ be a false QCNF over the set of variables V . W.l.o.g. we write the prefix as

Q = ∃X1∀U1∃X2∀U2 . . . ∃Xm∀Um

with X1 ] . . . ]Xm ] U1 ] . . . ] Um = V . This is possible if we allow empty sets.
Now because Φ is false, there exists a winning strategy for the ∀-player. That means we can

find functions fi : 〈X1 ∪ . . . ∪Xi〉 → 〈Ui〉 such that φ gets falsified under any assignment

σ1 ∪ f1(σ1) ∪ σ2 ∪ f2(σ1 ∪ σ2) ∪ . . . ∪ σm ∪ fm(σ1 ∪ . . . ∪ σm).

We can now construct a trail for Φ in the respective system. All the unit propagations can be
done automatically. When we have to make decisions, we distinguish two cases:

20



Case 1: We have to decide an existential variable x.
We can choose an arbitrary polarity for this decision of x (e.g. set all variables to 1).
Case 2: We have to decide a universal variable.
Suppose we have to handle the variable u ∈ Ui. Since our trail follows the policy LEV-ORD,

all variables from X1 ∪ . . . ∪Xi are already assigned. Let σ be the corresponding assignment.
Then we decide u in the same polarity as it occurs in fi(σ).

After making the decisions we continue with unit propagation as usual. The trail that is
generated this way represents an assignment as it gets created in the game between the two
players. The ∀-player was able to use the winning strategy, therefore we falsify the matrix φ at
some point and run into a conflict. After this we start clause learning where we can always learn
an asserting clause C by Lemma 3.13 (resp. Lemma 3.14) until we learn the empty clause. By
Lemma 3.11 we conclude that C is in fact a new clause. We add C to φ, restart (i.e., backtrack
to (0, 0)) and start again. Since there are only finitely many clauses with variables in V , this
process will end after finitely many runs. In the last run we have to learn the empty clause,
hence we created a (possibly exponential-size) refutation

ι = ((T1, . . . , Tn), (C1, . . . , Cn = (2)), (π1, . . . , πn))

of Φ in the QCDCL system.

4 Separating classic QCDCL and Q-resolution

In this section we will show that classic QCDCL (i.e., QCDCLLEV-ORD
RED ) and Q-resolution are in-

comparable. This requires exponential separations in both directions between the two systems.
This also motivates that when searching for a QCDCL algorithm that exploits the full power
of Q-resolution (a topic we will address in Section 6), we will have to modify the policies in
QCDCLLEV-ORD

RED .
We start the separation by introducing QBFs that will turn out to be easy for QCDCLLEV-ORD

RED ,
but hard for Q-resolution.

Definition 4.1 ([10]). The QCNF QParityn consists of the prefix ∃x1 . . . xn∀z∃t2 . . . tn and the
matrix

x1 ∨ x2 ∨ t̄2, x1 ∨ x̄2 ∨ t2, x̄1 ∨ x2 ∨ t2, x̄1 ∨ x̄2 ∨ t̄2,
xi ∨ ti−1 ∨ t̄i, xi ∨ t̄i−1 ∨ ti, x̄i ∨ ti−1 ∨ ti, x̄i ∨ t̄i−1 ∨ t̄i,
tn ∨ z, t̄n ∨ z̄,

for i ∈ {2, . . . , n}.

One can interpret QParityn as follows: Each ti symbolizes the partial sum x1⊕x2⊕ . . .⊕xi.
The last two clauses can only be true if tn, which represents x1⊕x2⊕ . . .⊕xn, is neither 0 nor 1.
Hence this formula is obviously false. It was shown in [10] that QParityn needs exponential-size
Q-resolution (and even QU-resolution) refutations.

We will demonstrate that QParityn is in fact easy for QCDCLLEV-ORD
RED , i.e., for classical

QCDCL.

Proposition 4.2. QParityn has polynomial-size QCDCLLEV-ORD
RED refutations.

Proof. We construct the trails θ(ι) = (Tn,Un, Tn−1,Un−1, . . . , T2,U2, T1,U1), but omit the other
two components λ(ι) and ρ(ι) as it will be clear during the computation.

Let Tn be the trail

Tn = (x̄1; x̄2, t̄2; x̄3, t̄3; . . . ; x̄n−1, t̄n−1; x̄n, t̄n,2)

21



with antecedent clauses

anteTn(t̄2) = x1 ∨ x2 ∨ t̄2,

anteTn(t̄i) = xi ∨ ti−1 ∨ t̄i for i = 3, . . . , n,

anteTn(2) = tn ∨ z.

After resolving over t̄n we can derive Cn := xn ∨ tn−1 ∨ z as a learnable clause and backtrack to
Tn[n− 2, 1].

Further, let Un be the trail

Un = (x̄1; x̄2, t̄2; x̄3, t̄3; . . . ; x̄n−2, t̄n−2; xn−1, tn−1; x̄n, tn,2)

with antecedent clauses

anteUn(t̄2) = x1 ∨ x2 ∨ t̄2,

anteUn(t̄i) = xi ∨ ti−1 ∨ t̄i for i = 3, . . . , n− 2,

anteUn(tn−1) = x̄n−1 ∨ tn−2 ∨ tn−1,

anteUn(tn) = xn ∨ t̄n−1 ∨ tn,

anteUn(2) = t̄n ∨ z̄.

Symmetrically to Tn, we can learn the clause Dn := xn ∨ t̄n−1 ∨ z by resolving over tn and
backtrack up to Un[n− 2, 1].

We continue with the construction of Tn−1.

Tn−1 = (x̄1; x̄2, t̄2; x̄3, t̄3; . . . ; x̄n−2, t̄n−2; x̄n−1, t̄n−1, xn, tn,2)

with antecedent clauses

anteTn−1(t̄2) = x1 ∨ x2 ∨ t̄2,

anteTn−1(t̄i) = xi ∨ ti−1 ∨ t̄i for i = 3, . . . , n− 1,

anteTn−1(xn) = Cn = xn ∨ tn−1 ∨ z,
anteTn−1(tn) = x̄n ∨ tn−1 ∨ tn,

anteTn−1(2) = t̄n ∨ z̄.

After resolving over tn, xn and finally t̄n−1 we get the learned clause Cn−1 := xn−1∨ tn−2∨z∨ z̄
and backtrack up to Tn−1[n− 3, 1].

As before, we can symmetrically create the next trail Un−1.

Un−1 = (x̄1; x̄2, t̄2; x̄3, t̄3; . . . ; x̄n−3, t̄n−3; xn−2, tn−2; x̄n−1, tn−1, xn, t̄n,2)

with antecedent clauses

anteUn−1(t̄2) = x1 ∨ x2 ∨ t̄2,

anteUn−1(t̄i) = xi ∨ ti−1 ∨ t̄i for i = 3, . . . , n− 3,

anteUn−1(tn−2) = x̄n−2 ∨ tn−3 ∨ tn−2,

anteUn−1(tn−1) = xn−1 ∨ t̄n−2 ∨ tn−1,

anteUn−1(xn) = Dn = xn ∨ t̄n−1 ∨ z,
anteUn−1(tn) = x̄n ∨ t̄n−1 ∨ tn,

anteUn−1(2) = t̄n ∨ z̄.

By resolving over t̄n, xn and tn−1 we can derive Dn−1 := xn−1 ∨ t̄n−2 ∨ z ∨ z̄ and backtrack up
to Un−1[n− 3, 1].

22



We now describe the general step. Let j ∈ {3, . . . , n−2} and suppose we already learned the
clauses Cn, Dn, Cn−1, Dn−1, . . . , Cj+1, Dj+1 with the aid of the earlier trails Tn,Un, . . . , Tj+1,Uj+1,
where Ck := xk ∨ tk−1 ∨ z ∨ z̄ and Dk := xk ∨ t̄k−1 ∨ z ∨ z̄ for k ∈ {j + 1, . . . , n− 1}. Then we
can construct Tj as follows:

Tj = (x̄1; x̄2, t̄2; x̄3, t̄3; . . . ; x̄j−1, t̄j−1; x̄j, t̄j , xj+1, tj+1, xj+2, t̄j+2, . . . , xn, t
e
n,2)

with e ∈ {0, 1} such that e ≡ n− j (mod 2) and antecedent clauses

anteTj (t̄2) = x1 ∨ x2 ∨ t̄2,

anteTj (t̄i) = xi ∨ ti−1 ∨ t̄i for i = 3, . . . , j,

anteTj (xj+1) = Cj+1 = xj+1 ∨ tj ∨ z ∨ z̄,
anteTj (tj+1) = x̄j+1 ∨ tj ∨ tj+1,

anteTj (xj+2) = Dj+2 = xj+2 ∨ t̄j+1 ∨ z ∨ z̄,
anteTj (t̄j+2) = x̄j+2 ∨ t̄j+1 ∨ t̄j+2,

...

anteTj (xn) =

{
Cn = xn ∨ tn−1 ∨ z̄, if n− j is odd,
Dn = xn ∨ t̄n−1 ∨ z, if n− j is even,

anteTj (t
e
n) = x̄n ∨ ten−1 ∨ ten,

anteTj (2) = t1−en ∨ z1−e.

We resolve over ten, xn, . . . , tj+1, xj+1 and t̄j , derive Cj := xj ∨ tj−1 ∨ z ∨ z̄ and backtrack up to
Tj [j − 2, 1].

