
Leakage-Resilient Extractors and Secret-Sharing against Bounded

Collusion Protocols

Eshan Chattopadhyay

Cornell University

eshanc@cornell.edu

Jesse Goodman

Cornell University

jpmgoodman@cs.cornell.edu

Vipul Goyal

Carnegie Mellon University

vipul@cmu.edu

Xin Li

Johns Hopkins University

lixints@cs.jhu.edu

Abstract

In a recent work, Kumar, Meka, and Sahai (FOCS 2019) introduced the notion of
bounded collusion protocols (BCPs), in which N parties wish to compute some joint function
f : ({0, 1}n)N → {0, 1} using a public blackboard, but such that only p parties may collude at
a time. This generalizes well studied models in multiparty communication complexity, such as
the number-in-hand (NIH) and number-on-forehead (NOF) models which are just endpoints
on this rich spectrum. We construct explicit hard functions against this spectrum, and achieve
a tradeoff between collusion and complexity. Using this, we obtain improved leakage-resilient
secret sharing schemes against bounded collusion protocols.

Our main tool in obtaining hard functions against BCPs are explicit constructions of leakage
resilient extractors against BCPs for a wide range of parameters. Kumar et al. (FOCS 2019)
studied such extractors and called them cylinder intersection extractors. In fact, such extractors
directly yield correlation bounds against BCPs. We focus on the following setting: the input
to the extractor consists of N independent sources of length n, and the leakage function Leak :
({0, 1}n)N → {0, 1}µ ∈ F is a BCP with some collusion bound p and leakage (output length)
µ. While our extractor constructions are very general, we highlight some interesting parameter
settings:

1. In the case when the input sources are uniform, and p = 0.99N parties collude, our
extractor can handle nΩ(1) bits of leakage, regardless of the dependence between N,n.
The best NOF lower bound (i.e., p = N − 1) on the other hand requires N < log n even
to handle 1 bit of leakage.

2. Next, we show that for the same setting as above, we can drop the entropy requirement
to k = polylog n, while still handling polynomial leakage for p = 0.99N . This resolves an
open question about cylinder intersection extractors raised by Kumar et al. (FOCS 2019),
and we find an application of such low entropy extractors in a new type of secret sharing.

We also provide an explicit compiler that transforms any function with high NOF (distribu-
tional) communication complexity into a leakage-resilient extractor that can handle polyloga-
rithmic entropy and substantially more leakage against BCPs. Thus any improvement of NOF
lower bounds will immediately yield better leakage-resilient extractors.

Using our extractors against BCPs, we obtain improved N -out-of-N leakage-resilient secret
sharing schemes. The previous best scheme from Kumar et al. (FOCS 2019) required share size
to grow exponentially in the collusion bound, and thus cannot efficiently handle p = ω(logN).
Our schemes have no dependence of this form, and can thus handle collusion size p = 0.99N .

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 60 (2020)

1 Introduction

1.1 Multiparty communication complexity and leakage-resilient secret sharing

Multiparty communication complexity offers an elegant and concrete framework in which to pursue
lower bounds. In this model of computation, some N parties wish to collectively compute a joint
function f : ({0, 1}n)N → {0, 1}, typically using a number-in-hand (NIH) or number-on-forehead
(NOF) protocol. In both models, the parties are allowed to freely communicate any plans before
the protocol begins, and there is a shared blackboard on which they may communicate thereafter.
In an NIH protocol, each party can see just one input, while in an NOF protocol, each party can
see all but one input. Both protocols proceed in rounds, where one party may write a single bit on
the blackboard, using any bits they can see. Once everyone agrees that the most recent bit on the
blackboard is the solution (according to their strategy made in the planning phase), the protocol
terminates. The maximum number of bits written on the blackboard, over all possible inputs, is
the communication complexity of the protocol, while the minimum communication complexity over
all protocols computing f is the communication complexity of f .

Multiparty communication protocols offer an attractive model in which to pursue lower bounds,
as they strike a nice balance between being simple enough to reason about combinatorially, yet
rich enough to capture seemingly unrelated complexity classes. For example, if we write down
a boolean function f : ({0, 1}n)N → {−1, 1} in the cells of a multi-dimensional matrix, one can
lower bound its NOF communication complexity by upper bounding the discrepancy of certain
well-structured subsets, called cylinder intersections - and indeed, the best known lower bounds
of Ω(n/2N) are achieved with this method [BNS89]. Furthermore, by a well-known circuit depth
reduction [Yao90, BT94] and observation by Razborov and Wigderson [RW93] about simulating
such circuits with NOF protocols, it is known that significantly improving these communication
lower bounds would yield a breakthrough in circuit complexity, by providing explicit lower bounds
against ACC0.

Beyond their use in proving lower bounds against other models of computation, strong lower
bounds against multiparty communication protocols find great applicability in settings where hard-
ness is considered “good.” In [KMS19], Kumar, Meka, and Sahai establish a close connection be-
tween functions with high NOF communication complexity, and the construction of secret sharing
schemes. This cryptographic primitive captures the natural setting of a central authority who
wishes to share some secret (e.g., missile launch codes) among a group of somewhat trusted indi-
viduals, so that any t of them may reconstruct the secret, but any fewer than t individuals cannot
recover any information.

Kumar, Meka, and Sahai study a much stronger variant of secret sharing, known as leakage-
resilient secret sharing. In addition to the above thresholding guarantees, a leakage-resilient se-
cret sharing scheme guarantees that the secret will remain statistically hidden even against much
stronger adversaries. The adversaries they consider are called bounded collusion protocols, which
are parameterized by a collusion bound p and a leakage bound µ. This class of adversaries provides
a natural spectrum of communication protocols between NIH and NOF, and are defined as follows.
A protocol f : ({0, 1}n)N → {0, 1}µ is in the class BCP(µ, p) if each output bit is a function of at
most p inputs and the earlier output bits. Informally, such a protocol represents p parties colluding
at each of the µ rounds to write a bit on a shared chalkboard. Thus, the case p = 1 captures NIH
protocols, while p = N − 1 captures NOF protocols. (See Section 3.2 for formal definitions.)

In order to construct such leakage-resilient secret sharing schemes, [KMS19] observe that there is

1

a simple way to equip a standard additive secret sharing scheme with an NOF-hard function in order
to create a secret sharing scheme that is leakage-resilient against the same class (NOF protocols).
However, there is a catch: because the best NOF lower bounds are of the form Ω(n/2N), this
translate into requiring N = O(log(n)) on the secret sharing scheme in order to handle just µ = 1
bit of leakage. This is even more pernicious than it looks: because N represents the number of
parties, and n the number of bits held by each party, this translates into a secret sharing scheme
that requires share size, n, to grow exponentially in number of participants, N . Because efficiency
in secret sharing is classified by share size growing polynomially in N , we must do much better.

Using a nice trick on reusing shares with perfect hash families, Kumar, Meka, and Sahai are
able to work around this issue (and do so more efficiently than simply concatenating several smaller
secret sharing schemes in parallel). However, while they remove the exponential gap between N,n,
they incur an exponential gap in the collusion that can be handled, which drops from p = N − 1
to p = O(logN). This is again an artifact of the Ω(n/2N) NOF-lower bound on the function they
use to construct their schemes.

A natural question is whether these schemes can be improved to handle p = ω(logN) collusion,
perhaps by relying on NOF-hard functions in less of a black box manner. In particular, since the
goal of these secret sharing schemes is to handle leakage-resilience from general bounded collusion
protocols, it makes sense to instead try to directly construct hard functions against these protocols.
Furthermore, by filling out the spectrum of hard functions between NIH and NOF protocols, we
can better understand the complexity-collusion tradeoff as p ranges from 1 to N − 1. This could
provide some insight into building harder functions against NOF protocols, in an effort to unlock
the applications discussed earlier.

The main focus of the paper is to do exactly this: explicitly construct hard functions against the
entire spectrum of bounded collusion protocols. We find that even for p = 0.99N collusion, we are
able to construct functions that have strong correlation bounds against bounded collusion protocols
that output nΩ(1) bits. Thus, while the best NOF bounds can handle 1 bit of p = N − 1 collusion
for N = O(logn), we show that just by dropping p a little, we can handle many bits of collusion
and remove any restriction between N,n. Our results have corresponding consequences in leakage-
resilient secret sharing, and are in fact much more general than what is stated above. In particular,
we explicitly construct leakage-resilient extractors (and compilers to create such objects), which we
describe next.

1.2 Leakage-resilient extractors

The area of randomness extraction focuses on producing high quality randomness (i.e, almost purely
random bits) by purifying defective sources of randomness. This is motivated by the fact that
randomness is widely used in various areas of computer science and beyond, with most applications
requiring samples from a distribution that is close to uniform. However, it is often the case that
easily accessible randomness (e.g., from sources in nature such as Zener diodes, atmospheric noise
etc) is far from being a stream of independent, uniformly random bits, and at best contains some
entropy. A second motivation for studying weak sources of randomness comes from cryptography. In
particular, suppose we start out with a uniform distribution X on n bits, and some adversary leaks
t < n bits of information about X. The leak can be modeled as some function f : {0, 1}n → {0, 1}t
acting on X, thus the conditional distribution X|f(X) is no longer close to uniform, but intuitively
still contains n− t bits of entropy in it.

We follow the standard way of measuring the quality of a weak source X using the notion of

2

min-entropy defined as as H∞(X) = minx(log(1/Pr[X = x])).
We will focus on this second view of a weak source (i.e., based on leakage by adversaries),

and the main object that we explicitly construct in this paper is a leakage-resilient extractor. A
leakage-resilient extractor Ext against a function class F is a deterministic function that, given any
weak randomness, outputs bits that look uniform, even conditioned on the output of any f ∈ F
applied to the input. Formally, they are defined as follows.

Definition 1. Let X be a family of random variables over {0, 1}n, and let F be a family of leakage
functions of the form f : {0, 1}n → {0, 1}µ. We say that a (deterministic) function Ext : {0, 1}n →
{0, 1}m is an (X ,F)-leakage-resilient extractor with error ǫ if for every X ∈ X , f ∈ F ,

|Ext(X) ◦ f(X)−Um ◦ f(X)| ≤ ǫ,

where Um represents a uniform random variable over {0, 1}m that is independent of f(X).

For any nontrivial class of functions F (i.e., those that include the constant functions), it turns
out that an (X ,F)-leakage-resilient extractor is equivalent to a function that has correlation at
most 2ǫ with any function f ∈ F , with respect to any distribution X ∈ X . We will leverage this
connection in both directions, and we will focus on setting F as the class of bounded collusion
protocols BCP(µ, p) which was discussed above (also see Section 3.2). Further we will focus on
the setting of the class of X being such that each weak source comprises of multiple independent
sources. Indeed, randomness extraction from independent sources has been very well studied [SV86,
CG88,BIW06,Li15,CZ19] and we view constructing leakage resilient extractors in this setting to be
an interesting question on its own right. We note that the study of leakage resilient extractors in
this particular setting was initiated by Kumar et al. [KMS19], and they called such leakage resilient
extractors as cylindrical intersection extractors.

Using the above connection to correlation bounds, we see that a leakage-resilient extractor
against BCP(µ,N − 1) for uniform sources with error ǫ is exactly a function with ǫ-distributional
(NOF) communication complexity of > µ. Before this work, it was known how to construct hard
functions against BCP(µ, p) for p = N−1 and µ = Ω(n/2N), or for p = 1 and µ = Ω(Nn). However,
constructing hard functions against this entire spectrum of communication protocols has not been
done, and thus the complexity-collusion tradeoff between µ, p has not been explored. This is the
main contribution of our paper, and we find that, for example, even if we just drop p to p = 0.99N ,
we can construct functions with strong correlation bounds against µ = nΩ(1).

1.3 Summary of our results

Our first main result is a leakage-resilient extractor for uniform sources that establishes strong
correlation bounds against the entire spectrum of BCP(µ, p).

Theorem 1. For all sufficiently large N,n ∈ N and any p ≤ N −1, there exists an explicit leakage-
resilient extractor against BCP(µ, p) for min-entropy k = n and leakage µ < ξ, with output length
m ≤ ξ and error ǫ = 2−ξ, where

ξ = Ω

(
n

log(N/p)
log(N/p)+1

)
.

Perhaps the most interesting setting of this result is when the collusion is set to p = 0.99N . Here,
our extractors offer exponentially small correlation against nΩ(1) bits of leakage, while outputting

3

nΩ(1) bits, and having no restriction between N and n. This should be compared with classic NOF
bounds against p = N − 1, which cannot tolerate a single bit of leakage when N ≥ log n. Next, we
show that we can effectively maintain these results in the low min-entropy setting.

Theorem 2. There is a universal constant C such that for all sufficiently large N,n ∈ N and any
p ≤ N − 2, there exists an explicit leakage-resilient extractor against BCP(µ, p) for min-entropy
k = logC n and leakage µ < ξ, with output length m ≤ ξ and error ǫ = 2−ξ, where

ξ = k
Ω
(

log((N−1)/p)
log((N−1)/p)+1

)

.

This extractor again has exponentially small correlation against a polynomial amount of leakage
with collusion p = 0.99N , but it now works even given sources with min-entropy just k = logC n.
This answers an open question of [KMS19], where it was asked to construct an object even for just
p = 2 and k = 0.01n.

The main ideas behind the construction of our explicit extractors actually arise from a more
general explicit object that we construct, which can transform any function with high distribu-
tional NOF communication complexity into a low-entropy leakage resilient extractor that achieves
a collusion-complexity tradeoff against BCP. This explicit compiler, when instantiated with the
best NOF-hard functions, not only creates extractors like the ones above, but is guaranteed to ob-
tain improved leakage-resilient extractors against BCP as NOF bounds are strengthened over time.
These general theorems offer an avenue for reducing the 1 in the denominator of the theorems above
to o(1), which would allow for p = N(1− o(1)) collusion while still handling kΩ(1) leakage. Below,
we record one interesting specialization of our much more general theorems (Theorems 9 and 10),
which work for any NOF-hard function and appear in Section 6.

Theorem 3. Let C be a sufficiently large universal constant, and suppose there exists an explicit
function f0 : ({0, 1}n0)N0 → {0, 1} with ǫ0-distributional communication complexity µ0 = Ω(n/NC),
where ǫ0 = 2−µ0. Then for all sufficiently large N,n ∈ N and any p ∈ N such that 0.01N ≤ p ≤
N−3, there exists an explicit leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1} against BCP(µ, p)
for entropy k ≥ logC n and leakage µ ≤ ξ, with error ǫ = 2−ξ, where

ξ = k
Ω
(

log((N−2)/p)
log((N−2)/p)+log log k/ log k

)

.

As an application of our leakage-resilient extractors, we immediately obtain (using standard
techniques) much improved leakage-resilient secret sharing schemes. We prove the following theo-
rem.

Theorem 4. There exists an N -out-of-N secret sharing scheme (Share,Rec), of the form Share :
{0, 1}m → ({0, 1}n)N ,Rec : ({0, 1}n)N → {0, 1}m, that shares secrets of length m into N shares of
length n that is leakage-resilient against BCP(µ, p) with error ǫ. The shares have length

n = O

(
(m+ µ+ log(1/ǫ))

log(N/p)+1
log(N/p)

)
,

and the scheme runs in time poly(N,n).

The most interesting setting of the leakage-resilient secret sharing scheme is again when p =
0.99N . In this case, our scheme can efficiently tolerate up 0.99N parties colluding, as the share

4

size remains polynomial in m,µ, log(1/ǫ), and in fact becomes independent of N . This offers an
exponential improvement over the previous best scheme from [KMS19], which could only handle
p = O(logn) parties colluding.

Finally, in Section 8, we show that our low-entropy leakage-resilient extractor finds a natural ap-
plication in a new variant of secret sharing (called seeded secret sharing), in which the participating
parties are able to use some existing stored information on their device to make the scheme much
more efficient. Informally, we obtain the following theorem (it appears formally as Theorem 14).

Theorem 5. Suppose there exist N parties, each holding some old data, represented as a random
variable Xi over {0, 1}n. Then as long as the min-entropy in each party’s old data is at least

k ≥ max

{
polylogn, (m+ µ+ log(1/ǫ))

O
(

log((N−1)/p)+1
log((N−1)/p)

)}
,

there is a way to create an efficient N -out-of-N secret sharing scheme that is leakage-resilient
against BCP(µ, p) with error ǫ, and which shares secrets of length m, just by asking each party to
append m bits to their old data.

Last, we note that in our general theorems proved throughout the paper, we actually have an
extra parameter ν denoting the number of bits leaked during each of the µ rounds. Above and in
the literature, ν is taken to be 1. In most of our theorems, we can actually take as many as ν = n0.99

bits to be leaked each round, while still handling the same number of rounds (asymptotically), µ.

1.4 Relevant prior work

Leakage resilient secret sharing (LRSS) as studied in this work was first introduced by Goyal and
Kumar [GK18], and, independently by Benhamouda et al [BDIR18]. Goyal and Kumar [GK18]
constructed a 2-out-of-n leakage resilient secret sharing scheme in the individual leakage model.
While not explicitly noted in the paper, their proof shows that their non-malleable secret sharing
scheme is also leakage resilient giving a construction of a t-out-of-n leakage resilient secret sharing
scheme. Benhamouda et al [BDIR18] were interested in studying the leakage-resilience of existing
secret sharing schemes. Inspired by the results of Guruswami and Wootters [GW16], they investi-
gated the leakage resilience of Shamir secret sharing over larger characteristic fields. They showed
that, for large enough fields and large enough n, Shamir secret sharing scheme is leakage-resilient
(with leakage-resilience rate close to 1/4) as long as the threshold t is large.

A Subsequent work by Srinivasan and Vasudevan [SV19] focused on building LRSS with high
rate while still remaining in the individual leakage model. They built high rate compilers to
convert any secret sharing in to a leakage-resilient one. In another work, Aggarwal et al. [ADN+19]
construct leakage-resilient secret sharing schemes for any access structure from any secret sharing
scheme for that access structure again in the individual leakage model. Subsequently, Nielsen and
Simkin [NS19] showed lower bounds on the share size of information theoretically secure LRSS
under certain conditions.

Earlier works which studied leakage resilience in the context of secret sharing include the work
of Boyle et al. [BGK14] who construct leakage-resilient verifiable secret sharing schemes where the
sharing and reconstruction are performed by interactive protocols. In a beautiful work, Dziem-
bowski and Pietrzak [DP07] construct secret sharing schemes (called intrusion resilient) that are

5

resilient to adaptive leakage where the adversary is allowed to iteratively ask for leakage from dif-
ferent shares. However their reconstruction procedure is interactive and requires as many rounds
of interaction as the adaptivity of the leakage tolerated.

Beyond secret sharing, a number of beautiful works have studied the leakage resilience of other
primitives in cryptography such as signatures, encryption, zero-knowledge and secure multi-party
computation. See a recent survey by Kalai and Reyzin [KR19].

Organization We begin with an overview of our constructions in Section 2. Then, after intro-
ducing some technical preliminaries in Section 3, we proceed to Section 4, where we construct the
first stage of our compiler, in which we adapt a function with high NOF communication complexity
into a leakage-resilient extractor that can handle more leakage when there is less collusion. In
Section 5, we build the second stage of our compiler, which further improves the previous construc-
tion by dropping its entropy requirement from k = n to k = logC n. Then, in Section 6, we give an
argument for why our compiler can actually handle adaptive adversaries, and we present the main
theorems about our compiler. After completing our compiler, we move on to Section 7, where we
give a much simpler (but not generalizable) self-contained construction of our best leakage-resilient
extractor against BCPs. Finally, in Section 8 we show how our leakage-resilient extractors give
much improved leakage-resilient secret-sharing schemes, and we introduce a new type of secret
sharing made possible by our low-entropy leakage-resilient extractor.

2 Overview of our constructions

The main goal of this paper is to construct leakage-resilient extractors against bounded collusion
protocols. Almost by definition, a function that has ǫ-distributional (NOF) communication com-
plexity of µ is a leakage-resilient extractor against BCP(µ′, p) for entropy k = n and error ǫ, as long
as µ′ ≤ µ and p ≤ N − 1. There are two parameters here that we would like to improve:

1. Even though an NOF-hard function can handle any collusion bound from p = 1 to p = N −1,
it is not clear how the amount of leakage µ it can handle (i.e., its communication complexity)
is related to the collusion bound p on the protocol being used against it. Thus, given that an
NOF-hard is engineered to handle p = N − 1 collusion, its general restriction on µ is much
too strong for when p is small. Intuitively, it should be easier to handle larger µ when p is
smaller, and thus we would like to explore this collusion-complexity tradeoff by constructing
hard functions against BCP that establish such a relationship.

2. At face value, an NOF-hard function only gives a leakage-resilient extractor for uniform
sources (k = n), which means that in the traditional sense, one might hesitate to even call
such a function an extractor. While it is not too difficult to see that an NOF-hard function
can actually handle a little missing entropy by treating it as leakage (see Lemma 15), this
approach does not offer any hope for achieving k = o(n). Besides being a natural question,
significantly reducing this entropy requirement was raised as an open problem in [KMS19],
and further, we show that low-entropy leakage-resilient extractors enable much more efficient
leakage-resilient secret sharing schemes in settings when shares are stored on devices that are
already storing some unpredictable data (see Section 8).

