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Abstract

We initiate a comprehensive study of the question of randomness extractions from two some-
what dependent sources of defective randomness. Specifically, we present three natural models,
which are based on different natural perspectives on the notion of bounded dependency between
a pair of distributions. Going from the more restricted model to the less restricted one, our
models and main results are as follows.

1. Bounded dependence as bounded coordination: Here we consider pairs of distributions that
arise from independent random processes that are applied to the outcome of a single global
random source, which may be viewed as a mechanism of coordination (which is adversarial
from our perspective).

We show that if the min-entropy of each of the two outcomes is larger than the length of
the global source, then extraction is possible (and is, in fact, feasible). We stress that the
extractor has no access to the global random source nor to the internal randomness that
the two processes use, but rather gets only the two dependent outcomes.

This model is equivalent to a setting in which the two outcomes are generated by two
independent sources, but then each outcome is modified based on limited leakage (equiv.,
communication) between the two sources.

(Here this leakage is measured in terms of the number of bits that were communicated,
but in the next model we consider the actual influence of this leakage.)

2. Bounded dependence as bounded cross influence: Here we consider pairs of outcomes that
are produced by a pair of sources such that each source has bounded (worst-case) influence
on the outcome of the other source. We stress that the extractor has no access to the
randomness that the two processes use, but rather gets only the two dependent outcomes.

We show that, while (proper) randomness extraction is impossible in this case, randomness
condensing is possible and feasible; specifically, the randomness deficiency of condensing
is linear in our measure of cross influence, and this upper bound is tight. We also discuss
various applications of such condensers, including for cryptography, standard randomized
algorithms, and sublinear-time algorithms, while pointing out their benefit over using a
seeded (single-source) extractor.

3. Bounded dependence as bounded mutual information: Due to the average-case nature of
mutual information, here there is a trade-off between the error (or deviation) probabil-
ity and the randomness deficiency. Loosely speaking, for joint distributions of mutual
information t, we can condense with randomness deficiency O(t/ε) and error ε, and this
trade-off is optimal.

All positive results are obtained by using a standard two-source extractor (or condenser) as a
black-box.
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1 Introduction

The problem of extracting almost perfect randomness from sources of highly defective randomness is
of great theoretical and practical importance, since perfect randomness is essential to cryptography
and has numerous applications in algorithmic design, whereas natural sources of randomness are
quite defective. In other words, the randomness extraction problem addresses the discrepancy
between the perfect randomness that is postulated in various applications and the quite defective
randomness that seems available to us in reality.

The foregoing problem has been the focus of much research in the last decades, where research
has branched according to how the defective sources of randomness are modelled (see, e.g., [20]).
Needless to say, an adequate modelling of such sources is pivotal to such studies. The two main
branches, reviewed below, focus on sources of randomness with a worst-case guarantee asserting
that no outcome appears with too high a probability. Specifically, the logarithm of the reciprocal
of this probability, called min-entropy, is a main parameter in these studies.1

The two branches differ by the question of whether we have at our disposal a single source of the
foregoing type or a few (say, two) independent sources of this type. In the first case, a randomness
extractor cannot be deterministic; it must use a short random seed, where the length of the seed
may be logarithmic in the length of the source (and the reciprocal of the desired error probability).
Shaltiel’s classical survey is focused on this case [19]; see also more recent accounts such as [22,
Chap. 6].2

In some “off-line” algorithmic applications, seeded extractors provide a good solution to the
extraction problem, since one can emulate the use of a short random seed by a deterministic enu-
meration of all possibilities. This emulation is not possible in “on-line” applications that dominate
the areas of cryptography and distributed computing. This reality is the main motivation for the
second branch of studies, which considers extraction from several independent sources (of defec-
tive randomness). Typically, one seeks to minimize the number of independent sources, and it is
best to use only two. The rather recent breakthrough result of Chattopadhyay and Zuckerman [5],
which provides a two-source extractor for polylogarithmic min-entropy, and its follow-ups (e.g., [14])
belong to this branch.

While some amount of independence between the two sources is definitely necessary for (seedless)
extraction, it is desirable to allow as much dependence as possible. In other words, one should seek
to relax the postulate of perfectly independent (defective) sources, and study the possibility of
extracting randomness from somewhat dependent sources.

Actually, this problem was considered already in the early work of Chor and Goldreich [6],
who suggested a simple definition and outlined the possibility and limitation of (proper) extraction
under it (see [6, Sec. 3.3]). Their focus was on a small “amount of dependence” (i.e., the sources are
almost independence (in a strong sense)), but in that regime their definition (i.e., [6, Def. 10]) does
not meet our intuition. On the one hand, it is too rigid, as reflected by the fact that it does not
cover natural cases that do allow for good extraction and are covered by our first model (described
in Section 1.1.1). On the other hand, their definition led to a negative result regarding extraction

1Hence, the postulate that no n-bit long string occurs with probability greater than p takes the form of saying that
the distribution has min-entropy at least log2(1/p). Note that a perfect n-bit long random string has min-entropy
log2(1/2−n) = n.

2The focus of Shaltiel’s survey [19] on seeded extractors reflects the focus of research at that period, and specifically
the quest for explicit constructions of extractors with optimal parameters such as seed-length, min-entropy bound,
output length, and error probability (see, e.g., [19, Sec. 1.4] and [19, Table 1]).
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(i.e., [6, Thm. 19]), which seems to have discouraged research in this important direction. (See
Section 1.4 for a more detailed account.)

In this work, we initiate a more comprehensive study of the question of randomness extractions
from two somewhat dependent sources of defective randomness. Specifically, we present three
natural models, which are based on different natural perspectives on the notion of dependency
between a pair of distributions. Indeed, the most general model is based on the notion of mutual
information, but we believe that the more restricted models are also natural. While the most
restricted model (described in Section 1.1.1) allows for (proper) randomness extraction, the other
two models (described in Sections 1.1.2 and 1.1.3) do not allow for (proper) extraction, but do
allow for randomness condensing (defined below). In Section 1.3 we argue that these randomness
condensers may be of value for various applications, including in cryptography. But let us discuss
the models themselves first.

1.1 Our models

Our three models draw on three different notions of (the amount of) “dependency” between sources.
In each model, the “amount of dependence” is specified by a parameter that upper-bounds this
amount (as well as by the standard parameter that lower-bounds the min-entropy of the individual
sources).

The models are presented in order of generality, going from the more restricted to the less
restricted. When the amount of dependency is zero, all models coincide with the standard model
of two independent sources. On the other hand, when the amount of dependence reaches the min-
entropy of the individual sources, all models include the case of identical sources (which coincides
with the single source case). Hence, the amount of dependence that we consider is between these
two extreme bounds.

We refrain form taking a categorical position regarding which of the models is “right”; we believe
that each of them may be adequate in some settings and less so in others. Indeed, different models
may suit different settings, and the fact that the models support different levels of extraction (or
condensing) is a good reason to present them all.

1.1.1 The coordinated sources model

A special case (equiv., restricted version) of the “coordinated sources” model postulates that the
two sources have access to many independent “micro-sources” of randomness that are each ex-
tremely defective (i.e., having min-entropy that is too low to be of any use). Furthermore, most of
these micro-sources may have no entropy at all. Each source corresponds to a subsequence of the
micro-sources, and each such subsequence contains a significant amount of min-entropy, but the
subsequences corresponding to the two sources have a small (non-empty) intersection that is not
known to us. Of course, if we knew the intersection, then we could have ignored the micro-sources
in it when extracting from the two (residual) sources (i.e., from the non-intersecting parts), but
the intersection is not known to us (i.e., to the extractor).3

More generally, the two sources may be random processes that are each fed by the outcome of
some global random process. We have no access to “underlying” global random source nor can we

3Likewise, if we knew which of the micro-sources included in one subsequence contain a sufficient amount of
min-entropy, then we could partition this subsequence into two good parts and extract from these two auxiliary
sources.
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access the randomness “added” by each of the two sources (on top of the outcome of the global
source). All we get is the outcomes of the two processes (i.e., sources). Specifically, consider the
randomized processes A,B and C, each taking a “somewhat random” n-bit long string, denoted
rA, rB and rC . Then, we get A(rA, C(rc)) and B(rB, C(rc)) only, and we are only guaranteed that
their min-entropy is k′ bits larger than the length of the outcome of C. Note that we do not require
that rA, rB and rB be uniformly distributed, but the min-entropy requirement made regarding the
outcomes of A and B does imply that rA and rB have min-entropy at least k′ each. Here, C(rC)
represents the coordination between the sources.

A different scenario, which is actually equivalent to the above, is that the two sources are
initially independent, but become dependent due to (bounded) leakage. Specifically, suppose that
each source starts having a somewhat random state (i.e., sA and sB), but their state changes in
time and may depend also on few bits that are leaked between the states; that is, at each point
in time, each source modifies its state based on its current state and bits that are leaked from
the current state of the other source. We only see the states at a later time, and after a bounded
number of bits were “communicated” (via leakage) between them. Here, this leakage represents
the (adversarial) coordination between the sources.

1.1.2 Sources of bounded cross influence

In the bounded “cross influence” model, we envision a setting akin the prior ones, except that
here we do not upper-bound the potential “influence” of each source on the other – as reflected in
the amount of leakage (or communication) – but rather the actual influence as embodied in the
two outcomes. Specifically, consider randomized processes A and B, each taking a sequence of n
random bits, denoted rA and rB, and outputting A(rA, rB) and B(rA, rB); that is, each source is
given both rA and rB. What we shall bound is the influence of rB on A’s output, and likewise the
influence of rA on B’s output.

We say that the influence of rB on A’s output is at most t (bits) if for every two values rA
and rB it holds that Prr[A(rA, r) 6=A(rA, rB)] ≤ 1 − 2−t. In other words, the value A(rA, rB) is
maintained, with probability at least 2−t, when rB is “re-randomized” (i.e., replaced by a random
input r). Hence, the influence of rB on A’s output measures the actual effect that rB has on A’s
output, regardless of how this effect comes about. The influence of rA on B’s output is defined
analogously, and the cross influence of the two sources is defined as the sum of the two (opposite)
influences.

To see that the cross influence can be much lower than the amount of coordination, consider the
processes A(rA, rB) = rA and B(rA, rB) = (rB, IP2(rA, rB)), where IP2 denotes the inner product
(mod 2) function. These two sources have a single bit of cross influence (i.e., rB has no influence
on A’s output, whereas the influence of rA on B’s output is confined to IP2(rA, rB)). It can be
shown that the amount of coordination between these sources exceeds 0.499 · |rA| (see Theorems 3.4
and 6.1).4

4Indeed, it is well-known that the communication complexity of computing IP2 on n-bit inputs is Ω(n), see [6,
Thm. 21(ii)], but this does not mean that sampling the distribution (rA, (rB , IP2(rA, rB))) requires Ω(n) bits of
communication (since there may be other ways of sampling this distribution). In other words, the strategies in the
coordination protocol need not compute IP2 on their disjoint inputs; they may sample the desired distribution arbitrar-
ily. Nevertheless, Theorem 6.1 implies that a two-party protocol for sampling the distribution (rA, (rB , IP2(rA, rB)))
requires Ω(n) bits of communication, whereas Theorem 3.4 relates the communication complexity of sampling a joint
distribution to the amount of coordination in it.
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We also comment that, as proved in Proposition 4.2, if a joint distribution (X,Y ) has cross
influence at most t, then maxx,y{`(x, y)} ≤ t, where

`(x, y) = log2

(
Pr[(X,Y )=(x, y)]

Pr[X=x] · Pr[Y =y]

)
.

This means that the min-entropy of the joint distribution (X,Y ) is at most t units smaller than the
sum of the min-entropies of the individual distributions X and Y . Note that the mutual information
of X and Y equals E[`(X,Y )].

1.1.3 Sources of bounded mutual information

The mutual information of the joint distribution (X,Y ), denoted I(X;Y ), is a well-established
measure of the mutual dependence between the two variables. It quantifies the amount of infor-
mation obtained about one random variable through observing the other random variable; indeed,
I(X;Y ) = H(X) + H(Y ) − H(X,Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X). It seems that
considering this measure in the current context requires no justification. Still, we note that this
measure coincides with the information communicated between the parties in a generation protocol
as considered in the case of coordinated sources.

Recall that the number of bits communicated in such a protocol captures the measure of co-
ordination considered in our first model. But here we consider the information about one party’s
random input that is revealed by the communication. Specifically, consider the trivial protocol in
which A generates (x, y) ← (X,Y ) and sends y to B. Then, the information on X communicated
to B equals H(X)−H(X|Y ), which equals I(X;Y ).

1.2 Our results

For the sake of stating our results, we use the following notation, where in all cases n denotes
the length of the source’s outcome, k denotes the min-entrropy, and t the bound on the relevant
dependency measure.

STDn(k) = the standard two-source model, where each (independent) source has min-entropy k.

COORn(k, t) = the model of t-coordinated sources, where each source has min-entropy k. (See
Section 1.1.1 and Definition 3.1.)

CRIn(k, t) = the model of joint distributions of cross influence t, where each source has min-
entropy k. (See Section 1.1.2 and Definition 4.1.)

MIn(k, t) = the model of joint distributions of mutual information t, where each source has min-
entropy k. (See Section 1.1.3 and Definition 5.1.)

We first state the fact that, essentially, our models are contained in one another, and that this
containment is strict.

Theorem 1.1 (relations between the models):
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1. COORn(k, t) is ε-close to being in CRIn(k, t + log2(1/ε)): For every ε > 0 and every t, every
t-coordinated joint distribution is ε-close to some distribution of cross influence t+ log2(1/ε).
On the other hand, there exists a joint distribution (of min-entropy n−4) that can be generated
with at most six bits of cross influence, but is 0.24-far from any (n − O(log n))-coordinated
distribution.

2. CRIn(k, t) is strictly contained in MIn(k, t): For every t, every joint distribution of cross
influence t has t bits of mutual information. On the other hand, for every ε > 0, there
exists a joint distribution (of min-entropy n − O(1/ε)) that that has mutual information at
most three, but is (ε/2)-far from any distribution that can be generated with 1/ε bits of cross
influence.

The separation between cross influence and mutual information seems to be due to the separation
between worst-case and average-case notions of cross influence, as established in Proposition 4.9.
Indeed, in retrospect, a worst-case notion seems more adequate in the current setting (cf., min-
entropy versus entropy).

We next turn to our results regarding randomness extraction (and condensing) for each of the
three models. Recall that an extractor with error ε for a modelM is a function F : {0, 1}n×{0, 1}n →
{0, 1}m such that for every joint distribution (X,Y ) in M, it holds that F (X,Y ) is ε-close to the
uniform distribution over {0, 1}m.

Theorem 1.2 (extraction for sources of bounded coordination): If F : {0, 1}n×{0, 1}n → {0, 1}m
is an extractor of error ε for the model STDn(k), then F is an extractor of error 2ε for the model
COORn(k + t+ log2(1/ε), t).

We comment that a loss of t+ log2(1/ε)−O(1) units of min-entropy is unavoidable. But the good
news is that modulo this loss, extraction for sources of bounded coordination is possible, let alone
via a black-box use of standard extractors, provided that the min-entropy of the individual sources
compensates for the amount of coordination. Unfortunately, this good news does not carry over to
the other models.

Turning to the other models, the bottom-line is that proper extraction is not possible, but
condensing is possible. Recall that a condenser with error ε and deficiency d for a model M is a
function F : {0, 1}n×{0, 1}n → {0, 1}m such that for every joint distribution (X,Y ) inM, it holds
that F (X,Y ) is ε-close a distribution that has min-entropy at least m− d.

Theorem 1.3 (extraction for sources of bounded cross influence):

1. (condensing is possible): If F : {0, 1}n × {0, 1}n → {0, 1}m is a condenser of error ε and
deficiency d for the model STDn(k), then F is a condenser of error 2t · ε and deficiency d+ t
for the model CRIn(k, t).

2. (the foregoing is essentially optimal): There is no condenser with deficiency o(t) and error
2−Ω(t) for CRIn(n − O(t), t), when the output length exceeds t. Furthermore, there is no
extractor with error 1/4 for CRIn(n− 4, 6).

Indeed, d = 0 is a special case that refers to the case that F is an extractor for STDn(k). In
general, the fact that the condensing error (in Part 1) grows by a factor of 2t does not worry us
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too much, since we can afford to make ε small enough to compensate for that (i.e., we can use
ε ≤ 2−2t, provided k = Ω(t)).5 So the take-home message here is that condensing is possible at a
cost — in terms of deficiency — that equals the amount of cross influence. As will be articulated
in Section 1.3, randomness of bounded deficiency is useful in many setting both in cryptography
and in algorithmic design. As stated next, for mutual information we obtain a weaker condensing
result.

Theorem 1.4 (extraction for sources of bounded mutual information): For every β > 0, the
following holds.

1. (condensing is possible): If F : {0, 1}n × {0, 1}n → {0, 1}m is a condenser of error ε and
deficiency d for the model STDn(k − 1), then F is a condenser of error 4β + 2t

′ · ε and
deficiency d+ t′ for the model MIn(k, t), where t′ = (t+O(1))/β.

2. (the foregoing is essentially optimal): There is no condenser with deficiency o(t′) and error

O(β) for MIn(n− t′, t), when the output length exceeds t′
def
= ((t− 2)/β).

Indeed, this condensing result is inferior to the one for the cross influence model (i.e., Theorem 1.3),
since it involves a trade-off between the deficiency and the error parameter. Specifically, in Theo-
rem 1.4 the product of the error and the deficiency is linear in the mutual information bound (i.e.,
β · t′ = Θ(t); indeed, our issue is with the additive error term of β, not with the multiplicative
factor of 2t

′
(which can be tolerated as outlined above)). Still, as will be discussed in Section 1.3,

some applications can benefit even from the above trade-off.

Yet another definition of bounded dependence. Part 1 of Theorem 1.3 is proved by showing
that if (X,Y ) can be generated with t bits of cross influence, then, for every x and y, it holds that

Pr[(X,Y )=(x, y)] ≤ 2t · Pr[X=x] · Pr[Y =y]. (1)

(see Proposition 4.2). In other words, the min-entropy of (X,Y ) is at most t units smaller than
the sum of the min-entropies of X and Y . One may consider this parametrized upper bound as
yet another definition of bounded dependence, and note that it implies that (X,Y ) has mutual
information at most t. Hence, the parameter t in Eq. (1) is sandwiched between cross influence
and mutual information. Furthermore, we show approximate converses of both inequalities:

• If (X,Y ) satisfies Eq. (1) with parameter t, then it is ε-close to a distribution that can be
genertated with t+O(log(1/ε)) bits of cross influence (see Proposition 4.13).

• If (X,Y ) has mutual information t, then it is O(β)-close to a distribution (X ′, Y ′) that satisfies
Eq. (1) with respect to the parameter t′ = (t + O(1))/β. (This is the bulk of the proof of
Theorem 5.5, which establishes Part 1 of Theorem 1.4.)

We also show that perfect converses do not hold (see Proposition 4.14 and Part 2 of Theorem 1.1,
resp.).

5Currently, explicit constructions of standard extractors with error ε < 1/n are not known, but such extractors
do exist. Furthermore, explicit constructions of condensers with error ε and deficiency o(log(1/ε)) were recently
presented in [3].

