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Abstract

Proving super-logarithmic data structure lower bounds in the static group model has been a
fundamental challenge in computational geometry since the early 80’s. We prove a polynomial
(nΩ(1)) lower bound for an explicit range counting problem of n3 convex polygons in R2 (each

with nÕ(1) facets/semialgebraic-complexity), against linear storage arithmetic data structures
in the group model. Our construction and analysis are based on a combination of techniques
in Diophantine approximation, pseudorandomness, and compressed sensing—in particular, on
the existence and partial derandomization of optimal binary compressed sensing matrices in
the polynomial sparsity regime (k = n1−δ). As a byproduct, this establishes a (logarithmic)
separation between compressed sensing matrices and the stronger RIP property.
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1 Introduction

Understanding the tradeoff between the query time and storage space of data structures has been
a long and active research endeavor for several decades. In the static model, which is the focus
of our paper, the goal is to represent a database of n elements using the least amount of space
s ≥ n (measured in memory words), so that queries q ∈ R on the input data can be answered
quickly, in time t. The most compelling model for proving such tradeoffs is the cell-probe model
[Yao82], in which “query time” is measured only by the number t of memory accesses required
to retrieve the answer to q ∈ R (as in query complexity), whereas all computations on “probed”
memory cells are completely free of charge. Time-space lower bounds in this model are therefore
a purely information-theoretic question, making unconditional lower bounds a viable possibility.
Unfortunately, while a simple counting argument [Mil93] shows that almost all static data structure
problems with |R| queries require either near-trivial time t ≥ n0.99 (t = n is easy by reading all
the input database) or near-trivial space s ≥ |R|0.99 (s = |R| is easy by storing all answers), the
highest explicit cell-probe lower bound known to date is merely

t ≥ Ω

(
log(|R|/n)

log(s/n)

)
. (1)

In the interesting and realistic regime where |R| = poly(n) and the data structure is allowed to use
linear storage space (s = O(n)), (1) yields a t ≥ Ω(log n) lower bound on the query time of several
important data structure problems, such as evaluating hash functions, near-neighbor search, and
2D range counting to mention a few (see [Sie04, Pǎt08, Lar12] and references therein). Proving
an unconditional ω(log n) lower bound for any explicit static problem (with polynomially many
queries) against linear-space data structures, remains an outstanding open question in the field.

This gloomy state of affairs remains true even in restricted arithmetic models of data structures,
which have been studied extensively over the past several decades, primarily in computational
geometry and spatial databases [Mat94, Aga17]. The most well-studied model in this line of work
is the group model and its more restrictive semigroup variant [Fre81, Cha90], where the canonical
problem is that of geometric range counting. In the group model, the input database is a set of n
points x1, . . . , xn ∈ Rd (where d is typically a small constant), each associated with a weight w(xi) ∈
G from an arbitrary commutative group (e.g., G = Zm), and the goal is to preprocess these points
into small memory (by storing an arbitrary collection of s group elements), so that the weighted
sum

∑
i:xi∈r w(xi) of points in a given query “range” r ∈ R can be reported efficiently, where

summation is over the underlying group. At query time, the data structure can only manipulate
weights through the black-box addition and subtraction of weights stored in memory, and must
work for any choice of the underlying group. The query time is the number of algebraic operations
performed (additions/subtractions of memory elements). In particular, multiplication by scalars
other than ±1 is not allowed at query time. Any other computation, e.g., planning algebraic
operations based on coordinates, is free of charge. The weaker semigroup model is defined in the
same way, with the crucial difference that only addition is allowed, but not subtraction.

Some of the most natural and well-studied examples of range searching problems are orthogonal
range counting (where ranges R are axis-parallel boxes), or counting with respect to more complex
geometric objects such as balls, halfspaces or simplices. In its most general form, a range counting
problem is defined by a family R of subsets of Rd, where a common measure of the “complexity” of
the problem is the semialgebraic complexity ofR [AM94], i.e., the number of polynomial inequalities
defining a range r ∈ R (Definition 2.3).
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Essentially all known range searching data structures can be implemented in the group model1

(see [Mat94, Aga17] and references therein). Two classic examples of such data structures for
orthogonal range counting in d dimensions are range trees [Lue78], which solve the problem using
s = O(n logd n) words of space and query time t = O(logd−1 n), and Kd-trees [Ben75], which have
linear space s = O(n) at the price of polynomial t ≈ n1−1/d query time. The latter upper bound can
be achieved for any range counting problem where ranges have constant semialgebraic complexity
[AMS12].

For general polytopes or simplex range counting problems [Aga17], such polynomial query times
are believed to be inevitable unless near-trivial storage is used (s ≈ |R|), but this was only proved
in rather weak arithmetic models (or pointer machines [CR95]). In the semigroup model, where
only additions are allowed, the aforementioned data structures are known to be essentially optimal
[Cha90, Afs19]—in particular, this is the only arithmetic model where polynomial lower bounds
are known on the query time of static range searching problems. By contrast, in the group model,
where both additions and subtractions are allowed, the highest static lower bound (against linear
storage) remains Ω̃(log n), for 2D orthogonal range counting [Pǎt07]. This challenge and disparity
between the models was summarized by Pǎtraşcu [Pǎt07] as follows:

“Philosophically speaking, the difference in the type of reasoning behind semigroup lower
bounds and group lower bounds is parallel to the difference between understanding geometry and
understanding computation. Since we have been vastly more successful at the former, it should not
come as a surprise that progress outside the semigroup model has been extremely slow.”

Indeed, lower bounds in the semigroup model ultimately boil down to arguing that not all
query ranges can be “covered” with a small number of subsets of input objects [Aga17, Kol04].
Unfortunately, no such property holds for the group model, which makes proving lower bounds in
the group model much harder.

Our main result is a polynomial lower bound for an explicit range counting problem in the static
group model for data structures with linear storage:

Theorem 1.1. There is an explicit set Pn of m = n3 convex polygons in the plane R2, and a
prime p, such that any group-model data structure of size s and query time t for range counting
with respect to Pn (over Zp), must have

ts ≥ nn/70.

In particular, any linear storage (s = O(n)) data structure for Pn(over Zp) must have nΩ(1) query
time. Moreover, the semialgebraic complexity of Pn, i.e., number of facets of each convex polygon,
is nO((log logn)2).

We remark that Theorem 1.1 holds even when preprocessing is allowed to depend on the specific
group, i.e., for every group and input configuration, the data structure is allowed to store an
arbitrary set of s group elements. In contrast, the standard model in range counting literature
(as well as all known upper bounds) is oblivious: preprocessing uses the group as a black-box.
We also note that n-facet polygons arise naturally in computational geometry, for example in the
planar point location problem [CP09] (i.e., 2D nearest-neighbor search), where the input itself is a
collection of O(n)-facet disjoint polygons (Voronoi diagrams).

1 Up to poly(log logn) factors, which can be shaved-off using standard word-level parallelism on the RAM.
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Lastly, we note that in the stronger linear model of data structures, where multiplication (by
scalars) is allowed as well as addition and subtraction (hence the group is actually a ring), a
recent line of results shows that proving super-logarithmic lower bounds for any explicit (range
counting) problem would have dramatic implications to arithmetic circuit lower bounds and matrix
rigidity [DGW19, RR20]. In that sense, the group model is the strongest arithmetic model in which
polynomial lower bounds fall short of major circuit lower bounds, and Theorem 1.1 meets precisely
this frontier.

The conceptual message of this paper is that a range counting problem in Rd is hard for the
group model if (a subset of) its ranges R forms a good pseudorandom generator against affine
hyperplanes in R|R|. This will be explained in the following section. While this may not be the
only source of hardness of range counting in the group model, our work provides a new technique
for analyzing such problems and the first substantial step toward proving (exponentially higher)
lower bounds on more natural range counting problems, i.e., with lower semialgebraic complexity: If
such pseudorandom-generators (PRGs) can be realized as (indicators of) “simple” geometric ranges
in reasonably low dimension, then any linear-storage arithmetic data structure should have high
query time for the underlying range counting problem. In Section 4 we formalize this by defining
the notion of Geometric PRGs, which exploit the “geometry” of the d-dimensional input seed in
a simple way. We prove the existence of such PRGs with nontrivial parameters, as a step toward
polynomial lower bounds for halfspace range-counting in very high yet nontrivial dimension. We
believe the concept of Geometric PRGs may have further applications in computational geometry
and is of independent interest.

Techniques Our proof introduces a new way to analyze arithmetic data structures (excluding
multiplications), by combining ideas from Diophantine approximation, compressed sensing, and
pseudorandomness (specifically, derandomization of anti-concentration theorems). Our results and
analysis of “Geometric PRGs” (Theorem 4.7) rely on Fourier-analysis and hypercontractivity to es-
tablish pseudorandom properties of halfspace range counting. In the next two sections, we elaborate
on these components and the role they play in our proof.

1.1 Binary compressed sensing and sparse recovery

A key ingredient in the proof of Theorem 1.1 is the construction of binary matrices M ∈ {±1}m×n
with m = nc and c > 1 where every k rows are linearly independent over R (matrices with such
property are commonly known as compressed sensing2 matrices [CT06, DSV12]). If M is allowed
to have poly(n)-bit entries, the optimal value of k = n is easily achievable, for example by taking
an nc × n Vandermonde matrix. However, with binary (or any constant-size) entries, which is
crucially the case for our application, the answer is not clear [Ind08]. One way to construct such
explicit binary matrices over the finite field F2 (which is harder than over R) is to take the parity-
check matrix of rate-optimal binary error correcting codes (e.g., expander codes [SS96, DSV12], see
Appendix A), but unfortunately when the number of rows is polynomial (m > n1+δ) this approach
only yields k = O(n/ log n)-wise independence, and this is well known to be tight [CGH+85] (in
fact the latter shows k = O(n/ logq n) for any constant size field Fq). Other binary constructions
in the compressed-sensing and LDPC literature (e.g., [Ind08, XH07, GLW08]) achieve even worse

2Indeed, it is not hard to see that if the rows of M ∈ Rm×n are k-wise linearly independent, then M> is a
compressed sensing matrix for (k/2)-sparse m-dimensional vectors, with n “measurements”, hence the problem we
study is equivalent.
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parameters. As explained in Section 1.3, for the proof of Theorem 1.1 it is crucial to obtain the
optimal value of k = Ω(n) (even settling for a much weaker poly log(n) query lower bound would
still require k = ω(n/ log n)).

