
Pr−ZSUBEXP * Pr−RP

Gonen Krak ∗ Noam Parzanchevski ∗ Amnon Ta-Shma ∗

Abstract

We unconditionally prove there exists a promise problem in promise ZSUBEXP that cannot be solved
in promise RP. The proof technique builds upon Kabanets’ easy witness method [Kab01] as imple-
mented by Impagliazzo et. al [IKW02], with a separate diagonalization carried out on each of the two
alternatives in the win-win argument. We remark that even though the easy witness method is a key com-
ponent in many celebrated results in derandomization, we are not aware of any previous unconditional
separation like the one we show.

The result relativizes. We could not prove a similar result for total functions, nor for functions in
ZTime(T (n)) for T (n) below a half-exponential function (i.e., T such that T (T (n)) < 2n).

1 Introduction

Understanding the power of probabilistic computation is a cornerstone problem of theoretical computer
science. A famous problem of this type is whether BPP ?

= P. Some widely believed assumptions imply
derandomization (e.g., [Yao82, NW94, IW97]) and, in consequence, it is widely believed that probabilistic
computation can be efficiently simulated by deterministic computation and BPP = P. In particular, uniform
lower bounds on non-uniform classes imply derandomization. Remarkably, partial converse results also
apply in the other direction [KI04], and, morally, probabilistic computation derandomizes iff uniform lower
bounds on circuits exist. However, in spite of the extensive study of the problem, there are almost no
unconditional results in the area.1 In particular, it might be possible, e.g., that BPP = NEXP.

Probabilistic computation can appear in many variants, and, in particular, a probabilistic algorithm might
have two-sided, one-sided and zero-sided error. In two-sided error we allow both false positive and false
negative results, in one-sided error we allow just false negatives, and in zero-sided error we require that the
algorithm either gives the correct answer or outputs “don’t know”. The corresponding probabilistic classes
are denoted by BPTime (for two-sided error), RTime (for one-sided error) and ZTime (for zero-sided error).
See Def 6 for the formal definitions.

As before, not much is unconditionally known about these classes, other than the trivial containments.
Early results from the 80’s explain this lack of knowledge by showing, e.g., that

• There is an oracle O under which BPPO = (EXPNP)O [Hel86],

• There is an oracle O for which NPO 6= RPO [Rac82]

• There is an oracle O for which BPPO 6= RPO [MV96]
∗The Blavatnik School of Computer Science, Tel-Aviv University, Israel 69978. Supported by the Israel Science Foundation

grant no. 952/18.
1The situation for randomized space bounded computation is very different, but in this paper we focus on probabilistic time

bounded computation.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 59 (2020)

Thus, if we want to separate BPP from EXPNP (or NEXP), or want to show BPP is contained in NP or
collapses to RP, we need to do that in an unrelativized way. While we do know today several non-relativizing
techniques and results (such as IP = PSPACE) we still do not know how to prove that BPP 6= NEXP or
BPP = ZPP.

In this paper we take a small step, building on previous work, and prove an unconditional separation.
We prove:

Theorem 1. Pr−ZSUBEXP * Pr−RP

The promise quantifier Pr− that appears before the class, means that we talk about a class of promise
problems. A promise problem is a partition of all inputs to yes instances, no instances and those we do not
care about. We say an algorithm solves a promise problem if it solves correctly all yes and no instances, and
we put no restriction on the behaviour of the algorithm on inputs outside the promise. Promise problems
abound in theoretical computer science, e.g., in approximation algorithms, PCPs and cryptography.

The theorem compares two classes that offhand might be incomparable: Pr−ZSUBEXP and Pr−RP.
A priori, it is possible that Pr−ZSUBEXP contains languages not in Pr−RP, because we allow more
time in Pr−ZSUBEXP, and indeed this is the case if we are right and probabilistic computation perfectly
derandomizes, i.e., Pr−BPP = Pr−RP = Pr−ZPP = Pr−P. It is also possible that Pr−RP contains
languages not in Pr−ZSUBEXP because in Pr−RP we allow one-sided error and in Pr−ZTime just zero-
sided error computation. We can say for sure, though, that Pr−RP 6= Pr−ZSUBEXP, because otherwise
Pr−RP is closed under complement, which implies Pr−RP = Pr−ZPP and Pr−ZPP = Pr−ZSUBEXP
contradicts a known hierarchy (see Theorem 19). However, the statement Pr−RP 6= Pr−ZSUBEXP does
not reveal which of the inclusions is wrong. In fact, often we can prove two classes are different without
resolving which inclusion is wrong, e.g., it is easy to prove that Space(n) 6= P, but it is open to prove a
specific containment is false. Theorem 1 states that unconditionally there is a problem in Pr−ZSUBEXP
that does not belong to Pr−RP.

We repeat again that the result we prove, proves the expected thing. If Pr−BPP = Pr−P (as we believe)
then it simply states that Pr−SUBEXP 6⊆ Pr−P, which immediately follows from the time hierarchy theo-
rem. Similarly, proving BPP 6= EXP, would be consistent with the way we expect things to be. However,
the main point of the paper is that this result can be unconditionally proven.

The result relativizes, i.e., for every oracle O, Pr−ZSUBEXPO * Pr−RPO, and indeed, this result is
not ruled out by previous work on relativized separations.

Next, we turn our attention to the technique and explain how this work builds upon previous work in
derandomization.

1.1 Hardness vs. Randomness and the easy witness method

Nisan and Wigderson [NW94] developed the Hardness vs. Randomness paradigm: If one has access to a
function w : [M] → {0, 1} that no circuit of size s can compute, then one can create a pseudo-random-
generator (PRG) converting O(logM) truly uniform bits to about s bits that are almost indistinguishable
from uniform to all circuits of size about s. Nisan [Nis92] first used this idea together with the provable
average-case hardness of the parity function against AC0 circuits, to construct a PRG against AC0, and later
on Nisan and Wigderson [NW94] explored the implications of this method against polynomial-size circuits.
A sequence of follow-up papers culminated with [IW97] showing that if there exists a function in EXP not
having sub-exponential circuits then BPP = P.