In a similar way we will create Uj :

Uj = (x̄1; x̄2, t̄2; x̄3, t̄3; . . . ; x̄j−2, t̄j−2; xj−1, tj−1; x̄j, tj , xj+1, t̄j+1, xj+2, tj+2, . . . , xn, t
f
n,2)

with f ∈ {0, 1} such that f ≡ n− j + 1 (mod 2) and antecedent clauses

anteUj (t̄2) = x1 ∨ x2 ∨ t̄2,

anteUj (t̄i) = xi ∨ ti−1 ∨ t̄i for i = 3, . . . , j − 2,

anteUj (tj−1) = x̄j−1 ∨ tj−2 ∨ tj−1,

anteUj (tj) = xj ∨ t̄j−1 ∨ tj ,
anteUj (xj+1) = Dj+1 = xj+1 ∨ t̄j ∨ z ∨ z̄,
anteUj (t̄j+1) = x̄j+1 ∨ t̄j ∨ t̄j+1,

anteUj (xj+2) = Cj+2 = xj+2 ∨ tj+1 ∨ z ∨ z̄,
anteUj (tj+2) = x̄j+2 ∨ tj+1 ∨ t̄j+2,

...

anteUj (xn) =

{
Cn = xn ∨ tn−1 ∨ z̄, if n− j is even,
Dn = xn ∨ t̄n−1 ∨ z, if n− j is odd,

anteUj (t
f
n) = x̄n ∨ tfn−1 ∨ t

f
n,

anteUj (2) = t1−fn ∨ z1−f .

Resolving over tfn, xn, . . . t̄j+1, xj+1 and tj gives us Dj := xj ∨ t̄j−1 ∨ z ∨ z̄. We backtrack to
Uj [j − 2, 1].

23



We end the refutation with the following four trails whose antecedent clauses are almost as
before:

T2 = (x̄1; x̄2, t̄2, x3, t3, x4, t̄4, . . . ,2),

from which we learn C2 := x1 ∨ x2, and

U2 = (x̄1, x2, t2, x3, t̄4, . . . ,2),

where we can derive the unit clause (x1). We continue with

T1 = (x1; x̄2, t2, x3, t̄3, x4, t4, . . . ,2),

learn (x2), and can finally derive the empty clause (2) via the last trail

U1 = (x1, x2, t̄2, x3, t3, x4, t̄4, . . . ,2).

For the separation in the other direction we need CNFs that are hard for general resolution.
One of the famous examples is the pigeonhole principle, but also any other formula that is hard
for propositional resolution would serve the purpose.

Definition 4.3. The pigeonhole principle PHPmn is a propositional CNF consisting of the vari-
ables xi,j, for i ∈ [m] and j ∈ [n], and the clauses∨

k∈[n]

xi,k

x̄i1,j ∨ x̄i2,j

for all i, i1, i2 ∈ [m], i1 6= i2 and j ∈ [n].

Proposition 4.4 (Haken [26]). The CNFs PHPn+1
n are unsatisfiable and require exponential-size

resolution refutations.

We embed PHPn+1
n into a QCNF which we will call Trapdoorn. Intuitively, if we have chosen

RED, we are forced to reach a conflict in the propositionally hard formula PHPn+1
n . However,

forbidding reduction by choosing the policy NO-RED allows us to avoid the pigeonhole principle
and instead derive a conflict in part that is easier to refute.

Definition 4.5. Let PHPn+1
n be the set of clauses for the pigeonhole principle with parame-

ters n and n + 1 in the variables x1, . . . , xsn. Let Trapdoorn be the QCNF in the variables
x1, . . . , xsn , y1, . . . , ysn , u, t, w with the prefix

∃y1, . . . , ysn∀w∃t, x1, . . . , xsn∀u

and the matrix

PHPn+1
n (x1, . . . , xsn)

ȳi ∨ xi ∨ u, yi ∨ x̄i ∨ u
yi ∨ w ∨ t, yi ∨ w ∨ t̄, ȳi ∨ w ∨ t, ȳi ∨ w ∨ t̄

for i = 1, . . . , sn.

The next result shows the hardness for Trapdoorn in QCDCLLEV-ORD
RED . It is clear that this

hardness is directly caused by PHPn+1
n . However, it remains to prove that it is still retained by

the embedding.

24



Proposition 4.6. The QCNFs Trapdoorn require exponential-size QCDCLLEV-ORD
RED refutations.

Proof. Each QCDCLLEV-ORD
RED trail for Trapdoorn starts with some decisions of y variables. Before

reaching the variables w and t, we can only have propagated x or y variables. Since PHPn+1
n is

unsatisfiable, we will reach a conflict before deciding w. The learned clauses will only contain
x, y and u variables, hence the same situation will happen after restarting which leads to a
refutation that does not use the last four types of axioms in Trapdoorn.

Therefore we have gained a long-distance Q-resolution refutation π′′ of Trapdoorn which only
makes use of the axioms

PHPn+1
n (x1, . . . , xsn)

ȳi ∨ xi ∨ u
yi ∨ x̄i ∨ u.

Define ψ′ := {ȳi ∨ xi ∨ u, yi ∨ x̄i ∨ u : i = 1, . . . , sn}. We can construct a Q-resolution refutation
π′ by reducing the u-variable right after any introduction of a clause from ψ′ and performing
the same resolution steps as in π′′ afterwards. Then |π′| ∈ O(|π′′|).

Now deleting any axiom of ψ′ from π′ results in a resolution refutation π of the unsatisfiable
CNF

PHPn+1
n (x1, . . . , xsn)

ȳi ∨ xi
yi ∨ x̄i

with |π| ∈ O(|π′|).
Let ψ = {ȳi ∨ xi, yi ∨ x̄i : i = 1, . . . , sn}. Next we will create a resolution refutation µ of

PHPn+1
n .
Let π consist of the clauses C ′1, . . . , C

′
m. W.l.o.g. we can assume that none of these clauses

are of the form D ∨ ȳi ∨ xi or D ∨ yi ∨ x̄i for a non-empty subclause D, because otherwise we
can shorten the refutation by taking the corresponding axioms in ψ instead.

Also let f be the function on clauses that replaces all occurrences of yi (resp. ȳi) in a clause
with xi (resp. x̄i). We will show that the proof µ we get by deleting all clauses of π contained
in ψ and replacing all other clauses C by f(C) is a correct resolution refutation.

Let C ′` be a clause in π. If C ′` is an axiom, then either C ′` ∈ PHPn+1
n and therefore C` :=

f(C ′`) = C ′`, or C ′` ∈ ψ, in which case we delete C ′` (or replace it with a placeholder in µ).
If C ′` was not an axiom, then we can find two parental clauses C ′j and C ′k of C ′`. We

distinguish two cases.
Case 1: One of the clauses C ′j , C

′
k is from ψ.

W.l.o.g. let C ′j ∈ ψ and C ′k 6∈ ψ. Note that it is not possible for both clauses to be contained
in ψ. By induction we know that Ck := f(C ′k) ∈ µ. Since C ′j was deleted during the transition
into µ, we can only set C` := Ck = f(C ′k). Because resolving with clauses of ψ just swap
xi-variable and yi-variables, we immediately get f(C ′k) = f(C ′`), hence C` = f(C ′`).

Case 2: None of the clauses C ′j , C
′
k are contained in ψ.

Then there exists Cj := f(C ′j) ∈ µ and Ck := f(C ′k) ∈ µ. Let C ′` = res(C ′j , C
′
k, z) with

z ∈ {xi, yi} for an i ∈ [sn]. We set C` := res(Cj , Ck, xi). The only chance for this resolution
to become unsound (with respect to resolution) is w.l.o.g. xa ∈ C ′j and ȳa ∈ C ′k for an i 6= a ∈
{1, . . . , sn}. Then we would receive xa ∨ ȳa in C ′` and a tautology xa ∨ x̄a in C`. However, this
cannot happen due to our assumption that the clauses of ψ are no subclauses of C ′j , C

′
k, C

′
`. It

is easy to see that C` = f(C ′`).
We now have constructed a resolution refutation µ with |µ| ∈ O(|π|) = O(|π′′|) which only

uses the clauses of PHPn+1
n as axioms. By Proposition 4.4 the formula PHPn+1

n needs exponential
sized resolution refutations. Therefore |π′′| ∈ 2Ω(n), which is the size of the corresponding
QCDCLLEV-ORD

RED refutation as well.

25



y1 ∨w ∨ t y1 ∨w ∨ t

y1 ∨w

y1 ∨w ∨ ty1 ∨w ∨ t

y1 ∨w

(y1) (y1)

(2)

Figure 3: Short refutations of Trapdoorn in Q-resolution

We remark that the hardness of Trapdoorn crucially depends on propositional hardness.
Note that it is not possible to just substitute PHPn+1

n in Trapdoorn by some QCNF that is hard
for long-distance Q-resolution or QCDCLLEV-ORD

RED since it is not guaranteed that the conflict in the
trail will occur in this embedded formula.

In contrast, the Trapdoorn formulas are easy in Q-resolution.

Proposition 4.7. The QCNFs Trapdoorn have constant-size Q-resolution refutations.

Proof. The refutation is given in Figure 3.

These two results immediately lead to the following separation.

Theorem 4.8. The systems Q-resolution and QCDCLLEV-ORD
RED are incomparable.

From Theorem 4.8 we can conclude not only that we have to modify the QCDCL proof
system if we aim to characterise Q-resolution, it also implies that a simple strengthening (or
weakening) of one of the two systems cannot result in the desired equivalence. We mentioned
earlier that the policies RED and NO-RED seem to operate orthogonally to each other. In
Section 8 we will get back to this point and formally prove this intuition. This also motivates
why switching from policy RED to NO-RED can be helpful in obtaining a QCDCL system that
characterises Q-resolution.

