
Catalytic Approaches to the Tree Evaluation Problem
James Cook

University of Toronto
Canada

jcook@cs.berkeley.edu

Ian Mertz
University of Toronto

Canada
mertz@cs.toronto.edu

ABSTRACT
The study of branching programs for the Tree Evaluation
Problem (TreeEval), introduced by S. Cook et al. (TOCT
2012), remains one of the most promising approaches to
separating L from P. Given a label in [k] at each leaf of a
complete binary tree and an explicit function in [k]2 → [k]
for recursively computing the value of each internal node
from its children, the problem is to compute the value at the
root node. The problem is parameterized by the alphabet
size k and the height h of the tree. A branching program
implementing the straightforward recursive algorithm uses
Θ((k +1)h) states, organized into 2h−1 layers of width up to
kh. Until now no better deterministic algorithm was known.

We present a series of three new algorithms solving TreeEval.
They are inspired by the work of Buhrman et al. on catalytic
space (STOC 2012), applied outside the catalytic-space set-
ting. First we give a novel branching program with 24h poly(k)
layers of width 23k, which beats the straightforward algorithm
when h = ω(k/ log k). Next we give a branching program
with k2h poly(k) layers of width k3. This has total size com-
parable to the straightforward algorithm, but is implemented
using the catalytic framework. Finally we interpolate be-
tween the two algorithms to give a branching program with
(O(k

h
))2h poly(k) layers of width (O(k

h
))ϵh for any constant

ϵ > 0, which beats the straightforward algorithm for all
h ≥ k1/2+poly ϵ. These are the first deterministic branching
programs to beat the straightforward algorithm, but more
importantly this is the first non-trivial approach to proving
deterministic upper bounds for TreeEval.

We also contribute new machinery to the catalytic com-
puting program, which may be of independent interest to
some readers.

CCS CONCEPTS
• Theory of computation→Computational complex-
ity and cryptography; Design and analysis of algorithms.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00
https://doi.org/10.1145/3357713.3384316

KEYWORDS
complexity theory, branching programs, catalytic computing,
tree evaluation problem
ACM Reference Format:
James Cook and Ian Mertz. 2020. Catalytic Approaches to the
Tree Evaluation Problem. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing (STOC ’20), June
22–26, 2020, Chicago, IL, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3357713.3384316

ACKNOWLEDGMENTS
The authors would like to thank Stephen Cook and Toniann
Pitassi for many helpful discussions leading up to this paper.
We would also like to thank the anonymous reviewers for
their useful suggestions. Both authors are partially funded
by NSERC.

1 INTRODUCTION
The deterministic time and space classes, such as L, P,
PSPACE, EXP, and EXPSPACE are fundamental to complex-
ity theory. While the containments SPACE(k) ⊆ TIME(2k)
and TIME(k) ⊆ SPACE(k) are exercises that would show
up in a first complexity course, figuring out whether these
containments are strict or not has proved to be one of the
greatest challenges in the field. As an example, one way to
separate P from PSPACE would be to separate P from NP,
but determining whether P = NP has remained unsolved for
fifty years. The Tree Evaluation Problem [7] has emerged
over the past ten years as a candidate for separating L from
P.

1.1 The Tree Evaluation Problem and
L vs. P

Definition 1 (Tree Evaluation Problem [7]). The tree evalu-
ation problem TreeEvalh,k is parameterized by a height h and
an alphabet size k. The input is a full binary tree of height h,
where every leaf is labeled with an element of [k] and every
internal node is labeled with a function from [k]× [k] to [k].
The output is the value of the root of the tree, where the
tree is evaluated bottom-up in the natural way. We will often
omit the subscripts and write TreeEval.

The input to TreeEvalh,k has size (2h−1 − 1)k2 log k +
2h−1 log k = O(2h poly(k)). The problem is in P: it can be
solved in polynomial time by evaluating every node, starting
from the leaves, in an order that ensures a node’s two children
get evaluated before its parent.

However, it is not a log-space algorithm. The space used
depends on the order in which the nodes are evaluated, since

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 56 (2020)

https://doi.org/10.1145/3357713.3384316
https://doi.org/10.1145/3357713.3384316

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

child values can be forgotten once a parent is evaluated. An
argument based on a “pebbling game” [7, 14] shows that
even the most space-efficient version of the algorithm must
at some point simultaneously store h values, requiring space
Ω(h log k) ⊆ ω(h + log k) for non-constant h, k.

We call this algorithm the pebbling algorithm. (Specifically,
the most efficient version of the algorithm, using Θ(h log k)
space.)

1.2 Branching Programs and Lower
Bounds

In order to prove space lower bounds for TreeEval, a natural
model which previous work has focused on is the branching
program model, where space is represented by the (logarithm
of the) size of the program. The pebbling algorithm described
in the previous section can be translated into a branching
program whose states are arranged into 2h − 1 layers, corre-
sponding to the order in which the nodes are evaluated. The
number of states in a layer varies depending on how many
values the algorithm must remember at the corresponding
point in its execution, but the pebbling-based lower bound
shows that at least one layer will always have at least kh

nodes. We say this algorithm has length 2h − 1 and width kh.
The size of a branching program is the number of states; a
careful analysis shows this one has size Θ((k + 1)h). (This is
equivalent to Θ(kh) so long as h = O(k)).)

While no unconditional lower bounds are known, a tight
Ω(kh) lower bound is known for a number of natural restric-
tions. In the read-once restriction the branching program
only looks at each bit of the input at most once, while in the
thrifty restriction the branching program must read only bits
corresponding to the actual evaluation of the tree may be
read (so for example if the children of a node v evaluate to x
and y, the branching program must not read any values of the
function at v other than the value at (x, y)). The pebbling
algorithm fulfills both of these conditions, but either one of
them is enough to guarantee a lower bound of Ω(kh) [9][7],
and neither of these restrictions assume any other structure
on the branching program such as being layered.

1.3 Catalytic Computing
The catalytic computing framework of [3], which came out
of a fascinating line of work [1, 2] on branching programs
and circuits, proposes a novel way to use space in a more
efficient way when computing circuits with simple invertible
operations. The idea is deceptively simple: assume that we
have a small amount of clean work space but an exponentially
larger amount of “catalytic space”, which is free to use but
is full of junk bits that have to be returned to their original
configuration at the end of the computation. Since we have
no assumptions on the bits in the catalytic space it would
seem like it can’t help us compute anything, but Buhrman
et al. [3] show that if we are working with mathematical
instructions that are invertible, this invertibility can help us
in two ways: first, by letting us use the space in a way that
can be easily reset at the end of the computation, and second,

by cleverly cancelling out the “noise” that the bits in the
catalytic space introduce into the computation by inverting
the computation and then subtracting off the contribution
of the noise.