In 2001 Kabanets [Kab01] suggested the following win-win argument. View a string w ∈ {0, 1}M as
the truth table of a function w : [M]→ {0, 1} and say the string w has hardness s, if no circuit of size s can

2

compute the function. Now consider the set

EASY =
{
w ∈ {0, 1}M | Hard(w) ≤ s

}
,

where Hard(w) is the size of the smallest circuit C computing w (i.e., C(i) = wi for all i ∈ [M]).
Now, intuitively, we have a win-win situation:

• Either EASY is a hitting set generator (HSG) against RP, meaning that for any L ∈ RP, solvable by
an algorithm A(x, y), and for every x ∈ L, there exists an element w ∈ EASY such that A(x,w) = 1.

• Or else EASY is not a HSG against RP, implying that for some L ∈ RP, solvable by A(x, y), there
exists infinitely many inputs xi ∈ L for which A(xi, w) = 0 for all w ∈ EASY.

Kabanets argues that this is a win-win situation. If EASY is a HSG against RP, then we can determine
RP by trying all the possible easy witnesses, and because there are relatively few easy witnesses we get a
non-trivial derandomization of RP. If on the other hand EASY is not a HSG against RP, and if we manage
to put our hands on an input x such that Pry[A(xi, y) = 1] ≥ 1

2 but A(x,w) = 0 for all w ∈ EASY,
then we have a powerful tool to find hard strings with certified hardness: simply choose w at random and
check that A(x,w) = 1. With probability half we choose w such that A(x,w) = 1 and then we know with
certainty that w is hard. Once we have a certified hard string w, we can use w to derandomize probabilistic
computations using the hardness vs. randomness paradigm. Thus, in such a case Kabanets argues we should
be able to solve BPP with zero-sided error probabilistic algorithm, i.e., in ZSUBEXP.

However, there is still one missing part in the argument: If EASY is not a HSG it is infinitely often
wrong, but we still need an efficient way to find elements on which the HSG fails. To remedy this Kabanets
argues that

• Either EASY is a HSG against efficient refuters, i.e., no efficient program can find with a good proba-
bility an input on which EASY fails as a HSG, or,

• There is an efficient refuter that finds inputs on which EASY fails as a HSG, and then the above
argument works and BPP = ZPP.

As a result Kabanets [Kab01] proves that either RP ⊆ i.o.pseudo−SUBEXP or BPP = ZPP. The
infinitely often quantifier (i.o.) is natural and also appears in the above intuitive discussion. The pseudo−
quantifier means that RP has a sub-exponential time algorithm that looks correct to efficient players, i.e., no
efficient player (also called refuter) is able to find with a good probability an input on which the derandom-
ization is wrong.

One immediate consequence is:

Theorem 2. (Informal version of [Kab01, Corollary 17]) RP ⊆ i.o.pseudo−ZSUBEXP.

In many ways this is the inclusion we would like to get. However, the main weakness in Theorem 2 is
that it only gives an inclusion in a heuristic world, i.e., solving languages in RP with a ZSUBEXP algorithm
that “looks” correct to efficient refuters.

3

1.2 Going beyond efficient refuters

The main result of [IKW02] is that NEXP ⊆ P | Poly implies NEXP = MA. A central idea underlying
the proof is an adaptation of the easy witness method to non-deterministic computation, while avoiding the
heuristic world. The paper is technically complex, and contains many other results (we will discuss some
soon). Here, we want to focus on a central idea that is often obscured by the many details in the IKW paper.
To demonstrate this idea we avoid the non-deterministic case (that is the focus of [IKW02]) and instead
focus on RP (that is the focus of [Kab01]). Our goal is to avoid the heuristic refuters.

The IKW suggestion to avoid the heuristic refuters is to give the inputs xi (that have only hard witnesses)
as advice. Let us now look at this suggestion in more detail. Suppose R(x,w) is a deterministic machine
solving an RTime(t(n)) language. Suppose x is such that x is in the language (so that Prw(R(x,w) =
1) ≥ 1

2) and furthermore all witnesses w are s-hard. As explained before an algorithm that is given such
an x as advice, can guess a witness w and use its hardness to derandomize probabilistic computation. How
long is the advice length? For simplicity let us assume the algorithm can use the s hardness to create s truly
random bits (this is not correct, but also not far from being true, see Theorem 14). Thus, if the algorithm
wants to derandomize an algorithm in BPTime(nc), then it needs s to be nc, which implies the length of
w (dictated by how much hardness we are guaranteed in w) which in turn implies the length of x (because
|x| = t−1(|w|)).

The argument of [Kab01] says that either RP has easy witnesses, or BPP can be derandomized with
zero error. Doing the calculation in this setting shows that if RP does not have easy witnesses then BPP is
in ZPP|Poly, which is trivial as BPP ⊂ P | Poly. However, if instead of asking whether RP always has easy
witnesses, we ask whether REXP always has easy witnesses, we get much shorter advice length because the
advice length |x| is logarithmic in the witness length |w|.

While these ideas are central in the [IKW02] paper, they are mostly implicit in the paper. Furthermore,
they are mostly worked out in conjunction with other ideas that are required for proving NEXP ⊆ P | Poly
implies NEXP = MA. In Section 3 we single out this argument and do it in full. The calculation reveals
that essentially the two alternatives we get are:

• Either we get a derandomization of RTime into deterministic time with half-exponential cost, or,

• We get a derandomization of BPTime to ZTime with half-exponential cost and logarithmic advice,

where a function H is half-exponential if H(H(n)) = 2n (see Definition 7). Specifically we get:

Theorem 3. There exists constants c′ > c > 1 such that for T (n) = H(2c
′n) either:

• Pr−RTime(T (n)) ⊆ i.o.Pr−DTime(poly(H(T (n))), or,

• Pr−BPTime(n) ⊆ Pr−ZTime(poly(H(nc))) / log n.

Theorem 3 is also true if the Pr− quantifier is removed from all clauses, because a total language is in
particular a promise language, see Remark 24.

The parameters are, at first, difficult to digest. One way to read it is that either (roughly) RTime(T (n))
has a non-trivial derandomization to DTime(H(T (n))) (the trivial derandomization is 2T (n) time), or else
BPTime(n) can be solved in a non-trivial way with a ZTime algorithm (the trivial derandomization is 2n

time) and some advice. While the second alternative in the Theorem is in the usual range of parameters and
implies that BPP ⊆ ZSUBEXP, the first alternative is a bit unusual and talks about classes high up, namely,
RTime(H(n)) because of the reasons explained above.