6



1.3 On the usefulness of condensers

Randomness condensers (a.k.a condensers), introduced in [16, 15] (in seeded and seedless versions,
respectively), transform highly defective sources of randomness, which are only guaranteed to have
some minimal amount of min-entropy, into sources of randomness (that are close to) having a
relatively small min-entropy deficiency (see Definition 2.1). This falls short of what is done by
randomness extractors, which transform highly defective sources of randomness into almost perfect
sources of randomness, but it is highly non-trivial and useful in various ways.

Typically, condensers are viewed as a technical tool; specifically, as an intermediate step towards
extractors. However, condensers may be useful by themselves, whenever randomness extraction is
impossible or too expensive. To be more concrete, we distinguish three possible types of uses of
randomness: Its uses in cryptography (and other adversary-ridden settings), in standard algorithmic
applications, and in sub-linear time computations.

The distinction boils down to the question of whether or not the paradigm of “de-randomizing
the seed of a seeded extractor” is applicable. The archetypical case in which this is applicable is
when running a randomized decision procedure (or a pseudodeterministic search procedure [9]).
In this case, we obtain a single sample from a single source, apply the (seeded) extractor with all
possible values of the seed, invoke the original algorithm with its randomness replaced by each of the
outcomes, and output the result that is in majority. (Recall that it is impossible to deterministically
perform (seedless) randomness extraction from a single defective source, even if the min-entropy of
the source is very high [6, Thm. 1]. Furthermore, the seed length of a seeded extractor (for a single
source) must be at least logarithmic in the length of the source [17, Thm. 1.9].)

1.3.1 Cryptographic applications

Cryptographic settings are the archetypical case in which the paradigm of “de-randomizing the
seed of a seeded extractor” is not applicable. Hence, one may either assume that the small amount
of (perfect) randomness required for the seed of an extractor can obtained (independently of the
main source of randomness) or assume that we have access to two (or more) independent sources
of defective randomness. But what if the two sources are dependent in a manner allowing only for
condensing (as in Theorems 1.3 and 1.4)?

As noted by Rao [15] (see articulation in [8, Sec. 5]), it turns out that a level of min-entropy
deficiency that is sub-logarithmic in the “security error” can be tolerated in “unpredictability
applications” (e.g., unforgeable signatures). Specifically, we say that a cryptographic system (of
this type) has a security error of µ if adversaries (with specified resources) can break the system with
probability at most µ (see [8, Def. 5.1]). The key observation is that if the system has a security
error of µ when using perfect randomness, then implementing the system with a distribution that is
ε-close to having deficiency at most d yields a system of security error at most 2d·µ+ε. An analogous
bound holds when a system designed for randomness of deficiency d0 is used with randomness that
has deficiency d0 + d (see [8, Lem. 5.1]).

The foregoing suggestion is appealing when having access to two sources of sufficiently low cross
influence. Specifically, Theorem 1.3 asserts that, when using a standard two-source condenser (or
extractor), a cross influence bound of t translates to an added deficiency of t units (while the error
gets multipied by a factor of 2t). Furthermore, in such a case we can use standard two-source
condensers with small deficiency rather than standard two-source extractor.

The latter comment is important because the currently known explicit two-source extractors
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(for low (i.e., lower than 0.44) min-entropy (e.g., [5, 14])) have noticeable error (i.e., error that
is polynomially related to the length of the source), which is unacceptable in most cryptographic
applications. In contrast, a recent work of Ben-Aroya et al. [3] provides an explicit two-source
condenser with deficiency that is sub-logarithmic in the desired error, which in turn may be set
to be negligible. Hence, if an “unpredictability applications” has a security error of µ when using
perfect randomness, then implementing it with two sources of cross influence t yields a system of
security error at most 22t · µ1−o(1), since for independent sources a condensing error of µ can be
achieved with deficiency o(log(1/µ).6

1.3.2 Standard algorithmic applications

Somewhat surprisingly, using two-source condensers for dependent sources may also be useful for
running standard randomized algorithms. That is, assuming that we have two somewhat dependent
sources of weak randomness at our disposal, we compare the option of using only one of these
sources while employing the paradigm of “de-randomizing the seed of a seeded extractor” to the
option of using the two sources with an adequate condenser. We claim that in many cases, the
latter option is better.

Recall that the standard suggestion is to run such algorithm by extracting almost perfect ran-
domness from a single defective random source, by using a seeded extractor. Following this sug-
gestion, extraction from an n-bit long source requires a seed of length at least log2 n, which means
that under the foregoing paradigm the original algorithm must be invoked Ω(n) times (while using
all possible seeds with the same n-bit long outcome of the source).

In contrast, using the single outcome extracted from two sources with cross influence at most
t yields the same performance provided that the error probability of the algorithm is reduced
from δ < 1/3 to 2−t · δ. The point is that such an error reduction can be obtained by invoking the
original algorithm O(t) times, whereas typically t� n. The bottom-line is that if the bound on the
cross influence of the two sources is good enough (i.e., t� n as well as t being smaller than (say)
half the min-entropy of each source), then we are better off using two somewhat-dependent sources
(via the condenser) rather than one source (via a seeded extractor). (Recall that Theorem 1.3
asserts that a cross influence bound of t translates to an added deficiency of t units, which means
that the error probability can grow by a factor of at most 2t.)

The foregoing holds even when using two sources that have mutual information at most t (rather
than cross influence at most t), where we assume all along that each source has sufficient amount
of min-entropy. In this case we use Theorem 1.4 rather than Theorem 1.3, which means that the
deficiency bound we obtain is larger. Consequently, the number of invocations grows by a factor of
O(t/ε), where ε is the desired error. That is, given a randomized algorithm A of error probability
δ, and wishing to utilize A when having access to a pair of sources that have mutual information t,
while obtaining error probability ε, we need to reduce A’s error to 2−Ω(t/ε) · ε (rather than to 2−t · ε,
as when using sources of cross influence t). Hence, we shall invoke A for O(t/ε) times (rather than
O(t) times), which is feasible only if we are willing to tolerate a noticeable error probability (e.g.,
ε = 0.01 or so).

Finally, note that for search problems that can be solved in probabilistic polynomial-time but
are not BPP-search problems (i.e., valid solutions cannot be efficiently recognized (cf. [11])7), the

6Actually, we can get a system of security error at most 2t+o(t) · µ1−o(1) by using a standard condenser with error
2−t · µ and deficiency o(t+ log(1/µ)).

7So, in particular, they do not have pseudodeterministic algorithms (cf. [9]).
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paradigm of “de-randomizing the seed of a seeded extractor” is not applicable at all, since listing
the solutions that correspond to all possible seeds does not allow to select a valid one. So in this
case, if the search problem is solvable with sufficiently small error probability (when using perfect
randomness), then we can use the “condenser path”.8

1.3.3 Sublinear-time applications

As noted in [10], the fact that the overhead of the paradigm of “de-randomizing the seed of a seeded
extractor” is at least as large as the randomness complexity of the original algorithm provides
another motivation for reducing the randomness complexity of algorithms. However, in the context
of sublinear-time computations, this may not be always possible. Two such cases are sampling and
property testing (see analogous discussion in [10, Sec. 3]).

Consider, for example, the task of estimating the average of a function f : {0, 1}n → [0, 1]. Any
reasonable notion of estimation will require randomness complexity Ω(n). Hence, employing the
“seed de-randomization” paradigm will require making Ω(n) probes to the function. In contrast,
when given access to two sources of cross influence t, it suffices to make O(t) probes to obtain a
constant factor approximation with probability 0.999. (This corresponds to using a sampler that,
when using perfect randomness, obtains such an approximation with probability 1− 2−t−10.)

The same considerations apply in the context of property testing (see [12]). In particular,
many testers have complexity that only depends on the proximity parameter (and is independent
of the size of the tested object), hereafter called strong testers. On the other hand, the randomness
complexity of any reasonable testing task is at least logarithmic in the size of the object. Hence,
strong testability cannot be achieved when using the paradigm of “de-randomizing the seed of
a seeded extractor” but it can be achieved when employing a condenser to a pair of sources of
cross influence O(1). Furthermore, some testing tasks may have sublinear query and randomness
complexities, but the paradigm of “de-randomizing the seed of a seeded extractor” yields query
complexity that is the product of the two, which may be more than linear (i.e., worse than the
trivial “tester” that just reads the entire object).9 In contrast, we can obtain sub-linear complexity
when employing a condenser to a pair of sources of cross influence t = o(n/q), where n is the
size of the tested object and q is the query complexity of the original tester (which uses perfect
randomness).

1.4 Related work

The problem of dependent sources of defective randomness was already considered in the early work
of Chor and Goldreich [6]. In particular, they suggested a simple definition (i.e., [6, Def. 10]), which
allowed for extraction with error proportional to the governing parameter (cf., [6, Lem. 18]), alas
this error bound was shown to be essentially tight (i.e., [6, Thm. 19]). Specifically, for δ > 0, the
joint distribution (X,Y ) was said to be δ-dependent if for every x, y ∈ {0, 1}n it holds that

(1 + δ)−1 ≤ Pr[(X,Y )=(x, y)]

Pr[X=x] · Pr[Y =y]
≤ 1 + δ. (2)

8Note that error reduction is also not feasible in this case (when valid solutions cannot be efficiently recognized).
9E.g., consider the case that both the query and randomness complexities equal a square root of the size of the

object.
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While the formulation intentionally allows to consider also δ > 1, the focus of [6, Sec. 3.3] was on
smaller values of δ. They observed that any standard extractor with error ε yields an extractor
with error δ+ (1 + δ) · ε for δ-dependent sources of the same min-entropy bound (cf., [6, Lem. 18]).
On the other hand, they showed that any extractor for the class of δ-dependent sources has error
Ω(δ), even when the sources have min-entropy n− 2 (cf., [6, Thm. 19(i)]).

We believe that, for small values of δ (i.e., δ ≈ 0), the model captured by Eq. (2) is not a
satisfactory model of somewhat dependent sources. On the one hand, it is too rigid, as reflected by
the fact that it does not cover natural cases that do allow for good extraction and are covered by our
first model (described in Section 1.1.1). Consider, for example, a joint distribution (X,Y ) such that
X = (X ′, Z) and Y = (Y ′, Z) where X ′, Y ′ and Z are mutually independent (and have each some
min-entropy). Then, every pair (x, y) = ((x′, z), (y′, z)) in the support of (X,Y ) violates Eq. (2),
since the ratio in this case equals 1/Pr[Z=z]. Furthermore, for (x′, z) and (y′, z′) (in the support of
X and Y , respectively) such that z 6= z′, the ratio is not even bounded. However, intuitively, these
sources have bounded dependency (i.e., the “dependency” seems |Z|), and we should be able to
extract good randomness from them, even when the location of the overlapping parts of X and Y
are not be known (to the extractor) but |Z| is very small. Indeed, such sources are |Z|-coordinated;
in fact, they are t-coordinated if 2t upper-bounds the support of Z (see Definition 3.1).

On the other hand, even for small values of δ, the model captured by Eq. (2) does not allow for
(proper) randomness extraction, unless δ is extremely small (i.e., smaller than the desired error of
the extractor). However, as mentioned above, extraction is possible in the (incomparable) model of
bounded coordination (see Theorem 1.2). In conclusion, the point is that that the model captured
by Eq. (2) does not offer a wide class of joint distributions for which proper extraction is possible.
Furthermore, while extraction is impossible, condensing may be possible and is possible in this case,
since distributions that satisfy Eq. (2) definitely satisfy Eq. (1) with parameter t = log2(1 + δ).

Indeed, in retrospect, for large δ � 1, Eq. (2) essentially coincides with Eq. (1). On the one
hand, as noted above, any joint distribution that satisfies Eq. (2) with parameter δ also satisfies
Eq. (1) with parameter t = log2(1 + δ). On the other hand, any joint distribution (X,Y ) that
satisfies Eq. (1) with parameter t also satisfies the upper bound of Eq. (2) with parameter δ = 2t−1.
Furthermore, while (X,Y ) may not satisfy the lower bound of Eq. (2) (for any parameter δ), it is
(2t−1)−1-close to satisfy Eq. (2) with parameter δ = 2t−1. (More generally, for any ε ≤ (2t−1)−1,
it holds that (X,Y ) is ε-close to a distributed that satisfies Eq. (2) with parameter δ = 1/ε.)10

10Consider a pair of independent random variables (X ′, Y ′) such that X ′ ≡ X and Y ′ ≡ Y , and let (X ′′, Y ′′) equal
(X ′, Y ′) with probability ε and equal (X,Y ) otherwise. Then, (X,Y ) is ε-close to (X ′′, Y ′′), which satisfies Eq. (2)
with parameter δ = 1/ε. To verify the latter claim, note that

Pr[(X ′′, Y ′′)=(x, y)] ≥ ε · Pr[(X ′, Y ′)=(x, y)]

= ε · Pr[X ′=x] · Pr[Y ′=y]

=
1

δ
· Pr[X ′′=x] · Pr[Y ′′=y],

and, on the other hand,

Pr[(X ′′, Y ′′)=(x, y)] = ε · Pr[(X ′, Y ′)=(x, y)] + (1− ε) · Pr[(X,Y )=(x, y)]

≤ ε · Pr[X ′=x] · Pr[Y ′=y] + (1− ε) · 2t · Pr[X=x] · Pr[Y =y]

≤ 2t · Pr[X ′′=x] · Pr[Y ′′=y],

where the first inequality is due to Eq. (1).

10



Extraction from recognizable distributions. As part of a wider study, Shaltiel [21] showed
that two-source extractors sufficed to extract randomness from two sources that output a joint
distribution that is uniform over a set that is recognized by a two-party protocol of bounded
communication [21, Def. 3.1 & Thm. 4.6]. We note that this is, in fact, a special case of Theorem 1.2,
since any distribution that (has a support that) is recognized by a protocol that communicates t
bits is a t-coordinated.11 The converse does not hold, because a distribution is t-coordinated if
and only if it can be sampled by a protocol of communication complexity t (see Theorem 3.4),
whereas sampling a distribution may require far less communication than recognizing it (let alone
by a deterministic protocol).12

Concurrent work. In a concurrent work, Chattopadhyay et al. [4] consider the construction of
extractors for “adversarial sources” (defined as “somewhat good sources” with “bounded depen-
dency”).13 Specifically, they consider N sources such that at least K of them are good in the
sense that they are independent and each contains a considerable amount of min-entropy (i.e., the
min-entropy k is NΩ(1)), and each bad source depends on a bounded number of good sources. This
seems related to the special case of micro-sounrces discussed in the beginning of Section 1.1.1,
where the differences include

• The micro-sources that we consider may each contain a very small amount of min-entropy
(e.g., k = O(1)). In contrast, in [4] the min-entropy is related to the number of sources (e.g.,
k = NΩ(1)).

• We consider a 2-partition of the micro-sources such that the micro-sources on each side have
bounded dependency on the micro-sources of the other wise, where the bound need only be
smaller than the total min-entropy on each side. We can allow arbitrary dependency among
the micro-sources that reside on the same side as their total minb-entropy is large enough.
In contrast, in [4] the bad sources may be coordinated arbitrarily as long as each bad source
depends on a bounded number of good sources.

It seems that Chattopadhyay et al. [4] envision sources as being controlled by possibly adversarial
parties, whereas we try to model sources that are available in nature.

1.5 Organization

In Section 2 we formally define min-entropy and the general notion of an extractor (resp., con-
denser) for an arbitrary models of joint distributions (i.e., pairs of dependent sources of defective
randomness). The core of this work is presented in Sections 3–5, where we study the three models
reviewed above. Specifically, the bounded coordination model is studied in Section 3, where it is
related to the communication complexity of sampling joint distributions. In Section 4 we study

11Let Π be a protocol of communication complexity t that recognizes the joint distribution (X,Y ). Then, each
possible accepting t-bit transcript corresponds to the uniform distribution on a combinatorial rectangle. This implies
that we can generate (X,Y ) via a global process that selects a random transcript (i.e., z ← Z) that is used by each
individual process to generate the corresponding conditional distribution (i.e., X|Z=z and Y |Z=z).

12Consider, for example, a protocol for non-disjointness of
√
n-subsets of [n], in which one party select i ∈ [n]

uniformly at random, sends it to the other party, and each party outputs a uniformly distributed
√
n-subset that

contains i. Recall that recognizing the support of this distribution requires Ω(
√
n) communication.

13They follow-up on a very recent work of Aggarwal et al. [1].
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the model of cross influence, and in Section 5 we study joint distributions of bounded mutual
information. These two sections are by far the longest and most technically demanding.

In Section 6, we use an idea that underlies the proof of Proposition 4.3 and the results of
Section 3 in order to easily derive lower bounds on the communication complexity of sampling.
This section is indeed a detour.

2 Preliminaries

We first recall the standard definitions of min-entropy, and (seedless) extractor and condenser for
two independent sources. We say that a distribution X is ε-close to distributionb Y if the total
variation distance between them is at most ε (i.e.,

∑
z |Pr[X=z]−Pr[Y =z]| ≤ 2ε). Otherwise, we

say that X is ε-far from Y .

Definition 2.1 (the standard two-source model and extraction from it [6, 15]):14 The standard
model, denoted STDn(k), is parameterized by a min-entropy bound, denoted k, and the length of the
source’s outcome, denoted n.

• An (n, k)-sources is a distribution (or random variable) over n-bit strings having min-entropy
at least k; that is, a random variables X such that Pr[X=x] ≤ 2−k.

• An extractor with error ε for the model STDn(k) is a function EXT : {0, 1}n+n → {0, 1}m such
that for every two independent (n, k)-sources, X and Y , it holds that EXT(X,Y ) is ε-close to
the uniform distribution over {0, 1}m.

• A condenser with deficiency d and error ε for STDn(k) is a function CND : {0, 1}n+n → {0, 1}m
such that for every two independent (n, k)-sources, X and Y , it holds that CND(X,Y ) is ε-close
to a distribution (over {0, 1}m) that has min-entropy at least m− d.

(Indeed, an extractor is a condenser with deficiency 0.)

Whenever we say two-source extractor (resp., condenser), with no farther qualifications, we mean
one for the standard model (i.e., for STDn(k)).

While independent sources can be described each in isolation, as done in Definition 2.1, a pair
(or tuple) of dependent sources is described as a joint distribution such that each element of the
pair (resp., tuple) represents a source.

In general, a model of joint distributions is merely a set of such distributions. We focus on
natural and simply defined models that are specified in terms of few parameters such as min-
entropy of individual sources, and a measure of dependency such as bits of coordination, bits
of cross influence, and mutual information. The definitions of extractors and condensers extend
naturally to these cases.

Definition 2.2 (general definition of extractors and condensers): Let MODn be a model of joint
distributions over pairs of n-bit long strings.

14The notions of min-entropy and (n, k)-sources as well as the standard model and extraction from it were introduced
in [6]. The notion of a two-source condenser is implicit in [15].
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• An extractor with error ε for the model MODn is a function EXT : {0, 1}n+n → {0, 1}m such that
for every joint distribution (X,Y ) in MODn it holds that EXT(X,Y ) is ε-close to the uniform
distribution over {0, 1}m.

• A condenser with deficiency d and error ε for MODn is a function CND : {0, 1}n+n → {0, 1}m
such that for every joint distribution (X,Y ) in MODn it holds that CND(X,Y ) is ε-close to a
distribution (over {0, 1}m) that has min-entropy at least m− d.

At times we will include condensers in a general discussion of “the (randomness) extraction prob-
lem” for a model.

