Electronic Colloquium on Computational Complexity, Report No. 58 (2020)

Interactive Proofs for
Verifying Machine Learning

Shafi Goldwasser!, Guy N. Rothblum?, Jonathan Shafer!, and Amir Yehudayoff3

'UC Berkeley
2Weizmann Institute of Science
3Technion-IIT

April 24, 2020

Abstract

We consider the following question: using a source of labeled data and interaction with an
untrusted prover, what is the complexity of verifying that a given hypothesis is “approximately
correct”? We study interactive proof systems for PAC verification, where a verifier that
interacts with a prover is required to accept good hypotheses, and reject bad hypotheses. Both
the verifier and the prover are efficient and have access to data samples from an unknown
distribution. We are interested in cases where the verifier can use significantly less data than
is required for (agnostic) PAC learning, or use a substantially cheaper data source (e.g., using
only random samples for verification, even though learning requires membership queries). We
believe that today, when data and data-driven algorithms are quickly gaining prominence, the
question of verifying purported outcomes of data analyses is very well-motivated.

We show three main results. First, we prove that for a specific hypothesis class, verification
is significantly cheaper than learning in terms of the number of random samples required, even
if the verifier engages with the prover only in a single-round (NP-like) protocol. Moreover,
for this class we prove that single-round verification is also significantly cheaper than testing
closeness to the class. Second, for the broad class of Fourier-sparse boolean functions, we
show a multi-round (IP-like) verification protocol, where the prover uses membership queries,
and the verifier is able to assess the result while only using random samples. Third, we show
that verification is not always more efficient. Namely, we show a class of functions where
verification requires as many samples as learning does, up to a logarithmic factor.

! Email: {shafi.goldwasser,shaferjo}@berkeley.edu.
2 Email: rothblum@alum.mit.edu.
3 Email: amir.yehudayoff@gmail.com.

ISSN 1433-8092

Contents

1 Introduction

1.1 PAC Verification: A ProposedModel
1.1.1 RelatedModels
1.2 Applications e e e e e e e e
1.2.1 Delegationof Learning
1.2.2 Verification of Scientific Studies
1.2.3 Towards a Formal Theory of Al Safety
1.3 OurSetting e e e
1.4 Overviewof Results
1.5 Further Related Works
1.6 Preliminaries e e e
1.6.1 Probability
1.62 PACLearning e
1.6.3 Fourier Analysis of Boolean Functions
1.7 Definition of PAC Verification
1.8 Organizationof thisPaper, .

Efficient Verification for the Class of Fourier-Sparse Functions

2.1 The Interactive Goldreich-Levin Protocol

2.2 Efficient Verification of Fourier-Sparse Functions
2.2.1 Proof e e

Separation Between Learning, Testing, and PAC Verification

3.1 Warm-Up: The Class of Thresholds
3.1.1 Existence of Certificates of Loss for Thresholds
3.1.2 Efficient Generation and Verification of Certificates for Thresholds
3.1.3 Warm-Up Summary

3.2 Efficient PAC Verification for the Class 7; of Multi-Thresholds
32,1 TheClass Ty o o i e e e
3.2.2 Existence of Certificates of Lossfor7;
3.2.3 Efficient Generation and Verification of Certificates for 7;

3.3 Lower Bounds for Closeness Testing and 2-PAC Learning of the Class 7;

Lower Bound of Q(d)

4.1 TheClass Hy . . o o o v i o e e e e e e e e e e e

42 ProofIdea e e

4.3 Proof . .. e e e

4.4 Construction of Hy o . o e e e e
44.1 Property Hl: drv (Uxt, Dy,) <O oo v oo v i

ii

15
17
24
24

4.42 Property H2: Vi# j: |supp(fi) Nsupp(fj)| < ‘%"
443 Property H3: |Fx| > %
4.5 Construction of the Joint Probability Space

S Directions for Future Work
References

Towards a Formal Theory of AI Safety
Thresholds Over Discrete Sets
Uniform Convergence for Set Systems

Identity Testing for Distributions

2 ©C a v »

Total Variation Distance

=y

Learning Fourier-Sparse Functions By Estimating Heavy Coefficients

@

Random Matrices Have Full Rank

iii

56

57

60

62

63

64

65

65

67

A simple idea underpins science: “trust, but verify”. Results should always be subject
to challenge from experiment. That simple but powerful idea has generated a vast
body of knowledge. Since its birth in the 17th century, modern science has changed
the world beyond recognition, and overwhelmingly for the better. But success can
breed complacency. Modern scientists are doing too much trusting and not enough
verifying — to the detriment of the whole of science, and of humanity.

The Economist, “How Science Goes Wrong” (2013)

1 Introduction

Data and data-driven algorithms are transforming science and society. State-of-the-art machine
learning and statistical analysis algorithms use access to data at scales and granularities that would
have been unimaginable even a few years ago: from medical records and genomic information
to financial transactions and transportation networks. This revolution spans scientific studies,
commercial applications and the operation of governments. It holds transformational promise,
but also raises new concerns. If data analysis requires huge amounts of data and computational
power, how can one verify the correctness and accuracy of the results? Might there be asymmetric
cases, where performing the analysis is expensive, but verification is less costly?

There are many types of statistical analyses, and many ways to formalize the notion of verifying
the outcome. In this work we focus on interactive proof systems (Goldwasser, Micali, & Rackoff,
1989) for verifying supervised learning, as defined by the PAC model of learning (L. G. Valiant,
1984). Our emphasis throughout is on access to the underlying data distribution as the critical
resource: both quantitatively (how many samples are used for learning versus for verification),
and qualitatively (what types of samples are used). We embark on tackling a series of new
questions:

Suppose a learner (which we also call “prover”) claims to have arrived at a good hypothesis with
regard to an unknown data distribution by analyzing random samples from the distribution. Can one
verify the quality of the hypothesis with respect to the unknown distribution by using significantly
fewer samples than the number needed to independently repeat the analysis? The crucial difference
between this question and questions that appear in the property testing and distribution testing
literature is that we allow the prover and verifier to engage in an interactive communication protocol
(see Section 1.1.1 for a comparison). We are interested in the case where both the verifier and an
honest prover are efficient (i.e., use polynomial runtime and sample complexity), and furthermore,
a dishonest prover with unbounded computational resources cannot fool the verifier:

Question 1 (Runtime and sample complexity of learning vs. verifying). Are there machine
learning tasks for which the runtime and sample complexity of learning a good hypothesis is
significantly larger than the complexity of verifying a hypothesis provided by someone else?

In the learning theory literature, various types of access to training data have been considered,
such as random samples, membership queries, and statistical queries. It is interesting to consider
whether it is possible to verify a hypothesis using a weaker type of access than is necessary for
learning:

Question 2 (Sample type of learning vs. verifying). Are there machine learning problems where
membership queries are necessary for finding a good hypothesis, but verification is possible using
random samples alone?

The answers to these fundamental questions are motivated by real-world applications. If data
analysis requires huge amounts of data and computational resources while verification is a simpler
task, then a natural approach for individuals and weaker entities would be to delegate the data
collection and analysis to more powerful entities. Going beyond supervised learning, this applies
also to verifying the results of scientific studies without replicating the entire experiment. We
elaborate on these (and more) motivating applications in Section 1.2 below.

1.1 PAC Verification: A Proposed Model

Our primary focus in this work is verifying the results of agnostic supervised machine learning
algorithms that receive a labeled dataset, and aim to learn a classifier that predicts the labels of
unseen examples. We consider an interactive proof system for verification of PAC learning, which
we call PAC Verification (see Definition 1.17). Here, the entity running the learning algorithms
(which we refer to as the “prover” or the “learner”) proves the correctness of the results by engaging
in an interactive communication protocol with a verifier. One special case is where the prover only
sends a single message constituting an (NP-like) certificate of correctness. The honest prover
should be able to convince the verifier to accept its proposed hypothesis with high probability. A
dishonest prover (even an unbounded one) should not be able to convince the verifier to accept a
hypothesis that is not sufficiently good (as defined below), except with small probability over the
verifier’s random coins and samples. The proof system is interesting if the amount of resources
used for verification is significantly smaller than what is needed for performing the learning task.
We are especially interested in doubly-efficient proof systems (Goldwasser, Kalai, & Rothblum,
2015), where the honest prover also runs in polynomial time.

More formally, let X’ be a set, and consider a distribution D over samples of the form (x,y)
where x € X and y € {0, 1}. Assume there is some hypothesis class H, which is a set of functions
X — {0,1}, and we are interested in finding a function 4 € H that predicts the label y given a
previously unseen x with high accuracy with respect to D. To capture this we use a loss function
denoted Lp, which maps every hypothesis £ to a real-valued loss that quantifies how poorly A(x)
predicts y: Lp(h) =P, y)ep [1(x) # y]. Our goal is to design protocols that guarantee that with
high probability, a proposed hypothesis 4 is accepted if and only if it is £-good, which means
that

Lp(h) < Lp(H) +e, (1)

where Lp(H) = infpey Lp(h).

Note that in the realizable case (or promise case), in which we assume that Lp(#) = 0, this
task is trivial. A natural thing for the verifier to do under this assumption is to take a few samples
from D, and accept if and only if / classifies at most, say, an f—os—fraction of them incorrectly. From

Hoeftding’s inequality, taking O (8%) samples is sufficient to ensure that with constant probability

the empirical loss' of h is close to the true loss, e.g. with probability at least 19—0, the difference

between the empirical loss and the true loss will be at most {5. Therefore, if Lp(h) < %8 then
h will be accepted with probability 19—0, and if Lp(h) > € then i will be rejected with probability
1%. In contrast, PAC learning a hypothesis that with probability at least % has loss at most €
requires Q (%) samples, where the parameter d, which is the VC dimension of the class, can
be arbitrarily large.> Hence, we obtain an unbounded sample complexity and time complexity
separation between learning and verifying in the realizable case.

Therefore, the focus of this paper is the agnostic case, where no assumptions are made regarding
Lp(H). Here, things become more interesting, and deciding whether 7 is e-good is non-trivial.
Indeed, the verifier can efficiently estimate Lp (%) using Hoeffding’s inequality, but estimating the
term Lp(?) on the right hand side of (1) is considerably more challenging. If / has a loss of
say 15%, it could be an amazingly-good hypothesis compared to the other members of H, or it
could be very poor. Distinguishing between these two cases may be difficult when 7 is a large and

complicated class.

1.1.1 Related Models

We discuss two related models studied in prior work, and their relationship to the PAC verification
model proposed in this work.

Property Testing. Goldreich, Goldwasser, and Ron (1998) initiated the study of a property
testing problem that naturally accompanies proper PAC learning: Given access to samples from an
unknown distribution D, decide whether Lp(H) = 0 or Lp(H) > € for some fixed hypothesis class
‘H. Further developments and variations appeared in Kearns and Ron (2000) and Balcan, Blais,
Blum, and Yang (2012). Blum and Hu (2018) consider tolerant closeness testing and a related task
of distance approximation (see Parnas, Ron, & Rubinfeld, 2006), where the algorithm is required
to approximate Lp () up to a small additive error. As discussed above, the main challenge faced
by the verifier in PAC verification is approximating Lp (). However, there is a crucial difference
between testing and PAC verification: In addition to taking samples from D, the verifier in PAC
verification can also interact with a prover, and thus PAC verification can (potentially) be easier
than testing. Indeed, this difference is exemplified by the proper testing question, where we only
need to distinguish the zero-loss case from large loss. As discussed above, proper PAC verification
is trivial. Proper testing, one the other hand, can be a challenging goal (and, indeed, has been the
focus of a rich body of work). For the tolerant setting, we prove a separation between testing and

IT.e., the fraction of the samples that is misclassified.
ZSee preliminaries in Section 1.6.2 for more about VC dimension.

PAC verification: we show a hypothesis class for which the help of the prover allows the verifier to
save a (roughly) quadratic factor over the number of samples that are required for closeness testing
or distance approximation. See Section 3 for further details.

Proofs of Proximity for Distributions. Chiesa and Gur (2018) study interactive proof systems
for distribution testing. For some fixed property II, the verifier receives samples from an unknown
distribution D, and interacts with a prover to decide whether D € IT or whether D is e-far in total
variation distance from any distribution in IT. While that work does not consider machine learning,
the question of verifying a lower bound ¢ on the loss of a hypothesis class can be viewed as a special
case of distribution testing, where IT= {D : Lp(H) > ¢}. Beyond our focus on PAC verification,
an important distinction between the works is that in Chiesa and Gur’s model and results, the honest
prover’s access to the distribution is unlimited — the honest prover can have complete information
about the distribution. In this paper, we focus on doubly-efficient proofs, where the verifier and the
honest prover must both be efficient in the number of data samples they require. With real-world
applications in mind, this focus seems quite natural.

We survey further related works in Section 1.5.

1.2 Applications

The P vs. NP problem asks whether finding a solution ourselves is harder than verifying a solution
supplied by someone else. It is natural to ask a similar question in data science: Are there machine
learning problems for which learning a good hypothesis is harder than verifying one proposed by
someone else? We find this theoretical motivation compelling in and of itself. Nevertheless, we
now proceed to elaborate on a few more practical aspects of this question.

1.2.1 Delegation of Learning

In a commercial context, consider a scenario in which a client is interested in developing a machine
learning (ML) model, and decides to outsource that task to a company P that provides ML services.
For example, P promises to train a deep neural net using a big server farm. Furthermore, P claims
to possess a large amount of high quality data that is not available to the client, and promises to use
that data for training.

How could the client ascertain that a model provided by P is actually a good model? The
client could use a general-purpose cryptographic delegation-of-computation protocol, but that
would be insufficient. Indeed, a general-purpose delegation protocol can only ensure that P
executed the computation as promised, but it cannot provide any guarantees about the quality
of the outcome, and in particular cannot ensure that the outcome is €-good: If P used skewed
or otherwise low-quality training data (whether maliciously or inadvertently), a general-purpose
delegation protocol has no way of detecting that. Moreover, even if the the data and the execution
of the computation were both flawless, this still provides no guarantees on the quality of the output,

because an ML model might have poor performance despite being trained as prescribed.®**

A different solution could be to have P provide a proof to establish that its output is indeed
€-good. In cases where the resource gap between learning and verifying is significant enough, the
client could cost-effectively verify the proof, obtaining sound guarantees on the quality of the ML
model it is purchasing from P.

1.2.2 Verification of Scientific Studies

It has been claimed that many or most published research findings are false (Ioannidis, 2005).
Others refer to an ongoing replication crisis (Pashler & Wagenmakers, 2012; Fidler & Wilcox,
2018), where many scientific studies are hard or impossible to replicate or reproduce. Addressing
this crisis is a scientific and societal priority. While resolving this crisis is well beyond the scope of
any single work, we suggest a novel mitigation approach: rather than requiring full re-execution for
verification of an analysis or experiment, there are natural examples where verification can be much
less expensive in terms of access to data samples and in terms of computational resources.” One
can envision a process by which scientific papers include a proof (interactive or non-interactive)
of the results, that allows the community to verify the results using a small number of samples
(these samples can be drawn as part of the review process, or perhaps they can come from existing
repositories). We hope that the first steps taken in this work can lead to further development of
verification techniques and protocols.

1.2.3 Towards a Formal Theory of Al Safety

Another motivation comes from the fledgling field of Al safety, concerned with ensuring that
Al systems will not cause harm to their operators and to humanity in general (Bostrom, 2017).
Consider this salient example, due to Russell (2019, ch. 5): An Al system is tasked with finding a
cure for cancer. If the system is smart enough, it might decide to forcefully induce cancer tumors
into millions of living people as part of its R&D efforts; furthermore, it could easily anticipate and
stifle any human attempts at resistance. Thus, the system may accomplish its mission of identifying
a cure for cancer, and still be a monstrous disaster.

As a solution, we suggest that by employing an interactive proof system, an Al development
project could formally prove that a proposed Al design will be well-aligned with the desired human
utility function before activating the Al, and without needing to formally specify what the desired
human utility function is. Further discussion of this idea appears in Appendix A.

3E.g., a neural network might get stuck at a local minimum.

4 Additionally, note that state-of-the-art delegation protocols are not efficient enough at present to make it practicable to
delegate intensive ML computations. See the survey by Walfish and Blumberg (2015) for progress and challenges in
developing such systems.

SE.g., the case of learning a Gaussian as mentioned in Section 1.5, as well as our result in Lemma 2.5.

1.3 Our Setting

In this paper we consider the following form of interaction between a verifier and a prover.

Oracle Op Oracle Oy

| wi=h |

Prover Verifier
w2

I

h or ‘reject’

Figure 1: The verifier and prover each have access to an oracle,
and they exchange messages with each other. Eventually, the
verifier outputs a hypothesis, or rejects the interaction. One
natural case is where the prover suggests a hypothesis 4, and the
verifier either accepts or rejects this suggestion.

Let H C {0,1}* be a class of hypotheses, and let D be a distribution over X' x {0,1}. The
verifier and the prover each have access to an oracle, denoted Oy and Op respectively. In the
simplest case, both oracles provide i.i.d. samples from D. That is, each time an oracle is accessed,
it returns a sample from D taken independently of all previous samples and events. In addition,
the verifier and prover each have access to a (private) random coin value, denoted py and pp
respectively, which are sampled from some known distributions over {0, 1}* independently of each
other and of all other events. During the interaction, the prover and verifier take turns sending each
other messages wy,ws, ..., where w; € {0, 1}* for all ;. Finally, at some point during the exchange
of messages, V halts and outputs either ‘reject’ or a hypothesis #: X — {0,1}. The goal of the
verifier is to output an €-good hypothesis, meaning that

LD(/’l) < LD(H) + €.