Our main result is the explicit construction of a compiler that can take in any NOF-hard function
as input and output a leakage-resilient extractor satisfying the above two properties: i.e., (1) it

6

is hard against the entire spectrum of bounded collusion protocols, with increasing hardness as
collusion decreases; and (2) it can handle polylogarithmic entropy.

In what follows, we start by outlining our compiler. First, we describe how to build upon
an NOF-hard function so that it can handle more leakage when there is less collusion (while still
requiring k = n). Then, we show that by building upon this construction even further, we can
drop the entropy requirement from k = n to k = logC n. While these initial constructions work for
nonadaptive protocols, this is indeed part of the plan: initially requiring a non-adaptive leakage
adversary gives us much stronger control over its behavior, and we show that in fact, any leakage-
resilient extractor against such non-adaptive protocols also works for all adaptive protocols (up to
some factor in the error, which is small enough in most instantiations to disappear in the already-
present asymptotic notation).

After constructing our compiler, we may instantiate it with a simple NOF-hard functions that
exhibit lower bounds of Ω(n/2N) against this regime (i.e., matching the best known). Interestingly,
it turns out that for one specific function (finite field multiplication, whose lower bounds were
proved in [FG13]), there is a simple modification that turns it into a leakage-resilient extractor
with even slightly better parameters than those obtained by plugging it into our compiler in a
black box manner. The proof is similar to that of our compiler, but is in fact much simpler, as
some of the features that needed to be built onto our compiler appear to be directly baked into
the finite field multiplication function. It appears, self-contained, in Section 7. Thus, while the
best explicit leakage-resilient extractors that we report are from this simpler proof, we emphasize
that our compiler is future-proof, in the sense that given any improvement to existing NOF lower
bounds, the compiler explicitly produces even better leakage-resilient extractors which cannot be
obtained by way of the simpler method.

Finally, using a known connection between leakage-resilient secret sharing and hard functions
against communication protocols, we show how to use our leakage-resilient extractors to obtain
much improved leakage-resilient secret sharing schemes against bounded collusion protocols. We
also show that since our extractors can handle low entropy, they offer much more efficient secret
sharing schemes in at least one new, natural setting.

2.1 Handling more leakage when there is less collusion

In order to build a compiler that transforms NOF-hard functions into good leakage-resilient ex-
tractors, the first step is to figure out how we can build upon such functions in order to spread
their hardness more evenly across the collusion spectrum p = 1, . . . , N − 1. In particular, we want
the function to get harder as p decreases. Let us start by formalizing the setting a little. We are
given as input a function hard : ({0, 1}n)N → {0, 1}m (usually m = 1) that has ǫ-distributional
communication complexity of > µ0 against all NOF protocols. Equivalently, such a function has
the following property, for any Leak : ({0, 1}n)N → {0, 1}µ ∈ BCP(µ0, N − 1):

|hard(UNn) ◦ Leak(UNn)−Um ◦ Leak(UNn)| ≤ ǫ,

and thus hard is a leakage-resilient extractor against BCP(µ0, N − 1) for entropy k, with error ǫ.
Given this definition alone, it is not clear at all how to go about constructing an object Ext :
({0, 1}n)N → {0, 1}m from hard that is leakage-resilient against BCP(µ, p) for general p, where µ
is approximately µ0 for p = N − 1, but is ideally much larger when p is smaller. Indeed, the class
BCP seems rather complex: in any given round, the colluding party of p individuals can decide

7

what leakage function they will apply to their collectively held inputs by looking at the bits that
have been leaked thus far. Even worse, the membership of the colluding party can depend on the
bits that have been leaked thus far. Thus, given two different inputs and any given round i, the
individuals colluding during this round may be different according to the different inputs.

Perhaps the situation will become simpler if we consider non-adaptive collusion protocols, ap-
propriately represented by the class name nBCP(µ, p). Luckily, we will see in a few subsections that
in fact, constructing leakage-resilient extractors in the non-adaptive setting automatically gives
leakage-resilient extractors for the adaptive setting (modulo some blow up in error that can usually
be dismissed). Thus, we take this approach. In order to appreciate the simplicity of nBCP, one
may visualize any function Leak : ({0, 1}n)N → {0, 1}µ ∈ nBCP(µ, p) as a bipartite graph with N
nodes on the left and µ nodes on the right, such that each right node has degree p. Here, the left
nodes represent the N inputs to Leak, and each right node represents one output bit of Leak. This
visualization will be useful in all of our constructions.

Recall that we want to use hard to construct a leakage-resilient extractor with a good tradeoff
between µ and p. To get an understanding for how smaller p may allow for larger leakage µ, let us
try, as a first step, to construct a basic leakage-resilient extractor from scratch that exhibits this
tradeoff in some form. First, consider the case where p = 1, where the bipartite graph described
above has right-degree 1. A natural approach for constructing a leakage-resilient extractor in this
case is to simply apply a standard low-entropy two-source extractor Ext : ({0, 1}n)2 → {0, 1}m on
two of the inputs. In order to show the leakage-resilience of Ext against Leak, we must show that
given a function Ext′ : ({0, 1}n)N → {0, 1}m defined as applying Ext on its first two inputs, the
following holds:

|Ext′(UNn) ◦ Leak(UNn)−Um ◦ Leak(UNn)| ≤ ǫ.

Because Ext is an extractor, it will output uniform bits (especially since it is given uniform bits
as input). However, we want Ext to output uniform bits even conditioned on the output of Leak.
Equivalently, we want to fix the bits outputted by Leak one-by-one and ensure that the uniformity
of Ext’s output is not destroyed. In this case, this is not difficult: a standard lemma says that given
any random variables X,Y, fixing Y reduces the entropy of X by approximately |Y| bits, with
high probability. Thus, even if µ = 0.99n, we may safely fix each bit one by one and ensure that the
entropy of each source inputted to remains on the order of Ω(n). Most importantly, because p = 1,
no output bit depended on both the sources inputted to Ext, and thus they remain independent,
and the extractor succeeds in outputting uniform bits, even after all the fixings.

Does this argument work for larger p? Yes, to some degree. The key property used above to
ensure correctness was that Ext was called on two sources over which no output bit jointly depends.
Notice that even if p > 1, and µ is not too large, then there will be some pairs of inputs among the
N inputs over which no output bit jointly depends. Visualizing the bipartite graph from earlier,
this means that there are some pairs of nodes on the left that do not appear together in the
neighborhood of any node on the right. Notice that there will be one such pair of nodes as long as
µ
(
p
2

)
<
(
N
2

)
, because any of the µ nodes on the right can have at most

(
p
2

)
pairs of vertices together

in its neighborhood.
Now that we know that if µ

(
p
2

)
<
(
N
2

)
, there exists some pair of sources over which calling Ext

would have allowed for leakage-resilience against a specific leak, how do we choose which sources we
should call Ext on? The answer is to call Ext on all pairs of sources and XOR the results, and treat
any bad call to Ext (over sources involved in some joint leakage) as leakage itself. In particular,

8

given N uniform sources X = (X1, . . . ,XN), we may prove

|Ext′(X) ◦ Leak(X)−Um ◦ Leak(X)| = |(⊕i 6=j∈[N]Ext(Xi,Xj)) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ǫ.

as follows. Let i∗ 6= j∗ ∈ [N] denote the source indices not involved in joint leakage, fix every other
source, and fix every output bit of Leak and every call Ext(Xi,Xj) where {i, j} 6= {i∗, j∗}. By
using the entropy lemma from before, we know the fixings of Leak will drop the entropy of each of
Xi∗ ,Xj∗ by at most µ bits, and if we are clever enough to fix the XOR of all calls involving Xi∗ at
once (and the same for Xj∗), this further drops the entropy of each of Xi∗ ,Xj∗ by at most m, the
output length of Ext. Furthermore, Xi∗ ,Xj∗ remain independent, as no leak (from Leak or from
the Ext calls we fixed) depended on both of them. Thus the output of Ext′ remains uniform even
after all these conditionings, and so we see that it is a leakage-resilient extractor against nBCP(µ, p)
so long as the entropy requirement, k, of Ext satisfies k ≤ n − µ −m, or rather µ ≤ n − k −m.
Combining this with our earlier requirement µ

(
p
2

)
<
(
N
2

)
, we see that the extractor works in general

as long as µ < min{n− k−m,
(
N
2

)
/
(
p
2

)
} which is about µ < min{n− k, (N/p)2} when we only care

about our extractor outputting 1 bit.
Given the basic construction above, we have successfully constructed leakage-resilient extractors

against nBCP(µ, p) that exhibits some tradeoff between µ, p. However, this tradeoff is not so good:
if either N = O(1) or p = Ω(N), then we can only tolerate a constant number of leaked bits. It
would be nice if we could get rid of this issue while maintaining the same general idea, perhaps by
using a more powerful object than a two-source extractor.

This is where our compiler begins. If we instead instantiate the above construction with an
NOF-hard function hard that is leakage-resilient against nBCP(µ0, N−1) for full entropy with error
ǫ0, what do the above ideas give us? First, we must specify that instead of applying hard over all
pairs of sources, we will be applying it over all t-tuples of sources, for some t to be decided later.
Now hard has the form hard : ({0, 1}n)t → {0, 1}m, and we define our leakage-resilient extractor as
the following function, defined over all X = (X1, . . . , XN) ∈ ({0, 1}n)N

Ext′(X) :=
⊕

S∈([N]
t)

hard(XS),

where XS represents (Xi)i∈S . Notice that hard is indeed an extractor, as otherwise it would have
strong correlation with some constant NOF protocol. We want to know, however, for what class
BCP(µ, p) is Ext′ leakage-resilient against? Let us consider some Leak : ({0, 1}n)N → {0, 1}µ and
try to understand when |Ext′(UNn) ◦ Leak(UNn) − Um ◦ Leak(UNn)| ≤ ǫ holds. Using the same
ideas as before, we can show this holds if Ext′(UNn) is still ǫ-close to Um, even after a series of
fixings that fully fix Leak(UNn).

Notice that since hard is leakage-resilient against nBCPt,n(µ0, t− 1), if Ext′ makes some call to
hard over t sources, say X1, . . . ,Xt, that are not all together involved in some joint leak (i.e., not
fully contained in some neighborhood of a right vertex in the bipartite graph), then after fixing all
other sources, the output of this call to hard will look uniform even after fixing all bits of leakage, so
long as there are not too many. We call such a call a special call on a special t-tuple. Furthermore,
because every other call to hard shares at most t − 1 sources with the special call, these may also
be fixed without ruining the output of the special call to hard, by being treated as NOF leakage
against this call (again, it makes sense to fix the XOR of all non-special hard calls that do not
include X1 at once; the same goes for X2 through Xt).

9

Notice that above, we have fixed µ +mt bits total, and so as long as hard is leakage-resilient
against nBCP(µ0, t− 1) for µ0 > µ+mt, Ext′ will be leakage-resilient against nBCP(µ, p). Further-
more, since each leaked bit can depend on p sources, the “dependency neighborhood” of this bit
can depend on at most

(
p
t

)
distinct t-tuples, and thus a special call to hard is guaranteed as long

as µ
(
p
t

)
<
(
N
t

)
. Thus, if we set Ext′ to output just 1 bit, we see that it is leakage-resilient against

nBCP(µ, p) roughly as long as µ < min{µ0(t, n) − t, (N/p)t}, with error roughly equal to that of
hard. The parameter µ0(t, n) is the number of bits of NOF leakage hard can handle; the current
best known NOF-hard functions yield µ0(t, n) = Ω(n/2t).

Notice that even for constant t, the above bound is strictly better than the first construction
from two-source extractors (ignoring constant factors). However, one might have noticed that in
order to keep the above construct explicit in N,n, the parameter t must be a constant, since we call
the subroutine 2Ext over all t-tuples, of which there are roughly N t. Thus, we again run into the
problem of not being able to handle more than a constant number of leaked bits when N = O(1)
or p = Ω(N). To get rid of this annoying restriction, we need a way to allow t = ω(1).

In fact, there is a relatively straightforward way to adapt the above construction so that it
remains explicit for arbitrarily large (nonconstant) t. The trick is to use a sampler. In particular,
recall that our sources started off uniform, and thus we have a lot of available uniform randomness
that can be used for sampling t-tuples over which to call the subroutine hard, instead of just
applying hard to all possible t-tuples. The sampling procedure will works as follows. First, we will
split each source in half. The first half will be used to sample t-tuples of sources, and the same
extractor from before will be applied over the second halves of t-tuples sampled using the first half.
The sampler thus has Nn/2 uniform bits at its disposal, and thus for any t ∈ [N], even a naive
sampler can efficiently produce Ω(n) samples of t-tuples.

Assume for now that with probability 1, the sampler succeeds at selecting a special t-tuple. Then
with probability 1 over fixing the uniform bits used to sample, our analysis is reduced exactly to
that of the earlier version of this construction (without the sampler), since it is not difficult to show
that the class nBCP is closed under restrictions. Notice, however, that there are

(
N
t

)
−µ
(
p
t

)
special

t-tuples, and thus the probability of any given sample selecting a special t-tuple is (
(
N
t

)
−µ
(
p
t

)
)/
(
N
t

)
.

Thus, if we slightly strengthen our earlier restriction for guaranteeing the existence of one special
t-tuple, µ

(
p
t

)
<
(
N
t

)
, to a restriction that guarantees the existence of a constant fraction of special t-

tuples, µ
(
p
t

)
< 0.5

(
N
t

)
, the probability that sampler fails to select a good t-tuple decays exponentially

in the number of samples, which is Ω(n).
Thus, using a sampler, we see that our new extractor is leakage-resilient against nBCP(µ, p)

as long as µ < min{µ0(t, n) − t, (N/p)t}, with error about ǫ = ǫ0(t, n) + 2−Ω(n), where t ∈ [N]
can be any function of N,n. Thus, whereas before we could not handle ω(1) bits of leakage when
N = O(1) or p = Ω(N), we can now do so for any N , even when p = 0.99N . Given existing
NOF-hard functions, µ0(t, n) = Ω(n/2t), and the best setting of t roughly yields the restriction

of µ < Ω(n
log(N/p)

log(N/p)+1), which means we can handle both a collusion bound up to p = 0.99N and
nΩ(1) bits of leakage. Significant improvements in NOF lower bounds would improve this result by
reducing the size of the constant 1 in the denominator of the exponent to o(1), which is especially
significant for the regime p ≥ N · (1− o(1)).

Thus, this construction provides a nice tradeoff between how much leakage µ can be handled
and how much collusion p can be handled, assuming that the given sources are uniform. This is
a strong assumption, however, and in the next section we show how to remove it by reducing the
entropy requirement from k = n to k = logC n.

10

2.2 Reducing the entropy requirement

A natural first step - and, as it turns out, hardest step - in reducing the entropy requirement of
our previous construction is to ask whether it can be easily adapted to handle even just a little
missing entropy, say k = 0.99n or even k = n(1 − o(1)). At first glance, this may seem easy -
indeed, it is not difficult to show that given an NOF-hard function hard for uniform sources, it can
actually handle a little missing entropy by treating it as leakage. Thus, our first construction in
the previous section that uses hard without the sampler (and requires t = O(1)) already works for
a little missing entropy. However, when we try to adapt the version with the sampler to handle
less-than-uniform sources, we run into trouble.

In particular, notice that our sampler required very heavily on using uniform bits to sample the
t-tuples, in the hope of finding a special t-tuple. If we do not guarantee that the sampler receives
uniform bits when it creates samples, we cannot guarantee that the probability of sampling a special
t-tuple remains (

(
N
t

)
−µ
(
p
t

)
)/
(
N
t

)
. Thus, we must find a way to create uniform bits for the sampler

in order to fix this construction to work with less-than-uniform entropy.
A natural idea is to apply a classical extractor over the bits (from the left halves of the sources,

say by grouping them into two blocks and applying a two-source extractor) before using them to
sample t-tuples from the right halves of the sources. Indeed, it will be the case that with very
high probability over fixing the left halves of each source, the sampler will now select a special
t-tuple with the claimed probability (which is Ω(1), given our restriction µ

(
p
t

)
<
(
N
t

)
). However,

now there is another problem: recall that our previous analysis in the uniform setting relied on
reducing the analysis of the sampling version of the extractor to the brute force “select-all-t-tuple”
version of the extractor. This cannot be done here, because now if we fix the left half of a source
(to obtain a sample), there is some (very small) chance that all of the entropy in the source is
destroyed. Usually this is no problem, but because we are using the left halves of the sources to
do the sampling in the first place, there is no clear way to guarantee that the sampler is not just
selecting special t-tuples whose entropy it has destroyed. So we need another idea.

Another natural idea is to ditch the technique of splitting the sources in half and using the left
halves for sampling, and instead dedicate a few sources in their entirety to help sample t-tuples
from the remaining sources. This will indeed avoid the problem with the previous idea. However,
there are two problems here. First, notice that the number of sources, q, you dedicate to sampling
must be large enough to produce at least Ω(n) samples of t-tuples. The t-tuples are over [N], and
thus it is required here that q ≥ log

(
N
t

)
. If we remove more than a few sources for sampling,

however, we run into the following detrimental effect. Previously, the restriction µ
(
p
t

)
< 0.5

(
N
t

)

sufficed for ensuring that each sample is a special t-tuple with probability Ω(1). In order to keep this
guarantee when removing q sources for sampling, we must replace the restriction with something
like µ

(
p
t

)
< 0.5

(
N−q
t

)
. This forbids p from exceeding N−q, which be variously damaging depending

on the relationship between N and n. We’d like to avoid this.
The solution is preprocess all of the sources by trying to make each one close to uniform before

applying the final extractor of the previous subsection. In order to do this, we make use of a strong
two source extractor (for high entropy) 2Ext, which has the guarantee that given two independent
sources X1,X2, each with entropy rate > 0.6, the output 2Ext(X1,X2) is very close to uniform,
even conditioned on X1, with high probability (say, with probability 1 − ǫ2Ext). The strength of
this object will allow us to sacrifice just one source in the preprocessing step, and barely tighten
our restriction to µ

(
p
t

)
<
(
N−1
t

)
. It works as follows.

Given high entropy sources X1, . . . ,XN , our leakage resilient extractor will create random vari-

11

ables Y1, . . . ,YN−1 by setting Yi := 2Ext(Xi,XN), and then apply the final extractor from the last
subsection to these N − 1 random variables. Upon fixing XN , the collection {Yi}i∈[N−1] become
mutually independent, and any given Yi becomes close to uniform with probability 1− ǫ2Ext. Thus
by a union bound, they are all close to uniform with probability 1−ǫ2Ext · (N−1). If we are content
with this sort of error, then this will all work out. However, we should not be content: ǫ2Ext is a
function of n, and so multiplying this error by N creates a total error that is a function of both N
and n, which would yield new restrictions between N,n.

Thus, requiring that all sources become close-to-uniform after fixing XN is too strong if we
want to keep error low. Instead, we observe that by a Markov argument, we can guarantee some
unknown 99% of the random variables {Yi}i∈[N−1] become uniform over fixing XN , with error
probability just O(ǫ2Ext). This is great and we have removed the factor of N from the error, but
now we have a few new small wrinkles we need to iron out.

First, the sampler is no longer receiving uniform bits to do its job, since it is using the left
half of every source {Yi}i∈[N−1], and we don’t know which Yi will be close-to-uniform after fixing
XN , just that some 99% of them will. Thus, we need to find a way to harvest uniform bits for
the sampler once again. Luckily, however, this is no longer so difficult. If we attempt to use our
first strawman technique of applying a classic extractor to the left halves of the sources before
feeding them into the sampler, it now works. This is because the sources we are using now are
the left halves of {Yi}i∈[N−1], which are close to uniform. Thus, upon fixing all the left halves
of {Yi}i∈[N−1] to obtain our samples, we are now guaranteed that for every such fixing, the right
halves still look close to uniform (of those that were originally close to uniform). Thus, we no
longer have a self-sabotaging sampler.

The next small issue is that even though the above discussion now guarantees our sampler
will, with error probability at most 2−Ω(n), sample a special t-tuple, some special t-tuples may
now contain sources that did not become uniform after fixing XN in the two-source extractor calls
from the very beginning. Indeed, we guaranteed that only 99% of all sources {Yi}i∈[N−1] would
look uniform after this fixing, and the subroutine NOF-hard function hard that we are calling over
t-tuples requires each input to have very high entropy in order to work. We can fix this problem
by using another Markov argument to show that upon fixing 2Ext, it is actually the case that with
error probability at most O(tǫ2Ext), 99% of all t-tuples of sources {Yi}i∈[N−1] will look uniform.
We notice that a factor of t is incurred in the error, and we remark that this is no big deal. Even
though we put in so much effort to avoid a factor of N in the error, note that this factor of t will
not introduce any new major restrictions between N,n, because even without it, the error of the
entire extractor comes from the error of the one special hard call, which is a function of (t, n) (and
indeed we may set t as small as we like).