While there has been a flurry of work [4, 5, 8, 11, 15]
following the definition of catalytic computing in [3] (see e.g.
[12] for a survey of early results), the preliminary results of
[1, 2] solved a slightly different type of problem. The catalytic
computing model involves having a small clean work tape
and exponentially more “catalytic space”, but [1] and [2]
study what can be done by constantly reusing a small (even
constant size) work tape. Since we are looking to rule out
logspace algorithms for TreeEval, it is this latter approach
which seems more immediately applicable.

1.4 Our Results
In this work we show how the catalytic computing framework
can be applied to the tree evaluation problem to give novel
algorithms, even for the simple model of layered branching
programs. We present the following three programs (recall
that the layered branching program for the pebbling algo-
rithm has length 2h poly(k) and width kh)

Theorem 1 (One-hot algorithm). There exists a lay-
ered branching program solving TreeEvalh,k with length at
most 4h poly(k) and width 23k.

Theorem 2 (Binary algorithm). There exists a layered
branching program solving TreeEvalh,k with length at most
(2k)2h poly(k) and width k3.

Theorem 3 (Hybrid algorithm). For every ϵ > 0
there exists a C = O(1/ϵ) and a branching program solv-
ing TreeEvalh,k with length at most (C k

h
+ 1)2h poly(k) and

width (C k
h

+ 1)ϵh.

While the constants in the exponent mean these algorithms
don’t beat the pebbling algorithm in all cases, for h large
(but still o(k)) we do indeed achieve an o(kh) size branching
program.

1.5 Important Ideas
This is the first non-trivial approach to proving upper bounds
for TreeEval, and in our opinion it highlights a number of
interesting ideas in catalytic computing and branching pro-
grams, which we will highlight before going into the body of
the paper.

Pebbling games. The previous best-known algorithm for
TreeEval was based on a strategy for the pebbling game on a
complete binary tree.

The optimal strategy for this game is well-understood,
leading to a Ω(kh) lower bound on the number of states used
by any pebbling-based branching program. Every subsequent
deterministic lower bound for TreeEval, for generalized classes
of branching program beyond pebbling, has arrived at the
same quantity Ω(kh), effectively by showing how to relate
every algorithm back to the pebbling game. From its initial

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

definition in [7] it has been widely believed that pebbling
gives the optimal lower bound [13].

Our algorithms defeat this common lower bound by using
techniques far removed from pebbling.

Use of algebraic techniques. The main result of [3] is to use
catalytic computing to efficiently compute the majority of
poly n bits, which they do in an algebraic way by summing
the input and then using Fermat’s Little Theorem. This relies
on an inherent way of turning majority into an algebraic ob-
ject [16]. In TreeEval, each node is labeled with an arbitrary
[k] × [k] → [k] function. The encoding we present for each
algorithm determines how this function can be interpreted
as an algebraic object — for example, the one-hot encoding
in §3 allows us to interpret it as a sum over products corre-
sponding to a DNF with at most one AND evaluating to 1.
We then apply techniques from [3]—as well as many novel
improvements on them—to get our results.

Read-once/thrifty restrictions. Our algorithms avoid the
lower bounds in the read-once and thrifty models (§1.2). How
do they do this? Simply put, the “catalytic space” approach
involves recomputing nodes many many times and checking
the evaluation of every possible pair of inputs at every node,
which leads them to break the read-once and thrifty restric-
tions in spectacular fashion. This is the first approach to
TreeEval that breaks both restrictions, and furthermore in
our opinion it does so in a very natural way.

Space-bounded models. We are working in the model of
small total workspace, which in some ways puts our work
morally closer to the results of [1, 2] than to [3]. However at
the core of our results are extensions of techniques from [3],
which gives us new ways to use these techniques designed for
the large (catalytic) space regime in the setting where not
even the catalytic tape is available. It would be interesting
to see how many of our known catalytic techniques can be
carried over in this way.

Future improvements. The extensions we prove are not
known to be optimal in terms of how much recomputation is
needed, which is the only bottleneck in the strength of our
results. Thus improving them provides a direct approach to
improving our results for TreeEval. In fact, an “optimal gen-
eralization” of the lemma in question would give a logspace
algorithm for TreeEval, firmly shutting the door on the ap-
proach of [7].

2 PRELIMINARIES
While we think of the input to TreeEvalh,k as being of size
2h−1 log k + (2h−1 − 1)k2 log k, for our computation model it
will be easier to think of our programs as always reading a
whole element of [k] at once.

Definition 2 (One piece of the input). In the below defi-
nitions of register programs and branching programs, each
instruction or state will be allowed to read one “piece” of
the input to TreeEvalh,k. A piece of the input is either the

value associated with a leaf, or an internal node’s function
evaluated at one of its k2 possible inputs.

The input consists of 2h−1 + (2h−1 − 1)k2 pieces, each of
which is a value in [k].

2.1 Branching Programs
There are different definitions of branching programs. Ours
is equivalent to that of S. Cook et al. [7], restricted to the
deterministic case. Each state of a branching program reads
one piece of the input to TreeEvalh,k (Definition 2): either
the single value associated with a leaf, or an internal node’s
function evaluated at one of the k2 possible inputs.

Definition 3 (Branching program [7]). A deterministic
branching program1 for TreeEvalh,k consists of:
• A set of states V , one of which is identified as the

starting state.
• A set of output states identified in V , each labelled

with a value for the program to output.
• For every non-output state, a piece of the input to query

(Definition 2) , and a transition function mapping the
result of the query (in [k]) to the next state.

If the sequence of states induced by an input to TreeEvalh,k

ends at an output state (rather than looping infinitely), the
program terminates with that output. The size of the branch-
ing program is |V |.

Additionally our programs will be from a restricted model
called a layered branching program, wherein each state v ∈ V
is associated with a layer t, such that if v’s transition function
maps it to v′ ∈ V on some query, then v′ is in layer t + 1.