5 Hard formulas for QCDCL

As we have shown in Section 4, Q-resolution is incomparable to QCDCL. This leaves open the
question of what formulas are hard for QCDCL, without relying on hardness of Q-resolution or
long-distance Q-resolution.

Definition 5.1. We call a long-distance Q-resolution proof π of a clause C from a QCNF Φ
a long-distance QCDCL resolution proof of C from Φ, if there exists a QCDCLLEV-ORD

RED proof ι of
C from Φ such that the long-distance Q-resolution proof π is obtained by pasting together the
sub-proofs (π1, . . . , πm) from ι (cf. Definition 3.5).

The system long-distance QCDCL resolution identifies a fragment of long-distance Q-resolution,
which collects all long-distance Q-resolution proofs that appear in QCDCLLEV-ORD

RED derivations. By
definition therefore, long-distance QCDCL resolution and QCDCLLEV-ORD

RED are p-equivalent proof
systems.

Our next goal is to identify a whole class of QCNFs that witness the hardness of QCDCL.

26



Definition 5.2. Let Φ be a QCNF of the form

∃X∀U∃T · φ

with sets of variables X = {x1, . . . , xa}, U = {u1, . . . , ub} and T = {t1, . . . , tc}.
We call a clause C in the variables of Φ

• T -clause, if var(C) ∩X = ∅, var(C) ∩ U = ∅ and var(C) ∩ T 6= ∅,

• XT -clause, if var(C) ∩X 6= ∅, var(C) ∩ U = ∅ and var(C) ∩ T 6= ∅,

• XUT -clause, if var(C) ∩X 6= ∅, var(C) ∩ U 6= ∅ and var(C) ∩ T 6= ∅.

We say that Φ fulfils the XT -property if φ contains no XT -clauses as well as no unit
T -clauses and there do not exist two T -clauses C1, C2 ∈ φ that are resolvable.

We first show that under the XT -property we cannot derive any XT -clauses.

Lemma 5.3. It is not possible to derive XT -clauses by long-distance Q-resolution from a QCNF
Φ that fulfils the XT -property.

Proof. Assume that we can derive an XT -clause C by a long-distance Q-resolution proof π from
Φ. Let D be the first XT -clause in π (D might be equal to C). Since Φ contains no XT -clauses
as axioms, the last step before D has to be a resolution or reduction. A reduction is not possible
since the reduced universal literal would have been blocked by a T -literal in D.

Therefore D is the resolvent of two preceding clauses D1 and D2. If we resolve over an
X-literal, then one of these clauses has to be an XT -clause. The same is true for a resolution
over a T -literal. However, this contradicts the fact that D was the first XT -clause in π.

The next lemma shows that under the XT -property it is also not possible to derive any
non-axiomatic T -clauses.

Lemma 5.4. Let Φ be a QCNF with the XT -property and let C be a T -clause derived by
long-distance Q-resolution from Φ. Then C is an axiom from Φ.

Proof. Assume that there is a T -clause C, which is not an axiom, that was derived from Φ by
a long-distance Q-resolution proof π. Let D be the first T -clause in π that is not an axiom. As
in the proof of the previous lemma, D could not have been derived via reduction.

This means that D is again a resolvent of two clauses D1, D2 ∈ π. If we resolve over an X-
literal, then D1 or D2 has to be an XT -clause, which is not possible by Lemma 5.3. Otherwise,
if this is a resolution over a T -literal, then D1 and D2 have to be both T -clauses. One of them
is not an axiom because Φ has the XT -property. This contradicts the fact, that D was the first
non-axiomatic T -clause in π.

We will show later that we need to resolve two XUT -clauses over an X-literal in order to
introduce tautologies. Now we prove that this is not possible in long-distance QCDCL resolution
under the XT -property.

Lemma 5.5. It is not possible to resolve two XUT -clauses over an X-literal in a long-distance
QCDCL resolution proof of a QCNF Φ that fulfils the XT -property.

Proof. Assume there is a long-distance QCDCL resolution proof π that contains such a resolution
step over an X-literal x. Let C1 and C2 be the corresponding XUT -clauses. One of these
clauses, say C1, had to be an antecedent clause in a QCDCLLEV-ORD

RED trail T that implied x.
Since our decisions in the trail are level-ordered and we did not skip any decisions, either x was
decided at decision level 0, or at a decision level in which we decided another X-literal.

27



Because C1 is an XUT -clause, we can find a T -literal t ∈ C1. The literal t̄ must have been
propagated before we implied x (t̄ could not have been decided because the decisions are level-
ordered). That means that for the same trail we can find E := anteT (t̄). Now, E cannot be a
unit T -clause by the XT -property and Lemma 5.4. Hence E must contain further X, U , or T
literals. If E contains a U -literal, then we would have had to decide this U -literal before we use
E as an antecedent clause, contradicting the level-order of our decisions. Also, this U -literal
cannot be reduced since we want to imply a T -literal with the help of E. Therefore we conclude
that E contains an X-literal or a T -literal. If E contains an X-literal, then E is an XT -clause,
which is not possible by Lemma 5.3.

Therefore E contains at least another T -literal ` ∈ E. As before, the literal ¯̀was propagated
before we implied t̄ and x. We set E′ := anteT (`) and argue in the same way as with E. This
process would repeat endlessly, which is a contradiction since we only have finitely many T -
variables.

We combine the above results and show that the hardness of QCNFs with the XT -property
lifts from Q-resolution to long-distance QCDCL resolution.

Theorem 5.6. If Φ fulfils the XT -property and requires Q-resolution refutations of size s, then
each long-distance QCDCL resolution refutation (and therefore also each QCDCLLEV-ORD

RED refuta-
tion) of Φ has at least size s as well. In detail, each long-distance QCDCL resolution refutation
of Φ is in fact a Q-resolution refutation.

Proof. Let π be a long-distance QCDCL resolution refutation of Φ. Assume that π contains some
tautological clause C. W.l.o.g. let C be the first tautological clause in π. Clearly, C has to
be derived by a resolution step over an X-literal. Let C1 and C2 be the parent clauses of C.
Both of them contain some X-literals and some U -literals. They also have to contain T -literals,
otherwise we would reduce all U -literals (in the learning process we reduce as soon as possible).
Therefore C1 and C2 are both XUT -clauses that are resolved over an X-literal, which is not
possible by Lemma 5.5.

Therefore such a clause C cannot exist. Hence each long-distance QCDCL resolution refutation
of Φ is even a Q-resolution refutation and the result follows.

One can conclude that QCNFs with the XT -property that are hard for Q-resolution are also
hard for long-distance Q-resolution and therefore QCDCL. We will give some examples for these
cases.

Definition 5.7 ([6]). The formula Equalityn is defined as the QCNF

∃x1 . . . xn∀u1 . . . un∃t1 . . . tn · (t̄1 ∨ . . . ∨ t̄n) ∧
n∧
i=1

((x̄i ∨ ūi ∨ ti) ∧ (xi ∨ ui ∨ ti)).

This QCNF is obviously false since the ∀-player has a winning strategy by assigning each ui
equal to the assignment of xi.

Theorem 5.8 ([6]). Equalityn requires Q-resolution refutations of size 2n.

It is easy to see that Equalityn fulfils the XT -property for n ≥ 2. Therefore we obtain:

Corollary 5.9. Equalityn requires QCDCLLEV-ORD
RED refutations of size 2n.

Since the equality formulas are easy in long-distance Q-resolution [7], we obtain an exponential
separation between QCDCL and long-distance Q-resolution.

Corollary 5.10. Long-distance Q-resolution is exponentially stronger than QCDCL, i.e., long-
distance Q-resolution p-simulates QCDCL and there are QCNFs that require exponential-size
proofs in QCDCL, but admit polynomial-size proofs in long-distance Q-resolution.

28



Next we will define a whole class of randomly generated QCNFs. With high probability,
they also serve as hard examples for QCDCL.

Definition 5.11 ( [6]). For each 1 ≤ i ≤ n let C
(1)
i , . . . , C

(cn)
i be clauses picked uniformly at

random from the set of clauses containing 1 literal from the set Ui = {u(1)
i , . . . , u

(m)
i } and 2

literals from Xi = {x(1)
i , . . . , x

(n)
i }. Define the randomly generated QCNF Q(n,m, c) as:

Q(n,m, c) := ∃X1, . . . , Xn∀U1, . . . , Un∃t1, . . . , tn ·
n∧
i=1

cn∧
j=1

(t̄i ∨ C(j)
i ) ∧ (t1 ∨ . . . ∨ tn)

Suitably choosing the parameters c and m, we gain false and indeed hard formulas.

Theorem 5.12 ( [6]). Let 1 < c < 2 be a constant and m ≤ (1 − ε) log2 n for some constant
ε > 0. With probability 1− o(1) the random QCNF Q(n,m, c) is false and requires Q-resolution
refutations of size 2Ω(nε).

Again, it is easy to see that all Q(n,m, c)-formulas fulfil the XT -property.

Corollary 5.13. Let 1 < c < 2 be a constant and m ≤ (1− ε) log2 n for some constant ε > 0.
With probability 1 − o(1) the random QCNF Q(n,m, c) is false and requires QCDCLLEV-ORD

RED

refutations of size 2Ω(nε).