This raises a more basic question: Do optimal (k = Ω(n)) binary compressed-sensing matrices
over R even exist? Our first step is showing that a random binary poly(n) × n matrix is indeed
Ω(n)-wise independent over R (and in fact, with some more effort, also over any large enough finite
field):

Theorem 1.2 (Optimal Binary Compressed Sensing Matrices). For every c ≥ 1, and every large
enough n, a uniformly random binary matrix M ∈ {±1}nc×n is Ω(n/c)-wise independent over

R w.h.p. Moreover, such binary matrix M̃ can be constructed using only O(cn log n(log log n)2)
random bits (instead of nc+1).

Note that a näıve union bound will not work here: The probability that a fixed set of k rows
is linearly independent is, at best, 2−n (the probability that two rows are equal), which is not
small enough to union bound over all

(
nc

k

)
= nΘ(n) choices of k-subsets for k = Ω(n). Hence, the

proof requires a different analysis that somehow exploits the fact that we are working over fields of
large characteristic, while overcoming the challenge that there is an unbounded number of linear
combinations over R.

A key observation is that our analysis for random matrices turns out to carry over even to
certain pseudorandom binary matrices. This is one of the main insights of this paper, which leads
to the partial derandomization (O(cn log n(log log n)2) random bits) in Theorem 1.2. While a fully
explicit construction of optimal compressed sensing matrices with constant-size entries remains an
intriguing question in the context of sparse recovery (see the next paragraph), the construction in
Theorem 1.2 turns out to be enough for obtaining a fully explicit data structure lower bound for
range counting problems with reasonably low (nÕ(1)) semialgebraic complexity. We elaborate on
this step in Section 1.3 below.

Implications to Sparse Recovery and separation from RIP An interesting consequence of
Theorem 1.2 is a (tight) separation between binary compressed sensing matrices in which any k
rows are linearly independent, and the stronger restricted isometry property (RIP), which instead
requires any k rows to be “nearly orthogonal”. Indeed, it is well known [GLW08, BLL+19] that any
m×n matrix can, at best, be k-RIP for k = O(n/ log(m/n)), which in our setting of “tall” matrices
(m > n1+α) is k = O(n/ log n). By contrast, Theorem 1.2 asserts that there are binary compressed
sensing matrices M achieving k = Ω(n). In the context of sparse recovery, this implies that the
number of binary linear measurements (〈vi, x〉) required to information-theoretically recover a k-
sparse vector x ∈ Rm, is n = O(k) (simply consider M>x). In the polynomial sparsity regime
(k < m1−α), previous binary constructions, even non-explicit ones, were only guaranteed to work
with n = Ω(k log k) measurements (see [Ind08] and references therein).

1.2 Related Work in the Group Model

A sequence of papers initiated by Chazelle in the early 90’s proved essentially tight lower bounds
in the semigroup model, for orthogonal and halfspace range counting in any constant dimension
[Cha90, BCP93]. Similar bounds were shown in the pointer machine model [CR95]. In the offline
group model, where no preprocessing is allowed, Chazelle [Cha94] proved an Ω(n log n) lower bound
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for halfspaces. No super-logarithmic data structure lower bounds were known in the static (i.e.,
online) setting.

In the dynamic group model [Fre81], where the data structure needs to support insertions and
deletions of points in Rd, polynomial lower bounds (Ω(n1−1/d)) have been proved only recently
in a breakthrough result of Larsen [Lar14] using combinatorial discrepancy arguments, but as the
author notes himself, this technique does not apply to the static case.3 We remark that amortized
dynamic lower bounds for “decomposable”data-structure problems4, such as range counting, also
imply (up to a logarithmic loss) lower bounds for static data structures with efficient preprocessing
time p(n) ≈ s [OvL81]. Alas, in the group model this is a very severe restriction, since storing an
arbitrary group element generally requires O(|G|) group operations, which in the dynamic setting
is prohibitive and trivialized the aforementioned reduction. For a broader overview of arithmetic
lower bounds we refer the reader to [Aga17, Section 3.4] and [Lar14].

1.3 Technical Overview

We now provide a streamlined overview of our main result, Theorem 1.1. Recall that a data
structure in the group model must solve the given problem with respect to any underlying group.
We will carefully design a range counting problem such that no (group model) data structure with
space s and query time t can solve our problem even in the additive group of integers modulo p,
Zp, for an explicit prime p = Θ(t)s.

Step one: Diophantine approximations Let us fix the n input points x ∈ (Rd)n to a range
counting problem, and the weights of these input points w ∈ Znp . For this input, the data structure
computes and stores S ∈ Zsp, a set of s elements of the group. Later, for every query range r ∈ R,
the data structure will output a sum of at most t stored elements (or their negations). The first
step in our lower bound uses a basic fact in Diophantine approximation (known as Dirichlet’s
simultaneous approximation theorem, which is an easy application of the pigeonhole principle),
which implies that for p := Θ(t)s and every set |S| = s of integers from {0, . . . , p − 1}, there is
some 1 ≤ q < p such that after multiplication by q, all those s numbers become smaller than
p/(4t) modulo p. This of course means that even t-sums of these numbers (and their negations)
remain small modulo p (this is the only but crucial place where we exploit the restriction that only
±1 coefficients are allowed in the group model at query time). Therefore, every arithmetic data
structure with only s memory cells, on every set of input weights from Znp , must output a set which
is small modulo p after multiplication by some q = q(S) < p.

The obvious next step is to construct an explicit range counting problem R which does not have
this property, i.e., for some configuration of the n inputs points in Rd, there exists an assignment
of weights (w1, . . . , wn) ∈ Znp , s.t. the output set does not become simultaneously too small after
multiplication by any 1 ≤ q < p. We formalize this with the notion of diversity : A set of m
elements y ∈ Zmp (corresponding to m range counting queries) is diverse, if for every 1 ≤ q < p

there is some element (query answer) i ∈ [m] such that yi · q ∈
[
p
4 ,

3p
4

]
mod p. Note that, since we

aim for a polynomial (t > nε) lower bound on query time, and trivially s ≥ n, then if we want to

3The discrepancy argument relies on the fact that dynamic arithmetic data structures induce a factorization of
the query matrix into a product of two sparse matrices, which is not the case in the static setting.

4A data structure problem P is decomposable if the answer to a query on the union of two input databases X,Y
can be computed as a black-box from the marginal answers P(A,B) = f(P(A),P(B)).
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apply Dirichlet’s theorem, we must have p = Ω(t)s = 2Ω(n logn). This fact will soon be important.
We also remark that constructing an arbitrary diverse vector explicitly is actually quite easy5—
the challenge is that this vector must correspond to an output of a range counting problem, and
indeed this is our next goal.

Step two: Diversity from k-wise independence For a range counting problem specified by
a family of m ranges R, and a set of input points x = (x1, . . . , xn) ∈ (Rd)n, consider the binary
incidence matrix IR(x) ∈ {0, 1}m×n whose (i, j)th entry indicates whether point xj lies in the
ith range ri ∈ R. Note that for the weights w ∈ Znp , the desired outputs to the m range queries
are IR(x) · w ∈ Zmp . Now our goal is to find a set of points x, weights w, and ranges R for
which IR(x) · w is a diverse vector. Note that only the set of ranges R needs to be explicit.
The set of weights w and the set of input points x do not need to be explicit, because the data
structure must solve the problem for any choice of input weights w ∈ Znp and points x ∈ (Rd)n.
We observe that if for some input x, the rows of IR(x) are k-wise independent over the field Fp
for a k satisfying (m/k)k/2 > p, then there exist weights w̃ ∈ Znp such that the answer vector
IR(x) · w̃ ∈ Zmp is diverse. This is an easy consequence of Chernoff bounds for k-wise independent
random variables [BR94]. Hence, our problem boils down to designing a k-wise independent binary
matrix over a large field Fp, where k must satisfy (m/k)k/2 > p = 2Θ(n logn). With polynomially
many queries (m = |R| = nO(1)), this condition requires that k = Ω(n) in order to get any useful
lower bound6, which is as high as k can possibly be.

Step three: Binary compressed sensing matrices As discussed in Section 1.1, such optimal
(“compressed sensing”) matrices with constant-size entries were not even know to exist in the
polynomial sparsity regime m = poly(k), and indeed the next step of our proof is showing that a
random nc × n binary matrix M is Ω(n)-wise independent with high probability (the first premise
of Theorem 1.2). The intuition for why random matrices work over R is as follows: For any fixed
nonzero linear combination of some fixed k ≈ n rows of M , the probability that each coordinate
i ∈ [n] of this linear combination is equal to 0, is ≈ 1/

√
n, by the Littlewood-Offord Lemma [Erd45].

(Note that this exploits the fact that we are working over a field of large characteristic.) Since
columns are independent, the overall probability that this linear combination is the all-0 vector
(and hence linearly dependent) is ∼ ( 1√

n
)n = 2−Θ(n logn), which is enough to union-bound over all(

nc

k

)
= 2Θ(n logn) subsets of k rows. Alas, there are two substantial flaws in this argument: Most

importantly, it does not rule out sparse linear combinations of rows—indeed, the probability that
two rows are identical is 2−n, which already dooms the entire claim. Fortunately, there are only
O(n2c) such pairs, so intuitively a more careful union bound should work. Indeed, using a certain
chaining argument, we can group the linear combinations by sparsity and handle them separately
using some case analysis. The second flaw is that we “forgot” to union-bound over all (infinitely
many) possible linear combinations in R as well, which appears daunting. We circumvent this
hurdle using an approach (dating back to Komlós [Kom67]; see also [Odl88]) which exploits the

5Let p = 20.5n logn − 1,m = 0.5n logn, and y ∈ Zm
p be a vector with yi = 2i for 0 ≤ i < m. It is easy to see that

y is diverse (indeed, while multiplying q by all powers of 2, we must hit the interval [p/4, 3p/4]). Alas, we cannot
construct a problem in the group model that takes inputs without multiplicities and outputs y.