2.2 Invertible Programs and Transparent
Computation

We describe our algorithms as register machine programs,
which are described by a set of registers each storing values
in some ring R, plus a list of mathematical instructions on
updating those registers. Our algorithms for TreeEval use the
two-element field R = F2, but many of our results apply more
generally. Each instruction has the form Rx ← Rx +

∏
i
ui

(or later, Rx ← Rx +
∑

j

∏
i
ui,j), where Rx is a register and

each ui is either a constant or a register other than Rx. These
are similar to the programs used in the catalytic computing
work of Buhrman et al. [3]. In particular, every instruction
is reversible—the instructions Rx ← Rx + (−1) ·

∏
ui and

Rx ← Rx +
∑

j
(−1) ·

∏
i
ui,j respectively suffice—so we call

them invertible programs.
We will analyze the behaviour of subroutines by comparing

the register values before and after a subroutine runs. Follow-
ing Buhrman et al. [3], we denote the initial value of register
Ri with τi and say that a subroutine transparently computes
value v into register Ri if Ri = τi + v when it finishes. We
1In this paper we only consider uniform branching programs, which
are branching programs which can be efficiently constructed. The exact
notion of uniformity we use is unimportant, except for noting that any
size s branching program we construct for TreeEval can certainly be
constructed uniformly in log s space.

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

use similar notation for vectors of registers: #–τi is the initial
value of # –

Ri, and transparently computing a vector #–v means
ensuring # –

Ri = #–τi + #–v .
We depart from [3] by allowing some register indices to

depend on the input. For example, if vx denotes the value
of leaf node x in the input to TreeEval, then the instruction
R1,vx ← R1,vx + 1 increments a coordinate of # –

R1 depending
on vx. To connect register programs to branching programs,
we make one restriction of our register programs, which is
that each instruction uses at most one piece of the input.
We can then transform register programs into branching
programs:

Lemma 4. Suppose P is a register program consisting of
|P | instructions using m registers over F2 that transparently
computes #–v into a vector of registers # –

R1. Then there is a
layered branching program BP of size 1 + |P |2m + k which
outputs v. The states of BP other than the starting and output
states are organized into |P | layers of size 2m.

Proof. The first layer of BP consists of a single starting
state, and the last consists of k output states. Every other
layer corresponds to an instruction in P , and has a state for
each of the 2m possible register configurations. A state reads
whichever piece of the input the corresponding instruction
uses, and its transition function leads to the state in the
following layer corresponding to the new register values.

In order to make BP output the correct value, initialize all
registers to zero by choosing 0 ∈ F2

m in the first layer as the
starting state, and designating each state in the final layer
as an output state labelled with the value of # –

R1. □

3 ALGORITHM 1: ONE-HOT
We first present our one-hot algorithm, named after the
encoding scheme it uses.

Definition 4 (One-hot encoding). Let #–vi = {vi,x}x∈[k] be a
vector of length k. We say that #–vi stores the value x ∈ [k] if
vi,x = 1 and vi,x′ = 0 for all x′ ̸= x.

The foundation for Algorithm 1 is a formula for the one-
hot encoding of a node in terms of its childrens’ encodings.
In TreeEval, if p is the parent of nodes ℓ and r, then for
all x ∈ [k], the coordinate vp,x = [vp = x] of p’s one-hot
encoding is

vp,x =
∑

(y,z)∈f−1
p (x)

[vℓ,y = 1][vr,z = 1]

To build toward Algorithm 1, in subsection 3.1 we show how
to build a reversible program that transparently computes a
single product vℓvr given programs that compute each factor,
then in subsection 3.2 we extend it to efficiently compute the
entire vector #–vp.

3.1 Binary Catalytic Products
The key tool in Theorem 1 and all our algorithms is a modified
form of Lemma 4 from [3]. We state and prove it below, using

a different program than was originally presented in [3] which
will be easier to generalize.

Lemma 5 (Lemma 4, [3]). Let Rℓ, Rr and Rp be distinct
registers. Let Pℓ be an invertible program which transparently
computes vℓ into register Rℓ and leaves the other registers
unchanged: in other words,

Rℓ = τℓ + vℓ

Ri = τi ∀i ̸= ℓ.

Similarly, let Pr be a program which updates
Rr = τr + vr

Ri = τi ∀i ̸= r

Then there exists an invertible program Pp which transparently
computes vℓvr into Rp, leaving all other registers unchanged,
i.e.

Rp = τp + vℓvr

Ri = τi ∀i ̸= p

Pp uses only the three registers Rv, Rℓ, Rp (not counting any
space used by the programs Pℓ and Pr) and makes two calls
to Pℓ and Pr each, plus four basic instructions of the form
Rp ← Rp ±RℓRr.

Proof. Program Pp performs as follows:
1: Pℓ

2: Rp ← Rp −RℓRr ▷ Rp = τp − τℓτr − vℓτr

3: Pr

4: Rp ← Rp + RℓRr ▷ Rp = τp + τℓvr + vℓvr

5: P −1
ℓ

6: Rp ← Rp −RℓRr ▷ Rp = τp − τℓτr + vℓvr

7: P −1
r

8: Rp ← Rp + RℓRr ▷ Rp = τp + vℓvr

While correctness is given by the inline comments, we moti-
vate this program intuitively. At some point (specifically in
step 4) we add (τℓ + fℓ)(τr + fr) to Rp. This yields the terms
τℓτr + fℓτr + τℓfr + fℓfr, where the fℓfr term is ultimately
what we want to be added to Rp. To cancel out all other
terms, we use Pℓ, P −1

ℓ , Pr, and P −1
r to isolate each term in

succession, noting that the only spurious term that will come
up is τℓτr. All other registers were reset because they each
have one forward program and one inverse program.

The number of recursive calls and basic instructions is
clear, and the program Pp can be inverted by running it
in reverse order, changing all + operations to − operations
and vice-versa, and switching P calls with P −1 calls for all
recursive calls. □

3.2 Parallel Binary Catalytic Products
Our algorithm for Theorem 1 will use one-hot encodings,
so we will need to adapt Lemma 5 to work with vectors of
registers. Thus in place of Rp, Rℓ, and Rr, we will instead
have vectors # –

Rp, # –
Rℓ, and # –

Rr, and for convenience we treat
each Ri,x as being an element in F2 (so + and − are both
equivalent to a bitflip).

When we execute the program Pℓ (Pr), this will flip exactly
one register in # –

Rℓ (exactly one register in # –
Rr), corresponding

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

to the value of node ℓ (the value of node r, respectively). Our
goal will be to do the same for v, i.e. add the function vector
#–

fv to the register vector # –
Rv, where fv,i will be 1 if the value

of the function computed at node v is i and 0 otherwise.
The key subroutine will be a version of Lemma 5 where ℓ

and r are the left and right children of p. The value of vx,i

will be 1 if the value of the function computed at node x is i,
and 0 otherwise. Note that while we specialize the following
lemma to the parameters of our TreeEval instance, this can
easily be adapted as a generalization of Lemma 5.