On the computational complexity of extraction. For positive results we will seek explicit
constructions, but this is not an issue since we shall use known constructions of extractors (or con-
densers) for the standard model as black-boxes. Our negative results will rule out certain extractors
(or condensers) based on the model’s parameters (and the extractor’s/condenser’s parameters), re-
gardless of explicitness.

On being close to a model (a generic comment). For all models, it holds that if extrac-
tion (or condensing) is possible for the model, then extraction (resp., condensing) from any joint
distribution that is close to the model (i.e., is close to a distribution in the model) is also possible
under almost the same parameters. Specifically, the distance from the model is added to the error
of the extractor (resp., condenser). Hence, there is no need to introduce a relaxation of the form
of “being close to the model” (in any model).

3 Dependence as coordination

This model is the most restrictive model considered in the current work, and it offers the strongest
positive results regarding the extraction of almost perfect randomness.

3.1 Definition

Here we measure the dependence between sources (equiv., the dependence present in a joint dis-
tribution) in terms of a “measure of a conditioning” under which these sources are independent.
Specifically, we consider a partition of the probability space into a few subspaces and require that
in each subspace the conditional distributions are independent. Indeed, the conditioning may be
viewed as the result of prior coordination; that is, the joint distribution is based on a global state
of coordination such that, given each state of coordination, the sources act independently of one
another. Hence, the key parameter is the number of possible states.

An alternative perspective is that the “coordinated component” of the joint distribution is
determined a posteriori. That is, given a joint distribution, we identify the coordinated states
that gave rise to it, such that in each of these states the joint distribution is actually a product
distribution. In the following definition, the distribution of these coordinated states is captured by
the distribution Z, and, again, the key parameter is the number of possible states.

Definition 3.1 (limited coordination): A joint distribution (X,Y ) is called t-coordinated if there
exists a related distribution Z = Z(X,Y ) such that Z has support size at most 2t, and, for every z
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in the support of Z, the conditional distributions X|Z=z and Y |Z=z are independent.15 The corre-
sponding model, denoted COORn(k, t), consists of all t-coordinated joint distribution over {0, 1}n+n

such that each of the n-bit long sources has min-entropy at least k.

By writing Z = Z(X,Y ) we mean to emphasize that Z may be the outcome of a randomized
process (not necessarily a function) applied to (X,Y ). A natural relaxation allows to discard a
small portion (or mass) of the “coordinating distribution” Z (equivalently, to consider only the
“effective support size” of Z), but this can be covered by considering a joint distribution that is
close to (X,Y ).

3.2 Extraction

We observe that any standard two-source extractor works well also for sources that are somewhat
coordinated, at the cost of a modest degradation in the parameters (i.e., min-entropy and error).

Theorem 3.2 (extraction for somewhat coordinated sources): Let EXT : {0, 1}n×{0, 1}n → {0, 1}m
be an extractor with error ε for pairs of independent sources each having min-entropy at least k.
Then, for every (X,Y ) that is t-coordinated such that both X and Y have min-entropy at least
k+ t+ log2(1/ε), it holds that EXT(X,Y ) is 2ε-close to the uniform distribution over {0, 1}m. That
is, if EXT is an extractor of error ε for the model STDn(k), then it is an extractor of error 2ε for the
model COORn(k + t+ log2(1/ε), t).

We note that the loss of t + log2(1/ε) − O(1) units of min-entropy is unavoidable; for example,
consider the case that X = (Z,X ′) and Y = (Z, Y ′), where X ′ (resp., Y ′) may depend arbitrarily
on Z, which in turn is uniform on a set of 2t strings of length n/2 (e.g., consider the case of
ε = Ω(1)).16

Proof: Let S be the support of Z, and consider

S′ = {z∈S : Pr[Z=z] ≥ ε · 2−t}.

Then, Pr[Z ∈ S′] ≥ 1 − ε, since Pr[Z ∈ S \ S′] ≤ |S| · ε2−t ≤ ε. Letting ∆(., .) denote the total
variation distance between distributions (and Um denote the uniform distribution over {0, 1}m), we
have

∆(EXT(X,Y ), Um) ≤
∑
z

Pr[Z=z] ·∆(EXT(X|Z=z, Y |Z=z), Um)

≤ ε+ max
z∈S′
{∆(EXT(X|Z=z, Y |Z=z), Um)}.

Next, letting k′ denote the min-entropy of X (resp., Y ), we observe that, for every z ∈ S′, the
min-entropy of X|Z=z (resp., Y |Z=z) is at least k′ − (t + log2(1/ε)) ≥ k. This holds, because for
every x and z ∈ S′, we have

Pr[X|Z=z=x] =
Pr[X=x & Z=z]

Pr[Z=z]

≤ Pr[X=x]

ε · 2−t
≤ ε−1 · 2t · 2−k′ ,

15Indeed, X|Z=z denotes X conditioned on Z = z; that is, Pr[X|Z=z=x] = Pr[X=x |Z=z].
16To see what happens even more vividly, notice that if X and Y have min-entropy t, then X ′ and Y ′ may have

no entropy at all (e.g., we may have X ′ ≡ Y ′ ≡ 0n/2).
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where the first inequality uses z ∈ S′ and the second inequality uses the min-entropy bound of X.
Hence, for every z ∈ S′, we have ∆(EXT(X|Z=z, Y |Z=z), Um) ≤ ε, and the claim follows.

3.3 A communication complexity angle

A special case of t-coordinated (joint) distributions arises from t-bit communication protocols for
generating joint distributions, with no access to shared randomness. Indeed, such a communication
protocol may be viewed as a coordination protocol. Actually, we shall see that that the converse
holds too (i.e., every t-coordinated joint distribution can be generated by t-bit communication
protocol), which means that the special case is equivalent to the general one.

Definition 3.3 (two-party protocols for generating joint distributions): We say that a pair of
randomized strategies (A,B) generates the joint distribution (X,Y ) if the interaction of A and B
ends with the output pair (X,Y ), where A outputs X and B outputs Y . We say that (X,Y ) has
communication complexity t if it can be generated by a pair of randomized strategies that exchange
at most t bits of communication (and have no access to shared randomness).

The parenthetic clarification is crucial; every joint distribution can be generated with zero commu-
nication by strategies that have access to shared randomness. We mention that the communication
complexity of sampling problems seems to have emerged in [2]; we further study it in Section 6.

Theorem 3.4 (low communication complexity versus low dependence): A joint distribution has
communication complexity t if and only if it is t-coordinated.

Proof: We first show that having communication complexity t implies being t-coordinated. Let
(A,B) be randomized strategies as guaranteed by Definition 3.3, and consider the residual deter-
ministic strategies A′ and B′ that take random inputs r ∈ Ω and s ∈ Ω, respectively; that is, A
selects r ∈ Ω uniformly and then acts as A′(r), and ditto for B and B′. Then, a standard commu-
nication complexity argument implies that, for every communication transcript z ∈ {0, 1}t, the set
of input-pairs that yield this transcript is a combinatorial rectangle (i.e., the set of such pairs has
the form Iz × Jz for some Iz, Jz ⊆ Ω). It follows that the corresponding joint output distribution
(i.e., (A′(r), B′(s)) for (r, s) distributed uniformly in Iz × Jz) is a product distribution; that is,
when (r, s) is distributed uniformly in Iz × Jz, the output distribution (A′(r), B′(s)) is a Cartesian
product of two independent distributions. Recalling that z is distributed over {0, 1}t, it follows
that the output distribution (A,B) is t-coordinated.

Turning to the opposite direction, suppose that (X,Y ) is t-coordinated, and let Z be as guaran-
teed by Definition 3.1. We obtain a t-bit communication protocol for generating (X,Y ) by letting
A generate Z on its own, send the outcome’s index (in the support of Z) to B, and having each
party generate the corresponding marginal distribution; that is, if z is the outcome of Z, then A
samples X|Z=z and B samples Y |Z=z.

Digest. The proof of the “low coordination to low communication” direction of Theorem 3.4
uses a uni-directional communication protocol. This protocol make more transparent the fact
that t-coordinated distributions are convex combinations of product distributions; that is, (X,Y ) is
t-coordinated if and only if it can be expressed as

∑
i∈[2t] pi ·(Xi, Yi) for non-negative pi’s (that sum-

up to 1), where Xi and Yi are independent of one another. In other words, the limited dependency
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in (X,Y ) amounts to a joint selection of an i ∈ [2t], whereas Xi and Yi are independent of one
another. Hence, the coordination between the two sources is captured by a joint selection of a
state, and then each generates an outcome based on this state but independently of the outcome
generated by the other process (at the same state). In light of the foregoing, it is natural that the
proof of Theorem 3.2 boils down to lower-bounding the min-entropies of the Xi’s and Yi’s (for all
i’s with sufficiently large pi’s).

4 Dependence as cross influence

This model resides in between the two other models considered in the current work. This fact
is reflected both by the results that directly compare it to the other two models, and by results
obtained for randomness extraction (and condensing) in the various models.

4.1 Definition and a key observation

We view each of the two sources in this model as being generated based mainly on its own private
randomness, but also based in a “bounded manner” on the randomness of the other source. Hence,
a crucial question is how to measure the influence of (the randomness of) one source on the output
of the other source. We measure this influence in terms of the probability that the output of one
source changes when the other source’s randomness is re-randomized. Specifically, the influence is
t′ if the probability that the outcome changes is at most 1 − 2−t

′
. The sum of the two opposite

influences is called the cross influence.
We represent the output of the ith source by Gi(s1, s2), where sj is the private randomness of

the jth source. That is, Gi is a function describing how the outcome of the ith source is generated,
and the generation of joint distribution is described by G = (G1, G2). For s = (s1, s2), we consider
G(s) = G(s1, s2) = (G1(s1, s2), G2(s1, s2)). For sake of simplicity, we assume that s1, s2 ∈ {0, 1}`,
for some ` ∈ N (which may be shorter or longer or equal to |Gi(s1, s2)|).

Definition 4.1 (generating joint distributions with limited cross influence): We say that the joint
distribution (X,Y ) is generated with at most t bits of cross influence if there exists a function G
such that the following two conditions hold (for some `):

1. G generates (X,Y ) using a 2`-bit long random seed: That is, (X,Y ) ≡ G(U2`), which means
that Pr[(X,Y )=(x, y)] = Pru∈{0,1}2` [G(u)=(x, y)] holds, for every (x, y).

2. The influence of each half of the seed on the other part of the outcome is bounded: Letting
Gi denote the ith part of the output of G (i.e., G(s) = (G1(s), G2(s))), there exists t1 ≥ 0
such that, for every u, v ∈ {0, 1}`, it holds that

Prv′∈{0,1}` [G1(u, v′) 6=G1(u, v)] ≤ 1− 2−t1 , (3)

Pru′∈{0,1}` [G2(u′, v) 6=G2(u, v)] ≤ 1− 2−(t−t1). (4)

Equivalently, for every u1, v1, u2, v2 ∈ {0, 1}`, it holds that

Prr∈{0,1}` [G1(u1, r)=G1(u1, v1)] · Prr∈{0,1}` [G2(r, v2)=G2(u2, v2)] ≥ 2−t. (5)
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The corresponding model, denoted CRIn(k, t), consists of all joint distribution over {0, 1}n+n that
can be generated with at most t bits of cross influence such that each of the n-bit long sources has
min-entropy at least k.

Indeed, Eq. (3) (resp., Eq. (4)) captures a worst-case notion of the amount of influence of the second
(resp., first) part of the seed on the first (resp., second) part of the outcome.17 The postulate that
the seed of G is a 2`-bit long string is made for simplicity of notation; in general, we may consider
a probability space Ω1 × Ω2 for the two parts of the seed.

A key observation. The following fact plays a key role in our study of joint distributions
with low cross influence. It asserts that the min-entropy of such joint distributions is not much
smaller than the sum of the min-entropies of their two parts. (Recall that the min-entropy of Z is
minz{log2(1/Pr[Z=z])}.)18

Proposition 4.2 (low cross influence implies small loss in min-entropy): Suppose that the joint
distribution (X,Y ) can be generated with at most t bits of cross influence. Then, for every x and
y, it holds that

Pr[(X,Y )=(x, y)] ≤ 2t · Pr[X=x] · Pr[Y =y]. (6)

In other words, the min-entropy of (X,Y ) is at most t units smaller than the sum of the min-
entropies of X and Y . Equivalently, the min-entropy of X conditioned on Y =y is at most t units
smaller than the min-entropy of X (equiv., Pr[X=x|Y =y] ≤ 2t · Pr[X=x] for every x and y).

Proof: Intuitively, the bound on the cross influence between the two parts of the process G =
(G1, G2) that generates (X,Y ) allows us to re-randomize the second part of the seed fed to G1

without increasing the probability of any specific outcome by too much. The same holds for re-
randomizing the first part of the seed fed to G2. Once both re-randomizations are performed, the
Gi’s are fed by independently distributed seeds, and so they produce independently distributed
copies of X and Y . Hence, the bound on the cross influence is translated to a bound on the ratio
between Pr[(X,Y )=(x, y)] and Pr[X=x] · Pr[Y =y]. Details follow.

Let G = (G1, G2) be the generator guaranteed by Definition 4.1. Then, for any x and y, it holds
that Prs∈{0,1}2` [G(s)=(x, y)] equals

Pru1,u2∈{0,1}` [(G1(u1, u2), G2(u1, u2))=(x, y)]

=
Pru1,u′1,u2∈{0,1}` [(G1(u1, u2), G2(u1, u2))=(x, y) & G2(u′1, u2)=G2(u1, u2)]

Pru1,u′1,u2∈{0,1}` [G2(u′1, u2)=G2(u1, u2) | (G1(u1, u2), G2(u1, u2))=(x, y)]

=
Pru1,u′1,u2∈{0,1}` [(G1(u1, u2), G2(u′1, u2))=(x, y) & G2(u′1, u2)=G2(u1, u2)]

Pru1,u′1,u2∈{0,1}` [G2(u′1, u2)=G2(u1, u2) | (G1(u1, u2), G2(u1, u2))=(x, y)]

17Indeed, Eu∈Ω [Prv,v′∈Ω′ [F (u, v) 6=F (u, v′)]], which equals E(u,v)∈Ω×Ω′ [Prv′∈Ω′ [F (u, v) 6=F (u, v′)]], is the standard
(average-case) notion of the influence of the second argument of F on its outcome. The reason we use the foregoing
worst-case notion instead is discussed in Section 4.3.1.

18Indeed, Eq. (6) can be written as

log2(1/Pr[(X,Y )=(x, y)]) ≥ log2(1/Pr[X=x]) + log2(1/Pr[Y =y])− t.

Since this holds for all (x, y)’s, it holds for a pair for which the l.h.s. is minimized (whereas the r.h.s. may be
minimized on a different pair).
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≤
Pru1,u′1,u2∈{0,1}` [(G1(u1, u2), G2(u′1, u2))=(x, y)]

minu1,u2∈{0,1}`:(G1(u1,u2),G2(u1,u2))=(x,y)

{
Pru′1∈{0,1}` [G2(u′1, u2)=G2(u1, u2)]

}
where the first two equalities are merely trivialities that are hard to follow due to the large number
of symbols.19 Note that in the numerator of the last expression G1 and G2 obtain seeds that are
identical only in half their length, whereas the denominator is related to the influence of the first
argument of G2 on the value of G2. Applying the same reasoning again (but on the other half), we
will obtain independently distributed seeds. Specifically, we have

Pru1,u′1,u2∈{0,1}`
[
(G1(u1, u2), G2(u′1, u2))=(x, y)

]
=

Pru1,u′1,u2,u′2∈{0,1}` [(G1(u1, u
′
2), G2(u′1, u2))=(x, y) & G1(u1, u

′
2)=G1(u1, u2)]

Pru1,u′1,u2,u′2∈{0,1}` [G1(u1, u′2)=G1(u1, u2) | (G1(u1, u2), G2(u′1, u2))=(x, y)]

≤
Pru1,u′1,u2,u′2∈{0,1}` [(G1(u1, u

′
2), G2(u′1, u2))=(x, y)]

minu1,u′1,u2∈{0,1}`:(G1(u1,u2),G2(u′1,u2))=(x,y)

{
Pru′2∈{0,1}` [G1(u1, u′2)=G1(u1, u2)]

}
Hence,

Prs∈{0,1}2` [G(s)=(x, y)]

≤
Pru1,u′1,u2,u′2∈{0,1}` [(G1(u1, u

′
2), G2(u′1, u2))=(x, y)]

minu1,v1,u2,v2∈{0,1}`
{

Prr∈{0,1}` [G2(r, v2)=G2(v1, v2)] · Prs∈{0,1}` [G1(u1, s)=G1(u1, u2)]
}

≤
Pru1,u′1,u2,u′2∈{0,1}` [(G1(u1, u

′
2), G2(u′1, u2))=(x, y)]

2−t

= 2t · Pru1,u′2∈{0,1}`
[
G1(u1, u

′
2)=x

]
· Pru′1,u2∈{0,1}`

[
G2(u′1, u2)=y

]
where the second inequality is due to the hypothesis that G generates (X,Y ) with at most t bits of
cross influence (see Eq. (5)), and the equality is due to the independence of (u1, u

′
2) and (u′1, u2).

The claim follows.

4.2 Extraction and condensing

In Section 4.2.1 we show that while standard extractors may fail to extract almost perfect ran-
domness from joint distributions of very low cross influence, they do condense (in this model) with
deficiency linearly related to the cross influence bound. In Section 4.2.2 we present lower bounds
on the deficiency of any attempt to condense in the cross influence model, demonstrating that the
results of Section 4.2.1 are optimal up to a constant factor.

4.2.1 Standard extractors fail as such but do condense

It would have been great if Theorem 3.2 could have been extended to joint distributions of low cross
influence. Unfortunately, this is not the case. We first observe that standard two-source extractors
may fail miserably even when the amount of cross influence is very small (e.g., one bit) and the
min-entropy is very high.

19The first equality merely uses Pr[A] = Pr[A & B]
Pr[B |A]

, whereas the second equality uses Pr[E(Z) & Z = Z′] =

Pr[E(Z′) & Z=Z′].

18



Proposition 4.3 (failure of a standard extractor when applied to sources of very low cross influ-
ence): There exists a function EXT : {0, 1}n×{0, 1}n → {0, 1} such that the following two condition
hold:

1. EXT extracts from pairs of independent sources: The function EXT is an extractor with error
exp(−Ω(n)) for pairs of independent sources that have min-entropy at least 0.51n each.

2. EXT fails on some pairs of low cross influence: There exists a joint distribution (X,Y ) that can
be generated with at most one bit of cross influence such that both X and Y have min-entropy
at least n− 1, but EXT(X,Y ) ≡ 0.

We stress that Proposition 4.3 does not say that one cannot extract from any pair of sources having
low cross influence and high min-entropy; it only says that one cannot use an arbitrary standard
two-source extractor (for independent sources) towards this end. Indeed, the begging question is
whether there are other ways. A negative answer to this question appears as Proposition 4.6 (albeit
Proposition 4.6 asserts only a joint distribution (X,Y ) with six bits of cross influence such that
|Pr[EXT(X,Y )=0]− 0.5| ≥ 0.25).