A natural special case of interest is when the prover’s and verifier’s oracles provide sample
access to D. The prover can learn a “good” hypothesis 7 : X — {0,1} and send it to the verifier
as its first message, as in Figure 1 above. The prover and verifier then exchange further messages,
wherein the prover tries to convince the verifier that /2 is £-good, and the verifier tries to asses the
veracity of that claim. If the verifier is convinced, it outputs /, otherwise it rejects.

We proceed with an informal definition of PAC verification (see full definitions in Section 1.7).

Before doing so, we first recall a relaxed variant of PAC learning, where we allow a multiplicative
slack in the error guarantee. This is captured by an additional parameter o > 1.

Definition («-PAC Learnability — informal version of Definition 1.19). A class of hypothesis
H is a-PAC learnable if there exists an algorithm A such that for every distribution D and every
€,0 > 0, with probability at least 1 — 0, A outputs h that satisfies

Lp(h) < o-Lp(H)+e. 2)

PAC verification is the corresponding notion for interactive proof systems:

Definition (@-PAC Verifiability — informal version of Definition 1.17). A class of hypothesis H
is o.-PAC verifiable if there exists a pair of algorithms (P,V) that satisfy the following conditions
for every distribution D and every €,0 > 0:
e Completeness. After interacting with P, V outputs h such that with probability at least 1 — 0,
h # reject and h satisfies (2).
e Soundness. After interacting with any (possibly unbounded) prover P', V outputs h such that
with probability at least 1 — 8, either h = reject or h satisfies (2).

Remark 1.1. We insist on double efficiency; that is, that the sample complexity and running times

1

of both V and P must be polynomial in , log (%) and perhaps also in some parameters that

depend on ‘H, such as the VC dimension or Fourier sparsity of H.

1.4 Overview of Results

In this paper, we start charting the landscape of machine learning problems with respect to
Questions 1 and 2 mentioned above. In Section 2 we provide evidence for an affirmative answer to
Questions 2. We show an interactive proof system that efficiently verifies the class of Fourier-sparse
boolean functions, where the prover uses an oracle that provides query access, and the verifier uses
an oracle that only provides random samples. In this proof system, both the verifier and prover
send and receive messages.

The class of Fourier-sparse functions is very broad, and includes decision trees, bounded-depth
boolean circuits and many other important classes of functions. Moreover, the result is interesting
because it supplements the widely-held learning parity with noise (LPN) assumption, which entails
that PAC learning this class from random samples alone without the help of a prover is hard (see
Blum, Kalai, & Wasserman, 2003; Yu & Steinberger, 2016).

Lemma (Informal version of Lemma 2.5). Let H be the class of boolean functions {0,1}" — R
that are t-sparse, as in Definition 1.15. Then H is 1-PAC verifiable with respect to the uniform
distribution using a verifier that has access only to random samples of the form (x, f(x)), and
a prover that has query access to f. The verifier in this protocol is not proper; the output
is not necessarily t-sparse, but it is poly(n,t)-sparse. The number of samples used by the
verifier, the number of queries made by the prover, and their running times are all bounded by

poly (n,t,log (%) , %)

Proof idea. The proof uses two standard tools, albeit in a less-standard way. The first standard
tool is the Kushilevitz-Mansour algorithm (Kushilevitz & Mansour, 1993), which can PAC learn
any ¢-sparse function using random samples, but only if the set of non-zero Fourier coefficients is
known. The second standard tool is the Goldreich-Levin algorithm (Goldreich & Levin, 1989;
Goldreich, 2007, Section 2.5.2.3), which can identify the set of non-zero Fourier coefficients,
but requires guery access in order to do so. The protocol combines the two tools in a manner
that overcomes the limitations of each of them. First, the verifier executes the Goldreich-Levin
algorithm, but whenever it needs to query the target function, it requests that the prover perform
the query and send back the result. However, the verifier cannot trust the prover, and so the verifier
engineers the queries in such a way that the answers to a certain random subset of the queries
are known to the verifier based on its random sample access. This allows the verifier to detect
dishonest provers. When the Goldreich-Levin algorithm terminates and outputs the set of non-zero
coefficients, the verifier then feeds them as input to the Kushilevitz-Mansour algorithm to find an
€-good hypothesis using its random sample access. ll

In Section 3 we formally answer Question 1 affirmatively by showing that a certain simple
class of functions (generalized thresholds) exhibits a quadratic gap in sample complexity between
learning and verifying:

Lemma (Informal version of Lemma 3.8). There exists a sequence of classes of functions
T, T, T3, .. € {0, 1}F
such that for any fixed €,0 € (0, %)

(i) The class Ty is 2-PAC verifiable, where both the verifier and prover have access to random
samples, and the verifier requires only O (\/3) samples. Moreover, both the prover and
verifier are efficient.

(ii) PAC learning the class Ty requires Q(d) samples.

At this point, a perceptive reader would be justified in raising the following challenges. Perhaps
2-PAC verification requires less samples than 1-PAC learning simply because of the multiplicative
slack factor of 2?7 Alternatively, perhaps the separation follows trivially from property testing
results: maybe it is possible to achieve 2-PAC verification simply by having the verifier perform
closeness testing using random samples, without needing the help of the prover except for finding
the candidate hypothesis? The second part of the lemma dismisses both of these concerns.

Informal version of Lemma 3.8 — Continued. Furthermore, for any fixed €,0 € (0, %)
(iii) 2-PAC learning the class T; requires Q(d) samples. This is true even if we assume that
Lp(Ty) > 0, where D is the underlying distribution.’
(iv) Testing whether Lp(Tz) < aor Lp(Tg) > B forany0 < o < fB < % with success probability

SIn the case where Lp (74) =0, 2-PAC learning is the same as PAC learning, so the stronger lower bound in (ii) applies.

at least 1 — 6 when D is an unknown distribution (without the help of a prover) requires
Q (d) random samples from D.

Proof idea. (ii) follows from a standard application of Theorem 1.10, because VC(7;) =d. (iii)
follows by a reduction from (iv). We prove (iv) by showing a further reduction from the problem
of approximating the support size of a distribution, and applying a lower bound for that problem
(see Theorem 3.19).

For (i), recall from the introduction that the difficulty in designing a PAC verification proof
system revolves around convincing the verifier that the term Lp(?H) in Equation (1) is large.
Therefore, we design our class 7; such that it admits a simple certificate of loss, which is a string
that helps the verifier ascertain that Lp(H) > ¢ for some value /.

To see how that works, first consider the simple class 7 of monotone increasing threshold
functions R — {0,1}, as in Figure 2 on page 27 below. Observe that if there are two events
A =10,a) x {1} and B = [b, 1] x {0} such that a < b and D(A) = D(B) = ¢, then it must be the
case that Lp(7") > . This is true because a < b, and so if a monotone increasing threshold classifies
any point in A correctly it must classify all point in B incorrectly. Furthermore, if the prover sends
a description of A and B to the verifier, then the verifier can check, using a constant number of
samples, that each of these events has weight approximately ¢ with high probability.

This type of certificate of loss can be generalized to the class 7, in which each function is a
concatenation of d monotone increasing thresholds. A certificate of loss for 7; is simply a set of
d certificates of loss {A;,B;}_,, one for each of the d thresholds. The question that arises at this

point is how can the verifier verify d separate certificates while using only O (\/3) samples. This
is performed using tools from distribution testing: the verifier checks whether the distribution of
“errors” in the sets specified by the certificates is close to the prover’s claims. l.e., whether the
“weight” of 1-labels in each A; and 0-labels in each B; in the actual distribution, are close to the
weights claimed by the prover. Using an identity tester for distributions this can be done using
O(+/d) samples (note that the identity tester need not be tolerant!). See Theorem D.1 for further
details. B

Finally, in Section 4 we show that verification is not always easier than learning:

Lemma (Informal version of Lemma 4.1). There exists a sequence of classes H1,Ha, ... such
that:
e It is possible to PAC learn the class Hy using O(d) samples.
e For any interactive proof system that proper 1-PAC verifies Hy, in which the verifier uses an
oracle providing random samples, the verifier must use at least Q(d) samples.

Remark 1.2. The lower bound on the sample complexity of the verifier holds regardless of what

oracle is used by the prover.

Proof idea. We specify a set X' of cardinality Q(d?), and take H, to be a randomly-chosen
subset of all the balanced functions X — {0, 1} (i.e., functions f such that [f~1(0)| = [f~(1)]).

The sample complexity of PAC learning Hy follows from its VC dimension being O(d). For
the lower bound, consider proper PAC verifying H, in the special case where the distribution D
satisfies P, ,)ep [y=1] = 1, but the marginal of D on X is unknown to the verifier. Because
every hypothesis in the class assigns the incorrect label O to precisely half of the domain, a
hypothesis achieves minimal loss if it assigns the O labels to a subset of size @ that has minimal
weight. Hence, the verifier must learn enough about the distribution to identify a specific subset

of size @ with weight close to minimal. We show that doing so requires Q (\/] |> =Q(d)
samples. ll

1.5 Further Related Works

The growing role of data and predictive algorithms in a variety of fields has made the analysis
of semi-unreliable data into a central research focus of the theoretical computer science (TCS)
community. Recent research efforts that (broadly) fall into this theme include: (1) parameter
estimation with greater emphasis on high dimensional data in the presence of partially unreliable
data; (2) consideration of new corruption models such as list-decoding notions where some data is
guaranteed to be properly sampled and the rest is subject to high error rate; (3) testing general
properties of distributions beyond parameter estimation; and (4) analysis of machine learning
algorithms with access to partially unreliable data. See Charikar, Steinhardt, and Valiant (2017);
Diakonikolas et al. (2019, 2018); Ilyas, Jalal, Asteri, Daskalakis, and Dimakis (2017); Daskalakis,
Gouleakis, Tzamos, and Zampetakis (2018). In contrast to all these directions, our focus is
on interactive proof systems (or non-interactive certificates) by which an untrusted prover can
convince a verifier that claimed results of a statistical analysis are correct, where the verifier is
only allowed bounded access to the underlying data distribution.

A large body of work spanning the TCS and secure systems communities studies protocols for
delegating computation to be performed by an untrusted prover (see e.g. Babai, Fortnow, Levin, &
Szegedy, 1991; Micali, 1994; Goldwasser et al., 2015; Walfish & Blumberg, 2015). There are two
significant differences between that line of work and the present paper. First, in these protocols the
input is fixed and known to the prover and the verifier. The question is whether a computation was
performed correctly on this (fixed and known) input. In contrast, in our setting there is no fixed and
known input: the distribution D is unknown to the verifier, and can only be accessed by sampling.
Second, we are interested in guaranteeing that a certain statistical conclusion is valid with respect to
this unknown distribution, regardless of whether any specific algorithm was executed as promised.
That is, if some known learning algorithm was executed by the prover and happened to produce
a poor result (e.g. a neural network got stuck in a local minimum), this result should be rejected
by the verifier despite being the outcome of a correct computation. One final contrast with the
literature on delegating computations is that the focus there is on verifying general computations,
and this generality often results in impractical protocols. One benefit of our focus on specific
and structured machine learning problems is that this focus may result in tailored protocols (for
important problems) with improved efficiency.

10

The setting we investigate bears some similarity to sublinear proof verification (see e.g. Ergiin,
Kumar, & Rubinfeld, 2004; Rothblum, Vadhan, & Wigderson, 2013), where the verifier cannot
read the entire input. However, in that setting the verifier enjoys guery access to its input, whereas
in our setting the verifier only gets random samples (a much more limited form of access).

Another related result, in the area of parameter estimation, is due to Diakonikolas, Kane, and
Stewart (2017, Appendix C). They proved a gap between the sample complexity of estimating and
verifying the center of a Gaussian. The verifier is given a parameter § € R” and access to samples
from an n-dimensional Gaussian distribution A (9,1) The verifier can distinguish between the
case O = 0 and the case |6 — ||, > € using O(\/n/¢) samples. This contrasts with estimating 6
up to an € error from samples alone (without access to 0), which requires Q(n/€?) samples. They
show that the result is sharp, and also can be generalized to a setting of tolerant testing.’

Finally, a paper by Axelrod, Garg, Sharan, and Valiant (2019) investigates a setting somewhat
resembling ours. They consider the task of “amplifying” a set of samples taken from some unknown
target distribution, that is, producing an additional synthetic dataset that appears as if it was drawn
from the target distribution. The authors show that generating a dataset close in total variation
distance to the target distribution can be done using less samples from the distribution than are
necessary for learning the distribution up to the same total variation distance.

1.6 Preliminaries
1.6.1 Probability

Notation 1.3. For any probability space (Q,F), let A(Q,F) denote the set of all probability
distributions over (Q,F). We will often simply write A(Q) to denote this set when the G-algebra
F is understood.

Definition 1.4. Let P, Q € A(Q,F). The total variation distance between P and Q is
drv (P,Q)=sup |P(X)—Q(X ’ HP QH

XeF

1.6.2 PAC Learning

We use the Probably Approximately Correct (PAC) definition of learning, introduced by
L. G. Valiant (1984). See Shalev-Shwartz and Ben-David (2014) for a textbook on learning
theory.

Let X be a set, and let H C R? be a class of functions, i.e. is a subset of the functions X — R.
In this paper, we use the ¢, loss function, which is popular in machine learning.

Definition 1.5. Let h € H, and let D € A(X x {0,1}). The loss of h with respect to D is
Lp(h) =E(y)~p [(h(x) —y)z]. Furthermore, we denote Lp(H) = infyey Lp (h).

"That is, distinguishing between the case d > € and d < /2 for d = dy (N'(6,1),N(6.1)).

11

Remark 1.6. In the special case of boolean labels, where y € {0,1} and h: X — {0,1}, the {,
loss function is the same as the 0-1 loss function: Lp(h) =P, y)..p[h(x) # y].

Definition 1.7. We say that H is agnostically PAC learnable if there exist an algorithm A and a
functionm: [0,1]> — N such that for any €,8 > 0 and any distribution D € A(X x R), if A receives
as input a tuple of m(€, 8) i.i.d. samples from D, then A outputs a function h € H satisfying

PlLp(h) <Lp(H)+e€]>1-3.
In words, this means that h is probably (with confidence 1 — 8) approximately correct (has loss

at most € worse than optimal). The point-wise minimal such function m is called the sample
complexity of H.

The following definitions and result apply for the special case of boolean labels, where
H C {0,1}* and we only consider distributions D € A(X x {0,1}).

Definition 1.8. Let h € H and C C X. We denote by h|. the function C — {0, 1} that agrees
with h on C. The restriction of H to C is H|. = {h|c-: h € H}, and we say that H shatters C if
H|-={0,1}<

Definition 1.9 (Vapnik & Chervonenkis, 1971). The VC dimension of H denoted NC(H) is the
maximal size of a set C C X such that H shatters C. If H can shatter sets of arbitrary size, we say
that the VC dimension is oo.

Theorem 1.10 (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989). Let d = VC(H). Then H is
PAC learnable if and only if d < oo, and furthermore, the sample complexity satisfies

m(e,8) =© (‘”log(é)) .

82

1.6.3 Fourier Analysis of Boolean Functions

To formulate and prove Lemma 2.5 below, we need several basic notions from the Fourier analysis
of boolean functions. For a comprehensive introduction, see O’Donnell (2014).
Consider the linear space F of all functions of the form f: {0,1}" — R.

Fact 1.11. The operator (-,-) : F* — R given by (f,g) := Eyc(0.13 [f(x)g(x)] constitutes an inner
product, where x € {0,1}" denotes sampling from the uniform distribution.

Notation 1.12. For any set S C [n], xs: {0,1}" — {0,1} denotes the function ys(x) := (—1)Li%,

Fact 1.13. The set {)s: S C [n]} is an orthonormal basis of F. In particular, any f € F has a
unique representation f(x) = Ygc |y f(S)Xs(x), where f(S) = (f, xs)-

Fact 1.14 (Parseval’s identity). Let f € F. Then (f,f) = Yscp f(S)%. In particular, if
£ {0, 13" = {0,1} then Y £(S)* = Eo[f(x)] < 1.

Definition 1.15. Let t € N. A function f: {0,1}" — R is t-sparse if it has at most t non-zero

12

Fourier coefficients, namely |{S C [n] : f(S) #0}| <.

1.7 Definition of PAC Verification

In Section 1.3 we informally described the setting of this paper. Here, we complete that discussion
by providing a formal definition of PAC verification, which is the main object of study in this
paper.
Notation 1.16. We write

V¥ (xv), P (xp)]
for the random variable denoting the output of the verifier V after interacting with a prover P, when
V and P receive inputs xy and xp respectively, and have access to oracles Oy and Op respectively.
The inputs xy and xp can specify parameters of the interaction, such as the accuracy and confidence
parameters € and 8. This random variable takes values in {0,1}* U {reject}, namely, it is either
a function X — {0, 1} or it is the value “reject”. The random variable depends on the (possibly
randomized) responses of the oracles, and on the random coins of V and P.

For a distribution D, we write VP (or PP) to denote use of an oracle that provides i.i.d. samples
from the distributions D. Likewise, for a function f, we write VI (or P/) to denote use of an oracle
that provides query access to f. That is, in each access to the oracle, V (or P) sends some x € X
to the oracle, and receives the answer f(x).