Lemma 6 (Lemma 5, parallel sum version). Let # –
Rℓ,

–
Rr

and # –
Rp be distinct k-dimensional vectors of registers. Let

vℓ,x = 1 iff x is the value of node ℓ, and let Pℓ be a program
which transparently computes #–vℓ into register # –

Rℓ and leaves
the other registers unchanged: in other words,

–
Rℓ = #–τℓ + #–vℓ

–
Ri = #–τi ∀i ̸= ℓ

Similarly, let Pr be a program which updates
–
Rr = #–τr + #–vr

–
Ri = #–τi ∀i ̸= r

where vr,x = 1 iff r evaluates to x. Then there exists a program
Pp which updates

–
Rp = #–τp + #–vp

–
Ri = #–τi ∀i ̸= p.

Pp uses only the 3k registers # –
Rp,

–
Rℓ,

–
Rr (not counting any

space used by the programs Pℓ and Pr). Pp uses two calls
to Pℓ and Pr each, plus 4k2 basic instructions of the form
Rp,fp(y,z) ← Rp,fp(y,z) ± Rℓ,yRr,z, where fp is the function
associated with node p of the TreeEval instance.

Proof. Program Pp performs as follows (note that we
retain the +/− and P/P −1 distinctions only to stress the
similarity of this program with the one in Lemma 5):

1: Pℓ

2: for x; (y, z) such that fp(y, z) = x do
3: Rp,x ← Rp,x −Rℓ,yRr,z

▷ Rp,x = τp,x −
∑

(y,z)∈f−1
p (x)(τℓ,yτr,z + vℓ,yτr,z)

4: end for
5: Pr

6: for x; (y, z) such that fp(y, z) = x do
7: Rp,x ← Rp,x + Rℓ,yRr,z

▷ Rp,x = τp,x +
∑

(y,z)∈f−1
p (x)(τℓ,yvr,z + vℓ,yvr,z)

8: end for
9: P −1

ℓ

10: for x; (y, z) such that fp(y, z) = x do
11: Rp,x ← Rp,x −Rℓ,yRr,z

▷ Rp,x = τp,x +
∑

(y,z)∈f−1
p (x)(−τℓ,yτr,z + vℓ,yvr,z)

12: end for
13: P −1

r

14: for x; (y, z) such that fp(y, z) = x do
15: Rp,x ← Rp,x + Rℓ,yRr,z

▷ Rp,x = τp,x +
∑

(y,z)∈f−1
p (x) vℓ,yvr,z

16: end for

The analysis is the same as in Lemma 5, as the instructions
for each pair (y, z) can be treated separately since the only
instructions are Rp,fp(y,z) ← Rp,fp(y,z) ±Rℓ,yRr,z. Each ba-
sic instruction from Lemma 5 is now k2 basic instructions,
exactly one for each (y, z) pair, and so all counts are as
claimed. □

Proof of Theorem 1. We show by induction on h that
there is an invertible program of length at most (4h − 2)k2

using 3k binary registers which transparently computes the
one-hot encoding of the value of the root node of a TreeEvalh,k

instance into one set of k registers, leaving the remaining
2k registers at their original values. Given such a program
P , Lemma 4 shows we can turn it into a layered branching
program with 4h poly(k) layers each containing 23k states.
The branching program produced by Lemma 4 outputs a
one-hot encoding; by relabelling the output states with their
decoded values, we can turn into a program that solves
TreeEvalh,k.

For the base case h = 1, the program only needs to read the
value of the single node and flip the single register correspond-
ing to its value, so the program has length 1 ≤ (41 − 2)k2.
For the inductive step we are given an instance TreeEvalh+1,k,
and we inductively assume that there exist programs Pℓ and
Pr corresponding to the children ℓ and r of the root p, each
of which computes a subinstance of height h.

By Lemma 6, from this we can build a program Pp com-
puting the value at node p which uses 3k registers and
consists of two calls each to Pℓ and Pr plus 4k2 basic in-
structions. Thus the total length of the program is at most
(2 + 2)(4h − 2)k2 + 4k2 ≤ (4h+1 − 2)k2 as promised. For the
space usage, since the programs Pℓ and Pr work regardless of
the initial state of the 3k registers they use and reset every-
thing except the target registers, we will allow both of them
as well as Pp to use the same set of 3k registers, relabeling
them as necessary within each program call. □

4 ALGORITHM 2: BINARY
Next is the binary algorithm, once again named after its
encoding scheme. This algorithm never uses less space than
the straightforward “pebbling” algorithm described in sub-
section 1.1, but it is an important step toward building the
“hybrid” algorithm described in section 5. It is worth noting
that while it performs slightly worse than pebbling, it does
so with very low width.

This algorithm uses a more compact encoding.

Definition 5 (Binary encoding). Let #–vi = {vi,b}b∈[log k] be a
vector of length log k. We say that #–vi stores the value x ∈ [k]
if vi,b = xb for all b ∈ [log k], where xb is the bth bit of x
when written in binary.

Working with this encoding will require moving from the
binary products used by Algorithm 1 to products of fan-in
2 log k. Following the same structure as section 3, we first
show how to compute a product of more than two scalar
values (subsection 4.1), then extend it to efficiently compute
the entire vector #–vp (subsection 4.2).

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

4.1 d-ary catalytic products
While Lemma 6 can be thought of as a generalization of
Lemma 5 to accomodate sums of binary products, our next
lemma will be a generalization to products of more than two
variables.

Lemma 7 (Lemma 5, d-ary version). Let R0, . . . , Rd be
distinct registers, and let P1 . . . Pd be invertible programs
where Pi updates

Ri = τi + vi

Rj = τj ∀j ̸= i

Then there exists an invertible program P which updates

R0 = τ0 +
∏

i

vi

Rj = τj ∀j ̸= 0
P uses only the d + 1 registers R0, . . . , Rd (not counting
any space used by the programs Pi) and makes at most 2d

calls to each Pi, plus 2d basic instructions of the form R0 ←
R0 +c

∏
i
Ri for values c independent of the register/function

values.

Proof. We define some shorthand for the sake of present-
ing Pv. When we say PS we mean apply all Pi and P −1

i

necessary so that Ri = τi for all i ∈ S and Ri = τi +vi for all
i /∈ S. In other words for all i ∈ S such that Ri = τi + vi we
run P −1

i and for all i /∈ S such that Ri = τi we run Pi, and
leave all other registers untouched. Now program P performs
as follows (with cS left undefined):

1: for S ⊆ [d] do
2: PS

3: R0 ← R0 + cS

d∏
i=1

Ri

4: end for
At the end of this program,

R0 = τ0 +
∑

S⊆[d]

cS

(∏
i∈S

τi

)(∏
i̸∈S

τi + vi

)
We will now choose the coefficients cS to make that equal
τ0 +

∏d

i=1 vi.
Expanding the polynomial, we can rewrite it as R0 =

τ0 +
∑

S⊆[d] dS

(∏
i∈S

τi

)(∏
i ̸∈S

vi

)
where dS =

∑
S′⊆S

cS′ .
Since our goal is to get R0 = τ0 +1 ·

∏
i
vi, we can restate our

goal as: choose coefficients cS such that d∅ = 1 and dS = 0
for all S ̸= ∅.