Now that we know 99% of all t-tuples of {Yi}i∈[N−1] are close to uniform, and 50% of all t-

tuples are special (by the restriction µ
(
p
t

)
<
(
N
t

)
), we can once again guarantee that the sampler

will select a special t-tuple that contains only close-to-uniform sources with probability Ω(1) per
sample, and thus the sampler once again succeeds overall with probability 2−Ω(n). We briefly note
that even though the leakage functions are applied to the original sources {Xi}i∈[N], we can fix
any extra randomness left in these sources in order to make the leakage functions deterministic
functions of the same type on {Yi}i∈[N−1], and thus the leakage-resilience of this new extractor can
be established in the same way as the previous subsection.

To recap, our current leakage-resilient extractor does the following on receiving high-entropy
sources X1, . . . ,XN : first, apply a strong two-source extractor across the first N − 1 sources, using

12

the N th source as a common “seed”, to obtain random variables {Yi := 2Ext(Xi,XN)}i∈[N−1].
Then, break each Yi in half into random variables (Li,Ri), and note that the left halves will be
dedicated for sampling while the right will be dedicated to extracting. Group all {Li}i∈[N−1] into
two blocks, say LL := (L1, . . . ,L(N−1)/2) and LR := (L1+(N−1)/2, . . . ,LN−1). Then, using some

other two-source extractor 2Ext2, create near-uniform bits Ũ = 2Ext2(LL,LR). Sample t-tuples in(
[N]
t

)
by calling a naive sampler with Ũ as input to create a set of t-tuples Samp(Ũ), and finally

output ⊕
S∈Samp(Ũ)

hard(RS).

Now that we have established this robust framework in which to handle non-uniform sources,
it turns out that further dropping the entropy requirement all the way down to k = logC n is not
much more difficult, and requires sacrificing just one more source. This primary tool used in this
extension is an object called a strong two-source condenser, 2Cond, which has the guarantee that on
any two (n, k) sources X1,X2 with entropy k ≥ logC n, the output 2Cond(X1,X2) has length > kγ

for some small constant γ > 0, and entropy rate ≫ 0.99. In fact, 2Cond(X1,X2) has this entropy
rate even with very high probability over fixing X2. We’ll say it fails with probability ǫ2Cond over
this fixing.

We now construct our low-entropy leakage-resilient extractor as follows. Given N + 1 sources
of entropy logC n (indexed in this way for convenience) X1, . . . ,XN+1, apply the strong two-source
condenser across the first N sources, using the (N + 1)th source as a common “seed”, to obtain
random variables {X′

i := 2Cond(Xi,XN+1)}i∈[N]. Then, simply apply our most recent leakage-
resilient extractor over sources {X′

i}i∈[N]. See Figure 1 for an illustration.
To see why this works, note that upon fixing XN+1, the random variables {X′

i}i∈[N] all become
independent, and each has entropy rate > 0.99 with error probability ǫ2Cond. Furthermore, by the
same Markov argument as before, it holds that > 99% of the t-tuples among these new random
variables contain only high entropy sources with error probability O(tǫ2Cond). Notice that, in fact,
the analysis our most recent extractor did not require all of the original sources to have high entropy
- it would have done just as well if any 99% of them had high entropy, as long as the last source
was guaranteed to have high entropy, too. By a simple union bound, we know this will happen in
our condensing phase with error probability at most O(tǫ2Cond + ǫ2Cond) = O(tǫ2Cond). Thus, the
same analysis will go through for our extractor that can handle k = logC n entropy, once we are
done with the condensing phase.

Beyond the drop in entropy requirement from k = n to k = logC n, the parameters that we
end up with for this low-error leakage-resilient extractor end up being essentially identical to those
achieved by the final extractor of the previous section. Recall that previously, given a leakage-
resilient extractor hard : ({0, 1}n)t → {0, 1} against nBCP(µ0, t−1) for entropy k = n with error ǫ0,
our compiler produced an extractor that is leakage-resilient against nBCP(µ, p) for entropy k = n
as long as roughly µ < min{µ0(t, n)− t, (N/p)t}, with error about ǫ = ǫ0(t, n)+2−Ω(n). Now, given
such a leakage-resilient extractor hard : ({0, 1}n)t → {0, 1}, our compiler produces an extractor that
is leakage-resilient against nBCP(µ, p) for entropy k = logC n as long as roughly µ < min{µ0(t, kγ)−
t, ((N − 2)/p)t}, with error about ǫ = ǫ0(t, k

γ)+ 2−Ω(kγ). (The reason that the parameters to these
functions change to kγ is because the two-source condenser we use outputs random variables of this
length.) Instantiating the compiler with the best existing NOF-hard functions, where µ0(t, n) =

Ω(n/2t), the best setting of t roughly yields the restriction µ < k
Ω(

log((N−2)/p)
log((N−2)/p)+1

)
, meaning that once

again we can handle a both collusion bound up to p = 0.99N and kΩ(1) bits of leakage, with no
restriction between N,n. Significant improvements in NOF lower bounds would again improve this
result by reducing the 1 in the denominator of the exponent to o(1).

13

X1 X2
. . . XN−2 XN−1 XN

X′
1 X′

2
. . . X′

N−2 X′
N−1

Y1 Y2
. . . YN−2

L1 R1 L2 R2
. . . LN−2 RN−2

L1 L2
. . . LN−2

2
LN

2
LN+2

2
. . . LN−2 RN−2. . .R2R1

Ũ
T(N−2

t). . .T2T1

Samp(Ũ)

⊕

Figure 1: Schema for our final compiler. Each random variable Xi is an input source. Each X′
i

is produced by a two-source condenser call 2Cond(Xi,XN). Each Yi is produced by a two-source
extractor call 2Ext(X′

i,X
′
N−1), and is split in half into random variables Li,Ri. The random

variables labeled Li are dedicated for sampling, while those labeled Ri are dedicated for extracting.
The variables {Li} are collected into two equal sized chunks, which are passed into another call to
some 2Ext to produce near-uniform bits, Ũ. These bits are then passed into a sampler, which is
used to select about Ω(kγ) wires into the XOR gate. For each selected wire i ∈ [

(
N−2
t

)
], we compute

the random variable Ti as a call to our NOF-hard function hard over inputs Rj , where j ranges
over the indices in the t-tuple corresponding to i.

2.3 Adding adaptivity

Now that we have a compiler which transforms any leakage-resilient extractor against non-adaptive
NOF leakage into one that can handle much higher leakage under slightly less collusion, and very
low entropy sources, it is not too difficult to add to our construction the ability to handle adaptive
adversaries. In fact, it turns out that nothing needs to be added at all, as we show that any
leakage-resilient extractor Ext against nBCP(µ, p) for entropy k and error ǫ is also a leakage-resilient
extractor against BCP(µ, p) for entropy k and error at most (2µ + 1)

√
ǫ. Thus, as long as, say

ǫ ≤ 2−2.1µ, the error ǫ only increases to at most ǫΩ(1), and thus exponentially small errors stay
exponentially small. We remark that this property comes for free when instantiating our compiler
with any function that has high distributional NOF communication complexity, and most current
successful approaches towards establishing any lower bounds on NOF communication go by way of

14

the discrepancy method, which automatically gives such results. In order to prove our adaptivity
result, all that is needed is the realization that for any fixed output y of an adaptive leak, one can
find a non-adaptive leak that agrees with the adaptive leak on at least those inputs that map to y.

2.4 A simple leakage-resilient extractor

As we have seen, by instantiating our compiler with explicit functions that exhibit the current
best lower bounds against NOF protocols of the form Ω(n/2N), we obtain explicit leakage resilient

extractors for both (i) full entropy against µ = Ω(n
log(N/p)

log(N/p)+1) bits of leakage; and (ii) polylogarithmic

entropy against µ = k
Ω(

log((N−2)/p)
log((N−2)/p)+1

)
bits of leakage. As it turns out, however, there is one specific

NOF-hard function with bounds of this form, for which the compiler can be greatly simplified,
while even improving the parameters a little. This is (a slight modification of) the finite field
multiplication function, and we provide in the self-contained Section 7 a much simpler construction
for how to turn this specific function into a good leakage-resilient extractor against BCPs.

The finite field multiplication FFM : ({0, 1}n)N → {0, 1} is very simple: on input x1, . . . , xn,
it simply interprets these strings as elements of F2n , takes their product over this field, interprets
this result again as a boolean string, and outputs the first bit. Using discrepancy arguments over
objects called Hadamard tensors, it was shown in [FG13] that this function is a leakage-resilient

extractor against BCP(µ,N − 1) for entropy k = n, leakage µ = Ω(n/2N), and error ǫ = 2−Ω(n/2N).
In order to turn this object into a good leakage resilient extractor against BCP(µ, p), we start by
noting that we can extend the result of [FG13] to output m = Ω(n/2N) bits by applying a standard
XOR lemma to the a character sum in their paper.

In order to extend this leakage-resilient extractor to handle more leakage when there is less
collusion (but still full entropy), our compiler would typically apply this object over all t-tuples of
inputs, and output the XOR of these results. Furthermore, in order to allow t = ω(1), our compiler
requires a sampler to select t-tuples. Interestingly, none of this is necessary for FFM : ({0, 1}n)N →
{0, 1}m for the following reason: if we restrict the function by fixing any n − t inputs in any way,
we simply obtain a permutation of FFM : ({0, 1}n)t → {0, 1}m.

Thus, so long as there is one “special” t-tuple of the original sources X1, . . . ,XN that are not
all together in some joint leakage, observe that the FFM : ({0, 1}n)N → {0, 1}m function over these
sources (with other sources fixed) simply becomes the same FFM : ({0, 1}n)t → {0, 1}m applied to
a permuted version of the original sources, and every leak becomes a deterministic function of at
most t − 1 of the sources in the special t-tuple. In this way, the self-restrictive property of FFM
efficiently simulates the inefficient brute force method of applying the extractor over all t-tuples,
and as a result we get even slightly better parameters than the compiler (since we do not need to
treat the output of multiple calls to FFM as extra leakage, since there is only one call).

The advantage of using a single call to FFM becomes even more prevalent when we try to
reduce the entropy requirement. Recall that even just to handle slightly-less-than full entropy in
our compiler, the presence of our sampler required us to take some serious measures. Because FFM
does not require a sampler, it can immediately handle this setting with no modifications, simply by
treating the missing entropy as leakage (see Lemma 15). Not only is the construction simpler, but
we save one source that was sacrificed by the compiler to help make the sources look more uniform,
as ultimately required by the sampler. Finally, to drop the entropy requirement to k = logC n,
all that is required is the same layer of condensers as in the original compiler. Because we saved
one source in this process, this simple low-entropy explicit leakage-resilient extractor can handle

15

up to p = N − 2 parties colluding, while those constructed with our compiler can only handle up
to p = N − 3.

3 Preliminaries

3.1 Basic notation, definitions, and objects

We let [N] denote the set {1, 2, . . . , N}, and for integers L ≤ R, we let [L,R] := {x ∈ Z : L ≤ x ≤
R}. For a set S a nonnegative integer k ≤ |S|, we let

(
S
k

)
denote the collection of all subsets of S

of size k. We let ◦ denote concatenation. The following notation will be heavily used throughout
the paper, and is crucial to internalize:

Definition 2. For a string x ∈ {0, 1}n, we let xi denote the value held at its ith coordinate, and
we let xS for some S ⊆ [n] to denote the concatenation of all xi for i ∈ S, in increasing order of i.
For a string x ∈ ({0, 1}n)N and i ∈ [N], we let xi denote the ith chunk of consecutive bits, and we
similarly define xS in this case to denote the concatenation of all chunks indexed by i ∈ S. Finally,
for such a string x ∈ ({0, 1}n)N , we use xS,i to denote the concatenation of the ith bit of every
chunk indexed by S.

We will also heavily use the notion of restrictions, which are defined as follows.

Definition 3. Let k ≤ n ∈ N, let S, T be sets, and let φ ∈ ({∗} ∪ S)n, where ∗ denotes a special
symbol not in S. Define I∗ := {i ∈ [n] : φi = ∗}, and suppose that |I∗| = k. Then we define the
restriction of a function f : Sn → T under φ as a function f− : Sk → T such that f−(x) = f(x+),
where x+ ∈ Sn is defined such that x+I∗ = x and x+[n]\I∗ = φ[n]\I∗ .

A tuple with 0 elements (e.g., an element of {0, 1}0) should be considered the empty set, a
function of the form f : ∅ → T should be considered an element of T , and a function of the form
f : ∅ × S → T should be interpreted as a function of the form f : S → T .

3.2 Bounded collusion protocols

We formally define the class of non-adaptive bounded collusion protocols below, followed by their
adaptive version.

Definition 4. A function f : ({0, 1}n)N → ({0, 1}ν)µ is in the class of non-adaptive bounded
collusion protocols nBCPN,n(µ, ν, p) if: for every i ∈ [µ], there exists a subset Si ⊆ [N] of size p,
and a function gi : ({0, 1}n)p → {0, 1}ν such that for any x ∈ ({0, 1}n)N ,

f(x) = (y1, y2, . . . , yµ),

where
yi := gi(xSi),

for every i ∈ [µ].

Definition 5. A function f : ({0, 1}n)N → ({0, 1}ν)µ is in the class of adaptive bounded collusion
protocols BCPN,n(µ, ν, p) if: for every i ∈ [µ], there exists a subset function Si : ({0, 1}n)i−1 →(
[N]
p

)
, and a function gi : ({0, 1}n)i−1 × ({0, 1}n)p → {0, 1}ν such that for any x ∈ ({0, 1}n)N ,

f(x) = (y1, y2, . . . , yµ),

16

where
yi := gi(y1, y2, . . . , yi−1, xSi(y1,y2,...,yi−1)),

for every i ∈ [µ].

For ease of exposition, we will occasionally shorten the names of these classes. For example,
when N,n are clear from context, we will drop the subscripts of the class names, and when µ, ν, p
are also clear from context, we simply write nBCP and BCP. Furthermore, we will occasionally use
the phrase collusion protocols instead of bounded collusion protocols.

Definition 6. The class of non-adaptive number-in-hand collusion protocols over N parties of
length n and µ rounds is the class nNIHN,n(µ) := nBCPN,n(µ, 1, 1). Its adaptive analogue is defined
as NIHN,n(µ) := BCPN,n(µ, 1, 1).

Definition 7. The class of non-adaptive number-on-forehead collusion protocols over N parties
of length n and µ rounds is the class nNOFN,n(µ) := nBCPN,n(µ, 1, N − 1). Its adaptive analogue
is defined as NOFN,n(µ) := BCPN,n(µ, 1, N − 1).

It is straightforward to show that nBCP ⊆ BCP, and thus lower bounds against BCP automat-
ically give lower bounds against nBCP. Interestingly, we will also show how to lift lower bounds
against nBCP to obtain lower bounds against BCP, under a small loss in parameters (see Section 6).
Thus, we focus on providing lower bounds against the simpler class, and extend these results to
handle BCP at the very end, in order to obtain our final theorems.

3.3 Probability background

We discuss some tools from probability that are heavily used in the technical parts of the paper. All
probability spaces are discrete, i.e., of the form (Ω,Pr), where Ω is a finite set and Pr : Ω → [0, 1]
is a probability mass function over Ω.

Definition 8. Let X,Y : Ω → V be two random variables over the same space. The statistical
distance, or total variational distance, between X and Y is defined as:

|X−Y| := 1

2

∑

v∈V
|Pr[X = v]− Pr[Y = v]| = max

S⊆V
|Pr[X ∈ S]− Pr[Y ∈ S]|.

We say that X is ǫ-close to Y if |X−Y| ≤ ǫ.

We now record several useful facts about statistical distance, which are straightforward to prove,
given the above definition.

Fact 1 (triangle inequality). For any random variables X,Y,Z : Ω → V ,

|X− Z| ≤ |X−Y|+ |Y − Z|.

Fact 2. For any random variables X1,X2,Y1,Y2 : Ω → V such that X1,X2 are independent and
Y1,Y2 are independent,

|X1 ◦X2 −Y1 ◦Y2| ≤ |X1 −Y1|+ |X2 −Y2|.

17

Fact 3. For any random variables A,B : Ω → V , X,Y : Ω →W ,

|A−B| ≤ |A ◦X−B ◦Y|.

Fact 4. For any random variables A : Ω → A,B : Ω → B, where |A| = 2m, and any deterministic
function f : B → A,

|A ◦B−Um ◦B| = |(A⊕ f(B)) ◦B−Um ◦B|.

Fact 5. Given random variables X,Y : Ω → V and a (deterministic) function f : V →W ,

|f(X)− f(Y)| ≤ |X−Y|.

Throughout, given random variables X,Y, and some value y ∈ support(Y), we will let (X |
Y = y) be a random variable over support(X) that realizes value x with probability Pr[X = x |
Y = y]. Extending this notation, given random variables X1,X2,Y over the same space, we let
EY[|X1 −X2|] =

∑
y∈support(Y) Pr[Y = y] · |(X1 | Y = y) − (X2 | Y = y)| = |X1 ◦Y −X2 ◦Y|.

With this notation in mind, the following remark will be crucial.

Remark 1. Given random variables X1,X2,Y over the same space, it holds that |X1 − X2| ≤
|X1 ◦ Y − X2 ◦ Y| by Fact 3. Thus, |X1 − X2| ≤ EY[|X1 − X2|], and so there exists some
y ∈ support(Y) such that |X1 −X2| ≤ |(X1 | Y = y)− (X2 | Y = y)|.

Finally, we will make use of the following lemma.

Lemma 1 ([MW97]). For any two random variables X : Ω → X and Y : Ω → Y on the same
discrete space, and any ǫ > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |Y | − log(1/ǫ)] ≥ 1− ǫ.

3.4 Explicit constructions from prior work

We record two objects, an extractor and condenser, which will be used throughout our constructions.

Theorem 6 ([Vaz85, CG88]). For every constant δ > 0, and for every n, k ∈ N satisfying k ≥
(1/2+ δ)n, there exists an explicit function Had : {0, 1}n×{0, 1}n → {0, 1}m such that for any two
independent (n, k) sources X1,X2, with probability 1 − ǫ over x2 ∼ X2, |Had(X1, x2) − Um| ≤ ǫ,
where m = Ω(n) and ǫ = 2−Ω(n).

Theorem 7 ([BACDTS19]). There is a constant C ≥ 1 such that for every n, k,m ∈ N and
ǫ > 0 satisfying n ≥ k ≥ (m log(n/ǫ))C , there is a poly(n)-time computable function 2Cond :
{0, 1}n×{0, 1}n → {0, 1}m such that for any two independent (n, k) sources X1,X2, with probability
1− ǫ over x2 ∼ X2, the output 2Cond(X1, x2) is 2−k/2-close to an (m,m− o(log(1/ǫ)))-source, Y.

We will use the following special case of their result.

Theorem 8 ([BACDTS19]). There exist universal constants C > 0 and γ := 1/C such that for

every n, k,m ∈ N and ǫ > 0 satisfying k ≥ logC n and kγ ≥ m and ǫ ≥ 2−k
γ/2

, there exists an
explicit function 2Cond : {0, 1}n×{0, 1}n → {0, 1}m such that for any two independent (n, k) sources
X1,X2, with probability 1 − ǫ over x2 ∼ X2, the output has min-entropy H∞(2Cond(X1, x2)) ≥
m−√

m.

18

3.5 Finite fields and characters

We record here some standard notions that will be needed in Section 7.1. For a prime power q,
we let Fq denote the finite field over q elements. Given groups (G,+) and (H, ·), a homomorphism
from G to H is a mapping φ : G→ H such that φ(u+v) = φ(u) ·φ(v), for any u, v ∈ G. A character
of a group G is a homomorphism ψ : G → C× from that group into the multiplicative group of
complex numbers. The trivial character is the constant 1. This is all very useful because if one
wishes to bound the distance of a random variable X over a finite abelian group G from uniform,1

the following XOR lemma says that it suffices to bound the bias of every nontrivial character ψ
applied to X.

Lemma 2 ([Rao07]). Let X be a random variable over a finite abelian group, G. Then if U is the
uniform random variable over G and Ψ is the collection of all nontrivial characters ψ : G→ C×,

|X−U| ≤
√
|G| ·max

ψ∈Ψ
|E[ψ(X)]|.

This generalizes the well-known XOR lemma that is attributed to Vazirani, but whose proof
appears to be folklore - a background on such lemmas can be found in [Gol95].

4 Handling more leakage when there is less collusion

In this section, we will complete the first stage of our compiler, in which we transform a function with
high distributional communication complexity into a leakage-resilient extractor against bounded
collusion protocols that can handle more leakage when the collusion is small. In particular, we
prove the following general lemma. Given the current best NOF lower bounds, the parameter µ0
should be thought of as something like Ω(n0/2

N0), while the parameter ǫ0 should be thought of
as 2−µ0 . We optimize to select the best t (and thereby remove it from the lemma statement) for
various instantiations in Section 6.

Lemma 3. Suppose that for all sufficiently large N0, n0 ∈ N, there exists an explicit leakage-
resilient extractor Ext0 : ({0, 1}n0)N0 → {0, 1}m0 against nNOF(µ0) for entropy k0 = n0 and leakage
µ0 = µ0(N0, n0), with error ǫ0 = ǫ0(N0, n0) and output length m0 = m0(N0, n0).

