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Abstract

We consider the following question: using a source of labeled data and interaction with an
untrusted prover, what is the complexity of verifying that a given hypothesis is “approximately
correct”? We study interactive proof systems for PAC verification, where a verifier that
interacts with a prover is required to accept good hypotheses, and reject bad hypotheses.
Both the verifier and the prover are efficient and have access to labeled data samples from
an unknown distribution. We are interested in cases where the verifier can use significantly
less data than is required for (agnostic) PAC learning, or use a substantially cheaper data
source (e.g., using only random samples for verification, even though learning requires
membership queries). We believe that today, when data and data-driven algorithms are quickly
gaining prominence, the question of verifying purported outcomes of data analyses is very
well-motivated.

We show three main results. First, we prove that for a specific hypothesis class, verification
is significantly cheaper than learning in terms of sample complexity, even if the verifier
engages with the prover only in a single-round (NP-like) protocol. Moreover, for this class we
prove that single-round verification is also significantly cheaper than testing closeness to the
class. Second, for the broad class of Fourier-sparse boolean functions, we show a multi-round
(IP-like) verification protocol, where the prover uses membership queries, and the verifier is
able to assess the result while only using random samples. Third, we show that verification is
not always more efficient. Namely, we show a class of functions where verification requires as
many samples as learning does, up to a logarithmic factor.

1 Email: {shafi.goldwasser,shaferjo}@berkeley.edu.
2 Email: rothblum@alum.mit.edu.
3 Email: amir.yehudayoff@gmail.com.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 58 (2020)



Contents

1 Introduction 1
1.1 PAC Verification: A Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Related Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Delegation of Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Verification of Scientific Studies . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Our Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Further Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.2 PAC Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.3 Fourier Analysis of Boolean Functions . . . . . . . . . . . . . . . . . . . 13

1.7 Definition of PAC Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Organization of this Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Efficient Verification for the Class of Fourier-Sparse Functions 16
2.1 The Interactive Goldreich-Levin Protocol . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Efficient Verification of Fourier-Sparse Functions . . . . . . . . . . . . . . . . . . 25

2.2.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Separation Between Learning, Testing, and PAC Verification 27
3.1 Warm-Up: The Class of Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Existence of Certificates of Loss for Thresholds . . . . . . . . . . . . . . . 29
3.1.2 Efficient Generation and Verification of Certificates for Thresholds . . . . . 31
3.1.3 Warm-Up Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Efficient PAC Verification for the Class Td of Multi-Thresholds . . . . . . . . . . . 35
3.2.1 The Class Td . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Existence of Certificates of Loss for Td . . . . . . . . . . . . . . . . . . . 36
3.2.3 Efficient Generation and Verification of Certificates for Td . . . . . . . . . 37

3.3 Lower Bounds for Closeness Testing and 2-PAC Learning of the Class Td . . . . . 41

4 Lower Bound of Ω̃(d) 44
4.1 The ClassHd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Proof Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Construction ofHd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Property H1: dTV (UX t ,DHd )≤ δ . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Property H2: ∀i 6= j : |supp( fi)∩ supp( f j)| ≤ 3n

8 . . . . . . . . . . . . . 54

ii



4.4.3 Property H3: |FX | ≥ 1
δ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Construction of the Joint Probability Space . . . . . . . . . . . . . . . . . . . . . 56

5 Efficient Verification via Query Delegation 57

6 Directions for Future Work 60

References 61

A Types of Scientific Studies Amenable to PAC Verification 65

B Proofs for Query Delegation Protocols 68
B.1 Simple Query Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2 Compressed Query Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.3 Noninteractive Query Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C Thresholds Over Discrete Sets 73

D Uniform Convergence for Set Systems 75

E Identity Testing for Distributions 75

F Total Variation Distance 76

G Learning Fourier-Sparse Functions By Estimating Heavy Coefficients 77

H Random Matrices Have Full Rank 79

iii



A simple idea underpins science: “trust, but verify”. Results should always be subject
to challenge from experiment. That simple but powerful idea has generated a vast
body of knowledge. Since its birth in the 17th century, modern science has changed
the world beyond recognition, and overwhelmingly for the better. But success can
breed complacency. Modern scientists are doing too much trusting and not enough
verifying – to the detriment of the whole of science, and of humanity.

The Economist, “How Science Goes Wrong” (2013)

1 Introduction

Data and data-driven algorithms are transforming science and society. State-of-the-art machine
learning and statistical analysis algorithms use access to data at scales and granularities that would
have been unimaginable even a few years ago. From medical records and genomic information
to financial transactions and transportation networks, this revolution spans scientific studies,
commercial applications and the operation of governments. It holds transformational promise,
but also raises new concerns. If data analysis requires huge amounts of data and computational
power, how can one verify the correctness and accuracy of the results? Might there be asymmetric
cases, where performing the analysis is expensive, but verification is cheap?

There are many types of statistical analyses, and many ways to formalize the notion of verifying
the outcome. In this work we focus on interactive proof systems (Goldwasser, Micali, & Rackoff,
1989) for verifying supervised learning, as defined by the PAC model of learning (L. G. Valiant,
1984). Our emphasis throughout is on access to the underlying data distribution as the critical
resource: both quantitatively (how many samples are used for learning versus for verification),
and qualitatively (what types of samples are used). We embark on tackling a series of new
questions:

Suppose a learner (which we also call “prover”) claims to have arrived at a good hypothesis with
regard to an unknown data distribution by analyzing random samples from the distribution. Can one
verify the quality of the hypothesis with respect to the unknown distribution by using significantly
fewer samples than the number needed to independently repeat the analysis? The crucial difference
between this question and questions that appear in the property testing and distribution testing
literature is that we allow the prover and verifier to engage in an interactive communication protocol
(see Section 1.1.1 for a comparison). We are interested in the case where both the verifier and an
honest prover are efficient (i.e., use polynomial runtime and sample complexity), and furthermore,
a dishonest prover with unbounded computational resources cannot fool the verifier:

Question 1 (Runtime and sample complexity of learning vs. verifying). Are there machine
learning tasks for which the runtime and sample complexity of learning a good hypothesis is
significantly larger than the complexity of verifying a hypothesis provided by someone else?
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In the learning theory literature, various types of access to training data have been considered,
such as random samples, membership queries, and statistical queries. In the real world, some types
of access are more costly than others. Therefore, it is interesting to consider whether it is possible
to verify a hypothesis using a cheaper type of access than is necessary for learning:

Question 2 (Sample type of learning vs. verifying). Are there machine learning problems where
membership queries are necessary for finding a good hypothesis, but verification is possible using
random samples alone?

The answers to these fundamental questions are motivated by real-world applications. If data
analysis requires huge amounts of data and computational resources while verification is a simpler
task, then a natural approach for individuals and weaker entities would be to delegate the data
collection and analysis to more powerful entities. Going beyond machine learning, this applies
also to verifying the results of scientific studies without replicating the entire experiment. We
elaborate on these motivating applications in Section 1.2 below.

1.1 PAC Verification: A Proposed Model

Our primary focus in this work is verifying the results of agnostic supervised machine learning
algorithms that receive a labeled dataset, and aim to learn a classifier that predicts the labels of
unseen examples. We introduce a notion of interactive proof systems for verification of PAC
learning, which we call PAC Verification (see Definition 1.20). Here, the entity running the learning
algorithms (which we refer to as the “prover” or the “learner”) proves the correctness of the results
by engaging in an interactive communication protocol with a verifier. One special case is where
the prover only sends a single message constituting an (NP-like) certificate of correctness. The
honest prover should be able to convince the verifier to accept its proposed hypothesis with high
probability. A dishonest prover (even an unbounded one) should not be able to convince the verifier
to accept a hypothesis that is not sufficiently good (as defined below), except with small probability
over the verifier’s random coins and samples. The proof system is interesting if the amount of
resources used for verification is significantly smaller than what is needed for performing the
learning task. We are especially interested in doubly-efficient proof systems (Goldwasser, Kalai, &
Rothblum, 2015), where the honest prover also runs in polynomial time.

More formally, let X be a set, and consider a distribution D over samples of the form (x,y)
where x ∈ X and y ∈ {0,1}. Assume there is some hypothesis class H, which is a set of functions
X → {0,1}, and we are interested in finding a function h ∈ H that predicts the label y given a
previously unseen x with high accuracy with respect to D. To capture this we use the loss function
LD(h) = P(x,y)∈D [h(x) 6= y]. Our goal is to design protocols consisting of a prover and verifier that
satisfy: (i) When the verifier interacts with an honest prover, with high probability the verifier
outputs a hypothesis h that is ε-good, meaning that

LD(h)≤ LD(H)+ ε, (1)

where LD(H) = inf f∈H LD( f ); (ii) For any (possibly dishonest and unbounded) prover, the verifier
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can choose to reject the interaction, and with high probability the verifier will not output a
hypothesis that is not ε-good.

Observe that in the realizable case (or promise case), where we assume that LD(H) = 0, one
immediately obtains a strong result: given a hypothesis h̃ proposed by the prover, a natural strategy
for the verifier is to take a few samples from D, and accept if and only if h̃ classifies at most,
say, an 9

10 ε-fraction of them incorrectly. From Hoeffding’s inequality, taking O
( 1

ε2

)
samples is

sufficient to ensure that with probability at least 9
10 the empirical loss1 of h̃ is ε

10 -close to the true
loss. Therefore, if LD(h̃) ≤ 8

10 ε then h̃ is accepted with probability at least 9
10 , and if LD(h̃) > ε

then h̃ is rejected with probability at least 9
10 . In contrast, PAC learning a hypothesis that with

probability at least 9
10 has loss at most ε requires Ω

(d
ε

)
samples, where the parameter d, which is

the VC dimension of the class, can be arbitrarily large.2 That is, in the realizable case there is a
sample complexity and time complexity separation of unbounded magnitude between learning and
verifying. Furthermore, this result holds also under the weaker assumption that LD(H)≤ ε

2 .
Encouraged by this strong result, the present paper focuses on the agnostic case, where no

assumptions are made regarding LD(H). Here, things become more interesting, and deciding
whether a proposed hypothesis h̃ is ε-good is non-trivial. Indeed, the verifier can efficiently
estimate LD(h̃) using Hoeffding’s inequality as before, but estimating the term LD(H) on the
right hand side of (1) is considerably more challenging. If h̃ has a loss of say 15%, it could be
an amazingly-good hypothesis compared to the other members of H, or it could be very poor.
Distinguishing between these two cases may be difficult when H is a large and complicated
class.

1.1.1 Related Models

We discuss two related models studied in prior work, and their relationship to the PAC verification
model proposed in this work.

Property Testing. Goldreich, Goldwasser, and Ron (1998) initiated the study of a property
testing problem that naturally accompanies proper PAC learning: Given access to samples from
an unknown distribution D, decide whether LD(H) = 0 or LD(H) ≥ ε for some fixed hypothesis
class H. Further developments and variations appeared in Kearns and Ron (2000) and Balcan,
Blais, Blum, and Yang (2012). A. Blum and Hu (2018) consider tolerant closeness testing and a
related task of distance approximation (see Parnas, Ron, & Rubinfeld, 2006), where the algorithm is
required to approximate LD(H) up to a small additive error. As discussed above, the main challenge
faced by the verifier in PAC verification is approximating LD(H). However, there is a crucial
difference between testing and PAC verification: In addition to taking samples from D, the verifier
in PAC verification can also interact with a prover, and thus PAC verification can (potentially) be
easier than testing. Indeed, this difference is exemplified by the proper testing question, where
we only need to distinguish the zero-loss case from large loss. As discussed above, proper PAC

1 I.e., the fraction of the samples that is misclassified.
2 See preliminaries in Section 1.6.2 for more about VC dimension.
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verification is trivial. Proper testing, one the other hand, can be a challenging goal (and, indeed,
has been the focus of a rich body of work). For the tolerant setting, we prove a separation between
testing and PAC verification: we show a hypothesis class for which the help of the prover allows
the verifier to save a (roughly) quadratic factor over the number of samples that are required for
closeness testing or distance approximation. See Section 3 for further details.

Proofs of Proximity for Distributions. Chiesa and Gur (2018) study interactive proof systems
for distribution testing. For some fixed property Π, the verifier receives samples from an unknown
distribution D, and interacts with a prover to decide whether D ∈ Π or whether D is ε-far in total
variation distance from any distribution in Π. While that work does not consider machine learning,
the question of verifying a lower bound ` on the loss of a hypothesis class can be viewed as a special
case of distribution testing, where Π = {D : LD(H)≥ `}. Beyond our focus on PAC verification,
an important distinction between the works is that in Chiesa and Gur’s model and results, the honest
prover’s access to the distribution is unlimited – the honest prover can have complete information
about the distribution. In this paper, we focus on doubly-efficient proofs, where the verifier and the
honest prover must both be efficient in the number of data samples they require. With real-world
applications in mind, this focus seems quite natural.3

We survey further related works in Section 1.5.

1.2 Applications

The P vs. NP problem asks whether finding a solution ourselves is harder than verifying a solution
supplied by someone else. It is natural to ask a similar question in data science: Are there machine
learning problems for which learning a good hypothesis is harder than verifying one proposed by
someone else? We find this theoretical motivation compelling in and of itself. Nevertheless, we
now proceed to elaborate on a few more practical aspects of this question.

1.2.1 Delegation of Learning

In a commercial context, consider a scenario in which a client is interested in developing a machine
learning (ML) model, and decides to outsource that task to a company P that provides ML services.
For example, P promises to train a deep neural net using a big server farm. Furthermore, P claims
to possess a large amount of high quality data that is not available to the client, and promises to use
that data for training.

How could the client ascertain that a model provided by P is actually a good model? The
client could use a general-purpose cryptographic delegation-of-computation protocol, but that
would be insufficient. Indeed, a general-purpose delegation protocol can only ensure that P
executed the computation as promised, but it cannot provide any guarantees about the quality

3 In Chiesa and Gur’s setting, it would also be sufficient for the prover to only known the distribution up to O(ε)
total variation distance, and this can be achieved using random samples from the distribution. However, the number
of samples necessary for the prover would be linear in the domain size, which is typically exponential, and so this
approach would not work for constructing doubly-efficient PAC verification protocols.
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of the outcome, and in particular cannot ensure that the outcome is ε-good: If P used skewed
or otherwise low-quality training data (whether maliciously or inadvertently), a general-purpose
delegation protocol has no way of detecting that. Moreover, even if the the data and the execution
of the computation were both flawless, this still provides no guarantees on the quality of the output,
because an ML model might have poor performance despite being trained as prescribed.4,5

A different solution could be to have P provide a proof to establish that its output is indeed
ε-good. In cases where the resource gap between learning and verifying is significant enough, the
client could cost-effectively verify the proof, obtaining sound guarantees on the quality of the ML
model it is purchasing from P.

1.2.2 Verification of Scientific Studies

It has been claimed that many or most published research findings are false (Ioannidis, 2005).
Others refer to an ongoing replication crisis (Pashler & Wagenmakers, 2012; Fidler & Wilcox,
2018), where many scientific studies are hard or impossible to replicate or reproduce (e.g., Prinz,
Schlange, & Asadullah, 2011; Begley & Ellis, 2012). Addressing these issues is a scientific and
societal priority.

There are many factors contributing to this problem, including: structural incentives faced by
researchers, scientific journals, referees, and funding bodies; the level of statistical expertise among
researchers and referees; differences in the sources of data used for studies and their replication
attempts; choice of standards of statistical significance; and norms pertaining to the publication of
detailed replicable experimental procedures and complete datasets of experimental results.

We stress that the current paper does not touch on the majority of these issues, and our
discussion of the replication crisis (as well as our choice of quotation at the beginning of the paper)
does not by any means suggest that adoption of PAC verification protocols will single-handedly
solve all issues pertaining to replication. Rather, the contribution of the current paper with respect
to scientific replication is very specific: we suggest that for some specific types of experiments,
PAC verification can be used to design protocols that allow to verify the results of an experiment in
a manner that uses a quantitatively smaller (or otherwise cheaper) set of independent experimental
data than would be necessary for a traditional replication that fully repeats the original experiment.
In Appendix A we list four such types of experiments. We argue that devising PAC verification
protocols that make scientific replication procedures even modestly cheaper for specific types of
experiments is a worthwhile endeavor that could help increase the amount of scientific replication
or verification that occurs, and decrease the prevalence of errors that remain undiscovered in the
scientific literature.
4 E.g., a neural network might get stuck at a local minimum.
5 Additionally, note that state-of-the-art delegation protocols are not efficient enough at present to make it practicable to

delegate intensive ML computations. See the survey by Walfish and Blumberg (2015) for progress and challenges in
developing such systems.
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1.3 Our Setting

In this paper we consider the following form of interaction between a verifier and a prover.

Verifier

Oracle OV
[

h̃ or ‘reject’

Prover

Oracle OP

[
w1 = h̃

w2

. . .

. . .

wt

Figure 1: The verifier and prover each have access to an oracle,
and they exchange messages with each other. Eventually, the
verifier outputs a hypothesis, or rejects the interaction. One
natural case is where the prover suggests a hypothesis h̃, and the
verifier either accepts or rejects this suggestion.

Let H ⊆ {0,1}X be a class of hypotheses, and let D be a distribution over X ×{0,1}. The
verifier and the prover each have access to an oracle, denoted OV and OP respectively. In the
simplest case, both oracles provide i.i.d. samples from D. That is, each time an oracle is accessed,
it returns a sample from D taken independently of all previous samples and events. In addition,
the verifier and prover each have access to a (private) random coin value, denoted ρV and ρP

respectively, which are sampled from some known distributions over {0,1}∗ independently of each
other and of all other events. During the interaction, the prover and verifier take turns sending each
other messages w1,w2, . . . , where wi ∈ {0,1}∗ for all i. Finally, at some point during the exchange
of messages, V halts and outputs either ‘reject’ or a hypothesis h : X → {0,1}. The goal of the
verifier is to output an ε-good hypothesis, meaning that

LD(h)≤ LD(H)+ ε.

A natural special case of interest is when the prover’s and verifier’s oracles provide sample
access to D. The prover can learn a “good” hypothesis h̃ : X → {0,1} and send it to the verifier
as its first message, as in Figure 1 above. The prover and verifier then exchange further messages,
wherein the prover tries to convince the verifier that h̃ is ε-good, and the verifier tries to asses the
veracity of that claim. If the verifier is convinced, it outputs h̃, otherwise it rejects.

We proceed with an informal definition of PAC verification (see full definitions in Section 1.7).
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Before doing so, we first recall a relaxed variant of PAC learning, called semi-agnostic PAC
learning, where we allow a multiplicative slack of α ≥ 1 in the error guarantee.

Definition (α-PAC Learnability – informal version of Definition 1.22). A class of hypothesisH
is α-PAC learnable (or semi-agnostic PAC learnable with parameter α) if there exists an algorithm
A such that for every distribution D and every ε,δ > 0, with probability at least 1−δ , A outputs h
that satisfies

LD(h)≤ α ·LD(H)+ ε. (2)

PAC verification is the corresponding notion for interactive proof systems:

Definition (α-PAC Verifiability – informal version of Definition 1.20). A class of hypothesisH
is α-PAC verifiable if there exists a pair of algorithms (P,V ) that satisfy the following conditions
for every distribution D and every ε,δ > 0:

• Completeness. After interacting with P, V outputs h such that with probability at least 1−δ ,
h 6= reject and h satisfies (2).

• Soundness. After interacting with any (possibly unbounded) prover P′, V outputs h such that
with probability at least 1−δ , either h = reject or h satisfies (2).

Remark 1.1. We insist on double efficiency; that is, that the sample complexity and running times
of both V and P must be polynomial in 1

ε
, log

( 1
δ

)
, and perhaps also in some parameters that

depend onH, such as the VC dimension or Fourier sparsity ofH.

1.4 Overview of Results

In this paper, we start charting the landscape of machine learning problems with respect to
Questions 1 and 2 mentioned above. First, in Section 2 we provide evidence for an affirmative
answer to Questions 2. We show an interactive proof system that efficiently verifies the class of
Fourier-sparse boolean functions, where the prover uses an oracle that provides query access, and
the verifier uses an oracle that only provides random samples. In this proof system, both the verifier
and prover send and receive messages.

The class of Fourier-sparse functions is very broad, and includes decision trees, bounded-depth
boolean circuits and many other important classes of functions. Moreover, the result is interesting
because it supplements the widely-held learning parity with noise (LPN) assumption, which entails
that PAC learning this class from random samples alone without the help of a prover is hard (see
A. Blum, Kalai, & Wasserman, 2003; Yu & Steinberger, 2016).

Lemma (Informal version of Lemma 2.6). LetH be the class of boolean functions {0,1}n→ R
that are t-sparse, as in Definition 1.18. Then H is 1-PAC verifiable with respect to the uniform
distribution using a verifier that has access only to random samples of the form (x, f (x)), and
a prover that has query access to f . The verifier in this protocol is not proper; the output
is not necessarily t-sparse, but it is poly(n, t)-sparse. The number of samples used by the
verifier, the number of queries made by the prover, and their running times are all bounded by

7



poly
(
n, t, log

( 1
δ

)
, 1

ε

)
.