Since d∅ = c∅, we start by setting c∅ = 1. Now this
determines the singleton sets d{i} = c{i} + c∅ = 0, namely
c{i} = −c∅ for all i. We similarly set the remaining cS values
in increasing order of S ≠ ∅ under the partial order ⊆, using
the formula:

cS = −
∑
S′⊊S

cS′

This ensures that dS = 0 for S ̸= ∅.
The number of recursive calls to any Pi is at most once

per loop iteration for a total of at most 2d, while there is

one basic instruction per S for a total of 2d. As before the
program P can be inverted by running it in reverse order,
changing all + operations to − operations and vice-versa, and
switching Pi calls with P −1

i calls for all recursive calls. □

It should be noted that the number of calls to each Pi

can be improved from at most 2d to exactly 2d/d by having
the loop over all S use a Gray code [10] for order, rather
than choosing the order arbitrarily. However, what will be
important for our TEP algorithm is that the loop runs exactly
2d times.

4.2 Parallel d-ary catalytic products
We now prove an alternative version of Lemma 6 by replacing
the one-hot encoding with the binary encoding (Definition 5).
If ℓ and r are children of node p and #–vℓ and #–vr are the binary
encodings of the values at those nodes, we can compute #–vp

as follows:
vp,b =

∑
(x,y,z)∈[k]3

[xb = 1][fp(y, z) = x]
∏

b′∈[log k]

[vℓ,b′ = yb′][vr,b′ = zb′]

where tb is the bth bit of t written in binary.
Calculating vp,b in this form requires us to compute a

product of fan-in 2 log k (not counting the constant terms
[xb = 1] and [fp(y, z) = x]) and thus requires considerably
heavier machinery than Lemma 6, namely Lemma 7. We also
need to be able to compute each bit vℓ,b or vr,b separately
in order to cover all subsets of the product

∏
b∈[log k][vℓ,b =

yb][vr,b = zb], so we have to formulate our recursive statement
a bit differently.

Again note that this is a generalization of all our previous
lemmas, and the “most general” version of Lemma 5, up
to improvements in the parameters themselves. We discuss
these issues in Appendix A.
Lemma 8 (Lemma 5, parallel sum + d-ary version). Let # –

Rℓ,
–
Rr and # –

Rp be distinct (log k)-dimensional vectors of registers.
For all T ⊆ [log k] let Pℓ(T) be a program which updates

Rℓ,b = τℓ,b + vℓ,b ∀b ∈ T

Ri,b = τi,b when i ̸= ℓ or b ̸∈ T

where vℓ,b = 1 iff the binary encoding of the value at node ℓ
has a 1 in the bth position. Let Pr(T) be defined similarly.
Then for every T ⊆ [log k] there exists a program Pp(T) which
updates

Rp,b = τp,b + vp,b ∀b ∈ T

Ri,b = τi,b when i ̸= p or b ̸∈ T

Pp uses only the 3 log k registers # –
Rp,

–
Rℓ,

–
Rr (not counting

any space used by the programs Pℓ and Pr) and makes k2

calls to each Pℓ(T) and k2 calls total to each Pr(T) for a total
of 2k2 recursive calls, plus O(k3 log k) basic instructions.

Proof. We recall our key equation, which we restate as

vp,b =
∑

(x,y,z)∈[k]3

[xb = 1][fp(y, z) = x]
∏

b′∈[log k]

(vℓ,b′ + yb′)(vr,b′ + zb′)

This is because the indicators [vℓ,b′ = yb′] and [vr,b′ = zb′]
can be replaced by taking the negation of their XOR, which

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

is the same as taking the negation of either one and adding
them together mod 2.

Like in the proof of Lemma 7, we say that PSℓ,Sr means
apply whichever P (S′

ℓ) and P (S′
r) is necessary so that Rℓ,b =

τℓ for each b ∈ Sℓ, Rℓ,b = τℓ + vℓ,b for b ̸∈ Sℓ, and similarly
for Sr. Now program Pp(T) performs as follows (with cSℓ,Sr

left undefined):
1: for Sℓ, Sr ⊆ [log k] do
2: PSℓ,Sr

3: for b ∈ T ; (x, y, z) such that xb = 1∧ fp(y, z) = x do
4: Rp,b ← Rp,b + cSℓ,Sr

∏
b′∈[log k]

(Rℓ,b′ + yb′ · [b′ ̸∈

Sℓ])(Rr,b′ + zb′ · [b′ ̸∈ Sr])
5: end for
6: end for

The analysis is the same as in Lemma 6 and Lemma 7, where
we think of Sℓ and Sr as being one large set together, over
two disjoint parts of a universe of size 2 log k. Again we are
forced to choose c∅,∅ = 1 and then for all other Sℓ, Sr which
are not both empty

cSℓ,Sr =
∑

S′
ℓ

⊆Sℓ

S′
r⊆Sr

(S′
ℓ

,S′
r)̸=(Sℓ,Sr)

−cS′
ℓ

,S′
r

Since there are 2log k = k possible sets Sℓ and Sr, there are
k2 possible pairs of sets, so the number of recursive calls is as
claimed. Each line of basic instructions in the loop consists
of k3 basic instructions per b ∈ T ⊆ [log k] the number of
basic instructions is also as claimed. □

Proof of Theorem 2. We show by induction on h that
there is an invertible program of length (2k)2h poly(k) using
3 log k binary registers which transparently computes the
binary encoding of the value of the root node of a TreeEvalh,k

instance into one set of log k registers, leaving the remaining
2 log k registers at their original values. As in the proof of
Theorem 1, we can use Lemma 4 to transform this into a
layered branching program with (2k)2h poly(k) layers each
containing k3 states.

For the base case h = 1, the program need only read
the value of the single node and flip up to log k registers
corresponding to the binary encoding of its value, so the
program has length log k ≤ 40 poly(k). For the inductive step
we are given a TreeEvalh+1,k instance of height h + 1, and
we inductively assume that there exist programs Pℓ(S) and
Pr(S) corresponding to the children ℓ and r of the root p,
each of which computes any subset of bits for a subinstance
of height h.