The hardness of Equalityn and the random formulas does not rely on propositional hard-
ness, in contrast to Trapdoorn, for example. In order to make the notion of ‘propositional
hardness’ formal, we will use a strengthening of Q-resolution that allows oracle calls. This
framework was introduced in [13] and tailored towards Q-resolution in [8]. The oracle allows to
collapse arbitrary propositional sub-derivations into just one inference step.

Definition 5.14 ( [8]). QNP-resolution is defined as Q-resolution, but the resolution rule is re-
placed by the following:

• Σ∃1-rule: For some G ⊆ {C1, . . . , Ci−1},

1.
∧
B∈G B

∃ � C∃i , and

2. for each B ∈ G, B∀ is a subclause from C∀i ,

where C∃ and C∀ denote the existential and universal subclauses of any clause C.

We use the notation C1 ∧ . . . ∧ Ci−1 �Σ∃1
Ci for referring to such a step.

In fact, the lower bounds for the equality and random formulas above hold in this stronger
model.

Theorem 5.15 ( [6, 8]). Equalityn requires QNP-resolution refutations of size 2n. Likewise,
the random formulas Q(n,m, c) (with the same parameters as in Theorem 5.12) are false and
require QNP-resolution refutations of size 2Ω(nε).

An equivalent way of stating this theorem is to say that the equality and random formu-
las require exponentially many reduction steps in Q-resolution proofs. This measure is also
applicable to QCDCL trails and in particular to long-distance QCDCL resolution proofs.

Proposition 5.16. The number of reduction steps in each long-distance QCDCL resolution refu-
tation (and also each QCDCLLEV-ORD

RED refutation) of Equalityn is at least 2n. The same holds
for the false formulas Q(n,m, c) with 2Ω(nε) reduction steps.

29



Proof. Let π = C1, . . . , Cm be a long-distance QCDCL resolution refutation of Equalityn or
Q(n,m, c) and let r be the number of clauses in π that were directly derived by reduction of
some preceding clause. By Proposition 5.6, π is even a Q-resolution refutation. W.l.o.g. all
axioms are introduced at the beginning of π. I.e., for an ` ∈ N we have that C1, . . . , C` are all
axioms from Equalityn. This does not change the size of π as we need all axioms anyway.

We can assume that π is in the form of

π = C1, . . . , C`, R(1,1), . . . , R(1,s1), T1, R(2,1), . . . , R(r,1), . . . , R(r,sr), Tr, R(r+1,1), . . . , R(r+1,sr+1),

where each R(i,j) is (directly) derived by the resolution rule, and for each Ti we have Ti =
red(R(i,si)). One can inductively show that for each R(c,d) we have

∧̀
i=1

Ci ∧
c−1∧
j=1

Tj �Σ∃1
R(c,d)

due to ∧̀
i=1

Ci ∧
c−1∧
j=1

Tj �Σ∃1
R(a,b)

for every R(a,b) left of R(c,d) in π.

We can replace consecutive resolution steps with the Σ∃1-rule and obtain a QNP-resolution
refutation π′ with the same number of reductions as π. We have |π′| ∈ 2Ω(n) (resp. 2Ω(nε) for
Q(n,m, c)) by Proposition 5.15. This new refutation π′ is of the form

π′ = C1, . . . , C`, R(1,s1), T1, R(2,s2), T2, . . . , R(r,sr), Tr, R(r+1,sr+1).

I.e., these two kinds of derivation steps are alternating after C`. Therefore the number of
reductions r of π′ (and also π) can be estimated by

r ∈ Ω

(
|π′| − `

2

)
= Ω(|π′|).

Compared to Equalityn, the formulas Trapdoorn just need a linear number of reduction
steps in QCDCLLEV-ORD

RED .

6 A QCDCL system equivalent to Q-resolution

We now show that the QCDCL system QCDCLASS-ORD
NO-RED has exactly the right strength to charac-

terise Q-resolution.
Our central notion in this section will be that of the reliability of a clause. The motivation

for this definition is as follows: In our QCDCL systems we generate trails and proofs in a natural
way, i.e., we are not allowed to skip propagations or conflicts. Nevertheless, when aiming to
simulate Q-resolution proofs, we also want to prescribe a sequence of literals as decisions in order
to create trails along these decisions. However, it is not guaranteed that we can even make all
these decisions without problems. We could run into situations that prevent us from continuing
with the desired decisions. To classify these situations, we use the notion of reliability.

Definition 6.1. Let Φ = Q · φ be a QCNF and C be a non-tautological clause. If there is a
QCDCLASS-ORD

NO-RED trail T , an existential literal ` ∈ C and a set of literals α ⊆ C̄\{¯̀} such that α
is the set of decision literals in T and ` ∈ T , then C is called unreliable with respect to Φ.
Alternatively, we say that the decisions C̄ are blocking each other.

If C is not unreliable, we call C reliable.

30



Remark 6.2. Let Φ = Q · φ be a QCNF and let C be reliable with respect to Φ. Then we can
construct a trail T by choosing C̄ as decisions one by one and doing the propagations more or
less automatically. These decisions cannot block each other. However, it is possible that we
propagate a literal from C̄ in the same polarity before deciding it. In this case we have to skip
the decision. Also, we could reach a conflict before deciding all literals, then we abort the trail
as usual. Both of these cases are still fine for our purposes. We stop the construction when
we either reach a conflict, or if all literals from C̄ are assigned and we cannot make further
propagations.

We will use this technique in our later proofs and refer to it as constructing T with decisions
C̄. Note that all trails we construct in this way are natural.

Example 6.3. We give some minimal examples of the situations of Remark 6.2 in the system
QCDCLASS-ORD

NO-RED :

1. Let Φ := ∃x∀u∃y, z · (x̄ ∨ ū ∨ ȳ ∨ z). Constructing a trail with decisions (x, u, y) in this
order gives us T := (x;u;y, z). In this situation the decisions (x, u, y) are not blocking
each other. In fact, the clause (x̄∨ ū∨ ȳ) is reliable with respect to Φ since we would need
to decide z̄ in order to propagate x̄ or ȳ.

2. Let Φ := ∃x∀u∃y, z · (x̄∨ ū∨ ȳ∨z)∧ (x̄∨ ū∨y). After constructing a trail T with decisions
(x, u, y) we get T = (x;u, y, z). This is still fine even if we did not actually use y as a
decision. The clause x̄ ∨ ū ∨ ȳ is still reliable with respect to Φ because we would need to
decide z̄ or ȳ in order to imply x̄.

3. Let Φ := ∃x∀u∃y, z · (x̄∨ ū∨ ȳ ∨ z)∧ (x̄∨ ū∨ z)∧ (x̄∨ ū∨ z̄). When we want to construct
a trail with decisions (x, u, y) we get T = {x,u, z,2}. This is fine even though y does not
appear in T , since we run into a conflict beforehand. The clause x̄∨ ū∨ ȳ is reliable with
respect to Φ, because the only way to achieve a situation of unreliability would be implying
x̄ with decisions u and y, or implying ȳ with decisions x and u. In the first case we would
not get any unit clauses, and in the second one we would propagate 2 before ȳ.

4. Let Φ := ∃x∀u∃y, z · (x̄∨ ū∨z)∧ (z̄∨ ȳ). When we try to construct a trail T with decisions
(x, u, y) we get stuck at T = (x;u, z, ȳ). Now we have propagated ȳ although we wanted
to decide y. This shows that these decisions block each other and the clause (x̄∨ ū∨ ȳ) is
unreliable with respect to Φ and T serves as a witness.

The next lemma shows that we can basically ‘copy’ a trail that was created at a previous
point by deciding or propagating all of its decisions. This will help us later during the simulation
of resolution or reductions steps, where we want to copy the trails that serve as a witness for
the unreliability of the parent clauses.

Lemma 6.4. Let Φ = Q·φ and Ψ = Q·ψ be two QCNFs with the same prefix such that φ ⊆ ψ.
Let T be a QCDCLASS-ORD

NO-RED trail for Φ and U be a natural trail for Ψ. Let α be the decisions in T
and α ⊆ U . If U does not run into a conflict, then every propagated literal from T is contained
in U .

Proof. Suppose that U did not run into a conflict.
Write T as

T = (p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr, p(r,1), . . . , p(r,gr)).

Assume that there are some propagated literals from T that are not contained in U . Let p(i,j)

be the first (leftmost) literal in T of this kind. Then we know that

anteT (p(i,j))|T [i,j−1] = (p(i,j))

31



with anteT (p(i,j)) ∈ φ ⊆ ψ. Since p(i,j) was the first propagated literal not contained in U and
all decisions α for T are in U , all literals from T [i, j − 1] are contained in U . This means that
at some point in U the clause anteT (p(i,j)) could have been used to imply p(i,j). Because we are
not allowed to skip propagations, we must have propagated p(i,j) somewhere in U , contradicting
our assumption.

In the following proposition we will give a simple counting argument. This gives another
motivation for using asserting schemes. Informally, it says that we only have to backtrack poly-
nomially often under a specific decision sequence until we reach a desired state of unreliability.

Proposition 6.5. Let Φ := Q·φ be a QCNF in n variables, ξ be an asserting learning scheme,
D be a clause and let T be a natural QCDCLASS-ORD

NO-RED trail for Φ with decision set D̄ and 2 ∈ T .
Then there exists a clause E and a QCDCLASS-ORD

NO-RED -proof

ι = ((T1, . . . , Tfn), (ξ(T1), . . . , ξ(Tfn)), (π1, . . . , πfn))

from Φ of E such that |ι| ∈ O(n3). If E 6= (2), then D is unreliable with respect to Q · (φ ∪
{ξ(T1), . . . , ξ(Tfn)}).