Proof idea. The proof uses two standard tools, albeit in a less-standard way. The first standard
tool is the Kushilevitz-Mansour algorithm (Kushilevitz & Mansour, 1993), which can PAC learn
any t-sparse function using random samples, but only if the set of non-zero Fourier coefficients is
known. The second standard tool is the Goldreich-Levin algorithm (Goldreich & Levin, 1989;
Goldreich, 2007, Section 2.5.2.3), which can identify the set of non-zero Fourier coefficients,
but requires query access in order to do so. The protocol combines the two tools in a manner
that overcomes the limitations of each of them. First, the verifier executes the Goldreich-Levin
algorithm, but whenever it needs to query the target function, it requests that the prover perform
the query and send back the result. However, the verifier cannot trust the prover, and so the verifier
engineers the queries in such a way that the answers to a certain random subset of the queries
are known to the verifier based on its random sample access. This allows the verifier to detect
dishonest provers. When the Goldreich-Levin algorithm terminates and outputs the set of non-zero
coefficients, the verifier then feeds them as input to the Kushilevitz-Mansour algorithm to find an
ε-good hypothesis using its random sample access. �

In Section 3 we formally answer Question 1 affirmatively by showing that a certain simple
class of functions (generalized thresholds) exhibits a quadratic gap in sample complexity between
learning and verifying:

Lemma (Informal version of Lemma 3.8). There exists a sequence of classes of functions

T1,T2,T3, ...⊆ {0,1}R

such that for any fixed ε,δ ∈ (0, 1
2):

(i) The class Td is proper 2-PAC verifiable, where both the verifier and prover have access to
random samples, and the verifier requires only Õ

(√
d
)

samples. Moreover, both the prover
and verifier are efficient.

(ii) PAC learning the class Td requires Ω(d) samples.

At this point, a perceptive reader would be justified in raising the following challenges. Perhaps
2-PAC verification requires less samples than 1-PAC learning simply because of the multiplicative
slack factor of 2? Alternatively, perhaps the separation follows trivially from property testing
results: maybe it is possible to achieve 2-PAC verification simply by having the verifier perform
closeness testing using random samples, without needing the help of the prover except for finding
the candidate hypothesis? The second part of the lemma dismisses both of these concerns.

Informal version of Lemma 3.8 – Continued. Furthermore, for any fixed ε,δ ∈ (0, 1
2):

(iii) 2-PAC learning the class Td requires Ω̃(d) samples. This is true even if we assume that
LD(Td)> 0, where D is the underlying distribution.6

(iv) Testing whether LD(Td)≤ α or LD(Td)≥ β for any 0 < α < β < 1
2 with success probability

6 In the case where LD(Td) = 0, 2-PAC learning is the same as PAC learning, so the stronger lower bound in (ii) applies.

8



at least 1− δ when D is an unknown distribution (without the help of a prover) requires
Ω̃(d) random samples from D.

Proof idea. (ii) follows from a standard application of Theorem 1.13, because VC(Td) = d. (iii)
follows by a reduction from (iv). We prove (iv) by showing a further reduction from the problem
of approximating the support size of a distribution, and applying a lower bound for that problem
(see Theorem 3.20).

For (i), recall from the introduction that the difficulty in designing a PAC verification proof
system revolves around convincing the verifier that the term LD(H) in Equation (1) is large.
Therefore, we design our class Td such that it admits a simple certificate of loss, which is a string
that helps the verifier ascertain that LD(H)≥ ` for some value `.

To see how that works, first consider the simple class T of monotone increasing threshold
functions R → {0,1}, as in Figure 2 on page 28 below. Observe that if there are two events
A = [0,a)×{1} and B = [b,1]×{0} such that a ≤ b and D(A) = D(B) = `, then it must be the
case that LD(T )≥ `. This is true because a≤ b, and so if a monotone increasing threshold classifies
any point in A correctly it must classify all point in B incorrectly. Furthermore, if the prover sends
a description of A and B to the verifier, then the verifier can check, using a constant number of
samples, that each of these events has weight approximately ` with high probability.

This type of certificate of loss can be generalized to the class Td , in which each function is a
concatenation of d monotone increasing thresholds. A certificate of loss for Td is simply a set of
d certificates of loss {Ai,Bi}d

i=1, one for each of the d thresholds. The question that arises at this

point is how can the verifier verify d separate certificates while using only Õ
(√

d
)

samples. This
is performed using tools from distribution testing: the verifier checks whether the distribution of
“errors” in the sets specified by the certificates is close to the prover’s claims. I.e., whether the
“weight” of 1-labels in each Ai and 0-labels in each Bi in the actual distribution, are close to the
weights claimed by the prover. Using an identity tester for distributions this can be done using
O(
√

d) samples (note that the identity tester need not be tolerant!). See Theorem E.1 for further
details. �

In contrast, in Section 4 we show that verification is not always easier than learning:

Lemma (Informal version of Lemma 4.1). There exists a sequence of classes H1,H2, . . . such
that:

• It is possible to PAC learn the classHd using Õ(d) samples.
• For any interactive proof system that proper 1-PAC verifiesHd , in which the verifier uses an

oracle providing random samples, the verifier must use at least Ω(d) samples.

Remark 1.2. The lower bound on the sample complexity of the verifier holds regardless of what
oracle is used by the prover.

Proof idea. We specify a set X of cardinality Ω(d2), and take Hd to be a randomly-chosen
subset of all the balanced functions X → {0,1} (i.e., functions f such that | f−1(0)| = | f−1(1)|).
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The sample complexity of PAC learning Hd follows from its VC dimension being Õ(d). For
the lower bound, consider proper PAC verifying Hd in the special case where the distribution D
satisfies P(x,y)∈D [y = 1] = 1, but the marginal of D on X is unknown to the verifier. Because
every hypothesis in the class assigns the incorrect label 0 to precisely half of the domain, a
hypothesis achieves minimal loss if it assigns the 0 labels to a subset of size |X |2 that has minimal
weight. Hence, the verifier must learn enough about the distribution to identify a specific subset
of size |X |2 with weight close to minimal. We show that doing so requires Ω

(√
|X |
)
= Ω(d)

samples. �

Finally, in Section 5, we show that in the setting of semi-supervised learning, where unlabeled
samples are cheap, it is possible to perform PAC verification such that the verifier requires
significantly less labeled samples than are required for learning. This verification uses a technique
we call query delegation, and is efficient in terms of time complexity whenever there exists an
efficient ERM algorithm that PAC learns the class using random samples.

1.5 Further Related Works

The growing role of data and predictive algorithms in a variety of fields has made the analysis
of semi-unreliable data into a central research focus of the theoretical computer science (TCS)
community. Recent research efforts that (broadly) fall into this theme include: (1) parameter
estimation with greater emphasis on high dimensional data in the presence of partially unreliable
data; (2) consideration of new corruption models such as list-decoding notions where some data is
guaranteed to be properly sampled and the rest is subject to high error rate; (3) testing general
properties of distributions beyond parameter estimation; and (4) analysis of machine learning
algorithms with access to partially unreliable data. See Charikar, Steinhardt, and Valiant (2017);
Diakonikolas et al. (2019, 2018); Ilyas, Jalal, Asteri, Daskalakis, and Dimakis (2017); Daskalakis,
Gouleakis, Tzamos, and Zampetakis (2018). In contrast to all these directions, our focus is
on interactive proof systems (or non-interactive certificates) by which an untrusted prover can
convince a verifier that claimed results of a statistical analysis are correct, where the verifier is
only allowed bounded access to the underlying data distribution.

A large body of work spanning the TCS and secure systems communities studies protocols for
delegating computation to be performed by an untrusted prover (see e.g. Babai, Fortnow, Levin, &
Szegedy, 1991; Micali, 1994; Goldwasser et al., 2015; Walfish & Blumberg, 2015). There are two
significant differences between that line of work and the present paper. First, in these protocols the
input is fixed and known to the prover and the verifier. The question is whether a computation was
performed correctly on this (fixed and known) input. In contrast, in our setting there is no fixed and
known input: the distribution D is unknown to the verifier, and can only be accessed by sampling.
Second, we are interested in guaranteeing that a certain statistical conclusion is valid with respect to
this unknown distribution, regardless of whether any specific algorithm was executed as promised.
That is, if some known learning algorithm was executed by the prover and happened to produce
a poor result (e.g. a neural network got stuck in a local minimum), this result should be rejected
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by the verifier despite being the outcome of a correct computation. One final contrast with the
literature on delegating computations is that the focus there is on verifying general computations,
and this generality often results in impractical protocols. One benefit of our focus on specific
and structured machine learning problems is that this focus may result in tailored protocols (for
important problems) with improved efficiency.

The setting we investigate bears some similarity to sublinear proof verification (see e.g. Ergün,
Kumar, & Rubinfeld, 2004; Rothblum, Vadhan, & Wigderson, 2013), where the verifier cannot
read the entire input. However, in that setting the verifier enjoys query access to its input, whereas
in our setting the verifier only gets random samples (a much more limited form of access).

Another related result, in the area of parameter estimation, is due to Diakonikolas, Kane, and
Stewart (2017, Appendix C). They proved a gap between the sample complexity of estimating and
verifying the center of a Gaussian. The verifier is given a parameter θ̃ ∈ Rn and access to samples
from an n-dimensional Gaussian distribution N (θ , I). The verifier can distinguish between the
case θ̃ = θ and the case ‖θ̃ −θ‖2 > ε using O(

√
n/ε2) samples. This contrasts with estimating θ

up to an ε error from samples alone (without access to θ̃ ), which requires Ω(n/ε2) samples. They
show that the result is sharp, and also can be generalized to a setting of tolerant testing.7

Finally, a paper by Axelrod, Garg, Sharan, and Valiant (2019) investigates a setting somewhat
resembling ours. They consider the task of “amplifying” a set of samples taken from some unknown
target distribution, that is, producing an additional synthetic dataset that appears as if it was drawn
from the target distribution. The authors show that generating a dataset close in total variation
distance to the target distribution can be done using less samples from the distribution than are
necessary for learning the distribution up to the same total variation distance.

1.6 Preliminaries

1.6.1 Probability

Notation 1.3. For any probability space (Ω,F), let ∆(Ω,F) denote the set of all probability
distributions over (Ω,F). We will often simply write ∆(Ω) to denote this set when the σ -algebra
F is understood.

Definition 1.4. Let P,Q∈ ∆(Ω,F). The total variation distance between P and Q is

dTV (P,Q) = sup
X∈F

∣∣∣P(X)−Q(X)
∣∣∣= 1

2

∥∥∥P−Q∥∥∥
1
.

1.6.2 PAC Learning

We use the Probably Approximately Correct (PAC) definition of learning, introduced by
L. G. Valiant (1984). See Shalev-Shwartz and Ben-David (2014) for a textbook on learning

7 That is, distinguishing between the case d ≥ ε and d ≤ ε/2 for d = dTV
(
N (θ̃ , I),N (θ , I)

)
.
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theory.

Let X be a set, and let H⊆ RX be a class of functions, i.e. H is a subset of the functions X → R.
In this paper, we use the `2 loss function, which is popular in machine learning.

Definition 1.5. Let h ∈ H, and let D ∈ ∆(X ×{0,1}). The loss of h with respect to D is

LD(h) = E(x,y)∼D

[
(h(x)− y)2

]
. Furthermore, we denote LD(H) = infh∈H LD(h).

Remark 1.6. In the special case of boolean labels, where y ∈ {0,1} and h : X → {0,1}, the `2
loss function is the same as the 0-1 loss function: LD(h) = P(x,y)∼D [h(x) 6= y].

Definition 1.7. We say that H is agnostically PAC learnable if there exist an algorithm A and
a function mH : [0,1]2 → N such that for any ε,δ > 0 and any distribution D ∈ ∆(X ×R), if
A receives as input a tuple of mH(ε,δ ) i.i.d. samples from D, then A outputs a function h ∈ H
satisfying

P [LD(h)≤ LD(H)+ ε]≥ 1−δ .

In words, this means that h is probably (with confidence 1− δ ) approximately correct (has loss
at most ε worse than optimal). The point-wise minimal such function m is called the sample
complexity ofH.

Definition 1.8. Let h ∈ H and let S = ((x1,y2), . . . ,(xm,ym)) ∈ (X ×{0,1})m. The empirical loss
of h with respect to S is LS(h) = 1

m ∑i∈[m]( f (xi)− yi)
2.

Definition 1.9. An empirical risk minimization algorithm (ERM) for class H is an agnostic PAC
learning algorithm that takes m = mH(ε,δ ) i.i.d. random samples from D, denoted S, and outputs
a hypothesis h ∈ argmin f∈H LS( f ).8

Definition 1.10. We say that H has the uniform convergence property if there exists a function
mUC
H : [0,1]2→ N such that for any ε,δ > 0 and any distribution D ∈ ∆(X ×R), if S is a tuple of

mUC
H (ε,δ ) i.i.d. samples from D, then PS [∀h ∈H : |LS(h)−LD(h)| ≤ ε]≥ 1−δ .

The following definitions and result apply for the special case of boolean labels, where
H⊆ {0,1}X and we only consider distributions D ∈ ∆(X ×{0,1}).

Definition 1.11. Let h ∈ H and C ⊆ X . We denote by h|C the function C→ {0,1} that agrees
with h on C. The restriction of H to C is H|C := {h|C : h ∈ H}, and we say that H shatters C if
H|C = {0,1}C.

Definition 1.12 (Vapnik & Chervonenkis, 1971). The VC dimension of H denoted VC(H) is the
maximal size of a set C ⊆X such that H shatters C. If H can shatter sets of arbitrary size, we say
that the VC dimension is ∞.

Theorem 1.13 (Vapnik & Chervonenkis, 1971; Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989).
The following are equivalent:

8 Assuming that the minimum always exists for H.
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1. VC(H)< ∞.
2. H has the uniform convergence property.
3. H is agnostically PAC learnable.
4. Any ERM algorithm agnostically PAC learnsH using mH(ε,δ ) random samples.

Furthermore, if d = VC(H)< ∞ then mH(ε,δ ) = Θ

(
d+log( 1

δ )
ε2

)
and mUC

H (ε,δ ) = Θ

(
d+log( 1

δ )
ε2

)
.

1.6.3 Fourier Analysis of Boolean Functions

To formulate and prove Lemma 2.6 below, we need several basic notions from the Fourier analysis
of boolean functions. For a comprehensive introduction, see O’Donnell (2014).

Consider the linear space F of all functions of the form f : {0,1}n→ R.

Fact 1.14. The operator 〈·, ·〉 : F2→ R given by 〈 f ,g〉 := Ex∈{0,1}n [ f (x)g(x)] constitutes an inner
product, where x ∈ {0,1}n denotes sampling from the uniform distribution.

Notation 1.15. For any set S⊆ [n], χS : {0,1}n→{0,1} denotes the function χS(x) := (−1)∑i xi .

Fact 1.16. The set {χS : S ⊆ [n]} is an orthonormal basis of F . In particular, any f ∈ F has a
unique representation f (x) = ∑S⊆[n] f̂ (S)χS(x), where f̂ (S) = 〈 f ,χS〉.

Fact 1.17 (Parseval’s identity). Let f ∈ F . Then 〈 f , f 〉 = ∑S⊆[n] f̂ (S)2. In particular, if
f : {0,1}n→{0,1} then ∑S⊆[n] f̂ (S)2 = Ex [ f (x)]≤ 1.

Definition 1.18. Let t ∈ N. A function f : {0,1}n → R is t-sparse if it has at most t non-zero
Fourier coefficients, namely |{S⊆ [n] : f̂ (S) 6= 0}| ≤ t.

1.7 Definition of PAC Verification

In Section 1.3 we informally described the setting of this paper. Here, we complete that discussion
by providing a formal definition of PAC verification, which is the main object of study in this
paper.

Notation 1.19. We write

[VOV (xV ),POP(xP)]

for the random variable denoting the output of the verifier V after interacting with a prover P, when
V and P receive inputs xV and xP respectively, and have access to oraclesOV andOP respectively.
The inputs xV and xP can specify parameters of the interaction, such as the accuracy and confidence
parameters ε and δ . This random variable takes values in {0,1}X ∪{reject}, namely, it is either
a function X → {0,1} or it is the value “reject”. The random variable depends on the (possibly
randomized) responses of the oracles, and on the random coins of V and P.

For a distributionD, we write VD (or PD) to denote use of an oracle that provides i.i.d. samples
from the distributions D. Likewise, for a function f , we write V f (or P f ) to denote use of an oracle
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that provides query access to f . That is, in each access to the oracle, V (or P) sends some x ∈ X
to the oracle, and receives the answer f (x).

We also write

[V (SV ,ρV ),P(SP,ρP)] ∈ {0,1}X ∪{reject}
to denote the deterministic output of the verifier V after interacting with P in the case where V and
P receive fixed random coin values ρV and ρP respectively, and receive fixed samples SV and SP

from their oracles OV and OP respectively.

We are interested in classesH for which an ε-good hypothesis can always be verified with high
probability via this form of interaction between an efficient prover and verifier, as formalized in the
following definition. Note that the following definitions include an additional multiplicative slack
parameter α ≥ 1 in the error guarantee. This parameter does not exist in the standard definition of
PAC learning; the standard definition corresponds to the case α = 1.

Definition 1.20 (α-PAC Verifiability). Let H ⊆ {0,1}X be a class of hypotheses, let
D⊆ ∆(X ×{0,1}) be some family of distributions, and let α ≥ 1. We say that H is α-PAC
verifiable with respect to D using oracles OV and OP if there exists a pair of algorithms (V,P)
that satisfy the following conditions for every input ε,δ > 0:

• Completeness. For any distributionD ∈D, the random variable h := [VOV (ε,δ ),POP(ε,δ )]
satisfies

P
[
h 6= reject ∧

(
LD(h)≤ α ·LD(H)+ ε

)]
≥ 1−δ .

• Soundness. For any distributionD∈D and any (possibly unbounded) prover P′, the random
variable h := [VOV (ε,δ ),P′OP(ε,δ )] satisfies

P
[
h 6= reject ∧

(
LD(h)> α ·LD(H)+ ε

)]
≤ δ .

Definition 1.21 (Interactive Proof System for PAC Verification). A pair of algorithms (V,P)
satisfying soundness and completeness as above, is called an interactive proof system that α-PAC
verifiesH with respect to D using oracles OV and OP.

Definition 1.22 (α-PAC Learnability). Similarly, H is α-PAC learnable with respect to D using
oracle O if there exists an algorithm A that for every input ε,δ > 0 and every D ∈ D, outputs
h := AO(ε,δ ) such that P [LD(h)≤ α ·LD(H)+ ε]≥ 1−δ .

Remark 1.23. Some comments about these definitions:
• The behavior of the oracles OV and OP may depend on the specific underlying distribution
D ∈D, which is unknown to the prover and verifier. For example, they may provide samples
from D.

• We insist on double efficiency; that is, that the sample complexity and running times of both
V and P must be polynomial in 1

ε
, log

( 1
δ

)
, and perhaps also in some parameters that depend
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onH, such as the VC dimension or Fourier sparsity ofH.
• If for every ε,δ > 0, and for any (possibly unbounded) prover P′, the value

h := [VOV (ε,δ ),P′OP(ε,δ )] satisfies h∈H∪{reject}with probability 1 (i.e., V never outputs
a function that is not inH), then we say thatH is proper α-PAC verifiable, and that the proof
system proper α-PAC verifiesH.

Remark 1.24. An important type of learning (studied e.g. by Angluin, 1987 and Kushilevitz &
Mansour, 1993) is learning with membership queries with respect to the uniform distribution. In
this setting, the family D consists of distributions D such that: (1) the marginal distribution of D
overX is uniform; (2)D has a target function f : X → {1,−1} satisfying P(x,y)∼D [y = f (x)] = 1.9

In Section 2, we will consider protocols for this type of learning that have the form [VD,P f ], such
that the verifier has access to an oracle providing random samples from a distribution D ∈ D,
and the prover has access to an oracle providing query access to f , the target function of D. This
type of protocol models a real-world scenario where P has qualitatively more powerful access to
training data than V .

1.8 Organization of this Paper

In Section 1.7 we formally define interactive proofs for PAC verification. In Section 1.4 we provide
an overview of our results and their respective proof ideas.

Our first result appears in Section 2, where we answer Question 2 above affirmatively, showing
that the broad and important class of Fourier-sparse boolean functions admits a doubly-efficient
verification protocol in which the prover has query access, but the verifier only uses random
samples. Note that according to the widely-held LPN assumption, learning this class is not possible
without query access (see Section 1.6.3 for more about Fourier analysis, and A. Blum et al., 2003;
Yu & Steinberger, 2016 for more about the LPN assumption).

In Section 3 we answer Question 1 above affirmatively by showing that a certain simple class of
functions (generalized thresholds) exhibits a quadratic gap in sample complexity between learning
and verifying. The verifier for this class is an NP-like verifier, in the sense that it takes as input a
succinct witness string that helps it reach a decision.

Interestingly, however, verification is not always more efficient. In Section 4 we show a lower
bound for a class of randomly-chosen functions, entailing that for this class, verification requires
as many samples as learning does, up to a logarithmic factor.

Finally, in Section 5, where we show that, in the semi-supervised setting, PAC verification can
reduce the number of labeled samples required compared to learning.

9 Note that f is not necessarily a member of H, so this is still an agnostic (rather than realizable) case.
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2 Efficient Verification for the Class of Fourier-Sparse Functions

The class Td of multi-thresholds (discussed in Section 3 below) shows that in some cases
verification is strictly easier than learning and closeness testing. The verification protocol for Td has
a single round, where the prover simply sends a hypothesis and a proof that it is (approximately)
optimal. In this section, we describe a multi-round protocol that demonstrates that interaction is
helpful for verification.

The interactive protocol we present PAC verifies the class of Fourier-sparse functions. This
is a broad class of functions, which includes decision trees, DNF formulas with small clauses,
and AC0 circuits.10 Every function f : {0,1}n → R can be written as a linear combination
f = ∑T⊆[n] f̂ (T )χT .11 In Fourier-sparse functions, only a small number of coefficients are
non-zero.