By Lemma 7 from this we can build a program Pp :=
Pp([log k]) solving the function at p using 3 log k registers
and which makes k2 recursive calls to Pℓ functions plus
k2 recursive calls to Pr functions, plus O(k3 log k) basic
instructions. The total length of the program is at most
2k2 · (2k)2h poly(k) + O(k3 log k) ≤ (2k)2(h+1) poly(k) as
promised. For the space usage we again reuse all registers for
each recursive call. □

5 ALGORITHM 3: HYBRID
Our final algorithm is the hybrid algorithm. As the name
suggests it is a synthesis of the two previous approaches: we
break our registers into blocks such that each element in [k]
falls into only one block (one-hot), and inside the block is
identified by a binary encoding (binary).

To prove Theorem 3 we no longer need to generalize
Lemma 5 further, as Lemma 8 provides the most general form
we need. However as mentioned before we will generalize the
encoding to a hybrid encoding that interpolates between the
one-hot and binary encodings.
Definition 6 (Hybrid encoding). Let a ∈ [log k] be fixed,
and let #–vi = {vi,(A,B)}(A,B)∈[a]×[k/(2a−1)] be a vector of
length a · k

2a−1 . Intuitively we break [k] into blocks of length
2a− 1 so that within a block each element gets a unique non-
zero binary encoding of length a. More formally for x ∈ [k]
let E(x) = (x mod (2a− 1)) + 1 and let F (x) = ⌈ x

2a−1⌉. We
say that #–vi stores the value x ∈ [k] if vi,(A,B) = [E(x)A =
1 ∧ F (x) = B] for all (A, B) ∈ [a]× [k/(2a − 1)]. Note that
for a = 1 and a = log k we get k blocks of size 1 and 1 block
of size log k respectively, which recovers the encodings in
Definition 4 and Definition 5.

For all (A, B) ∈ [a]× [k/(2a−1)] the value vp,(A,B) is given
by

vp,(A,B) =
∑

(x,y,z)∈[k]3

[E(x)A = 1 ∧ F (x) = B][fp(y, z) = x]·

∏
b∈[a]

[vℓ,(b,F (y)) = E(y)b][vr,(b,F (z)) = E(z)b]

Note that if the output of ℓ is not y, then all bits vℓ,(b,F (y))
are zero, and since E(y) is nonzero the term will be zeroed
out (and similarly for the output of r and z).

This is a product of fan-in 2a, and so Lemma 7 will step in
to do the work. However one other important component is
that in any term since (y, z) is fixed all [vℓ,(b,F (y)) = E(y)b]
factors only read from block F (y) and all [vr,(b,F (z)) = E(z)b]
only read from block F (z). Thus instead of running over
all subsets of [a] for each block in [k

2a−1] separately, we can
simply run over subsets of [a] and apply them to every block
in [k

2a−1] simultaneously, for a total of 22a recursive calls for
Pℓ programs and 22a for Pr programs.

While Theorem 3 gives one setting of parameters chosen to
make the total size of the branching program small, in reality
this approach gives a whole family of branching programs
for TreeEval, in particular subsuming the constructions in
Theorem 1 and Theorem 2.
Lemma 9 (Hybrid lemma). Let # –

Rℓ, # –
Rr and # –

Rp be distinct
(a× k

2a−1)-dimensional vectors of registers. For all T ⊆ [a]
let Pℓ(T) be a program which updates

Rℓ,(A,B) = τℓ,(A,B) + vℓ,(A,B) ∀(A, B) ∈ T × [k

2a − 1]

Ri,(A,B) = τi,(A,B) when i ̸= ℓ or A ̸∈ T

where vℓ,(A,B) = 1 iff the hybrid encoding of the value at node
ℓ has a 1 in the (A, B)th position. Define Pr(T) similarly.

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

Then for every T ⊆ [a] there exists a program Pp(T) which
updates

Rp,(A,B) = τp,(A,B) + vp,(A,B) ∀(A, B) ∈ T × [k

2a − 1]

Ri,(A,B) = τi,(A,B) when i ̸= p or A ̸∈ T

Pp(T) uses only the 3· ak
2a−1 registers # –

Rp,
–
Rℓ,

–
Rr (not counting

any space used by the programs Pℓ and Pr) and makes O(22a)
calls to Pℓ programs and O(22a) calls to Pr programs, plus
O(k3 log k) basic instructions.

Proof. We can rewrite our main equation for the hybrid
algorithm as

vp,(A,B) =
∑

(x,y,z)∈[k]3

[E(x)A = 1 ∧ F (x) = B][fp(y, z) = x]·

∏
b∈[a]

(vℓ,(b,F (y)) + E(y)b)(vr,(b,F (z)) + E(z)b)

This is the same as the equation stated before this lemma,
except that as in Lemma 8, we have expressed the indicators
[vℓ,(b,F (y)) = E(y)b] and [vr,(b,F (z)) = E(z)b] using negations
of XORs. Now program Pp(T) performs as follows (with
cSℓ,Sr left undefined):

1: for Sℓ, Sr ⊆ [a] do
2: PSℓ,Sr

3: for A ∈ T ; B; (x, y, z) such that E(x)A = 1 ∧ F (x) =
B ∧ fp(y, z) = x do

4: Rp,(A,B) ← Rp,(A,B) + cSℓ,Sr

∏
b∈[a](Rℓ,(b,F (y)) +

E(y)b[b ̸∈ Sℓ])(Rr,(b,F (z)) + E(z)b[b ̸∈ Sr])
5: end for
6: end for

Notice that we never multiply bits Rℓ(b,B) and Rℓ(b′,B′)
for B ≠ B′, and so our program is able to run the protocol
from Lemma 8 “in parallel” for every block B ∈ [k

2a−1] in
the inner loop, so we only need 22a recursive calls each to Pℓ

and Pr (one per iteration of the outer loop).
To determine the values of cSℓ,Sr , let us compute the final

value of Rp,(A,B), for an arbitrary A ∈ T and B ∈ [k/(2a−1)].
To do this, we expand the polynomial added on line 4 of the
program, and take the sum over all iterations of the loop:
that is, all Sℓ, Sr ⊆ [a] and all x, y, z satisfying E(x)A =
1 ∧ F (x) = B ∧ fp(y, z) = x. This produces:

Rp,(A,B)

=τp,(A,B) +
∑

Sℓ,Sr⊆[a]
(x,y,z)∈[k]3

[E(x)A = 1 ∧ F (x) = B ∧ fp(y, z) = x]·

cSℓ,Sr (
∏
i∈Sℓ

τℓ,(b,F (y)))(
∏
i ̸∈Sℓ

(τℓ,(b,F (y)) + vℓ,(b,F (y)) + E(y)b))·

(
∏

i∈Sr

τr,(b,F (z)))(
∏

i̸∈Sr

(τr,(b,F (z)) + vr,(b,F (z)) + E(z)b))