6Even settling for exponentially weaker t > poly log(n) lower bounds using this approach would still require
p > 2O(n log logn), i.e., k > Ω(n log logn/ logn), which is already beyond known compressed sensing constructions
with constant-size alphabets.

6



observation that linear dependency of rows can be “charged” to the existence of a (minimal) square
sub-matrix which is not full rank, making the union bound possible.

Step four: Derandomization While this argument only shows that a random incidence matrix
works (which implies a lower bound for a “trivial” range-counting problem7), the key observation
of our proof is that the above analysis works even for certain pseudo-random matrices. Indeed,
essentially all the above proof uses about M is that (i) columns are statistically independent,
and (ii) that weighted sums of coordinates in each column are anti-concentrated for any choice
of real-valued weights, i.e., each column ε-fools affine hyperplanes in Rm (see Definition 3.8), for
ε = n−0.1 (say). Fortunately, explicit pseudo-random generators (PRGs) against affine halfspaces
(and therefore hyperplanes, see Proposition 3.10) are known, with almost optimal seed-length
r = Õ(log(m/ε)) = Õ(log n) random bits [GKM18]. As such, we can derandomize M by choosing
each of the n columns independently using this PRG g(si) with independent seeds, one per column.

In other words, we can generate this M̃ by sampling n columns from a fully explicit incidence matrix
supported on only 2r = nÕ(1) columns. The “ranges” corresponding to this matrix are defined by
its rows, i.e., R = {gi}mi=1, where gi is the ith output bit of the PRG. Our theorem now guarantees

that M̃ contains an induced sub-matrix IR ⊂ M̃ on n columns, which is Ω(n)-wise independent.
Recall that these n columns need not be explicit, so long as they are sampled from a small enough
superset (which is indeed the case for M̃).

Step five: Embedding into R2 The final step of the proof is a simple geometric embedding
of the ranges R into the plane. This is done by laying out 2r = nÕ(1) points on a circle in R2,
each corresponding to a column of M̃ , and observing that for any gi ∈ R, the subset of columns
corresponding to inputs x for which gi(x) = 1, can be trivially encoded as a convex polygon with

at most 2r facets, hence the semi-algebraic complexity of R is nÕ(1), which completes the proof
(see Figure 1).

Geometric PRGs The proof of Theorem 1.1 uses PRGs in a black-box manner – Since PRGs
are agnostic to the representation of the input seed (i.e., treat it as a random bit-string with no
underlying geometry), the semi-algebraic complexity of our range counting problem in Figure 1
(=number of facets of polygons) can only be as low as 2r where r is the minimal seed length of the
PRG, which for affine halfspaces in Rm must be r ≥ Ω(logm) [MZ13]. A natural question toward
lower bounds for more natural range counting problems (i.e., with lower semi-algebraic complexity),
is whether our lower bound approach can exploit the dimensionality of the input space, to decrease
the complexity (number of polynomial equations) defining the ranges R of the underlying range
counting problem. Motivated by this question, we define the notion of Geometric PRGs: Here, the
input “seed” is represented as a (random) point in a d-dimensional grid [B]d ⊂ Rd as opposed to
the standard bit-string representation, and each of the output bits gi of the PRG is computed as a
low-degree d-variate polynomial threshold function (PTF). Such functions generalize (the incidence
function of) geometric ranges such as d-dimensional halfspaces, which are among the most natural
and well-studied range counting problems.

In contrast to standard PRGs, the mere existence of Geometric PRGs (in sublinear dimension
d� n) is a nontrivial question. We establish the existence of geometric PRGs in nontrivial (d = nε)

7I.e., when ranges have semi-algebraic complexity 2m, which is the support-size of the columns of a random m×n
matrix.
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Figure 1: The family of m = n3 convex polygons R = {gi}mi=1 is generated by mapping each

of the 2r = nO((log logn)2) columns of the incidence matrix M̃ to a point p(j) on a circle in R2.
For each i ∈ [m], gi is the convex hull of all the points (columns) p(j) on which gi outputs 1:
{pj ∈ [2r] : gi(sj) = +1}, where gi is the i’th output bit of the [GKM18] PRG and sj ∈ {0, 1}r is

the input seed corresponding to the jth column of M̃ . The figure illustrates this for m = 3 polygons.
Black points on the circle denote the (unknown) n input points—the submatrix IR(x) ⊂ M̃—for
which the range counting problem is guaranteed to be hard.

dimension and polynomial (∼ nε) degree against affine halfspaces, and make a significant next step
en-route to polynomial lower bounds in the group model for halfspace range counting (degree-1
PTFs): A well-known result of Diakonikolas et al. [DGJ+10] asserts that any k-wise (statistically)
independent distribution over {±1}m Ω̃(1/

√
k)-fools halfspaces in Rm. Our main technical result is

showing that, for a typical collection H of m = poly(d) hyperplanes in Rd, the signed inner-products
of H with a random hyperplane r ∈R {±1}d (the “seed”), forms a distribution on {±1}m which
is almost k-wise independent for any k ≤ d1/6, i.e. ‖{sign〈hi, r〉}i∈[k] − Ud‖1 = 1/poly(d) for any
subset H′ = {h1, . . . , hk} ⊂ H. This statement is essentially tight. A closely related statement
was proven by Klartag and Regev [KR11] in the setting of the uniform measure on the sphere; our
proof closely follows theirs with the necessarily technical adjustments. We leave open the question
of finding an explicit construction of low-degree geometric PRGs, which could lead to group-model
lower bounds for more natural range searching problems using our approach.

2 Preliminaries

We identify the finite field Fp with the set {0, . . . , p− 1}. For a non-negative integer m, we denote
by [m] the set {1, . . . ,m}. For a real number x, we denote by ‖x‖ the distance from x to the nearest
integer. We write |b| < c mod p to mean that b is c-close to an integer divisible by p, i.e., that there
exists an integer k such that |b − kp| < c, or in other words ‖b/p‖ < c/p. All logarithms in the
paper are base 2 unless otherwise stated, and we use the shorthand log x = log2 x.

Definition 2.1 (k-wise independent matrices). A matrix M ∈ Fm×n is k-wise independent if every
set of k rows of M is linearly independent (over F).
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2.1 Range counting in the group model

Definition 2.2 (Range counting in group model). Let R = {Ri ⊂ Rd, i ∈ [m]} be a range counting
problem in Rd. A data structure D = (P : (Rd)n ×Gn → Gs, Q : Gs → Gm) is said to be an (s, t)
data structure in the group model for R over an abelian group G, if:

1. For any configuration of n points x1, . . . , xn in Rd, any tuple of n weights w = (w1, . . . , wn) ∈
Gn, and any index i ∈ [m], it holds that Qi ◦ P ((xk)

n
k=1,w) =

∑
j:xj∈Ri

wj. That is, the
answer to the i-th query is the sum of the weights of the points that fall into the i-th range.

2. Each query function Qi computes a group sum of at most t memory elements or their nega-
tions, possibly with repetitions: Qi(g1, . . . , gs) = Σj≤tξjgij , with ξj ∈ {±1}. Note that the
function Qi can be adaptive (i.e., a depth-t decision-tree over the s memory elements), and
that it’s allowed to inspect all s memory cells and n inputs before choosing which t elements
or their negations will be added (i.e., all ξj : Gn → {±1} and ij : Gn → [s] are arbitrary
functions of the input).

While this arithmetic model seems rather restrictive, all known data structures for range search-
ing problems fall into this setting8. We remark that here we allow the preprocessing function P to
depend on the specific group, i.e., for every group and every input x ∈ Rd, the data structure is
allowed to compute and store an arbitrary set of s group elements. By contrast, in the standard
“oblivious” definition of the group model [Aga17, Cha90], as well as in all known upper bounds,
the preprocessing function treats the group as a black-box: the s group elements are computed
using a fixed set of group operations.

We use the common notion of semialgebraic sets to quantify the complexity of a range counting
problem:

Definition 2.3 (Semialgebraic Sets [AMS12, Aga17]). A semialgebraic set is a subset of Rd ob-
tained from a finite number of sets of the form {x ∈ Rd | p(x) ≥ 0}, where p is a d-variate
polynomial with integer coefficients, using arbitrary intersections, unions, and complementations.
Γd,∆,s denotes the collection of all the semialgebraic sets in Rd obtained from at most s d-variate
polynomials of total degree at most ∆ each.

For brevity, when we say that a range counting problem R ⊆ Rd has semialgebraic complexity s
we mean that the number of linear inequalities defining each range r ∈ R is at most s. For example,
an s-facet polytope in Rd has semialgebraic complexity s under this convention.

The ranges we construct in Theorem 1.1 are (convex) polygons in two dimensions with at most
n(log logn)2 sides, so they will lie in Γ

2,1,n(log logn)2 .

2.2 Anti-concentration inequalities

We will use the following versions of the Littlewood-Offord Lemma.

Lemma 2.4 ([Erd45]). Suppose that x1, . . . , xk ∈ R \ {0}, y ∈ R. Then∣∣∣∣∣
{
ε ∈ {−1, 1}k

∣∣∣∣∣
k∑
i=1

εixi = y

}∣∣∣∣∣ ≤
(

k

bk/2c

)
≤ 2k√

k
.

8See Footnote 1.
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Lemma 2.5. Let Fp be a prime field of order p > 2. Let also k ≥ 1, x1, . . . , xk ∈ Fp \ {0} and
y ∈ Fp. Then ∣∣∣∣∣

{
ε ∈ {−1, 1}k

∣∣∣∣∣
k∑
i=1

εixi = y

}∣∣∣∣∣ ≤ min

(
2k−1, 2k

(
1

p
+

√
8

k

))
.

Proof. The upper bound of 2k
(

1
p +

√
8
k

)
is proven in [NW18, Theorem 6.3] and [NP18, Theorem

A.21]. For small k, this bound exceeds the trivial 2k, and we use an upper bound of 2k−1 instead.
The upper bound of 2k−1 follows by observing that for all non-zero x1, . . . , xk and for all ε1, . . . , εk−1,
at most one choice of εk ∈ {−1, 1} satisfies

∑k
i=1 εixi = y.