Then for all sufficiently large N,n ∈ N and any t, p ∈ N such that t ≤ N and p ≤ N − 1,
there exists an explicit leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m against nBCP(µ, ν, p)
for entropy k = n and leakage µ < 0.5min{µ0(t, n/2)/ν,

(
N
t

)
/
(
p
t

)
}, with output length m =

min{m0(t, n/2), 0.5µ0(t, n/2)/t} and error ǫ = ǫ0(t, n/2) + 2−n/5.

Key to our construction will be the following basic sampler.

Lemma 4. For every ℓ, t,N ∈ N with t ≤ N , there exists an explicit function Samp : ({0, 1}ℓ)N →
2(

[N]
t) such that for any collection of subsets G ⊆

(
[N]
t

)
,

Pr[Samp(UNℓ) ∩ G = ∅] <
(
1− |G|

2
(
N
t

)
)ℓ

.

1G is often the additive group F2m or Fm
2 , which can be identified with the output domain {0, 1}m of an extractor.

19

Proof. The backbone of our sampler will be a simple object that uses N uniform bits to select
a t-tuple from [N] almost uniformly at random. We let Ñ denote the smallest integer satisfying(
N
t

)
≤ 2Ñ , and we let π̃ : {0, 1}Ñ →

(
[N]
t

)
∪ {∗} denote an explicit function such that π̃({0, 1}Ñ) ⊇(

[N]
t

)
, but such that |π̃−1(y)| > 1 only if y = ∗. Then, we let π : {0, 1}N →

(
[N]
t

)
∪ {∗} denote the

function π(x) = π̃(x
[1,Ñ]

). It is straightforward to explicitly construct such a mapping π, and to

show that for any t-tuple S ∈
(
[N]
t

)
,Pr[π(UN) = S] > 1/(2

(
N
t

)
). Thus for any collection G ⊆

(
[N]
t

)
,

Pr[π(UN) ∈ G] > |G|/(2
(
N
t

)
). Equipped with π, we construct Samp : ({0, 1}ℓ)N → 2(

[N]
t) as

Samp(x) := {π(x[N],j) : j ∈ [ℓ])} \ {∗}.

The lemma now follows easily by definition of Samp and by our observation on Pr[π(UN) ∈ G].

We are now ready to prove the main result of this section.

Proof of Lemma 3. We let Ext0 : ({0, 1}n/2)t → {0, 1}m denote the extractor promised by the
hypothesis. We will construct Ext by applying Ext0 over t-tuples of inputs, and taking the XOR

of the results. However, if we do this naively and apply Ext0 to all t-tuples, then we can only
guarantee Ext is explicit if t is a constant (and indeed we will see later that to optimize for the
most leakage, we will typically want much larger t). To avoid this problem, we construct a basic
sampler Samp that borrows some randomness from the sources in order to help select t-tuples over
which Ext0 should be called. Samp will borrow randomness from the first half of each source, and
Ext0 will be called over the second halves of the sources.

We formally construct Ext : ({0, 1}n)N → {0, 1}m as follows. First, we let Samp : ({0, 1}n/2)N →
2(

[N]
t) be the explicit sampler from Lemma 4. Then, on input X = (X1, . . . , XN), we split each

Xi into two strings (Li, Ri), each of length n/2. We let L := L1 ◦ · · · ◦ LN ∈ ({0, 1}n/2)N and
R := R1 ◦ . . . RN ∈ ({0, 1}n/2)N , and define Ext : ({0, 1}n)N → {0, 1}m as follows:

Ext(X) :=
⊕

A∈Samp(L)

Ext0(RA).

We now show that for any N independent uniform sources X = (X1, . . . ,XN) and any Leak ∈
nBCP(µ, ν, p), the following holds:

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ǫ.

For convenience, we will let Z1 := Ext(X) ◦ Leak(X) and Z2 := Um ◦ Leak(X), and ultimately show
that |Z1 − Z2| ≤ ǫ. By Definition 4, there must exist some S1, . . . , Sµ ⊆ [N], each of size p, and
some functions g1, . . . , gµ : ({0, 1}n)p → {0, 1}ν such that Leak(X) = (g1(XS1), . . . , gµ(XSµ)), ∀X ∈
({0, 1}n)N . Thus, given the definition of Ext, we have

Z1 =




⊕

A∈Samp(L)

Ext0(RA)


 ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ),

Z2 = Um ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ)

The goal now is to perform fixings so the above bound follows simply from the promised properties
of Ext0. Informally, we will proceed as follows. We will start by fixing the sampler’s input L, and

20

hope that the collection of t-tuples outputted by the sampler includes some good t-tuple G ∈
(
[N]
t

)
,

in the sense that it is not contained by any Si. Then, we will fix the remaining randomness of the
sources not in the tuple G (the set {Ri : i /∈ G}), and notice that the only randomness remaining
is the collection of random variables R := {Ri}i∈G. We will then argue that the leaks gi become
deterministic functions of at most t−1 random variables of R, that one of the calls to Ext0 is called
over the t-tuple R, and that every other call to Ext0 is a deterministic function of at most t − 1
random variables of R. Thus, we have one call to Ext0 over the remaining randomness R, and all
other bits in Z1,Z2 become deterministic functions of at most t − 1 random variables in R. We
can then use the leakage-resilience of Ext0 against nNOF(µ0) to conclude the proof.

Formally, we proceed as follows. We start by defining G := {G ∈
(
[N]
t

)
: G 6⊆ Si, ∀i ∈ [µ]} as

the collection of good t-tuples, not involved in any fully joint leak. Because each of the µ subsets
{Si}i∈[µ] of size p can contain at most

(
p
t

)
distinct subsets of size t, and because the theorem

statement guarantees µ
(
p
t

)
< 0.5

(
N
t

)
, we know that |G| > 0.5

(
N
t

)
. Thus, by Lemma 4, we have

ǫ1 := Pr[Samp(L) ∩ G = ∅] < (1− 1/4)n/2 < 2−n/5.

Now, if we let L∗ ∈ ({0, 1}n/2)N be any string such that Samp(L∗) ∩ G 6= ∅ and such that |(Z1 |
L = L∗)− (Z2 | L = L∗)| is maximized, we obtain the bound

|Z1 − Z2| ≤ |Z1 ◦ L− Z2 ◦ L| = EL[|Z1 − Z2|] ≤ ǫ1 + |(Z1 | L = L∗)− (Z2 | L = L∗)|. (1)

We let G ∈
(
[N]
t

)
be an arbitrary t-tuple that we know must exist in Samp(L∗) ∩ G, and we let

G ⊆ [N] denote its complement. Then there must be some R∗ ∈ ({0, 1}n/2)N−t such that the
following holds:

|(Z1 | L = L∗)− (Z2 | L = L∗)| ≤ ERG
[|(Z1 | L = L∗)− (Z2 | L = L∗)|]

≤ |(Z1 | L = L∗,RG = R∗)− (Z2 | L = L∗,RG = R∗)|.

We now re-write some random variables so we may eventually apply the leakage-resilience of Ext0 to
bound the above. First, we let φ ∈ (({0, 1}n/2 ∪ {∗})2)N be the string with stars denoting random
variables that have not yet been fixed: formally, φ[N],1 = L∗, and φG,2 = R∗, and φi,2 = ∗, for all

i ∈ G. Now, for each i ∈ [µ], we let g−i : ({0, 1}n/2)|G∩Si| → {0, 1}ν denote the restriction of gi
under φSi , as given by Definition 3. The key observation now is that for any i ∈ [µ], we have

(gi(XSi) | L = L∗,RG = R∗) = g−i (RG∩Si).

We will now complete a similar re-writing for the calls to Ext0. We start by partitioning Samp(L∗),
as follows. We let G = {α1, . . . , αt} ⊆ [N], where α1 < · · · < αt, and for each i ∈ [t], we define the
collection

Wi := {A ∈ Samp \ {G} : αi /∈ A, and ∄h < i such that A ∈ Wh}.
Because G ∈ G, it is straightforward to show that {G} ∪ W1 ∪ · · · ∪ Wt is a partition of

Samp(L∗). Now, for each i ∈ [t], we define the map Ext
(i)
0 : ({0, 1}n/2)N → {0, 1}m as

Ext
(i)
0 (R) :=

⊕
A∈Wi

Ext0(RA), for each R ∈ ({0, 1}n/2)N . Then, for each i ∈ [t], we let

Bi :=
⋃
A∈Wi

A be the subset of source indices in [N] \ {αi} involved in the construction of Ext
(i)
0 .

21

Finally, for each i ∈ [t], we let Ext
(i)−
0 : ({0, 1}n/2)|G∩Bi| → {0, 1}m denote the restriction of Ext

(i)
0

under φ[N],2. The key observation now is that for any i ∈ [t], we have




⊕

A∈Samp(L)

Ext0(RA) | L = L∗,RG = R∗


 = Ext0(RG)⊕

⊕

i∈[t]
Ext

(i)−
0 (RG∩Bi).

Thus, we finally see that

|(Z1 | L = L∗,RG = R∗)− (Z2 | L = L∗,RG = R∗)| = |Z′
1 − Z′

2|,

where

Z′
1 :=


Ext0(RG)⊕

⊕

i∈[t]
Ext

(i)−
0 (RG∩Bi)


 ◦ g−1 (RG∩S1) ◦ · · · ◦ g−µ (RG∩Sµ),

Z′
2 := Um ◦ g−1 (RG∩S1) ◦ · · · ◦ g−µ (RG∩Sµ).

We are now almost ready to apply the leakage-resilience of Ext0 to complete the proof. But first,
notice that

|Z′
1−Z′

2| ≤ |Z′
1 ◦Ext

(1)−
0 (RG∩B1)◦· · ·◦Ext

(t)−
0 (RG∩Bt)−Z′

2 ◦Ext
(1)−
0 (RG∩B1)◦· · ·◦Ext

(t)−
0 (RG∩Bt)|,

and by applying Fact 4, we know this equals |Z′′
1 − Z′′

2|, where

Z′′
1 := Ext0(RG) ◦ g−1 (RG∩S1) ◦ · · · ◦ g−µ (RG∩Sµ) ◦ Ext

(1)−
0 (RG∩B1) ◦ · · · ◦ Ext

(t)−
0 (RG∩Bt), (2)

Z′′
2 := Um ◦ g−1 (RG∩S1) ◦ · · · ◦ g−µ (RG∩Sµ) ◦ Ext

(1)−
0 (RG∩B1) ◦ · · · ◦ Ext

(t)−
0 (RG∩Bt). (3)

Thus, we have shown thus far that

|Z1 − Z2| ≤ ǫ1 + |Z′′
1 − Z′′

2|,

and all that remains is to bound this quantity by the claimed ǫ. Notice that for each i ∈ [µ], |G∩Si| ≤
t − 1, and for each j ∈ [t], |G ∩ Bj | ≤ t − 1. Furthermore, notice that, excluding the first m bits,
each of Z′′

1,Z
′′
2 have length µν + tm. Thus, because Ext0 : ({0, 1}n/2)t → {0, 1}m is leakage-resilient

against nNOF(µ0(t, n/2)) with error ǫ0(t, n/2), we know that |Z′′
1 − Z′′

2| ≤ ǫ0(t, n/2), as long as
µν+ tm ≤ µ0(t, n/2). Because of the restrictions on µ,m in the theorem statement, we indeed have

µν + tm < (0.5µ0(t, n/2)/ν)ν + t(0.5µ0(t, n/2)/t) ≤ µ0(t, n/2),

and thus
|Z1 − Z2| ≤ ǫ1 + |Z′′

1 − Z′′
2| ≤ ǫ1 + ǫ0(t, n/2) < 2−n/5 + ǫ0(t, n/2),

which completes the proof.

Next, we show how to further build on our compiler to drop the entropy requirement of the
resulting leakage-resilient extractor to k = logC n.

22

5 Reducing the entropy requirement

In this section, we will complete the second stage of our compiler, which builds upon the first stage
in order to output an explicit leakage-resilient extractor that can handle polylogarithmic entropy.
We prove the following main lemma, which builds on Lemma 3 from the previous section. We
reiterate the remarks regarding general parameters µ0, ǫ0, and t that are expressed preceding that
lemma.

Lemma 5. Suppose that for all sufficiently large N0, n0 ∈ N, there exists an explicit leakage-
resilient extractor Ext0 : ({0, 1}n0)N0 → {0, 1}m0 against nNOF(µ0) for entropy k0 = n0 and leakage
µ0 = µ0(N0, n0), with error ǫ0 = ǫ0(N0, n0) and output length m0 = m0(N0, n0).

Then there exist universal constants C, γ > 0 such that for all sufficiently large N,n ∈ N,
and any t, p ∈ N such that t ≤ N and p ≤ N − 3, there exists an explicit leakage-resilient
extractor Ext : ({0, 1}n)N → {0, 1}m against nBCP(µ, ν, p) for entropy k ≥ logC n and leakage
µ < 0.5min{µ0(t, kγ)/ν,

(
N−2
t

)
/
(
p
t

)
}, with output length m = min{m0(t, k

γ), 0.5µ0(t, k
γ)/t} and

error ǫ = ǫ0(t, k
γ) + t · 2−kγ .

Before we begin, we need two basic lemmas concerning the behavior of certain random variables.
They are recorded in the following subsection. Once we have proved these lemmas, we move on to
prove Lemma 5, which can be considered the main construction of the paper.

5.1 Probability lemmas

In our main construction, we use strong extractors and condensers, and we often use a shared seed
across multiple calls to this function, in order to be efficient with our available randomness. The
following definition and Markov-type lemma will help facilitate this process.

Definition 9. Given a bitstring x ∈ {0, 1}n and some t ∈ [n], we let ρt(x) denote the density of
subsets of [n] of size t hit by x. More formally, we define:

ρt(x) :=

∣∣∣∣
{
S ⊆

(
[n]

t

)
: xS 6= ~0

}∣∣∣∣ /
(
n

t

)
.

Lemma 6. Let X be a random variable over {0, 1}n such that Pr[Xi = 1] ≤ ǫ, for each i ∈ [n]
(there is not necessarily any independence among the individual bits). Then for any t ∈ [n] and
0 < δ ≤ 1, the following must hold:

Pr
[
∨t′∈[t](ρt′(X) ≥ δ)

]
= Pr[ρt(X) ≥ δ] ≤ tǫ/δ.

Proof. To show the equality, it suffices to show that ρi+1(x) ≥ ρi(x), for every x ∈ {0, 1}n, i ∈ [n−1].
To see that this is true, consider any x ∈ {0, 1}n, and suppose it has k ∈ [0, n] entries that are 0.
Then by definition, ρi+1(x) = (

(
n
i+1

)
−
(
k
i+1

)
)/
(
n
i+1

)
= 1−

(
k
i+1

)
/
(
n
i+1

)
and ρi(x) = (

(
n
i

)
−
(
k
i

)
)/
(
n
i

)
=

1−
(
k
i

)
/
(
n
i

)
. Thus ρi+1(x) ≥ ρi(x) if

(
k
i

)
/
(
n
i

)
≥
(
k
i+1

)
/
(
n
i+1

)
, which is easy to show, knowing n ≥ k.

To prove the inequality, we interpret the number 1 as true where required, and apply Markov’s
inequality and a union bound to obtain:

Pr[ρt(X) ≥ δ] = Pr

[∑
S∈([n]

t)
1[∨i∈SXi]
(
n
t

) ≥ δ

]
≤ E

[∑
S∈([n]

t)
1[∨i∈SXi]
(
n
t

)
]
/δ

=

∑
S∈([n]

t)
E[1[∨i∈SXi]]

δ ·
(
n
t

) ≤ max
S∈(nt)

Pr[∨i∈SXi]/δ ≤ tǫ/δ.

23

Next, our main construction will involve transferring the dependency of leakage functions from
the low entropy starting sources onto the condensed versions of these sources. The following lemma
will be useful for this task.

Lemma 7. Let X,Y be discrete random variables such that Y = f(X) for some deterministic
function f . Then for any δ > 0, there exists a random variable Zδ that is mutually independent
with Y (and any other random variable originally independent of X) and a deterministic function
g such that |g(Y,Zδ)−X| < δ.

Proof. A natural way of sampling X is to first sample y according to Y and then output x sampled
according to the distribution of (X | Y = y). Thus, we can think of the sampling algorithm as a
deterministic function that gets as input:

1. A sample y according to the distribution of Y, and

2. Independent randomness Um that is independent of Y, for some parameter m.

The function g uses the m independent, uniform bits to sample from a distribution that is δ-close
to (X | Y = y). Note that we can always choose m large enough so this is possible. This completes
the proof, noting that we can set Zδ = Um.

5.2 The main construction

Equipped with our lemmas from Section 5.1, we are ready to prove the main result of this section.

Proof of Lemma 5. In order to formally construct the leakage-resilient extractor Ext : ({0, 1}n)N →
{0, 1}m against nBCP(µ, ν, p) with the claimed properties, we will need several objects, which we
collect, below. In particular, by Theorems 7 and 8, Lemma 4, and the hypothesis, we know that
there exist universal constants γ > 0, C > 0 such that all the following objects exist.

1. An explicit function 2Cond : {0, 1}n × {0, 1}n → {0, 1}m1 such that for any two independent
(n, k1) sources X1,X2, with probability 1 − ǫ1 over x2 ∼ X2, the output 2Cond(X1, x2) has

entropy at least k2, provided k1 ≥ logC n,m1 = kγ1 , k2 = m1 −
√
m1 and ǫ1 = 2−k

γ/2
1 .

2. An explicit function Had1 : {0, 1}m1 ×{0, 1}m1 → {0, 1}m2 such that for any two independent
(m1, k2) sources X1,X2, with probability 1 − ǫ2 over x2 ∼ X2, the output Had1(X1, x2) is
ǫ2-close to uniform, provided m2 = γm1, ǫ2 = 2−γm1 .

3. An explicit function Had2 : {0, 1}m3 × {0, 1}m3 → {0, 1}m4 such that for any two inde-
pendent (m3, k3) sources X1,X2, the output Had2(X1,X2) is ǫ3-close to uniform, provided
k3 ≥ 0.6m3,m4 = γm3, ǫ3 = 2−γm3 ,m3 = (N − 2)m2/4.

4. An explicit function Samp : ({0, 1}γm2/4)N−2 → 2(
[N−2]

t) such that for any collection of subsets

G ⊆ 2(
[N−2]

t), Pr[Samp(Um4) ∩ G = ∅] <
(
1− |G|

2(N−2
t)

)γm2/4

.

5. An explicit function Ext0 : ({0, 1}n0)N0 → {0, 1}m that is a leakage-resilient extractor against
nNOF(µ0) for entropy k0 = n0, leakage µ0 = µ0(N0, n0), with error ǫ0 = ǫ0(N0, n0) and
output length m = min{m0(N0, n0), 0.5µ(N0, n0)/N0},2 provided N0 = t, n0 = m2/2.

2Note that technically, the object we have has output length m0(N0, n0), but we are always free to decrease output
length without increasing statistical distance, by Fact 5.

24

We are now ready to formally construct Ext : ({0, 1}n)N → {0, 1}m. We do so as follows. On input
X = (X1, . . . , XN) ∈ ({0, 1}n)N , compute for each i ∈ [N − 1] the value Ai := 2Cond(Xi, XN) ∈
{0, 1}m1 , and define A := (Ai)i∈[N−1] ∈ ({0, 1}m1)N−1. Then, for each i ∈ [N − 2], compute

the value Bi := Had1(Ai, AN−1) ∈ {0, 1}m2 , and define B := (Bi)i∈[N−2] ∈ ({0, 1}m2)N−2. Next,

for each i ∈ [N − 2], split Bi ∈ {0, 1}m2 into (Li, Ri) ∈ ({0, 1}m2/2)2. For convenience, define
L := (Li)i∈[N−2] ∈ ({0, 1}m2/2)N−2 and R := (Ri)i∈[N−2] ∈ ({0, 1}m2/2)2. Finally, split L into

(LL, LR) ∈ ({0, 1}(N−2)m2/4)2. We may now define Ext : ({0, 1}n)N → {0, 1}m as:

Ext(X) :=
⊕

W∈Samp(Had2(LL,LR))

Ext0(RW).

Now that we have our construction, we must show that for any N independent uniform sources
X = (X1, . . . ,XN), and any Leak ∈ nBCP(µ, ν, p), the following holds:

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ǫ.

We note that bolded versions of the variables mentioned earlier represent the same (but now
randomized) computations. Now, by Definition 4, there must exist some S1, . . . , Sµ ⊆ [N],
each of size p, and some functions g1, . . . , gµ : ({0, 1}n)p → {0, 1}ν such that Leak(X) =
(g1(XS1), . . . , gµ(XSµ)), ∀X ∈ ({0, 1}n)N . Thus, we wish to bound |Z1 − Z2| ≤ ǫ, where

Z1 := Ext(X) ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ),

Z2 := Um ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ).

Our first step is to fix XN . In particular, notice that upon fixing XN , the collection of random
variables {Ai}i∈[N−1] always become independent (because they become deterministic functions of
independent random variables {Xi}i∈[N−1]). Beyond independence, we would like it to be the case
that after this fixing, most of the random variables {Ai}i∈[N−1] also have high entropy. Here, we
will have a special definition of “most.” In particular, we will want AN−1 to have high entropy,
and we will also want a very large fraction of the t-tuples found in {Ai}i∈[N−2] to contain only
high-entropy random variables.