=τp,(A,B) +
∑

(x,y,z)∈[k]3

[E(x)A = 1 ∧ F (x) = B ∧ fp(y, z) = x]·

∑
Sℓ,Sr⊆[a]

dSℓ,Sr (
∏
i∈Sℓ

τℓ,(b,F (y)))(
∏
i ̸∈Sℓ

(vℓ,(b,F (y)) + E(y)b))·

(
∏

i∈Sr

τr,(b,F (z)))(
∏

i ̸∈Sr

(vr,(b,F (z)) + E(z)b))

where dSℓ,Sr =
∑

S′
ℓ

⊆Sℓ,S′
r⊆SR

cSℓ,Sr . Note that this is es-
sentially the same structure as Lemma 8, with the only
differences being the binary flag [[E(x)A = 1 ∧ F (x) =
B ∧ fp(y, z) = x] and the exact registers being multiplied
together.

As usual, if we can ensure d∅,∅ = 1 and all other coefficients
are 0, then the part after τp,(A,B) exactly matches our formula
for vp,(A,B), and so we have Rp,(A,B) = τp,(A,B) + vp,(A,B) as
required. We start by setting c∅,∅ = 1, and then for all Sℓ, Sr

such that Sℓ ̸= ∅ ∨ Sr ̸= ∅,

cSℓ,Sr =
∑

S′
ℓ

⊆Sℓ

S′
r⊆Sr

(S′
ℓ

,S′
r)̸=(Sℓ,Sr)

−cS′
ℓ

,S′
r

again treating Sℓ and Sr as being one set over disjoint parts.
Since there are 2a possible sets Sℓ and Sr, there are 22a

possible pairs of sets, so the number of recursive calls is as
claimed. □

Proof of Theorem 3. By the same induction as in The-
orem 1 and Theorem 2, we can use Lemma 9 to build a
program Pp := Pp([a] × [k

2a−1]) which finds the value at
node p using 3 · ak

2a−1 registers and 22a recursive calls plus
O(k3 log k) basic steps. The total length of the program
is at most 22ah poly(k) and by reusing space the width is
23ak/(2a−1). For any C choosing a = log(C k

h
+ 1) we get that

22ah poly(k) = 22h log(Ck/h+1) poly(k) = (C k

h
+ 1)2h poly(k)

23ak/(2a−1) ≤ 2(3/C)h log(Ck/h+1) = (C k

h
+ 1)(3/C)h

and so choosing C = 3
ϵ

completes the proof. □

6 CONCLUSION
A reasonable question to ask is if a better version of Lemma 7
might be too much to ask for. Certainly in terms of TreeEval it
represents one possible path directly to proving TreeEval ∈ L.
Namely if Lemma 7 can be improved in the following ways:
• make only O(1) calls to each Pi

• all rounds of calls to Pi’s can be parallelized as in
Lemma 8 such that only O(1) rounds of calls are needed
• these rounds can be parallellized such that 2O(d) in-

stances sharing some set of O(d) target registers can
be run in the same round, with only O(d) registers
being used in total

then it should be possible to run Lemma 8 with length
2O(h) poly(k) and width poly(k), yielding a logspace algo-
rithm. However it may be that such a lemma would have
implications on L itself. As the most immediate avenue to
improving our main theorems, studying the feasibility of such

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

an algorithm is our most important open problem. We discuss
one potential avenue in Appendix A.

S. Cook et al. [6] offer a prize for any algorithm which,
for a fixed h, proves TreeEvalh,k ∈ O(kh−ϵ) for any constant
ϵ > 0. Note that if h ≥ k1/2+ϵ/4 then

(C k
h

+ 1)(2+ϵ)h ≤ ((C + 1)k1/2−ϵ/4)(2+ϵ)h

= (C′k)(2+ϵ)(1/2−ϵ/4)h

≤ k(1−ϵ2/4+log C′/ log k)h ≪ kh−ϵ

and so we far surpass what is required for the prize. However
to get an o(kh) upper bound for all h, the catalytic technique
seems to inevitably require 3d registers for a representation of
length d, and so getting more efficient algorithms for succinct
representations where d≪ O(k) seems to be a necessary next
step for our approach.

As discussed in section 1, our techniques come from and
generalize the catalytic computing framework despite being
in a small space regime. Understanding the power of cat-
alytic techniques to run many parallel d-ary products in the
same space could help us understand the power of using
catalytic techniques for small space classes, which could help
us understand the power of small space.

REFERENCES
[1] David A Barrington. 1989. Bounded-width polynomial-size branch-

ing programs recognize exactly those languages in NC1. J. Com-
put. System Sci. 38, 1 (1989), 150–164.

[2] Michael Ben-or and Richard Cleve. 1992. Computing Algebraic
Formulas Using a Constant Number of Registers. SIAM J. Com-
put. 21, 1 (Feb. 1992), 54–58.

[3] Harry Buhrman, Richard Cleve, Michal Kouckỳ, Bruno Loff, and
Florian Speelman. 2014. Computing with a full memory: catalytic
space. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing. ACM, 857–866.

[4] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speel-
man. 2018. Catalytic Space: Non-determinism and Hierarchy.
Theory Comput. Syst. 62, 1 (2018), 116–135.

[5] Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin
Saurabh. 2018. Space-Optimal Quasi-Gray Codes with Logarith-
mic Read Complexity. In 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland
(LIPIcs), Vol. 112. 12:1–12:15.

[6] Stephen Cook, Mark Braverman, Pierre McKenzie, Rahul San-
thanam, and Dustin Wehr. 2009. Branching Programs: Avoiding
Barriers. (August 2009). https://www.cs.toronto.edu/∼sacook/
barriers.ps Talk at Barriers Workshop at Princeton.

[7] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman,
and Rahul Santhanam. 2012. Pebbles and Branching Programs
for Tree Evaluation. ACM Trans. Comput. Theory 3, 2, Article 4
(Jan. 2012), 43 pages. https://doi.org/10.1145/2077336.2077337
arXiv version freely available at http://arxiv.org/abs/1005.2642.

[8] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma,
and Raghunath Tewari. 2020. Randomized and Symmetric Cat-
alytic Computation. Electronic Colloquium on Computational
Complexity (ECCC) 27 (2020), 24. https://eccc.weizmann.ac.il/
report/2020/024

[9] Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. 2018.
Hardness of Function Composition for Semantic Read once Branch-
ing Programs. In 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA (LIPIcs),
Vol. 102. 15:1–15:22.