Proof: We use the inner-product (mod 2) function, denoted IP2, in the role of the standard
two-source extractor, EXT, and recall that Part 1 is proved in [6, Thm. 9]. Towards proving Part 2,
we take the joint distribution (X,Y ) such that X = (X ′, 1) and Y = (Y ′, IP2(X ′, Y ′)), where
(X ′, Y ′) is uniformly distributed in {0, 1}n−1 × {0, 1}n−1. On the one hand, X and Y have each
min-entropy at least n−1, the randomness used to generate Y (i.e., Y ′) has no influence on X, and
the randomness used to generate X (i.e., X ′) has at most one bit of influence on Y (i.e., for every
(x′, y′) ∈ {0, 1}n−1 × {0, 1}n−1, it holds that Prr∈{0,1}n−1 [(y′, IP2(r, y′))=(y′, IP2(x′, y′))] ≥ 1/2).20

On the other hand,

EXT(X,Y ) = IP2(X,Y ) ≡
∑
i∈[n]

XiYi ≡ IP2(X ′, Y ′) + 1 · IP2(X ′, Y ′) ≡ 0 (mod 2)

and the claim follows.

Digest. The joint distribution used in the proof of Proposition 4.3 seems to represent a “very
mild form of dependence” between sources, and one would want to extract randomness in such
a case. While Proposition 4.3 only asserts that this cannot be done in a straightforward manner
(i.e., by using an arbitrary standard extractor), Proposition 4.6 asserts that extraction from joint
distribution of low cross influence is impossible in general.

In light of this fact, we lower our goals and aim for only condensing such joint distributions. This
less ambitious task turns out to be achievable. Specifically, we show that any standard extractor
constitutes a good condenser for joint distributions with low cross influence, where the deficiency of
the condenser is upper-bounded by the cross influence of the sources. Actually, a stronger statement
holds.

Theorem 4.4 (condensers for sources with low cross influence): Let CND : {0, 1}n × {0, 1}n →
{0, 1}m be a condenser with error ε and min-entropy deficiency d for pairs of independent sources
that have min-entropy at least k each; that is, for every such pair (X,Y ) it holds that CND(X,Y )

20Indeed, Prr[(y
′, IP2(r, y′))=(y′, IP2(x′, y′))] equals 1/2 if y 6= 0n−1, and equals 1 otherwise.
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is ε-close to a distribution that has min-entropy at least m − d. Then, for every (X,Y ) that is
generated with at most t bits of cross influence such that both X and Y have min-entropy at least
k, it holds that CND(X,Y ) is 2t · ε-close to a distribution that has min-entropy at least m − d − t.
That is, CND is a condenser with error 2t · ε and deficiency d + t for sources of cross influences t
and min-entropy at least k.

That is, if CND is a condenser of error ε and deficiency d for the model STDn(k), then it is a condenser
of error 2t · ε and deficiency d+ t for the model CRIn(k, t).

Proof: By Proposition 4.2, we have for every z ∈ {0, 1}m,

Pr[CND(X,Y )=z] =
∑

x,y:CND(x,y)=z

Pr[(X,Y )=(x, y)]

≤
∑

x,y:CND(x,y)=z

2t · Pr[X=x] · Pr[Y =y]

= 2t · Pr[CND(X ′, Y ′)=z],

where X ′ and Y ′ are two independent random variables such that X ′ ≡ X and Y ′ ≡ Y . Since X ′

and Y ′ are two independent sources each of min-entropy at least k, it follows that CND(X ′, Y ′) is
ε-close to a distribution with min-entropy at least m − d, denoted W ′. Note that if CND(X ′, Y ′)
itself had min-entropy at least m− d (i.e., CND(X ′, Y ′) ≡W ′), then it would follow that CND(X,Y )
has min-entropy at least m− d− t. But, in general, CND(X ′, Y ′) is only ε-close to W ′, and the rest
of the proof is devoted to showing that in this case CND(X,Y ) is 2t · ε-close to a distribution having
min-entropy at least m− d− t.

Intuitively, z’s that are assigned less or equal weight under CND(X ′, Y ′) in comparison to their
weight under W ′ (i.e., Pr[CND(X ′, Y ′)=z] ≤ Pr[W ′=z]) pose no problem since their weight under
CND(X,Y ) is at most 2t ·Pr[CND(X ′, Y ′)=z] ≤ 2t ·Pr[W ′=z] ≤ 2t ·2−(m−d) = 2−(m−d−t). The other
z’s do pose a problem, but their total weight under CND(X,Y ) is larger by at most an additive term
of 2t · ε than what it would have been if Pr[CND(X ′, Y ′)=z] = Pr[W ′=z].

To formalize the foregoing intuition, we consider the pointwise difference between the distribu-
tions CND(X ′, Y ′) and W ′; that is, we let

δ(z)
def
= Pr[CND(X ′, Y ′)=z]− Pr[W ′=z],

and recall that
∑

z:δ(z)>0 δ(z) ≤ ε. Now, for every z, it holds that

Pr[CND(X,Y )=z] ≤ 2t · Pr[CND(X ′, Y ′)=z]

= 2t · (Pr[W ′=z] + δ(z))

≤ 2t · 2−(m−d) + 2t · δ(z),

where the last inequality uses the min-entropy bound ofW ′. Hence, Pr[CND(X,Y )=z] ≤ 2−m(m−d−t)

for every z such that δ(z) ≤ 0, whereas for the remaining z’s (i.e., z such that δ(z) > 0) we only
have Pr[CND(X,Y )=z] ≤ 2−m(m−d−t) + 2t · δ(z).

Recalling that
∑

z:δ(z)>0 δ(z) ≤ ε, we present a distribution W of min-entropy at least m−(d+t)

that is 2t · ε-close to CND(X,Y ) by moving probability mass that is assigned to z’s that violate the
probability bound (i.e., Pr[CND(X,Y )=z] > 2d+t−m) to other z’s. Indeed, W is obtained by moving
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probability mass from z’s that have an excess of Pr[CND(X,Y ) =z] − 2d+t−m > 0 to the other z’s,
without violating the probability bound on the latter, where the moved mass is fully accounted for
in 2t · δ(z). Specifically, we reduce the probability mass of z only if Pr[CND(X,Y ) = z] > 2d+t−m,
and in this case Pr[CND(X,Y )=z]− 2d+t−m ≤ 2t · δ(z). We can move this mass to z’s that satisfy
δ(z) < 0 without assigning any of these z’s more than weight 2d+t−m, because the weight assigned
to each of these z’s by CND(X,Y ) is at most 2d+t−m + 2t · δ(z) (where δ(z) < 0).21

On the optimality of Theorem 4.4. It turns out that the min-entropy loss suffered by a
standard condenser when applied to a joint distribution with t bits of cross influence is inevitable.
This holds even if the condenser is actually an extractor. (Proposition 4.7 will provide a far more
general result that refers to any condensing method, but with slightly less tight parameters.)

Proposition 4.5 (Proposition 4.3, generalized): There exists a function EXT : {0, 1}n ×{0, 1}n →
{0, 1}0.04n such that the following two condition hold:

1. EXT extracts from pairs of independent sources: The function EXT is an extractor with error
exp(−Ω(n)) for pairs of independent sources that have min-entropy at least 0.6n each.

2. When applied to a joint distribution with cross influece t, the output of EXT may have a min-
entropy deficiency of t: For every t ≤ 0.04n, there exists a joint distribution (X,Y ) that can
be generated with at most t bits of cross influence such that both X and Y have min-entropy
at least 0.9n, but the first t bits of EXT(X,Y ) are identically zero.

The choice of the various constants in Proposition 4.5 is quite arbitrary: we can replace 0.6 by any
constant κ > 0.5, replace 0.04 by any constant µ > 0 smaller than κ− 0.5, and replace 0.9 by any
constant smaller than 1− 2 · µ.

Proof: We generalized the proof of Proposition 4.3, while using one of the (inner-product (mod 2)
based) extractors presented in [7]. Specifically, we use the multi-shifts inner-product (mod 2)

extractor, denoted EXT(mip) : {0, 1}n+n → {0, 1}m, whose ith output bit, denoted EXT
(mip)
i (x, y),

equals
∑

j∈[n−i+1] xjy(i−1)+j mod 2. Recall that EXT(mip) : {0, 1}n+n → {0, 1}m has error at most

2−(k−0.5n−m) for pairs of independent sources that have min-entropy at least k each. This establishes
Part 1.

Towards proving Part 2, we let m = 0.04n and define functions f1, ..., ft : {0, 1}n−(2m−1) ×
{0, 1}n−m → {0, 1} such that for every i ∈ [t] it holds that fi(x

′, y′)
def
= EXT

(mip)
i (x′02m−1, y′0m), and

denote their concatenation by f(x′, y′) = (f1(x′, y′), ..., ft(x
′, y′)). We consider the joint distribution

(X,Y ) such that X = (X ′0m−1, 10m−1) and Y = (Y ′, f(X ′, Y ′)0m−t), where (X ′, Y ′) is uniformly
distributed in {0, 1}n−(2m−1) × {0, 1}n−m. On the one hand, X and Y have each min-entropy
at least n − (2m − 1) > 0.9n, the randomness used to generate Y (i.e., Y ′) has no influence
on X, and the randomness used to generate X (i.e., X ′) influences at most t bits of Y (i.e.,
for every (x′, y′) ∈ {0, 1}n−(2m−1) × {0, 1}n−m, it holds that Prr∈{0,1}n−(2m−1) [(y′, f(r, y′)0m−t) =

(y′, f(x′, y′)0m−t)] ≥ 2−t).22 On the other hand, we shall show that the t-bit prefix of EXT(mip)(X,Y )

21This uses
∑
z:δ(z)>0 δ(z) = −

∑
z:δ(z)<0 δ(z).

22To lower-bound Prr[f(r, y′)) =f(x′, y′)], we observe that, for every y′ ∈ {0, 1}n−m and x′ ∈ {0, 1}n−(2m−1), the

set {r∈{0, 1}|x
′| : f(r, y′) = f(x′, y′)} is a linear subspace of dimention at least |x′| − t.
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always equals 0t. First, observe that for every x = (x′0m−1, x′′) ∈ {0, 1}n−m × {0, 1}m and y =
(y′, y′′) ∈ {0, 1}n−m × {0, 1}m, and every i ∈ [m], it holds that

EXT
(mip)
i (x′0m−1x′′, y′y′′) =

∑
j∈[|x′|]

xjy(i−1)+j +
∑

j∈[|x′|+m,n−i+1]

xjy(i−1)+j

= EXT
(mip)
i (x′0(m−1)+|x′′|, y′0|y

′′|) + EXT
(mip)
i (0|x

′|+m−1x′′, 0|y
′|y′′),

since
∑

j∈[|x′|+1,|x′|+m−1] xjy(i−1)+j is identically zero (because xj = 0 for any j ∈ [|x′|+1, |x′|+m−
1]). Hence (recalling that X = (X ′, 0m−1, 10m−1) and Y = (Y ′, f(X ′, Y ′)0m−t)), for every i ∈ [t],
we have

EXT
(mip)
i (X,Y ) = EXT

(mip)
i (X ′0(m−1)+m, Y ′0m)

+ EXT
(mip)
i (0n−(2m−1)+(m−1)10m−1, 0n−mf(X ′, Y ′)0m−t).

(7)

Now, using the definition of EXT
(mip)
i , and denoting the jth bit of α by bitj(α), we have

EXT
(mip)
i (0n−m10m−1, 0n−mf(X ′, Y ′)0m−t)

=
∑

j∈[n−i+1]

bitj(0
n−m10m−1) · bit(i−1)+j(0

n−mf(X ′, Y ′)0m−t)

= bit(i−1)+(n−m+1)(0
n−mf(X ′, Y ′)0m−t)

which equals fi(X
′, Y ′) = EXT

(mip)
i (X ′02m−1, Y ′0m). Hence,

EXT
(mip)
i (0n−m10m−1, 0n−mf(X ′, Y ′)0m−t) = EXT

(mip)
i (X ′02m−1, Y ′0m). (8)

Combining Eq. (7) with Eq. (8), it follows that EXT
(mip)
i (X,Y ) = 0 (for every i ∈ [t]), and the Part 2

follows.

4.2.2 General imposibility of extraction and limits to condensing

Recall that Proposition 4.3 asserted that some standard extractors may fail to extract from a joint
distribution generated with a single bit of cross influence, whereas Proposition 4.5 asserted that the
deficiency bound of the generic condenser of Theorem 4.4 is optimal. In both cases, this was shown
by tailoring a specific joint distribution (of low cross influence) to a specific standard extractor.
This raises the question of whether some other standard extractors can do better, let alone whether
one can get lower deficiency by using a function that is not a standard extractor (which is unlikely
and yet a priori possible). We answer these questions negatively, modulo a small constant factor.
(Due to the non-tightness of the following two results, they do not fully superseed Propositions 4.3
and 4.5.)

The general impossibility of extraction. In contrast to Proposition 4.3, which only asserts
the failure of some standard two-source extractors in the context of low cross influence, the following
result asserts the failure of any function to extract almost-perfect randomness in this context. In
fact, we show that one cannot even extract a single bit that is not significantly biased.
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Proposition 4.6 (general impossibility of extraction from joint distribution with low cross in-
fluence): For any F : {0, 1}n × {0, 1}n → {0, 1}, there exists a joint distribution (X,Y ) having
at most six bits of cross influence such that both X and Y have min-entropy at least n − 4, but
Pr[F (X,Y )=σ] ≥ 3/4 for some σ ∈ {0, 1} (equiv., the bias of F (X,Y ) is at least 1/2).23

Note that Proposition 4.6 only asserts that F fails to extract a bit that has biased smaller than 1/2,
when fed with a joint distribution having six bits of cross influence (and very high min-entropy).
Recall that Theorem 4.4 asserts that in such a case it is possible to output a 7-bit long string such
that no outcome appears with probability higher than 0.51. (In general, Theorem 4.4 asserts that
condensing with deficiency that equals the cross influence bound is possible, and in Proposition 4.7
we show that this is optimal up to a constant factor.)

Proof: Suppose that F is more likely to evaluate to σ; that is, F−1(σ) = {(x, y) : F (x, y) = σ}
has size at least 22n−1. Then, one may be tempted to define (X,Y ) to be uniform on F−1(σ),
but it is not clear how to generate this distribution using few bits of cross influence. The first
idea that comes to mind is to use the generator G that is given a sequence of random pairs
in {0, 1}n+n and outputs the first pair in F−1(σ). That is, for some parameter m = `/n, let
G((u1, u2, ..., um), (v1, v2, ..., vm)) = (ui, vi) if F (ui, vi) = σ and F (uj , vj) 6= σ for every j ∈ [i− 1].

Ignoring the issue of what happens if none of the pairs is in F−1(σ), observe that G does not have
low cross influence (in the worst case). Specifically, suppose thatG((u1, u2, ..., um), (v1, v2, ..., vm)) =
(ui, vi). Then, the probability that a re-randomization of all uj ’s (resp., all vj ’s) yields a sequence
that generates (·, vi) (resp., (ui, ·)) is at most 2−(i−1) + 2−n, where the first term bounds the prob-
ability that the ith pair in the re-randomized seed is the first pair in F−1(σ). This suggest to
modify the generation process by setting m = 2 and having the generator output the second pair
(regardless of whether it is in F−1(σ) or not) unless the first pair is in F−1(σ).

Another issue that we will need to address is the possibility that for some u’s (resp., v’s) there
may be too few or too many v’s (resp., u’s) that yield a pair in F−1(σ). This is a problem, since
when we re-randomize v (resp., u), while keeping u (resp., v) intact, we hope to get a pair that
maintains the value of F (u, v). We start the actual proof by addressing this issue.

We first show that one may focus on the case that for at least 7/8 of the x’s (resp., y’s) it
holds that Pry∈{0,1}n [F (x, y) =σ] ≥ 1/4 (resp., Prx∈{0,1}n [F (x, y) =σ] ≥ 1/4) for both σ ∈ {0, 1}.
If this is not the case, then F fails even as a standard two-source extractor for min-entropy n− 4
(and error 1/4). Specifically, suppose that for a set B of at least 2n/16 of the x’s it holds that
Pry[F (x, y) = 1] < 1/4. Then, defining X to be uniform on B and Y as uniform on {0, 1}n (and
independent of X), we get Pr[F (X,Y )=0] > 3/4. The same holds for Pry[F (x, y)=0] < 1/4, and
ditto for the y’s. Having established the forgoing claim, we define

R
def
= {x ∈ {0, 1}n : 0.25 ≤ Pry∈{0,1}n [F (x, y)=1] ≤ 0.75}

S
def
= {y ∈ {0, 1}n : 0.25 ≤ Prx∈{0,1}n [F (x, y)=1] ≤ 0.75},

and note that |R|, |S| ≥ 7
8 · 2

n. Furthermore, for every x ∈ R it holds that Pry∈S [F (x, y) = 1] ∈
[1/8, 7/8] (resp., for every y ∈ S it holds that Prx∈R[F (x, y)=1] ∈ [1/8, 7/8]).24

23The bias of a Boolean random variable ζ is |Pr[ζ=0]− Pr[ζ=1]|.
24This uses Pry∈S [F (x, y) = 1] ≥ Pry∈{0,1}n [F (x, y) = 1] − Pry∈{0,1}n [y 6∈ S] and Pry∈S [F (x, y) = 1] ≤

Pry∈{0,1}n [F (x, y)=1]/Pry∈{0,1}n [y∈S].
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Now, let σ ∈ {0, 1} be such that p
def
= Pr(x,y)∈R×S [F (x, y) = σ] ≥ 1/2, and consider the joint

distribution (X,Y ) defined by a generator G = (G1, G2) that, on input ((r1, r2), (s1, s2)) ∈ R2×S2,
outputs (r1, s1) if F (r1, s1) =σ and outputs (r2, s2) otherwise; that is, G1((r1, r2), (s1, s2)) = r1 if
F (r1, s1)=σ and equals r2 otherwise.

Then, Pr[F (X,Y )=σ] = p+ (1− p) · p ≥ 3/4, where the first (resp., second) term corresponds
to the case that F (r1, s1) = σ (resp., F (r1, s1) 6= σ). Next, note that the min-entropy of X is at
least n− 2, since

Pr[X=x] = Pr(r1,s1)∈R×S [F (r1, s1)=σ & r1 =x] + Pr(r1,r2,s1)∈R2×S [F (r1, s1) 6=σ & r2 =x]

≤ Prr1∈R[r1 =x] + Prr2∈R[r2 =x],

which equals 2/|R| < 2−(n−2), since |R| > 2n−1. Ditto for Y . Lastly, we get to the crux of the
argument, which is showing that the cross influence of (X,Y ) is upper-bounded by six. Consider
an arbitrary input to G, denoted ((r1, r2), (s1, s2)) ∈ R2 × S2, and the following two cases.

Case 1: F (r1, s1)=σ. In this case G1((r1, r2), (s1, s2))=r1, and so

Pr(s′1,s
′
2)∈S2 [G1((r1, r2), (s′1, s

′
2))=G1((r1, r2), (s1, s2))] = Prs′1,s′2∈S [G1((r1, r2), (s′1, s

′
2))=r1]

≥ Prs′1∈S [F (r1, s
′
1)=σ]

≥ 1/8.

Case 2: F (r1, s1) 6=σ. In this case G1((r1, r2), (s1, s2))=r2, and so

Pr(s′1,s
′
2)∈S2 [G1((r1, r2), (s′1, s

′
2))=G1((r1, r2), (s1, s2))] = Prs′1,s′2∈S [G1((r1, r2), (s′1, s

′
2))=r2]

≥ Prs′1∈S [F (r1, s
′
1) 6=σ]

≥ 1/8.