4

While Theorem 3 does not appear in [IKW02] it lies entirely within the set of techniques and ideas used
in [IKW02]. In particular, Section 6 of [IKW02] contains other “gap” theorems. However, we believe it
is important to work out the idea of reducing the advice length by moving to higher-up classes on its own.
Furthermore, doing this reveals the half-exponential time function as a natural barrier in these arguments.

One way that we find useful to look at this (and the way we choose to present the result in the technical
sections) is the following. Originally, the easy witness method explores whether the set of all easy strings
is a HSG against all linear-size circuits. If it is, then RTime can be non-trivially derandomized. If it isn’t,
then a provably hard string can be found in ZTime with non-uniform advice, albeit, sometimes too large.
Another way to phrase this is that the easy witness method explores whether the set of all easy strings is
a HSG against all linear-size circuits that have a small Kolmogorov complexity, i.e., circuits that can be
described by a much shorter string then the circuit size. We therefore define Circ(n, s, a) to be the set of all
circuits on n bits of size at most s and description size at most a (see Definition 16) and we explore whether
the easy witnesses form a hitting set against this class. This point of view also appears in several recent
works, e.g., Hirahara’s work on the MinKT problem [Hir18] and [SCR+20].

To summarize, there are several technical differences in the way the easy witness method is used in
[Kab01] and [IKW02]. Some of these differences are due to the fact that [Kab01] considers what happens
if RTime does not have easy witnesses, whereas [IKW02] ask what happens if NTime does not have easy
witnesses. However, the most important difference from our point of view is both simple and surprising. In
[Kab01] the main difficulty was how to obtain the inputs x which belong to L but have only hard witnesses.
In [Kab01] this was solved by moving to a heuristic world with efficient refuters, these refuters, in turn, can
be used to produce the infinite sequence of desired inputs. In [IKW02] the problem is bypassed by moving
to exponentially long witnesses and giving the input xi (which is much shorter) as advice. In NEXP the
length of the input is logarithmically small compared to the length of the witness. The hardness s in the
witness should be about the same magnitude as the length of the random string we wish to derandomize. In
particular this means that the advice length |x| can be much smaller than s and |w|, and, this translates to
logarithmic advice length.

1.3 Going beyond “gap” theorems

The win-win analysis gives two alternatives. One can view these alternatives as “gap” theorems: e.g., one
can interpret Theorem 3 as saying that either RTime (hence also ZTime) is weak and can be derandomized,
or else ZTime is strong and contains two-sided error computations. However, ultimately, we would like to
get one single unconditional containment, rather than one of two alternatives.

We already saw one attempt at getting such a single containment: We saw Kabanets [Kab01] proved
RP ⊆ i.o.pseudo−ZSUBEXP. Another celebrated result is William’s unconditional result:

Theorem 4. [Wil14] NEXP 6⊂ ACC0

The proof technique uses many ideas, and, in particular, the beautiful idea of using non-trivial algorithms
(for statisfiablility of certain circuit classes) for proving lower bounds. Yet, one of its underlying basic
building blocks is the easy witness method. Roughly speaking, the idea is that NEXP ⊂ ACC0 also implies
NEXP has easy witnesses (this time easy is a non-trivial ACC0 circuit) and then a fast (i.e., non-trivial time)
satisfiability algorithm for ACC0 breaks the non-deterministic hierarchy. The proof that NEXP ⊂ ACC0

implies NEXP has easy witnesses, is inspired by and uses [IKW02].
Another unconditional containment is given in [Wil16]. In the paper Williams shows that NEXP ⊆

P | Poly is, in fact, equivalent to NEXP having easy witnesses. In that paper Williams unconditionally
shows, building on Kabanets’ easy witness method, that

5

Theorem 5. [Wil16]

RP ⊆ i.o.ZSUBEXP|nc, (1)

While it is known that BPP ⊆ P | Poly, the above result shows that RP is contained in ZSUBEXP with
fixed polynomial advice.

The result of this paper is another consequence of the easy-witness method. It is a separation result,
rather than a containment. Containments usually imply separations. For example BPP in SUBEXP would
also imply EXP 6⊂ BPP because of the strict time hierarchy. However, the containments of Theorems 2 and
5 do not allow a separation result. For the first containment, it is true that DTime(T) 6⊂ [io-pseudo]DTime(t)
for T � t, but a similar containment is not known for ZTime. For the second containment, we cannot use
the ZTime hierarchy because of the larger than linear advice and the i.o. quantifier.

The main result of this paper is an unconditional proof that Pr−ZSUBEXP * Pr−RP. We achieve
this separation by looking at each of the two alternatives of Theorem 3 separately, and showing that the
separation result is implied by each of them (and in a relativized way). For that:

• The separation result used in the first alternative of Theorem 3 is simply the deterministic time hier-
archy.

• For the second alternative we need a hierarchy for Pr−ZTime against Pr−ZTime with short advice.
While Pr−ZTime is closed under complement (which makes diagonalization simpler) it is a semantic
class, i.e., the Pr−ZTime promise may not be respected by some machines M on some inputs x, and
given (M,x) it is not easy to determine if the promise is respected or not.

Fortnow et. al. [FST05, Thm 12] diagonalized NTime against NTime with very short advice. We
adapt the argument of [FST05] from NTime (which is a syntactic class not closed under complement)
to ZTime (which is a semantic class closed under complement). The adaptation is almost one-to-
one and we give it in Section 4. We remark that there is a more sophisticated result that generalizes
[FST05, Thm 12] to larger (but still sub-linear) advice (see [FS14]) but we do not require these
techniques.

The separation result gets rid of the i.o. quantifier and the advice (because the diagonalization argument can
handle sub-linear advice) and is stated at the usual setting of parameters because separations go down.2

Two remarks are in place:

• We do not know how to show that ZSUBEXP * RP, because it is not known not how to diagonalize
ZTime again ZTime with small advice (it is not even known how to prove a pure ZTime hierarchy
(see, e.g., [Bar02, FS04])).

• Morally (but not precisely), we show that Pr−ZHalf * Pr−RP where ZHalf = ZTime(H(n)) for a
half-exponential function H(n), see Theorem 31 for precise details.