In particular, in case E 6= (2) we can find a trail W that witnesses the unreliability of
D after having learnt the clauses ξ(T1), . . . , ξ(Tfn) in the proof ι, i.e., there is a trail W for
Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}), an existential literal ` ∈ D with ` ∈ W and decisions α ⊆ D̄\{¯̀}
that follow the same order as the decisions of T .

Proof. Set T1 := T . We will now construct a proof ι with a sequence of trails T1, . . . , Tfn for
some fn ∈ N. Arguing inductively, suppose that Ti was created with decisions D̄ and runs into
a conflict. We start clause learning and derive ξ(Ti), which is an asserting clause. After that we
will backtrack to a point at which ξ(Ti) becomes unit, say Ti[si, ti], and go on constructing the
next trail Ti+1. From there on we will complete the trail by choosing the same decision literals in
the same order as before (while still considering the situations described in Remark 6.2). Either
Ti+1 also runs into a conflict, in which case we repeat this whole process, or the decisions D̄
block each other in Ti+1. If this happens, or if we derive (2), we stop. Note that we will always
follow the same decision order, even if we skip some decisions. This proves the last statement
of the proposition.

We will argue that the number of these backtracking steps is polynomially bounded, in fact
fn ∈ O(n2). For a variable z ∈ Var(Φ) and a trail U we define νU (z) as the level in which z was
propagated or decided in U , regardless of the polarity of z. If z does not occur in U in either
polarity, then we set νU (z) :=∞. Let δ be the map defined as follows:

δ : [fn]× var(φ) −→ {0, . . . , n,∞}
δ(1, z) := νT1(z),

δ(i, z) := min(δ(i− 1, z), νTi(z)) for i ∈ {2, . . . , fn}.

Intuitively, δ(i, z) returns the smallest decision level in which the variable z occurred in the
trails {T1, . . . , Ti} in any polarity. By construction, we get δ(i+ 1, z) ≤ δ(i, z) for all i ∈ [fn−1]
and z ∈ var(φ). Furthermore, because ξ is asserting, we can find yi ∈ var(φ) (e.g. the asserting
literal in step i) with δ(i+1, yi) < δ(i, yi) for each i ∈ [fn−1]. This follows from the fact that by
definition we have to backtrack at least one level. We have to finish after at most O(n2) steps
since after that δ would return 0 for each variable. Therefore fn ∈ O(n2) and |ι| ∈ O(n3).

The proof of this proposition not only confirms the existence of such a proof ι, it also gives
us an algorithm for creating it (although that is not essential for us here). The connection
between T and ι might not seem obvious at first sight, as T only serves as a witness in order
to start the process of constructing ι.

32



Let us outline the rest of this section: we aim to construct a QCDCLASS-ORD
NO-RED refutation from

a Q-resolution refutation. For this we will go through all clauses in the Q-resolution refutation
and make them unreliable using Proposition 6.5. For this purpose we have to repeatedly find a
natural trail T with decision set D̄ that fulfils the postulated properties. There are three ways
a clause could have been derived: as an axiom, via resolution or via reduction. Therefore the
next three lemmas will concentrate on this goal.

In the following results we will assume that all clauses, which we intend to make unreliable,
are in fact reliable at the beginning. This guarantees that all construction steps can be correctly
carried out. However, since we want to p-simulate Q-resolution (which includes computing the
simulation in polynomial time), we have to argue that we can efficiently find witnesses of
unreliability. For example, axioms will typically be unreliable (purely universal clauses are
not, for instance), but we might not know a witness in advance (although this witness exists
by definition). What we can do is to act as if the axiom is reliable and try to perform the
construction steps as described below. Dropping the assumption of reliabilty, we would lose
the guarantee that these construction steps work correctly. However, if not we will obtain a
witness of unreliability just by constructing this trail, which similarly serves our purpose. We
will discuss this in greater detail when proving Theorem 6.9.

We start with considering the axiom case.

Lemma 6.6. Let Φ := Q · φ be a QCNF in n variables and C ∈ φ. If C is reliable with respect
to Φ, there exists a QCDCLASS-ORD

NO-RED -proof ι with trails T1, . . . , Tfn from Φ of some clause E that
uses the learning scheme ξ such that |ι| ∈ O(n3). If E 6= (2), then C is unreliable with respect
to Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}).

Proof. Construct a (natural) trail T by choosing C̄ as level-ordered decisions. If we do not run
into a conflict, we get a contradiction since we falsified C and are not allowed to skip conflicts.
After applying Proposition 6.5 we have either derived (2), or C becomes unreliable.

The next two results cover the simulation of resolution and reduction steps. As before, we
assume that the clause for which we intend to find a witness of unreliability is actually reliable
at the beginning. Dropping this assumption removes the guarantee that the decisions will not
block each other in the construction. But then we might find a witness of unreliability even
earlier.

Lemma 6.7. Let Φ := Q · φ be a QCNF in n variables. Also let C1 ∨ x be a clause that is
unreliable with respect to Ψ := Q·ψ with ψ ⊆ φ and C2 ∨ x̄ unreliable with respect to Υ := Q· τ
with τ ⊆ φ, such that C1 ∨ C2 is non-tautological. Let ξ be an asserting learning scheme. If
C1 ∨C2 is reliable with respect to Φ, there exists a QCDCLASS-ORD

NO-RED -proof ι with θ(ι) = T1, . . . , Tfn
from Φ of some clause E that uses the learning scheme ξ such that |ι| ∈ O(n3). If E 6= (2),
then C1 ∨ C2 is unreliable with respect to Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}).

Proof. Since C1∨x is unreliable, there is a literal `1 ∈ C1∨x and a trail U1 for Ψ with decisions
α1 ⊆ (C1 ∨ x)\{¯̀1} such that `1 ∈ U1. The same is true for C2 ∨ x̄, thus we get a trail U2 for
Υ, a literal `2 and decisions α2 ⊆ (C2 ∨ x̄)\{ ¯̀

2}.
We now distinguish three cases. In each case we will define a set of decisions that are not

blocking each other, construct a natural trail with these decisions (see Remark 6.2) and run
into a conflict. After that we will unite all three cases and start clause learning. The created
trail will serve as a starting point for Proposition 6.5.

Case 1: `1 = x and `2 = x̄.
We choose the set α1 ∪ α2 ⊆ C̄ as level-ordered decisions for a new, natural trail T . These

decisions cannot block each other since C is still reliable. If we assume that T does not run
into a conflict, then we get α1 ∪ α2 ⊆ T . We can now apply Lemma 6.4 and conclude that all
propagated literals from U1 and U2 are contained in T . However, this is a contradiction since
we would need to propagate both `1 = x and `2 = x̄. Therefore T has to run into a conflict.

33



Case 2: `1 = x and `2 6= x̄ (or analogously `1 6= x and `2 = x̄).
We choose the set ({¯̀2} ∪ α1 ∪ α2)\{x} ⊆ C̄ as level-ordered decisions for a natural trail

T . As before, these decisions are not blocking each other and we can at least do the same
propagations as in U1 as long as we do not run into a conflict because of α1 ⊆ T . In particular
we are able to propagate x = `1 (e.g. via anteU1(`1)). Now we have decided or propagated
all decisions of U2, i.e., α2 ⊆ T . Hence after applying Lemma 6.4 again we can do at least all
propagations of U2. But then we would need to propagate `2 in T . That is contradictory to
¯̀
2 ∈ T . This means likewise T has to run into a conflict.

Case 3: `1 6= x and `2 6= x̄.
We know that x̄ ∈ α1, otherwise C would be unreliable. We choose {¯̀1} ∪ α1 as decisions

for the natural trail T , but we demand that x̄ will be decided last and all the other decisions
are level-ordered.

The decisions before x̄ cannot block each other, since its negations are literals in C.
If we propagated x somewhere, we can instead start with a new natural trail T ′ using the

non-blocking level-ordered decisions ({¯̀1, ¯̀
2} ∪ α1 ∪ α2)\{x, x̄} ⊆ C̄. Provided that T ′ does

not run into a conflict, applying Lemma 6.4 gives us x ∈ T ′ since we already implied x in T .
Therefore we have decided or propagated all decisions of U2, i.e., α2 ⊆ T ′. Hence we get a
contradiction by Lemma 6.4 because we would need to propagate `2. Therefore T ′ runs into a
conflict.

If we actually decide or propagate x̄, we will run into a conflict afterwards. Otherwise we
would have made all propagations from U1 (since α1 ⊆ T ), receiving a contradiction by Lemma
6.4 again.

Using Proposition 6.5, for Case 1, Case 2 and the first part of Case 3 (where we propagated
x before we could decide x̄) we can construct a QCDCLASS-ORD

NO-RED -proof ι with |ι| ∈ O(n3) that
fulfils the desired properties. Note that in each case we have followed the policy ASS-ORD.