Hence, the influence of the second part of the seed on G1 is at most three units. The same holds
for G2, and the claim follows.

A general limit to condensing. Generalizing the ideas that underlie the proof of Proposi-
tion 4.6, we show that joint distributions of low cross influence cannot be condensed much better
than the result of Theorem 4.4. Specifically, we show that the deficiency of any potential condenser
of such distributions is at least linear in the cross influence.

Proposition 4.7 (lower-bounding the deficiency of condensers as a function of the cross influence
of the sources): For any F : {0, 1}n × {0, 1}n → {0, 1}m and every t ∈ [8,m], there exists a
joint distribution (X,Y ) having at most t bits of cross influence such that both X and Y have
min-entropy at least n − 0.5t + 2, but there exists a set H of density at most 2−0.5t+4 such that
Pr[F (X,Y )∈H] ≥ 2−0.25t−2.

Hence, H witnesses the fact that F (X,Y ) has min-entropy at most

min
h∈H
{log2(1/Pr[F (X,Y )=h])} ≤ log2(|H|/Pr[F (X,Y )∈H])

≤ (m− 0.5t+ 4)− (−0.25t− 2)

= m− (0.25t− 6),
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which implies that it has deficiency at least 0.25t − 6. Furthermore, any distribution W that is
2−0.25·t−3-close to F (X,Y ) satisfies Pr[W ∈H] ≥ 2−0.25t−3, which implies that the min-entropy of
W is smaller than m− (0.25t− 7). It follows that there is no condenser with deficiency 0.25 · t− 8
and error 2−0.25·t−3 for sources of cross influence t that each have min-entropy at least n−0.5t+ 2.
This means that the deficiency obtained by Theorem 4.4 is optimal up to a constant factor (of
four), since combining it with standard extractors (of error 2−2t) yields condensers with deficiency
t and error 2−t for sources of cross influence t (and min-entropy m+ 4t+O(1)).25

Proof: While the proof follows the high-level struction of the proof of Proposition 4.6, the details
are much more complex in the current case. As in the proof of Proposition 4.6, things would have
been simpler if the function F was “typical” in the sense that Pry[F (x, y)=v] = Θ(2−m) for every v
and x (resp., Prx[F (x, y)=v] = Θ(2−m) for every v and y).26 In such a case, for t′ = 0.5·t−O(1), we
would have selected an arbitrary set H ⊂ {0, 1}m of density 2−t

′
, and defined (X,Y ) by considering

the generator that, on input ((r0, r1, ..., r2t′ ), (s0, s1, ..., s2t′ )), outputs (ri, si) if i ∈ [2t
′
] is the first

index satisfying F (ri, si)∈H and (r0, s0) otherwise (i.e., if such an i does not exists). Intuitively,
in this case, one can show that Pr[F (X,Y ) ∈H] = Ω(1), whereas X (resp., Y ) has min-entropy
n− t′ −O(1) and (X,Y ) has 2t′ +O(1) = t bits of cross influence (since the influence of each part
of the seed on the opposite output is at most t′ + O(1), where this claim relies on the simplifying
assumption).

Getting rid of the simplifying assumption leads to various complications; in particular, this forces
us to use 2t

′/2 indices (i.e., i’s) rather than 2t
′
, which means that we only prove that Pr[F (X,Y )∈

H] = Ω(2−t
′/2). Under this setting, we are able to show that the corresponding distribution has

2t′ + O(1) bits of cross influence. (In light of the foregoing, in the actual proof, we set t′ =
(t−O(1))/4; actually, we shall replace 2−t

′
by ρ as representing the density of the set H.)

The actual proof: preliminaries. For ρ = Θ(2−t/2) (i.e., ρ = 2−0.5·t+4), let H ⊂ {0, 1}m be a set of
ρ · 2m elements such that Prx,y∈{0,1}n [F (x, y)∈H] ≥ ρ. We first show that one may focus on the

case that for at least 1 − 0.25 · ρ of the x’s (resp., y’s) it holds that Pry∈{0,1}n [F (x, y)∈H] ≤ ρ1/2

(resp., Prx∈{0,1}n [F (x, y) ∈ H] ≤ ρ1/2). If this is not the case, then F has deficiency at least

log2(ρ1/2/ρ) = Ω(t/4) even as a standard two-source condenser for min-entropy n − log2(4/ρ) =
n − 0.5t − O(1). Specifically, suppose that for a set B of at least ρ · 2n−2 of the x’s it holds that
Pry∈{0,1}n [F (x, y)∈H] > ρ1/2. Then, defining X to be uniform on B and Y as uniform on {0, 1}n

(and independent of X), we get Pr[F (X,Y ) ∈H] > ρ1/2, whereas Prr∈{0,1}m [r ∈H] = ρ. Hence,

F (X,Y ) has min-entropy at most log2(|H|/ρ1/2) = m − log2(1/ρ1/2), which means deficiency at
least log2(1/ρ1/2). In this case the proposition follows for these independent sources (which have
min-entropy at least n− log2(4/ρ) = n− 0.5 · t−O(1)).

Having established that at least 1 − 0.25 · ρ of the x’s (resp., y’s) satisfy Pry[F (x, y) ∈H] ≤
ρ1/2 (resp., Prx[F (x, y) ∈ H] ≤ ρ1/2), we focus on these typical x’s (resp., y’s) and define the

25Specifically, there exist extractors EXT : {0, 1}n+n → {0, 1}m of error ε > 0 for independent sources of min-entropy
m + 2 log2(1/ε) + log2(9n) (see [6, Thm. 7(i)]). Explicit constructions of condensers with deficiency o(log(1/ε) and
error ε > 0 for independent sources of min-entropy min(m + O(log(1/ε)),poly(log(n/ε))) are also known (see [3]),
and combining Theorem 4.4 with them yields condensers with deficiency t + o(t) and error 2−t for sources of cross
influence t (and min-entropy min(m+O(t),poly(t logn))).

26Actually, it would have sufficed to let F ′(x, y) denote the t′-long prefix of F (x, y) and assume that F ′ is typical

(i.e., Pry[F ′(x, y)=v] = Θ(2−t
′
) etc).
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corresponding sets

R
def
= {x ∈ {0, 1}n : Pry∈{0,1}n [F (x, y)∈H] ≤ ρ1/2}

S
def
= {y ∈ {0, 1}n : Prx∈{0,1}n [F (x, y)∈H] ≤ ρ1/2}.

Note that |R| · |S| ≥ ((1− 0.25 · ρ) · 2n)2 > (1− 0.5 · ρ) · 22n. Furthermore, for every x ∈ R it holds

that p
(0)
x

def
= Pry∈S [F (x, y)∈H] < 2 ·ρ1/2, since Pry∈{0,1}n [F (x, y)∈H] ≤ ρ1/2 whereas Pry∈{0,1}n [y∈

S] > 1/2. Likewise, for every y ∈ S it holds that q
(0)
y

def
= Prx∈R[F (x, y)∈H] < 2 · ρ1/2. Lastly, we

define p(0) def
= Ex∈R[p

(0)
x ] = Ey∈S [q

(0)
y ], and note that p(0) = Pr(x,y)∈R×S [F (x, y)∈H] ≥ ρ/2, since

Pr(x,y)∈{0,1}n+n [F (x, y)∈H] ≥ ρ whereas Pr(x,y)∈{0,1}n+n [(x, y) 6∈R× S] ≤ ρ/2.

Recalling that p
(0)
x < 2 · ρ1/2 for every x ∈ R, note that if p

(0)
x = Ω(ρ) was also true (and ditto

for the q
(0)
y ’s), then we could proceed as outlined above, since all p

(0)
x ’s would be approximately

equal up to a factor of O(ρ1/2), which we can afford to pay. Furthermore, x’s satisfying p
(0)
x = 0

would cause no harm. Hence, we employ the following iterative process with the aim of obtaining

corresponding p
(·)
x ’s (and q

(·)
y ’s) such that for every x ∈ R either p

(·)
x = 0 or p

(·)
x = Ω(ρ) (and ditto

for the q
(·)
y ’s). The p

(·)
x ’s (and q

(·)
y ’s) are modified by giving-up on x’s (resp., y’s) that violate the

foregoing condition, and setting these probabilities to 0, which means that we don’t take these x’s
(resp., y’s) into account when considering the probability of hitting H.

To streamline the presentation, we define χ(0)(x, y) = true if F (x, y) ∈ H and χ(0)(x, y) =

false otherwise, and note that p
(0)
x = Pry∈S [χ(0)(x, y)] (resp., q

(0)
y = Prx∈R[χ(0)(x, y)]). In the

ith iteration, we shall define χ(i) such that χ(i)(x, y) always implies χ(i−1)(x, y), and define p
(i)
x =

Pry∈S [χ(i)(x, y)] (resp., q
(i)
y = Prx∈R[χ(i)(x, y)]). Note that χ(i)(x, y) = false if either p

(i)
x = 0 or

q
(i)
y = 0.

The iterative process. For i ≥ 1, we stop before the ith iteration if for every x ∈ R and y ∈ S it holds

that p
(i−1)
x , q

(i−1)
y 6∈ (0, ρ/8), which means that these probabilities are either zero or lower-bounded

by ρ/8. Otherwise, we proceed as follows:

• If there exists an x ∈ R such that p
(i−1)
x ∈ (0, ρ/8), then we pick such an x, denote it x(i),

and say that the ith iteration is of the first type. Otherwise, we pick y(i) ∈ S such that

q
(i−1)

y(i) ∈ (0, ρ/8), and say that the ith iteration is of the second type.

• Assuming that the ith iteration is of the first (resp., second) type, for every (x, y) ∈ R×S, we
define χ(i)(x, y) = false if x = x(i) (resp., if y = y(i)) and χ(i)(x, y) = χ(i−1)(x, y) otherwise.

(Intuitively, we give-up on x(i) (resp., y(i)) when lower-bounding the probability of hitting H;
this will be useful when upper-bounding the cross influence.)

• Next, we define p
(i)
x

def
= Pry∈S [χ(i)(x, y)] for every x and q

(i)
y

def
= Prx∈R[χ(i)(x, y)] for every y.

Note that p
(i)
x ≤ p

(i−1)
x ≤ p

(0)
x < 2 · ρ1/2 and q

(i)
y ≤ q

(i−1)
y < 2 · ρ1/2. Furthermore, assuming

that the ith iteration is of the first type, for every x ∈ R, it holds that p
(i)
x ∈ {0, p(i−1)

x },
depending on whether or not x = x(i). (If the ith iteration is of the second type, then for

every y ∈ S it holds that q
(i)
y ∈ {0, q(i−1)

y }, depending on whether or not y = y(i).)
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• Lastly, we define p(i) def
= Ex∈R[p

(i)
x ] = Ey∈S [q

(i)
y ], and observe that p(i) > p(i−1) − ρ/8

|R| if the ith

iteration is of the first type (and p(i) > p(i−1) − ρ/8
|S| if the ith iteration is of the second type),

since we modified a single term in the expectation.27

After i ≤ |R|+ |S| iterations, the process stops, and we have p(i) > p(0)−2 ·ρ/8 ≥ 0.5 ·ρ−0.25 ·ρ =

0.25 · ρ. At this point we define χ
def
= χ(i), p

def
= p(i), and px

def
= p

(i)
x 6∈ (0, ρ/8) for each x ∈ R.

Likewise, qy
def
= p

(i)
x 6∈ (0, ρ/8) for each y ∈ S. Also recall that px, qy < 2 · ρ1/2. Hence, each px

(resp., qy) is either zero or in [0.125 · ρ, 2 · ρ1/2].

Defining the joint distribution (X,Y ). For T = 0.25 ·ρ−1/2, the joint distribution (X,Y ) is defined by
its generator, denoted G = (G1, G2). On input (r, s) ∈ RT+1 × ST+1 such that r = (r0, r1, ..., rT )
and s = (s0, s1, ..., sT ), the generator outputs (ri, si) if i ∈ [T ] is the first index such that χ(ri, si)
holds, and outputs (r0, s0) otherwise (i.e., if no pair (ri, si) satisfies χ). That is, for each i ∈ [T ],
consider the indicator χi = χi((r0, r1, ..., rT ), (s0, s1, ..., sT )) that evaluates to true if and only if
χ(ri, si) holds and ¬χ(rj , sj) holds for every j ∈ [i−1]. Then, G1((r0, r1, ..., rT ), (s0, s1, ..., sT )) = ri
if χi((r0, r1, ..., rT ), (s0, s1, ..., sT )) holds, and equals r0 otherwise (i.e., if ¬

∨
i∈[T ] χ(r, s)). We now

turn to the analysis of (X,Y ).

Lower-bounding the min-entropy of X and Y . The min-entropy of X is at least log2(1/(ρ1/2 ·2−n)) =
n− 0.25 · t−O(1), since for every x it holds that

Pr[X=x] =
∑
i∈[T ]

Pr(r,s)∈RT+1×ST+1 [χi(r, s) & ri=x]

+ Pr(r,s)∈RT+1×ST+1 [(∀i ∈ [2t
′
])¬χ(r, s) & r0 =x]

≤
∑
i∈[T ]

Prri∈R[ri=x] + Prr0∈R[r0 =x],

which equals (T + 1) · |R|−1 < ρ1/2 · 2−n, since T + 1 < 0.5 · ρ−1/2 and |R| > 2n−1. Ditto for Y .

Lower-bounding Pr[F (X,Y ) ∈ H]. We lower-bound the probability that F (X,Y ) ∈ H as follows.

Pr[F (X,Y )∈H] ≥
∑
i∈[T ]

Pr(r,s)∈RT+1×ST+1 [χi(r, s)]

=
∑
i∈[T ]

Pr(ri,si)∈R×S [χ(ri, si)] ·
∏

j∈[i−1]

Pr(rj ,sj)∈R×S [¬χ(rj , sj)]

=
∑
i∈[T ]

p · (1− p)i−1

= 1− (1− p)T

> T · p.

Recalling that p ≥ ρ/4 and T = 0.25 · ρ−1/2, we get Pr[F (X,Y )∈H] ≥ 0.25ρ−1/2 · ρ/4 = ρ1/2/16.

Upper-bounding the cross influence of (X,Y ). Finally, we get to the analysis we were preparing
for all along. We show that the cross influence of (X,Y ) is upper-bounded by 2 log(8/ρ). For an
arbitrary input (r, s) to G, we consider the following two cases.

27In the first case, we consider
∑
x∈R p

(i)
x and note that it equals

∑
x∈R\{x(i)} p

(i−1)
x , whereas p

(i−1)

x(i)
< ρ/8. Other-

wise, we use
∑
y∈S q

(i)
y =

∑
y∈S\{y(i)} q

(i−1)
y .
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Case 1: χi(r, s) holds for some i ∈ [T ]. If χi(r, s) holds, then χ(ri, si) holds for that i, and in
particular pri ≥ ρ/8 holds. In that case, using the fact that px < 2 · ρ1/2 holds (for every
x ∈ R), we have

Pru=(u0,u1,...,uT )∈ST+1 [G1(r, u)=G1(r, s)] = Pru=(u0,u1,...,uT )∈ST+1 [G1(r, u)=ri]

≥ Pru=(u0,u1,...,uT )∈ST+1 [χi(r, u)]

= Prui∈S [χ(ri, ui)] ·
∏

j∈[i−1]

Pruj∈S [¬χ(rj , uj)]

≥ pri · (1−max
x∈R
{px})i−1

>
ρ

8
· (1− 2 · ρ1/2)T

> ρ/16.

Case 2: ¬χi(r, s) holds for every i ∈ [T ]. In that case, ¬χ(ri, si) holds for every i. Using,
again, the fact that px < 2 · ρ1/2 holds (for every x ∈ R), we have

Pru=(u0,u1,...,u2t
′ )∈ST+1 [G1(r, u)=G1(r, s)] = Pru=(u0,u1,...,uT )∈ST+1 [G1(r, u)=r0]

≥ Pru=(u0,u1,...,uT )∈ST+1 [(∀i ∈ [T ])¬χ(ri, ui)]

=
∏
i∈[T ]

Prui∈S [¬χ(ri, ui)]

≥ (1−max
x∈R
{px})T

> (1− 2 · ρ1/2)T

> 1/2.

Hence, the influence of the second part on G1 is at most log2(16/ρ) = 0.5 · t units, provided
ρ = 2−0.5·t+4. The same holds for G2 (using the fact that qy ≥ 2 · ρ1/2 (for every y ∈ S)).

Conclusion. Using ρ = 2−0.5·t+4, we have shown that Pr[F (X,Y ) ∈ H] ≥ ρ1/2/16 = 2−0.25·t−2,
whereas H has density ρ, and (X,Y ) can be generated with t bits of cross influence, and X (resp.,
Y ) has min-entropy n− 0.5 log2(1/ρ) = n− 0.25t+ 2. The claim follows.

4.3 Other issues

In Section 4.3.1 we undertake a brief study of the possibility of defining cross influence on the
average, rather than in the worst-case (as done in Definition 4.1). The bottom-line is that, in
retrospect, we believe that the worst-case definition is the ‘right’ choice for the current context. In
Section 4.3.2 we show that cross influence is (essentially) much more expressive than the notion of
coordination (treated in Section 3). In Section 4.3.3 we show that an approximate version of the
converse of Proposition 4.2 does hold, while a perfect converse does not hold.
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4.3.1 On an average-case notion of cross influence

A somewhat unsatisfying aspect of the definition of the amount of cross influence (i.e., Defini-
tion 4.1) is that, in some cases, this amount may be larger than the length of the substring of the
output that is affected by the opposite part of the seed. Consider, for example, the joint distribution
(X,Y ) = (X,Y ′f(X)), where X and Y ′ are independent of one another. Then, we would expect
that the “influence” of X on Y to be at most |f(X)| bits, but Prr[(y

′, f(r))=(y′, f(x))] ≥ 2−|f(x)|

does not necessarily hold for all x and y′ (i.e., it might be the case that for some x it holds that
Prr[f(r)=f(x)]� 2−|f(x)|).

This phenomenon would not have occurred if cross influence was defined as (minus the logarithm
of) the expected value of the probability of agreement (i.e., Ex[Prr[f(r)=f(x)]]), since this expec-
tation would equal the collision probability of f(X) (which is always lower-bounded by 2−|f(x)|).
Unfortunately, using this average-case measure (rather than our worst-case measure) would have
hinder the proof of Eq. (6). Actually, this is not an artifact of our proof, but rather a reflection of
reality (see Proposition 4.10). But let us first spell-out the definition that we have in mind.

Definition 4.8 (an average-case version of cross influence): We say that the joint distribution
(X,Y ) is generated with at most t bits of cross influence on the average if there exists a function
G = (G1, G2) that generates (X,Y ), as in Definition 4.1, and satisfies the following condition:

There exists t1 ≥ 0 such that,

Eu,v∈{0,1}`
[
Prv′∈{0,1}` [G1(u, v′) 6=G1(u, v)]

]
≤ 1− 2−t1 , (9)

Eu,v∈{0,1}`
[
Pru′∈{0,1}` [G2(u′, v) 6=G2(u, v)]

]
≤ 1− 2−(t−t1), (10)

where, as in Definition 4.1, Gi denotes the ith part of the output of G (i.e., G(s) =
(G1(s), G2(s))).

(That is, the influence of each half of the seed on the opposite part of the outcome is bounded on
the average (rather than on the worst case).)