We remark that it is intriguing whether the current results can be combined with other non-relativizing
techniques to yield further unconditional statements,

2In fact, we do not know a corresponding separation result for the classes up.

6

2 Preliminaries

We use deterministic, non-deterministic, and the probabilistic classes in the standard way. We give below the
definition of Pr−ZTime with advice to stress how the non-uniform advice interacts with the i.o. quantifier:

Definition 6. Let L = (LYES, LNO) be a promise problem. We say

L ∈ i.o.Pr−ZTime(T (n)) / a(n)

if there exists an infinite set I ⊂ N, a sequence
{
an ∈ {0, 1}a(n)

}
n∈I

and a probabilistic machineM(x, y, an)

running in time T (n), such that for all n ∈ I , x ∈ (LYES ∪ LNO) ∩ {0, 1}n, y ∈ {0, 1}T (n),

• M(x, y; an) is either “don’t know” or L(x).

• Pry[M(x, y, an) = L(x)] ≥ 1
2 .

We say x is the input, y is the randomness of the machine and an us the advice string.

Notice that we require the ZTime guarantee (of either don’t know or the correct answer, and the few
“don’t know”) only on inputs in the promise for which the non-uniform advice is correct, and only for the
correct advice. We do not require the ZTime guarantee for incorrect advice strings.

Definition 7. Functions S : N→ N and H : N→ N are called:

• sub-exponential if for any constant ε > 0 and sufficiently large n, S(n) 6 2n
ε
,

• half exponential ifH(H(n)) = 2n, and above half exponential ifH(H(n)) > 2n for sufficiently large
n.

Definition 8. A function f : N→ N is called a resource function if:

• f is non-decreasing,

• There is a polynomial time algorithm which, on input 1n, outputs the value f(n).

2.1 Hardness vs. Randomness

We represent a circuitC by a stringw containing: the number of vertices ofC, for each vertex its label (input,
output,internal), for internal gates their type (And,Or,Not) and the vertices to which they are connected. We
say w represents C and we say C has size a if it has a representation w with |w| ≤ a.

Definition 9. (Hardness) The hardness of a string w ∈ {0, 1}M is the size s of the smallest circuit C such
that w is the truth table of C, i.e., the circuit C has logM inputs and C(i) = wi for every i ∈ [M]. We
write Hard(w) = s.

Definition 10. [Kab01](The easy witness generator) Given two numbers logM ≤ s ≤M ,

EWs→M =
{
x ∈ {0, 1}M | Hard(x) ≤ s

}
.

Remark 11. One can enumerate all strings in EWs→M in time poly(2s ·M · s) = 2O(s).

7

Definition 12. (Hitting Set Generator) A family of functions H =
{
Hn : {0, 1}`(n) :→ {0, 1}n

}
is called a

hitting set generator (HSG) against a class of circuits C if for every circuit C ∈ C that accepts at least 1
2 of

the inputs of length n, there exists a seed z ∈ {0, 1}`(n) such that C(Hn(z)) = 1.

Definition 13. (Pseudo Random Generator) A family of functions G =
{
Gn : {0, 1}`(n) :→ {0, 1}n

}
is

called an ε pseudo random generator (PRG) against a class of circuits C if for every circuit C ∈ C∣∣∣∣ Pr
x∈{0,1}n

[C(x) = 1]− Pr
s∈{0,1}`(n)

[C(G(s)) = 1]

∣∣∣∣ < ε

Theorem 14. [Uma02, Theorem 1] There exists a constant α > 0 such that the following holds. Suppose
w ∈ {0, 1}2

m

and Hard(w) ≥ s. Then there exists a function PRGw : {0, 1}O(m) → {0, 1}T that is a
T−1-PRG against size T 2 circuits, for

T = sα

Moreover, PRG is computable in time poly(|w|) with oracle calls to w.

As we explained in the introduction, we wish to use the PRGs against the class C of linear-size circuits
and tiny description size. We define:

Definition 15. (Time-bounded Kolmogorov complexity) The Kolmogorov complexity of a string w ∈ {0, 1}∗
is the size of the smallest TM that outputs w in time O(|w|) when run on the empty string.

Definition 16. We let Circ(n, s, a) be the set of all circuits on n input bits, of size at most s such that the
representation of C has time-bounded Kolmogorov complexity at most a.

2.2 Diagonalization Theorems

Definition 17. Let T, t : N → N be two constructible functions. We say T (n) � t(n) if the universal
Turing machine can simulate in time T (n) a Turing machines running in time t(n).

We will state two diagonalization theorems. The first is the standard time hierarchy for i.o. deterministic
time:

Theorem 18. Let T, t : N→ N be two constructible functions and assume T (n)� t(n). Then:

DTime(T (n)) 6⊆ i.o.DTime(t(n))

For completeness we give a proof in section 4.1.
Additionally, we state a ZTime hierarchy against ZTime with short advice. We follow the techniques

of [FST05, Thm 12] that were originally applied for NTime. We mention that the more sophisticated
techniques of [FS14] allow diagonalization against longer advice, but we do not require these stronger
results. We could not find the particular statement that we need in the literature and we therefore prove
theorem 19 following [FST05, Thm 12].

Theorem 19. (Following [FST05, Thm 12]) Let T, t : N→ N be two time-constructible, monotone functions
such that t(n) ≥ n, T (n2) ≥ t(n) log t(n) and T (n) > 23·t(2·log

3 n) then:

Pr−ZTime(T (n)) * Pr−ZTime(t(n)) / log2 n

We prove this theorem in section 4.2.

8

3 The easy witness method revisited

In this section we redo the easy witness argument. We follow the same argument as in [Kab01, IKW02]
except for the following two changes:

• In one of the alternatives we have that RTime(T (n)) has easy witnesses for a very large function T ,

• We introduce a parameter measuring the Kolmogorov complexity of a family of circuits, and we
record how the two alternatives interact with this parameter.

In the following theorem we are given three functions s, β, T : N → N. s(M) is the hardness we need
in the string. By [Uma02] given a string with hardness s, we can create a PRG outputting out(M) = sα

bits, for some constant α, see Theorem 14. Throughout the section we fix this constant α. β(M) is the
measuring the Kolmogorov complexity of the circuit class we work with (or against) and T is the running
time of the RTime algorithm we wish to derandomize. In what follows we explore how the large T affects
the other parameters, and β and the advice size in particular.