The last part of Case 3 (where we actually decide or propagate x̄) works slightly different.
Here our decisions were {¯̀1} ∪ α1 ⊆ (C1 ∨ x), therefore we also apply Proposition 6.5 and
construct a QCDCLASS-ORD

NO-RED -proof ι′ with θ(ι′) = T ′1 , . . . , T ′f ′n from Φ of a clause E′ that uses ξ

such that |ι′| ∈ O(n3). If we have E′ = (2), we are done. If not, then C1 ∨ x became unreliable
with respect to Q · (φ ∪ {ξ(T ′1 ), . . . , ξ(T ′f ′n)}). Here we need the last statement of Proposition

6.5: There is a trail W for Q · (φ ∪ {ξ(T ′1 ), . . . , ξ(T ′f ′n)}), an existential literal ` ∈ C1 ∨ x with

` ∈ W and decisions α ⊆ (C1 ∨ x)\{¯̀} that follow the same order as the decisions of T . Since
in this order the literal x̄ was always the last literal, we conclude x̄ 6∈ α (otherwise we would
not have a chance to achieve a situation where the decisions block each other). There are two
remaining possibilities: If ` 6= x, then W is a witness for the unreliability of C1 (and therefore
also C1 ∨ C2), which gives us the desired result.

However, if ` = x, we can go back to Case 2 and use the trailsW and U2. We create another
QCDCLASS-ORD

NO-RED -proof ι′′ with θ(ι′′) = T ′′1 , . . . , T ′′f ′′n from Q· (φ∪{ξ(T ′1 ), . . . , ξ(T ′f ′n)}) of a clause E

that uses the learning scheme ξ such that |ι′′| ∈ O(n3). We can combine these two proofs ι′ and
ι′′ into a proof ι with θ(ι) = T ′1 , . . . , T ′f ′n , T

′′
1 , . . . , T ′′f ′′n from Φ of the clause E by connecting the

components θ(ι′) with θ(ι′′), λ(ι′) with λ(ι′′) and ρ(ι′) with ρ(ι′′) such that |ι| ∈ O(n3). Between
the trails T ′f ′n and T ′′1 we backtrack to the time (0, 0) (i.e., we restart the trail). If E 6= (2), then

C1 ∨ C2 became unreliable with respect to Q · (φ ∪ {ξ(T ′1 ), . . . , ξ(T ′f ′n), ξ(T ′′1 ), . . . , ξ(T ′′f ′′n )}).

It remains to show a similar result for the reduction step.

Lemma 6.8. Let Φ := Q · φ be a QCNF in n variables, let D := C ∨ u1 ∨ . . . ∨ um be a non-
tautological clause with universal literals u1, . . . , um and red(D) = C, such that D is unreliable
with respect to a QCNF Ψ = Q · ψ with ψ ⊆ φ. Let ξ be an asserting learning scheme. If C
is reliable with respect to Φ, there exists a QCDCLASS-ORD

NO-RED -proof ι with θ(ι) = T1, . . . , Tfn from Φ

34



of some clause E that uses the learning scheme ξ such that |ι| ∈ O(n3). If E 6= (2), then C is
unreliable with respect to Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}).

Proof. Because D is unreliable, we can find a literal ` ∈ D and a trail U for Ψ with decisions
α ⊆ D̄\{¯̀} and ` ∈ U . The literal ` has to be existential, hence ` ∈ C.

Now we choose the set {¯̀} ∪ α ⊆ D̄ as level-ordered decisions for the natural trail T ,
i.e., we decide the literals in ({¯̀} ∪ α) ∩ {ū1, . . . , ūm} at the end. The decisions before ({¯̀} ∪
α) ∩ {ū1, . . . , ūm} cannot block each other since C is reliable. After this we would only decide
universal literals, which can not be propagated. Therefore, in this order, the decisions {¯̀} ∪ α
are not blocking each other. If T does not run into a conflict, we can at least do the same
propagations as in U by Lemma 6.4. Then we would get the contradiction `, ¯̀∈ T .

Now we can apply Proposition 6.5 and construct a proof ι with θ(ι) = T1, . . . , Tfn from
Φ of a clause E such that |ι| ∈ O(n3). If E 6= (2), then D is unreliable with respect to
Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}). In this case there is a trail W for Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}), an
existential literal y ∈ D with y ∈ W and decisions β ⊆ D̄\{ȳ} that follows the same order as
the decisions of T (level-order). Since y is existential, we have y ∈ C. The blocking situation
in W had to occur before we could decide ū1, . . . , ūm. We conclude β ⊆ C̄\{ȳ} and thus C is
unreliable with respect to Q · (φ ∪ {ξ(T1), . . . , ξ(Tfn)}).

Now we can combine these three auxiliary results into the main theorem of this section.

Theorem 6.9. QCDCLASS-ORD
NO-RED p-simulates Q-resolution. I.e., each Q-resolution refutation π of

a QCNF in n variables can be transformed into a QCDCLASS-ORD
NO-RED -refutation of size O(n3 · |π|)

that uses an arbitrary asserting learning scheme ξ.
In particular, Q-resolution, QCDCLANY-ORD

NO-RED and QCDCLASS-ORD
NO-RED are p-equivalent proof systems.

Proof. First we show that QCDCLASS-ORD
NO-RED simulates Q-resolution. Let Φ := Q · φ be a QCNF in

n variables with a Q-resolution refutation π = C1, . . . , Ck. We will go through this proof from
left to right and check whether or not the clauses are reliable with respect to the corresponding
current QCNF. Suppose that C1, . . . , Ci−1 are already unreliable with respect to QCNFs Q ·
φ1, . . . ,Q · φi−1 with φ ⊆ φ1 ⊆ . . . ⊆ φi−1. If Ci is unreliable with respect to Q · φi−1, then we
can set φi := φi−1 (let φ0 := φ), ιi := (∅, ∅, ∅) (empty proof) and continue with Ci+1.

However, if Ci is reliable with respect to Q · φi−1, then we can apply either Lemma 6.6 or
Lemma 6.7 or Lemma 6.8, depending whether Ci is an axiom, or was derived via resolution or re-

duction. We construct a QCDCLASS-ORD
NO-RED -proof ιi with θ(ιi) = T (i)

1 , . . . , T (i)

f
(i)
n

of a clause Ei fromQ·

(φi−1∪{ξ(T (i)
1 ), . . . , ξ(T (i)

f
(i)
n

)}) with |ιi| ∈ O(n3) that uses the learning scheme ξ. If Ei = (2), we

are done and connect the components of the proofs ι1, . . . , ιi, in particular θ(ι) = θ(ι1), . . . , θ(ιi).

Otherwise Ci became unreliable with respect to Q · (φi−1 ∪ {ξ(T (i)
1 ), . . . , ξ(T (i)

f
(i)
n

)}). In this case

we set φi := φi−1 ∪ {ξ(T (i)
1 ), . . . , ξ(T (i)

f
(i)
n

)} and continue with the next clause Ci+1.

At the latest when we reach Ck = (2) in π, we will create a refutation ι since (2) can never
become unreliable by definition. The QCDCLASS-ORD

NO-RED -refutation ι consists of some QCDCLASS-ORD
NO-RED -

proofs ι1, . . . , ιj , 1 ≤ j ≤ k. Between two proofs ιa and ιa+1 we will just restart, i.e., between the

trails T (a)

f
(a)
n

and T (a+1)
1 we will backtrack to the point (0, 0). At the end we have |ι| ∈ O(n3 · |π|).

We have now shown Q-resolution ≤ QCDCLASS-ORD
NO-RED . In order to actually prove that this

simulation is polynomial-time computable, one should actually argue that the described con-
struction steps are in fact polynomial-time computable. However, we needed to decide whether
or not a clause in the given proof is reliable. This might not be computable in polynomial time.
Alternatively, we can pretend that a clause C is reliable unless we have found a witness that
proves the opposite. We can do the exact same steps as described in the above results. In
detail, we can still try to create the trail T from Lemma 6.6, Lemma 6.7 or Lemma 6.8. If the

35



decisions do not block each other, we proceed as if the clause C was reliable. Otherwise, we
immediately receive a witness for our unreliability, even if we were not able to take the steps as
described.

Therefore QCDCLASS-ORD
NO-RED p-simulates Q-resolution. By Theorem 3.8 the systems QCDCLANY-ORD

NO-RED

and QCDCLASS-ORD
NO-RED are p-simulated by Q-resolution. Obviously, QCDCLASS-ORD

NO-RED is p-simulated by
QCDCLANY-ORD

NO-RED . As a consequence, all of these three systems are p-equivalent.

7 Comparison to the correspondence between propositional res-
olution and CDCL

There are a few similarities between our definitions of unreliable/reliable and the notions 1-
empowering/absorbed used in [42]. Pipatsrisawat and Darwiche [42] focused on propositional
logic and CNFs, so let us for this section restrict our attention to the propositional case (e.g.
by considering only QCNFs with existential quantifiers) and recall the definition that was used
in the work of Pipatsrisawat and Darwiche.

Definition 7.1 (Pipatsrisawat & Darwiche [42]). Let α⇒ ` be a clause where ` is some literal
and α is a conjunction of literals. The clause is 1-empowering with respect to CNF ∆ iff

1. ∆ � (α⇒ `): the clause is implied by ∆.

2. ∆ ∧ α is 1-consistent: asserting α does not result in a conflict that is detectable by unit
resolution.

3. ∆ ∧ α 01 `: the literal ` cannot be derived from ∆ ∧ α using unit resolution.

In this case, ` is called an empowering literal of a clause. On the other hand, a clause
implied by ∆ that contains no empowering literals is said to be absorbed by ∆.

For further details concerning the notations see [42].
Translating the third point into our framework could lead to the following interpretation:

` cannot be propagated in a trail for ∆ with decisions α. This is related to our definition of
reliability. Simply put, for reliability we require that no literal in the clause is derivable by
unit propagation. In Definition 7.1, however, it suffices to find at least one literal ` with this
property.