By using 2Cond, we know that any given Ai fails to end up with high entropy k2 with proba-
bility at most ǫ1. Thus, by using a “high-entropy indicator” random variable with Lemma 6, it is
straightforward to show that with probability at most 10tǫ1, at least a 0.1 fraction of the t′-tuples,
for some t′ ≤ t, found in {Ai}i∈[N−2] hold at least one random variable without high entropy.
Thus, by a union bound, the probability that this happens or AN−1 does not have high-entropy
over fixing XN , is at most 10tǫ1 + ǫ1 ≤ 11tǫ1. Thus, using Remark 1, we may fix XN to some
X∗
N ∈ {0, 1}n such that

|Z1 − Z2| ≤ EXN
[|Z1 − Z2|] ≤ 11tǫ1 + |(Z1 | XN = X∗

N)− (Z2 | XN = X∗
N)|,

such that if we define A′
i = (Ai | XN = X∗

N) = 2Cond(Xi, X
∗
N), ∀i ∈ [N − 1], then {A′

i}i∈[N−1]

are mutually independent, and if we define the set GA := {i ∈ [N − 1] : H∞(A′
i) ≥ k2}, then

N − 1 ∈ GA, and for any t′ ≤ t, |
(
GA
t′

)
|/|
([N−2]

t′

)
| ≥ 0.9. In other words, a 0.9 fraction of all t′-tuples

among {A′
i}i∈[N−2] contain only high-entropy random variables.

The next step is to fix XN−1. In particular, notice that upon fixing XN−1, AN−1 is fixed as
a result, and thus the collection of random variables {Bi}i∈[N−2] always become independent (be-
cause they become deterministic functions of independent random variables {Ai}i∈[N−2]). Beyond

25

independence, we would like it to be the case that after this fixing, most of the random variables
{Bi}i∈[N−2] are ǫ2-close to uniform. Again, we have a special definition of “most”: we would like a
large fraction of the t-tuples found in {Bi}i∈[N−2] to contain only random variables that are close
to uniform.

By using Had1, we know that any given Bi, i ∈ [N − 2] fails to be ǫ2-close to uniform with
probability at most ǫ2, if both Ai and AN−1 have entropy k2. Thus, we know that any Bi, i ∈ GA
fails to be ǫ2-close to uniform with probability at most ǫ2, where the probability is over fixing XN−1

(and thus AN−1). Thus, by using a “close-to-uniform indicator” random variable with Lemma 6,
it is straightforward to show that with probability at most 10tǫ2, at least a 0.1 fraction of the
t′-tuples, for some t′ ≤ t, found in {Bi}i∈GA

holds at least one random variable that is not ǫ2-close
to uniform. Thus, using Remark 1, we may fix XN−1 to some X∗

N−1 ∈ {0, 1}n such that

|(Z1 | XN = X∗
N)− (Z2 | XN = X∗

N)|
≤ EXN−1

[|(Z1 | XN = X∗
N)− (Z2 | XN = X∗

N)|
≤ 10tǫ2 + |(Z1 | XN = X∗

N ,XN−1 = X∗
N−1)− (Z2 | XN = X∗

N ,XN−1 = X∗
N−1)|,

such that if we define B′
i = (Bi | XN = X∗

N ,XN−1 = X∗
N−1) = Had1(A

′
i, 2Cond(X

∗
N−1, X

∗
N)) =

Had1(2Cond(Xi, X
∗
N), 2Cond(X

∗
N−1, X

∗
N)), then all of the following holds. {B′

i}i∈[N−2] are mutually
independent, and if we define the set GB := {i ∈ GA : |B′

i − Um2 | ≤ ǫ2}, then for any t′ ≤ t,
|
(
GB
t′

)
|/|
(
GA
t′

)
| ≥ 0.9. In other words, a 0.9 fraction of all t′-tuples among {B′

i}i∈GA
contain only

random variables that are close to uniform. Because we have from before that |
(
GA
t′

)
|/|
([N−2]

t′

)
| ≥ 0.9,

we can conclude that |
(
GB
t′

)
|/|
([N−2]

t′

)
| ≥ 0.81, or rather that a 0.81 fraction of all t′-tuples among

{B′
i}i∈[N−2] contain only random variables that are close to uniform, for every t′ ≤ t.
Let us pause for now with our fixings and try to come up with a nice expression for the quantity

we are ultimately trying to bound, |(Z1 | XN = X∗
N ,XN−1 = X∗

N−1) − (Z2 | XN = X∗
N ,XN−1 =

X∗
N−1)|. First, recall that each Bi, i ∈ [N − 2] is split into the random variables (Li,Ri). For

each i ∈ [N − 2], we write L′
i := (Li | XN = X∗

N ,XN−1 = X∗
N−1) and R′

i = (Ri | XN =
X∗
N ,XN−1 = X∗

N−1), and notice that B′
i = (L′

i,R
′
i). We furthermore write R′ := R′

1 ◦ · · · ◦R′
N−2,

and L′ := L′
1 ◦ · · · ◦L′

N−2, and also split the random variable L′ over ({0, 1}m2/2)N−2 into (L′
L,L

′
R)

over ({0, 1}(N−2)m2/4)2. We notice now that we may write

(Ext(X) | XN = X∗
N ,XN−1 = X∗

N−1) =
⊕

W∈Samp(Had2(L′

L,L
′

R))

Ext0(R
′
W).

Now, in order to come up with a nice expression for (g1(XS1) ◦ · · · ◦ gµ(XSµ) | XN = X∗
N ,XN−1 =

X∗
N−1), we restrict these leakage functions according to our fixings. In particular, we let φ ∈

({0, 1}n ∪ {∗})N be the string with stars denoting random variables Xi that have not been fixed;
formally, we let φi = ∗, ∀i ∈ [N − 2], and we let φN−1 = X∗

N−1, φN = X∗
N . For each i ∈ [µ], we let

g−i : ({0, 1}n)|Si∩[N−2]| → {0, 1}ν denote the restriction of gi under φSi , as given by Definition 3.
We notice now that we may write, for each i ∈ [µ],

(gi(XSi) | XN = X∗
N ,XN−1 = X∗

N−1) = g−i (XSi∩[N−2]).

Finally, we arrive at |(Z1 | XN = X∗
N ,XN−1 = X∗

N−1) − (Z2 | XN = X∗
N ,XN−1 = X∗

N−1)| =

26

|Z′
1 − Z′

2|, where

Z′
1 :=




⊕

W∈Samp(Had2(L′

L,L
′

R))

Ext0(R
′
W)


 ◦ g−1 (XS1∩[N−2]) ◦ · · · ◦ g−µ (XSµ∩[N−2]),

Z′
2 := Um ◦ g−1 (XS1∩[N−2]) ◦ · · · ◦ g−µ (XSµ∩[N−2]).

To appreciate why this will be much easier to bound than our original expression |Z1 −Z2|, notice
that the extractor is now built around independent random variables {B′

i}i∈[N−2], most of which
are close to uniform. In order to proceed, we must make the leakage functions depend on the same
random variables as the extractor; namely, on {B′

i}i∈[N−2]. Because each B′
i, as defined earlier, is

a deterministic function of Xi, we may now use Lemma 7 to show that for each Xi, i ∈ [N − 2],
there is a random variable Qi, independent of random variable considered thus far (except Xi),
such that Xi = fi(B

′
i,Qi). (We do not record the error of this approximation here, as it can be

made arbitrarily small and thereby absorbed into any other error that appears in the proof.) We
can now apply Remark 1 again to fix each Qi to some Q∗

i such that for each i ∈ [N − 2],

|Z′
1 − Z′

2| ≤ |(Z′
1 | Qi = Q∗

i , ∀i ∈ [N − 2])− (Z′
2 | Qi = Q∗

i , ∀i ∈ [N − 2])|.

While the above conditioning will not affect the extractor part of Z′
1 (because it is a deterministic

function of variables {B′
i}i∈[N−2], which are independent of these fixings), we must do some work

to figure out how to write each leak g−i as a function of B′
i, now that these fixings removed the

extra randomness from Xi. In particular, for each i ∈ [µ], define ti := |Si ∩ [N − 2]|, and let

Si ∩ [N − 2] = {α(i)
1 , . . . , α

(i)
ti
} where α

(i)
1 < · · · < α

(i)
ti
. Furthermore, for each i ∈ [µ], we define a

new leakage function g′−i : ({0, 1}m2)ti → {0, 1}ν as:

g′−i (B) := g−i

(
f
α
(i)
1

(B1, Q
∗
α
(i)
1

), . . . , f
α
(i)
ti

(Bti , Q
∗
α
(i)
ti

)

)
,

with the key observation that if we define B′ := B′
1 ◦ · · · ◦B′

N−2, then for each i ∈ [µ] we have

(g−i (XSi∩[N−2]) | Qi = Q∗
i , ∀i ∈ [N − 2]) = g′−i (B′

Si∩[N−2]).

As such, we may rewrite

|(Z′
1 | Qi = Q∗

i , ∀i ∈ [N − 2])− (Z′
2 | Qi = Q∗

i , ∀i ∈ [N − 2])| = |Z′′
1 − Z′′

2|,

where

Z′′
1 :=




⊕

W∈Samp(Had2(L′

L,L
′

R))

Ext0(R
′
W)


 ◦ g′−1 (B′

S1∩[N−2]) ◦ · · · ◦ g′−µ (B′
Sµ∩[N−2]),

Z′′
2 := Um ◦ g′−1 (B′

S1∩[N−2]) ◦ · · · ◦ g′−µ (B′
Sµ∩[N−2]).

This is now looking quite promising: both the leaks and the extractor call only depend on the
random variables {B′

i}i∈[N−2], all of which are independent, and most of which are ǫ2-close to

27

uniform. In fact, recall that we actually know that if GB = {i ∈ [N − 2] : |B′
i −Um2 | ≤ ǫ2}, then

|
(
GB
t′

)
|/|
([N−2]

t′

)
| ≥ 0.81, for any t′ ≤ t. In particular, taking t′ = 1 and t′ = t, we know that

|
(
GB
t

)
|

|
(
[N−2]
t

)
|
≥ 0.81, and

|GB|
N − 2

≥ 0.81. (4)

We now want to start thinking about how the sampling will work. Let us begin by defining a
collection of good t-tuples, as follows: G := {T ∈

(
[N−2]
t

)
: T 6⊆ Si ∩ [N − 2], ∀i ∈ [µ], and T ⊆ GB}.

Notice that by definition, any T ∈ G has the property that it is not contained by any joint leakage
function g′−i , and furthermore every B′

i, i ∈ T is ǫ2-close to uniform. Thus, if our sampler is lucky
enough to select some T ∈ G, some Ext0 will be called over the near-uniform random variables
indexed by T , and the nNOF-leakage-resilience of Ext0 should suffice to prove the desired nBCP-
leakage-resilience of Ext.

To understand the probability that our sampler selects some T ∈ G, we start by lower bounding
the size of |G|. Notice that G = G1 ∩ G2, where G1 := {T ∈

(
[N−2]
t

)
: T 6⊆ Si ∩ [N − 2], ∀i ∈ [µ]} and

G2 := {T ∈
(
[N−2]
t

)
: T ⊆ GB}. Recall that each Si has size p, and thus each Si∩ [N−2] can hold at

most
(
p
t

)
distinct subsets of size t. Because our theorem statement ensures µ

(
p
t

)
< 0.5

(
N−2
t

)
, it must

hold that |G1| > 0.5
(
N−2
t

)
. Furthermore, Equation (4) ensures |G2| ≥ 0.81

(
N−2
t

)
, and thus it holds

that |G| ≥ (0.5+0.81−1)
(
N−2
t

)
≥ 0.3

(
N−2
t

)
. Thus, by the parameter setting of Samp in our collection

of objects at the very beginning, we have Pr[Samp(Um4)∩G = ∅] < (1− 0.3/2)γm2/4 < 2−0.2γm2/4.
Unfortunately, Samp does not take in uniform bits in our construction. Instead, it takes in

Had2(L
′
L,L

′
R). Fortunately, this will be quite close to uniform. To see why, define GLL

:= {i ∈
[(N−2)/2] : |L′

i−Um2/2| ≤ ǫ2} and GLR
:= {i ∈ [1+(N−2)/2, N−2] : |L′

i−Um2/2| ≤ ǫ2}. Notice
that since |GB| ≥ 0.81(N −2) by Equation (4), it must hold that |GLL

| ≥ 0.31(N −2) and |GLR
| ≥

0.31(N − 2). Thus, H∞(L′
L) ≥ −0.31(N − 2) log(2−m2/2 + ǫ2) ≥ 0.6(N − 2)m2/4 = 0.6m3 = k3,

and for the same reason H∞(L′
R) ≥ k3. As such, Had2(L

′
L,L

′
R) is ǫ3-close to uniform, and thus

Pr[Samp(Had2(L
′
L,L

′
R)) ∩ G = ∅] < ǫ3 + 2−0.2γm2/4.

As such, we will use Remark 1 once more to fix L′ to some L∗ ∈ ({0, 1}m/2)N−2 such that

|Z′′
1 − Z′′

2| ≤ ǫ3 + 2−0.2γm2/4 + |(Z′′
1 | L′ = L∗)− (Z′′

2 | L′ = L∗)|,
where we may assume Samp(Had2(L

∗)) ∩ G 6= ∅, and in particular there exists some
G∗ ∈ Samp(Had2(L

∗)) ∩ G. We have now arrived at a very familiar scenario. We wish
to upper bound the quantity |(Z′′

1 | L′ = L∗) − (Z′′
2 | L′ = L∗)|, with the guaran-

teed existence of G∗, which holds near-uniform sources that are completely contained
by no joint leakage. Thus, by an identical argument to the one appearing in the proof
to Lemma 3, between Equations (1) and (2), we know that there must exist functions
hi : ({0, 1}m/2)|G∗∩Si| → {0, 1}ν , ∀i ∈ [µ], and subsets P1, . . . , Pt ⊆ [N − 2], none of which

contain G∗, and functions Ext
(i)
0 : ({0, 1}m/2)|G∗∩Pi| → {0, 1}m, ∀i ∈ [t], such that

|(Z′′
1 | L′ = L∗)− (Z′′

2 | L′ = L∗)| ≤ |Z′′′
1 − Z′′′

2 |,
where

Z′′′
1 := Ext0(R

′
G∗) ◦ h1(R′

G∗∩S1
) ◦ · · · ◦ hµ(R′

G∗∩Sµ
) ◦ Ext(1)0 (R′

G∗∩P1
) ◦ · · · ◦ Ext(t)0 (R′

G∗∩Pt
),

Z′′′
2 := Um ◦ h1(R′

G∗∩S1
) ◦ · · · ◦ hµ(R′

G∗∩Sµ
) ◦ Ext(1)0 (R′

G∗∩P1
) ◦ · · · ◦ Ext(t)0 (R′

G∗∩Pt
).

28

We are almost done, but we cannot just apply the leakage-resilience of Ext0 to finish, since R′
G∗

is not uniform. However, we do know that |R′
i − Um2/2| ≤ ǫ2, ∀i ∈ G∗, and thus by Fact 2,

|R′
G∗ − Utm2/2| ≤ tǫ2. Thus, if we let Ũ be a uniform random variable over ({0, 1}m/2)N−2, and

we define

Z̃′′′
1 := Ext0(ŨG∗) ◦ h1(ŨG∗∩S1) ◦ · · · ◦ hµ(ŨG∗∩Sµ) ◦ Ext

(1)
0 (ŨG∗∩P1) ◦ · · · ◦ Ext

(t)
0 (ŨG∗∩Pt),

Z̃′′′
2 := Um ◦ h1(ŨG∗∩S1) ◦ · · · ◦ hµ(ŨG∗∩Sµ) ◦ Ext

(1)
0 (ŨG∗∩P1) ◦ · · · ◦ Ext

(t)
0 (ŨG∗∩Pt),

we know by Fact 5 that |Z′′′
1 − Z̃′′′

1 | ≤ tǫ2 and |Z̃′′′
2 − Z′′′

2 | ≤ tǫ2. Thus by the triangle inequality
(Fact 1), we have that

|Z′′′
1 − Z′′′

2 | ≤ |Z′′′
1 − Z̃′′′

1 |+ |Z̃′′′
1 − Z̃′′′

2 |+ |Z̃′′′
2 − Z′′′

2 | ≤ 2tǫ2 + |Z̃′′′
1 − Z̃′′′

2 |.

Finally, because Ext0 is leakage-resilient against nNOF(µ0) for entropy k0 = m2/2 and leakage
µ0 = µ0(t,m2/2) with error ǫ = ǫ0(t,m2/2), and because the theorem statement ensures µν+ tm ≤
µ0(t,m2/2), it holds that |Z̃′′′

1 − Z̃′′′
2 | ≤ ǫ0(t,m2/2). Combining all the inequalities we have seen,

we get
|Z1 − Z2| ≤ 11tǫ1 + 10tǫ2 + ǫ3 + 2−0.2γm2/4 + 2tǫ2 + ǫ0(t,m2/2).

Thus, for a sufficiently small constant η > 0, we have |Z1 − Z2| ≤ t · 2−kη1 + ǫ0(t,m2/2), and
kη1 ≤ m2/2, as desired.

All that remains now is to show that our compiler produces leakage-resilient extractors that can,
in fact, handle adaptive adversaries almost as well as non-adaptive adversaries (when instantiated
with a function of high distributional NOF communication complexity). This result is proved in
the next section, where we also set some of the general parameters appearing in our lemmas in
order to obtain the strongest version of our compiler.

6 Adding adaptivity and wrapping up

In this section, we show that our compiler can actually handle adaptive leakage (Lemma 10), and
thereby obtain the strongest versions of our compiler. For ease of reference, we record the main
theorems about our compiler first.

The strongest and most general results about our compiler are Lemma 8 and Lemma 9. How-
ever, in order to make our results easier to digest, we set parameters and sacrifice a little optimality
in these lemmas to obtain the main theorems about our compiler, Theorems 9 and 10. In partic-
ular, by setting parameters in Lemma 8, we obtain Theorem 9, our final compiler that produces
leakage-resilient extractors for uniform sources. By setting parameters in Lemma 9, we obtain
Theorem 10, our final compiler that produces leakage-resilient extractors for low-entropy sources.

After proving our general result on adaptivity, Lemma 10, we will show how to combine it with
Lemma 3 to obtain the following.

Lemma 8. Suppose that for all sufficiently large N0, n0 ∈ N, there exists an explicit leakage-
resilient extractor Ext0 : ({0, 1}n0)N0 → {0, 1}m0 against nNOF(µ0) for entropy k0 = n0 and leakage
µ0 = µ0(N0, n0) ≤ n0, with error ǫ0 = 2−µ0 and output length m0 = m0(N0, n0).

Then there is a function ξ = Ω(µ0) such that for all sufficiently large N,n ∈ N and any t, p ∈ N
such that t ≤ N and p ≤ N−1, there exists an explicit leakage-resilient extractor Ext : ({0, 1}n)N →

29

{0, 1}m against BCP(µ, ν, p) for entropy k = n and leakage µ ≤ 0.5min{ξ(t, n/2)/ν,
(
N
t

)
/
(
p
t

)
}, with

output length m ≤ min{ξ(t, n/2)/t,m0(t, n/2)} and error ǫ = 2−ξ(t,n/2).

Similarly, we will show how to combine Lemma 10 with Lemma 5 to obtain the following.

Lemma 9. Suppose that for all sufficiently large N0, n0 ∈ N, there exists an explicit leakage-
resilient extractor Ext0 : ({0, 1}n0)N0 → {0, 1}m0 against nNOF(µ0) for entropy k0 = n0 and leakage
µ0 = µ0(N0, n0) ≤ n0, with error ǫ0 = 2−µ0 and output length m0 = m0(N0, n0).

Then there is a function ξ = Ω(µ0) and universal constants C, γ > 0 such that for all sufficiently
large N,n ∈ N and any t, p ∈ N such that t ≤ N −2 and p ≤ N −3, there exists an explicit leakage-
resilient extractor Ext : ({0, 1}n)N → {0, 1}m against BCP(µ, ν, p) for entropy k ≥ logC n and
leakage µ ≤ 0.5min{ξ(t, kγ)/ν,

(
N−2
t

)
/
(
p
t

)
}, with output length m ≤ min{ξ(t, kγ)/t,m0(t, k

γ)} and

error ǫ = 2−ξ(t,k
γ) · t.

We now state the main theorems about our compilers. For ease of exposition, our compilers will
output 1 bit, but they can be easily adapted to output many bits if the original NOF-hard function
had many bits of output. By setting parameters in Lemma 8, we obtain our main compiler that
produces leakage-resilient extractors for uniform sources.

Theorem 9 (main uniform compiler). Suppose that for all sufficiently large N0, n0 ∈ N, there exists
an explicit leakage-resilient extractor Ext0 : ({0, 1}n0)N0 → {0, 1} against nNOF(µ0) for full entropy
and leakage µ0 = µ0(N0, n0), with error ǫ0 = 2−µ0. Furthermore, suppose µ0 can be written as the
quotient µ0 = µ+0 /µ

−
0 of nondecreasing functions µ−0 = µ−0 (N0) ≤ 2N0 and µ+0 = µ+0 (n0) ≤ O(n0).