Remark 2.1. According to the learning parity with noise (LPN) assumption (see A. Blum et al.,
2003; Yu & Steinberger, 2016), it is not possible to learn the Fourier-sparse functions efficiently
using random samples only. Therefore, the query delegation protocols discussed below in Section 5
cannot be used to obtain a doubly-efficient PAC verification protocol for this class, as we do in the
current section.

An important technicality is that throughout this section we focus solely on PAC verification
with respect to families of distributions that have a uniform marginal over {0,1}n, and have a
target function f : {0,1}n→{1,−1} such that P(x,y)∼D [y = f (x)] = 1. See further discussion in
Remark 1.24 on page 15. One of the advantages of this setting is that in order to learn f , it is
sufficient to approximate its heavy Fourier coefficients.

Notation 2.2. Let f : {0,1}n→ R, and let τ ≥ 0. The set of τ-heavy coefficients of f is

f̂≥τ = {T ⊆ [n] : | f̂ (T )| ≥ τ}.

Furthermore, approximating a single coefficient is easy given random samples from the uniform
distribution. There are, however, an exponential number of coefficients, so approximating all of
them is not feasible. This is where verification comes in. If the set of heavy coefficients is known,
and if the function is Fourier-sparse, then one can efficiently learn the function by approximating
that particular set of coefficients. The prover can provide the list of heavy coefficients, and then the
verifier can learn the function by approximating these coefficients.

The challenge that remains in designing such a verification protocol is to verify that the provided
list of heavy coefficients is correct. If the list contains some characters that are not actually heavy,
no harm is done.12 However, if a dishonest prover omits some of the heavy coefficients from the

10 See Mansour, 1994, Section 5.2.2, Theorems 5.15 and 5.16. (AC0 is the set of functions computable by constant-depth
boolean circuits with a polynomial number of AND, OR and NOT gates.)

11 The real numbers f̂ (T ) are called Fourier coefficients, and the functions χT are called characters.
12 The verifier can approximate each coefficient in the list and discard of those that are not heavy. Alternatively, the

verifier can include the additional coefficients in its approximation of the target function, because the approximation
improves as the number of estimated coefficients grows (so long as the list is polynomial in n).
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list, how can the verifier detect this omission? The following result provides an answer to this
question.

Lemma 2.3 (Interactive Goldreich-Levin). There exists an interactive proof system (V,P∗) as
follows. For every n ∈ N, δ > 0, every τ ≥ 2−

n
10 , every function f : {0,1}n→{0,1}, and every

prover P, let

LP = [V (S,n,τ,δ ,ρV ),P f (n,τ,δ ,ρP)]

be a random variable denoting the output of V after interacting with the prover P, which has query
access to f , where S =

(
(x1, f (x1)), . . . ,(xm, f (xm))

)
is a random sample with x1, . . . ,xm taken

independently and uniformly from {0,1}n, and ρV ,ρP are strings of private random coins. LP takes
values that are either a collection of subsets of [n], or ‘reject’.

The following properties hold:
• Completeness. P

[
LP∗ 6= reject ∧ f̂≥τ ⊆ LP∗

]
≥ 1−δ .

• Soundness. For any (possibly unbounded) prover P,

P
[
LP 6= reject ∧ f̂≥τ * LP

]
≤ δ .

• Double efficiency. The verifier V uses at most O
( n

τ
log
( n

τ

)
log
( 1

δ

))
random samples from

f and runs in time poly
(
n, 1

τ
, log

( 1
δ

))
. The runtime of the prover P∗, and the number of

queries it makes to f , are at most O
(

n3

τ5 log
( 1

δ

))
. Whenever LP 6= reject, the cardinality of

LP is at most O
(

n2

τ5 log
( 1

δ

))
.

Remark 2.4. In Definition 1.21 on page 14, we defined interactive proof systems specifically
for PAC verification. The proof system in Lemma 2.3 is technically different, satisfying different
completeness and soundness conditions. Additionally, in Definition 1.21 the verifier outputs a
value that is either a function or ‘reject’, while here the verifier outputs a value that is either a
collection of subsets of [n], or ‘reject’.

The verifier V operates by simulating the Goldreich-Levin (GL) algorithm for finding f̂≥τ .
However, the GL algorithm requires query access to f , while V has access only to random samples.
To overcome this limitation, V delegates the task of querying f to the prover P, who does have the
necessary query access. Because P is not trusted, V engineers the set of queries it delegates to P in
such a way that some random subset of them already appear in the sample S which V has received
as input. This allows V to independently verify a random subset of the results sent by P, ensuring
that a dishonest prover is discovered with high probability.

As a corollary of Lemma 2.3, we obtain the following lemma, which is an interactive version
of the Kushilevitz-Mansour algorithm (Kushilevitz & Mansour, 1993; see also Linial, Mansour, &
Nisan, 1993). It says that the class of t-sparse boolean functions is efficiently PAC verifiable with
respect to the uniform distribution using an interactive proof system of the form [VD,P f ], where
the prover has query access and the verifier has random samples.

Notation 2.5. Let X be a finite set. We write Dfunc
U (X ) to denote the set of all distributions D over
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X ×{1,−1} that have the following two properties:

• The marginal distribution ofD over X is uniform. Namely, ∑y∈{1,−1}D
(
(x,y)

)
= 1
|X | for all

x ∈ X .
• D has a target function f : X → {1,−1} satisfying P(x,y)∼D [y = f (x)] = 1.

Lemma 2.6. Let X = {0,1}n, and let H be the class of functions X → R that are t-sparse, as in
Definition 1.18. The classH is 1-PAC verifiable for any ε ≥ 4t ·2− n

10 with respect to Dfunc
U (X ) by a

proof system in which the verifier has access to random samples from a distributionD ∈Dfunc
U (X ),

and the honest prover has oracle access to the target function f : X → {1,−1} of D. The running
time of both parties is at most poly

(
n, t, 1

ε
, log

( 1
δ

))
. The verifier in this protocol is not proper; the

output is not necessarily t-sparse, but it is poly
(
n, t, 1

ε
, log

( 1
δ

))
-sparse.

2.1 The Interactive Goldreich-Levin Protocol

The verifier follows Protocol 1, which repeatedly applies Protocol 2 (IGL-ITERATION).

Protocol 1 Interactive Goldreich-Levin: IGL(n,τ,δ )

V performs the following:
r←

⌈
(4n

τ
+1) log

( 1
δ

)⌉
for i ∈ [r] do

Li← IGL-ITERATION(n,τ)
if Li = reject then

output reject
L←

⋃
i∈[r] Li

output L
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Protocol 2 Interactive Goldreich-Levin Iteration: IGL-ITERATION(n,τ)

Assumption: V receives a sample S =
(
(x1, f (x1)), . . . ,(xm, f (xm))

)
such that

m =
⌈
log
(40n

τ4 +1
)⌉

, for all i ∈ [m], xi ∈ {0,1}n is chosen independently and uniformly, and
f (xi) ∈ {0,1}.

1. V selects i∗ ∈ [n] uniformly at random, and then sends B to P, where

B = {b1, . . . ,bk} ⊆ {0,1}n

is a basis chosen uniformly at random from the set of bases of the subspace

H = span({x1 ⊕ ei∗ , . . . ,xm ⊕ ei∗}).
(For any j, e j is a vector in which the j-th entry is 1 and all other entries are 0.)

2. P sends V the following set:

{(x⊕ ei, f̃ (x⊕ ei)) : i ∈ [n] ∧ x ∈ H},
where for any z, f̃ (z) is purportedly the value of f (z) obtained using P’s query access to f .

3. V checks that for all i ∈ [m], the evaluation f (xi) provided by V equals that which appeared
in the sample S. If there are any discrepancies, V rejects and the interaction and terminates.
Otherwise:

4. Let K = {K : ∅( K ⊆ [k]}. V Performs the following computation and outputs L:
L←∅
for (y1, . . . ,yk) ∈ {0,1}k do

for K ∈ K do
xK ←

⊕
i∈K bi

yK ←
⊕

i∈K yi

for i ∈ [n] do
ai←majorityK∈K

(
f̃
(
xK ⊕ ei

)
⊕ yK

)
add {i : ai = 1} and {i : ai = 0} to L

output L

We partition the proof of Lemma 2.3 into two claims. First, we show that if the prover is honest,
then the output is correct.

Claim 2.7. Consider an execution of IGL-ITERATION(n,τ) for τ ≥ 2−
n
10 . For any prover P and

any randomness ρP, if V did not reject, and the evaluations provided by P were mostly honest, in
the sense that

∀i ∈ [n] : Px∈H
[

f̃ (x⊕ ei) 6= f (x⊕ ei)
]
≤ τ

4
,

then

P
[

f̂≥τ ⊆ L
]
≥ 1

2
,
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where the probability is over the sample S and the randomness ρV .

Proof of Claim 2.7. Let E denote the event in which the samples {x1, . . . ,xm} are linearly
independent. From Claim H.2, P [E]≥ 3

4 . We will show that

∀T ∈ f̂≥τ : P [T /∈ L | E]≤ τ2

4
.

This is sufficient to prove the claim, because Parseval’s identity entails that | f̂≥τ | ≤ 1
τ2 , and so from

the union bound and the law of total probability,

P
[

f̂≥τ * L
]
≤ P

[
f̂≥τ * L | E

]
+P [¬E]

≤ | f̂≥τ | · max
T∈ f̂≥τ

P [T /∈ L | E]+P [¬E]

≤ 1
τ2 ·

τ2

4
+

1
4
=

1
2
.

Fix some T ∈ f̂≥τ . Note that T ∈ f̂≥τ entails that

Px∈{0,1}n [ f (x) = `(x)]≥ 1
2
+

τ

2
(3)

where `(x) is either
⊕

i∈T xi or 1⊕ (
⊕

i∈T xi). Now, consider the iteration of the outer loop in Step 4
in which y j = `(b j) for all j ∈ [k]. For any i ∈ [n] and any K ∈ K, let

Gi,K := 1
(

f̃
(
xK ⊕ ei

)
= `(xK ⊕ ei)

)
,

and observe that if Gi,K = 1 then from linearity of `,

f̃
(
xK ⊕ ei

)
⊕ yK = `(xK ⊕ ei)⊕ `(xK) = `(ei) =

{
1(i ∈ T ) `(x) =

⊕
i∈T xi

1⊕1(i ∈ T ) `(x) = 1⊕ (
⊕

i∈T xi) .

Therefore, if

∀i ∈ [n] :
1
|K| ∑

K∈K
Gi,K >

1
2

then T will be added to L during the abovementioned iteration of the outer loop. Let

Ai,K := 1
(

f
(
xK ⊕ ei

)
= `(xK ⊕ ei)

)
indicate cases where f agrees with `, and let

Di,K := 1
(

f̃
(
xK ⊕ ei

)
6= f (xK ⊕ ei)

)
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indicates cases where P is dishonest about the value of f . Then for all i ∈ [n],

1
|K|∑K

Gi,K ≥
1
|K|

(
∑
K

Ai,K−∑
K

Di,K

)
(i)
≥ 1
|K|∑K

Ai,K−
τ

4
(ii)
≥ 1
|K|∑K

A∗i,K−
τ

4
,

where (i) follows from the assumption that P is dishonest about at most a τ

4 -fraction of the
evaluations, and (ii) holds for

A∗i,K =

{
Ai,K xK ⊕ ei /∈ {e1,e2, . . . ,en}
0 otherwise.

Therefore, we can bound the probability that T /∈ L based on how well f and ` agree:

Px1,...,xk [T /∈ L | E]≤ P

[
∃i ∈ [n] :

1
|K| ∑

K∈K
A∗i,K ≤

1
2
+

τ

4

∣∣∣ E

]

≤
n

∑
i=1

P

[
1
|K|∑K

A∗i,K ≤
1
2
+

τ

4

∣∣∣ E

]
(union bound)

(i)
≤

n

∑
i=1

P

[∣∣∣∣∣ 1
|K|∑K

A∗i,K−µ

∣∣∣∣∣≥ τ

4
− n

2n

∣∣∣ E

]

≤
n

∑
i=1

P

[∣∣∣∣∣ 1
|K|∑K

A∗i,K−µ

∣∣∣∣∣≥ τ

5

∣∣∣ E

]
(τ ≥ 2−

n
10 )

≤ 25
n

∑
i=1

Var
[

1
|K| ∑K A∗i,K

∣∣∣ E
]

τ2 (Chebyshev’s inequality)

= 25
n

∑
i=1

Var
[
∑K A∗i,K | E

]
|K|2τ2

(ii)
≤ 25

n

∑
i=1

∑K Var
[
A∗i,K | E

]
|K|2τ2

≤ 10n
|K|τ2 (variance of an indicator is ≤ 1

4 )

=
10n

(2k−1)τ2 .

Inequality (i) is justified because µ :=E
[
A∗i,K

]
≥E [Ai,K ]− n

2n ≥ 1
2 +

τ

2−
n
2n , which follows from (3).

For inequality (ii), we argue that given E, Cov(A∗i,K ,A
∗
i,K′)≤ 0 for any fixed K,K′ ∈K, K 6= K′ and

fixed i ∈ [n]. To see this, observe the following.
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1. For any fixed sample x1, . . . ,xm ∈ {0,1}n, the pair (xK ,xK′) is distributed uniformly over
the set {(u,u′) : u,u′ ∈ H \ {0} ∧ u 6= u′}. This is true because the base {b1, . . . ,bk} is
chosen uniformly from all bases of H, implying that xK =

⊕
i∈K bi is a uniform point in

H \ {0}. Furthermore, for any fixed value of xK , udiff := xK ⊕ xK′ =
⊕

i∈K∆K′ bi is a uniform
point in H \{0,xK}. Hence for any fixed value of xK , the point xK′ = xK ⊕udiff is uniform in
H \{0,xK}.

2. If x1, . . . ,xm ∈ {0,1}n are sampled independently and uniformly and we assume E occurs,
then H is a random subspace of dimension m within {0,1}n. Therefore, the pair (xK ,xK′) is
distributed uniformly over the set {(u,u′) : u,u′ ∈ {0,1}n \{0} ∧ u 6= u′}.

3. Hence, the pair (xK ⊕ ei, xK′ ⊕ ei) is distributed uniformly over the set

W = {(u,u′) : u,u′ ∈U ∧ u 6= u′},
where U = {0,1}n \{ei}.

4. Denote A∗ = {x ∈ {0,1}n : f (x) = `(x)}\{e1,e2, . . . ,en}. Then

Cov(A∗i,K ,A
∗
i,K′) = E

[
A∗i,KA∗i,K′

]
−E

[
A∗i,K

]
E
[
A∗i,K′

]
= P(x,y)∈W [x ∈ A∗]

(
P(x,y)∈W [y ∈ A∗ | x ∈ A∗]−P(x,y)∈W [x ∈ A∗]

)
≤ P(x,y)∈W [y ∈ A∗ | x ∈ A∗]−P(x,y)∈W [x ∈ A∗]

=
|A∗|−1
|U |−1

− |A
∗|
|U |

< 0.

Finally, note that when E occurs (the samples {x1, . . . ,xm} are linearly independent) then

k = m≥ log
(

40n
τ4 +1

)
,

and so

Px1,...,xk [T /∈ L | E]≤ 10n
(2k−1)τ2 ≤

τ2

4
,

as desired. �

Next, we show that if the prover is dishonest, it will be rejected.

Claim 2.8. Consider an execution of IGL-ITERATION(n,τ). For any prover P and any randomness
value ρP, if there exists i ∈ [n] for which P was too dishonest in the sense that

Px∈H
[

f̃ (x⊕ ei) 6= f (x⊕ ei)
]
>

τ

4
,

then

P [L = reject]≥ τ

4n
,

where the probability is over the sample S and the randomness ρV .

Proof. Let E denote the event in which the index i∗ selected by V is one for which P is too
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dishonest. We now focus on the case where this event occurred. Let H∗ = H ⊕ ei∗ , and let X ⊆ H∗

denote the subset of H∗ that appeared in the sample S received by V . Observe that

1− τ

4
> Ex∈H∗

[
1( f̃ (x) = f (x)) | E

]
= EX

[
Ex∈X

[
1( f̃ (x) = f (x))

]
| E
]
= EX [hX | E] ,

where hX := Ex∈X
[
1( f̃ (x) = f (x))

]
, is the fraction of the sample on which P was honest. Notice

that the only assumptions we have made about the distribution of X is that for every x,x′ ∈ H∗,
P [x ∈ X ] = P [x′ ∈ X ].

From Markov’s inequality,

PX [hX = 1 | E]≤ PX [hX ≥ 1 | E]≤ EX [hX | E]< 1− τ

4
.

This means that

P [L = reject | E] = P
[
∃x ∈ X : f̃ (x) 6= f (x) | E

]
≥ τ

4
,

and we conclude that

P [L = reject]≥ P [L = reject | E]P [E]≥ τ

4
· 1

n
. �

We now prove Lemma 2.3 using Claims 2.7 and 2.8.

Proof of Lemma 2.3. We show that the protocol IGL(n,τ,δ ) satisfies the requirements of
Lemma 2.3. For the completeness, consider the deterministic prover P∗ that simply uses its query
access to f in order to send the set

{(x⊕ ei, f (x⊕ ei)) : i ∈ [n] ∧ x ∈ H},
to V , and observe that P∗ will never be rejected. Furthermore, for every i ∈ [r], Claim 2.7 entails
that P

[
f̂≥τ * Li

]
≤ 1

2 . Thus, f̂≥τ ⊆ LP∗ ≥ 1−2−r ≥ 1−δ , as desired.
For the soundness, assume for contradiction that there exists some malicious prover P̃ such

that

P
[
LP̃ 6= reject ∧ f̂≥τ * LP̃

]
> δ .

The IGL protocol consists of r executions of IGL-ITERATION. We say that P̃ was sufficiently
honest in a particular execution of IGL-ITERATION if in that execution,

∀i ∈ [n] : Px∈H
[

f̃ (x⊕ ei) 6= f (x⊕ ei)
]
≤ τ

4
.

Let D be an indicator denoting the event that throughout the r executions, P̃ was too dishonest,
meaning that the number of executions in which P̃ was sufficiently honest is strictly less than
log( 1

δ
).

Consider the following two case:
• The dishonest case (D = 1): There were at least r′ := r− log( 1

δ
)≥ 4n

τ
log
( 1

δ

)
executions in

which P̃ was not sufficiently honest. From Claim 2.8, the probability of rejection in each of
these r′ repetitions is at least τ

4n . Hence, because the rounds are independent,

P [LP̃ 6= reject | D = 1]≤
(

1− τ

4n

)r′

≤
(

1− τ

4n

) 4n
τ

log( 1
δ ) ≤ e− log( 1

δ ) ≤ δ .
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• The honest case (D = 0): Let j1, . . . , jr′ ∈ [r] be the rounds in which P̃ was sufficiently
honest, with r′ ≥ log( 1

δ
). From Claim 2.7, with probability at least 1− δ , the result L jt for

each t ∈ [r′] satisfies

P
[

f̂≥τ ⊆ L jt
]
≥ 1

2
.

Hence, because the rounds are independent,

P
[

f̂≥τ * LP̃ | D = 0
]
≤ 2−r′ ≤ δ .

Putting the two cases together, we obtain the desired contradiction:

P
[
LP̃ 6= reject ∧ f̂≥τ * LP̃

]
= P

[
LP̃ 6= reject ∧ f̂≥τ * LP̃ | D = 0

]
P [D = 0]+

P
[
LP̃ 6= reject ∧ f̂≥τ * LP̃ | D = 1

]
P [D = 1]

≤ P
[

f̂≥τ * LP̃ | D = 0
]
P [D = 0]+

P [LP̃ 6= reject | D = 1]P [D = 1]

≤ δ .

This completes the proof of the soundness property. For the efficiency, observe the
following:

• V performs r =
⌈
(4n

τ
+1) log

( 1
δ

)⌉
repetitions of the IGL-ITERATION protocol, and each

repetition requires m =
⌈
log
(40n

τ4 +1
)⌉

fresh samples. Thus, V requires a total of

r ·m = O
(

n
τ

log
(n

τ

)
log
(

1
δ

))
.

random samples from f .
• P∗ also performs r repetitions of the IGL-ITERATION protocol, and makes at most n2m

queries to f in each repetition. Thus, P∗ uses at most

q = r ·n2m = O
(

n3

τ5 log
(

1
δ

))
queries to f .

• P∗ runs in time O(q), and V runs in time polynomial in q.
• For the bound on the cardinality of LP, observe that V performs r repetitions of

IGL-ITERATION, and in each repetition, the number of items added to the list in Step 4
is at most 2k ≤ 2m. Thus, the total list length is at most

r ·2m = O
(

n2

τ5 log
(

1
δ

))
.

This completes the proof. �

Remark 2.9. It is possible to run all repetitions of the IGL protocol in parallel such that only 2
messages are exchanged.
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2.2 Efficient Verification of Fourier-Sparse Functions

The verification protocol of Lemma 2.6 is described in Protocol 3. In the IGL protocol,
we worked with functions f : {0,1}n→{0,1}. Now, we move to working with functions
f : {0,1}n→{1,−1}. We translate data from {1,−1} to {0,1} as follows: b ∈ {1,−1} is mapped
to 1−b

2 ∈ {0,1}, and b ∈ {0,1} is mapped to (−1)b ∈ {1,−1}.