Theorem 20. Fix α as in Theorem 14. Let s, β, T : N→ N. Denote out(M) = s(M)α. We assume:

• logM ≤ s(M) ≤M , n ≤ T (n), β(T (n)) > 10n,

• T, out, β are monotone increasing and tend to infinity and T is a resource function.

Then:

• If there exists an infinite subset I ⊆ N such that for all M ∈ I , EWs(M)→M is a HSG against
Circ(M,M2, β(M)), then

Pr−RTime (T (n)) ⊆ i.o.Pr−DTime
(
2O(s(T (n+1)))

)
.

• If there exists some Mstart ∈ N such that for all M > Mstart, EWs(M)→M is not a HSG against
Circ(M,M2, β(M)), then there exists a constant d such that:

Pr−BPTime (n) ⊆ Pr−ZTime
(
(out−1(n))d

)
/ β(out−1(n)).

Proof.

The first item: For the first part of the lemma, let L ∈ Pr−RTime (T (n)). Denote by A the probabilistic
algorithm solving L. We construct a deterministic algorithm D as follows: On input x ∈ {0, 1}n, D
accepts iff A(x, z) = 1 for some z ∈ EWs(M)→M for some integer M ∈ [T (n), T (n+ 1)).

Running time: For a given M , D can enumerate EWs(M)→M in 2O(s(M)) time. There are at most
T (n + 1) possible values for M , and given M, z the simulation takes at most poly(T (n + 1))
time. Thus, altogether, D runs in time 2O(s(M))poly(T (n+ 1)) = 2O(s(T (n+1)).

Soundness: For x ∈ NO(L), for every y, A(x, y) = 0, hence the algorithm rejects.

Completeness: By assumption I is infinite. Hence, there are infinitely many input lengths n for
which [T (n), T (n+ 1)] ∩ I 6= ∅. Fix such an input length n. Fix M ∈ [T (n), T (n+ 1)] ∩ I .
Fix x ∈ {0, 1}n ∩ YES(L). Define the circuit Cx where Cx(y) = A(x, y).

9

• Pry[Cx(y) = 1] = Pry[A(x, y) = 1] ≥ 1
2 ,

• By standard translation methods we can assume that the size of Cx is at most T (n)2 (see,
for example, [Sip96, Theorem 9.30]).
It is easy to see, therefore, that Cx ∈ Circ(O(T (n), T (n)2, 10n) ⊆ Circ(M,M2, β(M)).

Hence, by the HSG property, for some z ∈ EWs(M)→M we have A(x, z) = 1 and the algorithm
accepts.

Hence L ∈ i.o.Pr−DTime
(
2O(s(T (n+1)))

)
.

The second item: We now proceed to the second item. By assumption, for all M > Mstart there exists a
circuit DISTM ∈ Circ(M,M2, β(M)) such that Pry∈{0,1}M [DISTM (y) = 1] ≥ 1

2 and DISTM (w) =
0 for all w ∈ EWs(M)→M .

Let L ∈ Pr−BPTime(n) solvable by A(x, y) with |y| = n. For every n ≥ Mstart set M to be the
first integer such that

out(M) ≥ n.
Notice that M ≥ n ≥ Mstart. For input length n we set the advice to be DISTM . The advice size is
the description size of DISTM , which is β(M) = β(out−1(n)). We denote γ(n) = β(out−1(n)).

Define the circuit Cx(y) = A(x, y) which has size n2.

We now describe a zero-error probabilistic algorithm solving L given the advice. Let x ∈ {0, 1}n.

1. Choose uniformly y ∈ {0, 1}M ,
2. If DISTM (y) = 0 quit, otherwise continue. If we continue we know for sure that

Hard(y) ≥ s(M)

3. Denote by PRGy : {0, 1}O(logM) → {0, 1}out(M) the PRG given by theorem 14. Notice that
out(M) ≥ n. Run Cx(PRGy(z)) over all z ∈ {0, 1}O(logM) and accept iff for the majority of
z, Cx(PRGy(z)) = 1.

Running time: We note:
• Drawing y ∈ {0, 1}M requires M time
• Constructing DISTM from its description requires poly(M) time
• Given y, z, we can compute PRGy(z) in time poly(|y|) = poly(M)

• Given x,PRGy(z) we compute Cx(PRGy(z)) in time n,
• We do the above for each z ∈ {0, 1}O(logM)

Thus, the running time of the algorithm is

poly(M) · n = poly(out−1(n)))

Correctness: By construction, Pry∈{0,1}M [DISTM (y) = 1] ≥ 1
2 and so with probability at least half

we get y ∈ {0, 1}M such that we know for sure that Hard(y) ≥ s(M). Hence,

PRGy : {0, 1}O(m) → {0, 1}T

is a T−1-PRG against circuits of size T 2 > n2, for T = s(M)α = out(M). By the PRG
property we have that for most z, Cx(PRGy(z)) is correct, and the algorithm is correct.

10

3.1 Instantiating parameters

Theorem 20 measures complexity with β(M) that measures description size and T (n) that corresponds to
the running time of the RTime machine. From our point of view it is more natural to measure things with
respect to the advice length a(n) and the required hardness s(M) in the witness. We claim:

Theorem 21. Let a, s : N → N be two resource functions, α log n < a(n) ≤ n, log n ≤ s(n) ≤ n. Set
T (n) = s−1(a−1(10n)). Then either

• Pr−RTime(T (n)) ⊆ i.o.Pr−DTime(poly(2a
−1(10n))), or else,

• Pr−BPTime(n) ⊆ Pr−ZTime(poly(s−1(n1/α))) / a(n1/α).

Proof. Set

β(m) = a(s(m)),

out(M) = s(M)α

Clearly, β, T, out, a−1, s−1, β−1, T−1, out−1 are monotone increasing. n ≤ s−1(n) ≤ 2n, n ≤
a−1(n) ≤ 2

1
α
n, T (n) ≥ n. Also, β(T (n)) = a(s(T (n)) = a(s(s−1(a−1(10n)))) = 10n. Then, by

Theorem 20, at least one of the two alternatives of Theorem 20 happens.

• The first alternative of Theorem 20 gives the first alternative of our theorem, because s(T (n+ 1)) =
a−1(10(n+ 1)) = O(a−1(10n)) = O(s(T (n))).