3 Proof of Theorem 1.1

3.1 Efficient Data Structures are Not Diverse

Let us fix the input points (x1, . . . , xn) ∈ (Rd)n, and vary their weights. Let us look at the possible
answers that the composition Q ◦ P ((x1, . . . , xn), ·) can produce. We will show that Q ◦ P always
has structure (the resulting vectors are not “diverse”), while some range counting problems do not
have this structure (are “diverse”), thus, cannot be computed by efficient data structures in the
group model.

Definition 3.1 (Diversity). We call a set S ⊂ Zp diverse if for any q ∈ {1, . . . , p−1}, q · S 6⊆ [−p/4, p/4] mod p.
Similarly, we say that a vector w ∈ Zmp is diverse if the set of its coordinates is diverse.

Lemma 3.2 (Outputs of an efficient DS are not diverse). For any (4t)s < p, any (s, t) data structure
D = (P : ([n]d)n × Znp → Zsp, Q : Zsp → Zmp ) in the group model, any points x1, . . . , xn ∈ [n]d, and
any weights w1, . . . , wn ∈ G, the set of answers to queries

{Qj ◦ P ((xi)
n
i=1,w)}mj=1

is not diverse.

To compute each output coordinate, Q only adds and subtracts t of the memory cells, counting
repetitions, so it is enough to show that there is a 1 ≤ q ≤ (4t)s such that each of the memory
cells is at most p/(4t) modulo p after multiplication by q. The following lemma shows that such a
q exists for any set of s integers.

Lemma 3.3 (Dirichlet’s Simultaneous Approximation Theorem). For any set of s integer numbers
x1, . . . , xs, a natural number Q ≥ 1, and a natural number p > 1, there exists an integer 1 ≤ q ≤ Qs
such that

∀i ∈ [s], |xi · q| < p/Q mod p .

Or, in greater generality: given s real numbers r = (r1, . . . , rs) and an integer Q, there is an
integer 1 ≤ q ≤ Qs such that for every i, ‖q · ri‖ < 1/Q, i.e. all the given real numbers can be
approximated by rational fractions ki/q with some denominator 1 ≤ q ≤ Qs up to an error strictly
less than 1/(qQ).
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Proof. The second statement implies the first one when ri := xi/p.
Split the interval [0, 1) into Q sub-intervals [k/Q, (k+ 1)/Q). Multiply the vector r by numbers

0, . . . , Qs, take the fractional part of each coordinate, and map it to the index of the sub-interval it
falls into. There are only Qs distinct vectors of this form, but we got Qs + 1 vectors corresponding
to 0, r, 2 · r, . . . , Qs · r, so two of them will be the same. Let those two vectors be q1 · r and q2 · r
for q1 < q2. Then, 1 ≤ (q2 − q1) ≤ Qs and ‖(q2 − q1) · ri‖ < 1/Q for all i, as desired.

3.2 k-wise Independence Implies Diversity

We have shown above that any set of outputs from an (s, t) data structure for range counting in
the group model is not diverse if (4s)t < p. Now we show that it is possible to construct a matrix
M ∈ Zm×np , such that if it is an incidence matrix of m shapes and n points, then there is a way to
assign weights w to those points so that the answers Mw to the m queries form a diverse set.

The idea is that if w is uniformly random, then for a fixed 1 ≤ q < p the probability of q ·(Mw)i
being at most p/4 modulo p is 1/2, and if the coordinates of Mw were independent, the probability
of all of q · (Mw)i being at most p/4 would be 2−m. Of course, if n < m, some coordinates of Mw
will be linearly, and thus statistically, dependent, but we can make do with a weaker requirement:
that the coordinates are k-wise independent. Then the probability that all q · (Mw)i are at most
p/4 modulo p can be bounded by 1/p by a version of a Chernoff bound for k-wise independent
variables. After applying union bound over all possible q ∈ [1, p− 1], this gives the existence of w
that produces a diverse Mw. And the k-wise independence of the coordinates of Mw follows from
the k-wise independence of the rows of the matrix M if it is viewed as a matrix in Fm×np , so then
we are left with the problem of finding a binary matrix M with k-wise linearly independent rows
over Fp and a set of shapes and points for which M is an incidence matrix.

We will use the following form of the Chernoff bound for k-wise independent variables.

Theorem 3.4 ([BR94]). Let k ≥ 4 be an even integer. Suppose that X1, . . . , Xn are k-wise inde-
pendent random variables taking values in [0, 1]. Let X = X1 + · · · + Xn, and µ = E[X], and let
A > 0. Then

Pr[|X − µ| > A] < 2

(
nk

A2

)k/2
.

Theorem 3.5 (k-wise independence implies diverse weights). Let M ∈ Fm×np be k-wise independent

and p ≤ 0.5
(
m

16k

)k/2
, then there exists w ∈ Fnp such that Mw is diverse.

Proof. For a fixed 1 ≤ q < p, let Pq be the probability that q is a “witness” of non-diversity of a
random input w. That is,

Pq := Pr
w

[
∀i ∈ [m], |q · (Mw)i| < p/4 mod p

]
.

We will show that Pq ≤ 1/p which, by the union bound, will imply the theorem statement. Let
Wq,i be the indicator variable of the event |q · (Mw)i| ≥ p/4 mod p. Then Ew[Wq,i] > 1/2 since
there is at least one non-zero coordinate in Mi, and Pq = Pr[

∑m
i=1Wq,i = 0]. Note that from k-

wise independence of M , we have k-wise independence of Wq,i: indeed, k-wise independence of M
implies that any k rows Mi1 , . . . ,Mik of M are linearly independent, so the tuple (Mi1w, . . . ,Mikw)
is distributed uniformly in Fkp. From Theorem 3.4 with A = m/4, we have

Pq = Pr

[
m∑
i=1

Wq,i = 0

]
< 2(16k/m)k/2 ≤ 1/p .
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3.3 Existence of k-wise Independent Binary Matrices

In this section, we prove that almost all matrices from {±1}nc×n are Ω(n)-wise independent, for
every constant c ≥ 1.

Theorem 3.6. For every ε ∈ (0, 1/10], every large enough n ≤ m ≤ n
1

10ε , every prime field Fp of
order p ≥

√
n, a uniformly random matrix M ∈ {−1, 1}m×n is k := εn-wise independent over Fp

with probability 1− exp(−Ω(n)).

We remark that k-wise independence of M over Fp implies k-wise independence over R. Indeed,
k-wise independence of M implies that any k rows of M contain a non-singular k × k submatrix
over Fp; this submatrix is also non-singular over R, which in turn implies k-wise independence over
R.

Now we are ready to prove the main result of this section using the following idea. Let us pick
the smallest set S of linearly dependent rows in M . Assuming that M is not k-wise independent,
we have that |S| ≤ k. Note that by the minimality of S, these rows form a submatrix MS of rank
|S| − 1, and since row rank equals column rank, there is a subset T of |S| − 1 columns of MS such
that 1) the column vectors in T are linearly independent and thus span an (|S| − 1)-dimensional
hyperplane, moreover 2) a vector α “normal” to that hyperplane (i.e. α 6= 0 such that αTx = 0 for
all x from the hyperplane) doesn’t have 0 coordinates (otherwise we could remove the corresponding
row to get a smaller set S), and 3) all the other column vectors of MS lie on that hyperplane.

For any fixed α with no 0 coordinates we use Littlewood-Offord lemma (Lemma 2.5) and
independence of columns of M to show that the probability of 3) and thus of the conjunction 1),
2), 3) is small enough so that the union bound over S ⊂ [m] with |S| ≤ k and T ⊂ [n] is exp(−Ω(n)),
giving the result.

Proof of Theorem 3.6. For a matrix M ∈ {−1, 1}m×n, denote by MA×B the submatrix of M formed
by taking cells with indices in the cartesian product A × B. Let E be the event that a random
matrix M ∈ {−1, 1}m×n is not k-wise independent. Equivalently, E is the event that there is a
subset S ⊂ [m] of indices of size |S| ≤ k such that MS×[n] does not have full row rank.

For a subset S ⊂ [m] of cardinality |S| ≤ k and a subset T ⊂ [n] of cardinality |T | = |S| − 1
define ES,T as the event that the left null space of MS×T is spanned by a single vector without zero
coordinates and the left null space of MS×[n]\T contains that vector. We claim that E implies that
one of the ES,T holds, and therefore by union bound,

Pr[E] ≤
∑
|S|≤k

|T |=|S|−1

Pr[ES,T ] . (2)

To see why this is the case, assume E holds, and let S be a minimal set such that MS×[n] does
not have full row rank. Notice that rk(MS×[n]) = |S| − 1, as otherwise removing a row would still
leave us with a matrix that does not have full row rank, in contradiction to the minimality of S.
Moreover, the left null space of MS×[n], which is of dimension 1, must be spanned by a vector α
with no zero coordinates; otherwise, removing a row corresponding to one of its zero coordinates
would again result in a matrix that does not have full row rank, in contradiction. Next, because
row rank is equal to column rank, there exists a subset T ⊂ [n] of cardinality |S| − 1 such that
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MS×T is of rank |S| − 1. We claim that ES,T holds for this choice of S and T . Indeed, the left null
space of MS×T , which is of dimension 1, is spanned by α (since it contains the left null space of
MS×[n]). Similarly, the left null space of MS×[n]\T contains α.

It remains to bound Pr[ES,T ]. We can write

Pr[ES,T ] =
∑
m

Pr[MS×T = m] Pr[ES,T |MS×T = m]

≤ max
m

Pr[ES,T |MS×T = m] .

Note that we have not relied on any properties of the distribution of M so far. In order to bound this
maximum, fix a matrix m whose left null space is spanned by a vector α with no zero coordinates.
(The conditional probability is 0 for other matrices m.) Then,

Pr[ES,T |MS×T = m] = Pr[αTMS×[n]\T = 0T ] =
∏

i∈[n]\T

Pr[αTMS×{i} = 0], (3)

where we used the independence of columns. We can now use the Littlewood-Offord lemma, since
the vector α is fixed and does not have any zero coordinates, and the vectors MS×{i} are uniform
±1 vectors.