Protocol 3 PAC Verification of t-Sparse Functions: VERIFYFOURIERSPARSE(n, t,ε,δ )

V performs the following:
τ ← ε

4t
L← IGL(n,τ, δ

2 )
if L = reject then

output reject
else

λ ←
√

ε

8|L|
for T ∈ L do

αT ← ESTIMATECOEFFICIENT(T,λ , δ

2|L|)

h← ∑T∈L αT χT

output h

Remark 2.10. The output of VERIFYFOURIERSPARSE is a function h : {0,1}n → R, not
necessarily a boolean function.

Algorithm 4 Estimating a Fourier Coefficient: ESTIMATECOEFFICIENT(T,λ ,δ )

m←
⌈

2ln(2/δ )
λ 2

⌉
for i ∈ [m] do

sample (xi,yi)←D . Takes i.i.d. samples from D.
αT ← ∑

m
i=1 yiχT (xi)

output αT

2.2.1 Proof

Lemma 2.6 follows from Lemma 2.3 via standard techniques (see exposition in Mansour, 1994).
The proof is provided below for completeness. We start with the following claim.

Claim 2.11. Let λ ,δ > 0, T ⊆ [n], and let D ∈ Dfunc
U ({0,1}n) with target function

f : {0,1}n→{1,−1}. Then ESTIMATECOEFFICIENT(T,λ ,δ ) uses m =
⌈

2ln(2/δ )
λ 2

⌉
random
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samples from D and outputs a number αT such that

P
[
|αT − f̂ (T )| ≥ λ

]
≤ δ ,

where the probability is over the samples.

Proof. Let
(
(x1, f (x1), . . . ,(xm, f (xm))

)
denote the sample. Recall that

f̂ (T ) = 〈 f ,χT 〉 := Ex∈{0,1}n [ f (x)χT (x)] ,

where | f (x)χT (x)| ≤ 1. Therefore, if we take

αT :=
m

∑
i=1

f (xi)χT (xi)

then Hoeffding’s inequality yields

P
[∣∣αT − f̂ (T )

∣∣≥ λ
]
≤ 2exp(−mλ

2/2)≤ δ . �

Proof of Lemma 2.6. Fix ε,δ > 0 and a distribution D ∈ Dfunc
U ({0,1}n) with target function

f : {0,1}n → {1,−1}. Consider an execution of VERIFYFOURIERSPARSE(n, t,ε,δ ). We show
completeness, soundness, double efficiency and sparsity.

• Completeness. Assume that the prover P was honest. Then from Lemma 2.3, with
probability at least 1− δ

2 , L 6= reject and f̂≥τ ⊆ L. Additionally, from Claim 2.11, with
probability at least 1− δ

2 it holds that

∀T ∈ L :
∣∣αT − f̂ (T )

∣∣≤ λ .

Hence, from the union bound, with probability at least 1−δ all the assumptions of Claim G.1
hold, in which case Claim G.1 guarantees that LD(h)≤ LD(H)+ ε , as desired.

• Soundness. Assume for contradiction that there exists some (possibly unbounded) prover P
such that the verifier’s output h satisfies

P
[
h 6= reject ∧

(
LD(h)> LD(H)+ ε

)]
> δ . (4)

From the soundness property of the IGL protocol (Lemma 2.3),

P
[
h 6= reject ∧ f̂≥τ * L

]
≤ δ

2
. (5)

Likewise, from Claim 2.11 and the union bound,

P
[
h 6= reject ∧ ∃T ∈ L :

∣∣αT − f̂ (T )
∣∣> λ

]
≤ δ

2
. (6)

From Equations (4), (5) and (6), we obtain that

P
[
h 6= reject ∧

(
LD(h)> LD(H)+ ε

)
∧ G

]
> 0. (7)

where G denotes the event in which f̂≥τ ⊆ L ∧ ∀T ∈ L :
∣∣αT − f̂ (T )

∣∣ ≤ λ . Claim G.1
asserts that

G =⇒ LD

(
∑

T∈L
αT χT (x)

)
≤ LD(H)+ ε. (8)
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Note that if h 6= ‘reject’ then h = ∑T∈L αT χT (x). Hence, putting together Equations (7) and
(8), we conclude that

P
[
h 6= reject ∧

(
LD(h)> LD(H)+ ε

)
∧
(

LD (h)≤ LD(H)+ ε

)]
> 0,

which is a contradiction.
• Double efficiency. From Lemma 2.3, V uses at most

O
(

n
τ

log
(n

τ

)
log
(

1
δ

))
= O

(
nt
ε

log
(nt

ε

)
log
(

1
δ

))
samples for the IGL protocol, which produces a set L of coefficients such that

|L|= O
(

n2

τ5 log
(

1
δ

))
= O

(
n2t5

ε5 log
(

1
δ

))
.

Then, it uses ⌈
2ln(2/δ )

λ 2

⌉
= O

(
log(1/δ )|L|

ε

)
samples for estimating each of the coefficients. In total, V uses at most

O
(

nt
ε

log
(nt

ε

)
log
(

1
δ

))
+ |L| ·O

(
2log(1/δ )|L|

ε

)
= poly

(
n, t,

1
ε
, log

(
1
δ

))
random samples.
Also from Lemma 2.3, when executing the IGL protocol, the honest prover makes at most

O
(

n3

τ5 log
(

1
δ

))
= O

(
n3t5

ε5 log
(

1
δ

))
= poly

(
n, t,

1
ε
, log

(
1
δ

))
queries.
Clearly, both parties run in time polynomial in the number of their samples or queries.

• Sparsity. The output h = ∑T∈L αT χT is |L|-sparse, where

|L|= O
(

n2

τ5 log
(

1
δ

))
= O

(
n2t5

ε5 log
(

1
δ

))
. �

3 Separation Between Learning, Testing, and PAC Verification

In this section we demonstrate a gap in sample complexity between learning and verification.
Conceptually, the result tells us that at least in some scenarios, delegating a learning task to an
untrusted party is worthwhile, because verifying that their final result is correct is significantly
cheaper than finding that result ourselves.

Recall from the discussion in Section 1.1 that when an untrusted prover provides a hypothesis
h̃ which is allegedly ε-good, the straightforward approach for the verifier is to approximate each of
the terms LD(h̃) and LD(H), and then determine whether the inequality LD(h̃)≤ LD(H)+ε holds.
From Hoeffding’s inequality, the term LD(h̃) can easily be approximated with constant confidence
up to any O(ε) additive error using only O( 1

ε2 ) samples. However, approximating the term LD(H)
is more challenging, because it involves the loss values of all the hypotheses in the classH.
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In this section we show an MA-like proof system wherein the prover sends a single message
(h̃,C̃, ˜̀) such that allegedly h̃ is an ε-good hypothesis with loss at most ˜̀> 0, and C̃ ∈ {0,1}∗ is a
string called a certificate of loss. The verifier operate as follows:13

• Verify that LD(h̃)≤ ˜̀ with high probability. That is, estimate the loss of h̃ with respect to D,
and check that with high probability it is at most ˜̀.

• Use the certificate of loss C̃ to verify that with high probability, LD(H)≥ ˜̀− ε . This step is
called verifying the certificate.

That is, a certificate of loss is a string that helps the verifier ascertain that H has a large loss
with respect to the unknown distribution D. Whenever one defines algorithms for generating and
verifying certificates of loss for a classH, that also defines an associated single-message interactive
proof system for PAC verifyingH.

3.1 Warm-Up: The Class of Thresholds

For clarity of exposition, we start with a warm-up that investigates the class T of threshold
functions (see definition below). This class admits certificates that are easy to explain and visualize.
We will show that the certificates of loss for T induce a proof system for PAC verifying T that
is complete, sounds, and doubly efficient. However, verifying certificates for T requires as much
resources as PAC learning T without the help of a prover, and so using this proof system to delegate
learning of T is not worthwhile. Therefore, the next step (in Section 3.2 below) will show that T
and its certification easily generalize to the class Td of multi-thresholds. The gap between verifying
and learning is demonstrated for Td .

0 1
3

2
3

1

0

1
f1/3

Figure 2: The function f1/3 ∈ T .

13 We provide a more detailed description of the verification procedure in Claim 3.14 below.
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Definition 3.1. The class T is the set of all monotone increasing boolean functions on [0,1], as
follows:

T = { ft : t ∈ [0,1]},
where for any t ∈ [0,1], the function ft : [0,1]→{0,1} is given by

ft(x) =

{
0 x < t
1 x≥ t.

Figure 2 illustrates an example of a function in T .

Remark 3.2. For convenience, we present the separation result with respect to thresholds defined
over a continuous interval X ⊆ R. Furthermore, we assume that the marginal distribution on X
is absolutely continuous with respect to the Lebesgue measure, and we also ignore issues relating
to the representation of real numbers in computations and protocol messages. This provides for a
smooth exposition of the ideas. In Appendix C, we show how the results can be discretized.

3.1.1 Existence of Certificates of Loss for Thresholds

We want to design certificates such that for every distributionD ∈ ∆([0,1]×{0,1}) the class T has
large loss, LD(T )≥ `, if and only if there exists a certificate for that fact.

The idea is straightforward. Consider two sets A ⊆ [0,1]×{1} and B⊆ [0,1]×{0}, such that
all the points in A are located to the left of all the points in B, as in Figure 3. Because we only

0 t 1

0

1
A

B

ft

Figure 3: Structure of a simple certificate of loss for monotone increasing thresholds. The set A is labeled
with 1, and B is labeled 0. The depicted threshold ft happens to misclassify both A and B, but it is just one
possible threshold.

allow thresholds that are monotone increasing, a threshold that labels any point in A correctly
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must label all points of B incorrectly, and vice versa. Hence, any threshold must have loss at least
min{D(A),D(B)}. Formally:

Definition 3.3. Let D ∈ ∆([0,1]×{0,1}) be a distribution and `,η ≥ 0. A certificate of loss at
least ` for class T is a pair (a,b) where 0 < a≤ b < 1.

We say that the certificate is η-valid with respect to distribution D if the events

A = [0,a)×{1}
B = [b,1]×{0}

(9)

satisfy

|D(A)− `|+ |D(B)− `| ≤ η . (10)

The following claim shows the soundness of the certificate, i.e., that a valid certificate of loss does
indeed entail that LD(T ) is large.

Claim 3.4. Let D ∈ ∆([0,1]×{0,1}) be a distribution and `,η ≥ 0. If D has a certificate of loss
at least ` which is η-valid with respect to D, then LD(T )≥ `−η .

Proof. Assume C = (a,b) is an η-valid certificate of loss at least ` for T with respect to D. For
any t ∈ [0,1], we show that LD( ft)≥ `−η .

Consider two cases:
• Case 1: t < a. Then for any x≥ a, ft(x) = 1. In particular, taking B as in (9), we obtain that

∀(x,y) ∈ B : ft(x) 6= y.

Observe from Equation (10) that D(B)≥ `−η . Therefore,

LD( ft) = P(x,y)∈D [ ft(x) 6= y]≥D(B)≥ `−η .

• Case 2: t ≥ a. This case is symmetric to the previous one, replacing B with A = [0,a)×{1}.

Next, we show completeness, meaning that whenever LD(T ) is large there exists a certificate
to that effect. However, the certificate is not tight, conceding a factor of 2:

Claim 3.5. Let D ∈ ∆([0,1]×{0,1}) be a distribution and `≥ 0. If LD(T ) = ` then there exists a
0-valid certificate of loss at least `

2 with respect to D.

Proof of Claim 3.5. Let ft be an optimal threshold for D, that is, LD( ft) = `.14 Let

Ã = [0, t)×{1}

B̃ = [t,1]×{0}
denote the two events in which ft misclassifies a point.15 It follows that

`=D(Ã)+D(B̃).
14 Note that an optimal threshold t ∈ [0,1] exists because [0,1] is compact, and the mapping t 7→ LD( ft) is continuous.
15 Namely, Ã is the event in which a point has label 1, but ft assigns label 0 to it, and B̃ is the event in which a point has

label 0, but ft assigns label 1 to it.
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If D(Ã) =D(B̃) = `
2 , then (t, t) is the desired certificate. Otherwise, assume w.l.o.g. that

D(Ã)> `

2
>D(B̃).

Because the marginal distribution of D on [0,1] is absolutely continuous, there exists a point a ∈
[0, t) that partitions the event Ã to

A := [0,a)×{1},

A′ := [a, t)×{1},
such that D(A) = `

2 . Considering the event B′ := [a, t)× {0}. The optimality of ft implies
that

D(B′)≥D(A′)
because otherwise the threshold fa would have loss strictly smaller than that of ft .

Notice that

D(B′)≥D(A′) =D(Ã)−D(A) =
(
`−D(B̃)

)
−D(A) = `−D(B̃)− `

2
=

`

2
−D(B̃).

Hence, again invoking absolute continuity of measure as above, there exists a point b ∈ [a, t) such
that

D([b, t)×{0}) = `

2
−D(B̃).

Therefore, taking

B := [b,1)×{0}
yields

D(B) =D([b, t)×{0})+D(B̃) = `

2
.

So (a,b) is the desired certificate. �

3.1.2 Efficient Generation and Verification of Certificates for Thresholds

The following two claims show that certificates of loss for T do not merely exist, but they can be
generated and verified efficiently, making delegation feasible.

Claim 3.6 (Efficient Verification). Let D ∈ ∆([0,1]×{0,1}) be a distribution and `,δ ,η ≥ 0.
There exists an algorithm that, upon receiving input (a,b) such that 0 < a≤ b < 1, takes

O
(

log( 1
δ )

η2

)
i.i.d. samples from D and satisfies the following:

• Completeness. If (a,b) is an η-valid certificate of loss at least ` with respect to D, then the
algorithm accepts with probability at least 1−δ .

• Soundness. If (a,b) is not a 2η-valid certificate of loss at least ` with respect to D, then the
algorithm rejects with probability at least 1−δ .
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Furthermore, the algorithm runs in time polynomial16 in the number of samples.

Proof. Let A, B be as in Equation (9), and let (x1,y1), . . . ,(xm,ym) be the samples the algorithm
received. The algorithm calculates the empirical measures of A, B by

ˆ̀A :=
1
m

m

∑
i=1

1
(
(xi,yi) ∈ A

)
ˆ̀B :=

1
m

m

∑
i=1

1
(
(xi,yi) ∈ B

)
and accepts if and only if

| ˆ̀A− `|+ | ˆ̀B− `|< 3
2

η .

The running time is clear, and correctness follows from Hoeffding’s inequality,

P
[∣∣ ˆ̀A−D(A)∣∣≥ η

4

]
≤ 2exp

(
−2m

(
η

4

)2
)
.

Requiring that this probability be strictly less than δ

2 yields the bound

m >
2log 16

δ

η2 .

The same holds for ˆ̀B. The union bound entails that with probability at least 1−δ both estimates
are η

4 -close to their expectations, in which case the algorithm decides correctly. �

Claim 3.7 (Efficient Generation). There exists an algorithm as follows. For any distribution
D ∈ ∆([0,1]×{0,1}) and any δ ,η ∈ (0, 1

2), the algorithm outputs a certificate (â, b̂) for T that
with probability at least 1−δ is an η-valid certificate of loss at least `= LD(T )/2 with respect to
D. The algorithm uses

O
(

1
η2 log

1
η
+

1
η2 log

1
δ

)
i.i.d. samples from D and runs in time polynomial in the number of samples.

Proof. The proof is a standard application of uniform convergence, VC dimension and empirical
risk minimization (ERM), as covered e.g. in Shalev-Shwartz and Ben-David (2014). For
completeness, we provide a self-contained proof that depends only on Theorem D.3, which upper
bounds the number of samples necessary to obtain an ε-sample for a set system of finite VC
dimension (see definitions in Appendix D).

We start by stating the following consequence of Theorem D.3. Let S = ((x1,y1), . . . ,(xm,ym))
denote the samples that the algorithm receives, and let I denote the following set of intervals:

I = {[u,v) : u,v ∈ R}∪{[u,v] : u,v ∈ R}.
16 Recall that we ignore the cost performing calculations with real numbers.

32



Observe that the set system A = (R×{0,1},I ×{0,1}) has VC dimension 2. Hence, from
Theorem D.3, with probability at least 1−δ , we have that S is an η ′-sample for A with respect to
D, where η ′ := η

16 .
The algorithm operates in two steps. In the first step, the algorithm estimates `. For any t ∈ R,

denote by LS( ft) the empirical loss of ft , namely

LS( ft) := Lleft
S ( ft)+Lright

S ( ft)

for

Lleft
S ( ft) :=

|([0, t)×{1})∩S|
|S|

and

Lright
S ( ft) :=

|([t,1]×{0})∩S|
|S|

.

(Cardinalities are computed with S viewed as a multiset.)
The algorithm uses the sample S to find the threshold ft̂ ∈ T defined by

t̂ := argmint∈X LS( ft),

where X = {x1, . . . ,xm,1}.
The algorithm estimates ` by taking

ˆ̀ := LS( ft̂)/2+3η
′.

We argue that ˆ̀ is a good estimate whenever S is an η ′-sample: Let f ∗ = argmin f∈T LD( f ). If
S is an η ′-sample then

LD( ft̂)≤ LS( ft̂)+2η
′

= min
t∈X

LS( ft)+2η
′

= min
t∈R

LS( ft)+2η
′

≤ LS( f ∗)+2η
′

≤ LD( f ∗)+4η
′.

Therefore,

|LS( ft̂)−LD( f ∗)| ≤ |LS( ft̂)−LD( ft̂)|+ |LD( ft̂)−LD( f ∗)|
≤ 2η

′+4η
′ = 6η

′.

Thus, the estimate ˆ̀ satisfies

| ˆ̀− `|=
∣∣∣∣LS( ft̂)

2
+3η

′− LD( f ∗)
2

∣∣∣∣≤ 3η
′+
|LS( ft̂)−LD( f ∗)|

2
≤ 6η

′.
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Furthermore,

ˆ̀=
LS( ft̂)

2
+3η

′

≥ LD( f ∗)
2
− |LS( ft̂)−LD( f ∗)|

2
+3η

′

≥ LD( f ∗)
2

= `.

This completes the first step.
In the second step, the algorithm calculates

(â, b̂) := argmina′,b′∈X : a′≤b′
∣∣Lleft

S ( fa′)− ˆ̀
∣∣+ ∣∣∣Lright

S ( fb′)− ˆ̀
∣∣∣ .

We claim that (â, b̂) is an η-valid certificate of loss ˆ̀. From Claim 3.5 and the assumption that D
is absolutely continuous, there exist (a,b) constituting a 0-valid certificate of loss exactly `.

Denote

Â = [0, â)×{1}, A = [0,a)×{1}

B̂ = [b̂,1]×{0}, B = [b,1]×{0}.
Then

|D(Â)− ˆ̀|+ |D(B̂)− ˆ̀| ≤ |D(Â)−Lleft
S ( fâ) |+ |Lleft

S ( fâ)− ˆ̀|

+ |D(B̂)−Lright
S

(
fb̂

)
|+ |Lright

S

(
fb̂

)
− ˆ̀|

≤ |Lleft
S ( fâ)− ˆ̀|+ |Lright

S

(
fb̂

)
− ˆ̀|+2η

′

= min
â,b̂∈X : â≤b̂

∣∣Lleft
S ( fâ)− ˆ̀

∣∣+ ∣∣∣Lright
S

(
fb̂

)
− ˆ̀
∣∣∣+2η

′

= min
â,b̂∈R: â≤b̂

∣∣Lleft
S ( fâ)− ˆ̀

∣∣+ ∣∣∣Lright
S

(
fb̂

)
− ˆ̀
∣∣∣+2η

′

≤
∣∣Lleft

S ( fa)− ˆ̀
∣∣+ ∣∣∣Lright

S ( fb)− ˆ̀
∣∣∣+2η

′

≤
∣∣Lleft

S ( fa)− `
∣∣+ ∣∣∣Lright

S ( fb)− `
∣∣∣+14η

′

=
∣∣Lleft

S ( fa)−D(A)
∣∣+ ∣∣Lleft

S ( fb)−D(B)
∣∣+14η

′

≤ η
′+η

′+14η
′ = η .

We conclude that (â, b̂) is an η-valid certificate of loss at least `, provided that S is an η ′-sample
with respect to D, which happens with probability at least 1− δ . Seeing as the algorithm runs in
time polynomial in the number of samples, the proof is complete. �
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3.1.3 Warm-Up Summary

We explained how certificates of loss induce a proof system for PAC verification, and described a
specific instance of this for the class T of threshold functions. We saw that the honest prover is
able to generate a message (h̃,C̃, ˜̀) that is accepted by the verifier. If h̃ has loss greater than double
the true loss, no certificate can convince the verifier to accept h̃. Both the verifier and the honest
prover are efficient. The certificate is not tight; if the true loss is `= LD(T ), the certificate of loss
only proves that the loss is at least `

2 .
However, the example of the class T is lacking an essential ingredient. The sample complexity

used by the verifier is the same as is necessary for learning without a prover, and so delegation
is not beneficial. In the next section, we present a generalization of this class, where there is a
substantial gap between the resources necessary for verification and those required for learning,
making it worthwhile to delegate the learning task to an untrusted prover.

3.2 Efficient PAC Verification for the Class Td of Multi-Thresholds

In the warm-up we saw certificates of loss that induce a proof system for PAC verification for
the class of thresholds T . We now extend this construction to a class Td of multi-thresholds,
construct a PAC verification proof system for Td that obtains the following sample complexity
separation between PAC verification on the one hand and PAC learning and tolerant testing or
distance approximation on the other hand.