• For the second alternative, we first notice that out−1(n) = s−1(n1/α) because

out(s−1(n1/α)) = (s(s−1(n1/α))
1
α = n.

Finally, β(out−1(n)) = β(s−1(n1/α)) = a(s(s−1(n1/α))) = a(n1/α).

We now fix any monotone increasing above half-exponential time-constructible function H .

Theorem 22. Let a be as in Theorem 21. Set T (n) = H(a−1(10n)). Either

• Pr−RTime(T (n)) ⊆ i.o.Pr−DTime(poly(H(T (n))), or,

• Pr−BPTime(n) ⊆ Pr−ZTime(poly(H(n1/α))) / a(n1/α).

Proof. Set s = H−1. By Theorem 21, either

• Pr−RTime(T (n)) ⊆ i.o.Pr−DTime(poly(2a
−1(10n))) ⊆ i.o.Pr−DTime(poly(H(T (n))),

• Or else, Pr−BPTime(n) ⊆ Pr−ZTime(poly(H(n1/α))) / a(n1/α).

We aim for logarithmic advice. We therefore set

a(n) = α log n.

This implies a−1(n) = 2
1
α
n and a(n1/α) = logn. Plugging a into Theorem 22 we get:

11

Theorem 23. Let α be as in Theorem 14. Set T (n) = H(2
10
α
n). Either

• Pr−RTime(T (n)) ⊆ i.o.Pr−DTime(poly(H(T (n))), or,

• Pr−BPTime(n) ⊆ Pr−ZTime(poly(H(n1/α))) / log n.

This proves Theorem 3.

Remark 24. We note that Theorem 23 is also true if we remove the Pr− quantifier from all clauses in the
theorem. To see that notice that:

In the first alternative:

Pr−RTime(T (n)) ⊆ i.o.Pr−DTime(poly(H(T (n)))

implies
RTime(T (n)) ⊆ i.o.DTime(poly(H(T (n)))

because if L ∈ RTime(T (n)), then, in particular, L ∈ Pr−RTime(T (n)), hence

L ∈ i.o.Pr−DTime(poly(H(T (n)))

i.e., there exists a TMM that i.o. solvesL and then the machineM putsL in i.o.DTime(poly(H(T (n))).
Also,

In the second alternative:

Pr−BPTime(n) ⊆ Pr−ZTime(poly(H(n1/α)))/ log n

implies
BPTime(n) ⊆ ZTime(poly(H(n1/α)))/ log n

because
BPTime(n) ⊆ Pr−BPTime(n)

and a total language L in Pr−ZTime(poly(H(n1/α)))/ log n is in ZTime(poly(H(n1/α)))/ log n.

4 Diagonalization Theorems

4.1 Diagonalizing i.o. deterministic time

We recall Theorem 18 which is the standard time hierarchy for i.o. deterministic time, and give a proof for
completeness.

Theorem 18. Let T, t : N→ N be two constructible functions and assume T (n)� t(n). Then:

DTime(T (n)) 6⊆ i.o.DTime(t(n))

Proof. LetMi be a recursive enumeration of deterministic Turing Machines running in time t(n). We define
a Turing machine N that on input x ∈ {0, 1}n does the following: If x is of the form 0i1n−i, N simulates
Mi(x) for t(n) time, and if it reaches the end of the simulation, N answers the opposite answer. Otherwise,
N rejects the input. Assume towards contradiction that there exists an index j such that the machine Mj

agrees with N on infinitely-many input lengths. In particular, there exists n > j such that Mj(x) = N(x)
for all x ∈ {0, 1}n. But by the construction of N , N(0j1n−j) 6=Mj(0

j1n−j) which is a contradiction.

12

4.2 Diagonalizing ZTime with small advice

We recall Theorem 19 and prove it following [FST05, Thm 12].

Theorem 19. (Following [FST05, Thm 12]) Let T, t : N→ N be two time-constructible, monotone functions
such that t(n) ≥ n, T (n2) ≥ t(n) log t(n) and T (n) > 23·t(2·log

3 n) then:

Pr−ZTime(T (n)) * Pr−ZTime(t(n)) / log2 n

Proof. We prove by delayed diagonalization, following the argument of [FST05]. We construct a TM N
that works on inputs of the form

wa1,...,ami,m,k = 1i01m012
k
0a1, ..., am

where i, k 6 m and a1, ..., am are arbitrary strings each of length (m+ 1)2. For i, k,m, a1, ..., am denote:

ni,m,k = |wa1,...,ami,m,k | = i+m+ 2k +m(m+ 1)2 + 3.

In particular, for m large enough,

ni,m,1 6 2m3,

ni,m,k+1 ≤ 2ni,m,k, and,

ni,m,m ∈ [2m, 2m+1).

The machine N works as follows:

• On input of the form wa1,...,ami,m,m , for each y, N simulates Mi(w
a1,...,am
i,m,1 , y) for at most t(|wa1,...,ami,m,1 |)

steps. If for some y the simulation takes longer, N returns 0. Otherwise, N determines the probability

p = Pr
y
[Mi(w

a1,...,am
i,m,1 , y) = 1]

when using the first log2 ni,m,m < (m + 1)2 bits from am as advice. If p > 1
2 , N outputs 0 with

probability 1 and otherwise N outputs 1 with probability 1.

• On input of the form wa1,...,ami,m,k for 1 6 k < m, N simulates Mi on input wa1,...,ami,m,k+1 using the first
log2 ni,m,k+1 < (m+ 1)2 bits of ak+1 as advice, and answers the same answer.

We put inside the promise of N exactly all the inputs s on which N behaves as a zero-sided error
machine.

Claim 25. For all i,m, a1, . . . , am, the input wa1,...,ami,m,m belongs to the promise of N .

Proof. Set n1 = ni,m,1 and nm = ni,m,m. N simulates Mi at most 2t(n1) times (for each y ∈ {0, 1}t(n1))
and each such simulation takes t(n1) log(t(n1)) time. Since nm > 2m and n1 6 2m3 we have

T (nm) ≥ T
(
2(

n1
2)

1/3
)
≥ 23·t(n1) ≥ 2t(n1) · t(n1) log t(n1),

thus N has enough time to finish the simulation, and therefore returns a definite answer with probability
one. Hence wa1,...,ami,m,m belongs to the promise.