Consequently the differences between ‘unreliable’ and ‘absorbing’ could be formulated as
follows: for a clause C to be unreliable, we need at least one literal ` ∈ C such that ` is
‘accidentally’ propagated in a trail with decisions contained in C̄ \ {¯̀}. In an absorbed clause,
on the other hand, each literal has to be propagated accidentally in this way.

In [42] this difference in definition caused an additional factor n in the complexity of
the CDCL simulation of resolution. Roughly speaking, their idea consists of searching for 1-
empowering (and 1-provable) clauses in a given resolution refutation π of a CNF ∆. They
described how these clauses get absorbed after O(n4) CDCL steps, where the last n-factor
is incurred by the fact that they have to handle all empowering literals, not just one as in
our results. The remaining factor n3 can be explained in a similar way as in Proposition 6.5
(cf. [42, Prop. 3]).

Consequently, we obtain a slight quantitative improvement of the simulation of resolution
by CDCL [42] from O(n4|π|) to O(n3|π|).

Theorem 7.2. Let φ be a CNF in n variables and let π be a resolution refutation of φ. Then
φ has a CDCL refutation of size O(n3|π|).

An advantage of the ‘1-empowering/absorbed’ notion is the simplification when it comes
to cover the resolution steps in the given proof π. In the proof of Lemma 6.7 we had to

36



distinguish three cases depending on the literal that witnessed the unreliability. However, this
is not necessary when using the definition of ‘absorption’. Since in this case all literals from
a clause shall be propagated accidentally, we can pick an arbitrary literal that simplifies the
following reasoning steps. In fact, it then suffices to consider Case 1 in Lemma 6.7.

Furthermore, in [42] the authors refrained from using the concept of trails or introduc-
ing algorithm-based proof systems. Instead, they relied on the notions of unit resolution,
1-consistency, and 1-provability. However, these notions cannot be fully translated into our
framework that enables the construction of trails as it is done in practical CDCL. For example,
consider the following:

Let ∆ := (x̄1 ∨ x̄2 ∨ x̄3) be a CNF consisting only of one clause. Then clearly this CNF
together with decisions x1, x2, x3 is 1-inconsistent (one could think of 1-inconsistent CDCL states,
that are in the form of ∆∧`1∧. . .∧`m with a CNF ∆ and decision literals `1, . . . , `m, as formulas
which are refutable via unit propagation). However, this conflict cannot occur in practice when
creating trails as described in our work (i.e., in a natural sense). We would obtain a situation
where the decisions block each other:

T = (x1; x2, x̄3) .

This blocking can only be resolved by skipping the propagation x̄3. Of course, we can observe
this artificial conflict by our notion of trails as well:

T ′ = (x1; x2; x3,2) .

But since we want to avoid this inherent kind of non-determinism (cf. also [4]), we defined our
proof systems in such a way as to circumvent these situations. As a consequence, it is impossible
for the trail T ′ to appear in a proof under one of our QCDCL systems. This distinction between
non-deterministic, more liberal systems and algorithm-based, stricter versions of these systems
seems in some way harder to clarify with the notions used by Pipatsrisawat and Darwiche.

8 The simulation order of QCDCL proof systems

Now that we characterised the complexity of classical systems, such as QCDCL and Q-resolution,
we want to examine the connections between the remaining QCDCL systems that we have not
fully considered yet. We refer again to Figure 2 on page 10, depicting the resulting simulation
order.

First we define the formulas Lonn that were introduced by Lonsing in [34]. Originally, these
QCNFs were constructed to separate QBF solvers that differ in the implemented dependency
schemes (we will not consider these concepts here, though).

Definition 8.1 (Lonsing [34]). Let Lonn be the QCNF

∃a, b, b1, . . . , bsn∀x, y∃c, d·(a ∨ x ∨ c) ∧ (a ∨ b ∨ b1 ∨ . . . ∨ bsn) ∧ (b ∨ y ∨ d) ∧ (x ∨ c) ∧ (x ∨ c̄)
∧ PHPn+1

n (b1, . . . , bsn) .

It was shown in [34] that this formula becomes easy to refute by choosing the standard
dependency scheme. However, Lonn serves as a witness for separating our systems as well.

Proposition 8.2. The QCNFs Lonn require exponential-size proofs in the systems QCDCLLEV-ORD
RED

and QCDCLLEV-ORD
NO-RED , but have constant-size proofs in QCDCLASS-R-ORD

RED and Q-resolution.

Proof. With the policy LEV-ORD we are forced to start assigning the variables a, b, b1, . . . , bsn . As
long as we do this, we can only use the clauses from (a∨b∨b1∨ . . .∨bsn)∧PHPn+1

n (b1, . . . , bsn) as
antecedent clauses. Since PHPn+1

n contains subclauses of b1∨ . . .∨ bsn , we do not need the clause

37



a∨ b∨ b1 ∨ . . .∨ bsn either. The propositional formula PHPn+1
n is unsatisfiable, therefore we will

falsify this formula before reaching the decisions x and y. We will always learn clauses C whose
long-distance Q-resolution proofs consist only of axioms from PHPn+1

n . These proofs are in fact
resolution proofs because the contained clauses do not include any universal variables. At the
end we obtain a QCDCL-proof ι (in the system QCDCLLEV-ORD

RED or QCDCLLEV-ORD
NO-RED ) that contains

a resolution refutation of PHPn+1
n , which is exponential by [26]. Hence also |ι| is exponential.

We obtain short Q-resolution refutations of Lonn by red(res(x ∨ c, x ∨ c̄, c)) = (2). The
following trail yields a short QCDCLASS-R-ORD

RED refutation of Lonn:

T = (x̄, c,2).

From this we can learn (2) in the same way as in the Q-resolution refutation.

Next we want to compare the policies RED and NO-RED when fixing the decision policy
LEV-ORD. As we indicated before, these two policies seem to operate orthogonally to each
other. We will prove this intuition now, again using the Trapdoorn formulas.

Proposition 8.3. The QCNFs Trapdoorn have polynomial-size QCDCLLEV-ORD
NO-RED refutations.

Proof. The refutation consists of the trails T1, T2:

T1 := (y1; y2; . . . ; ysn ; w̄, t,2)

with anteT1(t) = ȳ1 ∨w ∨ t and anteT1(2) = ȳ1 ∨w ∨ t̄. We learn the clause (ȳ1) and backtrack
to (0, 0).

T2 := (ȳ1; ȳ2; . . . ; ȳsn ; w̄, t,2)

with anteT2(t) = y1 ∨ w ∨ t and anteT2(2) = y1 ∨ w ∨ t̄. We finally learn the clause (2).

Combined with previous results, we can conclude the following:

Theorem 8.4. The systems QCDCLLEV-ORD
NO-RED and QCDCLLEV-ORD

RED are incomparable.

Proof. The QCNFs QParityn are hard for QCDCLLEV-ORD
NO-RED by [6] since this system is p-simulated

by Q-resolution, but easy for QCDCLLEV-ORD
RED as proven in Proposition 4.2. The formulas Trapdoorn

are hard for QCDCLLEV-ORD
RED (Proposition 4.6), but easy for QCDCLLEV-ORD

NO-RED (Proposition 8.3).

In Section 5 we already introduced a whole class of QCNFs that require large QCDCLLEV-ORD
RED

(=QCDCL) refutations. We can exponentially improve this classical QCDCL system by exchang-
ing the decision policy LEV-ORD for a more liberal one. Although we have already shown this
in Proposition 8.2, we will give another, more interesting separation by QBFs whose hardness
does not rely on propositional resolution complexity.

Proposition 8.5. The formulas Equalityn have polynomial-size QCDCLASS-R-ORD
RED refutations.

Proof. First we define the clauses

Li := x̄i ∨ ūi ∨
n∨

j=i+1

(uj ∨ ūj) ∨
i−1∨
k=1

t̄k,

Ri := xi ∨ ui ∨
n∨

j=i+1

(uj ∨ ūj) ∨
i−1∨
k=1

t̄k

for i = 2, . . . , n.

38



We will construct QCDCLASS-R-ORD
RED trails Tn,Un, . . . , T2,U2 from which we learn the clauses

Ln, Rn, . . . , L2, R2. We will restart after each trail.
The initial trail is

Tn = (x1; x2; . . . ; xn; u1, t1; u2, t2; . . . ; un−1, tn−1, t̄n,2)

coupled with the antecedent clauses

anteTn(tj) = x̄j ∨ ūj ∨ tj for j = 1, . . . , n− 1,

anteTn(t̄n) = t̄1 ∨ . . . ∨ t̄n,

anteTn(2) = x̄n ∨ ūn ∨ tn.

After resolving over t̄n we learn Ln.
We restart and can create Un, symmetrically to Tn:

Un = (x̄1; x̄2; . . . ; x̄n; ū1, t1; ū2, t2; . . . ; ūn−1, tn−1, t̄n,2)

with

anteUn(tj) = xj ∨ uj ∨ tj for j = 1, . . . , n− 1,

anteUn(t̄n) = t̄1 ∨ . . . ∨ t̄n,

anteUn(2) = xn ∨ un ∨ tn.

Analogously, we learn Rn.
Now suppose that we already learned the clauses Ln, . . . , Li and Rn, . . . , Ri for 3 ≤ i ≤ n.

Next, let us learn the clause Li−1 using the trail Ti−1:

Ti−1 = (x1; x2; . . . ; xi−1; u1, t1; u2, t2; . . . ; ui−1, ti−1, x̄i,2)

with

anteTi−1(tj) = x̄j ∨ ūj ∨ tj for j = 1, . . . , i− 1,

anteTi−1(x̄i) = Li,

anteTi−1(2) = Ri.