Lemma 3.8. There exists a sequence of classes of functions

T1,T2,T3, ...⊆ {0,1}R

such that for any fixed ε,δ ∈ (0, 1
2) all of the following hold:

(i) Td is proper 2-PAC verifiable, where the verifier uses17

mV = O

(√
d log(d) log

( 1
δ

)
ε6

)
random samples, the honest prover uses

mP = O

(
d3 log2(d)

ε4 log
(

d
ε

)
+

d
√

d log(d)
ε2 log

(
1
δ

))
random samples, and each of them runs in time polynomial in its number of samples.

(ii) Agnostic PAC learning Td requires Ω

(
d+log( 1

δ
)

ε2

)
samples.

(iii) If ε ≤ 1
32 then 2-PAC learning the class Td requires Ω

(
d

log(d)

)
samples. This is true even if

we assume that LD(Td)> 0, where D is the underlying distribution.
(iv) Testing whether LD(Td)≤ α or LD(Td)≥ β for any 0 < α < β < 1

2 with success probability

17 We believe that the dependence of mV on ε can be improved. See Remark 3.15 below.
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at least 1− δ when D is an unknown distribution (without the help of a prover) requires
Ω

(
d

log(d)

)
random samples from D.

3.2.1 The Class Td

We start by defining the class of multi-thresholds.

Definition 3.9. For any d ∈ N, denote by Td the class of functions

Td = { ft1,...,td : t1, . . . , td ∈ R}
where for all t1, . . . , td ∈ R and x ∈ [0,d], the function ft1,...,td : R→{0,1} is given by

ft1,...,td (x) =

{
0 x < tdxe
1 x≥ tdxe,

and ft1,...,td vanishes on the complement of [0,d].

0 1 2 3 . . . d

0

1

t1 t2 t3 td

Figure 4: Example of a function in Td .

3.2.2 Existence of Certificates of Loss for Td

For each i ∈ [d], the class Td restricted to [i−1, i] is a shifted copy of the class T . Hence, exactly
as we did for T , we can construct a certificate of loss which proves that Td must have loss `i within
the interval [i−1, i]. Therefore, we define certificates for Td as collections of d certificates of loss
for T .

Definition 3.10. Let D ∈ ∆(R×{0,1}) be a distribution and `,η ≥ 0. A certificate of loss at least
` for the class Td is a tuple

(C1, `1,C2, `2 . . . ,Cd , `d)
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where for all i ∈ [d]:
• Ci = (ai,bi),
• i−1 < ai ≤ bi ≤ i,
• `i ≥ 0, and

d

∑
i=1

`i = `.

The certificate is η-valid with respect to D if the events

Ai = [i−1,ai)×{1}

Bi = [bi, i]×{0}
defined for all i ∈ [d] satisfy

d

∑
i=1
|D(Ai)− `i|+ |D(Bi)− `i| ≤ η .

The following analogs of Claims 3.4 and 3.5 follow similarly.

Claim 3.11. Let D ∈ ∆(R×{0,1}) be a distribution and `,η ≥ 0. If D has a certificate of loss at
least ` for Td that is η-valid with respect to D, then every function in Td must have loss at least
`−η with respect to D.

Claim 3.12. Let D ∈ ∆(R×{0,1}) be a distribution and ` ≥ 0. If LD(Td) = ` then there exists a
0-valid certificate of loss at least `

2 for Td with respect to D.

3.2.3 Efficient Generation and Verification of Certificates for Td

The following is a straightforward analogue of Claim 3.7.

Claim 3.13 (Efficient Generation). There exists an algorithm as follows. For any distribution
D ∈ ∆([0,1]×{0,1}) and any δ ,η ∈ (0, 1

2), the algorithm outputs a certificate of loss for Td that
with probability at least 1−δ is an η-valid certificate of loss at least ` = LD(Td)/2 with respect
to D. The algorithm uses

O
(

d2

η2 log d
η
+ d2

η2 log 1
δ

)
i.i.d. samples from D and runs in time polynomial in the number of samples.

Proof sketch. The proof follows the same lines as for Claim 3.7. Recall that in that proof, the
algorithm takes a sample of size O

(
1

η2 log 1
η
+ 1

η2 log 1
δ

)
. Whenever the sample is an η ′-sample

with respect to the set system A defined in that proof, the algorithm is able to generate a certificate
that is η-valid.

Here, the algorithm instead takes a sample that with probability at least 1− δ is an η ′

d -sample
with respect toA. This leads to the sample size mentioned in the statement. The algorithm proceeds
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as in the previous case, using the sample to generate d certificates of loss, one for each interval of
the form [i−1, i] for i∈ [d]. Whenever the sample is an η ′

d -sample, each of these certificates will be
η

d -valid. Combining these certificates together yields a certificate for Td that is η-valid. �
Agnostic PAC learning Td requires

Θ

(
d + log( 1

δ
)

ε2

)
samples, because its VC dimension is d. Thus, the certificate generation procedure outlined above
requires that the prover use a larger number of samples than what is necessary for learning. This
may be worthwhile, because, as stated in the following claim, the verifier can verify the certificate
using less samples than what is required for learning.

Claim 3.14 (Efficient verification). Let d ∈ N and λ ∈ (0,1). Let C = (C1, `1, . . . ,Cd , `d) be a
certificate of loss ` for Td , and let D be a distribution. There exists an algorithm that takes

m = O

(
log
(

1
δ

)√
d

λ 6 log(d)

)
samples from D, and satisfies:

• Completeness. Let

λ
′ :=

λ 3

300
√

d logd
.

If C is λ ′-valid with respect to D, then the algorithm accepts with probability at least 1−δ .
• Soundness. If C is not 2λ -valid with respect toD, then the algorithm rejects with probability

at least 1−δ .

Remark 3.15. We believe that the parameters in the above claim can be improved such that λ 6 is
replaced by λ 2 in the sample complexity, and λ 3 is replaced by λ in the completeness parameter
λ ′. This would be achieved by using an `2-based uniformity tester, together with the reduction of
Goldreich (2020).

Proof. The proof uses ideas from distribution identity testing stated in Corollary E.2. For all i∈ [d],
let

Ai = [i−1,ai)×{1}, and

Bi = [bi, i]×{0}.
The algorithm is required to decide whether the validity v of the certificate is less than λ ′, i.e.,
whether

v :=
d

∑
i=1
|D(Ai)− `i|+ |D(Bi)− `i| ≤ λ

′,

or whether v > 2λ .
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Form the partition R := {A1,B1, . . . ,Ad ,Bd ,E} of R×{0,1}, where

E = (R×{0,1})\
( ⋃

i∈[d]
Ai∪Bi

)
.

Define two probability functions, DR and D∗, both over this finite set R of cardinality 2d +1. Let
DR be the distribution induced on R by D; namely, DR(r) =D(r) for each r ∈ R. Let D∗ denote
the distribution over R corresponding to the certificate C. Namely, D∗(Ai) = D∗(Bi) = `i for all
i ∈ [d], and D∗(E) = 1−2∑

d
i=1 `i = 1−2`.

Consider the mapping MR that sends each point to the member of R it belongs to:

MR(x,y) =


Ai (x,y) ∈ Ai,
Bi (x,y) ∈ Bi,
E otherwise.

Observe that if S =
(
(x1,y1), . . . ,(xm,ym)

)
is sampled i.i.d. from D, then

MR(S) := (MR(x1,y1), . . . ,MR(xm,ym))

is an i.i.d. sample from DR. Observe the following connection between dTV (DR,D∗) and the
validity v of the certificate:

v =
d

∑
i=1
|D(Ai)− `i|+ |D(Bi)− `i|

=
d

∑
i=1
|DR(Ai)−D∗(Ai)|+ |DR(Bi)−D∗(Bi)|

= 2dTV (DR,D∗)−|DR(E)−D∗(E)| .
Furthermore,

|DR(E)−D∗(E)| ≤ dTV (DR,D∗) .
Thus,

dTV (DR,D∗)≤ v≤ 2dTV (DR,D∗) .
The algorithm operates as follows. It executes the distribution identity test stated in

Corollary E.2 with respect to distribution D∗ and the sample MR(S). Because D∗ is a distribution
over a set of size 2d+1, taking a sample MR(S) of size m as specified in the statement is sufficient
to ensure that with probability at least 1− δ , the test distinguishes correctly between the case
dTV (DR,D∗) ≤ λ ′ and the case dTV (DR,D∗) ≥ λ . The algorithm accepts the certificate if and
only if the test concludes that dTV (DR,D∗)≤ λ ′.
The desired properties hold:

• Completeness. If v≤ λ ′, then dTV (DR,D∗)≤ v≤ λ ′, and so with probability at least 1−δ

the algorithm accepts.
• Soundness. If v > 2λ , then λ < v

2 ≤ dTV (DR,D∗), and so with probability at least 1−δ the
algorithm rejects.
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This concludes the proof. �

We now use the previous two claims to construct the efficient PAC verification protocol
for ‘Td .

Claim 3.16. Td is 2-PAC verifiable with sample and runtime complexities as in part (i) of
Lemma 3.8.

Proof. The interactive proof system for 2-PAC verification operates as follows. Let
D ∈ ∆(R×{0,1}), and let `= LD(Td).

1. The honest prover learns a function h̃∈Td that has loss at most `+ ε

6 , with probability at least
1− δ

4 . This can be done with the required sample complexity, and the computation runs in
time polynomial in the number of samples, because an ERM can be computed in polynomial
time (as discussed in the proof of Claim 3.7).

2. From Claim 3.12, there exists a 0-valid certificate of loss at least `
2 for Td with respect

to D, where ` = LD(Td). From Claim 3.13, the honest prover can generate a certificate
C̃ = (C1, `1, . . . ,Cd , `d) of loss ˜̀ := ∑i `i ≥ `

2 that with probability at least 1− δ

4 is η-valid,
for

η =
(ε/8)2

300
√

d log(d)
.

The prover can do this using mP samples as in the statement.
3. The honest prover sends (h̃,C̃, ˜̀) to the verifier V .
4. The verifier V uses O

(
log
( 1

δ

)
/ε2
)

samples to estimate the loss LD(h̃) up to an additive error
of ε

6 with confidence at least 1− δ

4 , and rejects if the estimate is greater than 2 ˜̀+ ε

3 . This
ensures that V accepts only if LD(h̃)≤ 2 ˜̀+ ε

2 .
5. From Claim 3.14, the verifier can use mV samples to verify C̃, such that if C̃ is η-valid then V

accepts with probability at least 1− δ

4 , and if C̃ is not ε

4 -valid, then V rejects with probability
at least 1− δ

4 .
For the completeness, observe that when interacting with the honest prover, each of the

operations in Steps 1, 2, 4 and 5 succeeds with probability at least 1− δ

4 , and so with probability at
least 1−δ they all succeed and V accepts h̃, which has loss at most `+ ε

6 .
For soundness, let H ∈ Td ∪{reject} denote the output of V , and let

B = {h ∈ Td : LD(h)> 2`+ ε}.
Assume towards a contradiction there exists a prover P for which P [H ∈ B]> δ . Let W denote the
message (h̃,C̃, ˜̀) sent by P. Because

δ < P [H ∈ B] = ∑
w
P [H ∈ B |W = w]P [W = w] ,

there exists some w0 = (h̃0,C̃0, ˜̀0) such that

P [H ∈ B |W = w0]> δ . (11)

When the verifier V does not reject, V outputs the hypothesis sent by P. Thus, h̃0 ∈ B and yet
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V accepts w0 with probability > δ . We show that this is impossible, based on the following two
facts:

• If LD(h̃0)> 2 ˜̀+ ε

2 , then from Step 4, the verifier V accepts w0 with probability at most δ

4 .
• If C̃0 is not an ε

4 -valid certificate of loss ˜̀, then from Step 5, the verifier V accepts w0 with
probability at most δ

4 .
This implies that h̃0 ∈ B, that LD(h̃0) ≤ 2 ˜̀+ ε

2 and that C̃0 is an ε

4 -valid certificate of loss ˜̀.
Claim 3.11 yields the contradiction:

`= LD(Td)≥ ˜̀− ε

4
≥ LD(h̃0)

2
− ε

2
> `. �

3.3 Lower Bounds for Closeness Testing and 2-PAC Learning of the Class Td

In this section we show near-linear lower bounds for testing closeness and 2-PAC learning of the
class Td .

Definition 3.17. Let 0 < α < β < 1 and d ∈ N. The (α,β ,d)-threshold closeness testing problem
is the following promise problem. Given sample access to an unknown distribution D ∈ ∆([0,d]×
{0,1}), distinguish between the following two cases:

(i) LD(Td)≤ α .
(ii) LD(Td)≥ β .

Lemma 3.18. Fix 0 < α < β < 1
2 . Any tester that uses sample access to an unknown distribution

D ∈ ∆([0,d]×{0,1}) and solves the (α,β ,d)-threshold closeness testing problem correctly with
probability at least 2

3 for all d ∈ N must use at least Ω

(
d

log(d)

)
samples from D.

The proof of this lemma relies on a lower bound for testing support size of a distribution.

Definition 3.19. Let 0 < α < β < 1 and let n ∈ N. The (α,β ,n)-support size testing problem
is the following promise problem. Let D ∈ ∆([n]) be an unknown distribution such that
∀i ∈ supp(D) : D(i)≥ 1

n . Given sample access to D, distinguish between the following two cases:
(i) |supp(D)| ≤ α ·n.

(ii) |supp(D)| ≥ β ·n.

The following tight lower bound for this problem is due to G. Valiant and Valiant (2010a,
2010b). The formulation we use a is adapted from Canonne (2015).18

Theorem 3.20 (G. Valiant & Valiant, 2010a, 2010b; Canonne, 2015, Theorem 3.5.3). Let
0 < α < β < 1. Any tester that uses sample access to an unknown distribution D ∈ ∆([n]) and

18 See also the discussion following Theorem 3.1 in Ron and Tsur (2013), and Theorem 5.3 in G. Valiant (2012). Similar
bounds that appear in P. Valiant (2011, Claim 3.10) and Raskhodnikova, Ron, Shpilka, and Smith (2009, Theorem 2.1
and Corollary 2.2) are slightly weaker, but would also suffice for separating between 2-PAC verification versus 2-PAC
learning of Td , as in Claim 3.21.
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solves the (α,β ,n)-support size testing problem correctly with probability at least 2
3 for all n ∈ N

must use at least Ω

(
n

log(n)

)
samples from D.

Proof of Lemma 3.18. We show the following reduction from the support size testing problem to
the threshold closeness problem: Assume T ′ is a tester that solves the (α,β ,d)-threshold closeness
testing problem correctly with probability at least 2

3 for all d ∈ N using m(d) samples. Then there
exists a tester T that solves the (2α,2β ,d)-support size testing problem correctly with probability
at least 2

3 for all d ∈ N, and uses at most m(d) samples.
For any distribution D ∈ ∆([d]), define a corresponding distribution D′ ∈ ∆([0,d]×{0,1}) as

follows. For all i ∈ [d], let ai = i− 3
4 and bi = i− 1

4 . Then D′(ai,1) =
D(i)

2 and D′(bi,0) = 1
2d for

all i ∈ [d], and D′ vanishes elsewhere.
Given sample access to D, it is possible to simulate sample access to D′: with probability 1

2 ,
sample i ∈ D, and output (ai,1); with probability 1

2 select i ∈ [d] uniformly at random, and output
(bi,0).

Because Td consists of monotone increasing thresholds,

LD′(Td) =
n

∑
i=1

min{D′(ai,1),D′(bi,0)}

=
n

∑
i=1

min
{
D(i)

2
,

1
2d

}
(∗)
= ∑

i∈[d]\supp(D)

0+ ∑
i∈supp(D)

1
2d

=
|supp(D)|

2d
.

Equality (∗) holds wheneverD is an input for the support size testing problem, because we assume
that D(i)≥ 1

d for all i ∈ supp(D).
To solve the (2α,2β ,d)-support size testing problem, T operates as follows. Given access to

an unknown distribution D ∈ ∆([d]), it simulates an execution of T ′ with access to D′ that solves
the (α,β ,d)-threshold closeness testing problem. If T ′ decides that LD′(Td) ≤ α , then T outputs
that |supp(D)| ≤ 2α ·d, and if T ′ decides that LD′(Td)≥ β then T outputs that |supp(D)| ≥ 2β ·d.
T decides correctly with probability at least 2

3 , because we assume that T ′ decides correctly with
probability at least 2

3 , and

LD′(Td)≤ α ⇐⇒ |supp(D)| ≤ 2α ·d

LD′(Td)≥ β ⇐⇒ |supp(D)| ≥ 2β ·d.
T requires at most as many samples as T ′ does, because simulating one sample from D′ requires
taking at most one sample from D.

The claim follows from this reduction and from Theorem 3.20. �

The previous claim also implies the following lower bound for 2-PAC learning of Td without
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the help of a prover.

Claim 3.21. 2-PAC learning the class Td with ε ∈ (0, 1
32) requires at least Ω

(
d

log(d)

)
random

samples. This is true even if we assume that the unknown underlying distribution D satisfies
LD(Td)> 0.

Proof of Claim 3.21. Assume for contradiction that there exists an algorithm A that 2-PAC learns
Td using only o

(
d

log(d)

)
samples fromD. We construct a tester T that solves the (1

8 ,
3
8 ,d)-threshold

closeness testing problem using only o
(

d
log(d)

)
samples.

LetD ∈ ∆([0,d]×{0,1}) be the unknown distribution that T has access to. Fix positive ε ≤ 1
32 ,

δ ≤ 1
6 . T operates as follows. It simulates A using samples from D to obtain h ∈ Td such that with

probability at least 1−δ ,

LD(h)≤ 2 ·LD(Td)+ ε. (12)

Next, it takes an additional O(1) samples from D to obtain an estimate ̂̀such that with probability
at least 1−δ , ∣∣∣̂̀−LD(h)

∣∣∣≤ ε (13)

If ̂̀≤ 5
16 , then T outputs LD(Td)≤ 1

8 . Otherwise, if ̂̀> 5
16 , then T outputs LD(Td)≥ 3

8 .
From the union bound, with probability at least 1−2δ ≥ 2

3 , both (12) and (13) hold. Correctness
follows by considering each case separately:

• Case 1: LD(Td)≤ 1
8 . Then̂̀≤ LD(h)+ ε ≤ 2LD(Td)+2ε ≤ 2

8
+

2
32

=
5
16

.

• Case 2: LD(Td)≥ 3
8 . Then̂̀≥ LD(h)− ε ≥ LD(Td)− ε ≥ 3

8
− 1

32
=

11
32

>
5
16

.

Finally, T uses the same number of samples as A does, which is a contradiction to
Lemma 3.18.

From an amplification argument, the claim holds for any δ ∈ (0, 1
2). To see that the claim is

true even if we assume that LD(Td) > 0, note that the distribution D′ constructed in the proof of
Lemma 3.18 always satisfies LD′(Td) ≥ 1

2d , and so we may assume that the hard distributions for
T in the current proof have this property. �

Finally, we have obtained the desired separation, showing that PAC verification can be more
efficient than PAC learning and closeness testing.

Proof of Lemma 3.8.
(i) Follows from Claim 3.16.
(ii) Follows from Theorem 1.13, because VC(Td)≥ d.
(iii) Follows from Claim 3.21.
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(iv) Follows from Lemma 3.18. �

4 Lower Bound of Ω̃(d)

We saw in Section 3.2 that for every natural number d there exists a class of VC dimension d that
has a verification protocol requiring only O

(√
d
)

samples for the verifier – a considerable saving
compared to the cost of learning, which is Ω(d). A natural question to ask is, “Does every class of
VC dimension d admit a verification protocol with sample complexity O

(√
d
)

?” In other words,
is it always worthwhile to delegate a learning task? In this section we provide a partial negative
answer to this question, presenting for every natural number d an example of a class with VC
dimension O(d log(d)) where the sample complexity for proper PAC verification is Ω(d). That
is, for these classes the sample complexity of learning and of proper verification are equal up to a
logarithmic factor. Formally:

Lemma 4.1. For every ε,δ ∈
(
0, 1

8

)
there exist constants c0,c1,c2 > 0 and a sequence of classes

H1,H2, . . . such that:
• For all d ∈ N, the classHd has VC dimension at most c0 ·d log(d).
• The sample complexity of proper 1-PAC verifyingHd is Ω(d). That is, if (V1,P1),(V2,P2), . . .

is a sequence such that for all d ∈ N, (Vd ,Pd) is an interactive proof systems that 1-PAC
verifies Hd using oracles that provide random samples such that the output is either ‘reject’
or in Hd , then for all d ≥ c1, Vd uses at least c2 ·d random samples when executed on input
(ε,δ ).

Remark 4.2 (Non-proper verification). Lemma 4.1 pertains to proper PAC verification. Note
that if the distribution is labeled by a function,19 then the sample complexity for non-proper PAC

verification is O(
log( 1

δ
)

ε2 ): the prover sends a description of fD to the verifier, and the verifier can
easily check that the proposed function has near-zero loss by using this number of random samples.
The only issues in this case pertain to the prover’s ability to find the function, and send a succinct
description of it, as well as the verifier’s ability to evaluate the function efficiently at points of its
choosing.

In contrast, the sample complexity of non-proper PAC verification in the general case is less
clear, and merits further consideration.

4.1 The ClassHd

Notation 4.3. For any d ∈ N, we write Xd to denote some fixed set of cardinality nd = 2d2.