We also write

[V(Sv.pv),P(Sp,pp)] € {01} U {reject}
to denote the deterministic output of the verifier V after interacting with P in the case where V and
P receive fixed random coin values py and pp respectively, and receive fixed samples Sy and Sp
from their oracles Oy and Op respectively.

We are interested in classes H for which an £-good hypothesis can always be verified with high
probability via this form of interaction between an efficient prover and verifier, as formalized in the
following definition. Note that the following definitions include an additional multiplicative slack
parameter & > 1 in the error guarantee. This parameter does not exist in the standard definition of
PAC learning; the standard definition corresponds to the case o = 1.

Definition 1.17 («-PAC Verifiability). Ler H C {0,1}* be a class of hypotheses, let
D CA(X x{0,1}) be some family of distributions, and let o > 1. We say that H is a-PAC
verifiable with respect to ® using oracles Oy and Op if there exists a pair of algorithms (V,P)
that satisfy the following conditions for every input €,6 > 0:
e Completeness. For any distribution D € ©, the random variable h := [V (g,8),P°" (¢,8)]
satisfies

P |1 # reject A <Lp(h) < a~LD(’H)+£)] >1-4.

e Soundness. For any distribution D € D and any (possibly unbounded) prover P', the random

13

variable h := [V (¢,8),P'°" (¢, 8)] satisfies
P [h # reject A (Lp(h) >o-Lp(H) +8)} <.
Definition 1.18 (Interactive Proof System for PAC Verification). A pair of algorithms (V,P)

satisfying soundness and completeness as above, is called an interactive proof system that o.-PAC
verifies H with respect to ® using oracles Oy and Op.

Definition 1.19 (a-PAC Learnability). Similarly, H is a-PAC learnable with respect to ® using
oracle O if there exists an algorithm A that for every input €,0 > 0 and every D € D, outputs

h:=A%(g,8) such that P[Lp(h) < a-Lp(H) + €] >1-38.

Remark 1.20. Some comments about these definitions:

o The behavior of the oracles Oy and Op may depend on the specific underlying distribution
D € D, which is unknown to the prover and verifier. For example, they may provide samples
from D.

o We insist on double efficiency, that is, that the sample complexity and running times of both
V and P must be polynomial in % log (%) and perhaps also in some parameters that depend
on ‘H, such as the VC dimension or Fourier sparsity of H.

o If for every €38 > 0, and for any (possibly unbounded) prover P, the value
h:=[VO (e,8),P°" (e,8)] satisfies h € HU{reject} with probability 1 (i.e., V never outputs
a function that is not in H), then we say that H is proper o.-PAC verifiable, and that the proof
system proper o.-PAC verifies H.

Remark 1.21. An important type of learning (studied e.g. by Angluin, 1987 and Kushilevitz &
Mansour, 1993) is learning with membership queries with respect to the uniform distribution. In
this setting, the family ® consists of distributions D such that: (1) the marginal distribution of D
over X is uniform; (2) D has a target function f : X — {1,—1} satisfying P(,).p [y = f(x)] = 1.8
In Section 2, we will consider protocols for this type of learning that have the form VP, P, such
that the verifier has access to an oracle providing random samples from a distribution D € 9,
and the prover has access to an oracle providing query access to f, the target function of D. This
type of protocol models a real-world scenario where P has qualitatively more powerful access to
training data than V.

1.8 Organization of this Paper

In Section 1.7 we formally define interactive proofs for PAC verification. In Section 1.4 we
provide an overview of our results and their respective proof ideas. Our first result appears in
Section 3, where we answer Question 1 above affirmatively by showing that a certain simple

8Note that f is not necessarily a member of 7, so this is still an agnostic (rather than realizable) case.

14

class of functions (generalized thresholds) exhibits a quadratic gap in sample complexity between
learning and verifying. The verifier for this class is an NP-like verifier, in the sense that it takes as
input a succinct witness string that helps it reach a decision.

In Section 2 answer Question 2 affirmatively, showing that the broad and important class of
Fourier-sparse boolean functions admits a doubly-efficient verification protocol in which the prover
has query access, but the verifier only uses random samples. Note that according to the widely-held
LPN assumption, learning this class is not possible without query access (see Section 1.6.3 for
more about Fourier analysis, and Blum et al., 2003; Yu & Steinberger, 2016 for more about the
LPN assumption).

Interestingly, however, verification is not always more efficient. In Section 4 we show a lower
bound for a class of randomly-chosen functions, entailing that for this class, verification requires
as many samples as learning does, up to a logarithmic factor.

2 Efficient Verification for the Class of Fourier-Sparse Functions

The class T, of multi-thresholds shows that in some cases verification is strictly easier than learning
and closeness testing. The verification protocol for 7; has a single round, where the prover simply
sends a hypothesis and a proof that it is (approximately) optimal. In this section, we describe a
multi-round protocol that demonstrates that interaction is helpful for verification.

The interactive protocol we present PAC verifies the class of Fourier-sparse functions. This
is a broad class of functions, which includes decision trees, DNF formulas with small clauses,
and ACY circuits.” Every function f : {0,1}" — R can be written as a linear combination
f=Xrcm f (T)xr."° 1In Fourier-sparse functions, only a small number of coefficients are
non-zero.

An important technicality is that throughout this section we focus solely on PAC verification
with respect to families of distributions that have a uniform marginal over {0,1}", and have a
target function f: {0,1}" — {1,—1} such that P(, ;)..p[y = f(x)] = 1. See further discussion in
Remark 1.21 on page 14. One of the advantages of this setting is that in order to learn f, it is
sufficient to approximate its heavy Fourier coefficients.

Notation 2.1. Let f:{0,1}" — R, and let T > 0. The set of T-heavy coefficients of f is
FFr=ATCln): [/(T) > 1.

Furthermore, approximating a single coefficient is easy given random samples from the uniform
distribution. There are, however, an exponential number of coefficients, so approximating all of
them is not feasible. This is where verification comes in. If the set of heavy coefficients is known,
and if the function is Fourier-sparse, then one can efficiently learn the function by approximating
that particular set of coefficients. The prover can provide the list of heavy coefficients, and then the

9See Mansour, 1994, Section 5.2.2, Theorems 5.15 and 5.16. (ACY is the set of functions computable by constant-depth
boolean circuits with a polynomial number of AND, OR and NOT gates.)
10The real numbers f (T) are called Fourier coefficients, and the functions yr are called characters.

15

verifier can learn the function by approximating these coefficients.

The challenge that remains in designing such a verification protocol is to verify that the provided
list of heavy coefficients is correct. If the list contains some characters that are not actually heavy,
no harm is done.!" However, if a dishonest prover omits some of the heavy coefficients from the
list, how can the verifier detect this omission? The following result provides an answer to this
question.

Lemma 2.2 (Interactive Goldreich-Levin). There exists an interactive proof system (V,P*) as
follows. For every every n €N, § > 0, every T > 2710, every function f:{0,1}" — {0,1}, and
every prover P, let
Lp=[V(S,n,7,8,pv),P’(n,7,8,pp)]

be a random variable denoting the output of V after interacting with the prover P, which has query
access to f, where S = ((x1,f(x1)),...,(xXm, f(xn))) is a random sample with xi,... X, taken
independently and uniformly from {0, 1}", and py, pp are strings of private random coins. Lp takes
values that are either a collection of subsets of [n], or ‘reject’.

The following properties hold:

e Completeness. P [Lp* = reject A fZrC Lp*] >1-6.

e Soundness. For any (possibly unbounded) prover P,

P [Lp # reject A fZ7 ¢ Lp] < 6.

e Double efficiency. The verifier V uses at most O (% log (%) log (%)) random samples from

f and runs in time poly (n, %,log (%)) The runtime of the prover P*, and the number of

queries it makes to f, are at most O (Z—: log (%)) Whenever Lp # reject, the cardinality of
Lp is at most O (’;—i log (%))

Remark 2.3. In Definition 1.18 on page 14, we defined interactive proof systems specifically
for PAC verification. The proof system in Lemma 2.2 is technically different, satisfying different
completeness and soundness conditions. Additionally, in Definition 1.18 the verifier outputs a
value that is either a function or ‘reject’, while here the verifier outputs a value that is either a
collection of subsets of [n], or ‘reject’.

The verifier V operates by simulating the Goldreich-Levin (GL) algorithm for finding 727,
However, the GL algorithm requires query access to f, while V has access only to random samples.
To overcome this limitation, V delegates the task of querying f to the prover P, who does have the
necessary query access. Because P is not trusted, V engineers the set of queries it delegates to P in
such a way that some random subset of them already appear in the sample S which V has received
as input. This allows V to independently verify a random subset of the results sent by P, ensuring

UThe verifier can approximate each coefficient in the list and discard of those that are not heavy. Alternatively, the
verifier can include the additional coefficients in its approximation of the target function, because the approximation
improves as the number of estimated coefficients grows (so long as the list is polynomial in 7).

16

that a dishonest prover is discovered with high probability.

As a corollary of Lemma 2.2, we obtain the following lemma, which is an interactive version
of the Kushilevitz-Mansour algorithm (Kushilevitz & Mansour, 1993; see also Linial, Mansour, &
Nisan, 1993). It says that the class of ¢-sparse boolean functions is efficiently PAC verifiable with
respect to the uniform distribution using an interactive proof system of the form [V, P/], where
the prover has query access and the verifier has random samples.

Notation 2.4. Let X be a finite set. We write ngc()() to denote the set of all distributions D over
X x {1, —1} that have the following two properties:

o The marginal distribution of D over X is uniform. Namely, }.,c (01} D ((x,y)) = ﬁ for all

xeX.
e D has a target function f : X — {1,—1} satisfying P,) py = f(x)] = 1.

Lemma 2.5. Let X = {0,1}", and let H be the class of functions X — R that are t-sparse, as in
Definition 1.15. The class H is 1-PAC verifiable for any € > 412710 with respect to ’szj“c(X) bya
proof system in which the verifier has access to random samples from a distribution D € @ij“c (X),
and the honest prover has oracle access to the target function f : X — {1,—1} of D. The running
time of both parties is at most poly (n, t, %, log (%)) The verifier in this protocol is not proper, the
output is not necessarily t-sparse, but it is poly (n, t, é,log (%))-sparse.

2.1 The Interactive Goldreich-Levin Protocol

The verifier follows Protocol 1, which repeatedly applies Protocol 2 (IGL-ITERATION).

Protocol 1 Interactive Goldreich-Levin: IGL(n,7,9)

V performs the following:
e [(2 4 1)log (3)]
fori € [r] do
L; <~ IGL-ITERATION(n, T)
if L; = reject then
output reject
L Ui Li
output L

17

Protocol 2 Interactive Goldreich-Levin Iteration: IGL-ITERATION(n, T)

Assumption: V receives a sample S = ((x],f(xl)),...,(xm,f(xm))> such that

m= [log(“%—i— 1)], for all i € [m], x; € {0,1}" is chosen independently and uniformly, and

f(xi) € {07 1}'

1. V selects i* € [n] uniformly at random, and then sends B to P, where
B={by,...,b;} C{0,1}"
is a basis chosen uniformly at random from the set of bases of the subspace
H =span({x| @e;,...,xp0ep}).
(For any j, e; is a vector in which the j-th entry is 1 and all other entries are 0.)
2. P sends V the following set:
{(xee;, f(xee)): i€n] A x€EHY},
where for any z, f(z) is purportedly the value of f(z) obtained using P’s query access to f.
3. V checks that for all i € [m], the evaluation f(x;) provided by V equals that which appeared
in the sample S. If there are any discrepancies, V rejects and the interaction and terminates.
Otherwise:
4. Let K ={K: @ C K C [k]}. V Performs the following computation and outputs L:
Lo
for (yi,...,yx) € {0,1}* do
for K € K do
XK — @ieK b;
Y6 Bicx i
for i € [n] do
a; < majority g (f (X @ ;) @)
add {i: a;=1}and {i: ¢;=0}to L
output L

We partition the proof of Lemma 2.2 into two claims. First, we show that if the prover is honest,
then the output is correct.

Claim 2.6. Consider an execution of IGL-ITERATION(n, T) for T > 2-1. For any prover P and
any randomness Pp, if V did not reject, and the evaluations provided by P were mostly honest, in
the sense that

Vie[n]: Peen [fxee) # fxee)] <

)

B a

then
£P>T l
Plf=rcL] >3,

where the probability is over the sample S and the randomness py.

18

Proof of Claim 2.6. Let E denote the event in which the samples {xi,...,x,} are linearly
independent. From Claim G.2, P[E] > 2. We will show that

VT € f=7: P[T¢L|E]§f.
This is sufficient to prove the claim, because Parseval’s identity entails that | f 27 < #, and so from
the union bound and the law of total probability,
P[> ¢ L] <P[F* ¢ L|E] +P[-E]
<|f=*|- max P[T ¢ L| E]+P[-E]
Tefz*
SRR
— 12 4 4 2
Fix some 7 € f=7. Note that 7 € f=7 entails that

1
Prcqope [F(6) = €(0)] = 5+)

where ((x) is either ;.7 x; or 1 & (@, xi). Now, consider the iteration of the outer loop in Step 4
in which y; = ¢(b;) for all j € [k]. For any i € [n] and any K € K, let
G,',K =1 (f (xK EBei) = E(XK eei)) y
and observe that if G; ¢ = 1 then from linearity of /,
= 1ieT) 0(x) = Bjcrxi
K . K _) g — N — ieT ™
f(x sBe,) oy B(XK@e,)%E(xK) L(e;) { Lol €T) £(x) = o (@ep).
Therefore, if
1
Vie[n]: — Gigk > =
|IC] Kek " 2
then 7" will be added to L during the abovementioned iteration of the outer loop. Let
A,’ﬂ[(=1 (f (XKGBB,') = é(xK®e,-))

indicate cases where f agrees with ¢, and let

Dik =1 (F (K o) £ f(K)

19

indicates cases where P is dishonest about the value of f. Then for all i € [n],

1 1
w ;Gi,K > w (ZAi,K - ZDi,K>

M 1
>—2A -
= /C K

(i) 1 T
> ZA’.* _
S KT w

where (i) follows from the assumption that P is dishonest about at most a Z-fraction of the
evaluations, and (i) holds for

K0 otherwise.

« _{ Aix xKoe ¢ {er,er,...,e0}

Therefore, we can bound the probability that T ¢ L based on how well f and /¢ agree:
Al < ‘ E
1Kl & K= 2 4]

1 1
— VA<= —)E
LR

Py, x [T ¢L|E]<P|3ien]:

(union bound)

IN
™=
=

I
—_

—
~

IA
1=
5

>__ =
|/C]ZA’K T

(t>2710)

IA
1=
5

T
A¥ >
|/cyZ ik —H =3

Var {vq YxAlx E}

n
<2 Z p (Chebyshev’s inequality)
i Var ZK ik | E}
~ K272
(ll D s n ZKVar[fK|E]
~ K272
10
< | /C\Zz (variance of an indicator is < %)
_ 10n
2k —1)7?
Inequality (i) is justified because y :=E [A*] >E[Aix] — 5 2 +z 5 — an» which follows from (3).

For inequality (i), we argue that given E, COV(AzK,AfK,) <0 for any fixed K, K’ € K, K # K’ and
fixed i € [n]. To see this, observe the following.

20

1. For any fixed sample x1,...,x, € {0,1}", the pair (xX,xX") is distributed uniformly over

the set {(u,u’) : u,u’ € H\ {0} A u+#u'}. This is true because the base {by,...,b;} is
chosen uniformly from all bases of H, implying that xX = @,.¢ b; is a uniform point in

H \ {0}. Furthermore, for any fixed value of xX, ugig := xX axkK = @Dickax bi is a uniform
point in H \ {0,xX}. Hence for any fixed value of xX, the point 1K = xK © ugir is uniform in
H\ {0,xX}.

2. If x1,...,xy € {0,1}" are sampled independently and uniformly and we assume E occurs,

then H is a random subspace of dimension m within {0, 1}". Therefore, the pair (x&,xX") is
distributed uniformly over the set {(u,u’) : u,u’ € {0,1}"\{0} A u#u'}.
3. Hence, the pair (xX @¢;, xK'e e;) is distributed uniformly over the set
W={(uu): u,u’ €U Nu#u'},
where U = {0,1}"\ {e;}.
4. Denote A* = {x € {0,1}": f(x)=L(x)}\{e1,e2,...,e,}. Then
Cov(Ajx.Aix) =E[AjxAi] —E Al E[A7x]

=Pey)ew X €A (Pryyew [y €A™ | x € A*] =Py yyew [x € A™])
< P(x,y)eW [y cA* ’ X € A*] — P(x,y)eW [X € A*]

A*|—1 |A*
- 1= o1 <°
Finally, note that when E occurs (the samples {x,...,x,,} are linearly independent) then
kszlog(?—i—l),
and so)
Paon [T #L1 1< s <

as desired. l
Next, we show that if the prover is dishonest, it will be rejected.

Claim 2.7. Consider an execution of IGL-ITERATION(n, 7). For any prover P and any randomness
value pp, if there exists i € [n] for which P was too dishonest in the sense that

Pecy [Flxee) # flxee)] > 7.

then
T
P|L = reject] > —
[rejec]_4n,

where the probability is over the sample S and the randomness py.