We also require log(µ−0) and µ
+
0 to have nonincreasing slope.

Then for all sufficiently large N,n ∈ N and any p ∈ N such that p ≤ N − 1, there exists an
explicit leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1} against BCP(µ, ν, p) for full entropy
and leakage µ ≤ ξ, with error ǫ = 2−ξ, where

ξ = Ω



(
µ+0 (n/2)

ν

) log(N/p)

log(N/p)+log(µ−0 (s))/s


 ,

and s =
log(µ+0 (n/2)/ν)
log(N/p)+1 .

Proof. Set t in Lemma 8 to min
{
N,

log(µ+0 (n/2)/ν)

log(N/p)+log(µ−0 (s))/s

}
, where s =

log(µ+0 (n/2)/ν)
log(N/p)+1 . The result then

follows from the following observations:
(
N
t

)
/
(
p
t

)
= Ω((N/p)t) by Stirling’s formula, µ0(N0, n0) is

non-increasing in N0, and the second possible setting of t yields t ≥ s and thus µ−0 (t) ≤ (µ−0 (s))
t/s.

Similarly, by setting parameters in Lemma 9, we obtain our main compiler that produces
leakage-resilient extractors for low-entropy sources.

Theorem 10 (main low-entropy compiler). Suppose that for all sufficiently large N0, n0 ∈ N,
there exists an explicit leakage-resilient extractor Ext0 : ({0, 1}n0)N0 → {0, 1} against nNOF(µ0)
for full entropy and leakage µ0 = µ0(N0, n0), with error ǫ0 = 2−µ0. Furthermore, suppose µ0
can be written as the quotient µ0 = µ+0 /µ

−
0 of nondecreasing functions3 µ−0 = µ−0 (N0) ≤ 2N0 and

µ+0 = µ+0 (n0) ≤ O(n0). We also require log(µ−0) and µ
+
0 to have nonincreasing slope.

3We also require log(µ−

0) to have nonincreasing slope.

30

Then there exist universal constants C, γ > 0 such that for all sufficiently large N,n ∈ N and
any p ∈ N such that p ≤ N−3, there exists an explicit leakage-resilient extractor Ext : ({0, 1}n)N →
{0, 1} against BCP(µ, ν, p) for entropy k ≥ logC n and leakage µ ≤ ξ, with error ǫ = 2−ξ, where

ξ = Ω



(
µ+0 (k

γ)

ν

) log((N−2)/p)

log((N−2)/p)+log(µ−0 (s))/s


 ,

and s =
log(µ+0 (kγ)/ν)

log((N−2)/p)+1 .

Proof. Set t in Lemma 9 to min
{
N − 2,

log(µ+0 (kγ)/ν)

log((N−2)/p)+log(µ−0 (s))/s

}
, where s =

log(µ+0 (kγ)/ν)
log((N−2)/p)+1 . The

result then follows from the following observations:
(
N−2
t

)
/
(
p
t

)
= Ω(((N − 2)/p)t) by Stirling’s

formula, µ0(N0, n0) is non-increasing in N0, and the second possible setting of t yields t ≥ s and
thus µ−0 (t) ≤ (µ−0 (s))

t/s.

We will now prove our general adaptivity result, which is used to obtain our strongest compilers
(Lemmas 8 and 9).

Lemma 10. Let Ext : ({0, 1}n)N → {0, 1}m be a leakage-resilient extractor against nBCP(µ, ν, p)
for entropy k, with error ǫ. Then Ext is also a leakage-resilient extractor against BCP(µ, ν, p) for
entropy k with error at most (2µν + 1)

√
ǫ.

Proof. Consider any function Leak : ({0, 1}n)N → ({0, 1}ν)µ in BCP(µ, ν, p). We must show that
for any N independent sources X := (X1, . . . ,XN),

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ (2µν + 1)
√
ǫ. (5)

By definition of statistical distance, we know

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)| = Eτ∼Leak(X)[|Ext(X)−Um|].

We define a set of bad leaks, Bad := {τ ∈ ({0, 1}ν)µ : |(Ext(X) | Leak(X) = τ) −Um| ≥
√
ǫ}, and

can use it to upper bound the above as:

Eτ∼Leak(X)[|Ext(X)−Um|] < Pr[Leak(X) ∈ Bad] +
√
ǫ

≤ |Bad| · max
τ∈Bad

Pr[Leak(X) = τ] +
√
ǫ

≤ 2µν · max
τ∈Bad

Pr[Leak(X) = τ] +
√
ǫ.

Thus, it suffices to show that for any τ ∈ Bad, we can upper bound Pr[Leak(X) = τ] by
√
ǫ. Consider

any τ ∈ Bad. We will define a function that agrees with Leak on exactly the inputs that map to τ ,
but is much simpler. In particular, note that by definition of BCP, we know that Leak is defined in
a way such that for every i ∈ [µ], ∃Si : ({0, 1}n)i−1 →

(
[N]
p

)
and Leaki : ({0, 1}n)i−1 × ({0, 1}n)p →

{0, 1}ν such that for every x1, . . . , xN ∈ {0, 1}n,

Leak(x1, . . . , xN) = (y1, . . . , yµ),

where
yi := Leaki(y1, . . . , yi−1, xSi(y1,...,yi−1)), ∀i ∈ [µ].

31

Using this definition, we will define a restricted version of this function as follows: define nLeakτ :
({0, 1}n)N → ({0, 1}ν)µ such that for every x1, . . . , xN ∈ {0, 1}n,

nLeakτ (x1, . . . , xN) := (z1, . . . , zµ),

where
zi := Leaki(τ1, . . . , τi−1, xSi(τ1,...,τi−1)), ∀i ∈ [µ].

Observe that given this definition, nLeakτ is in the class nBCP(µ, ν, p), and most importantly, the
preimage of τ under nLeakτ and Leak are the same: i.e., for every x ∈ ({0, 1}n)N , nLeakτ (x) =
τ ⇐⇒ Leak(x) = τ . Thus, we know that Pr[Leak(X) = τ] = Pr[nLeakτ (X) = τ], and we know
that |(Ext(X) | nLeakτ (X) = τ)−Um| = |(Ext(X) | Leak(X) = τ)−Um| ≥

√
ǫ, because we selected

τ ∈ Bad. Since nLeakτ ∈ nBCP(µ, ν, p) and Ext is resilient against this class, we know by definition
that

|Ext(X) ◦ nLeakτ (X)−Um ◦ nLeakτ (X)| = Eτ ′∼nLeakτ (X)[|(Ext(X)−Um|] ≤ ǫ,

and thus with probability at most
√
ǫ over sampling τ ′ ∼ nLeakτ (X), |(Ext(X) | nLeakτ (X) =

τ ′) − Um| ≥ √
ǫ. Thus, because we saw above that |(Ext(X) | nLeakτ (X) = τ) − Um| ≥ √

ǫ,
we know that Pr[nLeakτ (X) = τ] ≤ √

ǫ. Thus, it also holds that Pr[Leak(X) = τ] ≤ √
ǫ, which

completes the proof.

We can now use this general adaptivity lemma to prove Lemmas 8 and 9.

Proof of Lemma 8. By combining Lemma 10 with Lemma 3, we immediately get an ex-
plicit leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m against BCP(µ, ν, p) for en-
tropy k = n and leakage µ ≤ 0.5min{µ0(t, n/2)/ν,

(
N
t

)
/
(
p
t

)
}, with output length m ≤

min{0.5µ0(t, n/2)/t,m0(t, n/2)} and error ǫ = (2µν + 1)(2−µ0(t,n/2) + 2−n/5) = 2µν+1 ·
2−µ0(t,n/2)/5+1 = 2µν−µ0(t,n/2)/5+2. The result then follows immediately by setting ξ(t, n/2) =
c · µ0(t, n/2) for, say, c = 0.05.

Proof of Lemma 9. By combining Lemma 10 with Lemma 5, we immediately get an ex-
plicit leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m against BCP(µ, ν, p) for entropy
k ≥ logC n and leakage µ ≤ 0.5min{µ0(t, kγ)/ν,

(
N−2
t

)
/
(
p
t

)
}, with output length m ≤

min{0.5µ0(t, kγ)/t,m0(t, k
γ)} and error ǫ = (2µν+1)(2−µ0(t,k

γ)+t·2−kγ) ≤ 2µν+1·(t+1)·2−µ0(t,kγ) ≤
t · 2µν−µ0(t,kγ)+2. The result then follows immediately by setting ξ(t, kγ) = c · µ0(t, kγ) for, say,
c = 0.05.

Finally, we remark that our final compilers will require as input a function with high distribu-
tional (NOF) communication complexity. We believe this is not a large restriction, as most NOF
lower bounds are proven via the discrepancy method, which automatically gives distributional lower
bounds and thus satisfies our requirement. We note, however, that if one only has a function that is
hard against NOF protocols in the worst case, one can follow the same proof structure as above to
set the parameter t directly in Lemmas 3 and 5 to obtain a compiler that outputs a leakage-resilient
extractor that still works in a similar way to those above, but only for non-adaptive BCPs.

This concludes the construction of our compiler. At this point, we could proceed by instantiating
Theorems 9 and 10 with explicit functions exhibiting the best NOF lower bounds in order to
obtain our explicit leakage-resilient extractors. It turns out that for one such NOF-hard function,
the compiler becomes significantly more simple, and we even obtain slightly better parameters.

32

We present this leakage-resilient extractor in the next (self-contained) section, and thereby obtain
our best leakage-resilient extractors. We emphasize, however, that the simplified analysis in the
following section cannot be extended to arbitrary hard functions. This is the purpose of the
compiler: as NOF lower bounds improve, the compiler will immediately give better leakage-resilient
extractors against BCPs.

7 A simple leakage-resilient extractor

In [FG13], Ford and Gál construct a remarkably simple family of explicit functions of the form

FFM : ({0, 1}n)N → {0, 1} that have correlation at most ǫ = 2−Ω(n/2N) against any number-
on-forehead protocol over µ = Ω(n/2N) rounds. Each function FFM simply takes the product
of its inputs over F2n , identifies the result with {0, 1}n, and outputs the parity of some subset
of bits. In this section, we show how to refine the analysis and further build upon this object
in order to explicitly construct a low-entropy leakage-resilient extractor against general collusion
protocols. We obtain a significantly simpler explicit construction, with slightly better parameters,
than the extractor that would be obtained by instantiating our general compiler with finite-field-
multiplication.

In the first subsection, we will use an XOR lemma to slightly tweak the analysis and construction
of FFM so that it can output multiple bits. We henceforth call the tweaked version prodExt. Then,
we show that without any modifications at all, prodExt can handle more leakage when there is less
collusion. Its ability to do so stems from our decision to handle nonadaptive leakage before making
it adaptive at the last step, and from a key observation that the family of product extractors
{prodExt : ({0, 1}n)N → {0, 1} | N,n ∈ N} is closed, up to permutations, under any fixing of
any subset of its N inputs. This property efficiently simulates the inefficient brute-force approach
of applying a smaller extractor across all t-tuples of inputs, straw-manned in Section 4, and thus
allows us to proceed without a sampler.

Finally, we drop the entropy requirement from n to polylogn by observing that any leakage-
resilient extractor against nNOF for full entropy can actually handle a little missing entropy (simu-
lated as leakage). Then, we sacrifice one source to be a shared seed of a strong two-source condenser
applied across all other sources, before feeding the results into prodExt (while being careful that
the error doesn’t incur a factor of N). The construction and analysis here is again much simpler
than that of Section 5, due to the fact that no sampler was ever needed.

7.1 The basics

We start by slightly refining the analysis and construction of the FFM function from [FG13] to
output multiple bits. It is an easy modification, with a relatively straightforward analysis that
simply applies an XOR lemma from [Rao07] to character sums that can be found in [FG13], while
generalizing some ideas (like bias and discrepancy) from [BNS89]. We refer the reader to Section 3.5
for the necessary background on characters.

In order to make the function FFM output multiple bits that still look uniform, even conditioned
on nNOF leakage, we modify FFM as follows. Recall that FFM takes the product of its inputs over
F2n , and outputs the parity of some subset of the coordinates in the result. Instead of taking
the parity of some subset of coordinates, we simply take the projection of some large subset of
coordinates. In particular, for m ≤ n, we let σn,m : F2n → F2m denote the function that interprets

33

its input as an element of Fn2 and projects it onto its first m coordinates, and we define the product
extractor as follows.

Definition 10. For any N,n,m ∈ N with n ≥ m, the product extractor prodExt : ({0, 1}n)N →
{0, 1}m is defined as:

prodExt(x1, x2, . . . , xN) := σn,m(x1 · x2 · · · · · xN),

where the input/output are interpreted as elements of F2n, and the product is taken over this field.

Using the standard encoding of F2n , it is straightforward to perform all the above operations
in poly(n,N) time (see, e.g., [V+12]). Now, because we have modified the original extractor from
[FG13], we will not be able to apply their correlation bound on FFM as a black box in order to
obtain our result. Instead, we dig into their proof and import the following character sum, which
is recorded in their work as Theorems 4.7 and 4.11 (using notions such as Hadamard tensors and
discrepancy over cylinder intersections):

Lemma 11 ([FG13]). For any N,n, µ ∈ N such that N ≥ 2, any Leak : ({0, 1}n)N → {0, 1}µ ∈
nNOFN,n(µ), any y ∈ {0, 1}µ, and any nontrivial character χ : F2n → C×,

∣∣∣∣∣∣

∑

x∈({0,1}n)N :Leak(x)=y

χ(x1 · x2 · · · · · xN)

∣∣∣∣∣∣
≤ 2Nn+1−n/2N−1

.

Equipped with this character sum, we are now ready to prove the leakage-resilience of prodExt.

Lemma 12. For all N,n ∈ N such that N ≥ 2, the product extractor prodExt : ({0, 1}n)N → {0, 1}m
from Definition 10 is an explicit leakage-resilient extractor against nNOF(µ) for entropy k = n and
leakage µ = ξ, with output length m = ξ and error ǫ = 2−ξ, where

ξ = Ω(n/2N).

Proof. We must show that there is some ξ = Ω(n/2N) such that for all N,n ∈ N such that N ≥ 2,
and any Leak ∈ nNOF(µ) with µ ≤ ξ,

∆ := |prodExt(UNn) ◦ Leak(UNn)−Um ◦ Leak(UNn)| ≤ 2−ξ.

We start by observing that

∆ = ELeak(UNn)[|prodExt(UNn)−Um|]
=
∑

y

Pr[Leak(UNn) = y] · |prodExt(UNn | Leak(UNn) = y)−Um|

≤ 2µ max
y∈{0,1}µ

Pr[Leak(UNn) = y] · |prodExt(UNn | Leak(UNn) = y)−Um|,

where y runs over {0, 1}µ. Next, we can applying Lemma 2 to upper bound the above by

2µmax
y,ψ

Pr[Leak(UNn = y)] · |E[ψ(prodExt(UNn | Leak(UNn) = y))]| · 2m/2,

34

where ψ runs over all nontrivial characters of the additive group F2m . Plugging in the definition of
this expectation, we get:

2µ+m/2max
y,ψ

Pr[Leak(UNn) = y] ·

∣∣∣∣∣∣

∑

x∈({0,1}n)N :Leak(x)=y

Pr[UNn = x]

Pr[Leak(UNn) = y]
· ψ(prodExt(x))

∣∣∣∣∣∣
,

which clearly equals

2µ+m/2−Nn ·max
y,ψ

∣∣∣∣∣∣

∑

x∈({0,1}n)N :Leak(x)=y

ψ(prodExt(x))

∣∣∣∣∣∣
.

Plugging in the definition of prodExt, we get:

2µ+m/2−Nn ·max
y,ψ

∣∣∣∣∣∣

∑

x∈({0,1}n)N :Leak(x)=y

ψ(σn,m(x1 · x2 · · · ·xN))

∣∣∣∣∣∣
.

It is straightforward to show that σn,m, as defined earlier, is a surjective homomorphism between
the additive groups F2n ,F2m . Thus, for any nontrivial character ψ : F2m → C×, the composition
ψ(σn,m) : F2n → C× is a nontrivial character of the additive group F2n . Thus, we can upper bound
the above quantity by

2µ+m/2−Nn ·max
y,χ

∣∣∣∣∣∣

∑

x∈({0,1}n)N :Leak(x)=y

χ(x1 · x2 · · · ·xN)

∣∣∣∣∣∣
,

where χ runs over all nontrivial characters of F2n . We note that the general technique seen above
(defining a surjective homomorphism σn,m in order to use an XOR lemma over a smaller domain
in order to incur a smaller blow-up in error) is borrowed from [Rao07]. Finally, using the character
sum from Lemma 11, we can upper bound the above by

2µ+m/2+1−n/2N−1
.

Thus, all that remains is to show 2µ+m/2+1−n/2N−1 ≤ 2−ξ, for some ξ = Ω(n/2N). We recall
that µ ≤ ξ and m ≤ ξ, and note that we may assume ξ ≥ 1, because otherwise prodExt has no
output and is trivially a leakage-resilient extractor. Thus, the above bound indeed holds for, say,
ξ = 0.5n/2N = Ω(n/2N), as desired.

7.2 Handling more leakage when there is less collusion

Next, we show that without any further modifications, the product extractor can effectively simulate
the first phase of our compiler, and thereby offers a nice complexity-collusion tradeoff. The following
lemma improves Lemma 12. We note that we will optimize to pick a good setting for t in Section 7.4.

Lemma 13. For all sufficiently large N,n ∈ N and any t, p ∈ N such that t ≤ N and p ≤ N−1, the
product extractor prodExt : ({0, 1}n)N → {0, 1}m from Definition 10 is an explicit leakage-resilient
extractor against nBCP(µ, ν, p) for entropy k = n and leakage µ < min{ξ/ν,

(
N
t

)
/
(
p
t

)
}, with output

length m = ξ and error ǫ = 2−ξ, where

ξ = Ω(n/2t).

35

Proof. We pick ξ(t, n) such that ξ(N,n) is the same function from Lemma 12. We must show that
for N independent uniform sources X = (X1, . . . ,XN) and any Leak ∈ nBCP(µ, ν, p) with µν < ξ
and µ

(
p
t

)
<
(
N
t

)
,

|prodExt(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ǫ,

where ǫ = 2−ξ. For brevity, we let Z1 := prodExt(X) ◦ Leak(X) and Z2 := Um ◦ Leak(X) and
show |Z1 − Z2| ≤ ǫ. By Definition 4, there must exist some S1, . . . , Sµ ⊆ [N], each of size p, and
some functions g1, . . . , gµ : ({0, 1}n)p → {0, 1}ν such that Leak(X) = (g1(XS1), . . . , gµ(XSµ)), ∀X ∈
({0, 1}n)N . Thus, we have

Z1 := prodExt(X) ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ),

Z2 := Um ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ).

The goal now is to perform fixings so as to reduce the analysis to Lemma 12. Informally, we proceed
as follows. We will start by noticing there must be some good G ∈

(
[N]
t

)
in the sense that it is

not contained by any Si. We will then fix all other sources, and notice that every leak becomes a
deterministic function of at most t − 1 sources in G. Then, we will absorb the values of the fixed
sources into the remaining unfixed sources by multiplying each source in G by all fixed values it sees
to its left (that are not absorbed by another source from G). The last source in G will also absorb
the fixed values on its right. Because these “absorptions” are products over F2n , the sources in G
are simply permuted, and thus their entropy is not affected. We notice the output of prodExt on all
the original sources is now equivalent to the output of prodExt on just the permuted sources in G.
Furthermore, each leak can now be written as a deterministic function of at most t − 1 permuted
sources in G. The result then follows immediately from Lemma 12.

Formally, we proceed as follows. First, notice that each of the µ subsets Si has size p, and can
therefore hold at most

(
p
t

)
distinct subsets of size t. Thus, since we are told µ

(
p
t

)
<
(
N
t

)
, there must

be some good G ∈
(
[N]
t

)
where G 6⊆ Si, ∀i ∈ [µ]. We let G ⊆ [N] denote its complement, and note

that by Remark 1 we may fix XG to some X∗ ∈ ({0, 1}n)N−t to obtain

|Z1 − Z2| ≤ |(Z1 | XG = X∗)− (Z2 | XG = X∗)|.

Now, to see that this quantity is bounded above by ǫ, we just have to carefully rewrite the random
variables. First, we let φ ∈ ({0, 1}n ∪ {∗})N be the string with stars denoting random variables
that have not been fixed: formally, φG = X∗, and φi = ∗, for each i ∈ G. Now, for each i ∈ [µ],
we let g−i : ({0, 1}n)|G∩Si| → {0, 1}ν denote the restriction of gi under φSi , as given by Definition 3.
The key observation now is that for any i ∈ [µ], we have

(gi(XSi) | XG = X∗) = g−i (XG∩Si).