[10] Frank Gray. 1953. Pulse code communication. https://patents.
google.com/patent/US2632058A/en. US Patent 2632058A.

[11] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath
Tewari. 2019. Unambiguous Catalytic Computation. Electronic
Colloquium on Computational Complexity (ECCC) 26 (2019),
95.

[12] Michal Koucký. 2016. Catalytic computation. Bulletin of the
EATCS 118 (2016).

[13] David Liu. 2013. Pebbling Arguments for Tree Evaluation. CoRR
(2013).

[14] Michael S. Paterson and Carl E. Hewitt. 1970. Comparative
Schematology. In Record of the Project MAC Conference on
Concurrent Systems and Parallel Computation, Jack B. Dennis
(Ed.). ACM, New York, NY, USA, 119–127. https://doi.org/10.
1145/1344551.1344563

[15] Aaron Potechin. 2016. A Note on Amortized Branching Program
Complexity. arXiv:cs.CC/1611.06632

[16] John H. Reif and Stephen R. Tate. 1992. ON THRESHOLD
CIRCUITS AND POLYNOMIAL COMPUTATION.

A IMPROVED d-ARY CATALYTIC
PRODUCTS

As touched upon before, Lemma 7 gives a d-ary form of
Lemma 5, with the main slowdown being the O(2d) recursive
calls to each Pi program. As a greedy next step, we could
try to reduce the number of recursive calls, possibly even to
match the constant number needed in Lemma 5.

It is worth noting that we actually have such a construction
which makes only poly(d) calls to each Pi, a major improve-
ment on Lemma 7. We state and prove this improvement,
and then discuss the problems with using the construction
presented for improving our main results.

Lemma 10 (Lemma 7, polynomially efficient version). Let
R0, . . . , Rd be distinct registers. Let P1 . . . Pd be a invertible
programs where Pi updates

Ri = τi + vi

Rj = τj ∀j ̸= i.

Then there exists an invertible program P which updates

R0 = τ0 +
∏

i

vi

Rj = τj ∀j ̸= 0.

P uses the d+1 registers R0, . . . , Rd plus d additional registers
(not counting any space used by the programs Pi) and makes
d2 calls to each Pi plus poly(d) basic instructions of the form
Rp ← Rp ±

∏
i
Ri.

Proof. We inductively compute
∏

i
vi using Lemma 5 as

a subroutine. We will compute the product like a binary tree,
at each level j computing products of pairs from level j − 1.
Inductively each register at level j will be the product of 2j

fi’s. For all j = 0 . . . log d let
–

Rj = {Rj
i} be a vector of d

2j

registers, where R0
i := Ri for all i ∈ [d] and Rlog d

1 := R0.
Since

∑
j

d
2j = 2d this gives us 2d registers as claimed. Let

P 0
ℓ := P1, P3 . . . and P 0

r := P2, P4 . . ., and for j ∈ [log d] we
inductively define programs P j

ℓ as follows:
1: P j−1

ℓ

2: for i = 1, 3 . . . do
3: Rj

i ← Rj
i −Rj−1

2i−1Rj−1
2i

4: end for
5: P j−1

r

6: for i = 1, 3 . . . do
7: Rj

i ← Rj
i + Rj−1

2i−1Rj−1
2i

8: end for
9: (P j−1

ℓ)−1

https://www.cs.toronto.edu/~sacook/barriers.ps
https://www.cs.toronto.edu/~sacook/barriers.ps
https://doi.org/10.1145/2077336.2077337
http://arxiv.org/abs/1005.2642
https://eccc.weizmann.ac.il/report/2020/024
https://eccc.weizmann.ac.il/report/2020/024
https://patents.google.com/patent/US2632058A/en
https://patents.google.com/patent/US2632058A/en
https://doi.org/10.1145/1344551.1344563
https://doi.org/10.1145/1344551.1344563
http://arxiv.org/abs/cs.CC/1611.06632

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

10: for i = 1, 3 . . . do
11: Rj

i ← Rj
i −Rj−1

2i−1Rj−1
2i

12: end for
13: (P j−1

r)−1

14: for i = 1, 3 . . . do
15: Rj

i ← Rj
i + Rj−1

2i−1Rj−1
2i

16: end for
We define the program P j

r similarly but for even i in each
loop instead.

We claim that P j
ℓ (P j

r) sets Rj
i = τ j

i +
∏2j i

i′=2j (i−1)+1 vi′

for all odd (even) i and leaves all other registers untouched,
and that it uses at most 4j calls to each Pi plus 2

3 (4j −
1)d basic instructions. This is clear for j = 0 as P 0

ℓ and
P 0

r simply add vi to all the corresponding odd and even
registers respectively using one call to each relevant Pi and
no basic instructions. Inductively correctness follows by the
correctness of the program for Lemma 5, as for each i our
program performs the same steps. Since P j−1

ℓ and P j−1
r each

make at most 4j−1 calls to each Pi and two calls are made
to each of these programs, we get at most 4 · 4j−1 = 4j calls
to each Pi program. The for loops add 2d basic instructions
for a total of 4 · 2

3 (4j−1 − 1)d + 2d = 2
3 (4j − 1)d.

Running P log d
1 we thus get R0 = Rlog d

1 = τ0 +
∏d

i′=1 vi′

as required, with a total of 4log d = d2 calls to each Pi and
O(4log dd) = poly(d) basic instructions. □

This would seem like major leap for all our results: plugging
these numbers into our construction for Theorem 2 would
give a branching program with length (log k)3h poly(log k),
which would go far and beyond the task of beating kh for
every super-constant k and h. Unfortunately, the recursive
steps of Algorithms 2 and 3 (specifically, Lemmas 8 and 9)
don’t just compute one product

∏d

i=1 vi — they actually
compute a sum involving k2 different products. Recall that
in Lemma 8 our key equation was

vp,b =
∑

(x,y,z)∈[k]×[k]×[k]

[xb = 1][fp(y, z) = x]·

∏
b′∈[log k]

[vℓ,b′ = yb′][vr,b′ = zb′]

Each distinct (y, z) gives rise to a different product, because
the y′

b or z′
b values will be distinct. This is no issue for

Lemmas 8 and 9, because each different product in the sum
is computed directly into the same Rv registers, whereas the
tree-like construction in Lemma 10 uses log k extra registers,
denoted Rj

i in the proof. Näıvely, then, computing all k2

products simultaneously would require k2 log k extra registers,
at which point Algorithm 1 is a better option. It would be
interesting to try to improve on this approach.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