Proof. Let E denote the event in which the index i* selected by V is one for which P is too

21

dishonest. We now focus on the case where this event occurred. Let H* = Ho e, and let X C H*
denote the subset of H* that appeared in the sample S received by V. Observe that

T ~ ~
1= 2> By [1(7(0) = £(x)) | E] = Bx [Eaex [1(7(x) = £(x))] | E] = Bx [ix | E],
where hy := Eyex [1(f(x) = f(x))], is the fraction of the sample on which P was honest. Notice
that the only assumptions we have made about the distribution of X is that for every x,x' € H*,

PlxeX] =P €X].
From Markov’s inequality,

]P’x[hle]E]S]P’X[hXZI\E]gIEX[hX]E]<1—£.

This means that

P[L=reject | E]=P[IxeX: f(x)# f(x) | E] > %,
and we conclude that

1
P[L =reject] > P[L =reject | E]P[E] > ---. 1
n

Ala

We now prove Lemma 2.2 using Claims 2.6 and 2.7.

Proof of Lemma 2.2. We show that the protocol IGL(n,7,8) satisfies the requirements of
Lemma 2.2. For the completeness, consider the deterministic prover P* that simply uses its query
access to f in order to send the set

{(xoei, f(xoe)): i€n] NxeH},

to V, and observe that P* will never be rejected. Furthermore, for every i € [r], Claim 2.6 entails
that P [fZT ¢ Li] < % Thus, fZFC Lp- > 1—2"">1—8, as desired.

For the soundness, assume for contradiction that there exists some malicious prover P such
that

P [Lp # reject A f=° ¢ L,a] > 9.

The IGL protocol consists of r executions of IGL-ITERATION. We say that P was sufficiently
honest in a particular execution of IGL-ITERATION if in that execution,

Vi€ [n]: Peey [fxoe) # f(xoe)] < g

Let D be an indicator denoting the event that throughout the r executions, P was too dishonest,
meaning that the number of executions in which P was sufficiently honest is strictly less than
log(3)-

Consider the following two case:

e The dishonest case (D = 1): There were at least ' :=r — log(%) > 47” log (%) executions in
which P was not sufficiently honest. From Claim 2.7, the probability of rejection in each of
these 7’ repetitions is at least ;.. Hence, because the rounds are independent,

T\ Flog(5)
)

<ele(3) < 5.

rl
P[Ls #reject | D=1] < (1—41) < (1
n

22

e The honest case (D = 0): Let jj,...,j» € [r] be the rounds in which P was sufficiently
honest, with # > log(). From Claim 2.6, with probability at least 1 — &, the result L;, for
each t € [/] satisfies

. 1
P[f*FCL;] > 7

Hence, because the rounds are independent,
P[f**¢Lp|D=0] <27 <.
Putting the two cases together, we obtain the desired contradiction:
P[Ls #reject A 77 ¢ Ls| =P [Lp #reject A f7F ¢ Ly | D=0]P[D=0]+
P[Lp #reject A fZT ¢ Ls | D=1]P[D=1]

<P[f*"¢ L | D=0]P[D=0]+
P[Lp # reject | D= 1]P[D = 1]

<d.
This completes the proof of the soundness property. For the efficiency, observe the
following:
e V performs r = [(47" +1)log (%ﬂ repetitions of the IGL-ITERATION protocol, and each
repetition requires m = [log (4% + lﬂ fresh samples. Thus, V requires a total of

n n 1
m=0 ("1 (7>1 -)).
rom (Tog : 0g<5)>

random samples from f.

e P* also performs r repetitions of the IGL-ITERATION protocol, and makes at most n2"
queries to f in each repetition. Thus, P* uses at most

m n 1
q=r-n2 :0<T510g (5))

e P* runs in time O(q), and V runs in time polynomial in q.

e For the bound on the cardinality of Lp, observe that V performs r repetitions of
IGL-ITERATION, and in each repetition, the number of items added to the list in Step 4
is at most 2F < 2. Thus, the total list length is at most

m n? 1

Remark 2.8. It is possible to run all repetitions of the IGL protocol in parallel such that only 2
messages are exchanged.

queries to f.

This completes the proof. B

23

2.2 Efficient Verification of Fourier-Sparse Functions

The verification protocol of Lemma 2.5 is described in Protocol 3. In the IGL protocol,
we worked with functions f:{0,1}" — {0,1}. Now, we move to working with functions
f:4{0,1}" — {1,—1}. We translate data from {1,—1} to {0, 1} as follows: b € {1,—1} is mapped
to 152 € {0,1}, and b € {0, 1} is mapped to (—1)* € {1,—1}.

Protocol 3 PAC Verification of 7-Sparse Functions: VERIFYFOURIERSPARSE(n,t,€,)

V performs the following:
T 4
L+« IGL(n,7,2)
if L = reject then
output reject

else
A, /ﬁ
for T € Ldo
o < ESTIMATECOEFFICIENT(T, A, %)

h<YrecL0rXr
output &

Remark 2.9. The output of VERIFYFOURIERSPARSE is a function h: {0,1}" — R, not necessarily
a boolean function.

Algorithm 4 Estimating a Fourier Coefficient: ESTIMATECOEFFICIENT(T, A, 0)

m e 2ln§22/5)

for i € [m] do
sample (x;,y;) < D > Takes i.i.d. samples from D.

ar < YL yixr(xi)
output or

2.2.1 Proof

Lemma 2.5 follows from Lemma 2.2 via standard techniques (see exposition in Mansour, 1994).
The proof is provided below for completeness. We start with the following claim.

Claim 2.10. Let 4,6 >0, T C [n], and let D € D¥({0,1}") with target function
f:{0,1}" — {1,—1}. Then ESTIMATECOEFFICIENT(T,A,8) uses m = {%—‘ random

24

samples from D and outputs a number o such that
P [lor — F(T)| = 2] <5,

where the probability is over the samples.

Proof. Let <(x1, Fx1)yeeey (o f (xm))) denote the sample. Recall that

F(T) = (foxr) = Ereqony [(027 (1)),
where |f(x)x7(x)| < 1. Therefore, if we take

m

or ==Y f(xi)xr(xi)
i=1
then Hoeffding’s inequality yields

P[lar — f(T)| > 1] <2exp(-mA%/2) < 5. W

Proof of Lemma 2.5. Fix €,8 > 0 and a distribution D € D"¢({0,1}") with target function
f:{0,1}" — {1,—1}. Consider an execution of VERIFYFOURIERSPARSE(n,t,€,5). We show
completeness, soundness, double efficiency and sparsity.

e Completeness. Assume that the prover P was honest. Then from Lemma 2.2, with
probability at least 1 — g, L # reject and f2° C L. Additionally, from Claim 2.10, with
probability at least 1 — g it holds that

VT eL: |ar—f(T)| <A.
Hence, from the union bound, with probability at least 1 — § all the assumptions of Claim F.1
hold, in which case Claim F.1 guarantees that Lp(h) < Lp(H) + €, as desired.

e Soundness. Assume for contradiction that there exists some (possibly unbounded) prover P
such that the verifier’s output /4 satisfies

P [h £ reject A (Lp(h) > Lp(H) + eﬂ > 8.)
From the soundness property of the IGL protocol (Lemma 2.2),
P [h # reject A fZT ¢ L] < ‘23. (5)
Likewise, from Claim 2.10 and the union bound,
P [h # reject A IT € L: \aT—f(T)y>7L]§g. (6)
From Equations (4), (5) and (6), we obtain that
P [h#reject A (Lp(h) > Lp(H) +€) A G| >0. (7)
where G denotes the event in which f=*CL A VT € L: |O¢T —f (T)} < A. Claim F.1 asserts
that
G = LD< Y (xTxT(x)> < Lp(H)+e.)

TeL

25

Note that if & # ‘reject’ then h = Y 7o, o7 xr(x). Hence, putting together Equations (7) and
(8), we conclude that

P [h £ reject A (Lp(h) > LD(H)+£) A (LD (h) < LD(H)+8)] >0,

which is a contradiction.
e Double efficiency. From Lemma 2.2, V uses at most

o (5ee()we(5)) =0 (Free () e)

samples for the IGL protocol, which produces a set L of coefficients such that
n? 1 n’t’ 1

21In(2/96) log(1/6)|L]|
A2 €
samples for estimating each of the coefficients. In total, V uses at most

(Bl () (P2 s ()

random samples.
Also from Lemma 2.2, when executing the IGL protocol, the honest prover makes at most

n’ 1 n’t 1 1 1
(5w (5)) o (s (5)) v (mezoos (5)
queries.

Clearly, both parties run in time polynomial in the number of their samples or queries.

Then, it uses

e Sparsity. The output 7 =Y 7<; o7 xr is |L|-sparse, where
2 2.5
n 1 nt 1

3 Separation Between Learning, Testing, and PAC Verification

In this section we demonstrate a gap in sample complexity between learning and verification.
Conceptually, the result tells us that at least in some scenarios, delegating a learning task to an
untrusted party is worthwhile, because verifying that their final result is correct is significantly
cheaper than finding that result ourselves.

Recall from the discussion in Section 1.1 that when an untrusted prover provides a hypothesis
h which is allegedly e-good, the straightforward approach for the verifier is to approximate each of

the terms Lp(h) and Lp(H), and then determine whether the inequality Lp (k) < Lp(H) + € holds.

From Hoeffding’s inequality, the term Lp (%) can easily be approximated with constant confidence
up to any O(€) additive error using only 0(?12) samples. However, approximating the term Lp(H)
is more challenging, because it involves the loss values of all the hypotheses in the class .

26

In this section we show an MA-like proof system wherein the prover sends a single message
(h,C,7) such that allegedly / is an e-good hypothesis with loss at most 7 > 0, and C € {0,1}* is a
string called a certificate of loss. The verifier operate as follows:'?

e Verify that Lp (/) < 7 with high probability. That is, estimate the loss of & with respect to D,

and check that with high probability it is at most 7.
e Use the certificate of loss C to verify that with high probability, Lp(#) > 7 — €. This step is
called verifying the certificate.
That is, a certificate of loss is a string that helps the verifier ascertain that 7 has a large loss
with respect to the unknown distribution D. Whenever one defines algorithms for generating and
verifying certificates of loss for a class ‘H, that also defines an associated single-message interactive
proof system for PAC verifying H.

3.1 Warm-Up: The Class of Thresholds

For clarity of exposition, we start with a warm-up that investigates the class 7 of threshold
functions (see definition below). This class admits certificates that are easy to explain and visualize.
We will show that the certificates of loss for 7 induce a proof system for PAC verifying 7 that
is complete, sounds, and doubly efficient. However, verifying certificates for 7 requires as much
resources as PAC learning 7 without the help of a prover, and so using this proof system to delegate
learning of 7 is not worthwhile. Therefore, the next step (in Section 3.2 below) will show that 7
and its certification easily generalize to the class 7; of multi-thresholds. The gap between verifying
and learning is demonstrated for 7.

Ji3

| |
1 2 1
3 3

Figure 2: The function fj/3 € T.

12We provide a more detailed description of the verification procedure in Claim 3.14 below.

27

Definition 3.1. The class T is the set of all monotone increasing boolean functions on [0, 1], as
follows:

T={fi:1€[0,1]},
where for any t € |0, 1], the function f; : [0,1] — {0,1} is given by

fl(x)_{O x <t

1 x>t

Figure 2 illustrates an example of a function in 7.

Remark 3.2. For convenience, we present the separation result with respect to thresholds defined
over a continuous interval X C R. Furthermore, we assume that the marginal distribution on X
is absolutely continuous with respect to the Lebesgue measure, and we also ignore issues relating
to the representation of real numbers in computations and protocol messages. This provides for a
smooth exposition of the ideas. In Appendix B, we show how the results can be discretized.

3.1.1 Ecxistence of Certificates of Loss for Thresholds

We want to design certificates such that for every distribution D € A([0, 1] x {0, 1}) the class 7 has
large loss, Lp(7") > ¢, if and only if there exists a certificate for that fact.

The idea is straightforward. Consider two sets A C [0,1] x {1} and B C [0, 1] x {0}, such that
all the points in A are located to the left of all the points in B, as in Figure 3. Because we only

A fi

0 t 1

Figure 3: Structure of a simple certificate of loss for monotone increasing thresholds. The set A is labeled
with 1, and B is labeled 0. The depicted threshold f; happens to misclassify both A and B, but it is just one
possible threshold.

allow thresholds that are monotone increasing, a threshold that labels any point in A correctly

28

must label all points of B incorrectly, and vice versa. Hence, any threshold must have loss at least
min{D(A),D(B)}. Formally:
Definition 3.3. Let D € A([0,1] x {0,1}) be a distribution and £, > 0. A certificate of loss at
least ! for class T is a pair (a,b) where 0 < a <b < 1.

We say that the certificate is 1)-valid with respect to distribution D if the events

A=[0,a) x {1}
B = [b1] x {0} ®
satisfy
|ID(A)— |+ |D(B)— 4| <n. (10)

The following claim shows the soundness of the certificate, i.e., that a valid certificate of loss does
indeed entail that Lp(7) is large.

Claim 3.4. Let D € A([0,1] x {0,1}) be a distribution and £,1 > 0. If D has a certificate of loss
at least € which is -valid with respect to D, then Lp(T) > {—n.

Proof. Assume C = (a,b) is an n-valid certificate of loss at least ¢ for 7 with respect to D. For
any t € [0, 1], we show that Lp(f;) > ¢ —n.

Consider two cases:

e Case 1: 7 < a. Then for any x > a, f;(x) = 1. In particular, taking B as in (9), we obtain that

V(x,y) €B: filx) #y.
Observe from Equation (10) that D(B) > ¢ — 1. Therefore,
Lp(f)) = Piyep [filx) #3] 2 D(B) = £—7.

e Case 2: t > a. This case is symmetric to the previous one, replacing B with A = [0,a) x {1}.

Next, we show completeness, meaning that whenever Lp(7) is large there exists a certificate
to that effect. However, the certificate is not tight, conceding a factor of 2:

Claim 3.5. Let D € A([0,1] x {0,1}) be a distribution and £ > 0. If Lp(T) = ¢ then there exists a

0-valid certificate of loss at least g with respect to D.

Proof of Claim 3.5. Let f; be an optimal threshold for D, that is, Lp(f;) = £.!> Let
A=[0,t) x {1}
B=1t,1]x{0}

denote the two events in which f; misclassifies a point.'* It follows that
(=D(A)+D(B).

13Note that an optimal threshold ¢ € [0, 1] exists because [0, 1] is compact, and the mapping — Lp(f;) is continuous.
4Namely, A is the event in which a point has label 1, but f; assigns label O to it, and B is the event in which a point has
label O, but f; assigns label 1 to it.

29

If D(A) =D(B) = %, then (z,1) is the desired certificate. Otherwise, assume w.l.0.g. that
. / -
D(A) > 5> D(B).

Because the marginal distribution of D on [0, 1] is absolutely continuous, there exists a point a €
[0,7) that partitions the event A to

A:=[0,a) x {1},
A= [a,t) x {1},
such that D(A) = £. Considering the event B’ := [a,f) x {0}. The optimality of f; implies
that
D(B') = D(A")
because otherwise the threshold f, would have loss strictly smaller than that of f;.

Notice that

D(B) > D(A') = D(A) - D(4) = (¢~ D(B)) —D(A) = £~ D(B) - g = g ~D(B).

Hence, again invoking absolute continuity of measure as above, there exists a point b € [a,t) such
that

D([b.1) x {0}) = 5 ~ D(B).
Therefore, taking
B:=[b,1)x {0}
yields

D(B) = D([b,1) x {0}) + D(B) = g

So (a,b) is the desired certificate.

3.1.2 Efficient Generation and Verification of Certificates for Thresholds

The following two claims show that certificates of loss for 7~ do not merely exist, but they can be
generated and verified efficiently, making delegation feasible.

Claim 3.6 (Efficient Verification). Ler D € A([0,1] x {0,1}) be a distribution and ¢,5,1 > 0.
There exists an algorithm that, upon receiving input (a,b) such that 0 <a <b <1, takes

1
(0] <logn(f)) i.i.d. samples from D and satisfies the following:
o Completeness. If (a,b) is an n-valid certificate of loss at least £ with respect to D, then the
algorithm accepts with probability at least 1 — 0.

e Soundness. If (a,b) is not a 2n-valid certificate of loss at least ¢ with respect to D, then the
algorithm rejects with probability at least 1 — 8.

30

Furthermore, the algorithm runs in time polynomial® in the number of samples.

Proof. Let A, B be as in Equation (9), and let (x1,y;),..., (X, yn) be the samples the algorithm
received. The algorithm calculates the empirical measures of A, B by

~ 1 &
by ==Y 1((xi,yi) €A)
mi=

m
EB =— Z]1(()6,‘,)),') € B)
mi=
and accepts if and only if
~ ~ 3
|[0a — L]+ |lg— 2] < En.
The running time is clear, and correctness follows from Hoeffding’s inequality,

P (|64 —D@a)] = 1] < 2exp <—2m (’7)2> .

4
Requiring that this probability be strictly less than g yields the bound
2log ¥
m> %5 :
n

The same holds for #5. The union bound entails that with probability at least 1 — § both estimates
are %—close to their expectations, in which case the algorithm decides correctly. B

Claim 3.7 (Efficient Generation). There exists an algorithm as follows. For any distribution
D € A([0,1] x {0,1}) and any 8,1 € (0,3), the algorithm outputs a certificate (a,b) for T that
with probability at least 1 — 8 is an N-valid certificate of loss at least { = Lp(T) /2 with respect to
D. The algorithm uses

1 I 1 1
O<T7210g77+77210g5>

i.i.d. samples from D and runs in time polynomial in the number of samples.