Let R|S| be the upper bound from the Littlewood-Offord bound of Lemma 2.5 for k = |S| and

y = 0, i.e., Prv[α
T v = 0] ≤ R|S|, where α is fixed and without zero entries, and v is a uniform ±1

vector of size |S|. Thus Pr[ES,T ] ≤ Rn−|T ||S| . Then, using Eq. (2) we have

Pr[E] ≤
k∑
i=2

(
m

i

)(
n

i− 1

)
·Rn−(i−1)

i .

(Here we are not including the i = 1 term since R1 can clearly be taken to be 0.)
Now we show that Pr[E] = exp(−Ω(n)) by showing that each term in this sum is exp(−Ω(n)).

For every i satisfying 2 ≤ i ≤ k = εn ≤ n/2,(
m

i

)(
n

i− 1

)
·Rn−(i−1)

i ≤ m2iR
n/2
i . (4)

For 2 ≤ i ≤ n/(8 logm), using the bound Ri ≤ 1/2 < 2/3 of Lemma 2.5, we have that the
right-hand side of Eq. (4) is at most

mn/(4 logm)(2/3)n/2 = exp(−Ω(n)) .

For n/(8 logm) < i ≤ k = εn, we have from Lemma 2.5 that

Ri ≤
1

p
+

√
8

i
≤ 1√

n
+

√
64 logm

n
,

and therefore, the right-hand side of Eq. (4) is at most

m2εn

(
1√
n

+

√
64 logm

n

)n/2
= exp(−Ω(n)) ,

where we used that m ≤ n1/(10ε).

13



We observe that the result of Theorem 3.6 holds for {0, 1}-matrices as well. While we cannot
just take a {±1} matrix from Theorem 3.6, increment each entry by one, and divide by two9, we
can perform a similar operation while preserving k-wise independence.

Corollary 3.7. For every ε ∈ (0, 1/10], every large enough n ≤ m ≤ n
1

10ε , every prime field
Fp of order p ≥

√
n, a uniformly random matrix M ∈ {0, 1}(m−1)×n is (k − 1) := (εn − 1)-wise

independent over Fp and R with probability 1− exp(−Ω(n)).

Proof. Choose a uniformly random matrix M ∈ {±1}m×n, and multiply some of the columns by
−1 so that the first row contains only 1s. The rest of the matrix remains uniformly random,
and multiplying columns by nonzero scalars does not introduce new linear dependencies among
the rows. For a matrix A, denote by Ai its i-th row. Define a new matrix B by setting Bi =
(Mi+1 + M1)/2, for i ∈ [m − 1]. Then B is a uniformly random {0, 1}(m−1)×n matrix. Take any
k − 1 rows BS = (Bi1 , . . . , Bik−1

), and consider the rows M{1}∪(1+S) = (M1,M1+i1 , . . . ,M1+ik−1
).

Linear independence of M{1}∪(1+S) implies linear independence of BS , because BS is obtained from
M{1}∪(1+S) by row operations and removing the first row, so if M is k-wise independent, then B is
(k − 1)-wise independent.

3.4 Derandomization

In this section we reduce the randomness used in the proof above frommn bits toO
(
n logm(log logm)2

)
bits: in effect instead of sampling the columns from the set of all the possible columns in {±1}m,
we show that we can limit ourselves to a much smaller subset and still get a very high probabil-
ity of sampling a k-wise independent matrix. This will dramatically (exponentially) reduce the
semi-algebraic complexity of the resulting range-counting problem in our final construction.

As discussed in the introduction, the main observation here is that the analysis of Theorem 3.6
for random binary matrices, also carries over to the case where each column is chosen independently
according to a distribution on {±1}m which fools any affine hyperplane in Rm. We now formalize
this statement.

Definition 3.8. We say that a deterministic function F : {0, 1}r → {±1}m ε-fools a family of sets
S ⊂ 2{±1}m, if for any s ∈ S: ∣∣∣∣ Pr

x←Unif{±1}m
[x ∈ s]− Pr

x←F
[x ∈ s]

∣∣∣∣ ≤ ε,
where the second x is the output of F when it is passed a uniformly random input string from
{0, 1}r as an input. We also call such an F an ε-PRG against S.

Our derandomization will use the following pseudo-random generator (PRG) of Gopalan, Kane
and Meka [GKM18], which ε-fools affine halfspaces with almost optimal seed-length.

Lemma 3.9 ([GKM18, Corollary 1.2]). For every ε > 0 there exists a PRG FGKM : {0, 1}r →
{±1}m that uses r = O

(
log(m/ε) · (log log(m/ε))2

)
uniformly random input bits and ε-fools affine

halfspaces, i.e., the family of sets{
x ∈ {±1}m | 〈x, α〉 ≤ θ

}
α∈Rm,θ∈R .

9for example, this could create an all zeros row, and the resulting matrix would not be k-wise independent
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Proposition 3.10 (Fooling halfspaces ⇒ Fooling hyperplanes). If F is an ε-PRG against affine
halfspaces in Rm, then it is a 2ε-PRG against hyperplanes in Rm.

Proof. Let α ∈ Rm be a fixed vector. Let F1 and F2 be the CDFs of the distributions of 〈x,α〉 for a
uniform x ∈ {−1, 1}m, and for x generated from F , respectively. From Definition 3.8, we have that
the Kolmogorov-Smirnov distance between their distributions is at most ε : ∀t, |F1(t)− F2(t)| ≤ ε.
This implies that the probability of 〈x,α〉 attaining a certain value can differ by at most 2ε between
the two distributions:∣∣∣∣ Pr

x←Unif
[〈x,α〉 = θ]− Pr

x←F
[〈x,α〉 = θ]

∣∣∣∣ =
∣∣(F1(θ)− F1(θ−))− (F2(θ)− F2(θ−))

∣∣
≤ |F1(θ)− F2(θ)|+

∣∣F1(θ−)− F2(θ−)
∣∣

≤ 2ε .

Using this proposition, along with the GKM PRG for affine hyperplanes, we shall prove the
following:

Theorem 3.11. For every ε ∈ (0, 1/10], every large enough n ≤ m ≤ n
1

10ε , there is a polynomial-
time algorithm that uses O

(
n logm(log logm)2

)
random bits and outputs a matrix W ∈ {±1}m×n,

s.t. W is k := εn-wise independent over R with probability 1− o(1). As a consequence, W is also
k-wise independent over Fp for any prime p > (εn)!.

Proof. Let FGKM : {0, 1}r → {±1}m be the PRG from Lemma 3.9 with seed length r = O
(
logm(log logm)2

)
which (1/

√
m)-fools hyperplanes. The algorithm will generate each column of W as the output

of FGKM with a fresh seed of length r. Clearly, the algorithm uses nr = O
(
n logm(log logm)2

)
random bits. In order to prove that W is k-wise independent with probability 1− o(1), we inspect
the proof of Theorem 3.6.

Recall that until the equation (3) the proof was distribution-independent. Then, in equation (3)
we used the independence of the columns (and the columns of W remain independent for our algo-
rithm), bounded the probability Ri of a column satisfying a linear constraint ~α of Hamming weight

‖~α‖0 = i, and bounded each term in the sum
∑k

i=2

(
m
i

)(
n
i−1

)
R
n−(i−1)
i ≥ Pr[E]. In Theorem 3.6, we

used the following form of the bound from Lemma 2.5 for p ≥
√
n:

Ri ≤ min
(

2/3, 1/
√
n+O(1/

√
i)
)
.

We show that the same bound on Ri holds for the matrix W generated above. For a uniformly
random matrix M , the Littlewood-Offord Lemma over the reals (Lemma 2.4) implies that the prob-
ability that a random column satisfies a fixed linear equation with i non-zero coefficients is bounded
by Runi

i = 1
2i

(
i
bi/2c

)
≤ min(1/2, 1/

√
i). Since every column of W (1/

√
m)-fools hyperplanes, the

probability that a random column of W satisfies a fixed linear equation is bounded by

Ri ≤ Runi
i +

1√
m
≤ min

(
2/3, 1/

√
n+O(1/

√
i)
)
.

Now we show that k-wise independence of W over R implies its k-wise independence over Fp
for every p > (εn)!. Indeed, from k-wise independence of W over the reals, we have that every set
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of k rows contains a non-singular k × k submatrix. Since the determinant of an εn × εn square
±1 matrix is at most (εn)!, the determinant stays non-zero after taking it modulo p. Therefore,
every set of k rows of W contains a non-singular k × k submatrix over Fp, which implies k-wise
independence over Fp.

We observe that the matrix W ∈ {±1}m×n from the previous theorem can be also transformed
into a (k − 1)-wise independent matrix W ′ ∈ {0, 1}m×n.

Corollary 3.12. For every ε ∈ (0, 1/10], every large enough n ≤ m ≤ n
1

10ε , there is a polynomial-
time algorithm that uses O

(
n logm(log logm)2

)
random bits and outputs a matrix W ′ ∈ {0, 1}m×n,

s.t. W ′ is (k − 1) := (εn− 1)-wise independent over R (and over Fp for any prime p > (εn)!) with
probability 1− o(1).

Proof. First, we generate a matrix W as in Theorem 3.11 with the same parameters n,m, ε. Then
we multiply each column by a fresh independent and uniform number from ±1. Finally, we add 1
to all the entries in the matrix, and divide the result by 2. Let us denote the resulting matrix by
W ′ ∈ {0, 1}m×n.

Consider the following distribution of matrices. Take the matrix W and prepend a uni-
formly random ±1 row to it. In effect, we are replacing the FGKM PRG with a new PRG
F ′GKM : {0, 1}r+1 → {±1}m+1 that generates the first output bit according to the first input
bit, and generates the rest using FGKM applied to all the other r input bits. It is easy to see that
F ′GKM ε-fools hyperplanes if FGKM ε-fools hyperplanes, so Theorem 3.11 also holds for F ′GKM (with
n additional bits of randomness in total). We multiply some columns of this matrix by −1 so that
the first row contains only 1s. After adding the first row to all other rows of the matrix, and divid-
ing them by 2, the resulting matrix from {0, 1}m×n is (k − 1)-wise independent (by the reasoning
from Corollary 3.7). Note that the distribution of these matrices is identical to the distribution of
matrices W ′ described above.