Thus, we have
|(Z1 | XG = X∗)− (Z2 | XG = X∗)| = |Z′

1 − Z′
2|,

where

Z′
1 := (prodExt(X) | XG = X∗) ◦ g−1 (XG∩S1) ◦ · · · ◦ g−µ (XG∩Sµ) (6)

Z′
2 := Um ◦ g−1 (XG∩S1) ◦ · · · ◦ g−µ (XG∩Sµ). (7)

We now write G as G = {α1, . . . , αt}, where α1 < · · · < αt. Furthermore, we define α0 := 0
and αt+1 := N + 1, for convenience. For each i ∈ [t], and let Ti := (αi−1, αi) hold the indices of

36

the sources to the left of good source Xαi (which are not held by another Tj). We then redefine
TN := TN ∪ (αt, αt+1) to also hold the indices of sources to the right of Xαt .

We begin the absorption process. First, define for each i ∈ [t] the set T ′
i := {β − i+ 1 : β ∈ Ti}

so that for each i ∈ [t], (XTi | XG = X∗) = X∗
T ′

i
. Now, for each i ∈ [t], define the finite field element

παi :=
∏
j∈T ′

i
X∗
j as the product, over F2n , of all fixed sources to the left of good sources Xαi

(excluding those absorbed by a different good source; and of course παt also includes the product
of sources to the right of Xαt). We let π−1

αi
denote the multiplicative inverse of παi in F2n .

All of this work was for the following realization. If we define for each i ∈ [t] the random
variable X′

αi
:= παi ·Xαi , where the product is taken over F2n , then we have

(prodExt(X) | XG = X∗) = prodExt(X′
α1
,X′

α2
, · · · ,X′

αt
),

where both invocations of prodExt are from Definition 10, but the map on the left has the form
prodExt : ({0, 1}n)N → {0, 1}m and the map on the right has the form prodExt : ({0, 1}n)t →
{0, 1}m. Furthermore, because in F2n it holds that π · x = π · y only if x = y, we know that
H∞(X′

αi
) = H∞(Xαi), ∀i ∈ [t].

Now we just need to rewrite each leakage function g−i as a function of our new random variables.

For each i ∈ [µ], we let ti := |G∩Si|, and we write G∩Si as {α(i)
1 , . . . , α

(i)
ti
}, where α(i)

1 < · · · < α
(i)
ti
.

For each i ∈ [µ], we now define the map g′−i : ({0, 1}n)ti → {0, 1}ν for each X ∈ ({0, 1}n)ti as

g′−i (X) := g−i (π
−1

α
(i)
1

·X1, π
−1

α
(i)
2

·X2, . . . , π
−1

α
(i)
ti

·Xti),

which simply multiplies each inputted good source by the appropriate (fixed) inverse before applying
g−i . With these rewritings, notice that we now have

Z′
1 = prodExt(X′

α1
, . . . ,X′

αt
) ◦ g′−1 (X′

α
(1)
1

, . . . ,X′
α
(1)
t1

) ◦ · · · ◦ g′−µ (X′
α
(µ)
1

, . . . ,X′
α
(µ)
tµ

) (8)

Z′
2 = Um ◦ g′−1 (X′

α
(1)
1

, . . . ,X′
α
(1)
t1

) ◦ · · · ◦ g′−µ (X′
α
(µ)
1

, . . . ,X′
α
(µ)
tµ

) (9)

Recall that for each i ∈ [µ], {α(i)
1 , . . . , α

(µ)
ti

} = G ∩ Si (G, and therefore each g′−i , i ∈ [µ] is in
nNOFt,n(ν). The concatenation of all g′−i , i ∈ [µ] is therefore in nNOF(µν). Since we know µν ≤ ξ,
Lemma 12 tells us that |Z′

1 − Z′
2| ≤ ǫ, as desired.

7.3 Reducing the entropy requirement

Finally, we introduce a new variant of the product extractor that will be able to handle low entropy.

Definition 11. For a sufficiently large constant C ≥ 1 and any N,n, k,m0,m ∈ N satisfying
k ≥ logC n and k1/C ≥ m0 ≥ m, let 2Cond : {0, 1}n×{0, 1}n → {0, 1}m0 be the condenser for (n, k)
sources from Theorem 8, and let prodExt({0, 1}m0)N−1 → {0, 1}m be the product extractor from
Definition 10. We define the low entropy product extractor, leProdExt : ({0, 1}n)N → {0, 1}m, as

leProdExt(x1, x2, . . . , xN) := prodExt((2Cond(xi, xN))i∈[N−1]).

The main result of this subsection is the following lemma, which shows that the low entropy
product extractor can handle exponentially less entropy than the original product extractor, without
much loss in the parameter ξ (cf. Lemma 13).

37

Lemma 14. There is a constant C ≥ 1 such that for all sufficiently large N,n ∈ N and any t, p ∈ N
such that t ≤ N and p ≤ N − 2, the low-entropy product extractor leProdExt : ({0, 1}n)N → {0, 1}m
from Definition 11 is an explicit leakage-resilient extractor against nBCP(µ, ν, p) for entropy k =
logC n and leakage µ < min{ξ/ν,

(
N−1
t

)
/
(
p
t

)
}, with output length m = ξ and error ǫ = 2−ξ, where

ξ = kΩ(1)/2t.

In order to save ourselves from sacrificing an additional source as in our compiler, we will need
the following lemma, which shows that any leakage-resilient extractor against BCPs for uniform
sources can actually tolerate a little missing entropy, by treating it as leakage. This optimization
will allow us to handle up to p = N − 2 collusion, instead of p = N − 3.

Lemma 15. Let Ext : ({0, 1}n)N → {0, 1}m be a leakage-resilient extractor against nBCP(µ, ν, p)
for entropy k = n and error ǫ. Then for any 0 < k ≤ n, Ext is also a leakage-resilient extractor
against nBCP(µ− ⌈N/p⌉, ν, p) for entropy k and error ǫ · 2N(n−k).

Proof. Given N independent (n, k) sources X = (X1,X2, . . . ,XN) and any Leak ∈ nBCP(µ −
⌈N/p⌉, ν, p), we wish to upper bound the quantity:

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)|. (10)

We may assume that each source Xi is flat ; i.e., uniform over some Ti ⊆ {0, 1}n of size 2k. The
main idea of this proof is to treat the missing entropy as leakage on uniform sources, by defining a
function belonging to nBCP(⌈N/p⌉, ν, p) that identifies the support of (X1, . . . ,XN).

In particular, we define µ′ := ⌈N/p⌉, and we let 1 ∈ {0, 1}ν denote the concatenation of ν 1s,
and 1∗ ∈ ({0, 1}ν)µ′ denote the concatenation of µ′ 1s. Next, we let A := {A1, . . . , Aµ′} denote an
arbitrary partition of [N] consisting of subsets of size at most p, and we define the indicator function
id : ({0, 1}n)N → ({0, 1}ν)µ′ as the map (x1, . . . , xN) 7→ (y1, . . . , yµ′), where yi = 1 iff xj ∈ Tj , ∀j ∈
Ai. Given this definition, it is straightforward to verify that id(x) = 1∗ iff x ∈ T1 × · · · × TN , and
that id ∈ nBCP(µ′, ν, p). Thus, if we define a function Leak′ : ({0, 1}n)N → ({0, 1}ν)µ that maps
x 7→ (Leak(x), id(x)), then Leak′ ∈ nBCP(µ, ν, p), and we may use it to upper bound Equation (10):

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)|
= |Ext(UNn | id(UNn) = 1∗) ◦ Leak(UNn | id(UNn) = 1∗)−Um ◦ Leak(UNn | id(UNn) = 1∗)|
≤ Eid(UNn)[|Ext(UNn) ◦ Leak(UNn)−Um ◦ Leak(UNn)|]/Pr[id(UNn) = 1∗]

= |Ext(UNn) ◦ Leak(UNn) ◦ id(UNn)−Um ◦ Leak(UNn) ◦ id(UNn)|/Pr[id(UNn) = 1∗]

= |Ext(UNn) ◦ Leak′(UNn)−Um ◦ Leak′(UNn)| · 2N(n−k)

≤ ǫ · 2N(n−k),

where the first inequality is a Markov-type inequality, and the second inequality follows from the
hypothesis.

Equipped with this lemma, we may now prove the main result of this subsection.

Proof of Lemma 14. We must show that for N independent (n, k) sources X = (X1, . . . ,XN), and
any Leak ∈ nBCP(µ, ν, p) with Leak ∈ nBCP(µ, ν, p) with µν < ξ and µ

(
p
t

)
<
(
N−1
t

)
,

|leProdExt(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ǫ,

38

where ǫ = 2−ξ. For brevity, we let Z1 := leProdExt(X) ◦ Leak(X) and Z2 := Um ◦ Leak(X)
and show |Z1 − Z2| ≤ ǫ. We recall the definition of leProdExt includes invocations to 2Cond :
({0, 1}n)2 → {0, 1}m0 as well as prodExt : ({0, 1}m0)N−1 → {0, 1}m. By Definition 4, there must
exist some S1, . . . , Sµ ⊆ [N], each of size p, and some functions g1, . . . , gµ : ({0, 1}n)p → {0, 1}ν
such that Leak(X) = (g1(XS1), . . . , gµ(XSµ)), ∀X ∈ ({0, 1}n)N . Thus, substituting in the definition
of leProdExt, we have

Z1 := prodExt((2Cond(Xi,XN))i∈[N−1]) ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ),

Z2 := Um ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ).

We remark that any parameters in the construction itself (like condenser output length, condenser
error, product extractor output length, etc.) will be set at the end so that everything works out.

The goal now is to perform fixings and employ Lemmas 7 and 15 to reduce the analysis to the
analysis in Lemma 13. Informally, we will proceed as follows. We start by noticing there must be
some good G ∈

(
[N−1]
t

)
, in the sense that it is not contained by any Si. We will then fix source

XN to xN , and with high probability, each of 2Cond(Xi, xN), i ∈ G will end up with high entropy
(and be independent). We then fix every source Xi, i /∈ G, and observe that every leak becomes
a deterministic function of at most t − 1 sources in G. We would like, however, each leak to be a
deterministic function of at most t− 1 of the high entropy random variables 2Cond(Xi, xN), i ∈ G.
To do this, we use Lemma 7 to see that each good source Xi, i ∈ G can, in fact, be written as
g(2Cond(Xi, xN),Zi), where Zi is some fresh, independent randomness, and g is a deterministic
function. Thus, if we fix each Zi, each leak becomes a deterministic function of at most t− 1 of the
high entropy random variables. By following the analysis in Lemma 13, we can then show that our
analysis reduces to proving that prodExt is leakage-resilient to nNOF leakage, even if the sources
are missing a little entropy. We may then apply Lemma 15 to complete the proof.

Formally, we proceed as follows. First, notice that each of the µ subsets Si has size p, and can
therefore hold at most

(
p
t

)
distinct subsets of size t. Thus, since we are told µ

(
p
t

)
<
(
N−1
t

)
, there

must be some good G ∈
(
[N−1]
t

)
where G 6⊆ Si, ∀i ∈ [µ]. Now, we let ǫ1 be the error of 2Cond,

meaning that with probability 1−ǫ1 over xN ∼ XN , 2Cond(Xi, xN) has entropy at least m0−
√
m0,

for any single i ∈ [N − 1]. Thus, by a union bound, with probability 1− tǫ1 over xN ∼ XN , every
random variables in X := {2Cond(Xi, xN) : i ∈ G} has entropy at least m0 −

√
m0; notice they

are also independent, because they are deterministic functions of independent random variables.
In other words, we may use Remark 1 to fix XN to some X∗

N ∈ {0, 1}n such that

|Z1 − Z2| ≤ EXN
[|Z1 − Z2|] ≤ tǫ1 + |(Z1 | XN = X∗

N)− (Z2 | XN = X∗
N)|,

where 2Cond(Xi, X
∗
N) has entropy at least m0 − √

m0, for each i ∈ G. We now define Yi :=
2Cond(Xi, X

∗
N) for each i ∈ [N − 1], and we notice that this collection of random variables are

mutually independent. We write Y = Y1 ◦ · · · ◦YN−1. We may now use Remark 1 again to fix Xi

to some X∗
i ∈ {0, 1}n for each i /∈ G ∪ {N}, such that

|(Z1 | XN = X∗
N)− (Z2 | XN = X∗

N)| ≤ |(Z1 | Xi = X∗
i , ∀i /∈ G)− (Z2 | Xi = X∗

i , ∀i /∈ G)|. (11)

Notice that as a result, each Yi, i /∈ G ∪ {N}, gets fixed to Y ∗
i = 2Cond(X∗

i , X
∗
N) ∈ {0, 1}m0 , while

each Yi, i ∈ G still has entropy at leastm0−
√
m0, and the collection {Yi : i ∈ G} remains mutually

independent. Our immediate goal now is to rewrite Equation (11) in a more familiar form, where
the leaks depend only on the good Xi.

39

For convenience, we will write G := [N − 1] \ G and X∗ = (X∗
i)i∈G∪{N} and Y ∗ := (Y ∗

i)i∈G.

Then, we let φ ∈ ({0, 1}n ∪ {∗})N be the string with stars denoting random variables Xi that have
not been fixed: formally, φG∪{N} = X∗, and φi = ∗, for each i ∈ G. Now, for each i ∈ [µ], we let

g−i : ({0, 1}n)|G∩Si| → {0, 1}ν denote the restriction of gi under φSi , as given by Definition 3. As a
result, we have for each i ∈ [µ] the equivalence gi(XSi | XG∪{N} = X∗) = g−i (XG∩Si), and thus we
may write

|(Z1 | Xi = X∗
i , ∀i /∈ G)− (Z2 | Xi = X∗

i , ∀i /∈ G)| = |Z′
1 − Z′

2|,
where

Z′
1 := (prodExt(Y) | YG = Y ∗) ◦ g−1 (XG∩S1) ◦ · · · ◦ g−µ (XG∩Sµ),

Z′
2 := Um ◦ g−1 (XG∩S1) ◦ · · · ◦ g−µ (XG∩Sµ).

We are now almost at the point where we can use the analysis of Lemma 13 from Equations (6)
and (7) onwards. To do so, we will need to write each leakage function g−i as a function of random
variables from {Yi : i ∈ G} instead of {Xi : i ∈ G}. Here is where Lemma 7 comes in handy. In
particular, it says that for each Yi, i ∈ G, a random variable Qi that is independent of all other
random variables considered thus far, excluding Xi, such that Xi = fi(Yi,Qi). (We ignore the
slight error from this approximation, as it can be made arbitrarily small and thereby absorbed by
any other error appearing in this proof.) We now apply Remark 1 one last time to fix Qi to some
Q∗
i for each i ∈ G such that

|Z′
1 − Z′

2| ≤ |(Z′
1 | Qi = Q∗

i , ∀i ∈ G)− (Z′
2 | Qi = Q∗

i , ∀i ∈ G)|

Now, for each i ∈ [µ], define ti := |G∩ Si|, and let G∩ Si = {α(i)
1 , . . . , α

(i)
ti
} where α

(i)
1 < · · · < α

(i)
ti
.

Furthermore, for each i ∈ [µ], we define a new leakage function g′−i : ({0, 1}m0)ti → {0, 1}ν as:

g′−i (Y) := g−i

(
f
α
(i)
1

(Y1, Q
∗
α
(i)
1

), . . . , f
α
(i)
ti

(Yti , Q
∗
α
(i)
ti

)

)
,

with the key observation that for each i ∈ [µ], we have

(g−i (XG∩Si) | Qi = Q∗
i , ∀i ∈ G) = g′−i (YG∩Si).

As such, we may rewrite

|(Z′
1 | Qi = Q∗

i , ∀i ∈ G)− (Z′
2 | Qi = Q∗

i , ∀i ∈ G)| = |Z′′
1 − Z′′

2|,

where

Z′′
1 := (prodExt(Y) | YG = Y ∗) ◦ g′−1 (YG∩S1) ◦ · · · ◦ g′−µ (YG∩Sµ),

Z′′
2 := Um ◦ g′−1 (YG∩S1) ◦ · · · ◦ g′−µ (YG∩Sµ),

Where YG consists of t independent random variables over {0, 1}m0 , each with min-entropy at
least m0 −

√
m0, and G ∩ Si (G, ∀i ∈ [µ]. We are now in the perfect place to use the analysis in

Lemma 13. In particular, using the exact same reasoning that falls between Equations (6) and (7)
and Equations (8) and (9) in the proof of that lemma, we know that there exist t independent
random variables Y′′ = (Y′′

1 , . . . ,Y
′′
t), each over {0, 1}m0 and with min-entropy at least m0−

√
m0;

40

as well as subsets S′′
1 , . . . , S

′′
µ ⊆ [t], each of size at most t−1; as well as mappings g′′i : ({0, 1}m0)|Si| →

{0, 1}ν , ∀i ∈ [µ]; such that

Z′′
1 = prodExt(Y′′

1 , . . . ,Y
′′
t) ◦ g′′1(Y′′

S′′

1
) ◦ · · · ◦ g′′µ(Y′′

S′′
µ
),

Z′′
2 = Um ◦ g′′1(Y′′

S′′

1
) ◦ · · · ◦ g′′µ(Y′′

S′′
µ
).

To conclude, we combine Lemma 12 with Lemma 15 to see that prodExt : ({0, 1}m0)t → {0, 1}m
is, in fact, a leakage-resilient extractor against nNOF(µ2 − 2) for entropy m0 −

√
m0, error ǫ3 =

ǫ2 · 2t
√
m0 , and output m, where ǫ2 = 2−γm0/2t , µ2 = γm0/2

t, and m = γm0/2
t, for some small

universal constant γ > 0. Furthermore, the sources Y′′
i , i ∈ [t] end up with the promised entropy

m0 −
√
m0 as long as k ≥ logC n and k1/C ≥ m0, with error ǫ1 = 2−k

1/(2C)
, for some universal

constant C ≥ 1. Thus, the condenser and extractor will both work as long as this entropy is
guaranteed, and as long as µν < µ2 − 2 (because this means the concatenation of leaks g′′1 , . . . , g

′′
µ

is in nNOF(µ2 − 2)). Furthermore, its error will be

ǫ = |Z1 − Z2| ≤ tǫ1 + |Z′′
1 − Z′′

2| = tǫ1 + ǫ3.

Finally, recall that we required µ
(
p
t

)
<
(
N−1
t

)
at the beginning to ensure we could find a good

set G. Thus, there exists some constant ζ > 0 and function ξ(k, t) := kζ/2t such that as long as
k ≥ logC n, and µ < min{ξ/ν,

(
N−1
t

)
/
(
p
t

)
}, and m ≤ ξ, it holds that |Z1 − Z2| = ǫ ≤ 2−ξ, which

completes the proof.

All that remains now is to show that the low entropy product extractor can, in fact, handle
adaptive adversaries. We prove this in the next section, where we also set some parameters and
record the strongest lemma detailing the properties of this extractor.

7.4 Adding adaptivity and wrapping up

In this section, we record the four best results we have for our simple leakage-resilient extractor.
We start by recording the adaptive versions of Lemma 13 and Lemma 14, which are obtained by
using Lemma 10 from Section 6. Then, we conclude with our two main theorems about the product
extractor that are derived by setting t.

First, by applying Lemma 10 to Lemma 13 (where we shorten the output of our extractor
by enough of a constant factor, without increasing the error, before applying Lemma 10), we
immediately get the following general lemma for the leakage resilience of our explicit extractor for
uniform sources.

Lemma 16. For all sufficiently large N,n ∈ N and any t, p ∈ N such that t ≤ N and p ≤ N−1, the
product extractor prodExt : ({0, 1}n)N → {0, 1}m from Definition 10 is an explicit leakage-resilient
extractor against BCP(µ, ν, p) for entropy k = n and leakage µ < min{ξ/ν,

(
N
t

)
/
(
p
t

)
}, with output

length m = ξ and error ǫ = 2−ξ, where

ξ = Ω(n/2t).

Similarly, we apply Lemma 10 to Lemma 14 to immediately get the following general lemma
for the leakage resilience of our explicit extractor for low entropy sources.

41

Lemma 17. For all sufficiently large N,n ∈ N and any t, p ∈ N such that t ≤ N and p ≤
N − 2, the low-entropy product extractor leProdExt : ({0, 1}n)N → {0, 1}m from Definition 11
is an explicit leakage-resilient extractor against BCP(µ, ν, p) for entropy k = logC n and leakage
µ < min{ξ/ν,

(
N−1
t

)
/
(
p
t

)
}, with output length m = ξ and error ǫ = 2−ξ, where

ξ = kΩ(1)/2t.

Finally, we may set t in Lemma 16 and Lemma 17 to obtain our two main theorems on the
leakage-resilience of the product extractors against BCP.

Theorem 11. For all sufficiently large N,n ∈ N and any p ≤ N − 1, the product extractor
prodExt : ({0, 1}n)N → {0, 1}m from Definition 10 is an explicit leakage-resilient extractor against
BCP(µ, ν, p) for entropy k = n and leakage µ < ξ, with output length m = ξ and error ǫ = 2−ξ,
where

ξ = Ω

((n
ν

) log(N/p)
log(N/p)+1

)
.

Proof. Set t in Lemma 16 to min {log(n/ν)/(log(N/p) + 1), N}, and use Stirling’s approximation
for

(
N
t

)
/
(
p
t

)
≥ Ω((N/p)t). Notice that when N is selected, the resulting value for ξ may look

different, but using the fact that it’s smaller than the other argument in the minimum function, ξ
will be at least the stated bound.