Notation 4.4. For any d ∈ N, we write Fd, 1
2

to denote the set of balanced boolean functions over

19 Formally, if the family D of distributions satisfies that for every D ∈ D there exists a function fD such that
P(x,y)∼D [y = fD(x)] = 1.
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Xd , namely,

Fd, 1
2
=
{

f ∈ {0,1}Xd : | f−1(1)|= nd

2
= | f−1(0)|

}
.

Notation 4.5. For any f ∈ Fd, 1
2
, we write D f to denote the distribution over tuples in X t in which

t elements are samples independently and uniformly at random from supp( f ). Namely, for any
(x1, . . . ,xt) ∈ X t ,

D f ((x1, . . . ,xt)) =

{ (2
n

)t
x1, . . . ,xt ∈ supp( f )

0 o.w.

Furthermore, for any F = { f1, . . . , fk}⊆Fd, 1
2
, we writeDF to denote the distribution overX t given

by

DF(x1, . . . ,xt) :=
1
k

k

∑
i=1
D fi(x1, . . . ,xt).

Lastly, UX t denotes the uniform distribution over X t .

We now define the sequence of classesHd for d ∈ N.

Definition 4.6. Fix δ ∈ (0,1). For any d ∈ N, let Xd = [nd ] for nd = 2d2, and let td =
⌊

c2 · d
⌋

where

c2 =

√
log(1−δ/3)

log(1/2e)
.

The classHd is a subset of Fd, 1
2

of cardinality

kd =

(
3n
√

nd
d
δ

)3

which is defined as follows. For all values d in which this is possible, the subsetHd is chosen such
that the following three properties hold:

H1. dTV (DHd ,UX t )≤ δ .
H2. Every distinct g1,g2 ∈Hd satisfy |supp(g1)∩ supp(g2)| ≤ 3nd

8 .
H3. All subsets X ⊆Xd of size at most

√
n satisfy

|{ f ∈Hd : X ⊆ supp( f )}| ≥ 1
δ
.

However, if for some value of d there exists no subset of cardinality kd that satisfies these
properties, then for that d the classHd is simply fixed to be some arbitrary subset of cardinality kd .

Remark 4.7. It is not obvious that a setHd as in the definition above exists. In Lemma 4.11 below,
we prove the existence ofHd for all d large enough.

Notation 4.8. For the remainder of this section, we often neglect to write the subscript d wherever
it is readily understood from the context.
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Note that the VC dimension of Hd is at most log(|Hd |) = O(d log(d)), matching the
requirement in the lemma.

4.2 Proof Idea

For any d large enough, we want to show that at least td = Ω(d) samples are necessary.
Consider PAC learning the class Hd in the special case where all x ∈ X are labeled 1, but

the distribution over Xd is not known to the prover. Because every hypothesis in the class assigns
incorrect labels of 0 to precisely half of the domain, a hypothesis achieves minimal loss if it assigns
the 0 labels to a subset of size n

2 that has minimal weight with respect to the distribution over Xd .
Hence, to be successful the prover must learn enough about the distribution to identify a lightweight
subset of size n

2 – but doing that requires Ω(
√

n) = Ω(d) samples.
To formalize this idea we construct a stochastic process as follows. Let PU denote a prover

that causes V to accept with probability at least 1− δ when V receives samples from the uniform
distribution over X (such a prover exists from the completeness property that V satisfies as a PAC
learning verifier).

First, a set XP of tP samples is taken independently and uniformly from X , where tP is the
number of samples required by PU . Next, two functions f1 and f2 are chosen uniformly from Hd ,
and sets X1 and X2 each with td i.i.d. samples are taken from D f1 and D f2 respectively. A third set
XU is taken from UX t . The dependencies between these variables will be designed in such a way
that with high probability X1 = X2 = XU . All samples are labeled with 1.

Finally, randomness values ρV and ρP are sampled for the prover and verifier, which are then
executed to produce three hypotheses:

h1 := [V (X1,ρV ),PU (XP,ρP)],

h2 := [V (X2,ρV ),PU (XP,ρP)],

hU := [V (XU ,ρV ),PU (XP,ρP)].

Observe that for i = 1,2, because Xi ∼D fi and V is a PAC learner, with probability at least 1−δ

either hi is ‘reject’ or LD fi
(hi)< ε .

Observe further that when X1 = X2 = XU , the view of V (which consists of its samples, its
randomness, and the transcript) is the same in all three executions, entailing that h1 = h2 = hU .
Additionally, by the definition of PU , with probability at least 1− δ the output hU is not ‘reject’,
and so h1 = h2 are not ‘reject’.

However, Property H2 ensures that f1 and f2 have a small intersection, causing any hypothesis
that has a small loss with respect to D f1 to have a large loss with respect to D f2 , and vice versa.
This is a contradiction to the above observation that LD fi

(hi)< ε for both i = 1 and i = 2.

Remark 4.9. Because we are dealing exclusively with the case of learning the constant function
that assigns the label 1 to all x ∈ X , for the remainder of this section we will neglect to mention or
denote the labels, which are always 1.
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4.3 Proof

We now translate the above proof idea into a formal proof of Lemma 4.1. The main step is to
construct the following joint probability space.

Lemma 4.10. For every d ∈N large enough there exists a probability space with random variables

( f1, f2,h1,h2,hU ,X1,X2,XU ,XP,ρP,ρV )

such that f1, f2,h1,h2,hU ∈Hd and X1,X2,XU ∈ X t and the following properties hold:

P1. XP is a tuple of tP samples taken independently and uniformly from X , and is independent of
all other variables.

P2. The marginal distribution of XU is uniform over X t .
P3. For i= 1,2, Xi is distributed according toD fi . Namely, for any g∈Hd and any x1, . . . ,xt ∈X ,

P [Xi = (x1, . . . ,xt) | fi = g] =Dg((x1, . . . ,xt)).

P4. X1 = X2 with probability 1.
P5. X1 = XU with probability at least 1−δ .
P6. ρV and ρP are randomness values for V and P with suitable marginal distributions and are

independent of each other and of all other random variables.
P7. hα = [V (Xα ,ρV ),PU (XP,ρP)] for α ∈ {1,2,U} with probability 1.
P8. |supp( f1)∩ supp( f2)| ≤ 3n

8 with probability at least 1−δ .

Before constructing the probability space, we show that the existence of such a space establishes
the theorem:

Proof of Lemma 4.1. The requirement on the VC dimension holds because a class of cardinality
kd can have VC dimension at most log(kd), and

log(kd) = log

(3n
√

nd
d
δ

)3
≤ 6d log

(
6d2

δ

)
= O(d log(d)).

For the lower bound on the sample complexity, fix d large enough such that Hd enjoys
Properties H1, H2 and H3, and assume for contradiction that there exists a verifier that 1-PAC
verifies H = Hd with accuracy ε and confidence 1− δ using at most t = td samples. Because
Xi ∼D fi (Property P3), the assumption that V is a PAC learner entails that

∀i ∈ {1,2} : P
[
hi = reject ∨

(
hi 6= reject ∧ LD fi

(hi)< ε

)]
≥ 1−δ . (14)

Because XU is uniform over X t and hU := [V (XU ,ρV ),PU (XP,ρP)] (by P2 and P7), the definition
of PU entails that

P [hU 6= reject]≥ 1−δ . (15)

Next, because P [X1 = XU ] ≥ 1 − δ , P [X1 = X2] = 1 and hi := [V (Xi,ρV ),PU (XP,ρP)] for
i ∈ {1,2,U} (by P5, P4 and P7), it follows that with probability at least 1−δ the view of V when
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computing h1 and h2 is identical to its view when computing hU , and so

P [h1 = h2 = hU ]≥ 1−δ . (16)

Combining Equations (15) and (16) yields

P [h1 = h2 6= reject]≥ 1−2δ .

Together with Equation (14), this entails that

P
[
(h1 = h2 6= reject) ∧

(
LD f1

(h1)< ε

)
∧
(

LD f2
(h2)< ε

)]
≥ 1−4δ . (17)

However, low loss of hi with respect to D fi entails that the supports of hi and fi have a large
intersection. Indeed, for all i ∈ {1,2},

ε ≥ LD fi
(hi) : = Px∼D fi

[hi(x) 6= fi(x)] = ∑
x∈X
D fi(x) ·1hi 6= fi(x)

= ∑
x∈supp( fi)

2
n
·1hi 6= fi(x) = |supp( fi)\ supp(hi)| ·

2
n
.

Thus,

|supp( fi)\ supp(hi)| ≤
εn
2
,

and so,

|supp( fi)∩ supp(hi)|=
n
2
−|supp( fi)\ supp(hi)| ≥

n
2
− εn

2
,

Furthermore, because h1 = h2 the identity |A∩B| = |A|+ |B|− |A∪B| shows that the supports of
f1 and f2 also have a large intersection:

|supp( f1)∩ supp( f2)| ≥ |supp( f1)∩ supp( f2)∩ supp(h1)|

=
∣∣∣supp( f1)∩ supp(h1)

∣∣∣+ ∣∣∣supp( f2)∩ supp(h2)
∣∣∣

−
∣∣∣(supp( f1)∩ supp(h1))

⋃
(supp( f2)∩ supp(h2))

∣∣∣
≥
∣∣∣supp( f1)∩ supp(h1)

∣∣∣+ ∣∣∣supp( f2)∩ supp(h2)
∣∣∣− ∣∣∣supp(h1)

∣∣∣
≥ 2

(n
2
− εn

2

)
− n

2
≥ n

2
− εn.

That is, Equation (17) entails that

P
[
|supp( f1)∩ supp( f2)| ≥

n
2
− εn

]
≥ 1−4δ .

In contrast, Property P8 states that

P
[
|supp( f1)∩ supp( f2)| ≤

3n
8

]
≥ 1−δ .

This is a contradiction whenever ε < 1
8 and δ < 1

5 . �
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4.4 Construction ofHd

To complete the proof, we construct the probability space of Lemma 4.10. The first step is to show
that for large enough values of d, a suitable class Hd can be constructed simply by choosing a set
of k functions uniformly at random from F1/2.

Lemma 4.11. Fix δ ∈ (0,1). The following holds for any value d ∈ N that is large enough. Let F
denote a set of kd functions chosen uniformly and independently from Fd, 1

2
. Then with probability

at least 1−3δ , F satisfies Properties H1, H2 and H3.

The lemma follows immediately from Claims 4.12, 4.21 and 4.23 below, so the remainder of
this section is devoted to stating and proving those claims.

4.4.1 Property H1: dTV (UX t ,DHd )≤ δ

In this subsection we prove that the distributionDF defined by F is close to the uniform distribution
on X in the following sense.

Claim 4.12. Fix δ ∈ (0,1). The following holds for all values of n that are large enough. Let
F = { f1, . . . , fk} denote a set of functions chosen uniformly and independently from F1/2. If

k ≥

(
3n
√

n

δ

)3

and td =
⌊

c2 ·d
⌋

for

c2 =

√
log(1−δ/3)

log(1/2e)

then

PF [dTV (UX t ,DF)≤ δ ]≥ 1−δ .

The proof is partitioned to the following claims.

Claim 4.13. For any integer 0≤ s≤ n, any set X ⊆X of size s and any z ∈ [n],

P f∈{0,1}X
[
X ⊆ supp( f )

∣∣∣ |supp( f )|= z
]
=

(z
s

)(n
s

) .
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Proof. If z < s then the probability is clearly 0. Otherwise,

P f∈{0,1}X
[
X ⊆ supp( f )

∣∣∣ |supp( f )|= z
]
=

∣∣{g ∈ {0,1}X : |supp(g)|= z ∧ X ⊆ supp(g)}
∣∣

|{g ∈ {0,1}X : |supp(g)|= z}|

=

(n−s
z−s

)(n
z

)
=

(n−s
z−s

)(n
z

) · (n
s

)(n
s

)
(∗)
=

(n
z

)(z
s

)(n
z

)(n
s

)
=

(z
s

)(n
s

) ,
where (∗) follows from the identity

(n
s

)(n−s
z−s

)
=
(n

z

)(z
s

)
, which holds because both expressions count

the number of ways to choose a committee of size z with a sub-committee of size s from a set of n
candidates. �

Corollary 4.14. For any set X ⊆X of size s,

P f∈F1/2 [X ⊆ supp( f )] =

( n
2
s

)(n
s

) .
Notation 4.15. For any f ∈ F1/2, we write Ddistinct

f to denote the uniform distribution over tuples
of length t that contain t distinct elements from supp( f ). That is, for any (x1, . . . ,xt) ∈ X t ,

Ddistinct
f ((x1, . . . ,xt)) =

{ 1
(

n
2
t )·t!

x1, . . . ,xt ∈ supp( f ) ∧ |{x1, . . . ,xt}|= t

0 o.w.

Furthermore, let Udistinct
X t denote the uniform distribution over the set of tuples of length t from

X with distinct elements, {
(x1, . . . ,xt) ∈ X t : |{x1, . . . ,xt}|= t

}
.

That is,

Udistinct
X t ((x1, . . . ,xt)) =

{
1

(n
t)·t!

x1, . . . ,xt ∈ X ∧ |{x1, . . . ,xt}|= t

0 o.w.

Claim 4.16. For any ordered tuple X ∈ X t with distinct elements,

E f∈F1/2

[
Ddistinct

f (X)
]
=

1(n
t

)
t!
.

50



Proof. Using Corollary 4.14,

E f∈F1/2

[
Ddistinct

f (X)
]
= P [X ⊆ supp( f )] · 1( n

2
t

)
t!
+P f∈F1/2 [X * supp( f )] ·0

=

( n
2
t

)(n
t

) · 1( n
2
t

)
t!

=
1(n

t

)
t!
. �

Claim 4.17. Consider k functions f1, . . . , fk chosen independently and uniformly at random from
F1/2. For any δ ∈ (0,1) and ordered tuple X ∈ X t with distinct elements, if

k ≥

(
n
√

n

δ

)3

then

P f1,..., fk∈F1/2

[∣∣∣∣∣Udistinct
X t (X)− 1

k

k

∑
i=1
Ddistinct

fi
(X)

∣∣∣∣∣> δ(n
t

)
t!

]
≤ δ(n

t

)
t!
.

Proof. Fix X . Observe that when f1, . . . , fk are chosen independently and uniformly then{
Ddistinct

fi
(X)
}

i∈[k]
is a set of i.i.d. random variables each of which takes values in [0,1].

Furthermore, from Claim 4.16 the expectation of each of these random variables is Udistinct
X t (X).

Thus, from Hoeffding’s inequality, the left hand side in the claim is at most

2exp

−2k

(
δ(n
t

)
t!

)2
 ,

and so taking

k ≥ 1
2

((n
t

)
t!

δ

)2

log

(
2
(n

t

)
t!

δ

)

51



is sufficient to obtain the desired bound. A direct calculation shows that

1
2

((n
t

)
t!

δ

)2

log

(
2
(n

t

)
t!

δ

)
≤

((n
t

)
t!

δ

)3

≤

(( n√
n

)√
n!

δ

)3

=

(
n(n−1) · · ·(n−

√
n+1)

δ

)3

≤

(
n
√

n

δ

)3

,

as desired. �

Notation 4.18. For any F = { f1, . . . , fk} ⊆ F1/2, we write Ddistinct
F to denote the distribution over

X t given by

Ddistinct
F (x1, . . . ,xt) :=

1
k

k

∑
i=1
Ddistinct

fi
(x1, . . . ,xt).

Claim 4.19. Let F = { f1, . . . , fk} denote a set of functions chosen uniformly and independently
from F1/2. For any δ ∈ (0,1), if

k ≥

(
3n
√

n

δ

)3

then

PF

[
dTV

(
Udistinct
X t ,Ddistinct

F
)
≤ δ

3

]
≥ 1− δ

3
.

Proof. From Claim 4.17, taking k as in the statement ensures that for any particular tuple X ∈ X t

with distinct elements,

P f1,..., fk∈F1/2

[∣∣Udistinct
X t (X)−Ddistinct

F (X)
∣∣> δ

3
(n

t

)
t!

]
≤ δ

3
(n

t

)
t!
.

From the union bound, we conclude that with probability at least 1− δ

3 , the inequality∣∣Udistinct
X t (X)−Ddistinct

F (X)
∣∣≤ δ

3
(n

t

)
t!

holds for all
(n

t

)
t! such tuples simultaneously. In this case,

dTV
(
Udistinct
X t ,Ddistinct

F
)
=

1
2 ∑

X∈X t

∣∣Udistinct
X t (X)−Ddistinct

F (X)
∣∣≤ δ

6
. �
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Proof of Claim 4.12. From the triangle inequality

dTV (UX t ,DF)≤ dTV
(
UX t ,Udistinct

X t

)
+dTV

(
Udistinct
X t ,Ddistinct

F
)
+dTV

(
Ddistinct

F ,DF
)
.

Therefore, it suffices to show the following three inequalities:
(i) dTV

(
UX t ,Udistinct

X t

)
≤ δ

3 for n large enough. Indeed,

dTV
(
UX t ,Udistinct

X t

)
= max

A⊆X t

(
UX t (A)−Udistinct

X t (A)
)

= ∑
(x1,...,xt)∈X t : |{x1,...,xt}|<t

(
1
nt −0

)
=

(
nt −

(
n
t

)
t!
)

1
nt

= 1− n(n−1) · · ·(n− t +1)
nt

≤ 1−
(

1− t
n

)t

≤ 1−
(

1− (c2
√

n)
n

)c2
√

n

= 1−
(

1− c2√
n

)√n
c2
·c2

2

(∗)
≤ 1−

(
1
2e

)c2
2

(∗∗)
≤ δ

3
,

where (∗) holds for all n large enough because
(

1− c2√
n

)√n
c2 n→∞−−−→ 1

e from below, and (∗∗)
holds whenever

c2 ≤

√
log(1−δ/3)

log(1/2e)
.

(ii) PF

[
dTV

(
Udistinct
X t ,Ddistinct

F
)
> δ

3

]
≤ δ . This is true by Claim 4.19.

(iii) dTV
(
Ddistinct

F ,DF
)
≤ δ

3 or n large enough. This follows from a calculation very similar to (i).

We conclude that for n large enough, with probability at least 1−δ over the choice of F ,

dTV (UX t ,DF)≤ δ ,

as desired. �
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4.4.2 Property H2: ∀i 6= j : |supp( fi)∩ supp( f j)| ≤ 3n
8

In this section we show that random sets typically form a code.

Claim 4.20. P f1, f2∈F1/2

[
|supp( f1)∩ supp( f2)|> 3n

8

]
≤ δ

k2 .

Proof. Let supp( f2) = {x1, . . . ,xn/2}. We think of this experiment as if f1 is chosen first, and then
we count how many members of supp( f2) fall inside supp( f1). The expected number of hits is n

4 ,
and they are independent, so we can use Hoeffding’s bound to prove the claim.

P f1, f2∈F1/2

[
|supp( f1)∩ supp( f2)|>

3n
8

]
≤ P f1, f2∈F1/2

[
n/2

∑
i=1

1(xi ∈ supp( f1))>
3n
8

]

= P f1, f2∈F1/2

[
2
n

n/2

∑
i=1

1(xi ∈ supp( f1))>
3
4

]

≤ P f1, f2∈F1/2

[∣∣∣∣∣2n n/2

∑
i=1

1(xi ∈ supp( f1))−
1
2

∣∣∣∣∣> 1
4

]

≤ 2exp

(
−2 · n

2
·
(

1
4

)2
)

= 2Θ(−n).

In contrast, considering δ to be a constant, it holds that
δ

k2 = 2Θ

(
−log(n)

√
n
)
,

and so for n large enough we obtain P f1, f2∈F1/2

[
|supp( f1)∩ supp( f2)|> 3n

8

]
≤ δ

k2 , as
desired. �

Claim 4.21. P f1,..., fk∈F1/2

[
∀i 6= j ∈ [k] : |supp( fi)∩ supp( f j)| ≤ 3n

8

]
≥ 1−δ .

Proof.

P f1,..., fk∈F1/2

[
∀i 6= j ∈ [k] : |supp( fi)∩ supp( f j)| ≤

3n
8

]
= 1−P

[⋃
i6= j

{
|supp( fi)∩ supp( f j)|>

3n
8

}]

≥ 1−∑
i 6= j

P
[
|supp( fi)∩ supp( f j)|>

3n
8

]
≥ 1− k2 · δ

k2 = 1−δ .

where the last inequality follows from Claim 4.20. �
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4.4.3 Property H3: |FX | ≥ 1
δ

In this section we show that there are typically many sets that contain a given subset of size
order

√
n.

Notation 4.22. Let F ⊆F1/2, and let X ⊆X . We write FX to denote the set

{ f ∈ F : X ⊆ supp( f )}.

Claim 4.23. Fix δ ∈ (0,1). Let F = { f1, . . . , fk} denote a set of functions chosen uniformly and
independently from F1/2. There exists N0 such that for all n≥ N0, if

k ≥

(
n
√

n

δ

)3

then with probability at least 1− δ over the choice of F, all subsets X ⊆ X of size at most
√

n
satisfy

|FX | ≥
1
δ
.

Proof of Claim 4.23. Let X ⊆X such that |X |= t. From Corollary 4.14,

P f∈F1/2 [X ⊆ supp( f )] =

( n
2
t

)(n
t

) =
n
2 !

(n
2 − t)!t!

· (n− t)!t!
n!