3.5 Putting it all together

Now we are ready to prove Theorem 1.1.

Theorem 1.1. There is an explicit set Pn of m = n3 convex polygons in the plane R2, and a
prime p, such that any group-model data structure of size s and query time t for range counting
with respect to Pn (over Zp), must have

ts ≥ nn/70.

In particular, any linear storage (s = O(n)) data structure for Pn(over Zp) must have nΩ(1) query
time. Moreover, the semialgebraic complexity of Pn, i.e., number of facets of each convex polygon,
is nO((log logn)2).

Proof. Let m = n3, and G : {0, 1}r → {0, 1}m for r = O
(
logm(log logm)2

)
be the PRG used

in Corollary 3.12 for generating columns.10 Let R = 2r, and a1, . . . , aR be an arbitrary set of R
distinct points on a circle in R2. We will associate these points with binary string of length r—all
possible values of G’s seed.

10The seed length of G is exactly the seed length of the GKM PRG plus one bit used for changing the sign of the
column.
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The set Pn of m convex polygons in the plane is defined as follows: the ith polygon has aj as
its vertex if and only if the ith bit of the output of G(aj) is 1.

We constructed an explicit set Pn of m convex polygons, and since each polygon has at most
R facets, its semialgebraic complexity is bounded from above by R = nO((log logn)2). It remains to
show that any (s, t) group-model data structure must satisfy ts ≥ nn/70.

Let us fix ε = 1/69, and let p be a prime in the range [2εn logn, 2εn logn+1]. For a set of input
points x = (ai1 , . . . , ain), let IP(x) ∈ {0, 1}m×n be a matrix whose (i, j)’th entry indicates whether
point xj lies in the ith polygon ri ∈ Pn. Since p > (εn)! and m = n3 ≤ n1/(10ε), by Corollary 3.12,
there exists a set of input points x such that IP(x) is εn-wise independent.

Note that for the set of input points x and their weights w ∈ Znp , the outputs to the m queries

must be IP(x)w. Since IP(x) is εn-wise independent and p < 0.5
(

m
16εn

)εn/2
, by Theorem 3.5,

there exists a set of weights w, such that the vector IP(x)w is diverse.
Finally, by Lemma 3.2, for any group-model data structure D over Zp that uses s cells of space

and has query time t, the set of its m possible answers can be diverse only if (4t)s ≥ p. Therefore,

ts ≥ p69/70 ≥ 269εn logn/70 = nn/70 .

We remark that a construction of a PRG against halfspaces with optimal seed length Oε(logm)
would improve the semialgebraic complexity of the polygons in the theorem statement: instead of
polygons with nO((log logn)2) facets, one could construct a set of n3 polygons with nO(1) facets.

Corollary 3.13. If there exists an explicit PRG G : {0, 1}r → {0, 1}m which ε-fools halfspaces
and uses optimal seed r = O(log(m/ε)), then there exists an explicit set Pn of m = n3 convex
polygons in the plane R2 with poly(n) facets/semialgebraic complexity, such that any group-model
data structure of size s and query time t for weighted range counting with respect to Pn (over some
Zp), must have ts ≥ nΩ(n).

4 Geometric PRGs

The construction of the incidence matrix IR in the proof of Theorem 1.1 uses affine PRGs in a
black-box manner: the ith row of IR encodes the truth table of the ith output bit of the (GKM)
PRG gi : {±1}r 7→ {±1}, hence the complexity of the ith “range” gi ∈ R (number of polytope
facets) is trivially bounded by 2r = nO((log logn)2). This is essentially inevitable if the PRG is
applied in a black-box fashion (since r > logm is the best one could hope for [MZ13]). However,
we might hope to obtain lower bounds against more “natural” range counting problems (with lower
semi-algebraic complexity) using our approach, by constructing PRGs that take advantage of the
underlying representation of the input seed. Indeed, the input to a range counting problem is a point
in a d-dimensional space, hence it is natural to ask if the PRG can exploit higher dimensionality
in a “simple” way so as to reduce the semi-algebraic complexity of the underlying hard problem.
This is the motivation of our next definition.

Definition 4.1 (Geometric PRGs). A function g : [B]d → {±1}m is said to be a (B, d, s, ε)-
Geometric PRG (GPRG) against a family of sets S ⊂ 2{±1}m, if g ε-fools S, and furthermore
every output bit of g can be encoded as a low-degree polynomial threshold function (PTF), i.e.,

∀ i ∈ [m] , gi(r1, . . . , rd) = sign (Pi(r1, . . . , rd)) ,
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where each Pi is a d-variate polynomial of (total) degree s.

Note that this definition generalizes the (incidence function of) halfspaces (s = 1), and their
natural extension to ranges specified by low-degree PTFs. We now show that an explicit construc-
tion of Geometric PRGs would yield a data structure lower bound against a corresponding class of
ranges.

To this end, note that in the proof of Theorem 3.11, we showed that a PRG that 1/
√
m -fools

halfspaces yields an εn-wise independent matrix (which, by Theorem 1.1, implies a data structure
lower bound). By inspection of the proof of Theorem 3.11, we see that for any constant γ > 0,
even a PRG that 1/mγ-fools halfspaces still gives us an Ωγ(n)-wise independent matrix, yielding a
data structure lower bound of ts ≥ nΩ(n) by Theorem 1.1.

Using the preceding remark, a (B, d, s, 1/mγ)-Geometric PRG g : [B]d → {±1}m gives an
explicit set of m ranges, each of which defined by a single d-variate polynomial of degree s, such
that range counting with respect to these ranges is hard for linear storage data structures:

Lemma 4.2. Suppose g : [B]d → {±1}m is a (B, d, s, 1/mγ)-Geometric PRG (GPRG) against
affine halfspaces in Rm for a constant γ > 0. Then there exists a range counting problem PR with
|R| = m ranges, each of semi-algebraic complexity Γd,s,1, such that any S-space data structure for
PR has query time t ≥ nΩ(n/S) in the static group model.

4.1 Existence of high-degree Geometric PRGs

In contrast to the standard definition of PRGs (Definition 3.8), whose mere existence with small
seed length follows from a rather simple counting argument [MZ13], the existence of GPRGs (with
sublinear seedlength) against affine halfspaces, is a nontrivial question. The remainder of this sec-
tion is devoted to this question.

Our first result shows that GPRGs against halfspaces exist in nontrivial dimension d = mε (for
any ε > 0), albeit with high degree s ≈ mε (which corresponds to ranges being high-degree PTFs).
In fact, we will show an explicit construction of such GPRGs, by “adapting” BCH codes from F2

to R.
An important ingredient of the proof is the following theorem due to Diakonikolas et al. [DGJ+10],

asserting that any k-wise (statistically) independent distribution over {±1}m Ω̃(1/
√
k)-fools halfs-

paces:

Theorem 4.3 (Bounded independence fools halfspaces [DGJ+10]). Let D be a k-wise independent
distribution on {±1}m. Then D δ-fools halfspaces as long as

k ≥ C

δ2
log2

(
1

δ

)
for some universal constant C.

By setting δ in Theorem 4.3 to m−0.05, an immediate corollary is that any k = (Cm0.1 log2m)-
wise independent distribution will fool halfspaces with small enough error for Lemma 4.2 to yield
data structure lower bounds. Thus, it remains to construct a GPRG whose output is Cm0.1 log2m-
wise statistically independent.

A k-wise independent distribution with uniform marginals is easy to construct from a parity
check matrix M of a linear code of minimal distance > k over Fm2 : since any k of the M ’s columns
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are linearly independent over F2, taking the sum of a uniformly random subset of the rows of M
gives a vector of length m whose entries are statistically k-wise independent. In fact, this is the
optimal way to obtain such a k-wise independent distribution, as Alon, Babai, Itai showed:

Theorem 4.4 ([ABI86]). Suppose (ξi)
m
i=1 is a collection of k-wise independent random variables

ξi : Ω→ R each of which takes at least two distinct values with non-zero probability. Then the size

of the sample space is at least the size of the Hamming ball of radius bk/2c: |Ω| ≥
∑bk/2c

j=0

(
m
j

)
.

Moreover, when m = 2t− 1 and k = 2s+ 1, this bound is essentially achieved for ξi = 〈H i, x〉F2

where H i is the i-th column of the parity check matrix H ∈ F(1+st)×m
2 of a binary BCH code and x

is chosen uniformly at random from F1+st
2 .

To make this construction “geometric”, treat H as a binary matrix over the reals and x as
a binary vector over the reals. Then the entries of the vector HTx are integers that are k-wise

independent modulo 2, and are between 0 and k logm/2. Let p(x) :=
∏k logm/2
i=1 (i− 1/2− x), then

sign(p(x)) = (−1)x for x ∈ {0, . . . , k logm/2}, giving our desired theorem:

Theorem 4.5 (Explicit high-degree GPRGs). Let Ri(x) = p(〈H i, x〉), where H is the parity check
matrix defined above treated as a binary matrix over R, and x ∈ {0, 1}r for r = O(m0.1 log3m).
Then R : {0, 1}r → {±1}m is a (2, O(m0.1 log3m), O(m0.1 log3m), 1/poly(m))-GPRG against
affine halfspaces in Rm.

This theorem asserts a polynomial lower bound for range counting of nOε(1) explicit PTFs in
Rnε

, each of degree Õ(n0.1), against linear storage group-model data structures. Is it possible to
construct GPRGs using constant degree PTFs? This is the content of the next subsection.

4.2 Can Halfspaces Fool Halfspaces

The special case of degree-1 PTFs is particularly interesting in our context, as it corresponds to
the very natural problem of halfspace range counting, which is among the most well-studied range
counting problems in the literature [Cha90, Aga17]. While Theorem 4.5 produces an explicit high-
degree GPRG, for degree s = 1 it is not even clear whether GPRGs exist in nontrivial dimension,
i.e., whether “halfspaces fool halfspaces” in sublinear dimension:

Problem 4.6. Is there any set H of m = poly(d) halfspaces in Rd for d� m, such that the function
given by gi(r) := (sign〈hi, r〉)i∈[m] for r ∈R {±1}d, (1/poly(m))-fools affine halfspaces in Rm?