Indeed, Eq. (9) (resp., Eq. (10)) captures an average-case notion of the amount of influence of the
second (resp., first) part of the seed on the first (resp., second) part of the outcome. It coincides
with the standard (average-case) notion of the influence of part of the argument of a function
F on its outcome, which is typically written as Eu∈Ω

[
Prv,v′∈Ω′ [F (u, v) 6=F (u, v′)]

]
, which in turn

equals E(u,v)∈Ω×Ω′ [Prv′∈Ω′ [F (u, v) 6=F (u, v′)]]. We first show that the average-case definition of
cross influence may be much lower than the worst-case definition (used in Definition 4.1).

Proposition 4.9 (average-case vs worst-case cross influence): There exists a joint distribution
(X,Y ) over {0, 1}n+n that can be generated with a single bit of cross influence on the average, but
cannot be generated with n− 1 bits of cross influence (on the worst-case).

Proof: Consider the generator G that, on input ((b, r), s), outputs (s, s) if b = 1 and (r, s)
otherwise; that is, G2((b, r), s) = s whereas G1((1, r), s) = s and G1((0, r), s) = r. Obviously, the
first part of the seed has no influence on G2. We upper-bound the average influence of the second
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part of the seed on G1 by observing that

E(b,r,s)∈{0,1}1+n+n

[
Prs′∈{0,1}n [G1((b, r), s′) 6=G1((b, r), s)]

]
=

1

2
· E(r,s)∈{0,1}n+n

[
Prs′∈{0,1}n [G1((1, r), s′) 6=G1((1, r), s)]

]
+

1

2
· E(r,s)∈{0,1}n+n

[
Prs′∈{0,1}n [G1((0, r), s′) 6=G1((0, r), s)]

]
=

1

2
· E(r,s)∈{0,1}n+n

[
Prs′∈{0,1}n [s′ 6=s]

]
+

1

2
· E(r,s)∈{0,1}n+n

[
Prs′∈{0,1}n [r 6=r]

]
=

1

2
·
(
1− 2−n

)
+

1

2
· 0,

which is smaller than 1/2. Hence, G generates a distribution (X,Y ) with a single bit of cross
influence on the average. Next, we lower-bound the cross influence (in the worst-case sense) of
(X,Y ) by using Proposition 4.2 and showing that (X,Y ) has much lower min-entropy than the
sum of the min-entropies of X and Y . Specifically, the min-entropy of X is n, since for every
x ∈ {0, 1}n it holds that

Pr(b,r,s)∈{0,1}1+n+n [G1((b, r), s′)=x]

= Pr(b,r,s)∈{0,1}1+n+n [b=0 & r=x] + Pr(b,r,s)∈{0,1}1+n+n [b=1 & s=x]

= 0.5 · 2−n + 0.5 · 2−n = 2−n.

As for the min-entropy of Y , it is even easier to see that it equals n, since G2((b, r), s) = s always
holds. Lastly, we upper-bound the min-entropy of (X,Y ) by observing that for every z ∈ {0, 1}n
it holds that

Pr(b,r,s)∈{0,1}1+n+n [G((b, r), s)=(z, z)] > Pr(b,r,s)∈{0,1}1+n+n [b=1 & G((b, r), s)=(z, z)]

= Pr(b,r,s)∈{0,1}1+n+n [b=1 & s=z],

which equals 2−n−1. Hence,

Pr[(X,Y )=(z, z)] > 2−n−1 = 2−n+1 · Pr[X=z] · Pr[Y =z],

which by (a counter-positive of) Proposition 4.2 implies that (X,Y ) cannot be generated with n−1
bits of cross influence (on the worst-case).

Failure of condensing. The proof of Proposition 4.9 provides a strong indication that joint
distributions with low cross influence on the average cannot be significantly condensed. The reason
is that such joint distributions may assign probability half to pairs of identical elements, which
means that condensing such joint distributions is not easier than condensing a single source without
a seed.

Proposition 4.10 (average-case cross influence cannot be condensed): For every F : {0, 1}n ×
{0, 1}n → {0, 1}m, there exists a joint distribution (X,Y ) over {0, 1}n+n that can be generated with
a single bit of cross influence on the average such that both X and Y have min-entropy at least
n−m but F (X,Y ) may assume some value with probability at least 1/2.
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In other words, F has deficiency at least m−1 for sources of min-entropy n−m with average cross
influence 1. (Note that any distribution of min-entropy n −m over {0, 1}n has deficiency m, and
so condensing to that level is trivial.)

Proof: We use the construction presented in the proof of Proposition 4.9, except that we let s and r
be distributed independently according to arbitrary sources of min-entropy n−m. Note that it still
holds that Pr[X=Y ] ≥ 1/2, which means that a condenser for (X,Y ) yields a (seedless) condenser
for X itself, which is impossible. Specifically, consider F ′(x) = F (x, x) and note that Pr[F ′(X) =
v] ≤ 2 · Pr[F (X,Y ) = v] holds for every v (equiv., log2(1/Pr[F ′(X) = v]) ≥ log2(1/Pr[F (X,Y ) =
v]) − 1). But if X is only guranateed to have min-entropy n −m, then F ′(X) can be a constant;
specifically, let v be such that Prr∈{0,1}n [F (r) = v] ≥ 2−m, and consider X that is uniform over
{r : F ′(r)=v}. It follows that Pr[F (X,Y )=v] ≥ 1/2.

4.3.2 Relation to the coordination model

It seems quite tempting to believe that if a joint distribution is t-coordinated then it can be
generated with t bits of cross influence. We are only able to show that this is approximately true
in the sense that such a distribution is close to one that can be generated with approximately t
bits of cross influence. The (small) gap seems related to the issue discussed in Section 4.3.1.

Proposition 4.11 (low coordination implies low cross influence): For every ε > 0, every joint
distribution that is t-coordinated is ε-close to a distribution having at most t + log2(1/ε) bits of
cross influence.

Proof: Let (X,Y ) be a joint distribution that is t-coordinated, and let Z be the related distribution
guaranteed by Definition 3.1. Suppose (for simplicity)28 that Z = f(U`), X|Z=z = gz(U`) and
Y |Z=z = hz(U`), where U` denotes the uniform distribution on {0, 1}`. Consider the generator
G = (G1, G2) such that G1((s, r1), r2) = gf(s)(r1) and G2((s, r1), r2) = hf(s)(r2). Then, r2 has no
influence on G1, whereas the influence of (s, r1) on G2 is upper-bounded as follows: For every (s, r1)
and r2, it holds that

Prs′,r′1 [G2((s′, r′1), r2) 6=G2((s, r1), r2)] = Prs′,r′1 [hf(s′)(r2) 6=hf(s)(r2)]

≤ Prs′ [f(s′) 6=f(s)]

= 1− Pr[Z=f(s)].

Hence, letting S denote the support of Z, the influence of (s, r1) on G2 is upper-bounbded by
maxz∈S{log2(1/Pr[Z=z])}. Recall that by the hypothesis |S| ≤ 2t, and note that if minz∈S{Pr[Z=
z]} ≥ 2−t, then we get a cross influence bound of t.

In the general case (where minz∈S{Pr[Z=z]} ≥ 2−t may not hold), the proposition follows by
first omitting from the support of Z any element that occurs with probability smaller than ε/2t,
and then applying the foregoing argument. Specifically, denoting by Z ′ the random variables Z
conditioned on Z ∈ {z : Pr[Z = z] ≥ ε/2t}, we let (X ′, Y ′) be the joint distribution obtained by
picking z according to Z ′ and outputting (X|Z=z, Y |Z=z). Note that (X ′, Y ′) is ε-close to (X,Y ).
Applying the foregoing argument to (X ′, Y ′), we infer that (X ′, Y ′) has cross influence at most
log2(ε/2t)−1, and the claim follows.

28In general, the inputs for f and the gz’s and hz’s may be distributed uniformly in arbitrary finite sets. But the
same can be done for G; see brief discussion following Definition 4.1. Furthermore, we can approximate the general
processes by processes that take uniformly distributed `-bit long strings, where ` = O(n/ε2).
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Separating cross influence from bits of coordination. An immediate corollary of combining
Theorem 3.2 and Proposition 4.3 is that the model of cross influence is strictly more liberal than
the model of coordination. Specifically, this yields Part 2 of the following corollary, whereas Part 1
follows by combining Theorem 3.2 and Proposition 4.6.

Corollary 4.12 (cross influence may be much smaller than the amount of coordination):

1. There exists a joint distribution that can be generated with at most six bits of cross influence,
but is 0.24-far from any (n−O(log n))-coordinated distribution.

2. There exists a joint distribution that can be generated with at most one bit of cross influence,
but is 0.49-far from any (0.5n−O(1))-coordinated distribution.

Furthermore, each part in the foregoing joint distributions has min-entropy at least n− 4.

Proof: For Part 1, observe that (by Theorem 3.2 and [6, Thm. 7(i)]) there exists an extractor
EXT (with error o(1)) for any (n−O(log n))-coordinated distribution of min-entropy at least n− 4
(since [6, Thm. 7(i)] asserts that standard extractors exist for min-entropy Θ(log n)). But Propo-
sition 4.6 asserts that there exists a joint distribution (X,Y ) having six bits of cross influence and
min-entropy n− 4 (for each part) such that |Pr[EXT(X,Y ) = 1]− 0.5| ≥ 1/4. Hence, (X,Y ) cannot
be 0.24-close to an (n−O(log n))-coordinated distribution.

For Part 2, recall that the proof of Proposition 4.3 actually establishes that there exists a
joint distribution (X,Y ) having a single bit of cross influence and min-entropy n− 1 on which the
inner-product mod 2 always outputs 0. On the other hand, by Theorem 3.2 and [6, Thm. 9], the
inner-product mod 2 is an extractor with error 0.01 for any (0.5n−O(1))-coordinated distribution
of min-entropy at least n− 1 (since [6, Thm. 9] asserts that the inner-product mod 2 is a standard
extractors for min-entropy 0.5n + Ω(1)). Hence, (X,Y ) cannot be 0.49-close to a (0.5n − O(1))-
coordinated distribution.

4.3.3 On the converse of Proposition 4.2

Recall that Proposition 4.2 asserts that if the joint distribution (X,Y ) can be generated with at most
t bits of cross influence, then Eq. (6) holds for every x and y. We show that while the converse
does not hold literally (i.e., perfectly), it does hold approximately. Actually, it will be instructive
to rewrite Eq. (6) as follows.

Pr[Y =y |X=x] ≤ 2t · Pr[Y =y]. (11)

We call t the min-entropy loss.

Proposition 4.13 (small min-entropy loss implies low cross influence): Suppose that the joint
distribution (X,Y ) has min-entropy loss at most t; that is, Eq. (11) holds for every x, y (w.r.t this
value of t). Then, for every ε > 0, the joint distribution (X,Y ) is ε-close to a joint distribution
that can be generated with t+O(log(1/ε)) bits of cross influence. Furthermore, the first element is
generated with no influence of the second part of the seed.

As shown in Proposition 4.14, the relaxation allowing to generate a distribution that is only close
to the original is essential to the foregoing result.
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Proof: Loosely speaking, for a joint distribution (X,Y ) that satisfies Eq. (11), we shall present a
generator G = (G1, G2) with t + O(1) bits of cross influence such that G(U`+`) is close to (X,Y ).
We will generate X with no influence of the second half of the seed, and select Y with some bounded
influence of the first half of the seed. Specifically, for r = (r1, ..., r4) and s = (s1, ...., sO(2t)), we let
G1(r, s) be a function of r1 only, and G2(r, s) be one of O(2t) strings corresponding to s1, ..., sO(2t).
Furthermore, each of the latter strings will be output with probability at least Ω(2−t), where the
probability is taken over the choice of r (and the bound holds for any fixed s). To be more specific,
we need a few definitions.

Let g1, g2 : {0, 1}`′ → {0, 1}n be such thatX ≡ g1(U`′) and Y ≡ g2(U`′). Then, G1((r1, r2, r3, r4), s) =
g1(r1) and G2(r, (s1, ...., sT )) will always be in {g2(si) : i ∈ [T ]}. To actually define G2, we need

a few auxiliary notations. For every x, y, let px(y)
def
= Pr[Y = y |X = x], and p(y)

def
= Pr[Y =

y] = Pr[g2(U`′)]. Letting qx(y)
def
= px(y)/p(y), recall that qx(y) ≤ 2t (by Eq. (11)), and note that

E[qx(Y )] =
∑

y px(y) = 1. For a parameter ε > 0 (e.g., ε = 0.001), let f = O(ε−2 log(1/ε)) and

T = f · 2t.

• For r = (r1, r2, r3, r4) ∈ {0, 1}`′ × [1/ε] × [T ] × [0, 1] and s = (s1, ..., sT ) ∈ ({0, 1}`′)T , define
χ(r, s) = 0 if either r2 = 1 or

∑
i∈[T ] qg1(r1)(g2(si)) 6∈ [(1± ε) · T ]; otherwise, χ(r, s) = 1.

• Then, G2(r, s) = g2(sr3) if χ(r, s) = 0, and otherwise G2 uses r4 to output g2(si) with
probability proportional to qg1(r1)(g2(si)); that is, in the latter case, g2(si) is output with
probability

πr1,s(i)
def
=

qg1(r1)(g2(si))∑
j∈[T ] qg1(r1)(g2(sj))

(12)

Letting σr1,s(r4) denote the selection made by r4 based on r1 and s, we have

Prr4 [σr1,s(r4)= i] = πr1,s(i). (13)

In this case, G2(r, s) = g2(sσr1,s(r4)).

Actually, the πr1,s(i)’s (and so the σr1,s(r4)’s) depend only on g1(r1) amd s (i.e., they are indepen-
dent of the specific r1 as long as g1(r1) is fixed). These variables also determine whether or not∑

i∈[T ] qg1(r1)(g2(si)) 6∈ [(1±ε) ·T ] holds. As we shall see, this condition holds with high probability,
over the random choice of s. The variable r2 is an alternative way of setting χ to 0; in this case
r3 ∈ [T ] is used to select the output among the g2(si)’s. Typically χ = 1, and in this case r4 is used
to select the outcome (according to Eq. (12); see also Eq. (13)). Either way, the output is always
one of the g2(si)’s.

The output distribution of the generator. Observe that, for every fixed r = (r1, r2, r3, r4), and
uniformly distributed s = (s1, ..., sT ) ∈ ({0, 1}`′)T the qg1(r1)(g2(sj))’s are IIDs in [0, 2t] with ex-
pectation 1. Using the multiplicative Chernoff bound, we get

Prs1,...,sT∈{0,1}`′

∑
j∈[T ]

qg1(r1)(g2(sj)) = (1± ε) · T

 > 1− exp(−ε2 · T/2t) = 1− ε.
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It follows that Prr,s[χ(r, s) = 0] < 2ε. We upper-bound the statistical distance betwen (X,Y ) and
G(U2`) by considering an arbitrary set S ⊂ {0, 1}n+n and observing that∣∣∣Pr[(X,Y )∈S]− Prr,s∈{0,1}` [G(r, s)∈S]

∣∣∣
< 2ε+ |Pr[(X,Y )∈S]− Prr,s[G(r, s)∈S |χ(r, s) = 1]|
≤ 2ε+ 0.5 ·

∑
x,y

|Pr[(X,Y )=(x, y)]− Prr,s[G(r, s)=(x, y) |χ(r, s) = 1]|

= 2ε+ 0.5 ·
∑
x

Pr[X=x] ·
∑
y

|px(y)− Prr,s[G2(r, s)=y |χ(r, s) = 1 & G1(r)=x]|

where the equality uses G1(U2`) ≡ X and px(y) = Pr[Y = y |X=x]. Using G1((r1, r2, r3, r4), s) =
g1(r1), for each (x, y), we analyze the corresponding term, while letting Ax(s) = 1 if and only if
(the “approximation condition”)

∑
j∈[T ] qx(g2(sj)) = (1± ε) · T holds.

Prr,s[G2(r, s)=y |χ(r, s)=1 & g1(r1)=x]

=
∑
i∈[T ]

Prs,r4 [g2(si)=y & σr1,s(r4)= i |Ax(s)=1] (for any r1 ∈ g−1
1 (x))

≤
∑
i∈[T ]

Prsi [g2(si)=y] · max
s:Ax(s)=1

{
qx(y)∑

j∈[T ] qx(g2(sj))

}

≤
∑
i∈[T ]

p(y) · px(y)/p(y)

(1− ε) · T

< (1 + 2ε) · px(y).

Similarly, we obtain a lower bound of (1 − 2ε) · px(y). Hence, for every x, y, it holds that
Prr,s[G2(r, s) = y |χ(r, s) = 1 & G1(r) = x] is in [(1 ± 2ε) · px(y)]. It follows that the output of
(G1, G2) is 3ε-close to (X,Y ).

The cross influence of the generator. Recall that s has no influence on the output of G1. So all that
is left is to upper-bound the influence of r on G2. This is easy to do by relying only on the case
that r2 = 1. Specifically, recall that for every (r, s) it holds that G2(r, s) = g2(si) for some i ∈ [T ].
Hence, for every (r, s) and such i, we have

Pru[G2(u, s)=G2(r, s)] = Pru[G2(u, s)=g2(si)]

≥ Pru=(u1,u2,u3,u4)[u2 =1 & u3 = i]

=
1

1/ε
· 1

T

which implies an influence upper bound of log2(T/ε) = t+O(log(1/ε)).

Proposition 4.14 (exact versus approximate generation with bounded cross influence): There
exists a joint distribution (X,Y ) that is 2−n-close to a product distribution but cannot be generated
with less than one bit of cross influence. Furthermore, (X,Y ) has min-entropy loss at most O(2−n).
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Proof: Let (X,Y ) be uniform on the set S
def
= {(x, y) ∈ {0, 1}n+n : x 6= y}. Then, (X,Y ) is 2−n-

close to the uniform distribution on {0, 1}n+n, which is a product distribution. We also observe
that the min-entropy loss of (X,Y ) is

max
(x,y)∈S

{
log2

(
Pr[Y =y |X=x]

Pr[Y =y]

)}
= log2

(
2n

2n − 1

)
= Θ(2−n).

On the other hand, generating (X,Y ) requires at least one bit of cross influence, because generating
any joint distribution that is not a product distribution requires at least one bit of cross influence.
The latter assertion is proved by considering an arbitrary generator G = (G1, G2) and observing
that

min
r,s∈{0,1}`

{
Pru∈{0,1}` [G1(r, u)=G1(r, s)]

}
= min

r∈{0,1}`

{
min

y∈Supp(G1(r,U`))
{Pr[G1(r, U`)=y]}

}
≤ min

r∈{0,1}`

{
1

|Supp(G1(r, U`))|

}
where the last inequality is an equality in the case that Supp(G1(r, U`)) is a singleton. Hence, if
any of the sets Supp(G1(r, U`)) is not a singleton, then the influence of the second part of the seed
on G1 is at least log2 |Supp(G1(r, U`))| ≥ 1. The same holds, of course, for G2.