=
n− t

n
· n− t−1
(n−1)

· · ·
n
2 − t +1

n
2 +1

=
n
2
n
·

n
2 −1
(n−1)

· · ·
n
2 − t +1
n− t +1

≥
( n

2 − t
n

)t

≥
( n

2 −
√

n
n

)√n

=

(
1
2
− 1√

n

)√n

≥ 4−
√

n.

where the last inequality holds for n≥ 16. Observe that

µ := E f1,..., fk∈F1/2 [|FX |]≥ k ·4−
√

n ≥ 2log(n)
√

n−2
√

n n→∞−−−→ ∞,

and choose N0 large enough such that for all n≥ N0, E [|FX |]≥ 2
δ

.
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Now, for any n≥ N0 and any set X of size t, Hoeffding’s inequality entails

P f1,..., fk∈F1/2

[
|FX | ≤

1
δ

]
≤ P

[∣∣∣|FX |−µ

∣∣∣≥ k ·4−
√

n

2

]

= P

[∣∣∣1
k

k

∑
i=1

1(X ⊆ supp( fi))−
µ

k

∣∣∣≥ 4−
√

n

2

]

≤ 2exp

−2k

(
4−
√

n

2

)2
 .

Hence, taking

k ≥ 1
2
·42
√

n+1 · log

(
2n
√

n

δ

)
is sufficient to ensure that

∀X ∈
(
X
t

)
: P f1,..., fk∈F1/2

[
|FX | ≤

1
δ

]
≤ δ

n
√

n

Taking k as in the claim is therefore more than sufficient to this end. Seeing as there exist less than
n
√

n such sets, the union bound yields that

P f1,..., fk∈F1/2

[
∀X ⊆X s.t. |X | ≤ t : |FX | ≥

1
δ

]
≥ 1−δ .

Note that for the case |X |< t in the previous line, we have used the facts that X is contained in some
set of size precisely t, and that |FX | is monotone decreasing with the cardinality of X . �

4.5 Construction of the Joint Probability Space

AssumeHd is a class that satisfies Properties H1, H2, and H3. We show how to use these properties
to construct a joint probability space that satisfies Properties P1–8, proving Lemma 4.10.

The construction is as follows:
1. XP is sampled uniformly from X tP .
2. A function f1 is chosen uniformly fromHd .
3. X1 = (x1, . . . ,xt) is sampled i.i.d. from D f1 .
4. X2 is set to be equal to X1.
5. A function f2 is chosen uniformly from { f ∈Hd : X2 ⊆ supp( f )}.
6. XU = (xU1 , . . . ,x

U
t ) is sampled such that its marginal distribution is uniform over (Xd)

t , and
also P [XU = X1]≥ 1−δ . This is possible due to Property H1 of the classHd .

7. ρV and ρP are sampled from the distributions of randomness used by V and PU respectively,
independently of each other and of everything else.

8. For α ∈ {1,2,U}, compute hα := [V (Xα ,ρV ),PU (XP,ρP)].

Note that Properties P1, P2, P4, P5, P6 and P7 are satisfied immediately by the construction, as
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is Property P3 for the case of i = 1. Property P8 is immediate from the construction together with
H2 and H3. Hence, to prove the correctness of the construction, it suffices to prove that Property P3
holds also for the case i = 2, as in the following claim.

Claim 4.24. The constriction in Section 4.5 satisfies that X2 ∼D f2 . More formally, for any g ∈Hd
and x1, . . . ,xt ∈ X ,

P [X2 = (x1, . . . ,xt) | f2 = g] =Dg((x1, . . . ,xt)).

Proof. By construction, X1 ∼ D f1 . Hence, it is sufficient to show that

(X1, f1)
d
= (X2, f2),

where d
= denotes equality in distribution. Indeed, conditioned on X1 = X2 = x, both f1 and f2 are

chosen i.i.d. uniformly in

Fx := { f ∈Hd : x⊆ supp( f )}.
More formally, for any g ∈Hd and x ∈ X t ,

• If x⊆ supp(g) then

P [ f1 = g | X1 = x] =
P [X1 = x | f1 = g]P [ f1 = g]

P [X1 = x]

=
P [X1 = x | f1 = g]P [ f1 = g]

∑g′∈Fx P [X1 = x | f1 = g′]P [ f1 = g′]

=
P [X1 = x | f1 = g]

∑g′∈Fx P [X1 = x | f1 = g′]

=
1
|Fx|

= P [ f2 = g | X2 = x] .

• Otherwise, if x * supp(g) then

P [ f1 = g | X1 = x] = 0 = P [ f2 = g | X2 = x] .

That is, for any g ∈Hd and x ∈ X t ,

P [ f1 = g ∧ X1 = x] = P [ f1 = g | X1 = x]P [X1 = x] =

= P [ f2 = g | X2 = x]P [X2 = x] = P [ f2 = g ∧ X2 = x] . �

This proves Lemma 4.10, thereby concluding our proof of Lemma 4.1.

5 Efficient Verification via Query Delegation

In this section we present some simple results for the case in which the following two assumptions
hold:20

20 See more formal definitions in Conditions 5.1.
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1. Taking unlabeled samples from X is cheap, while obtaining labeled samples is costly. This
is the assumption in the semi-supervised learning literature. It also holds when learning with
respect to the uniform distribution on X (or some other known distribution on X ).

2. The distribution is labeled according to some function f : X → {0,1}, and the prover has
query access to f .

The basic idea of the results in this section is query delegation: The verifier simulates a learning
algorithm that uses random samples, but for the majority of the samples the verifier can avoid
accessing the distribution directly. Instead, it delegates the task of collecting the data to the prover.
Consider the following illustration. First, the verifier chooses some x1, . . . ,xm ∈ X and sends them
to the prover. For instance, the verifier may choose the xi’s by taking (cheap) unlabeled samples
from the distribution. Secondly, the prover replies by sending a value ỹ1, . . . , ỹm ∈ {0,1} to the
verifier that purportedly are the correct labels of the xi’s. Thirdly, the verifier independently takes
a small amount of labeled samples directly from the distribution in order to decide whether to
accept or reject the labels proposed by the prover. Finally, if the verifier does not detect any
dishonesty, it will use the proposed labels to simulate the learning algorithm and output the resulting
hypothesis.

The benefit of using query delegation is that the verifier requires much fewer labeled samples
than are necessary for learning, with only a mild increase in time complexity. Following are a
number of variations on this idea:

V labeled samples V queries Messages Assumption

Claim 5.2 O
(

log( 1
δ
)

ε

)
- 2 -

Claim 5.3 O
(

log( 1
δ
)

ε

)
- 2 (shorter) PRG

Claim 5.4 - O
(

log( 1
δ
)

ε

)
1 CRS

Conditions 5.1 (Conditions for Query Delegation). Let H be a class of functions from X to
{0,1}. Let D be a family of distributions over X ×{0,1} such that:

1. There exists a distribution DX over X such that for every D ∈D, the marginal distribution
of D on X is DX .

2. For everyD ∈D, there exists a function fD : X → {0,1} such that P(x,y)∼D [ fD(x) = y] = 1.
Assume further thatH has finite VC dimension. From Theorem 1.13, there exists an ERM algorithm
that 1-PAC learns H using m = mH(ε,δ ) random labeled samples. Let A be such an algorithm
and assume that for any D ∈D, A runs in time at most t = t(ε,δ ).

Claim 5.2 (Simple Query Delegation). Under Conditions 5.1,H is 1-PAC verifiable using verifier
V and prover P such that:

• V has random sample access to the unknown distribution D and to the marginal distribution

DX . V uses only k = O
(

log( 1
δ
)

ε

)
labeled samples from D, and uses O(m) unlabeled samples

from DX .
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• P has query access to fD, and uses O(m) queries to this function.
• V runs in time O(t( ε

4 ,
δ

2 )), and P runs in time O(m).
• The protocol consists of two messages. First, V sends a message of length O(m log |X |) to P,

and then P sends back a message of length O(m).

Observe that 1-PAC learning requires Θ

(
d+log( 1

δ
)

ε2

)
where the VC dimension d can be any

natural number. Hence, the above result implies that under Conditions 5.1, there exists a sample
complexity separation of unbounded magnitude between PAC learning and PAC verifying for any
family {Hd}d∈N where VC(Hd) = d for all d.

If we assume that that the distribution DX has a pseudorandom generator (PRG) with respect
to the ERM algorithm A, then we can also use slightly less communication.

Claim 5.3 (Compressed Query Delegation). Under Conditions 5.1, assume that there exists a
psuedorandom generator that generates samples from a distribution D̃X over X , such that the
algorithm A successfully 1-PAC learns H with respect to D as above when receiving labeled
examples in which the marginal distribution over X is D̃X (instead of DX ). Then H is 1-PAC
verifiable using a verifier V and prover P that satisfy the same conditions as in Claim 5.2,

except that V sends a shorter message of length O
(

log( 1
δ
)

ε
log |X |

)
to P. The security of the

protocol is information-theoretic, and does not depend on any cryptographic assumptions. That
is, soundness holds also with respect to an unbounded adversary that has full information about
the psuedorandom generator mechanism and can distinguish whether a sample was taken from D̃X
or from DX .

Finally, if we work in the common random string model (CRS) and we assume that the verifier also
has query access to fD, then there exists a non-interactive protocol consisting of a single message
sent from the prover to the verifier. This could be useful in cases where the prover wants to publish
a claim in a manner that allows any interested third party to verify the claim at a later time, without
interacting with the prover.

Claim 5.4 (Noninteractive Query Delegation). In the common random string model, under
Conditions 5.1,H is 1-PAC verifiable using a verifier V and prover P such that:

• V and P both have access to fD and to a CRS that provides random samples from DX .

• V uses O
(

log( 1
δ
)

ε

)
queries from fD.

• P uses m queries from fD.
• V runs in time O(t( ε

4 ,
δ

2 )), and P runs in time O(m).
• The protocol consists of a single messages of m bits sent from P to V .

Remark 5.5. In the above claims, we have reduced the sample or query complexity of the verifier
compared to PAC learning, but the time complexity is modestly increased. In some cases, it might
be possible to combine query delegation with existing general-purpose delegation of computation
protocols, to reduce the time complexity as well.
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Protocols and proofs for these claims appear in Appendix B. The main issue to notice is that the
prover can always be a little bit dishonest, and therefore the verifier must be able to PAC learn in
the presence of a small amount of adversarial noise. This difficulty is overcome by using the fact
that any ERM algorithm is robust with respect to a small amount of adversarial noise.

6 Directions for Future Work

This work initializes the study of verification in the context of machine learning. We have seen
separations between the sample complexity of verification versus learning and testing, an algorithm
that uses interaction to efficiently learn sparse boolean functions, and have seen that in some cases
the sample complexities of verification and learning are the same.

Building a theory that can help guide verification procedures is a main objective for future
research. A specific approach is to identify dimension-like quantities that describe the sample
complexity of verification, similarly to role VC dimension plays in characterizing learnability. A
different approach is to understand the trade-offs between the various resources in the system – the
amount of time, space and samples used by the prover and the verifier, as well as the amount of
interaction between the parties.

From a practical perspective, we described potential applications for delegation of machine
learning, and for verification of experimental data. It seems beneficial to build efficient verification
protocols for machine learning problems that are commonly used in practice, and for the types
of scientific experiments mentioned in Appendix A. This would have commercial and scientific
applications.

There are also some technical improvements that we find interesting. For example, is there a
simple way to improve the NP-like protocol for the multi-thresholds class Td to achieve 1-PAC
verification (instead of 2-PAC verification)?

Finally, one can also consider variations of the settings we investigated here. One case has OV

andOP providing i.i.d. sample access to different distributions, DV and DP respectively, where DP

has better quality data in some sense. For instance, for some target function f it might be the case
that

P(x,y)∼DV [y = f (x)]< P(x,y)∼DP [y = f (x)] .

Can a prover who has access to DP efficiently provide an advantage to the verifier? Alternatively,
it might be the case that DP provides data with “higher resolution” than DV (i.e., the σ -algebra
of DV is a sub-σ -algebra of that of DP). One can also consider verification in other settings of
learning, such as the statistical queries model, clustering, parameter estimation and reinforcement
learning.
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Appendices

A Types of Scientific Studies Amenable to PAC Verification

In Section 1.2.2, we suggested that PAC verification can be used to verifty some types of
experiments in a manner that is cheaper than a traditional replication. In this appendix we discuss
three such types of experiments.

Before doing so, we would like to mention a possible objection that may be troubling the
attentive reader: experimental findings typically assert that some specific hypothesis is true, or
has some specified loss; for instance, that smoking cigarettes predicts lung cancer with some
specified accuracy. Replication consists of verifying that the hypothesis indeed has a loss close
to that stated in the original publication. But as we saw in Section 1.1, verifying that a specific
hypothesis has a specified loss can be done with O( 1

ε2 ) independent samples, without using any
special PAC verification techniques. In contrast, the strength of PAC verification lies in its ability to
prove that the distance between some class of hypotheses and the unknown distribution is large, or
alternatively, that “no better hypothesis exists” – but this appears unrelated to scientific replication.
Nonetheless, we now explain how this CoNP-like flavor of PAC verification can indeed be very
useful for replicating or verifying scientific publications.

Consider the following four types of scientific settings.
1. Confounding variables. Consider a publication that claims to have found a strong positive

correlation between playing the accordion and developing a specific type of cancer. While
this effect might be real, best practices would require that the study attempt to control for
confounding variables. For instance, if people who play the accordion tend to be older, and
older people tend to have more cancer, that could explain the correlation between accordions
and cancer.
Controlling for confounding variables is often performed by binning (also called
cross-tabulation), which in the above example would mean dividing the participants into
age groups, and checking whether the effect exists within each age group. Another common
practice is to perform multiple regression, in which the “treatment” variable (playing the
accordion) is used together with the potentially confounding variables (such as age) as the
input variables that the regression model uses for predicting the response variable (having
cancer). After performing the regression, the strength of the association between the
response variable and each of the individual input variables is captured by the parameters
corresponding to that variable in the regression model (e.g., in a linear regression, this would
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be the linear coefficient associated with the specific input variable).
This is a place where the CoNP-like flavor of PAC verification becomes useful. Regardless of
the specific technique used, the notion of controlling for confounding variables is essentially
this: the published result is purportedly “the best explanation” even after considering various
other variables and the ways in which they might affect the response variable. Hence,
verification of a study that controls for confounding variables can be viewed as verifying that
the proposed hypothesis is the best within some class that includes alternative hypotheses
that explicitly account for the effect of potential confounders. In the example above, one
would need to PAC verify that predicting cancer is indeed best achieved by a hypothesis that
places a lot of weight on playing the accordion, rather than some alternative hypothesis that
attributes less weight to playing the accordion and more weight to age. In cases where there
are many potentially confounding variables which might interact in various ways, the class
of alternative hypotheses that must be ruled out can be large, and so PAC verification may be
useful.

2. Regression analysis. Consider an empirical study that attempts to find a formula for
predicting the value of a dependent variable Y ∈ R given the values of independent
variables X1, . . . ,Xn ∈ R. The study can repeatedly measure the values of the dependent and
independent variables in various cases, and then perform a regression analysis to identify the
function f (X1, . . . ,Xn) that best predicts Y within some class of functions H (e.g., linear
functions, low degree polynomials, etc.). In this setting, it is natural to perform PAC
verification to ensure that the proposed hypothesis is indeed the best within the class of
functions that the regression analysis considered.

3. Multiple hypothesis testing. In this setting, there is a finite class of hypothesis
H = {h1, ...,hk}, and the researchers perform an experiment in order to decide for each
hypothesis hi whether it should be accepted or rejected. This scenario is common in many
branches of science. As a concrete example, consider genome-wide association studies
(GWAS), in which researchers compare genotypic information throughout the genome
in large cohorts in order to identify genetic variants21 that are associated with a certain
phenotype of interest, such as a disease.22 In a GWAS, we can think of each hi as the
hypothesis stating that genetic variant i is associated with the disease, and for each i, the
study will either accept or reject hypothesis hi. Huge efforts have been invested in the
past two decades to ensure that GWAS publications can (and do) get replicated (Marigorta,
Rodrı́guez, Gibson, & Navarro, 2018; Hirschhorn, Lohmueller, Byrne, & Hirschhorn, 2002).

We argue that scientific publications like GWAS that perform multiple hypothesis testing
could potentially benefit from PAC verification protocols. As a loose illustration, consider a
study that claims to have compiled a list containing the “100 genetic variants that are most
associated with the disease.” Formally, we can think of this as follows. For each genetic

21 Such as single-nucleotide polymorphisms (SNPs).
22 Buniello et al. (2019) is a catalog of over 70,000 different GWAS publications. Pe’er, Yelensky, Altshuler, and Daly

(2008) and Palmer and Pe’er (2017) discuss statistical aspects of GWAS.
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variant i there is some (unknown) real number αi ∈ [0,1] that represents the true amount
of association between genetic variant i and the disease in the general population, where
1 indicates the strongest possible association and 0 indicates complete lack of association.
For each i, we write h̃i = 1 if the study included genetic variant i in the list, and h̃i = 0
otherwise. We can now think of the list of the top 100 genetic variants proposed by the
study as being represented by a vector h̃ = (h̃1, h̃2, h̃3, . . . , h̃k) ∈ {0,1}k, where k is the
total number of genetic variants considered in the study, and h̃ has precisely 100 non-zero
entries. We define the total loss of the study to be L(h̃) = ∑i(αi− h̃i)

2. The study is ε-good
if L(h̃) ≤ minh∈T L(h) + ε , where T is the set of all possible lists of length 100, namely
T = {h ∈ {0,1}k : ‖h‖1 ≤ 100}. The problem of verifying that the hypothesis h̃ is ε-good
with respect to the class T is technically not an instance of PAC verification, but it is very
similar to PAC verification.

4. Negative results. In the GWAS setting, consider a publication that claims “none of the
genetic variants on chromosome j are associated with the disease.” This claim falls squarely
within the framework of PAC verification. To see this, let X be the set of possible genomes,
and let the unknown distribution D provide samples of the form (x,y), where x ∈ X is the
genome of a random person from the general population, and y ∈ {0,1} indicates whether
that person has the disease. For each genetic variant i on the chromosome of interest, the
class H contains a hypothesis hi such hi(x) = 1 if genome x contains genetic variant i, and
hi(x) = 0 otherwise. In addition,H contains the constant functions c0(x)≡ 0 and c1(x)≡ 1.
The notion of verifying the negative claim in the publication is captured by PAC verifying
that one of the constant functions is ε-good with respect toH.

Whenever the number of samples necessary for PAC verification is lower than the number of
samples used in the original publication, PAC verification becomes cheaper than a full replication
of the study, but still provides the same benefits. PAC verification is most likely to be useful in
settings where the researchers do not attempt to avoid errors completely, but rather are interested
in balancing the risks of false positive and false negative errors via mechanism like controlling the
false discovery rate (FDR; See Benjamini & Hochberg, 1995; Storey & Tibshirani, 2003). Note that
in some cases, PAC verification might actually provide stronger evidence in favor of the publication
than a traditional replication would, because it verifies the result in a manner that is qualitatively
different from how the result was originally obtained.23

We hope that the first steps taken in this work may eventually lead to the development of
practical PAC verification protocols that will be useful for the scientific community.

23 This is reminiscent of the little oh property of M. Blum and Kannan (1995).
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B Proofs for Query Delegation Protocols

B.1 Simple Query Delegation

Protocol 5 Simple Query Delegation
Assumptions:
− A is an 1-PAC learning ERM algorithm forH with sample complexity mH(ε,δ ).
− m′ = mUC

H (ε/4,δ/2), where mUC
H denotes uniform convergence sample complexity ofH.

− k =
⌈

4log( 2
δ
)

ε

⌉
1. V takes i.i.d. labeled samples (x1,y1), . . . ,(xk,yk) from D.
2. V takes i.i.d. unlabeled samples xk+1, . . . ,xm′ from DX .
3. V chooses a random permutation π : [m′]→ [m′], and sends (xπ(1), . . . ,xπ(m′)) to P.
4. P uses query access to fD to obtain ỹπ(i) = fD(xπ(i)) for each i ∈ [m′], and sends

(ỹπ(1), . . . , ỹπ(m′)) to V .
5. V checks that ỹi = yi for all i ∈ [k]. If this does not hold, V outputs h = reject. Otherwise,

V executes A with precision parameter ε/4, confidence parameter δ/2 and input sample
S̃ = ((x1, ỹ1), . . . ,(xm′ , ỹm′)), and then outputs the hypothesis h returned by A.

Proof for Claim 5.2. For the completeness, note that if P is honest, then V outputs h =
A((x1, fD(x1)), . . . ,(xm′ , fD(xm′))) such that all xi are sampled i.i.d. fromDX . Because A is a 1-PAC
learner, it holds that with probability at least 1− δ

2 , h is ε

4 -good forH w.r.t. D.
For soundness, we show that the following hold for any (possibly unbounded and malicious)

prover:
(i) If V did not reject, then with probability at least 1− δ

2 , it holds that
|{i ∈ [m] : ỹi 6= fD(xi)}|

m
≤ ε

4
. (18)

(ii) If (18) holds, then with probability at least 1− δ

2 , the hypothesis h returned by A is ε-good
forH w.r.t. D.

Together, these two conditions imply soundness, i.e. P
[
h 6= reject ∧

(
LD(h)> LD(H)+ ε

)]
≤ δ .

For (i), let t = |{i ∈ [m] : ỹi 6= fD(xi)}|. If t > εm/4 then

Pπ [h 6= reject]≤
(

1− k
m

)t

< e−kt/m < e−εk/4 ≤ δ

2
,

where the probability is over the choice of the permutation π , and the final inequality follows from

our choice of k ≥ 4log( 2
δ
)

ε
.