We note that the (explicit) BCH-code construction in Theorem 4.5 shows these parameters
are achievable over F2, i.e., had we taken the parity of the inner-products 〈hi, r〉 instead of their
signs. Intuitively, threshold functions are much less sensitive than the parity operator (in particular,
thresholds are monotone function and hence have low influence in sharp contrast to parities). Hence,
achieving nΩ(1)-wise independence (by Theorem 4.3) with signs of inner products seems to require
a substantially different construction and analysis.

The main technical result of this section is showing that it is possible to construct an almost
k-wise independent distribution, i.e., a (δ/2k, k)-independent distribution11 over {±1}m, with δ =
1/poly(d), from d-dimensional halfspaces over the Boolean hypercube. In particular, for the case of
k = dΩ(1) required by our application, all k-marginals of this distribution are δ = 1/poly(k)-close
to uniform in statistical distance.

11This is a distribution where all marginals on k coordinates are δ/2k-close in L∞ norm to uniform, see [AGHP92]
for details and its wide applications.
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Theorem 4.7 (Random halfspaces are almost k-wise independent). For any c > 0, ε < 1/6, and
large enough d, let v1, . . . , vm be m = dc uniformly random vectors in {±1}2d+1. Then the distri-
bution of the binary vector f(x) := {sign(〈vi,x〉)}mi=1 where x ∈R {±1}2d+1 is

(
O(d−1/6k/2k), k

)
-

independent with high probability (over the choice of the vi’s), where k = dε.

Proof Overview. We need to show that all the k-marginals of f are close to uniform k-bit vectors
in L∞ norm. We will bound the probability that some fixed k-marginal is far from uniform, and
then union bound over the

(
m
k

)
possible choices of k coordinates. To bound the former event, it

is enough to bound the measure of intersection of k random halfspaces with the hypercube — we
want to say that that measure is very close to 2−k with high probability, for some k = dε. A closely
related statement was shown by Klartag and Regev [KR11], with two main differences. First, they
work in the Euclidean sphere, and not in the hypercube. Second, they consider “equators” instead
of halfspaces. Luckily, their proof applies mutatis mutandis to our setting. Specifically, we replace
their use of spherical harmonics with Fourier analysis over the hypercube. This introduces what is
perhaps the only significant technical difference, namely, that we also need to bound the Fourier
coefficients at the top levels (whereas spherical harmonics have no top levels). To that end we prove
Corollary 4.10 which bounds the Fourier mass at top levels of a sparse Boolean function. Other
than that, our proof closely follows theirs.

We now proceed with the formal proof. We will need the following basic notions from Fourier
analysis over the hypercube. For a Boolean function f : {±1}n → R its Fourier coefficients are
defined by f̂(ω) = Ex[χω(x)f(x)], where ω ⊆ [n] and χω(x) =

∏
i∈ω xi. The characters χω are

orthonormal with respect to 〈f, g〉 = Ex[f(x)g(x)] and f can be uniquely rewritten in the Fourier
basis:

f(x) =
∑
ω⊆[n]

χω(x)f̂(ω).

The following Bonami-Gross-Beckner hypercontractive inequality for the Boolean hypercube is
well known.

Theorem 4.8 ([Bon70, Gro75, Bec75]). Let f : {±1}n → R. Define Tρ(f)(x) =
∑

ω⊆[n] ρ
|ω|χω(x)f̂(x)

— the noise operator with parameter ρ, and let ‖f‖p = Ex[|f(x)|p]1/p. Then for any 1 ≤ p ≤ 2,

‖T√p−1f‖2 ≤ ‖f‖p .

We will need the following corollary of Theorem 4.8, which also appears in [GKK+08, dW08,
KR11]:

Lemma 4.9. Let f ′ : {±1}n → {−1, 0, 1} with support A := supp(f ′) = {x : f ′(x) 6= 0}, and let
f = f ′/µ(A) be the normalized f ′ where µ denotes the uniform measure on the hypercube. Then
the Fourier mass on level k satisfies

∑
|ω|=k

f̂(ω)2 ≤
(
emax

(
1,

2

k
ln

1

µ(A)

))k
.
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Proof. Applying Theorem 4.8 we get:∑
|ω|=k

f̂(ω)2 ≤ 1

(p− 1)k

∑
ω⊆[n]

(p− 1)|ω|f̂(ω)2

=
1

(p− 1)k
‖T√p−1f‖22

≤ 1

(p− 1)k
‖f‖2p =

1

(p− 1)k
µ(A)−2(1−1/p) .

For p = 1 + k
2 ln(1/µ(A)) when k ≤ 2 ln(1/µ(A)) this is at most

(
2e
k ln(1/µ(A))

)k
, and when k ≥

2 ln(1/µ(A)) the sum of all squared Fourier coefficients is ‖f‖22 = 1/µ(A) ≤ ek as desired.

For levels k close to n, we can derive the following improved bound.

Corollary 4.10. For f as in Lemma 4.9,

∑
|ω|=k

f̂(ω)2 ≤
(
emax

(
1,

2

n− k
ln

1

µ(A)

))n−k
.

Proof. Multiply f by the parity on all the coordinates χ[n] and apply Lemma 4.9 to the resulting
function.

The following claim provides the Fourier coefficients of the majority function on an odd number
of inputs. A proof is provided in Appendix B for completeness.

Claim 4.11 ([O’D14, Section 5.3]). The Fourier decomposition of the majority function Maj(x) :=
[
∑

i xi ≥ 0] on {±1}2d+1 (taking values 0 and 1) is

Maj(x) =
1

2
+ µ1

∑
|ω|=1

χω(x) + µ2

∑
|ω|=2

χω(x) + · · ·+ µ2d+1

∑
|ω|=2d+1

χω(x),

where each µ2k = 0 for k > 0, and the odd coefficients are

µ2k+1 =

(
2d

d

)(
d

k

)(
2d

2k

)−1 (−1)k

22d+1
. (5)

The following is the key lemma of this section. The analogous statement for the uniform measure
on the sphere was shown in [KR11].

Lemma 4.12. There exists a constant c > 0 such that for every pair A,B of subsets of {±1}2d+1

of measure at least exp(−d1/3),

Pr
y∼B,x∼Cap(y)

[x ∈ A] ∈ (1± cd−1/6)µ(A),

where Cap(y) := {x ∈
{
±1}2d+1 : 〈x, y〉 > 0

}
is the set of points at Hamming distance at most d

from y.
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Proof. Let f := 1A/µ(A), g := 1B/µ(B) be the normalized indicator functions of the two sets.
Define the operator RCap on Boolean functions by RCap(h)(y) := Ex∼Cap(y)[h(x)]. Then

Pr
y∼B

x∼Cap(y)

[x ∈ A] = µ(A)Ey[g(y)RCap(f)(y)] = µ(A)
∑
ω

ĝ(ω)R̂Cap(f)(ω),

so we need to bound this sum. Notice that RCap is just a convolution with the majority function
defined above: RCap(f)(y) = 2Ex[f(x � y)Maj(x)], so in the Fourier basis RCap is diagonal with
the Fourier coefficients of 2Maj as eigenvalues, giving

µ(A)−1 Pr
y∼B

x∼Cap(y)

[x ∈ A] = 1 + 2

d∑
k=0

(
µ2k+1

∑
|ω|=2k+1

f̂(ω)ĝ(ω)
)
.

Therefore, using Cauchy-Schwarz,∣∣∣µ(A)−1 Pr
y∼B

x∼Cap(y)

[x ∈ A]− 1
∣∣∣ ≤ 2

d∑
k=0

(
|µ2k+1|

( ∑
|ω|=2k+1

f̂(ω)2
)1/2( ∑

|ω|=2k+1

ĝ(ω)2
)1/2)

. (6)

Our goal is to bound the right-hand side by O(d−1/6). We split it into four parts: |ω| ≤ δd,
δd ≤ |ω| ≤ (2 − δ)d, (2 − δ)d ≤ |ω| ≤ 2d, and the one term with |ω| = 2d + 1, for small enough
universal constant δ to be chosen.

For the first part, we compute the ratio of the term for k + 1 to the term for k, showing that
the terms are geometrically decreasing. The ratio of eigenvalues is

|µ2k+3/µ2k+1| =
(

d

k + 1

)(
2d

2k

)(
d

k

)−1( 2d

2k + 2

)−1

=
(d− k)(2k + 2)(2k + 1)

(k + 1)(2d− 2k)(2d− 2k − 1)

=
2k + 1

2d− 2k − 1
. (7)

Moreover, by Lemma 4.9,∑
|ω|=2k+1

f̂(ω)2 ≤
(
emax

(
1,

2

2k + 1
ln

1

µ(A)

))2k+1

. (8)

The ratio of this upper bound at k + 1 and at k is(
emax

(
1,

2 ln(1/µ(A))

2k + 3

))2k+3
/(

emax

(
1,

2 ln(1/µ(A))

2k + 1

))2k+1

≤ e2 max

(
1,

2 ln(1/µ(A))

2k + 1

)2

.

Using the analogous bound for g, the ratio between our upper bounds for the terms for k + 1 and
for k in Eq. (6) is

e2 2k + 1

2d− 2k − 1
max

(
1,

2 ln(1/µ(A))

2k + 1

)
max

(
1,

2 ln(1/µ(B))

2k + 1

)
,
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which is at most 1/2 for a small enough constant δ since ln(1/µ(A)) ln(1/µ(B)) ≤ d2/3. Therefore,
the contribution of the first part of the sum in Eq. (6) is at most twice that of the first term k = 0.
Using Eq. (8), the latter is

|µ1|
( ∑
i∈[2d+1]

f̂({i})2
)1/2( ∑

i∈[2d+1]

ĝ({i})2
)1/2

≤ 2e√
2d

(
ln

1

µ(A)
ln

1

µ(B)

)1/2

≤ O(d−1/6) ,

and so the first part of the sum can be bounded by O(d−1/6), as desired.
For the middle part δd ≤ 2k + 1 = |ω| ≤ (2 − δ)d, notice from Eq. (5) that |µ2k+1| are

symmetric around k = d/2, and from Eq. (7) that they are decreasing until k = d/2. Therefore, all
coefficients in this range are bounded in absolute value from above by |µδd|. Moreover, by Parseval’s
theorem,

∑
ω(f̂(ω))2 = Ex[f(x)2] = µ(A)−1. We can therefore use Cauchy-Schwarz to bound the

contribution of the middle terms in Eq. (6) by

|µδd|√
µ(A)µ(B)

.