Comment. The joint distribution (X,Y ) used in the proof of Proposition 4.14 can be generated
using a single bit of cross influence. Recall that (X,Y ) is uniform on S = {(x, y) ∈ {0, 1}n+n : x 6=
y}. For r = (r′, b) ∈ {0, 1}n+1 and s = (s0, s1) ∈ S, consider the generator G = (G1, G2) such that
G1((r′, b), s) = r′ and G2((r′, b), (s0, s1)) = sb if sb 6= r′ and G2((r′, b), (s0, s1)) = sb⊕1 otherwise
(i.e., when sb = r′). The reader may verify that for every (x, y) ∈ S it holds that

Pr((r′,b),(s0,s1))∈{0,1}n+1×S [G2((r′, b), (s0, s1))=y |G1((r′, b), (s0, s1))=x]

= Pr(b,(s0,s1))∈{0,1}×S [G2((x, b), (s0, s1))=y]

= Pr(b,(s0,s1))∈{0,1}×S [sb=x & sb⊕1 =y] + Pr(b,(s0,s1))∈{0,1}×S [sb=y]

=
1

|S|
+ 2−n

=
1

2n − 1

which implies that G generates (X,Y ). As for the influence of r on G2, note that for every r = (r′, b)
and s = (s0, s1), letting i ∈ {0, 1} such that G2(r, s) = si, it holds that

Pr(u,c)∈{0,1}n+1 [G2((u, c), (s0, s1))=G2((r′, b), (s0, s1))]

= Pr(u,c)∈{0,1}n+1 [G2((u, c), (s0, s1))=si]

≥ Pr(u,c)∈{0,1}n+1 [b= i & u 6=si] + Pr(u,c)∈{0,1}n+1 [b= i⊕ 1 & u=si⊕1]

=
2n − 1

2n+1
+

1

2n+1

and the claim follows.
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5 Dependence as mutual information

This model is the most general model considered in the current work, and it offers the weakest
positive results regarding the extraction of randomness.

5.1 Definition and Observations

The mutual information of the pair (X,Y ), denoted I(X;Y ), is defined as H(X) +H(Y )−H(X,Y ),

where H(Z)
def
=
∑

z Pr[Z = z] · log2(1/Pr[Z = z]) is the entropy of the distribution Z. A natural
proposal is to measure the dependence between a pair of sources via their mutual information.

Definition 5.1 (the model of bounded mutual information): The model of sources of bounded
mutual information, denoted MIn(k, t), consists of all joint distribution (X,Y ) over {0, 1}n+n such
that I(X;Y ) ≤ t and each of the n-bit long sources has min-entropy at least k.

Relation to other models. It seems that an upper bound on the amount of cross influence
implies an upper bound on mutual information. This is indeed the case, as shown next while
relying on Proposition 4.2.

Proposition 5.2 (low cross influence implies low mutual information): Suppose that the joint
distribution (X,Y ) can be generated with at most t bits of cross influence. Then, (X,Y ) has
mutual information at most t (i.e., I(X;Y ) ≤ t).

Combinined with Proposition 4.11, it follows that a joint distribution that is t-coordinated is ε-
close to having mutual information t + log2(1/ε). A stronger bound can be obtained directly (see
Proposition 5.3).

Proof: Combining the definition of mutual definition29 with Proposition 4.2 (see Eq. (6)), we have

I(X;Y ) =
∑
x,y

Pr[(X,Y )=(x, y)] · log2

(
Pr[(X,Y )=(x, y)]

Pr[X=x] · Pr[Y =y]

)
(14)

≤ log2(2t).

The claim follows.

Proposition 5.3 (low coordination implies low mutual information): Every joint distribution that
is t-coordinated has mutual information at most t.

Proof: Let (X,Y ) be a joint distribution that is t-coordinated, and let Z be the related distribution
guaranteed by Definition 3.1. Recall that I(A; (B,C)) = H(A)−H(A|(B,C)) ≥ H(A)−H(A|B) =
I(A;B). Hence, I((X,Z); (Y,Z)) ≥ I(X;Y ) and

I(X;Y ) ≤ I((X,Z); (Y,Z)) = H(X,Z) +H(Y,Z)−H(X,Y, Z) (15)

29Indeed, mutual definition is often defined as Eq. (14). To see the equality to H(X) +H(Y )−H(X,Y ), use

log2

(
Pr[(X,Y )=(x, y)]

Pr[X=x] · Pr[Y =y]

)
= log2

(
1

Pr[X=x]

)
+ log2

(
1

Pr[Y =y]

)
− log2

(
1

Pr[(X,Y )=(x, y)]

)
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follows. Next, recall that
H(X,Y, Z) = H(Z) +H((X,Y )|Z) (16)

and note that

H((X,Y )|Z) =
∑
z

Pr[Z=z] ·H((X,Y )|Z = z)

=
∑
z

Pr[Z=z] · (H(X|Z = z) +H(Y |Z = z))

= H(X|Z) +H(Y |Z),

where the second equality is due to the independence of X and Y when conditioned on any value
of Z. Hence, we have

H((X,Y )|Z) = H(X,Z)−H(Z) +H(Y,Z)−H(Z). (17)

Combining Eq. (15), Eq. (16), and Eq. (17), we get

I(X;Y ) ≤ H(X,Z) +H(Y, Z)−H(X,Y, Z)

= H(X,Z) +H(Y, Z)− (H(Z) +H(X,Y |Z))

= H(X,Z) +H(Y, Z)− (H(Z) +H(X,Z)−H(Z) +H(Y,Z)−H(Z))

= H(Z),

and the claim follows since H(Z) ≤ t.

5.2 Extraction and condensing

The main result of this section is a condenser for joint distributions of bounded mutual information.
This result, presented in Theorem 5.5, is inferior to the condensing result provided for the case of
bounded cross influence (in Theorem 4.4). Unfortunately, as shown in Proposition 5.7, this is es-
sentially the best one can do in the current model (i.e., Theorem 5.5 is essentially optimal). But
before getting there, we present negative results regarding extraction and condensing (for low mu-
tual information) that are sharper than those presented for low cross influence (cf. Propositions 4.6
and 4.7).

Proposition 5.4 (on the impossibility of extraction and limitation of condensing for joint distri-
bution with low mutual information): For every function F : {0, 1}n×{0, 1}n → {0, 1}m and every
t ≤ m, there exists a joint distribution (X,Y ) having at most t bits of mutual information such
that both X and Y have min-entropy at least n− t, but the first t bits of F (X,Y ) are constant.

Recall that Proposition 4.7, which refers to joint distributions with t bits of cross influence, only
implies that the first t bits of F (X,Y ) have min-entropy at most 0.75t + O(1). (As for Proposi-
tion 4.6, it implies that if t ≥ 6, then the first bit of F (X,Y ) has a bias at least 1/2.) Furthermore,
the following proof is much simpler than the proof of Proposition 4.7 (and is also is simpler than
the proof of Proposition 4.6).
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Proof: We let F ′(x, y) denote the t-bit long prefix of F (x, y), and focus on the analysis of F ′.

For each v, we define Sv
def
= {(x, y)∈{0, 1}n+n : F ′(x, y)=v}, and let pv

def
= Prx,y∈{0,1}n [(x, y)∈Sv].

We fix v such that pv ≥ 2−t, and let S be a subset of Sv that has exactly 2−t · 22n elements. We
consider the joint distribution (X,Y ) that is uniform over S. Then, for every x ∈ {0, 1}n, we have

Pr[X=x] = Prr,s∈{0,1}n [r=x | (r, s)∈S]

=
Prr,s∈{0,1}n [(r, s)∈S | r=x] · Prr∈{0,1}n [r=x]

Prr,s∈{0,1}n [(r, s)∈S]

=
Prs∈{0,1}n [F ′(x, s)= v] · 2−n

2−t

which is at most 2t−n. This implies that X has min-entropy at least n − t, and the same consid-
erations hold for Y . In addition, we observe that (X,Y ) has mutual information at most t, since
H(X,Y ) = 2n − t (by virtue of being uniform over S), whereas H(X) + H(Y ) ≤ 2n. The claim
follows, since F ′(X,Y ) ≡ v.

Condensing (with inferior parameters). While we cannot meet the condensing guarantees
provided in the case of cross influence (see Theorem 4.4), we can obtain meaningful (but inferior)
condensing for joint distributions of low mutual information. The key observation is that the proof
of Theorem 4.4 (i.e., condenser for sources with low cross influence) only relies on Eq. (6), which
Proposition 4.2 asserts to hold for joint distribution of cross influence t. (Recall that Eq. (6) says
that the min-entropy of (X,Y ) is at most t units smaller than the sum of the min-entropies of X
and Y .) We obtain a somewhat similar result for sources with low mutual information by showing
that they are close to sources that satisfy Eq. (6), albeit with a larger min-entropy loss. Specifically,
we shall show that if I(X;Y ) ≤ t then, for every β > 0, the joint distribution (1X, 1Y ) is O(β)-close
to a joint distribution that satisfy Eq. (6) with parameter t′ = O(t/β) (rather than with t).

Theorem 5.5 (condensers for sources with low mutual information): Let k ≤ n and CND : {0, 1}n+1×
{0, 1}n+1 → {0, 1}m be a condenser with error ε and min-entropy deficiency d for pairs of inde-
pendent sources that have min-entropy at least k each. Then, for every β ∈ (0, 0.25) and for every
(X,Y ) ∈ {0, 1}n+n such that I(X;Y ) ≤ t and both X and Y have min-entropy at least k, it holds
that CND(1X, 1Y ) is (4β + 2t

′ · ε)-close to a distribution that has min-entropy at least m − d − t′,
where t′

def
= (t+O(1))/β.

That is, if CND is a condenser of error ε and deficiency d for the model STDn+1(k), then CND′(x, y) =
CND(1x, 1y) is a condenser of error 4β + 2t

′ · ε and deficiency d + t′ for the model MIn(k, t), where
t′ = (t+O(1))/β. (In Theorem 5.6 we show that CND itself is a condenser of error 4β + 2t

′ · ε and
deficiency d + t′ for the model MIn+1(k + 1, t).) Indeed, this result is weaker than the analogous
result for low cross influence (i.e., Theorem 4.4), since we lose a t′ = β−1 · (t + O(1)) term in the
min-entropy guarantee for the output (whereas in Theorem 4.4 we only lost a t term). As is shown
in Proposition 5.7, this loss is inevitible.

Proof: As hinted above, the proof boils down to showing that (1X, 1Y ) is 4β-close to a joint
distribution (X ′, Y ′) such that both X ′ and Y ′ have min-entropy at least k and for every x and y
it holds that

Pr[(X ′, Y ′)=(x, y)] ≤ 2t
′ · Pr[X ′=x] · Pr[Y ′=y], (18)
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where t′ = O(t/β). Once Eq. (18) is established (with X ′ and Y ′ that have min-entropy at
least k each), it follows that CND(X ′, Y ′) is 2t

′ · ε-close to having min-entropy at least m − d − t′,
so CND(1X, 1Y ) is (4β + 2t

′ · ε)-close to a distribution having min-entropy at least m − d − t′.
(We use (1X, 1Y ) rather than (X,Y ) in order to simplify the proof; this “feature” is removed in
Theorem 5.6.)

Towards proving Eq. (18), we consider the set of pairs (x, y) that violate this inequality; specif-
ically,

B
def
=
{

(x, y) : Pr[(X,Y )=(x, y)] > 2t
′ · Pr[X=x] · Pr[Y =y]

}
. (19)

Recalling that

I(X;Y ) =
∑
(x,y)

Pr[(X,Y ))=(x, y)] · log2

(
Pr[(X,Y ))=(x, y)]

Pr[X=x] · Pr[Y =y]

)
(20)

we observe that the contribution of pairs in B to Eq. (20) is large (i.e., each (x, y) ∈ B contributes
more than t′ units). Assuming that the contribution of all other pairs is non-negative (which is not
the case), the foregoing would imply that Pr[X ∈B] is small (i.e., smaller than t/t′). The actual
argument requires addressing the foregoing objection.

Claim 5.5.1 (upper-bounding Pr[(X,Y )∈B]): For t′ = (t+ 16)/β, it holds that Pr[(X,Y )∈B] <
β.

Proof: The contribution of B to I(X;Y ) is given by the following sum∑
(x,y)∈B

Pr[(X,Y ))=(x, y)] · log2

(
Pr[(X,Y ))=(x, y)]

Pr[X=x] · Pr[Y =y]

)
> Pr[(X,Y ) ∈ B] · t′, (21)

where the inequality is due to the definition of B. Now, if we could ignore the negative contribution
to I(X;Y ), then we would have derived Pr[(X,Y ) ∈B] < t/t′ < β, and the claim would follow.
But we need to justify ignoring the negative contribution or rather bound its effect, as we do next.

Letting ρx,y
def
= Pr[(X,Y ))=(x,y)]

Pr[X=x]·Pr[Y=y] we upper-bound the (magnitude of the) negative contribution

of elements in the set {(x, y) : ρx,y < 1} to I(X;Y ) by partitioning this set according to the

approximate value of ρx,y. Specifically, for any b > 1 (e.g., b = 2), we consider the sets Si
def
=

{(x, y) : ρx,y ∈ [b−i, b−i+1)}, for i ∈ N. We first note that

Pr[(X,Y ) ∈ Si] =
∑

(x,y)∈Si

Pr[(X,Y )=(x, y)]

<
∑

(x,y)∈Si

b−i+1 · Pr[X=x] · Pr[Y =y]

≤ b−i+1.

Using Pr[(X,Y ) ∈ Si] < b−i+1 (and the definition of Si), the magnitude of the negative contribution
(of the pairs in

⋃
i∈N Si) equals

N
def
= −

∑
i∈N

∑
(x,y)∈Si

Pr[(X,Y ))=(x, y)] · log2 ρx,y
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=
∑
i∈N

∑
(x,y)∈Si

Pr[(X,Y ))=(x, y)] · log2(1/ρx,y)

≤
∑
i∈N

Pr[(X,Y ) ∈ Si] · log2(bi)

<
∑
i∈N

b−i+i · (i · log2 b)

=
b4

(b− 1)2
· log2 b

which equals 16 when b = 2. (Actually, the expression is minimized at b ≈ 1.40457, and its value
there is approximately 11.6546 < 12.) Combining this fact with Eq. (21), we get

I(X;Y ) >
∑

(x,y):ρx,y∈[1,2t′ ]

Pr[(X,Y ))=(x, y)] · log2 ρx,y + Pr[(X,Y ) ∈ B] · t′ −N

≥ Pr[(X,Y ) ∈ B] · t′ − 16.

Letting t′ = (t+ 16)/β, it follows that Pr[(X,Y ) ∈ B] < (I(X;Y ) + 16)/t′ = β.

Defining the joint distribution (X ′, Y ′). One may be tempted to define (X ′, Y ′) as (X,Y ) conditioned
on not residing in B (i.e., Pr[(X ′, Y ′)=(x, y)] = Pr[(X,Y )=(x, y)|(X,Y ) 6∈ B] for every (x, y) 6∈B),
but this cause new violation of Eq. (20) (i.e., a pair (x, y) that was not in B may violate Eq. (20)
because the probability of x (or y) was reduced by the modification). Hence we define (X ′, Y ′)
by modifying the joint distribution (X,Y ) in a more careful manner. Intuitively, compansate for
removing pairs (x, y) that hit B by moving the probability weight to other pairs of the form (x, ·)
and (·, y). Specifically, we consider the following randomized sampling procedure.

• With probability β, the procedure selects uniformly r, s ∈ {0, 1}n, and outputs (0r, 0s).

• Otherwise (i.e., with probability 1− β), the procedure acts as follows:

– Samples (X,Y ), obtaining (x, y)← (X,Y ).

– If (x, y) 6∈ B, it outputs (1x, 1y) with probability 1/2 and halts without output otherwise.

– Otherwise (i.e., when (x, y) ∈ B), the procedure selects uniformly r ∈ {0, 1}n, outputs
(1x, 0r) with probability 1/2, and outputs (0r, 1y) otherwise.

Letting p denote the probability that this procedure produces output, and β′
def
= Pr[(X,Y ) ∈ B] <

β < 1/2, observe that

p = β + (1− β) · ((1− β′) · 0.5 + β′) = β + 0.5 · (1 + β′) · (1− β), (22)

which implies
0.5 < 0.5 + 0.5β ≤ p < 0.5 + β < 0.75, (23)

where the last inequality uses β < 0.25. The joint distribution (X ′, Y ′) is obtained by applying
rejection sampling to the foregoing procedure; that is, Pr[(X ′, Y ′) = (x′, y′)] equals 1/p times the
probability that the foregoing procedure outputs (x′, y′).

Claim 5.5.2 (properties of the joint distribution (X ′, Y ′)):
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1. (X ′, Y ′) is 4β-close to (1X, 1Y ).

2. (X ′, Y ′) satisfies Pr[(X ′, Y ′)=(x′, y′)] < 2t
′+1 · Pr[X ′=x′] · Pr[Y ′=y′] for every x′, y′.

3. X ′ and Y ′ have each min-entropy at least k.

Proof: The following facts are each readily verifable.

1. For every r, s ∈ {0, 1}n, it holds that Pr[(X ′, Y ′)=(0r, 0s)] = β · 2−2n/p.

2. For every (x, y) ∈ {0, 1}2n \B, it holds that

Pr[(X ′, Y ′)=(1x, 1y)] =
(1− β) · Pr[(X,Y )=(x, y)] · 0.5

p
=

1− β
2p

· Pr[(X,Y )=(x, y)],

which is smaller than Pr[(X,Y )=(x, y)], since 1−β
2p < 1−β

1+β < 1.

In particular, combined with Claim 5.5.1, this establishes Part 1 of the current claim. Specif-
ically, observe that the total variation distance between (X ′, Y ′) and (1X, 1Y ) equals∑

w:Pr[(1X,1Y )=w]>Pr[(X′,Y ′)=w]

(
Pr[(1X, 1Y )=w]− Pr[(X ′, Y ′)=w]

)
=

∑
(x,y)∈{0,1}n+n

(
Pr[(1X, 1Y )=(1x, 1y)]− Pr[(X ′, Y ′)=(1x, 1y)]

)
= Pr[(X,Y )∈B] +

∑
(x,y)∈{0,1}2n\B

(
Pr[(1X, 1Y )=(1x, 1y)]− Pr[(X ′, Y ′)=(1x, 1y)]

)
= Pr[(X,Y )∈B] +

∑
(x,y)∈{0,1}2n\B

(
Pr[(X,Y )=(x, y)]− 1− β

2p
· Pr[(X,Y )=(x, y)]

)

= Pr[(X,Y )∈B] + Pr[(X,Y ) 6∈B] ·
(

1− 1− β
2p

)
≤ Pr[(X,Y )∈B] +

(
1− 1− β

2p

)
where the second equality is due to the fact that Pr[(X ′, Y ′) = (1x, 1y)] = 0 if (x, y) ∈ B

and is smaller than Pr[(X,Y ) = (x, y)] otherwise. Using p < 0.5 + β, we have
(

1− 1−β
2p

)
<(

1− 1−β
1+2β

)
< 3β. Using Claim 5.5.1, the total variation distance is upper-bounded by 4β,

which establishes Part 1 of the current claim.

3. For every x, r ∈ {0, 1}n, it holds that

Pr[(X ′, Y ′)=(1x, 0r)] =
1− β

2p
·
∑

y:(x,y)∈B

Pr[(X,Y )=(x, y)] · 2−n.

Ditto for Pr[(X ′, Y ′)=(0r, 1y)].
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4. Using Facts 2 and 3, for every x ∈ {0, 1}n, we have

Pr[X ′=1x] =
1− β

2p
·
∑
y

Pr[(X,Y )=(x, y)] =
1− β

2p
· Pr[X=x]

which resides in (0.5·Pr[X=x],Pr[X=x]), since p ∈ (0, 5, 0.5+β) and β < 1/4. In particular,
Pr[X ′=1x] < Pr[X=x] ≤ 2−k. Ditto for Pr[Y ′=1y].