For (ii), note that hypothesis h returned by A is an ERM hypothesis with respect to S̃. Let
S = ((x1, fD(y1), . . . ,(xm, fD(ym)), and let h′ be an ERM hypothesis with respect to S, and let h∗ be
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any hypothesis inH. Then

LD(h)≤ LS(h)+ ε/4 (uniform convergence ofH)

≤ LS̃(h)+2ε/4 (from 18)

≤ LS̃(h
′)+2ε/4 (h is an ERM with respect to S̃)

≤ LS(h′)+3ε/4 (from 18)

≤ LS(h∗)+3ε/4 (h′ is an ERM with respect to S)

≤ LD(h∗)+ ε. (uniform convergence ofH)

Hence, LD(h)≤ LD(h∗)+ ε for all h∗ ∈H, as desired.
For the query complexity, note that P makes m′ queries, and from Theorem 1.13,

m′ = O(m(ε,δ )). �

B.2 Compressed Query Delegation

We only prove Claim 5.3 for the special case in which X = {0,1}n, and DX is the uniform
distribution. This implies the claim for other domains and distributions, because uniformly random
bits can be used to simulate samples from other (efficiently samplable) distributions.

The PAC verification protocol uses the following compression protocol as a subroutine. Assume
V takes a labeled sample (x,y) ∼ D. The compression protocol enables V to send a (randomized)
message to P such that:

(i) The length of the message is roughly |x| plus some constant.
(ii) The messages specifies a sequence of t +1 unlabeled samples x0, . . . ,xt ∈ X .

(iii) The messages contains x, so that x = xi∗ for some i∗ ∈ {0,1,2, . . . , t}.
(iv) P does not know i∗, that is, i∗ is uniformly random and independent of the message that P

received.

This compression protocol uses a psuedorandom generator fPRG of the following form. fPRG(s)
is a deterministic function that takes a seed s ∈ {0,1}` and returns a sequence x1, . . . ,xt ∈ X for
fixed `, t ∈ N. We assume that fPRG is psuedorandom with respect to the learning algorithm A in
the sense that A successfully 1-PAC learns H with respect to the uniform distribution over X if it
receives a labeled sample (x1,y1), . . . ,(xm,ym) in which the xi’s were chosen according to a certain
procedure that uses fPRG, rather than being sampled i.i.d. from the uniform distribution.24

24 Technically, the xi’s are sampled by repeatedly invoking Protocol 6, as is done is Protocol 7.
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Protocol 6 Compression Protocol
Assumptions:
− fPRG is a psuedorandom generator with seed size ` and stretch t as above.
− X ∈ X .

GENERATECOMPRESSEDMESSAGE(X):
Take the following samples independently:
− I∗ ∼ Uniform({0,1,2, . . . , t})
− S∼ Uniform({0,1}`)

W1, . . . ,Wt ← fPRG(s)
X0← X⊕

(⊕
1≤ j≤I∗Wj

)
. “⊕” denotes bitwise XOR; ⊕ of an empty set is 0.

M← (X0,S)
Output (M, I∗)

EXPANDCOMPRESSEDMESSAGE(M):
(X0,S)←M
W1, . . . ,Wt ← fPRG(s)
for i ∈ [t] do

Xi← Xi−1⊕Wi

Output X0, . . . ,Xt

The compressed query delegation protocol operates as follows, using the above protocol as a
subroutine.
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Protocol 7 Compressed Query Delegation Protocol
Assumptions:
− A is a 1-PAC learning ERM algorithm forH with sample complexity mH(ε,δ ).
− m′ = mUC

H (ε/4,δ/2), where mUC
H denotes uniform convergence sample complexity ofH.

− k =
⌈

4log( 2
δ
)

ε

⌉
− The streach of the psuedorandom generator fPRG is t = bm′/kc

1. V performs the following:
for j ∈ [k] do

Sample (X j,Yj)∼D
M j, I∗j ← GENERATECOMPRESSEDMESSAGE(X j)

Send (M1, . . . ,Mk) to P
2. P performs the following:

Ỹ ← new matrix
for j ∈ [k] do

X0, . . . ,Xt ← EXPANDCOMPRESSEDMESSAGE(M j)
for i ∈ {0,1, . . . , t} do

Ỹj,i← fD(Xi)

Send Ỹ to V
3. V performs the following:

X ← new matrix
for j ∈ [k] do

i∗← I∗j
if Ỹj,i∗ 6= Yj then

Output ‘reject’ and halt
(X j,0, . . . ,X j,t)← EXPANDCOMPRESSEDMESSAGE(M j)

Sample←{(X j,i,Ỹj,i) : j ∈ [k], i ∈ {0,1, . . . , t}}
h← A(Sample,ε/4,δ/2)
Output h

Claim B.1. Assume X is sampled uniformly from X , and then the subroutine
GENERATECOMPRESSEDMESSAGE(X) is executed and outputs the tuple (M, I∗). Then the
random variables M and I∗ satisfy that M⊥I∗.

Proof. Let (X0,S) = M. Fix x0 ∈ X , s ∈ {0,1}` and i ∈ {0,1,2, . . . , t}. Observe that

71



P [X0 = x0| S = s ∧ I∗ = i] = P

[
X⊕

( ⊕
1≤ j≤I∗

Wj

)
= x0

∣∣∣ S = s ∧ I∗ = i

]

= P

[
X = x0⊕

( ⊕
1≤ j≤I∗

Wj

) ∣∣∣ S = s ∧ I∗ = i

]

=
1
|X |

.

Hence,

P [X0 = x0 ∧ S = s ∧ I∗ = i] = P [I∗ = i] ·P [S = s | I∗ = i] ·P [X0 = x0 | S = s ∧ I∗ = i]

= P [I∗ = i] ·P [S = s] ·P [X0 = x0 | S = s ∧ I∗ = i] (S⊥I∗)

= P [I∗ = i] ·P [S = s] · 1
|X |

= P [I∗ = i] ·P [X0 = x0 ∧ S = s] . � (X0⊥S)

Proof of Claim 5.3. The proof is similar to the proof of Claim 5.2. For completeness, notice that
if P is honest, then V never rejects, and outputs a hypothesis h returned by A on a sample where
the x’s were generated using fPRG, and the labels are all correct. Because A is a 1-PAC learner,
and fPRG is psuedorandom with respect to A, it holds that h is ε-good with probability at least
1−δ .

Soundness follows from (i) and (ii) in the same manner as in the proof of Claim 5.2. Notice
that (ii) holds in the current case by the same argument as in that proof. To complete the proof we
need to establish (i). Let b j be the number of dishonest labels that P provided for X’s generated by
message M j, and let b = ∑ j∈[k] b j be the total number of dishonest labels provided by P. We need
to show that if b

m′′ >
ε

4 , then V rejects with probability at least 1− δ

2 , where m′′ = (t +1)k ≥ m′ is
the total number of samples.

For each j ∈ [k], V knows the correct label for X j,i∗ such that i∗ = I∗j . From Claim B.1, I∗j is
independent of M j. Because I∗j is uniformly random, the chance that V does not detect a dishonest

label for message M j is p j =
(

1− b j
t+1

)
. In total, if b

m′′ >
ε

4 then

P [h 6= reject] = ∏
j∈[k]

p j =


k

√
∏
j∈[k]

p j

k

≤

(
1
k ∑

j∈[k]
p j

)k

=

(
1− b

m′′

)k

<
(

1− ε

4

)k
< e−

ε

4 k ≤ δ

2
,

where the probability is over the choice of the indices I∗j , and the first inequality is the AM-GM
inequality, and the final inequality follows from our choice of k. �
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B.3 Noninteractive Query Delegation

Protocol 8 Noninteractive Query Delegation
Assumptions:
− A is an 1-PAC learning ERM algorithm forH with sample complexity mH(ε,δ ).
− m′ = mUC

H (ε/4,δ/2), where mUC
H denotes uniform convergence sample complexity ofH.

− k =
⌈

4log( 2
δ
)

ε

⌉
− fCRS(t) is a source of common randomness that provides the same i.i.d. samples x1, . . . ,xt

from DX to all parties.

1. P performs the following:
X1, . . . ,Xm′ ← fCRS(m′)
for i ∈ [m′] do

Ỹi← fD(Xi)

Publish (Ỹ1, . . . ,Ỹm′)

2. V performs the following:
X1, . . . ,Xm′ ← fCRS(m′)
Sample {I1, . . . , Ik}← Uniform

(([m′]
k

))
for i ∈ {I1, . . . , Ik} do

if Ỹi 6= fD(Xi) then
Output ‘reject’ and halt

h← A({(Xi,Ỹi) : i ∈ [m′]},ε/4,δ/2)
Output h

The proof of Claim 5.4 is similar to that of Claim 5.2. Note that the amount of common randomness
required can be reduced substantially by using an appropriate PRG, as in Claim 5.3, while the
security remains information-theoretic.

C Thresholds Over Discrete Sets

In Section 3 we presented the class T of thresholds over the interval [0,1]⊆R, and neglected issues
pertaining to the the representation of real numbers. Here, we outline how similar results can be
obtained for the class of threshold over a finite set X ⊆ [0,1]. We write T X = { ft}t∈X ⊆T , and are
interested in 2-PAC verification of T X with respect to any distributionD ∈ ∆(X ×{0,1}).25

This boils down to the following. Recall that when constructing certificates of loss for T , we
used the following primitive in the proof of Claim 3.5:
25 That is, any probability space (Ω,D,Σ) with sample space Ω = X × {0,1}, probability mass function D, and

σ -algebra Σ = 2Ω.
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Fact C.1. Let [α,β ] ⊆ R be an interval, and let p be a distribution over R that is absolutely
continuous with respect to the Lebesgue measure. If p

(
[α,β ]

)
> r≥ 0, then there exists γ ∈ [α,β ]

such that p
(
[α,γ]

)
= r.

The following alternative primitive, which has the additional property that γ ∈ X , will be used
instead when producing certificates for T X that have succinct representations.

Claim C.2. Let N ∈N, let [α,β ]⊆R be an interval with α,β ∈X , and let p be a probability mass
function over X . If p

(
[α,β ]

)
> r ≥ 0, then there exists a pair (γ,q) where γ ∈ X ∩ [α,β ] and

q ∈ [N], such that: ∣∣∣p([α,γ)
)
+

q
N
· p(γ)− r

∣∣∣≤ 1
2N

.

Likewise, there exists (γ ′,q′) such that∣∣∣∣p((γ ′,β ])+ q′

N
· p(γ ′)− r

∣∣∣∣≤ 1
2N

.

Proof. Take

γ = min
{

x ∈ X : p
(
[α,x]

)
≥ r
}

and

q = argmini∈[N]

∣∣∣∣∣∣ i
N
−

r− p
(
[α,γ)

)
p(γ)

∣∣∣∣∣∣ .
Observe that∣∣∣p([α,γ)

)
+

q
N
· p(γ)− r

∣∣∣≤
∣∣∣∣∣∣p
(
[α,γ)

)
+

r− p
(
[α,γ)

)
p(γ)

· p(γ)− r

∣∣∣∣∣∣+ p(γ)

∣∣∣∣∣∣
r− p

(
[α,γ)

)
p(γ)

− q
N

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r− p

(
[α,γ)

)
p(γ)

− q
N

∣∣∣∣∣∣≤ 1
2N

.

The proof for (γ ′,q′) is similar. �
Recall that a 0-valid certificate of loss ` for T with respect to distribution D was a pair (a,b)

such that D1
(
[0,a)

)
= D0

(
[b,1]

)
= `, where Di(X) :=D(X×{i}). For the discete case, we use

the following definition of a certificate with finite resolution.

Definition C.3. Fix N ∈N, and letX ⊆ [0,1] be a finite set. LetD∈∆(X ×{0,1}) be a distribution
and `,η ≥ 0. A certificate of loss at least ` for class T X with resolution 1

N is a tuple

(a,qa,b,qb)

where 0 < a≤ b < 1 and qa,qb ∈ [N], and if a = b then qa +qb ≤ N.
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We say that the certificate is η-valid with respect to distribution D if∣∣∣D1
(
[0,a)

)
+

qa

N
· p(a)− `

∣∣∣+ ∣∣∣D0
(
(b,1]

)
+

qb

N
· p(b)− `

∣∣∣≤ η .

Using Claim C.2, one can repeat the proof of Claim 3.5 to show the following.

Claim C.4. Fix N ∈ N, and let X ⊆ [0,1] be a finite set. Let D ∈ ∆(X ×{0,1}) be a distribution
and `≥ 0. If LD(T X ) = `, then there exist (a,qa,b,qb) such that a,b ∈ X and qa,qb ∈ [N], which
constitute a certificate of loss `

2 for the class T X that is 1
N -valid with respect to D.

In particular, one can obtain an η-valid certificate of finite precision by choosing the precision
parameter N to satisfy N ≥ 1

η
. Likewise, it is possible to repeat the rest of the analysis, and

show that an η-valid certificate of loss ` entails that LD(T X ) ≥ `−η , and that certificates can be
generated and verified efficiently. Finally, we can generalize these results to a multi-threshold class
T X

d , and obtain that T X
d is 2-PAC verifiable, and exhibits a quadratic gap in sample complexity

between learning and verification, as in Lemma 3.8.

D Uniform Convergence for Set Systems

The following theorem is due to Vapnik and Chervonenkis (1971). See also the exposition by Alon
and Spencer (2000, Theorem 13.4.4).

Definition D.1. A set system is a tuple (X ,S), where X is any set, and S ⊆ 2X is any collection of
subsets of X. The members of X are called points.

The VC dimension of a set system (X ,S) is the VC dimension of the set of indicator functions
{1S : S ∈ S} as defined in Definition 1.12.

Definition D.2. Let (X ,S) be a set system, let D be a distribution over X, and let ε ∈ (0,1). We
say that a multiset A⊆ X is an ε-sample with respect to D if

∀S ∈ S :
∣∣∣∣ |A∩S|
|A|

−D(S)
∣∣∣∣≤ ε.

Theorem D.3. There exists a constant c > 0 such that for any set system (X ,S) of VC-dimension
at most d and any 0 < ε,δ < 1

2 , a sequence of at least
c
ε2

(
d log

d
ε
+ log

1
δ

)
i.i.d. samples from D will be an ε-sample with respect to D with probability at least 1−δ .

E Identity Testing for Distributions

The following theorem is due to Batu et al. (2001, Theorem 24). See exposition in Canonne (2015,
Theorem 3.2.7).
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Theorem E.1. Let D∗ = (d1, . . . ,dn) be a distribution over a finite set of size n, and let ε ∈ (0,1).
There exists an algorithm which, given the full specification of D∗ and sample access to an unknown
distribution D, takes

O
(√

n
ε6 log(n)

)
samples from D, and satisfies:

• Completeness. If

dTV (D,D∗)≤ ε3

300
√

n logn
,

then the algorithm accepts with probability at least 2
3 .

• Soundness. If

dTV (D,D∗)> ε,

then the algorithm rejects with probability at least 2
3 .

A standard amplification argument yields the following:

Corollary E.2. Taking

O
(

log
(

1
δ

)√
n

ε6 log(n)
)

samples is sufficient to ensure completeness and soundness at least 1−δ (instead of 2
3 ).

F Total Variation Distance

Claim F.1. Let δ ∈ (0,1), X := [n]. Consider a sequence x1,x2 . . . ,xt of i.i.d. samples taken from
UX , and let G denote the event in which all the samples are distinct, that is |{x1, . . . ,xt}|= t. Then
taking

n≥ log(2e)
log
( 1

1−δ

) · t2

entails that

P [G]≥ 1−δ .

Claim F.2. Let P,Q be probability functions over a probability space (Ω,F). Then for all α ∈
[0,1],

dTV ((1−α)P+αQ,P)≤ α.

In particular, if X is a random variable and E is an event, then

dTV (X ,X |E)≤ 1−P [E] = P
[
E
]
.
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Proof.
dTV ((1−α)P+αQ,P) = max

A∈F
(1−α)P(A)+αQ(A)−P(A)

= max
A∈F

α · (Q(A)−P(A))≤ α.

In particular, if PX ,PX |E denote the distributions of X and X |E then

dTV
(
PX ,PX |E

)
= dTV

(
(1−P

[
E
]
) ·PX |E +P

[
E
]
·PX |E ,PX |E

)
≤ P

[
E
]
.

G Learning Fourier-Sparse Functions By Estimating Heavy
Coefficients

Let H be the set of t-sparse functions {0,1}n→ R. In this appendix we recall the proof that one
can PAC learnH with respect to Dfunc

U ({0,1}n) by estimating heavy Fourier coefficients. We stress
that this is a well-known result and is included for completeness only (see Mansour, 1994).

Claim G.1. Let ε > 0. LetD∈Dfunc
U ({0,1}n) have target function f : {0,1}n→{1,−1}. Consider

the function

h(x) = ∑
T∈L

αT χT (x),

where L is a set such that f̂≥τ ⊆ L for τ = ε

4t . If

∀T ∈ L : |αT − f̂ (L)| ≤
√

ε

8|L|
,

then LD(h)≤ LD(H)+ ε .

Before proving this claim, we show that if a function f is close to being sparse, then it can
be approximated by a sparse function g that includes only coefficients where f has high Fourier
weight.

Claim G.2. Let t ∈ N, let β , ` ∈ (0,1), and let D ∈ Dfunc
U ({0,1}n) have target function

f : {0,1}n→{1,−1}. Assume LD(H)≤ `. Then exists g ∈H such that

LD(g)≤ (1+β ) · `,

and ĝ>0 = {T : |ĝ(T )|> 0} ⊆ f̂≥τ with τ :=
√

β ·`
t .

Proof. Because LD(H) ≤ `, there exists a function w ∈ H such that LD(w) ≤ `. Let
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ŵ>0 = {T : |ŵ(T )|> 0}. Consider the function

g(x) = ∑
T∈(ŵ>0∩ f̂≥τ)

f̂ (T )χT (x).

Clearly, g is t-sparse (because w is t-sparse), and ĝ>0 ⊆ f̂≥τ . Furthermore, we have

LD(g) = Ex∈{0,1}n

[
( f (x)−g(x))2

]
= ∑

T⊆[n]

(
f̂ (T )− ĝ(T )

)2
(Parseval’s identity)

= ∑
T /∈(ŵ>0∩ f̂≥τ)

(
f̂ (T )− ĝ(T )

)2

= ∑
T /∈ŵ>0

f̂ 2(T )+ ∑
T∈ŵ>0\ f̂≥τ

f̂ 2(T ).

We bound each sum separately.

∑
T /∈ŵ>0

f̂ 2(T ) = ∑
T /∈ŵ>0

(
f̂ (T )− ŵ(T )

)2 ≤ ∑
T⊆[n]

(
f̂ (T )− ŵ(T )

)2
= LD(w)≤ `,

and

∑
T∈ŵ>0\ f̂≥τ

f̂ 2(T )≤ |ŵ>0| · τ2 ≤ t · β`
t

= β`. �

Proof of Claim G.1. Observe that

LD(h) = E
[
( f (x)−h(x))2]= ∑

T∈L

(
f̂ (T )− ĥ(T )

)2
+ ∑

T /∈L
f̂ 2(T ),

and the first sum is bounded by

∑
T∈L

(
f̂ (T )− ĥ(T )

)2 ≤ |L| · ε

2|L|
=

ε

2
.

Therefore, to complete the proof it suffices to show that ∑T /∈L f̂ 2(T ) ≤ LD(H)+ ε

2 . Invoking
Claim G.2 with β := ε

2 and ` := max{LD(H), ε

4}, there exists a t-sparse function g : {0,1}n→ R
such that

LD(g)≤ (1+β )`≤ LD(H)+
ε

2
,

and ĝ>0 = {T : |ĝ(T )|> 0} ⊆ f̂≥τ with τ :=
√

ε`
2t ≥

ε

4t . This entails that

∑
T /∈L

f̂ 2(T )≤ ∑
T∈ f̂<τ

f̂ 2(T )

≤ ∑
T⊆[n]

(
f̂ (T )− ĝ(T )

)2

= E
[
( f (x)−g(x))2]≤ LD(H)+

ε

2
. �
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H Random Matrices Have Full Rank

Claim H.1. Let τ > 0, n ∈ N. If τ ≥ 2−
n

10 then
n

τ42n ≤
1

128log
( n

τ4

)
for n large enough.

Proof.

τ ≥ 2−0.1n =⇒ τ
8 ≥ 2−0.8n ≥ 128n log(n)

2n =⇒ 2nτ8

n
≥ 128log(n)

=⇒ 2nτ4

n
≥ 1

τ4 128log(n)≥ 128log
( n

τ4

)
. �

Claim H.2. Let n,m ∈ N, τ ≥ 2−
n
10 , m ≤ log

(32n
τ4

)
. Let X = {x1, . . . ,xm} be a set of m vectors

chosen independently and uniformly from (F2)
n. Then with probability at least 3

4 , the set X is
linearly independent for n large enough.

Proof. Think of the vectors as being chosen one by one. The probability that the first vector is
non-zero is

2n−1
2n ,

because we can chose any vector except 0. The probability that vector xk+1 is linearly independent
of the first k vectors is

2n−2k

2n ,

because we can choose any vector not in span({x1, . . . ,xk}). Because the choices are made
independently, the probability that all m vectors are linearly independent is

2n−20

2n · 2
n−21

2n · · · 2
n−2m−1

2n ≥
(

2n−2m

2n

)m

≥

(
2n− 32n

τ4

2n

)m

=

(
1−

32n
τ4

2n

)m

=

(
1− 1

4log
( n

τ4

))log
(

n
τ4

)
≥ 1− 1

4
,

where the last inequality is Bernoulli’s inequality. �
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