Proof. The proof is a standard application of uniform convergence, VC dimension and empirical
risk minimization (ERM), as covered e.g. in Shalev-Shwartz and Ben-David (2014). For
completeness, we provide a self-contained proof that depends only on Theorem C.3, which upper
bounds the number of samples necessary to obtain an €-sample for a set system of finite VC
dimension (see definitions in Appendix C).

We start by stating the following consequence of Theorem C.3. Let S = ((x1,y1),- -, (Xm,Ym))
denote the samples that the algorithm receives, and let Z denote the following set of intervals:

Z={[u,v): u,ve R}U{[u,v]: u,v € R}.

I5Recall that we ignore the cost performing calculations with real numbers.

31

Observe that the set system A = (R x {0,1},Z x {0,1}) has VC dimension 2. Hence, from
Theorem C.3, with probability at least 1 — &, we have that S is an n’-sample for A with respect to
D, where 0’ := L.

The algorithm operates in two steps. In the first step, the algorithm estimates ¢. For any r € R,
denote by Lg(f;) the empirical loss of f;, namely

Ls(f,) := LE" (f;) + L5 ()

for

L}S?ft (ﬁ) — |([07t) X|S{’1})ms|
and

BT (SIS UILE]

N
(Cardinalities are computed with S viewed as a multiset.)
The algorithm uses the sample S to find the threshold f; € 7 defined by

f:=argmin,cyLs(f;),
where X = {xy,...,xm, 1}.
The algorithm estimates ¢ by taking
0:=Ls(f;)/2+37'".
We argue that / is a good estimate whenever S is an 1)’-sample: Let f* = argmin ;L (f). If
S is an n’-sample then

Lp(f;) < Ls(f;)+2n'
= minLs(f;)+21’

=minLs(f;) +2n’
teR

<Ls(f*)+2n’
<Lp(f*)+4n".
Therefore,
\Ls(f;) —Lo(f")| < |Ls(f;) — Lo(f)
<2n'+4n’ =6n'.

+|Lp(f;) = Lo(f7)]

Thus, the estimate 7 satisfies

0= | By

|Ls(f2) —Lo(f7)|

<6n'.
2 —_ n

<3n'+

Lp(f*)
2

32

Furthermore,

2 Lsgft) 77
> Lo(f") _|Ls(fi) = Lo(f")] /
Z) +3n
LD(f*)
> =/.

This completes the first step.
In the second step, the algorithm calculates

A 1 h A

L& (fy) — 1.

We claim that (4,b) is an n-valid certificate of loss /. From Claim 3.5 and the assumption that D

is absolutely continuous, there exist (a,b) constituting a 0-valid certificate of loss exactly £.
Denote

(a,b) := argmin,, | YEX: a<b |Lleﬂ (fa) —

[0,a) x {1}, A=[0,a) x {1}

A
B=[b,1]x{0}, B=[b,1]x{0}.

Then

~ A,

ID(A) — |+ D(B) — 0 < [D(A) — LE (fa) |+ |LE" (f2) — 0|
+|D(B) — LI (f;) |+ L5 () —]
< LM (f2) — 0 + L5 (f;) —]+ 21’

= min |L§"(fa) —{|+

rlght (f[,) _é“ +2n/

abEX a<b

= min [LER(f) — 0]+ |LiE (fl;)—éjJrzn’
a,peR: a<h

< ’Lleft EH_ rlght _é‘+2n/
’Lleft €‘+ rlght fb 4_'_14"

= [L§" (fa) = D(A)| + |L§" (fp) — D(B)| + 147’

<n'+n'+ 141" =n.
We conclude that (&,13) is an 7m-valid certificate of loss at least ¢, provided that S is an 1’-sample

with respect to D, which happens with probability at least 1 — §. Seeing as the algorithm runs in
time polynomial in the number of samples, the proof is complete. H

33

3.1.3 Warm-Up Summary

We explained how certificates of loss induce a proof system for PAC verification, and described a
specific instance of this for the class T of threshold functions. We saw that the honest prover is
able to generate a message (i, C, /) that is accepted by the verifier. If /2 has loss greater than double
the true loss, no certificate can convince the verifier to accept 4. Both the verifier and the honest
prover are efficient. The certificate is not tight; if the true loss is £ = Lp(7T), the certificate of loss
only proves that the loss is at least g

However, the example of the class 7 is lacking an essential ingredient. The sample complexity
used by the verifier is the same as is necessary for learning without a prover, and so delegation
is not beneficial. In the next section, we present a generalization of this class, where there is a
substantial gap between the resources necessary for verification and those required for learning,
making it worthwhile to delegate the learning task to an untrusted prover.

3.2 Efficient PAC Verification for the Class 7, of Multi-Thresholds

In the warm-up we saw certificates of loss that induce a proof system for PAC verification for
the class of thresholds 7. We now extend this construction to a class 7; of multi-thresholds,
construct a PAC verification proof system for 7, that obtains the following sample complexity
separation between PAC verification on the one hand and PAC learning and tolerant testing or
distance approximation on the other hand.

Lemma 3.8. There exists a sequence of classes of functions

T1. 72, T3, ... € {0, 1}F

such that for any fixed €,0 € (0, %) all of the following hold:
(i) Tqis 2-PAC verifiable, where the verifier uses

my = O (\/leog(d)log (é))

€6
random samples, the honest prover uses
d*log?(d) d\ dvdlog(d) 1

random samples, and each of them runs in time polynomial in its number of samples.

d+log(%)
&2

(ii) Agnostic PAC learning T, requires Q () samples.

(iii) If e < 3% then 2-PAC learning the class T; requires € (ﬁ) samples. This is true even if
we assume that Lp(Ty) > 0, where D is the underlying distribution.
(iv) Testing whether Lp(Tg) < ot or Lp(Ty) > B forany0 < a < ff < % with success probability

at least 1 — 6 when D is an unknown distribution (without the help of a prover) requires

34

Q (ﬁ) random samples from D.

3.2.1 The Class 7;

We start by defining the class of multi-thresholds.

Definition 3.9. For any d € N, denote by T; the class of functions

Ta=Afnta® 11, ta €R}
,,,,, 1, 0 R—{0,1} is given by
0 x<itpy
1 x>1py,

fllv-qu (x) = {

and fi, .., vanishes on the complement of [0,d).

1 15 13 tq

0 1 2 3 d

Figure 4: Example of a function in 7.

3.2.2 Existence of Certificates of Loss for 7,

For each i € [d], the class 7T, restricted to [i — 1,i] is a shifted copy of the class 7. Hence, exactly
as we did for 7, we can construct a certificate of loss which proves that 7; must have loss ¢; within
the interval [i — 1,i]. Therefore, we define certificates for 7, as collections of d certificates of loss

for T.

Definition 3.10. Ler D € A(R x {0, 1}) be a distribution and {,1 > 0. A certificate of loss at least
L for the class Ty is a tuple

(C],E],Cz,ez.. . ,Cd,fd)
where for all i € [d]:

35

L Ci: ((l,‘,b[),
o i —1<a; <b; <
e (; >0, and

li=14.

N

1
The certificate is n-valid with respect to D if the events

Aj=[i—1,a;) x {1}
B; = [b;,i] x {0}

defined for all i € [d] satisfy

QU

Y ID(A) — 4]+ |D(Bi) — i < 7.
i=1

The following analogs of Claims 3.4 and 3.5 follow similarly.

Claim 3.11. Let D € A(R x {0,1}) be a distribution and £,1 > 0. If D has a certificate of loss at
least ¢ for T, that is n-valid with respect to D, then every function in T; must have loss at least
£ —n with respect to D.

Claim 3.12. Let D € A(R x {0,1}) be a distribution and ¢ > 0. If Lp(T4) = ¢ then there exists a
0-valid certificate of loss at least g for Ty with respect to D.

3.2.3 Efficient Generation and Verification of Certificates for 7,

The following is a straightforward analogue of Claim 3.7.

Claim 3.13 (Efficient Generation). There exists an algorithm as follows. For any distribution
D € A([0,1] x {0,1}) and any 6,1 € (0, %), the algorithm outputs a certificate of loss for Ty that
with probability at least 1 — 8 is an n-valid certificate of loss at least £ = Lp(Ty)/2 with respect
to D. The algorithm uses

2 2
O(%log%+%log%)

i.i.d. samples from D and runs in time polynomial in the number of samples.

Proof sketch. The proof follows the same lines as for Claim 3.7. Recall that in that proof, the
algorithm takes a sample of size O (#log % + # log %) Whenever the sample is an 1’-sample
with respect to the set system A defined in that proof, the algorithm is able to generate a certificate
that is n-valid.

Here, the algorithm instead takes a sample that with probability at least 1 — § is an %/-sample
with respect to .A. This leads to the sample size mentioned in the statement. The algorithm proceeds
as in the previous case, using the sample to generate d certificates of loss, one for each interval of

36

the form [i — 1,] for i € [d]. Whenever the sample is an %/-sample, each of these certificates will be

%—Valid. Combining these certificates together yields a certificate for 7; that is n-valid. B

o <d+1;g(;>>

samples, because its VC dimension is d. Thus, the certificate generation procedure outlined above
requires that the prover use a larger number of samples than what is necessary for learning. This
may be worthwhile, because, as stated in the following claim, the verifier can verify the certificate
using less samples than what is required for learning.

Claim 3.14 (Efficient verification). Ler d € N and A € (0,1). Let C = (Cy,4y,...,C4,4y) be a
certificate of loss £ for Ty, and let D be a distribution. There exists an algorithm that takes

m=0 <1og <(1$> \){glog(d)>

S S
300v/dlogd
If C is A'-valid with respect to D, then the algorithm accepts with probability at least 1 — §.

e Soundness. If C is not 2A-valid with respect to D, then the algorithm rejects with probability
at least 1 — 9.

Agnostic PAC learning 7, requires

samples from D, and satisfies:
e Completeness. Let

Proof. The proof uses ideas from distribution identity testing stated in Corollary D.2. For all i € [d],
let

Ai=[i—1,a;) x {1}, and
B,‘ = [b,',i] X {O}

The algorithm is required to decide whether the validity v of the certificate is less than 4/, i.e.,
whether

M=~

ID(A;) — 4|+ |D(B;) — ;] < A,

Vi=
1

or whether v > 2A.
Form the partition R := {A},By,...,Aq4,B4,E} of R x {0,1}, where
E=(Rx{0,1})\ (U A,~UB,~).
icld]
Define two probability functions, Dg and D*, both over this finite set R of cardinality 2d + 1. Let
Dg be the distribution induced on R by D; namely, Dg(r) = D(r) for each r € R. Let D* denote
the distribution over R corresponding to the certificate C. Namely, D*(A;) = D*(B;) = ¢; for all

37

i€[d,and D*(E)=1-2Y% 4;=1-2L
Consider the mapping My that sends each point to the member of R it belongs to:
A (x,y) €A;
Mg(x,y)=< B; (x,y) € B;,

E otherwise.

Observe that if S = ((x1,y1),- .-, (Xm,ym)) is sampled i.i.d. from D, then
MR(S) := (MR(x1,51); - - - s MR(Xim, Ym))

is an i.i.d. sample from Dg. Observe the following connection between dtv (Dg,D*) and the
validity v of the certificate:

1%

I
™=

I
—_

|D(A;) — 4|+ |D(B;) — ¢

|Dr(Ai) — D*(A;)| + |Dr(Bi) — D*(B;)|

I
™=

—

=

dtv (Dgr,D*) — |Dg(E) — D*(E)|.

Furthermore,

|Dr(E) = D*(E)| < drv (Dg,D")
Thus,

dTV (DR,D*) S 1% S 2dTV (DR,D*) .

The algorithm operates as follows. It executes the distribution identity test stated in
Corollary D.2 with respect to distribution D* and the sample Mg(S). Because D* is a distribution
over a set of size 2d + 1, taking a sample Mg(S) of size m as specified in the statement is sufficient
to ensure that with probability at least 1 — §, the test distinguishes correctly between the case
dtv (Dg,D*) < A and the case dtv (Dg,D*) > A. The algorithm accepts the certificate if and
only if the test concludes that dtv (Dg,D*) < A'.

The desired properties hold:

e Completeness. If v < A’, then dy (Dg,D*) <v < A, and so with probability at least 1 — §

the algorithm accepts.

e Soundness. If v > 24, then A < 5 < dtv (Dg,D*), and so with probability at least 1 — & the

algorithm rejects.
This concludes the proof.

We now use the previous two claims to construct the efficient PAC verification protocol
for “T,.

Claim 3.15. 7; is 2-PAC verifiable with sample and runtime complexities as in part (i) of
Lemma 3.8.

Proof. The interactive proof system for 2-PAC verification operates as follows. Let

38

D e AR x {0,1}), and let £ = Lp(7y).

1. The honest prover learns a function € Ty that has loss at most £+ £, with probability at least
1— % This can be done with the required sample complexity, and the computation runs in
time polynomial in the number of samples, because an ERM can be computed in polynomial
time (as discussed in the proof of Claim 3.7).

2. From Claim 3.12, there exists a 0-valid certificate of loss at least % for 7; with respect
to D, where ¢ = Lp(7T;). From Claim 3.13, the honest prover can generate a certificate
C=(Cy1,01,...,Cq,4y) of loss £ := Y, 4; > % that with probability at least 1 — g is n-valid,
for

(e/8)?

300v/dlog(d)

The prover can do this using mp samples as in the statement.

3. The honest prover sends (72,C, /) to the verifier V.

4. The verifier V uses O (log (%) / 82) samples to estimate the loss Lp (%) up to an additive error
of £ with confidence at least 1 — g, and rejects if the estimate is greater than 27 + £. This
ensures that V accepts only if Lp(h) <20+ 5.

5. From Claim 3.14, the verifier can use my samples to verify C, such that if C is n-valid then V
accepts with probability at least 1 — g, and if C is not %-valid, then V rejects with probability

n:

at least 1 — %

For the completeness, observe that when interacting with the honest prover, each of the
operations in Steps 1, 2, 4 and 5 succeeds with probability at least 1 — %, and so with probability at
least 1 — § they all succeed and V accepts /, which has loss at most £+ %.

For soundness, let H € 7; U {reject} denote the output of V, and let

B={heT;: Lp(h) >2(+¢}.
Assume towards a contradiction there exists a prover P for which P[H € B] > §. Let W denote the
message (7,C,7) sent by P. Because
8 <P[HeB|=Y PHEB|W=w]P[W=w],
w

there exists some wo = (hg,Co, /o) such that
P[H € B|W =wg] > 4. (11)

When the verifier V does not reject, V outputs the hypothesis sent by P. Thus, /g € B and yet
V accepts wo with probability > 8. We show that this is impossible, based on the following two
facts:

o If Lp(ho) > 20+ £, then from Step 4, the verifier V accepts wo with probability at most %

e If Cy is not an %-valid certificate of loss 7, then from Step 5, the verifier V accepts wq with

probability at most g.

This implies that /g € B, that Lp(ho) < 20 + % and that Cp is an %-valid certificate of loss /.

39

Claim 3.11 yields the contradiction:

Lp(ho)
2

)

(=Lp(Tg) >0~ > ——>/(1

&~ m
\S)

3.3 Lower Bounds for Closeness Testing and 2-PAC Learning of the Class 7,

In this section we show near-linear lower bounds for testing closeness and 2-PAC learning of the
class 7.

Definition 3.16. Ler 0 < @ < 8 < 1 and d € N. The (&, B,d)-threshold closeness testing problem
is the following promise problem. Given sample access to an unknown distribution D € A([0,d] x
{0,1}), distinguish between the following two cases:

(]) LD('];{) < .

(ii) Lp(Tq) > B.

Lemma 3.17. Fix 0 < a < f3 < % Any tester that uses sample access to an unknown distribution
D € A([0,d] x {0,1}) and solves the (o, B,d)-threshold closeness testing problem correctly with

probability at least % for all d € N must use at least Q (@) samples from D.

The proof of this lemma relies on a lower bound for testing support size of a distribution.

Definition 3.18. Ler 0 < a < B < 1 and let n € N. The (o, 3,n)-support size testing problem
is the following promise problem. Let D € A([n]) be an unknown distribution such that
Vi € supp(D) : D(i) > % Given sample access to D, distinguish between the following two cases:
(i) |supp(D)| < a-n.
(ii) |supp(D)| = B -n.
The following tight lower bound for this problem is due to G. Valiant and Valiant (2010a,
2010b). The formulation we use a is adapted from Canonne (2015).16

Theorem 3.19 (G. Valiant & Valiant, 2010a, 2010b; Canonne, 2015, Theorem 3.5.3). Let
0 < a< B <1. Any tester that uses sample access to an unknown distribution D € A([n]) and
solves the (o, ,n)-support size testing problem correctly with probability at least % foralln e N

must use at least Q (@) samples from D.
Proof of Lemma 3.17. We show the following reduction from the support size testing problem to
the threshold closeness problem: Assume 7 is a tester that solves the (¢, ,d)-threshold closeness

testing problem correctly with probability at least % for all d € N using m(d) samples. Then there

165ee also the discussion following Theorem 3.1 in Ron and Tsur (2013), and Theorem 5.3 in G. Valiant (2012). Similar
bounds that appear in P. Valiant (2011, Claim 3.10) and Raskhodnikova, Ron, Shpilka, and Smith (2009, Theorem 2.1
and Corollary 2.2) are slightly weaker, but would also suffice for separating between 2-PAC verification versus 2-PAC
learning of 7, as in Claim 3.20.