Using the approximation

|µδd| ≤
(

d

δd/2

)(
2d

δd

)−1

/
√

2d

≤ exp(dH(δ/2)− 2dH(δ/2) + o(d))

= exp(−dH(δ/2) + o(d)),

where H is the entropy function in nats H(x) = −x lnx− (1−x) ln(1−x), we get an exponentially
small bound on the middle terms.

The bound on the third part is similar to that on the first part. Using Corollary 4.10 we get

∑
|ω|=2k+1

f̂(ω)2 ≤
(
emax

(
1,

2

2d− 2k
ln

1

µ(A)

))2d−2k

, (9)

which leads to the geometric decay of terms, as before. This part of the sum is therefore dominated
by the k = d− 1 term, which by Eq. (9) is at most

|µ2d−1|
( ∑
|ω|=2d−1

f̂(ω)2
)1/2( ∑

|ω|=2d−1

ĝ(ω)2
)1/2

≤ O(d−3/2)
(

ln
1

µ(A)
ln

1

µ(B)

)
,

and so the third part of the sum can also be bounded by O(d−1/6), as desired.
Finally, the term for k = d is O(d−1/2) since |µ2d+1| = O(d−1/2) and for ω = [2d + 1] (in fact,

for all ω),

|f̂(ω)| =
∣∣∣E
x
[χω(x)f(x)]

∣∣∣ ≤ E
x
[|f(x)|] = E

x
[1A/µ(A)] = 1 ,

and similarly for g.

With this lemma in hand we can prove Theorem 4.7.
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Proof of Theorem 4.7. Take k = dε uniformly random vectors y1, . . . , yk ∈ {±1}2d+1. Denote by At
the intersection of the first t halfspaces: At = Cap(y1)∩Cap(y2)∩ · · · ∩Cap(yt). We want to show
that the measure of At is within [exp(−2ctd−1/6), exp(ctd−1/6)] · 2−t for all t with high probability,
where c > 0 is the constant from Lemma 4.12. Notice that At = Cap(yt) ∩At−1, so if

µ(At−1) ∈ 1

2t−1

[
exp(−2c(t− 1)d−1/6), exp(c(t− 1)d−1/6)

]
< exp(d−1/3), (10)

then by Lemma 4.12 the probability of µ(Ai) 6∈ (1 ± cd−1/6)µ(Ai−1)/2 is at most exp(−d1/3).
Indeed, we let A := At−1 and let B be the set of all points y whose corresponding halfspaces
intersect A by too much (same works for the halfspaces whose intersection is too small):

B :=
{
y : µ(At−1 ∩ Cap(y)) > (1 + d−1/6)µ(At−1)/2

}
.

The measure of such B by Lemma 4.12 can be at most exp(−d1/3), so conditioned on the set At−1

having the appropriate measure as in (10), At will have measure

µ(At) ∈
1± cd−1/6

2t

[
exp(−2c(t− 1)d−1/6), exp(c(t− 1)d−1/6)

]
⊂ 1

2t

[
exp(−2ctd−1/6), exp(ctd−1/6)

]
with probability at least 1− 2 exp(−d1/3). Here we have used e−2t ≤ 1− t for small enough t and
1 + t ≤ exp(t) for all t.

By union bound the probability that µ(Ak) will lie in the small interval around 2−k is at least
1−2k exp(−d1/3). Moreover, we can also bound the probability that all the 2k possible intersections
of halfspaces (taking either Cap(yt) or Cap(yt) for each t) have measure close to 2−k. Indeed, we
can imagine a complete binary tree with k+ 1 layers, and at a node v at level t− 1 we are choosing
whether to take H = Cap(y) or H = Cap(y), and travel down along the corresponding edge and
write the new set Av ∩ H. Conditioned on Av being close to correct size as in (10), the same
reasoning applies as above, so by union bound the probability that on at least one edge in the
tree the difference in measures will be too large or too small is at most 2 · 2k exp(d−1/3). This
means that the L∞ distance between uniform distribution on {0, 1}k and the vector of indicators(
[x ∈ Cap(y1)], [x ∈ Cap(y2)], . . . , [x ∈ Cap(yk)]

)
when x ∈ {±1}2d+1 is chosen uniformly at random

will be at most

1

2k
max

(
1− exp(−2ckd−1/6), exp(ckd−1/6)− 1

)
≤ 2ckd−1/6

2k

with probability at least 1− 2 · 2k exp(−d1/3).
Applying the union bound over all possible choices of k out of m coordinates of the vector

f(x) = (sign(〈yi, x〉))mi=1 from the theorem statement, we get that the probability that all the k-

marginals of this vector are O
(
kd1/6

2k

)
-close to the uniform when evaluated on a uniformly random

point x is at least

1− 2 · 2k exp(−d1/3)

(
m

k

)
≥ 1− exp

(
−d1/3 + k ln 2 + k ln(em)− k ln k

)
,

which is exponentially close to 1 since k = dε < d1/6 and m is polynomial in d.
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If Theorem 4.3 were “robust” to distributions whose k-marginals are statistically-close to uni-
form, then Theorem 4.7 would have established the existence of a degree-1 (halfspace) GPRG
against halfspaces in nε dimensions. Unfortunately, the proof of Theorem 4.3 only applies to
distributions whose marginals are exponentially close (in k) to uniform (whereas the distance
δ = 1/poly(k) obtained in Theorem 4.7 is essentially tight by considering the correlation between
just 2 coordinates). Nonetheless, Theorem 4.3 is a necessary milestone toward the fooling question,
and we believe the proof technique of Theorem 4.7 may be useful to directly settle the existence of
GPRGs from halfspaces.
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A Explicit (n/ logm)-wise independent matrices

In order to construct an explicit binary matrix M ∈ {0, 1}m×n which is k = n
logm -wise independent

over the reals, it suffices to take the parity-check matrix of an optimal linear error correcting
code over F2 (see, e.g., [Jus72, MS77, ABN+92, SS96, DSV12]). While such constructions are
typically quite sophisticated, they also provide a stronger property: the resulting matrix is k-wise
independent even over F2. We give an explicit folklore construction of a binary matrix which is k-
wise independent over the reals (and over F2). To construct such a matrix, we take a Vandermonde
matrix over a finite field and binarize it.

Let ` = dlogme + 1 and k = n/`. We assume that n is divisible by `. Choose a prime
2m > p ≥ m, and take the rectangular Vandermonde matrix M ∈ Fm×kp : Mi,j = ij mod p. This
matrix is k-wise independent over Fp, as any k rows of M form a full-rank Vandermonde matrix .
Now apply procedure Bin : Fp → {0, 1}` to each entry of the matrix, and concatenate the resulting
vectors in each row to get M ′ ∈ {0, 1}m×n. The procedure Bin takes an element x of the field, finds
0/1 coefficients d0, . . . , d`−1 such that

∑`−1
i=0 di2

i = x mod p, and returns (d0, . . . , d`−1).

Proposition A.1 (Folklore). The matrix M ′ ∈ {0, 1}m×n constructed above is k-wise independent
over Fp and, consequently, over R.

Proof. There is a matrix H ∈ Fn×kp such that M = M ′H since there is a linear inverse of the map
Bin. If some k rows are linearly dependent in M ′, they are also linearly dependent in M . But any
k rows of M are independent, since they form a k×n Vandermonde matrix with distinct rows (and
k ≤ n).

Linear independence over Fp implies linear independence over R: if a subset of rows is linearly
independent, there is an invertible square submatrix X in those rows, and detX 6= 0 mod p implies
detX 6= 0 over the reals.

B The Fourier coefficients of Maj

Claim 4.11 ([O’D14, Section 5.3]). The Fourier decomposition of the majority function Maj(x) :=
[
∑

i xi ≥ 0] on {±1}2d+1 (taking values 0 and 1) is

Maj(x) =
1

2
+ µ1

∑
|ω|=1

χω(x) + µ2

∑
|ω|=2

χω(x) + · · ·+ µ2d+1

∑
|ω|=2d+1

χω(x),

where each µ2k = 0 for k > 0, and the odd coefficients are

µ2k+1 =

(
2d

d

)(
d

k

)(
2d

2k

)−1 (−1)k

22d+1
. (5)

Proof. For ω ⊂ [2d+ 1], the Fourier coefficient in front of χω in the Fourier decomposition is

M̂aj(ω) = E
x
[χω(x)Maj(x)] =

1

22d+1

∑
w(x)≤d

χω(x) ,

where w(x) is the number of −1s in the vector x.
Suppose i ∈ ω. Then χω(x⊕i) = −χω(x), where x⊕i equals x with the ith coordinate multiplied

by −1. So if both x and x⊕i have Hamming weight at most d, the corresponding terms in the
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sum will cancel each other out. The terms that remain will correspond to the points x that have
Hamming weight w(x) = d with xi = 1 giving

M̂aj(ω) =
1

22d+1

∑
w(x)=d
xi=1

χω(x). (11)

It is clear that this sum is the same for the Fourier coefficients of the same weight. Summing
over all the characters γ of weight |ω| which contain coordinate i we get:(

2d

|ω| − 1

)
M̂aj(ω) =

∑
|γ|=|ω|
i∈γ

1

22d+1

∑
w(x)=d
xi=0

χγ(x) =
1

22d+1

∑
w(x)=d
xi=0

∑
|γ|=|ω|
i∈γ

χγ(x)

=
1

22d+1

(
2d

d

) d∑
h=0

(−1)h
(
d

h

)(
d

|ω| − h− 1

)
,

where h in the last sum corresponds to the number of −1 coordinates in x that fall into γ. The
last sum can be computed by noticing that it is exactly the coefficient in front of x|ω|−1 in the
polynomial (1− x)d(1 + x)d = (1− x2)d, in particular we get that when |ω| is even, the coefficient
is 0.

The constant Fourier coefficient is the average value of Maj over the hypercube, so it is 1/2.
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