We resolve over x̄i and ti−1, obtaining Li−1.
Again, in a symmetrical way we derive Ri−1:

Ui−1 = (x̄1; x̄2; . . . ; x̄i−1; ū1, t1; ū2, t2; . . . ; ūi−1, ti−1, x̄i,2)

with

anteUi−1(tj) = xj ∨ uj ∨ tj for j = 1, . . . , i− 1,

anteUi−1(x̄i) = Li,

anteUi−1(2) = Ri.

We end the proof with two trails:

T1 = (x1; u1, t1, x̄1,2),

with similar antecedent clauses as before, from which we learn the unit clause (x̄1), and

U1 = (x̄1; ū1, t1, x̄1,2),

from which we finally derive (2). This whole proof has size O(n2).

39



Using ASS-R-ORD instead of LEV-ORD allowed us to skip existential decisions. As a result
we were able to restrict ourselves to the decisions x1, . . . , xi−1 in the trails Ti−1 and Ui−1 since
the other variables xi, . . . , xn are either resolved away or useless for the current resolution step.

This leads to the following separation:

Theorem 8.6. QCDCLASS-R-ORD
RED is exponentially stronger than QCDCLLEV-ORD

RED .

Note that the decision policy ASS-R-ORD in QCDCLASS-R-ORD
RED guarantees the possibility to

learn asserting clauses. Having shown that QCDCLASS-R-ORD
RED is actually stronger than classical

QCDCL, the system QCDCLASS-R-ORD
RED seems to be a promising candidate for practical implemen-

tation.

9 Conclusion

In this paper we performed a formal, proof-theoretic analysis of QCDCL. In particular, we
focused on the relation of QCDCL and Q-resolution, showing both the incomparability of
practically-used QCDCL to Q-resolution as well as the equivalence of a new QCDCL version to
Q-resolution.

In addition to the theoretical contributions of this paper, we believe that our findings will
also be interesting for practitioners. Firstly, because we have shown the first rigorous dedicated
hardness results for QCDCL, not only in terms of formula families with at most one instance
per input size (as is typical in proof complexity), but also in terms of a large family of random
QBFs.

Secondly, we believe that it would be interesting to test the potential of our new QCDCL
variants for practical solving. Though we have formulated these as proof systems, it should be
fairly straightforward to incorporate our new policies into actual QCDCL implementations. In
particular, the insight that decisions do not need to follow the order of quantification in the
prefix should be a welcome discovery. Of course, when just using the policy ANY-ORD, it is not
clear that asserting clauses can always be learnt. Therefore, we suggest that for practical im-
plementations, the most interesting new systems should be QCDCLASS-ORD

NO-RED and QCDCLASS-R-ORD
RED .

Both facilitate liberal decision policies, not necessarily following the prefix order, while still
allowing to learn asserting clauses. Since both systems are incomparable, it is a priori not clear
which one to prefer in practice. However, we would suggest that QCDCLASS-R-ORD

RED should be
the more interesting system, since it uses the same unit propagation as QCDCL, but provides
an exponential strengthening of QCDCL (as shown in Theorem 8.6) via the decision policy
ASS-R-ORD.

We close with some open questions that are triggered by the results presented here:

• Can we find an alternative formula instead of Trapdoorn for the separation between Q-
resolution and QCDCL (easy for Q-resolution, hard for QCDCL)? I.e., we are primarily
interested in formulas whose hardness does not depend on propositional resolution.

• Can we find a separation between QCDCLASS-R-ORD
RED and long-distance Q-resolution?

• Can we even find a separation between QCDCLANY-ORD
RED and long-distance Q-resolution, or

are the systems possibly even equivalent?

Acknowledgements

Research was supported by grants from the Carl Zeiss Foundation and the John Templeton
Foundation (grant no. 60842).

40



References

[1] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms
with many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.

[2] Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.
Form. Methods Syst. Des., 41(1):45–65, August 2012.

[3] Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and
their proof complexities. In SAT’14, pages 154–169, 2014.

[4] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and har-
nessing the potential of clause learning. J. Artif. Intell. Res. (JAIR), 22:319–351, 2004.

[5] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present, and
future. In G. Paun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical
Computer Science: Entering the 21st Century, pages 42–70. World Scientific Publishing,
2001.

[6] Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. Size, cost, and capacity: A semantic
technique for hard random QBFs. Logical Methods in Computer Science, 15(1), 2019.

[7] Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building strategies into QBF
proofs. In STACS, LIPIcs, pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2019.

[8] Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Hardness characterisations and
size-width lower bounds for QBF resolution. In Proc. ACM/IEEE Symposium on Logic in
Computer Science (LICS), accepted, 2020. Full version at the Electronic Colloquium on
Computational Complexity (ECCC), report no. TR20-005.

[9] Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Jan Pich. Frege systems for quantified
Boolean logic. J. ACM, 67(2), 2020.

[10] Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. New resolution-based QBF calculi
and their proof complexity. ACM Transactions on Computation Theory, 11(4):26:1–26:42,
2019.

[11] Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation
for QBF resolution calculi. Logical Methods in Computer Science, 13, 2017.

[12] Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. A game characterisation of
tree-like Q-Resolution size. J. Comput. Syst. Sci., 104:82–101, 2019.

[13] Olaf Beyersdorff, Luke Hinde, and Ján Pich. Reasons for hardness in QBF proof systems.
ACM Transactions on Computation Theory, 12(2), 2020.

[14] Maria Luisa Bonet, Sam Buss, and Jan Johannsen. Improved separations of regular reso-
lution from clause learning proof systems. J. Artif. Intell. Res., 49:669–703, 2014.

[15] Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic,
163(7):906–917, 2012.

[16] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Reso-
lution refinements that characterize DLL algorithms with clause learning. Logical Methods
in Computer Science, 4(4), 2008.

41



[17] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evaluate quanti-
fied Boolean formulae. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI
98, pages 262–267, 1998.

[18] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[19] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[20] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:210–215, 1960.

[21] Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof gen-
eration and strategy extraction in search-based QBF solving. In Logic for Programming,
Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, pages
291–308, 2013.

[22] Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup. Encod-
ings of bounded synthesis. In Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Proceedings, pages
354–370, 2017.

[23] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[24] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Reasoning with quantified
Boolean formulas. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 761–780. IOS Press, 2009.

[25] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/term resolution
and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res., 26:371–
416, 2006.

[26] Amin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

[27] J. H̊astad. Computational Limitations of Small Depth Circuits. MIT Press, Cambridge,
1987.

[28] Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning
can effectively p-simulate general propositional resolution. In AAAI, 2008.

[29] Mikolás Janota. On Q-resolution and CDCL QBF solving. In Nadia Creignou and Daniel Le
Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th Interna-
tional Conference, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science,
pages 402–418. Springer, 2016.

[30] Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci., 577:25–42, 2015.

[31] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
boolean formulas. Inf. Comput., 117(1):12–18, 1995.

42



[32] Jan Kraj́ıček. Proof complexity, volume 170 of Encyclopedia of Mathematics and Its Ap-
plications. Cambridge University Press, 2019.

[33] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic, 54(3):1063–
1079, 1989.

[34] Florian Lonsing. Dependency Schemes and Search-Based QBF Solving: Theory and Prac-
tice. PhD thesis, Johannes Kepler University Linz, 2012.

[35] Florian Lonsing and Uwe Egly. DepQBF 6.0: A search-based QBF solver beyond tradi-
tional QCDCL. In Automated Deduction - CADE 26 - 26th International Conference on
Automated Deduction, Proceedings, pages 371–384, 2017.

[36] Florian Lonsing, Uwe Egly, and Allen Van Gelder. Efficient clause learning for quanti-
fied boolean formulas via QBF pseudo unit propagation. In Theory and Applications of
Satisfiability Testing - SAT 2013 - 16th International Conference, pages 100–115, 2013.

[37] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Handbook of Satisfiability. IOS Press, 2009.

[38] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for
satisfiability. In ICCAD, pages 220–227, 1996.

[39] Nathan Mull, Shuo Pang, and Alexander A. Razborov. On CDCL-based proof systems
with the ordered decision strategy. CoRR, abs/1909.04135, 2019.

[40] Jakob Nordström. Short Proofs May Be Spacious : Understanding Space in Resolution.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 2008.

[41] Jakob Nordström. On the interplay between proof complexity and SAT solving. SIGLOG
News, 2(3):19–44, 2015.

[42] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512–525, 2011.

[43] Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16
and QBFEVAL’17). Artif. Intell., 274:224–248, 2019.

[44] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic,
13(4):417–481, 2007.

[45] Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified Boolean formulas. In 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2019, pages 78–84, 2019.

[46] Friedrich Slivovsky and Stefan Szeider. Soundness of Q-resolution with dependency
schemes. TCS, 612:83–101, 2016.

[47] Moshe Y. Vardi. Boolean satisfiability: theory and engineering. Commun. ACM, 57(3):5,
2014.

[48] Marc Vinyals. Hard examples for common variable decision heuristics. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), 2020.

[49] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient
conflict driven learning in Boolean satisfiability solver. In Rolf Ernst, editor, Proceedings of
the 2001 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2001,
pages 279–285. IEEE Computer Society, 2001.

43



[50] Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified boolean satisfia-
bility solver. In IEEE/ACM International Conference on Computer-aided Design, ICCAD
2002, pages 442–449, 2002.

44
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