40

exists a tester 7' that solves the (2,23, d)-support size testing problem correctly with probability
at least 2 for all d € N, and uses at most m(d) samples.

For any distribution D € A([d]), define a corresponding distribution D’ € A([0,d] x {0,1}) as
follows. For all i € [d], leta; =i— 3 and b; = i — . Then D'(a;,1) = D() and D'(b;,0) = 5 for
all i € [d], and D’ vanishes elsewhere.

Given sample access to D, it is possible to simulate sample access to D’: with probability %,
sample i € D, and output (a;, 1); with probability % select i € [d] uniformly at random, and output
(bi7 0)

Because 7; consists of monotone increasing thresholds,

Lp(Ty) = Zmln{D ai,1),D'(b;,0)}

) 1
—;mln{ > ’2(1}

% 1
= 0 —
iew\gpp(» e)p:p 2d
_ [supp(D)]
2d
Equality (x) holds whenever D is an input for the support size testing problem, because we assume
that D(i) > 1 for all i € supp(D).

To solve the (2a,2f3,d)-support size testing problem, T operates as follows. Given access to
an unknown distribution D € A([d]), it simulates an execution of 7" with access to D’ that solves
the (a, B,d)-threshold closeness testing problem. If 7’ decides that Lp/(7;) < a, then T outputs
that |supp(D)| < 2 -d, and if T’ decides that Ly (7;) > B then T outputs that |supp(D)| > 28 - d.
T decides correctly with probability at least 2 , because we assume that 7”7 decides correctly with
probability at least , and

—
N

Lp(T7) < o0 < |supp(D)| <2a-d

L (Ta) 2 B <= [supp(D)| = 2B -d.
T requires at most as many samples as T’ does, because simulating one sample from D’ requires
taking at most one sample from D.
The claim follows from this reduction and from Theorem 3.19. B

The previous claim also implies the following lower bound for 2-PAC learning of 7; without
the help of a prover.

Claim 3.20. 2-PAC learning the class T; with € € (0, 32) requires at least Q (k)g(d)) random

samples. This is true even if we assume that the unknown underlying distribution D satisfies
Lp (7:1) > 0.

Proof of Claim 3.20. Assume for contradiction that there exists an algorithm A that 2-PAC learns

41

T4 using only o <@) samples from D. We construct a tester 7' that solves the (%, %,d)—threshold

closeness testing problem using only o (ﬁ) samples.
1

Let D € A([0,d] x {0,1}) be the unknown distribution that 7 has access to. Fix positive £ < 53,
0< é. T operates as follows. It simulates A using samples from D to obtain & € 7, such that with
probability at least 1 — 0,

Lo(h) <2-Lp(Ty)+e. (12)

Next, it takes an additional O(1) samples from D to obtain an estimate 7 such that with probability
atleast 1 — 90,

- Lo(h)| < (13)

If Zg %, then 7 outputs Lp(7y) < % Otherwise, if / > 15—6, then T outputs Lp(7;) > %

From the union bound, with probability at least 1 —26 > %, both (12) and (13) hold. Correctness
follows by considering each case separately:

e Casel: Lp(7;) < %. Then

U< Lp(h)+€<2Lp(Ty) +2¢ < 2,2 5
- - -8 32 16
e Case2: Lp(7y) > % Then
ZZLD(h)—ezLDm)—ezg—siz :% > 136.
Finally, 7 wuses the same number of samples as A does, which is a contradiction to
Lemma 3.17.

From an amplification argument, the claim holds for any € (0, %) To see that the claim is
true even if we assume that Lp(7;) > 0, note that the distribution D’ constructed in the proof of
Lemma 3.17 always satisfies Lp(7;) > ﬁ, and so we may assume that the hard distributions for
T in the current proof have this property. B

Finally, we have obtained the desired separation, showing that PAC verification can be more
efficient than PAC learning and closeness testing.

Proof of Lemma 3.8.
(i) Follows from Claim 3.15.
(ii) Follows from Theorem 1.10, because VC(7;) > d.
(iii) Follows from Claim 3.20.
(iv) Follows from Lemma 3.17. &

4 Lower Bound of Q(d)

We saw in Section 3.2 that for every natural number d there exists a class of VC dimension d that
has a verification protocol requiring only O (\/;Z) samples for the verifier — a considerable saving

42

compared to the cost of learning, which is Q(d). A natural question to ask is, “Does every class of
VC dimension d admit a verification protocol with sample complexity O <JZ1> 7 In other words,
is it always worthwhile to delegate a learning task? In this section we provide a partial negative
answer to this question, presenting for every natural number d an example of a class with VC
dimension O(dlog(d)) where the sample complexity for verification is Q(d). That is, for these
classes the sample complexity of learning and of verification are equal up to a logarithmic factor.
Formally:

Lemma 4.1. For every €,6 € (0, %) there exist constants cg,c1,cy > 0 and a sequence of classes
Hi,Ho,... such that:

e Foralld €N, the class H, has VC dimension at most co - dlog(d).

e The sample complexity of proper 1-PAC verifying Hy is Q(d). That is, if (V1,Py), (Va,P3),...
is a sequence such that for all d € N, (Vy4,P;) is an interactive proof systems that 1-PAC
verifies Hy using oracles that provide random samples such that the output is either ‘reject’
or in Hy, then for all d > cy, V; uses at least c; - d random samples when executed on input

(€,5).

4.1 The Class H,

Notation 4.2. For any d € N, we write X; to denote some fixed set of cardinality ng = 2d>.

Notation 4.3. For any d € N, we write F, 1 to denote the set of balanced boolean functions over
2

Xy, namely,
Fay={reton®: i/t =3=1"ol}.

Notation 4.4. For any f € F, 1, we write Dy to denote the distribution over tuples in X' in which

1
2
t elements are samples independently and uniformly at random from supp(f). Namely, for any
(X1,...,%) € X,

Dy ((x1,...,%)) = { (()i)t Jé%\,x;...,xt € supp(f)

Furthermore, forany F ={fi,..., fi} CF, 1, we write Dr to denote the distribution over X' given
by '

1 k
Dp(xl, cen ,xt) = % ZDﬁ(xl, ces ,xt).
i=1
Lastly, Ux: denotes the uniform distribution over X".

We now define the sequence of classes H, for d € N.

Definition 4.5. Fix 8 € (0,1). Forany d € N, let X; = [ng] for ng = 2d2, and let 1y = ch -dJ

43

where

~ |log(1-45/3)
27N Tlog(1/2¢)

The class Hy is a subset of F 1 of cardinality

m 3
) — 3”;1/7
=\ s

which is defined as follows. For all values d in which this is possible, the subset H4 is chosen such
that the following three properties hold:
Hl. dtv (Dq.[d,u;(z) < 9.
o . 3
H2. Every distinct g1,8> € Hq satisfy |supp(g1) Nsupp(g2)| < L.
H3. All subsets X C X, of size at most \/n satisfy

1 € Ha X € supplf)}] > 5.

However, if for some value of d there exists no subset of cardinality k; that satisfies these
properties, then for that d the class Hg is simply fixed to be some arbitrary subset of cardinality k.

Remark 4.6. It is not obvious that a set Hy as in the definition above exists. In Lemma 4.10 below,
we prove the existence of Hy for all d large enough.

Notation 4.7. For the remainder of this section, we often neglect to write the subscript d wherever
it is readily understood from the context.

Note that the VC dimension of H, is at most log(|H,|) = O(dlog(d)), matching the
requirement in the lemma.

4.2 Proof Idea

For any d large enough, we want to show that at least 7, = Q(d) samples are necessary.

Consider PAC learning the class #,; in the special case where all x € &’ are labeled 1, but
the distribution over X is not known to the prover. Because every hypothesis in the class assigns
incorrect labels of 0 to precisely half of the domain, a hypothesis achieves minimal loss if it assigns
the O labels to a subset of size 5 that has minimal weight with respect to the distribution over Xj.
Hence, to be successful the prover must learn enough about the distribution to identify a lightweight
subset of size 5 — but doing that requires Q (1/n) = Q(d) samples.

To formalize this idea we construct a stochastic process as follows. Let P, denote a prover
that causes V to accept with probability at least 1 — 0 when V receives samples from the uniform
distribution over X (such a prover exists from the completeness property that V satisfies as a PAC
learning verifier).

First, a set Xp of #p samples is taken independently and uniformly from X, where tp is the
number of samples required by P,. Next, two functions f] and f, are chosen uniformly from H,,

44

and sets X and X, each with 74 i.i.d. samples are taken from Dy, and Dy, respectively. A third set
Xy, is taken from Uy:. The dependencies between these variables will be designed in such a way
that with high probability X| = X, = X,. All samples are labeled with 1.

Finally, randomness values py and pp are sampled for the prover and verifier, which are then

executed to produce three hypotheses:
hy = [V(X1,pv), Pu(Xp, pp)],
hy == [V (X2, pv), Pu(Xp, pp)],
hy = [V (Xu, pv), Pu(Xp, pp)].

Observe that for i = 1,2, because X; ~ Dy, and V is a PAC learner, with probability at least 1 — 6
either h; is ‘reject’ or Lp, (hi) < €.

Observe further that when X; = X, = Xj;, the view of V (which consists of its samples, its
randomness, and the transcript) is the same in all three executions, entailing that iy = hy = hyy.
Additionally, by the definition of P, with probability at least 1 — d the output 7, is not ‘reject’,
and so i) = hy are not ‘reject’.

However, Property H2 ensures that f] and f, have a small intersection, causing any hypothesis

that has a small loss with respect to Dy, to have a large loss with respect to Dy,, and vice versa.
This is a contradiction to the above observation that Lp, (h;) < & for both i = 1 and i = 2.

Remark 4.8. Because we are dealing exclusively with the case of learning the constant function
that assigns the label 1 to all x € X, for the remainder of this section we will neglect to mention or
denote the labels, which are always 1.

4.3 Proof

We now translate the above proof idea into a formal proof of Lemma 4.1. The main step is to
construct the following joint probability space.

Lemma 4.9. For every d € N large enough there exists a probability space with random variables

(fl?fZahl7h27hU7X17X2>XU7XP7pPapV)
such that fy, fo,hy,hy,hyy € Hy and X1,X2, X1 € X' and the following properties hold:

P1. Xp is a tuple of tp samples taken independently and uniformly from X, and is independent of
all other variables.

P2. The marginal distribution of Xy, is uniform over X".

P3. Fori=1,2, X; is distributed according to Dy,. Namely, for any g € Hq and any xy,...,x, € X,
PX; = (x1,...,x%) | fi=8] =Dg((x1,...,x)).

P4. X = X, with probability 1.

P5. X1 = Xy with probability at least 1 — 6.

P6. py and pp are randomness values for V and P with suitable marginal distributions and are
independent of each other and of all other random variables.

45

P7. hg = [V(Xa,pv),Pu(Xp,pp)] for a € {1,2,U} with probability 1.
P8. [supp(f1) Nsupp(f2)| < 3” with probability at least 1 — 8.

Before constructing the probability space, we show that the existence of such a space establishes
the theorem:

Proof of Lemma 4.1. The requirement on the VC dimension holds because a class of cardinality
kg can have VC dimension at most log(k,), and
Vi ? 2
3 6d
log(ky) = log (”g) < 6dlog (5> = 0(dlog(d)).

For the lower bound on the sample complexity, fix d large enough such that #; enjoys
Properties H1, H2 and H3, and assume for contradiction that there exists a verifier that 1-PAC
verifies H = H, with accuracy € and confidence 1 — 0 using at most ¢ = f; samples. Because
X; ~ Dy, (Property P3), the assumption that V is a PAC learner entails that

Vie {1,2}: P |h; =reject V (hi # reject A\ Lp, (h;) < 8)} >1-0. (14)
Because X, is uniform over X’ and hy := [V (X, pv), Pu(Xp, pp)] (by P2 and P7), the definition
of P; entails that
P[hy # reject] > 1—6. (15)
Next, because P[Xl :Xu] >1- 5,]P)[Xl = Xz] =1 and]’l,‘ = [V(Xi,pv),Pu(Xp,pP)] for
i € {1,2,U} (by P5, P4 and P7), it follows that with probability at least 1 — 0 the view of V when
computing /; and h; is identical to its view when computing /4, and so

Plhy=hy=hy)>1-38. (16)
Combining Equations (15) and (16) yields
P[hy = hy # reject] > 1 —20.
Together with Equation (14), this entails that
P | (hy = hy # reject) A (Lpf1 (h) < e) A (Lpfz (hy) < e)} >1-48. 17)

However, low loss of h; with respect to Dy, entails that the supports of /; and f; have a large
intersection. Indeed, for all i € {1,2},

€ > Lp, (i) : = Peup, [hi(x) # fi(x)] = Y Dp(x) - s, ()
xeX
o) 2
=Y Wy () = Isupp(i) \ supp(y)| - >
n n
xesupp(fi)

Thus,

supp(fi) \ supp(h;)| < %n

46

and so,

|supp(fi) Nsupp(hi)| = g — [supp(f;) \ supp(h;)| > g - %”

Furthermore, because h; = h; the identity |A N B| = |A| + |B| — |A U B| shows that the supports of
/1 and f> also have a large intersection:

|supp(f1) Nsupp(f2)| > [supp(fi) Nsupp(f2) Nsupp (/)]
= supp(1) N1supp(i) | +[supp(£2) Nsupp(iz)|
— ’ (supp(f1) Nsupp(h1)) | (supp(f2) Nsupp(hz)) ‘

> ‘SUPP(fl) N Supp(hl)‘ + }supp(fz) N SUPP(hZ)‘ -)supp(hl)‘
(5-7)-3

That is, Equation (17) entails that

n
P {Isupp(fl) Nsupp(f2)| = 5 — Sn] >1-43.
In contrast, Property P8 states that

P [\Supp(fl) Nsupp(f2)| <

This is a contradiction whenever € < % and 0 < % [|

3n

s

4.4 Construction of H,

To complete the proof, we construct the probability space of Lemma 4.9. The first step is to show
that for large enough values of d, a suitable class H,; can be constructed simply by choosing a set
of k functions uniformly at random from F ;.

Lemma 4.10. Fix 6 € (0,1). The following holds for any value d € N that is large enough. Let F
denote a set of ky functions chosen uniformly and independently from F, 1. Then with probability

at least 1 — 36, F satisfies Properties H1, H2 and H3.

The lemma follows immediately from Claims 4.11, 4.20 and 4.22 below, so the remainder of
this section is devoted to stating and proving those claims.

4.4.1 Property Hl: dty (Ux:,Dy,) < 0

In this subsection we prove that the distribution D defined by F is close to the uniform distribution
on X in the following sense.

Claim 4.11. Fix 6 € (0,1). The following holds for all values of n that are large enough. Let

47

F ={f1,..., fx} denote a set of functions chosen uniformly and independently from F; - 1f
I 3pV" ’
>
- o

log(1—06/3)
log(1/2e)

andty = ch -dJ for

then

Pg [dtv (Ux:,DF) < 8] > 1-6.
The proof is partitioned to the following claims.
Claim 4.12. For any integer 0 < s <n, any set X C X of size s and any z € [n],

©)

Brepoaye [X € supp() | supp)1 =] = (5.

Proof. If z < s then the probability is clearly 0. Otherwise,

[{g€{0,1}* : |supp(g)] =z A X C supp(g)}|
[{g €{0,1}* : |supp(g)| = z}|
)

2
)

)
) ()
(¢)

Y

—

~—~
NS~

()

(¢)

~—

()

(

N3
&

N

—
N3
SN—

—_—
<2
~—

N Y
@v\/

n

N
where () follows from the identity (%) (7)) = ’Z
the number of ways to choose a committee of si

candidates.

(¥), which holds because both expressions count
z with a sub-committee of size s from a set of n

Corollary 4.13. For any set X C X of size s,

“L s

()

Pfe}]/z [X g Supp(f)] =

—
v 3
S—

48

Notation 4.14. For any f € Fyj;, we write DIt 1 denote the uniform distribution over tuples
of length t that contain t distinct elements from supp(f). That is, for any (x1,...,x;) € X7,

{ 1 Xl,...,xt€supp(f)/\ |{x17"'vxf}|:t

(%)

D;lpistinct ((xl’ . ,x,)) =
0 0.W.

Furthermore, let Z/lg(i?ﬁ"“ denote the uniform distribution over the set of tuples of length t from
X with distinct elements,

{()Cl,...,X[) GXti |{x17""xt}| :t}
That is,

1 _
Udi?tina((xl,...,x,)):{ . XlyeosXg €EX A [{X1,..0,x)| =t

(
0 O.W.

Claim 4.15. For any ordered tuple X € X' with distinct elements,

isti 1
IE:]"67:1/2 [ID? tnCt(X)] = Tm\.

(et

Proof. Using Corollary 4.13,

i 1
Efer,, [P (X)) =P[X C supp(f)] - - +Prer,, [X & supp(f)]-0

0

Claim 4.16. Consider k functions fi,..., fi chosen independently and uniformly at random from
Fijp. Forany & € (0,1) and ordered tuple X € X' with distinct elements, if

3
nvn
>

. % i D%istinct (X)
i=1

then

uditstinct (X)

N

Pfl7~~~>fk€]:1/2

i (é)sr] - (':(;r!'

Proof. Fix X. Observe that when fi,..., f; are chosen independently and uniformly then
{D;lc_is‘i“"‘(X)} " is a set of ii.d. random variables each of which takes values in [0, 1].
! ic

Furthermore, from Claim 4.15 the expectation of each of these random variables is L{f‘}fﬁ““ (X).