13

Claim 26. Suppose Mi ∈ Pr−ZTime(t(n)) / log2 n solves the promise language of N . Let m ≥ i large
enough and let ak be the advice string for inputs of length ni,m,k, completed arbitrarily to strings of length
(m+ 1)2. Then the inputs wa1,...,ami,m,k , for all 1 ≤ k ≤ m, belong to the promise of N (and therefore also to
the promise of Mi).

Proof. Claim 25 guarantees that wa1,...,ami,m,m belongs to the promise ofN . Hence wa1,...,ami,m,m also belongs to the
promise of Mi.

For any 1 < k 6 m set nk = ni,m,k. Now suppose wa1,...,ami,m,k belongs to the promise of N and Mi,
and let us prove that wa1,...,ami,m,k−1 belongs to the promise of N , and hence also to the promise of Mi. On input
wa1,...,ami,m,k−1 N simulates Mi on wa1,...,ami,m,k and answers the same. The time it takes N to prepare the input
wa1,...,ami,m,k and do the simulation is t(nk) log t(nk) ≤ t(2nk−1) log t(2nk−1)) ≤ T (nk−1). Hence N has
enough time to finish the simulation and return the same answer. It follows that since wa1,...,ami,m,k belongs to
the promise of Mi, w

a1,...,am
i,m,k−1 belongs to the promise of N .

Assume towards contradiction that there exists i such that the machine Mi calculates the same promise
language as N . Let m, a1, . . . , am be as in Claim 26. By Claims 25 and 26 the inputs wa1,...,ami,m,k belong to
the promise of both Mi and N for all 1 ≤ k ≤ m. As Mi with the correct advice is correct on the promise
of N , Mi and N answer the same on all inputs wa1,...,ami,m,k for all 1 ≤ k ≤ m. Hence, by construction,

N(wa1,...,ami,m,m) = ¬Mi(w
a1,...,am
i,m,1) = ¬N(wa1,...,ami,m,1), and,

N(wa1,...,ami,m,k+1) = Mi(w
a1,...,am
i,m,k) = N(wa1,...,ami,m,1), for all k = 0, . . . ,m− 1.

This implies N(wa1,...,ami,m,1) = ¬N(wa1,...,ami,m,1) - a contradiction.

5 The separation result

5.1 Another look at half-exponential functions

We recall Definition 7: A function S : N → N is above half exponential if H(H(n)) > 2n for sufficiently
large n. We first claim that a half exponential function is sandwiched between iterated quasi-poly and
iterated quasi-subexp as we now explain.

Definition 27. (Iterated Log and iterated Exp) We define Log (k, n) and Exp (k, n) inductively on k:

• For k = 0: Log (0, n) = n and Exp (0, n) = n

• For k > 1: Log (k, n) = log (Log (k − 1, n)) and Exp (k, n) = 2Exp(k−1,n)

All logarithms are to the base 2.

Let

Bk(n) = Exp (k, 2Log (k, n)) ,

Uk(n) = B−1k (2n). (2)

For example B1(n) = 22 logn = n2, B2(n) = 22
2 log logn

= 2log
2 n = nlogn. In general the Bk sequence

gets larger with k. B1 is polynomial, B2 quasi-polynomial, and we might say B3 is quasi-quasi polynomial.

14

Also,it is easy to check that

Uk(n) = Exp

(
k,

1

2
Log (k − 1, n)

)
.

Thus, U1(n) = 2n/2, U2(n) = 22
1
2 logn

= 2
√
n. The Uk sequence is monotonically decreasing with k, with

U1 being exponential, U2 sub-exponential and so forth. Bk and Uk are kind of inverse to each other using
Eq (2) showing that Bk(Uk(n)) = 2n.

In Appendix A we prove:

Claim 28. For any constant k > 3, Uk(n) is sub-exponential and above half-exponential.

Because of small overheads we have in the reductions we do, we will also require a modification of Uk.
We define

Wk(n)
def
= Exp

(
k,

2

3
Log (k − 1, n)

)
. (3)

We prove in Appendix A:

Claim 29. For any constant k ≥ 3, the function Wk is sub-exponential and above half-exponential.

and:

Claim 30. For any constant k > 4 and sufficiently large n,

Wk(m) ≥ Uk(m
logm),

logWk(m) ≥ Wk(log
4m).

5.2 The separation

We now prove our main theorem:

Theorem 31. (Main) With the notation above, for any constant k > 4,

Pr−ZTime (poly(Wk(n))) * Pr−RP.

Proof. Fix a constant k > 4. Let H(n) = Uk(n) and T (n) = Uk(2
10
α
n). As Uk is above half-exponential,

there exists some constant c > 1 such that one of the two alternatives of Theorem 23 happens. We consider
both cases of Theorem 23:

If alternative 1 in Theorem 23 holds : By our assumption and Remark 24

RTime(T (n)) ⊆ i.o.DTime(U ck(T (n))).

By Theorem 18 there exists c′ > c such that

15

DTime(U c
′
k (T (n))) * DTime(U ck(T (n)))

Hence,

DTime(U c
′
k (T (n))) * RTime(T (n)).

Choose m = m(n) such that mlogm = T (n). Then, using padding and that separations go down we
get:

DTime(U c
′
k (m

logm)) * RTime(mlogm).

However, by Claim 30, Uk(mlogm) ≤Wk(m). Hence,

DTime(W c′
k (m)) * RTime(mlogm),

and, in particular, DTime(poly(Wk)) * RP. It now follows by definition that Pr−DTime(poly(Wk)) *
Pr−RP as demonstrated by the total language in DTime(poly(Wk)) not in RP.

If alternative 2 in Theorem 23 holds : By our assumption, for some c > 1,

Pr−BPTime(n) ⊆ Pr−ZTime(U ck(n
1/α))/ log n,

By a padding argument

Pr−BPP ⊆ Pr−ZTime

(⋃
d

Uk(n
d/α)c

)
/ d · log n

⊆ Pr−ZTime(Uk(n
logn)) / log2 n

Define

t(n) = Uk(n
logn)

T (n) = Wk(n)

We have
T (n) = Wk(n) By definition of T

≥ 2Wk(log
4 n) By Claim 30

≥ 2Uk((log
4 n)4 log logn) By Claim 30

= 2t(log
4 n) By definition of t

≥ 23t(2 log
3 n).