5. Using Facts 1 and 3, for every r ∈ {0, 1}n, we have

Pr[X ′=0r] =
β · 2−n

p
+

1− β
2p

·
∑

(x,y)∈B

Pr[(X,Y )=(x, y)] · 2−n

=

(
β +

(1− β) · β′

2

)
· 2−n

p

Hence, this probability resides in [β ·2−n/p, 1.5β ·2−n/p), which is a subset of (β ·2−n, 3β ·2−n).
In particular, Pr[X ′=0r] < 3β · 2−n < 2−n, since β < 1/4. Ditto for Pr[Y ′=0r].

Combining Facts 4 and 5, it follows that the min-entropy of X ′ is min(k, n) = k. Ditto for
Y ′. This establishes Part 3 of the claim.

6. Using Facts 2 and 4 (as well as the definition of B), for every (x, y) ∈ {0, 1}2n \B, we have

Pr[(X ′, Y ′)=(1x, 1y)] =
(1− β)

2p
· Pr[(X,Y )=(x, y)]

≤ (1− β)

2p
· 2t′ · Pr[X=x] · Pr[Y =y]

=
(1− β)

2p
· 2t′ · Pr[X ′=1x]

(1− β)/2p
· Pr[Y ′=1y]

(1− β)/2p

=
2p

1− β
· 2t′ · Pr[X ′=1x] · Pr[Y ′=1y]

< 2t
′+1 · Pr[X ′=1x] · Pr[Y ′=1y]

since 2p/(1− β) < 2.

Recall that Pr[(X ′, Y ′)=(1x, 1y)] = 0 for every (x, y) ∈ B.

7. Combining Fact 3 with Facts 4 and 5, for every (x, r) ∈ {0, 1}2n, we have

Pr[(X ′, Y ′)=(1x, 0r)] =
(1− β)

2p
·
∑

y:(x,y)∈B

Pr[(X,Y )=(x, y)] · 2−n

≤ (1− β)

2p
· Pr[X=x] · 2−n

<
(1− β)

2p
· Pr[X ′=1x]

(1− β)/2p
· Pr[Y ′=0r]

β

= β−1 · Pr[X ′=1x] · Pr[Y ′=0r],

where the second inequality is due to Pr[Y ′=0r] > β · 2−n. Ditto for Pr[(X ′, Y ′)=(0r, 1y)].
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8. Lastly, using Facts 1 and 5, for every (r, s) ∈ {0, 1}2n, we have

Pr[(X ′, Y ′)=(0r, 0s)] =
β

p
· 2−2n

<
β

p
· Pr[X ′=0r]

β
· Pr[Y ′=0s]

β

= β−1 · Pr[X ′=0r] · Pr[Y ′=0s].

Combining Facts 6–8, we get Pr[(X ′, Y ′) = (x′, y′)] < max(2t
′+1, β−1) · Pr[X ′= x′] · Pr[Y ′= y′] for

every x′, y′ ∈ {0, 1}n+ 1. Using t′ = (t + 16)/β > 1/β > log2(1/β), this establishes Part 2 of the
claim. Recalling that we have already established Parts 1 and 3 (see Facts 2 and 5, respectively),
the claim follows.

Conclusion. Recall that, by our hypothesis, CND is a condenser of error ε and deficiency d for the
model STDn+1(k). The proof of Theorem 4.4 actually establishes that if U and V have min-entropy
k and Pr[(U, V ) = (u, v)] ≤ 2τ · Pr[U = u] · Pr[V = v] for all u, v ∈ {0, 1}n+1, then CND(X ′, Y ′) is
2τ ·ε-close to a distribution that has min-entropy m−d−τ . These two conditions are established for
(X ′, Y ′) and τ = t′+ 1 by Parts 3 and 2 of Claim 5.5.2, respectively. Hence, CND(X ′, Y ′) is 2t

′+1 · ε-
close to a distribution that has min-entropy m−d− (t′+ 1). Using Part 1 of Claim 5.5.2, it follows
that CND(1X, 1Y ) is (4β + 2t

′+1 · ε)-close to a distribution that has min-entropy m − d − (t′ + 1).
Recalling that t′ = (t+ 16)/β, the theorem follows (by replacing t′ with t′ + 1).

A small variation. As shown next, the fact that in Theorem 5.5 the standard condenser CND is
applied to (1X, 1Y ), rather than to the joint distribution (X,Y ) itself, is immaterial; it was done
only in order to make the proof more transparent.

Theorem 5.6 (Theorem 5.5, revisited): Let k ≤ n and CND : {0, 1}n × {0, 1}n → {0, 1}m be a
condenser with error ε and min-entropy deficiency d for pairs of independent sources that have
min-entropy at least k − 1 each. Then, for every β ∈ (0, 0.25) and for every (X,Y ) ∈ {0, 1}n+n

such that I(X;Y ) ≤ t and both X and Y have min-entropy at least k, it holds that CND(X,Y ) is

(4β+2t
′ ·ε)-close to a distribution that has min-entropy at least m−d− t′, where t′

def
= (t+O(1))/β.

That is, if CND is a condenser of error ε and deficiency d for the model STDn(k−1), then it constitutes
a condenser of error 4β+2t

′ · ε and deficiency d+ t′ for the model MIn(k, t), where t′ = (t+O(1))/β.

Proof: Recall that, given a joint distribution (X,Y ) ∈ {0, 1}n+n, we have defined in the proof of
Theorem 5.5 a distribution (X ′, Y ′) ∈ {0, 1}2·(n+1), which was shown to be 4β-close to (1X, 1Y ).
Here we define a distribution (X ′′, Y ′′) so that X ′′ (resp., Y ′′) is the n-bit long suffix of X ′ (resp.,
Y ′). We establish the following properties of (X ′′, Y ′′), while relying on the corresponding properties
of (X ′, Y ′) (as asserted in Claim 5.5.2):

1. (X ′′, Y ′′) is 4β-close to (X,Y ).

This holds because the application of a function can only decrease the total variation distance
between distributions. Specifically, consider the function f : {0, 1}2(n+1) → {0, 1}2n defined
by f(x′, y′) = (x′′, y′′) such that x′′ (resp., y′′) is the n-bit long suffix of x′ (resp., y′). Then,
f(X ′, Y ′) is 4β-close to f(1X, 1Y ), whereas (X ′′, Y ′′) = f(X ′, Y ′) and (X,Y ) = f(1X, 1Y ).
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2. (X ′′, Y ′′) satisfies Pr[(X ′′, Y ′′)=(x′′, y′′)] < 2t
′+1 · Pr[X ′′=x′′] · Pr[Y ′′=y′′] for every x′′, y′′.

This is beacuse

Pr[(X ′′, Y ′′)=(x′′, y′′)] =
∑

σ,τ∈{0,1}

Pr[(X ′, Y ′)=(σx′′, τy′′)]

≤
∑

σ,τ∈{0,1}

2t
′+1 · Pr[X ′=σx′′] · Pr[Y ′=τy′′]

= 2t
′+1 · Pr[X ′′=x′′] · Pr[Y ′′=y′′].

3. X ′′ and Y ′′ have each min-entropy at least k − 1.

This is because

Pr[X ′′=x′′] =
∑

σ∈{0,1}

Pr[X ′=σx′′]

≤ 2 · 2−k.

As in the proof of Theorem 5.5, it follows that CND(X ′′, Y ′′) is 2t
′ · ε-close to a distribution that has

min-entropy m − d − (t′ + 1), and consequently CND(X,Y ) is (4β + 2t
′ · ε)-close to a distribution

that has min-entropy m− d− (t′ + 1). The theorem follows.

On the optimality of Theorem 5.5. As mentioned already a couple of times, the min-entropy
loss suffered by Theorem 5.5 is inevitable.

Proposition 5.7 (on the limitation of condensing for joint distribution with low mutual infor-
mation): For every function F : {0, 1}n × {0, 1}n → {0, 1}m and every t ≤ m and ε ∈ (0, 1),
there exists a joint distribution (X ′, Y ′) having at most t bits of mutual information such that, for

t′
def
= ((t− 2)/ε), both X ′ and Y ′ have min-entropy at least n− t′, but there exists v ∈ {0, 1}t′ such

that the first t′ bits of F (X ′, Y ′) equal v with probability greater than ε.

Actually, t′ = (t − H2(ε))/ε, where H2 is the binary entropy function. Hence, for any ε′ < ε,
any distribution W that is ε′-close to F (X,Y ) satisfes Pr[W = v] ≥ ε − ε′. It follows that W has
min-entropy at least log2(2m−t

′
/(ε − ε′)) = m − t′ − log2(ε − ε′), which means that there is no

condenser with deficiency t′− log2(1/(ε− ε′)) and error ε′ for sources of cross influence t that each
have min-entropy at least n− t′. Hence, the deficiency obtained by Theorem 5.5 is optimal up to a
constant factor. Specifically, recalling that the deficiency bound obtained in Theorem 5.5 for error
ε′ is (t+O(1))/(0.25 · ε′ − o(1)), whereas t′ − log2(1/(ε− ε′)) = (t− 2− ε−1 · log2(1/(ε− ε′))/ε, we
conclude that the constant factor is arbitrary close to 4 (by choosing ε′ < ε arbitrarily close to ε
while assuming log2(1/(ε− ε′)) +O(1) = o(t)).

Proof: Let F ′(x, y) denote the first t′ bits of F (x, y), and let (X,Y ) be a joint distribution as
guaranteed by Proposition 5.4; that is, (X,Y ) has at most t′ bits of mutual information, both X
and Y have min-entropy at least n − t′, and the first t′ bits of F ′(X,Y ) are constant, denoted v.
Define (X ′, Y ′) to equal (X,Y ) with probability ε, and equal the uniform distribution over {0, 1}2n
otherwise. Then:
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1. The mutual information of (X ′, Y ′) is at most ε · t′+ 2 = t; actually, I(X ′, Y ′) ≤ ε · I(X,Y ) +
2 ·H2(ε), where H2 is the binary entropy function.

This holds because H(X ′) ≤ H2(ε)+ε·H(X)+(1−ε)·n, and ditto for Y ′, whereas H(X ′, Y ′) ≥
ε ·H(X,Y ) + (1− ε) · 2n. Hence,

I(X ′, Y ′) = H(X ′) +H(Y ′)−H(X ′, Y ′)

≤ 2 ·H2(ε) + ε · (H(X) +H(Y )) + 2 · (1− ε) · n− (ε ·H(X,Y ) + (1− ε) · 2n)

= 2 ·H2(ε) + ε · I(X,Y ).

2. The min-entropy of X (resp., Y ) is at least n− t′, since Pr[X=x] ≤ ε · 2−(n−t′) + (1− ε) · 2−n
for every x.

3. Pr[F ′(X ′, Y ′)=v] = ε+ (1− ε) · 2−2n > ε.

The claim follows.

Separating cross influence from mutual information. An immediate corollary of combining
Theorem 4.4 and Proposition 5.7 is that the model of mutual information is strictly more liberal
than the model of cross influence.

Corollary 5.8 (mutual information may be much smaller than cross influence): For every ε′ ∈
[Ω(1/n), 0.5], there exists a joint distribution that that has mutual information at most three, but is
ε′-far from any distribution that can be generated with 1/2ε′ bits of cross influence. Furthermore,
each part in the foregoing joint distribution has min-entropy at least n− (1/2ε′).

Equivalently, for every t′ < n/O(1), there exists a joint distribution has mutual information at most
three, but is (1/2t′)-far from any distribution that can be generated with t′ bits of cross influence.

Proof: We contrast the following two facts.

1. By Theorem 4.4 and [6, Thm. 7(i)], for any ε′ > 0, there exists a condenser CND : {0, 1}n+n →
{0, 1}t′+log2(1/ε′) with error ε′ and deficiency t′ for any joint distribution having t′ bits of cross
influence and min-entropy 3 · (t′ + log(9n/ε′)).

This is the case because [6, Thm. 7(i)] asserts that standard extractors of error 2−t
′ · ε′ that

output m bits exist for min-entropy k = m + 2 · (t′ + log2(9n/ε′)), whereas by Theorem 4.4
such condensers have error ε′ and deficiency t′ for any joint distribution having t′ bits of cross
influence and min-entropy k.

2. On the other hand, instatiating Proposition 5.7 with t = 3 and ε = 1/t′ implies that there
exists a joint distribution (X,Y ) having three bits of mutual information and min-entropy
n − t′ (for each part) for which CND(X,Y ) is (ε − ε′)-far from having min-entropy at least
log2(1/ε′).

Hence, if n − t′ ≥ 3 · (t′ + log2(9n/ε′)) and ε − ε′ ≥ ε′, then (X,Y ) cannot be generated with t′

bits of cross influence, because otherwise Fact 1 would imply that CND(X,Y ) is ε′-close to having
min-entropy at least log2(1/ε′) (since this corresponds to deficiency t′ on an output of length
t′+ log2(1/ε′)), whereas Fact 2 says that CND(X,Y ) is (ε− ε′)-far from any such distribution. Using
ε′ = ε/2 and t′ = 1/ε < n/5, the claim follows.
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6 Detour: On the communication complexity of sampling

The communication complexity of sampling problems, as defined in Definition 3.3, seems to have
emerged in [2]. While our intention in making this definition was to capture a natural notion of
dependence between sources (viewed as the outcomes of the two parties in such a protocol), we
observe that our results regarding extraction from such sources yield communication complexity
lower bounds. Specifically, combining Theorems 3.2 and 3.4, we derive the following lower bound.

Theorem 6.1 (communication complexity lower bounds): Let EXT : {0, 1}n−1 × {0, 1}n−1 →
{0, 1} be a standard two-source extractor with error 0.12 for sources of min-entropy k. Then,
the joint distribution (X,Y ) = ((X ′, 1), (Y ′, EXT(X ′, Y ′))), where (X ′, Y ′) is uniformly distributed
in {0, 1}n−1 × {0, 1}n−1, has communication complexity greater than n− k − 7.

A couple of corollaries of Theorem 6.1 are stated below. As stated upfront, the communication
complexity of such problems seems to have emerged in [2], and we do not know if Theorem 6.1 was
known before. For sure, the current proof is simple. We also note that although [6, Thm. 24] showed
that computing a standard extractor for min-entropy k requires n−k−O(1) bits of communication,
the sampling problem may be easier.

Proof: Note that the joint distribution (X,Y ) = ((X ′, 1), (Y ′, EXT(X ′, Y ′))) generalizes the dis-
tribution used in the proof of Proposition 4.3, where we used the inner product (mod 2) function
in the role of EXT. On the one hand, the combination of Theorems 3.2 and 3.4 implies if (X,Y )
has communication complexity n− k − O(1), then applying any standard two-source extractor to
(X,Y ) yields an output bit with bounded bias. On the one hand, we show that a specific standard
extractor that is derived from EXT yields a constant bit when applied to (X,Y ). We comment that
for the special case of the inner product (mod 2) extractor, the transformation of EXT to a related
standard extractor is not needed, and the proof reduces to invoking Proposition 4.3 (as is) and
contrasting it with Theorems 3.2 and 3.4 (see Footnote 30).

Seeking to establish the more general result, we first modify the extractor EXT in a way that
maintains its ability to extract from independent sources, while allowing us to show (later) that it
fails to extract on (X,Y ). Specifically, we first show that the function F : {0, 1}n×{0, 1}n → {0, 1}
defined by F (x′a, y′b) = EXT(x′, y′) + b, where a, b ∈ {0, 1}, is a standard two-source extractor with
error 0.24 for sources of min-entropy k + 4.

Consider two arbitrary independent sources U and V , each having min-entropy k′ = k +
log2(1/0.12). Then, the (n − 1)-bit prefix of U , denoted U ′, has min-entropy k′ − 1 > k. The
same holds for the (n−1)-bit prefix of V , denoted V ′. Furthermore, for V = V ′B (i.e., B ∈ {0, 1}),
if Pr[B=b] ≥ 0.12, then the min-entropy of V ′ conditioned on B = b is at least k′−log2(1/0.12) = k
(i.e., Pr[V ′ = v′|B = b] ≤ 2−k

′
/0.12). Using the hypothesis regarding EXT (and noticing that the

case of Pr[B=b] < 0.12 only adds 0.12 to the extraction error of F ), we infer that

Pr[F (U ′A, V ′B)=0] = Pr[EXT(U ′, V ′)+B=0]

=
∑

b∈{0,1}

Pr[B=b] · Pr[EXT(U ′, V ′)+B=0 |B=b]

= 0.5± 2 · 0.12,

where one 0.12 term is due to the extraction error of EXT (on sources of min-entropy k) and the
other term is due to the case Pr[B= b] < 0.12 (whenever such a b exists). Hence, F is a standard
two-source extractor with error 0.24 for sources of min-entropy k + log2(1/0.12).
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Recall that (X,Y ) = ((X ′, 1), (Y ′, EXT(X ′, Y ′))), where (X ′, Y ′) is uniformly distributed in
{0, 1}n−1 × {0, 1}n−1. Now, suppose that (X,Y ) has communication complexity at most t, and
consider the following two conflicting facts regarding F (X,Y ).

1. On the one hand, F (X,Y ) is 0.48-close to a uniformly distributed bit, provide that X (resp.,
Y ) has min-entropy at least (k + log2(1/0.12) + t+ log2(1/0.24) = k + t+ 2 log2(1/0.12)− 1.

This follows by combining Theorem 3.4, which implies that (X,Y ) is t-coordinated, with
Theorem 3.2, which asserts that any extractor of error ε for STDn(k′′) constitutes an extractor
of error 2ε for COORn(k′′ + t+ log2(1/ε), t).

2. On the other hand, F (X,Y ) ≡ 0, although X (resp., Y ) has min-entropy at least n− 1.

This is the case because F ((x′, 1), (y′, EXT(x′, y′))) = EXT(x′, y′) + EXT(x′, y′) = 0, whereas
(X,Y ) = ((X ′, 1), (Y ′, EXT(X ′, Y ′))).

These two facts stand in contradiction if k + t + 2 log2(1/0.12) − 1 ≤ n − 1. Hence, k + t +
2 log2(1/0.12) > n must hold, which yields t > n− k − 7.

Corollary 6.2 (corollaries of Theorem 6.1):

1. Let IP2 : {0, 1}n × {0, 1}n → {0, 1} denote inner product (mod 2) function. Then, the joint
distribution (X,Y ) = ((X ′, 1), (Y ′, IP2(X ′, Y ′))) has communication complexity greater than
0.5n− 12.30

2. For more than a 1−(1/n) fraction of the functions F : {0, 1}n−1×{0, 1}n−1 → {0, 1}, it holds
that the joint distribution (X,Y ) = ((X ′, 1), (Y ′, F (X ′, Y ′))) has communication complexity
greater than n− log2 n− 19.

In both parts, (X ′, Y ′) is uniformly distributed in {0, 1}n−1 × {0, 1}n−1,

Proof: For Part 1, we use [6, Thm. 9] which asserts that the inner product (mod 2) is an extractor
with error 0.12 for independent sources that have min-entropy at least 0.5n+ 1 + log2(1/0.12). For
Part 2, we use [6, Thm. 7(i)]) which asserts that more than a 1 − (1/n) fraction of the functions
F : {0, 1}n−1 × {0, 1}n−1 → {0, 1} constitute extractors with error 0.12 for independent sources
that have min-entropy at least log2 n+ 5 + 2 log2(1/0.12).
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