49

Thus, from Hoeffding’s inequality, the left hand side in the claim is at most

() ()

is sufficient to obtain the desired bound. A direct calculation shows that
2 3
"¢! 2(")e! "¢l
O (200 (O
2 o) o 1)

(5

0

_(nn=1) - (n—ya+ D
()

<n\/ﬁ3
_67

Notation 4.17. For any F = {f,..., fi} C Fi /2, we write Distinct 1 denote the distribution over
X' given by

and so taking

as desired.

y Iy~ s
DdFlStht(x1,---axt) = % ZD?;StlnCt(x1,---gxt)'
i=1

Claim 4.18. Let F = {f,...,fi} denote a set of functions chosen uniformly and independently
from Fy . Forany & € (0,1), if
3
3pV"
k>

Pr [dTV (uﬁivitstinct’p}i:istinct) < §:| >1— 2

then

Proof. From Claim 4.16, taking k as in the statement ensures that for any particular tuple X € X"
with distinct elements,

Pf17~'-7fk€]‘—1/2

- . 6 0
dlrstmct __ qydistinct <)
00~k <X>‘>s<¢>rz]—s<':)ﬂ

50

)

From the union bound, we conclude that with probability at least 1 — 3, the inequality
| dlstmct Ddlstmct)‘ < 4
30!
holds for all (’t’)t! such tuples simultaneously In this case,
0
d udlstmct Ddlstmct — udlstmct Ddlstmct X< m
v Y| 0] <

XGX’

Proof of Claim 4.11. From the triangle inequality
dTV (uXr,'DF) < dTV (qu udlstmct) + dT (udlstmct Dg_istinct) + dTV ('Dg—iStinCt,'Dp) .
Therefore, it suffices to show the following three inequalities:
(i) dtv (I/{Xr,b{fyifﬁm) < Q for n large enough. Indeed,

distinct dlstmct
dTV (Z/{X,L{) g%a/.\)}(t (uXr() Z/{ ())

1
Z)
(150X) EXT: e] <t

NG
where (x) holds for all n large enough because (- %) 2 i> from below, and (xx)

holds whenever
log(1—48/3)
log(1/2e)

(i) Pr [dTV (U}j(i?tin“,D%iStht) g} < §. This is true by Claim 4.18.

=

51

(iii) dtv (D%im““, DF) < g or n large enough. This follows from a calculation very similar to (7).

We conclude that for n large enough, with probability at least 1 — § over the choice of F,
drv (Ux, D) <6,
as desired. l

4.4.2 Property H2: Vi j: |supp(f;) Nsupp(f;)| < 3¢
In this section we show that random sets typically form a code.

Claim 4.19. Py, 1.7, , [|supp(f1) Nsupp(f2)| > %”} < k%.

Proof. Let supp(f2) = {x1,...,%,/2}. We think of this experiment as if f; is chosen first, and then

we count how many members of supp(f2) fall inside supp(f1). The expected number of hits is 7,

and they are independent, so we can use Hoeffding’s bound to prove the claim.

(n/2 3n
L(x; € supp(f1)) > 3

=1

L!

3n
Pz IS9P Dsupp ()] > | < Py e

[/2 3
:Pf17f2671/2 n Z]l(xi € supp(f1)) > -
i=1

4
[~ n/2 ! |
<Ppperp || L 10 €supp(fi)) = 3| > 5
i
<2exp| —2- n. 1 ’ — 70(-n)
B 2 \4 :
In contrast, considering § to be a constant, it holds that
S _ 20 (—log(n) /) ’
K2
and so for n large enough we obtain Py fer , [|Supp(f1) Nsupp(f2)| > %ﬂ] < k%’ as

desired. B

Claim 4.20. Py, ;7 , [Vi# j€[k]: [supp(f;) Nsupp(f;)| <] > 1-6.

52

Proof.
C 3n
IP)f1=~~~7f/<€]'—1/2 |:VZ # j € [k] = |supp(f;) Nsupp(f;)| < 8:|

3n
=1-P lsupp(fi) Nsupp(fj)| > —]
U >3
>1- ;P [|SUPP(fi) Nsupp(fj)| > m

5

zl—kZ-ﬁ:1—5.

where the last inequality follows from Claim 4.19. B

4.4.3 Property H3: |Fx| > 5

In this section we show that there are typically many sets that contain a given subset of size
order \/n.

Notation 4.21. Let F C]:1/2, and let X C X. We write Fx to denote the set
{feF: X Csupp(f)}.

Claim 4.22. Fix 6 € (0,1). Let F ={f1,...,fx} denote a set of functions chosen uniformly and
independently from F j,. There exists Ny such that for all n > No, if

3
nvn
>

then with probability at least 1 — § over the choice of F, all subsets X C X of size at most \/n
satisfy

1
Fy| > —.
\X!_S

53

Proof of Claim 4.22. Let X C X such that |X| = ¢. From Corollary 4.13,

¢ m (n—1)lt!

Prer,, X S supp(f)] =

™~ G-nu al
n—t n—t—1 F—1+1
n (n—1) S5+1

R T
(n—1) n—t+1

v
TN N S is
(ST
S|
-
~

> 3ovn v
- n
NG
2 Vn

where the last inequality holds for n > 16. Observe that
H = Eflv--u,fke}-l/z [1Fx|] > k-4mvn > plogln)vi=2vn 1%, o,

and choose Ny large enough such that for all n > Ny, E [|Fx|] > %.
Now, for any n > Ny and any set X of size ¢, Hoeffding’s inequality entails

)|FX|_.“‘ > k.42\/ﬁ]
3

4\’
<2exp | —2k 5

Jn
k> ! 42Vt -log (2}15)

1
P < Jk€F 12 [|FX| < 5] <P

-

=P

: :
k k 2

~Vi
1(x C supp(fy) — | > 2]

1

Hence, taking

N |

is sufficient to ensure that

X 1)
VX € (l‘) : IP>f17~~7f/c€-7'—1/2 |:|FX < 5:| < i
Taking k as in the claim is therefore more than sufficient to this end. Seeing as there exist less than
nV™ such sets, the union bound yields that

1
Pfh-wfke]'—l/z |:VX C X s.t. ‘X| <t: |Fx‘ > 6:| >1-6.

54

Note that for the case |X| < ¢ in the previous line, we have used the facts that X is contained in some
set of size precisely ¢, and that |Fx| is monotone decreasing with the cardinality of X.

4.5 Construction of the Joint Probability Space

Assume H,; is a class that satisfies Properties H1, H2, and H3. We show how to use these properties

to construct a joint probability space that satisfies Properties P1-8, proving Lemma 4.9.
The construction is as follows:

Xp is sampled uniformly from X7,

A function fj is chosen uniformly from H,.

X1 = (x1,...,x) is sampled i.i.d. from Dy,.

X5 is set to be equal to X.

A function f, is chosen uniformly from {f € H,: X C supp(f)}.

Xy = (..., 2¥) is sampled such that its marginal distribution is uniform over (X;)’, and

also P[Xyy = X;] > 1 — 8. This is possible due to Property H1 of the class H,.

7. pv and pp are sampled from the distributions of randomness used by V and P, respectively,
independently of each other and of everything else.

8. For a € {1,2,U}, compute hy := [V (Xg,pv), Pu(Xp, pp)]-

A e

Note that Properties P1, P2, P4, PS5, P6 and P7 are satisfied immediately by the construction, as
is Property P3 for the case of i = 1. Property P8 is immediate from the construction together with
H2 and H3. Hence, to prove the correctness of the construction, it suffices to prove that Property P3
holds also for the case i = 2, as in the following claim.

Claim 4.23. The constriction in Section 4.5 satisfies that X, ~ Dy,. More formally, for any g € Hgy
and xy,...,x € X,
PXo = (x1,...,%) | o =28 =Dg((x1,...,X))-

Proof. By construction, X; ~ Dy, . Hence, it is sufficient to show that

(X1, £1) £ (X2, 50),

where 4 denotes equality in distribution. Indeed, conditioned on X; = X, = x, both fj and f> are
chosen i.i.d. uniformly in

Fo:={f€Hys: x Csupp(f)}.
More formally, for any g € H, and x € X7,

55

e If x C supp(g) then

Pl =g X =] = -0 XHL[];I:g)]C] [fi = g]
_ Pl =x[fi=g]P[fi =¢]
Yoer PIXi=x| fi=¢]P[fi =¢
__ PiXi=x[fi=¢g]

Yoer, PIXi=x|fi=¢]

1
= —=Plh=¢g|Xa=1x].
|Fx|

e Otherwise, if x Z supp(g) then
Plfi=g|Xi=x]=0=P[fh=g|X=x].
That is, for any g € H, and x € X7,
Pli=g AN Xi=x]=P[fi=g| X =xP[X; =x] =
=Plh=¢g|Xo=x]PXo=x]=Pla=g N Xo=x].1

This proves Lemma 4.9, thereby concluding our proof of Lemma 4.1.

5 Directions for Future Work

This work initializes the study of verification in the context of machine learning. We have seen
separations between the sample complexity of verification versus learning and testing, an algorithm
that uses interaction to efficiently learn sparse boolean functions, and have seen that in some cases
the sample complexities of verification and learning are the same.

Building a theory that can help guide verification procedures is a main objective for future
research. A specific approach is to identify dimension-like quantities that describe the sample
complexity of verification, similarly to role VC dimension plays in characterizing learnability. A
different approach is to understand the trade-offs between the various resources in the system — the
amount of time, space and samples used by the prover and the verifier, as well as the amount of
interaction between the parties.

From a practical perspective, we described potential applications for delegation and safety of
machine learning, and for verification of experimental data. It seems beneficial to build efficient
verification protocols for machine learning problems that are commonly used in practice. This
would have commercial and scientific applications.

There are also some technical improvements that we find interesting. For example, is there a
simple way to improve the NP-like protocol for the multi-thresholds class 7; to achieve 1-PAC
verification (instead of 2-PAC verification)?

Finally, one can also consider variations of the settings we investigated here. One case has Oy

56

and Op providing i.i.d. sample access to different distributions, Dy and Dp respectively, where Dp
has better quality data in some sense. For instance, for some target function f it might be the case
that

P(x,y)wDV [y = f(x)] <]P)(x,y)pr [y = f(x)] :
Can a prover who has access to Dp efficiently provide an advantage to the verifier? Alternatively,
it might be the case that Dp provides data with “higher resolution” than Dy (i.e., the c-algebra of
Dy is a sub-o-algebra of that of Dp). One can also consider verification of other types of learning,
such as clustering, parameter estimation and reinforcement learning.

Acknowledgements

SG would like to thank Constantinos Daskalakis and Ankur Moitra for insightful correspondence
and helpful references. GR would like to thank Oded Goldreich for insightful discussions and
helpful references. JS would like to thank Orr Paradise, Ido Nachum, Avishay Tal, Alessandro
Chiesa, and attendants of the UC Berkeley theory group’s TGIF for insightful discussions.

SG’s research was supported in part by DARPA under Contract No. HR001120C0015. GR’s
research was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819702). AY’s research
was supported by ISF grant No. 1162/15.

References

Alon, N., & Spencer, J. H. (2000). The probabilistic method (Second ed.). John Wiley & Sons.

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Inf. Comput., 75(2),
87-106. Retrieved from https://doi.org/10.1016/0890-5401(87)90052-6 doi: 10
.1016/0890-5401(87)90052-6

Axelrod, B., Garg, S., Sharan, V., & Valiant, G. (2019). Sample amplification: Increasing dataset
size even when learning is impossible. arXiv preprint arXiv:1904.12053.

Babai, L., Fortnow, L., Levin, L. A., & Szegedy, M. (1991). Checking computations in
polylogarithmic time. In Proceedings of the 23rd annual ACM symposium on theory of
computing, may 5-8, 1991, new orleans, louisiana, USA (pp. 21-31). Retrieved from
https://doi.org/10.1145/103418.103428 doi: 10.1145/103418.103428

Balcan, M., Blais, E., Blum, A., & Yang, L. (2012). Active property testing. In 53rd annual IEEE
symposium on foundations of computer science, FOCS 2012, new brunswick, nj, usa, october
20-23, 2012 (pp. 21-30). IEEE Computer Society. Retrieved from https://doi.org/
10.1109/F0CS.2012.64 doi: 10.1109/FOCS.2012.64

Batu, T., Fischer, E., Fortnow, L., Kumar, R., Rubinfeld, R., & White, P. (2001). Testing random
variables for independence and identity. In Proceedings 42nd ieee symposium on foundations
of computer science (pp. 442-451).

57

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/103418.103428
https://doi.org/10.1109/FOCS.2012.64
https://doi.org/10.1109/FOCS.2012.64

Blum, A., & Hu, L. (2018). Active tolerant testing. In S. Bubeck, V. Perchet, & P. Rigollet (Eds.),
Conference on learning theory, COLT 2018, stockholm, sweden, 6-9 july 2018 (Vol. 75,
pp. 474-497). PMLR. Retrieved from http://proceedings.mlr.press/v75/bluml8a
.html

Blum, A., Kalai, A., & Wasserman, H. (2003). Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4), 506-519.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4), 929-965.

Bostrom, N. (2017). Superintelligence. Dunod.

Canonne, C. L. (2015). A survey on distribution testing: Your data is big. but is it blue? Electronic
Colloguium on Computational Complexity (ECCC), 22, 63. Retrieved from http://eccc
.hpi-web.de/report/2015/063

Charikar, M., Steinhardt, J., & Valiant, G. (2017). Learning from untrusted data. In Proceedings
of the 49th annual acm sigact symposium on theory of computing (pp. 47-60).

Chiesa, A., & Gur, T. (2018). Proofs of proximity for distribution testing. In 9th innovations in
theoretical computer science conference, ITCS 2018, january 11-14, 2018, cambridge, ma,
USA (pp. 53:1-53:14). Retrieved from https://doi.org/10.4230/LIPIcs.ITCS.2018
.53 doi: 10.4230/LIPIcs.ITCS.2018.53

Daskalakis, C., Gouleakis, T., Tzamos, C., & Zampetakis, M. (2018). Efficient statistics, in high
dimensions, from truncated samples. In 2018 ieee 59th annual symposium on foundations of
computer science (focs) (pp. 639-649).

Diakonikolas, 1., Kamath, G., Kane, D., Li, J., Moitra, A., & Stewart, A. (2019). Robust estimators
in high-dimensions without the computational intractability. SIAM Journal on Computing,
48(2), 742-864.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A., & Stewart, A. (2018). Robustly
learning a gaussian: Getting optimal error, efficiently. In Proceedings of the twenty-ninth
annual acm-siam symposium on discrete algorithms (pp. 2683-2702).

Diakonikolas, 1., Kane, D. M., & Stewart, A. (2017). Statistical query lower bounds for robust
estimation of high-dimensional gaussians and gaussian mixtures. In 2017 ieee 58th annual
symposium on foundations of computer science (focs) (pp. 73—84).

Ergiin, F., Kumar, R., & Rubinfeld, R. (2004). Fast approximate probabilistically checkable proofs.
Inf. Comput., 189(2), 135-159. Retrieved from https://doi.org/10.1016/j.ic.2003
.09.005 doi: 10.1016/j.1c.2003.09.005

Fidler, F., & Wilcox, J. (2018). Reproducibility of scientific results. In E. N. Zalta (Ed.),
The stanford encyclopedia of philosophy (Winter 2018 ed.). Metaphysics Research Lab,
Stanford University. https://plato.stanford.edu/archives/win2018/entries/
scientific-reproducibility/.

Goldreich, O. (2007). Foundations of cryptography: volume I, basic tools. Cambridge university
press.

Goldreich, O., Goldwasser, S., & Ron, D. (1998). Property testing and its connection to learning
and approximation. J. ACM, 45(4), 653-750. Retrieved from https://doi.org/10.1145/

58

http://proceedings.mlr.press/v75/blum18a.html
http://proceedings.mlr.press/v75/blum18a.html
http://eccc.hpi-web.de/report/2015/063
http://eccc.hpi-web.de/report/2015/063
https://doi.org/10.4230/LIPIcs.ITCS.2018.53
https://doi.org/10.4230/LIPIcs.ITCS.2018.53
https://doi.org/10.1016/j.ic.2003.09.005
https://doi.org/10.1016/j.ic.2003.09.005
https://plato.stanford.edu/archives/win2018/entries/scientific-reproducibility/
https://plato.stanford.edu/archives/win2018/entries/scientific-reproducibility/
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/285055.285060

285055.285060 doi: 10.1145/285055.285060

Goldreich, O., & Levin, L. A. (1989). A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual acm symposium on theory of computing (pp. 25-32).

Goldwasser, S., Kalai, Y. T., & Rothblum, G. N. (2015). Delegating computation: Interactive
proofs for muggles. J. ACM, 62(4), 27:1-27:64. Retrieved from https://doi.org/10
.1145/2699436 doi: 10.1145/2699436

Goldwasser, S., Micali, S., & Rackoff, C. (1989). The knowledge complexity of interactive proof
systems. SIAM Journal on computing, 18(1), 186-208.

Ilyas, A., Jalal, A., Asteri, E., Daskalakis, C., & Dimakis, A. G. (2017). The robust manifold
defense: Adversarial training using generative models. arXiv preprint arXiv:1712.09196.

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS medicine, 2(8),
el24.