Hence by Theorem 19 we have that Pr−ZTime(Wk(n)) * Pr−RP.

Combining claim 29 and theorem 31 we see that W4(n) is subexponential and that

Pr−ZTime(poly(W4(n))) * Pr−RP

since subexponential functions are closed under polynomial growth we have proved Theorem 1.

16

References

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform” algorithms. In
International Workshop on Randomization and Approximation Techniques in Computer Science,
pages 194–208. Springer, 2002. 6

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial time.
In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 316–324. IEEE,
2004. 6

[FS14] Lance Fortnow and Rahul Santhanam. Hierarchies against sublinear advice. In Electronic Col-
loquium on Computational Complexity (ECCC), volume 21, page 171, 2014. 6, 8

[FST05] Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierarchies for semantic classes. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 348–
355. ACM, 2005. 6, 8, 13

[Hel86] Hans Heller. On relativized exponential and probabilistic complexity classes. Information and
Control, 71(3):231–243, 1986. 1

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within np. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 247–258.
IEEE, 2018. 5

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002. 1, 4, 5, 9

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory
of Computing, STOC ’97, pages 220–229, New York, NY, USA, 1997. ACM. 1, 2

[Kab01] Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. Jour-
nal of Computer and System Sciences, 63(2):236–252, 2001. 1, 2, 3, 4, 5, 7, 9

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. 1

[MV96] Andrei A Muchnik and Nikolai K Vereshchagin. A general method to construct oracles realizing
given relationships between complexity classes. Theoretical Computer Science, 157(2):227–
258, 1996. 1

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. 2

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994. 1, 2

[Rac82] Charles Rackoff. Relativized questions involving probabilistic algorithms. Journal of the ACM
(JACM), 29(1):261–268, 1982. 1

17

[SCR+20] R Santhanam, L Chen, N Rajgopal, Ján Pich, IC Oliveira, and S Hirahara. Beyond natural
proofs: Hardness magnification and locality. Leibniz International Proceedings in Informatics,
151, 2020. 5

[Sip96] Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):27–29,
1996. 10

[Uma02] Christopher Umans. Pseudo-random generators for all hardnesses. In Proceedings of the Thiry-
fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 627–634, New York,
NY, USA, 2002. ACM. 8, 9

[Wil14] Ryan Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM), 61(1):1–32,
2014. 5

[Wil16] R Ryan Williams. Natural proofs versus derandomization. SIAM Journal on Computing,
45(2):497–529, 2016. 5, 6

[Yao82] Andrew C Yao. Theory and application of trapdoor functions. In Foundations of Computer
Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 80–91. IEEE, 1982. 1

A Quasi-poly and Quasi-subexp functions

Let us define

Fk,c(n) = Exp (k, c · Log (k − 1, n)) ,

so that Uk = Fk, 1
2

and Wk = Fk, 2
3
. We claim:

Claim 32. For constants k ≥ 3, 0 < c < 1, Fk,c is sub-exponential and above half-exponential.

This proves Claims 28 and 29.

Proof. We first notice that Fk+1,c(n) < Fk,c(n) for sufficiently large n. To see that notice that:

Fk,c(n) = Exp (k, c · Log (k − 1, n)) , and

Fk+1,c(n) = Exp (k + 1, c · Log (k, n)) = Exp
(
k, 2c·Log(k,n)

)
= Exp (k, (Log (k − 1, n))c) .

and the claim follows, because for every fixed k, (Log (k − 1, n))c ≤ c · Log (k − 1, n) for large enough n.

F3,c(n) = 22
2c·log logn

= 22
logc n

is sub-exponential because for any ε > 0 we have 2log
c n < nε = 2ε logn

for n large enough. Hence for any k ≥ 3, Fk,c is sub-exponential because Fk,c ≤ F3,c for n large enough.
Also,

Fk,c(Fk,c(n)) > 2n for any constant k > 2 : We have:

Fk,c(Fk,c(n)) = Fk(Exp (k, c · Log (k − 1, n)))

= Exp (k, c · Log (k − 1,Exp (k, c · Log (k − 1, n))))

= Exp (k, c · Exp (1, c · Log (k − 1, n)))

= Exp (k, c · (Log (k − 2, n))c) .

18

Also,

2n = Exp (k, Log (k − 1, n)) .

The claim follows since c · (Log (k − 2, n))c ≥ Log (k − 1, n) for large enough n as c · xc ≥ log x
for c > 0 and large enough x.

A.1 Wk

The sequence Wk was defined in Eq (3) by

Wk(n)
def
= Exp

(
k,

2

3
Log (k − 1, n)

)
. (3)

We first prove Claim 30 which we restate now:

Claim 30. For any constant k > 4 and sufficiently large n,

Wk(m) ≥ Uk(m
logm),

logWk(m) ≥ Wk(log
4m).

Proof. For the first item,

Uk(m
logm) = Exp

(
k,

1

2
Log

(
k − 1,mlogm

))
= Exp

(
k,

1

2
Log

(
k − 2, (logm)2

))
= Exp

(
k,

1

2
Log (k − 3, 2 log logm)

)
= Exp

(
k,

1

2
Log (k − 4, log log logm+ 1)

)
≤ Exp

(
k,

2

3
Log (k − 4, log log logm)

)
= Exp

(
k,

2

3
Log (k − 1,m)

)
= Wk(m).

For the second item,

logWk(m) = log Exp

(
k,

2

3
Log (k − 1,m)

)
= Exp

(
k − 1,

2

3
Log (k − 1,m)

)
= Exp

(
k − 1,

2

3
Log (k − 3, log logm)

)
> Exp

(
k − 1, (4Log (k − 3, log logm))2/3

)
> Exp

(
k − 1, (Log (k − 3, 4 log logm))2/3

)
= Exp

(
k − 1, (Log

(
k − 2, log4m

)
)2/3

)
= Exp

(
k,

2

3
Log

(
k − 1, log4m

))
= Wk(log

4m),

where the first inequality is because 2
3x > (4x)2/3 for x large enough, and the second inequality is because

Log (k′, 4x) < 4Log (k′, x) for any fixed k′ > 1 and sufficiently large x.

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