Kearns, M. J., & Ron, D. (2000). Testing problems with sublearning sample complexity. J. Comput.
Syst. Sci., 61(3), 428-456. Retrieved from https://doi.org/10.1006/jcss.1999.1656
doi: 10.1006/jcss.1999.1656

Kushilevitz, E., & Mansour, Y. (1993). Learning decision trees using the fourier spectrum. SIAM
Journal on Computing, 22(6), 1331-1348.

Linial, N., Mansour, Y., & Nisan, N. (1993). Constant depth circuits, fourier transform, and
learnability. Journal of the ACM (JACM), 40(3), 607-620.

Mansour, Y. (1994). Learning boolean functions via the fourier transform. In Theoretical advances
in neural computation and learning (pp. 391-424). Springer.

Micali, S. (1994). CS proofs (extended abstracts). In 35th annual symposium on foundations
of computer science, santa fe, new mexico, usa, 20-22 november 1994 (pp. 436—453).
Retrieved from https://doi.org/10.1109/SFCS.1994.365746 doi: 10.1109/SFCS
.1994.365746

O’Donnell, R. (2014). Analysis of boolean functions. Cambridge University Press.

Parnas, M., Ron, D., & Rubinfeld, R. (2006). Tolerant property testing and distance approximation.
J. Comput. Syst. Sci., 72(6), 1012-1042. Retrieved from https://doi.org/10.1016/
j.jcss.2006.03.002 doi: 10.1016/j.jcss.2006.03.002

Pashler, H., & Wagenmakers, E.-J. (2012). Editors’ introduction to the special section on
replicability in psychological science: A crisis of confidence? Perspectives on Psychological
Science, 7(6), 528-530.

Pinker, S. (2018). Enlightenment now: The case for reason, science, humanism, and progress.
Viking.

Raskhodnikova, S., Ron, D., Shpilka, A., & Smith, A. D. (2009). Strong lower bounds
for approximating distribution support size and the distinct elements problem. SIAM J.
Comput., 39(3), 813—-842. Retrieved from https://doi.org/10.1137/070701649 doi:
10.1137/070701649

Ron, D., & Tsur, G. (2013). On approximating the number of relevant variables in a function.
TOCT, 5(2), 7:1-7:19. Retrieved from https://doi.org/10.1145/2493246.2493250
doi: 10.1145/2493246.2493250

59

https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436
https://doi.org/10.1006/jcss.1999.1656
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1137/070701649
https://doi.org/10.1145/2493246.2493250

Rothblum, G. N., Vadhan, S. P, & Wigderson, A. (2013). Interactive proofs of proximity:
delegating computation in sublinear time. In Symposium on theory of computing conference,
stoc’13, palo alto, ca, usa, june 1-4, 2013 (pp. 793-802). Retrieved from https://
doi.org/10.1145/2488608.2488709 doi: 10.1145/2488608.2488709

Russell, S. (2019). Human compatible. Viking.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to
algorithms. Cambridge university press.

Soares, N. (2015). Aligning superintelligence with human interests: An annotated bibliography.
Intelligence, 17(4), 391-444.

Taylor, J., Yudkowsky, E., LaVictoire, P., & Critch, A. (2016). Alignment for advanced machine
learning systems. Machine Intelligence Research Institute.

Valiant, G. (2012). Algorithmic approaches to statistical questions (Unpublished doctoral
dissertation). UC Berkeley.

Valiant, G., & Valiant, P. (2010a). A CLT and tight lower bounds for estimating entropy. Electronic
Colloguium on Computational Complexity (ECCC), 17, 179. Retrieved from http://eccc
.hpi-web.de/report/2010/179

Valiant, G., & Valiant, P. (2010b). Estimating the unseen: A sublinear-sample canonical estimator
of distributions. Electronic Colloquium on Computational Complexity (ECCC), 17, 180.
Retrieved from http://eccc.hpi-web.de/report/2010/180

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.

Valiant, P. (2011). Testing symmetric properties of distributions. SIAM J. Comput., 40(6),
1927-1968. Retrieved from https://doi.org/10.1137/080734066 doi: 10.1137/
080734066

Vapnik, V., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of
events to their probabilities. Measures of Complexity, 16(2), 11.

Walfish, M., & Blumberg, A. J. (2015). Verifying computations without reexecuting them.
Commun. ACM, 58(2), 74-84. Retrieved from https://doi.org/10.1145/2641562 doi:
10.1145/2641562

Yu, Y., & Steinberger, J. (2016). Pseudorandom functions in almost constant depth from low-noise
Ipn. In Annual international conference on the theory and applications of cryptographic
techniques (pp. 154—-183).

Appendices

A Towards a Formal Theory of Al Safety

Another motivation for this work comes from the fledgling field of Al safety, concerned with
ensuring that Al systems will not cause harm to their operators and to humanity in general
(Bostrom, 2017). More specifically, the value alignment problem (Taylor, Yudkowsky, LaVictoire,
& Critch, 2016; Soares, 2015), asks:

60

https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/2488608.2488709
http://eccc.hpi-web.de/report/2010/179
http://eccc.hpi-web.de/report/2010/179
http://eccc.hpi-web.de/report/2010/180
https://doi.org/10.1137/080734066
https://doi.org/10.1145/2641562

Question (value alignment). How can the designers of an Al system ensure that the utility function
being maximized by the system is well aligned with the designers’ utility function?

Consider this salient example, due to Russell (2019, ch. 5): An Al system is tasked with finding
a cure for cancer. If the system is smart enough, it might decide to forcefully induce cancer tumors
into millions of living people as part of its R&D efforts; furthermore, it could easily anticipate and
stifle any human attempts at resistance. Thus, the system may accomplish its mission of identifying
a cure for cancer, and still be a monstrous disaster.'’

The point is that formulating an exhaustive and foolproof description of human preferences is a
difficult task, and a sufficiently intelligent Al is likely to find loopholes that were not anticipated by
human designers. A more promising approach might be to have the system learn the preferences of
humans. But this leads to the problem of ensuring that preferences that were learned by the system
actually align well with human preferences — without first having a clear formulation of what the
human preferences are!

As a solution, we suggest that by employing an interactive proof system, an Al development
project could formally prove that a proposed Al design will be well-aligned with the desired human
utility function before activating the Al, and without needing to formally specify precisely what the
desired human utility function is. As an informal illustration, consider the following: Let H be a
class of possible Al policies, and let L: H — R be a loss function representing how “bad” a policy
is with respect to human preferences. The human designers do not have a formal specification of
L, yet they can estimate its value at a small number of points, denoted by S. For instance they
can distributing questionnaires to large number of people, asking them to rate how good or bad a
specific hypothetical Al behavior would be.

The design process of the Al system proceeds as follows:

1. A machine learning component is fed large quantities of data and learns some hypothesis

h € H that it believes has low loss with respect to L.
2. A prover component P interacts with a separate verifier component V, which has access to
S. They execute an interactive proof protocol for verifying the statement

Ps |L(h) < inf L(h)+¢€| > 18,
heH
for some minuscule €,6 > 0. Note that V does not necessarily need to have a formal
specification of L. Rather, it might suffice that V can evaluate L at a small number of random
points by using the sample S.
3. If V accepts the proof, the Al policy & is made operative. Otherwise, it is never activated.
Implemented correctly, such a system could provide mathematically-sound and
independently-verifiable guarantees that the policy selected for activation is indeed likely to

17 As noted by Pinker and others, the logic of this style of doomsday scenario appears somewhat self-contradictory:
On the one hand it assumes that the Al is brilliant enough to anticipate and overcome human opposition, and at the
same time assumes that the Al is so moronic as to make elementary blunders of understanding when interpreting the
instructions of its human operators (see Pinker, 2018, p. 299). Still, an Al with a patchy understanding of humans
could cause considerable harm if it is made operative without sufficient prior verification.

61

be aligned with human preferences.

B Thresholds Over Discrete Sets

In Section 3 we presented the class 7 of thresholds over the interval [0, 1] C R, and neglected issues
pertaining to the the representation of real numbers. Here, we outline how similar results can be
obtained for the class of threshold over a finite set X C [0, 1]. We write 7% = {f; };cx C T, and are
interested in 2-PAC verification of 7¥ with respect to any distribution D € A(X x {0,1}).'8

This boils down to the following. Recall that when constructing certificates of loss for 7, we
used the following primitive in the proof of Claim 3.5:

Fact B.1. Let [, B] C R be an interval, and let p be a distribution over R that is absolutely
continuous with respect to the Lebesgue measure. If p ([a , B]) > r >0, then there exists y € [, 3]

such that p([oc, }/]) =r.

The following alternative primitive, which has the additional property that y € X', will be used
instead when producing certificates for 7*¢ that have succinct representations.

Claim B.2. Let N € N, let [a, B] C R be an interval with a, B € X, and let p be a probability mass

function over X. pr([a,B]) > r >0, then there exists a pair (Y,q) where y € X N[, B] and

q € [N, such that:

1
< —.
— 2N

p(10.9) + 5 pr)—r

Likewise, there exists (Y ,q') such that
/

p(7.B1) + L pr)—r| < o

2

Proof. Take

and

q = argminie|y) | - —

18 That is, any probability space (Q, D, L) with sample space Q = X x {0, 1}, probability mass function D, and G-algebra
=29

62

Observe that

) 0|2)+ Dt o)
|rpllen) 4|
| e N|TV

The proof for (Y, q’) is similar. B
Recall that a 0-valid certificate of loss ¢ for 7 with respect to distribution D was a pair (a,b)

such that D! ([O,a)) =D ([b, 1]) = ¢, where D(X) := D(X x {i}). For the discete case, we use
the following definition of a certificate with finite resolution.

Definition B.3. Fix N € N, and let X C [0, 1] be a finite set. Let D € A(X x {0, 1}) be a distribution
and 0,1 > 0. A certificate of loss at least { for class T with resolution % is a tuple

(a7 qa; b7 lIb)
where 0 < a <b < 1and q,,qp € [N], and ifa = b then q,+ q» < N.
We say that the certificate is N-valid with respect to distribution D if

‘Dl (10.)) +%-p(a)—4 + ‘DO((b,l]) +% pb)—t| <.

Using Claim B.2, one can repeat the proof of Claim 3.5 to show the following.

Claim B4. Fix N € N, and let X C [0,1] be a finite set. Let D € A(X x {0,1}) be a distribution
and £ > 0. If Lp(T®) = {, then there exist (a,qq,b,qp) such that a,b € X and q,,qp € [N], which
constitute a certificate of loss g for the class T that is %—valid with respect to D.

In particular, one can obtain an 7-valid certificate of finite precision by choosing the precision
parameter N to satisfy N > % Likewise, it is possible to repeat the rest of the analysis, and

show that an 1-valid certificate of loss £ entails that Lp(7) > £ — 1, and that certificates can be
generated and verified efficiently. Finally, we can generalize these results to a multi-threshold class
T:*, and obtain that ’7:1)") is 2-PAC verifiable, and exhibits a quadratic gap in sample complexity
between learning and verification, as in Lemma 3.8.

C Uniform Convergence for Set Systems

The following theorem is due to Vapnik and Chervonenkis (1971). See also the exposition by Alon
and Spencer (2000, Theorem 13.4.4).

Definition C.1. A set system is a tuple (X,S), where X is any set, and S C 2% is any collection of
subsets of X. The members of X are called points.

The VC dimension of a set system (X, S) is the VC dimension of the set of indicator functions

63

{1s: S € S} as defined in Definition 1.9.

Definition C.2. Let (X,S) be a set system, let D be a distribution over X, and let € € (0,1). We
say that a multiset A C X is an €-sample with respect to D if

|ANS|

A
Theorem C.3. There exists a constant ¢ > 0 such that for any set system (X,S) of VC-dimension
at most d and any 0 < €,6 < % a sequence of at least

c d 1
P (dlogE +log 5>

i.i.d. samples from D will be an €-sample with respect to D with probability at least 1 — 9.

vSeS: <e.

D(S)

D Identity Testing for Distributions

The following theorem is due to Batu et al. (2001, Theorem 24). See exposition in Canonne (2015,
Theorem 3.2.7).

Theorem D.1. Let D* = (d,...,d,) be a distribution over a finite set of size n, and let € € (0,1).
There exists an algorithm which, given the full specification of D* and sample access to an unknown

distribution D, takes
N
o0 (86 IOg(l’l)
samples from D, and satisfies:

o Completeness. If
&3
drv(D,D) < ———n——
TV()) = 300\/ﬁ10gn7
then the algorithm accepts with probability at least %
o Soundness. If

dtv (D,D*) > €,
then the algorithm rejects with probability at least %

A standard amplification argument yields the following:

Corollary D.2. Taking
1
) <log <5> glog(n)>

samples is sufficient to ensure completeness and soundness at least 1 — 8 (instead of %).

64

E Total Variation Distance

Claim E.1. Let 6§ € (0,1), X := [n]. Consider a sequence x1,x; ...,x; of i.i.d. samples taken from
Uy, and let G denote the event in which all the samples are distinct, that is |{xi,...,x }| =t. Then
taking

log(2e
log (5)

~—

n> 12

entails that
P[G]>1-4.
Claim E.2. Let P,Q be probability functions over a probability space (2, F). Then for all a €
[0,1],
drv (1 —a)P+aQ,P) <a.
In particular, if X is a random variable and E is an event, then
drv (X,X|E) <1-P[E]=P|[E].

Proof.
drv(1—a)P+aQ,P) = I&a}c (I1-—0)P(A)+aQ(A) —P(A)

=max o-(Q(A)—-P(4)) < a.
AeF
In particular, if Px,Px g denote the distributions of X and X |E then

drv (Px,Pjz) = drv (1P [E])-Ppe +P [E] -Pyp, Pz) <P [E]

F Learning Fourier-Sparse Functions By Estimating Heavy
Coefficients

Let H be the set of z-sparse functions {0, 1}" — R. In this appendix we prove that one can PAC
learn H with respect to D14%°({0,1}") by estimating heavy Fourier coefficients.

ClaimF.1. Let € > 0. Let D € D7¢({0,1}") have target function f : {0,1}" — {1,—1}. Consider
the function

h(x) = Z arxr(x),

TeL
where L is a set such that =% C L for t = = If

N €
VT € L: —fDI <,/ —
€ ‘aT f()|— 8‘L‘7

65

then Lp(h) < Lp(H) + €.

Before proving this claim, we show that if a function f is close to being sparse, then it can
be approximated by a sparse function g that includes only coefficients where f has high Fourier
weight.

Claim F2. Let t € N, let B.¢ € (0,1), and let D € DY({0,1}") have target function
f:4{0,1}" = {1,—1}. Assume Lp(H) < L. Then exists g € H such that

Lp(g) <(1+B)-¢,

and §7° = {T : |8(T)| > 0} C f>7 with t:= /EL.

Proof. Because Lp(H) < ¢, there exists a function w € H such that Lp(w) < /. Let
w0 ={T: |W(T)| > 0}. Consider the function

g =) JMxr).
Te(w>0nf=7)

Clearly, g is t-sparse (because w is ¢-sparse), and §>0 C f =7, Furthermore, we have
Lo(8) = Excpoyr [(£(x) — ()]

=) (fA(T)—g(T))2 (Parseval’s identity)
TC[n]
= Y (fm-an)
T¢(w>0mfzr)
= Y P+ FAI).
e ren0\je
We bound each sum separately.
Y A=Y (A0)-w1) < Y (A1) -w(T))" =Lo(w) <,
T¢w>0 T¢w>0 TC[n]
and

Tew>0\ f27

Proof of Claim F.1. Observe that
Lo(h) =E[(f(x) —h(x)?] = ¥ (A1) (1)’ + ¥ F2(T),

Tel T¢L
and the first sum is bounded by
N ~ 2 S €
J(T)=h(T))" <L 50 = 5
B P Mg =

66

Therefore, to complete the proof it suffices to show that Y.r¢; FfH(T) < Lp(H) + % . Invoking
Claim F.2 with 8 := § and ¢ := max{Lp(#), §}, there exists a t-sparse function g : {0,1}" = R
such that

Lo(g) < (1+B) < Lp(H) + 5.

and g,>o ={T: |8(T)| >0} C fzr with T := 4 /%f > %. This entails that
Y A1 < Y, FAT)

T¢L Tef<t

< Y (A(1)-gm)’

TC[n]
=E[(f() - 5(x))"] <Lo(H)+ 3. W
G Random Matrices Have Full Rank
Claim G.1. Let t>0,n€N. I[ft>2710

1
<
42" = 128log (%)

S

for n large enough.

Proof.
128n1 28
T>2700n — 8> 08n > ”;g(”) — > 128log(n)
Pl | n
> —128log(n) > 128log (F) n
Claim G.2. Let nym €N, 1> 271, m < log (%) Let X = {x1,...,xn} be a set of m vectors

chosen independently and uniformly from (F,)". Then with probability at least %, the set X is
linearly independent for n large enough.

Proof. Think of the vectors as being chosen one by one. The probability that the first vector is
non-zero is
2" —1
n 7
because we can chose any vector except 0. The probability that vector x; is linearly independent
of the first k vectors is

on —2k
n 7
because we can choose any vector not in span({xj,...,x¢}). Because the choices are made

67

independently, the probability that all m vectors are linearly independent is
211_20 211_21 Zn_zm—l on _om m
rEr 2(=)

on_ @ m % m | 10g<1l4> |

T T
> =(1- =(1-— >1—-,
— on on 410g (%) — 4

where the last inequality is Bernoulli’s inequality. l

68

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