Theorem 12. There is a universal constant C such that for all sufficiently large N,n ∈ N and any
p ≤ N − 2, the low-entropy product extractor leProdExt : ({0, 1}n)N → {0, 1}m from Definition 11
is an explicit leakage-resilient extractor against BCP(µ, ν, p) for entropy k = logC n and leakage
µ < ξ, with output length m = ξ and error ǫ = 2−ξ, where

ξ =

(
kΩ(1)

ν

) log((N−1)/p)
log((N−1)/p)+1

.

Proof. Set t in Lemma 16 to min
{
log(kΩ(1)/ν)/(log((N − 1)/p) + 1), N − 1

}
, and use Stirling’s

approximation for
(
N−1
t

)
/
(
p
t

)
≥ Ω(((N − 1)/p)t). Notice that when N − 1 is selected, the resulting

value for ξ may look different, but using the fact that it’s smaller than the other argument in the
minimum function, ξ will be at least the stated bound.

We remark that the above theorems do even a little better than claimed (i.e., we can have
m = ξν and ǫ = 2−ξν), but we state them as such for simplicity.

8 Applications to leakage-resilient secret sharing

One of the biggest motivating applications of leakage-resilient extractors is that they can provide
better leakage-resilient secret sharing schemes. In this section, we will recall the definition of
leakage-resilient secret sharing schemes, show that our explicit leakage-resilient extractors greatly
improve existing results, and introduce a new, natural variant of secret sharing in which our low-
entropy leakage-resilient extractor is put to good use. We start by recollecting the definition of
standard t-out-of-n secret sharing schemes, as defined in [KMS19].

42

Definition 12. Let Share : {0, 1}m → ({0, 1}n)N be a randomized sharing algorithm that maps a
secret of length m into N shares of length n, and let Rec : ({0, 1}n)t → {0, 1}m be a deterministic
reconstruction algorithm that recovers the secret from t shares. The tuple (Share,Rec) is defined as
a t-out-of-N secret sharing scheme if both of the following hold.

1. Perfect correctness: Any t shares can recover the secret. Formally, for any secret Ψ ∈ {0, 1}m
and any S ⊆ [N] of size t,

Pr[Rec(Share(Ψ)S) = Ψ] = 1,

where the randomness is over Share.

2. Perfect secrecy: Fewer than t shares reveal no information about the secret. Formally, for
any secrets Ψ1,Ψ2 ∈ {0, 1}m, and any S ⊆ [N] of size less than t,

|Share(Ψ1)− Share(Ψ2)| = 0.

A leakage-resilient secret sharing scheme is defined to be a t-out-of-N scheme that can also
hide the secret against more powerful adversaries (typically ones that simulate communication
protocols). Formally:

Definition 13. Let (Share,Rec) be a t-out-of-N secret sharing scheme, with Share : {0, 1}m →
({0, 1}n)N and Rec : ({0, 1}n)t → {0, 1}m. Given a family of leakage functions F of the form
f : ({0, 1}n)N → {0, 1}µ, we say that (Share,Rec) is leakage-resilient against F with error ǫ if for
any secrets Ψ1,Ψ2 ∈ {0, 1}m, and any f ∈ F ,

|f(Share(Ψ1))− f(Share(Ψ2))| ≤ ǫ,

where the randomness comes from Share.

We now elucidate the connection between leakage-resilient secret sharing schemes and leakage-
resilient extractors, by showing how the latter can be used to construct the former. This connection
and the construction in our proof are borrowed entirely from [KMS19], and this lemma is almost
identical to Lemma 1 in their paper, which they prove. However, we include it for completeness,
because we slightly generalize their result and proof to take advantage of multi-bit output leakage-
resilient extractors, and because our proof can easily be generalized to any leakage class that is
closed under restrictions.

Lemma 18. Suppose there exists a leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m
against BCPN,n(µ(N,n), ν(N,n), p(N,n)) for entropy k = n and error ǫ. Then there
exists an N -out-of-N secret sharing scheme (Share,Rec) that is leakage-resilient against
BCPN,n+m(µ(N,n), ν(N,n), p(N,n)), with error 2m+1·ǫ, where Share : {0, 1}m → ({0, 1}n+m)N ,Rec :
({0, 1}n+m)N → {0, 1}m. Furthermore, if Ext runs in poly(N,n) time, then so do Share and Rec.

Proof. We first construct (Share,Rec) from Ext, and then prove its claimed properties. Let X =
(X1, . . . ,XN) be N uniform random variables over {0, 1}n, and let Y = (Y1, . . . ,YN−1) be N − 1
uniform random variables over {0, 1}m, where all 2N − 1 random variables are independent. We
define Share : {0, 1}m → ({0, 1}n+m)N , for each Ψ ∈ {0, 1}m, as

Share(Ψ) := (X1,Y1) ◦ (X2,Y2) ◦ · · · ◦ (XN−1,YN−1) ◦ (XN ,Ψ⊕ Ext(X)⊕Y1 ⊕ · · · ⊕YN−1)

43

and we define Rec : ({0, 1}n+m)N → {0, 1}m, for each ((X1, Y1), . . . , (XN , YN)) ∈ ({0, 1}n+m)N ,
where each Xi ∈ {0, 1}n, Yi ∈ {0, 1}m, as

Rec((X1, Y1), . . . , (XN , YN)) := Ext(X1, . . . , XN)⊕ Y1 ⊕ · · · ⊕ YN−1 ⊕ YN .

We claim that (Share,Rec) is an N -out-of-N secret sharing scheme that is leakage-resilient against
FN,n+m with error 2m+1 · ǫ. We must prove the perfect correctness, perfect secrecy, and leakage-
resilience of this scheme. (The efficiency claim is clear.)

Perfect correctness follows easily by definition: for each Ψ ∈ {0, 1}m,

Rec(Share(Ψ)[N]) = Ext(X)⊕Y1 ⊕ · · · ⊕YN−1 ⊕ (Ψ⊕ Ext(X)⊕Y1 ⊕ · · · ⊕YN−1) = Ψ,

and thus of course Pr[Rec(Share(Ψ))[N] = Ψ] = 1.
Perfect secrecy follows easily as well. For any Ψ1,Ψ2 ∈ {0, 1}m, and any S ⊆ [N] of size |S| < N ,

either S contains N , or not. If N /∈ S, Share(Ψ1)S = (Xi,Yi)i∈S = Share(Ψ2)S , and thus clearly
|Share(Ψ1) − Share(Ψ2)| = 0. If N ∈ S, there must be some α ∈ [N − 1] \ S. Thus, by Remark 1,
there must exist some fixings {xi ∈ {0, 1}n : i ∈ [N]} and {yi ∈ {0, 1}m : i ∈ [N − 1] \ {α}} such
that

|Share(Ψ1)S − Share(Ψ2)S | ≤ |Z1 − Z2|,

where

Z1 := (Share(Ψ1)S | X[N] = (xi)i∈[N],Y[N−1]\{α} = (yi)i∈[N−1]\{α}),

Z2 := (Share(Ψ2)S | X[N] = (xi)i∈[N],Y[N−1]\{α} = (yi)i∈[N−1]\{α}).

Notice, however, that

Z1 = (xi, yi)i∈S\{N} ◦ (xN ,Ψ1 ⊕ Ext(x1, . . . , xN)⊕Yα ⊕i∈[N−1]\{α} yi)

= (xi, yi)i∈S\{N} ◦ (xN ,Um)

= (xi, yi)i∈S\{N} ◦ (xN ,Ψ2 ⊕ Ext(x1, . . . , xN)⊕Yα ⊕i∈[N−1]\{α} yi)

= Z2,

and thus |Share(Ψ1)S − Share(Ψ2)S | = 0.
Finally, to show leakage-resilience, we must prove that for any Ψ1,Ψ2 ∈ {0, 1}m, and any

Leak : ({0, 1}n+m)N → ({0, 1}ν)µ ∈ FN,n+m, |Leak(Share(Ψ1)) − Leak(Share(Ψ2))| ≤ 2m+1 · ǫ. By
Remark 1, we know that for some Y ∗ ∈ ({0, 1}m)N−1,

|Leak(Share(Ψ1))− Leak(Share(Ψ2))| ≤ |(Leak(Share(Ψ1)) | Y = Y ∗)− (Leak(Share(Ψ2)) | Y = Y ∗).

Thus, if we define the fixed quantities ψ1 := Ψ1⊕Y ∗
1 ⊕· · ·⊕Y ∗

N−1 and ψ2 := Ψ2⊕Y ∗
1 ⊕· · ·⊕Y ∗

N−1,
the above statistical distance is precisely |Z1 − Z2|, where Zα, ∀α ∈ [2] is defined as follows:

Zα := Leak((X1, Y
∗
1) ◦ (X2, Y

∗
2) ◦ · · · ◦ (XN−1, Y

∗
N−1) ◦ (XN ,Ext(X)⊕ ψα)).

In order to bound |Z1 −Z2|, we will introduce some new random variables. First, we let Q denote
a fresh new random variable that is uniform over {0, 1}m and independent of everything we’ve seen
thus far. Then, we define

Z0 := Leak((X1, Y
∗
1) ◦ (X2, Y

∗
2) ◦ · · · ◦ (XN−1, Y

∗
N−1) ◦ (XN ,Q)).

44

Notice that by the triangle inequality (Fact 1), |Z1−Z2| ≤ |Z1−Z0|+ |Z0−Z2|. Thus, to complete
the proof, it suffices to show |Zα − Z0| ≤ 2m · ǫ, ∀α ∈ [2]. To do so, we first use Fact 3 to see that

|Zα − Z0| ≤ |Zα ◦ (Ext(X)⊕ ψα)− Z0 ◦Q|.
Suppose now that we define, for each fixed b ∈ {0, 1}m, the random variable

Z(b) := Leak((X1, Y
∗
1) ◦ (X2, Y

∗
2) ◦ · · · ◦ (XN−1, Y

∗
N−1) ◦ (XN , b)).

Then by definition of statistical distance, we have |Zα ◦ (Ext(X)⊕ ψα)− Z0 ◦Q| is exactly

=
1

2

∑

b∈{0,1}m

∑

a∈({0,1}ν)µ
|Pr[Zα ◦ (Ext(X)⊕ ψα) = a ◦ b]− Pr[Z0 ◦Q = a ◦ b]|

=
1

2

∑

b∈{0,1}m

∑

a∈({0,1}ν)µ
|Pr[Z(b) ◦ (Ext(X)⊕ ψα) = a ◦ b]− Pr[Z(b) ◦Q = a ◦ b]|

≤ 2m max
b∈{0,1}m

1

2

∑

a∈({0,1}ν)µ
|Pr[Z(b) ◦ (Ext(X)⊕ ψα) = a ◦ b]− Pr[Z(b) ◦Q = a ◦ b]|

≤ 2m max
b∈{0,1}m

1

2

∑

a∈({0,1}ν)µ
b′∈{0,1}m

|Pr[Z(b) ◦ (Ext(X)⊕ ψα) = a ◦ b′]− Pr[Z(b) ◦Q = a ◦ b′]|

= 2m max
b∈{0,1}m

|Z(b) ◦ (Ext(X)⊕ ψα)− Z(b) ◦Q|

= 2m max
b∈{0,1}m

|Ext(X) ◦ Z(b) −Um ◦ Z(b)|

where the last equality holds by Q = Um and by the degenerate case of Fact 4. Finally, notice that
for each b ∈ {0, 1}m, we may define a restriction string φ(b) ∈ (({0, 1}n ∪ {∗})× ({0, 1}m ∪ {∗}))N
such that φ

(b)
i,1 = ∗, ∀i ∈ [N], and φ

(b)
i,2 = Y ∗

i , ∀i ∈ [N − 1], and φ
(b)
N,2 = b, and note that if we define

Leak(b) : ({0, 1}n)N → ({0, 1}ν)µ as the restriction of Leak under φ(b), then Z(b) = Leak(b)(X).
Furthermore, it is easy to show this restriction Leak(b) ∈ BCPN,n(µ(N,n), ν(N,n), p(N,n)). Thus,

|Zα ◦ (Ext(X)⊕ ψα)− Z0 ◦Q| ≤ 2m max
b∈{0,1}m

|Ext(X) ◦ Leak(b)(X)−Um ◦ Leak(b)(X)| ≤ 2m · ǫ,

where the last inequality follows because Ext is a leakage-resilient extractor against BCP(µ, ν, p).

Using this lemma, we are able to immediately use our leakage-resilient extractors to get much
better leakage-resilient secret sharing schemes in the N -out-of-N setting. In leakage-resilient secret
sharing, one typically wants the share size to be as small as possible. Thus, in the following theorem,
one should notice how the requirement on share size, n, grows as we share larger secrets of size m,
require less error ǫ, and give the adversary more power, in terms of its collusion bound p, number
of rounds µ, and number of bits it can leak per round, ν.

Theorem 13. There exists an N -out-of-N secret sharing scheme (Share,Rec), of the form Share :
{0, 1}m → ({0, 1}n)N ,Rec : ({0, 1}n)N → {0, 1}m, that shares secrets of length m into N shares of
length n that is leakage-resilient against BCP(µ, ν, p) with error ǫ. The shares have length

n = O

(
(m+ 1 + log(1/ǫ))

log(N/p)+1
log(N/p) ν + µ

log(N/p)+1
log(N/p) ν

)
,

and the scheme runs in time poly(N,n).

45

Proof. By Theorem 1, there exists an explicit leakage-resilient extractor Ext : ({0, 1}n0)N → {0, 1}m
against BCP(µ, ν, p) for full entropy with error ǫ · 2−(m+1) as long as µ < ξ,m ≤ ξ, and ǫ2−(m+1) ≥
2−ξ, where ξ = Ω((n0/ν)

log(N/p)
log(N/p)+1 . Rewriting these restrictions, it is easy to show that this all holds

if

n0 ≥ O(max{µ
log(N/p)+1
log(N/p) ν,m

log(N/p)+1
log(N/p) ν, (m+ 1 + log(1/ǫ))

log(N/p)+1
log(N/p) ν})

= O((m+ 1 + log(1/ǫ))
log(N/p)+1
log(N/p) ν + µ

log(N/p)+1
log(N/p) ν).

Thus by setting n := n0 +m = O(n0) and applying Lemma 18, the result is immediate.

In order to put the parameters we can achieve in context, we note that the previous best
requirement on share size n, given by [KMS19], was of the following form (which should be compared
against our result when ν = 1):

n = m(logN)(µ+ log(1/ǫ)) · 2O(p).

The biggest difference here is that the share size in [KMS19] has an exponential dependency on
the collusion bound, p, while our share size does not. Thus, because a secret sharing scheme is
only considered efficient if share size grows polynomially in N , the maximum collusion that can
be handled from the leakage-resilient schemes in [KMS19] is p = O(logN). Our schemes, however,
are able to efficiently handle up to p = 0.99N parties colluding, and furthermore remove any
dependency of n on N in this setting.

Seeded leakage-resilient secret sharing Interestingly, it also seems like there is a natural
setting in which such leakage-resilient secret sharing schemes can take advantage of our low entropy
extractors. As discussed above, the key parameter to optimize in secret sharing is share size, n.
Given a secret that is to be distributed amongstN parties and statistically hidden from any powerful
adversary, we would like a scheme that produces the smallest shares possible. The motivation here
is that if a secret is to be shared across multiple devices, we would like to require these devices
to store as little information as possible. However, in such a setting, there is the assumption that
the shares we are distributing are new pieces of information that each device must commit to its
memory. If there was a way to somehow incorporate existing information on these devices into
the secret sharing scheme, and only require each device to commit a very small amount of new
information to store the share, then this seems just as good (modulo some user privacy concerns)
as a secret sharing scheme with very small shares.

We develop this intuition into a new type of leakage-resilient secret sharing (LRSS) called seeded
leakage-resilient secret sharing. In such a scheme, the Share function receives not only the secret
that must be shared, but also some information from each device that will participate. The goal
of Share is to output a small number of bits for each participating device such that when a device
appends this new information onto their existing information, a secret sharing scheme is formed.
In this scheme, a device’s share becomes the concatenation of their old information with their new
information.

If each participating device is storing some old information that is purely random, it is not
difficult to do this job quite efficiently. While this is not a likely scenario, it is likely that a device
is already storing bits that have some entropy, perhaps in the form of system log files. We will show
that even if each device has a lot of old information with very low entropy, we can complete this with

46

a very small (in fact, optimal) amount of new information in order to complete a leakage-resilient
secret sharing scheme.

The old information on each device is referred to as a seed, and is represented by an (n, k)
source. The amount of bits of new information that must be appended to each device is referred
to as the growth of the scheme. We fully capture our new setting in the following formalism.

Definition 14. Let Share : {0, 1}m × ({0, 1}n)N → ({0, 1}m′

)N be a randomized function, and
let Rec : ({0, 1}n+m′

)N → {0, 1}m be a deterministic function. Furthermore, let F be a class of
(deterministic) functions of the form f : ({0, 1}n+m′

)N → {0, 1}µ. We say that (Share,Rec) is a
seeded leakage-resilient secret sharing scheme (S-LRSS) against F for seeds of type (n, k), with
growth m′ and error ǫ, if given any N (n, k) sources X = (X1, . . . ,XN), the maps (Share+,Rec+),
with Share+ : {0, 1}m → ({0, 1}n+m′

)N and Rec+ : ({0, 1}n+m′

)N → {0, 1}m and defined as

Share+(Ψ) := ((X1, Share(Ψ,X)1), (X2, Share(Ψ,X)2), . . . , (XN , Share(Ψ,X)N)),

Rec+(Ψ) := Rec(Ψ),

are an N -out-of-N leakage-resilient secret sharing scheme against F with error ǫ.

By employing our leakage-resilient extractors against bounded collusion protocols for low en-
tropy, we show that we can effectively move the requirement on share size from standard leakage-
resilient secret sharing schemes to the requirement on old information to be reused in our new
schemes. Furthermore, the old information that is harvested from each device barely has to look
random at all. In particular, we can prove the following result.

Theorem 14. There exists an explicit S-LRSS (Share,Rec), of the form Share : {0, 1}m ×
({0, 1}n)N → ({0, 1}m)N ,Rec : ({0, 1}n+m)N → {0, 1}m, against BCP(µ, ν, p) for seeds of type
(n, k) with growth m, as long as k ≥ polylog(n) and

k ≥ (m+ 1 + log(1/ǫ))
O
(

log((N−1)/p)+1
log((N−1)/p)

)

ν + µ
O
(

log((N−1)/p)+1
log((N−1)/p)

)

ν,

Proof. By Theorem 2, there exists an explicit leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m
against BCP(µ, ν, p) for entropy k = polylog(n) with error ǫ · 2−(m+1) as long as µ < ξ,m ≤ ξ, and

ǫ2−(m+1) ≥ 2−ξ, where ξ = (kΩ(1)/ν)
log((N−1)/p)

log((N−1)/p)+1 . Rewriting these restrictions, it is easy to show
that this all happens if

k ≥ max{µO(
log((N−1)/p)+1
log((N−1)/p)

)
ν,m

O(
log((N−1)/p)+1
log((N−1)/p)

)
ν, (m+ 1 + log(1/ǫ))

O(
log((N−1)/p)+1
log((N−1)/p)

)
ν}

= (m+ 1 + log(1/ǫ))
O
(

log((N−1)/p)+1
log((N−1)/p)

)

ν + µ
O
(

log((N−1)/p)+1
log((N−1)/p)

)

ν.

Then, given N−1 independent uniform random variables Y1, . . . ,YN over {0, 1}m, we define Share
as

Share(Ψ, X1, . . . , XN) := Y1 ◦Y2 ◦ · · · ◦YN−1 ◦ (Ψ⊕ Ext(X1, . . . , XN)⊕i∈[N−1] Yi),

and we define Rec as

Rec((X1, Y1), . . . , (XN , YN)) := Ext(X1, . . . , XN)⊕i∈[N] Yi.

The result then follows immediately from the Definition 14 and the proof of Lemma 18.

47

9 Acknowledgements

Eshan Chattopadhyay and Jesse Goodman are supported by NSF grant CCF-1849899. Vipul Goyal
is supported in part by NSF grant 1916939, a gift from Ripple, a JP Morgan Faculty Fellowship,
and a Cylab seed funding award. Xin Li is supported by NSF Award CCF-1617713 and NSF
CAREER Award CCF-1845349.

References

[ADN+19] Divesh Aggarwal, Ivan Damg̊ard, Jesper Buus Nielsen, Maciej Obremski, Erick
Purwanto, João L. Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-
malleable secret sharing schemes for general access structures. In Advances in Cryp-
tology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, pages 510–539, 2019.

[BACDTS19] Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma. Two-source
condensers with low error and small entropy gap via entropy-resilient functions. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2019.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the lo-
cal leakage resilience of linear secret sharing schemes. In Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I, pages 531–561, 2018.

[BGK14] Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin toss-
ing. Distributed Comput., 27(3):147–164, 2014.

[BIW06] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using
few independent sources. SIAM Journal on Computing, 36(4):1095–1118, 2006.

[BNS89] László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols and logspace-
hard pseudorandom sequences. In Proceedings of the twenty-first annual ACM sym-
posium on Theory of computing, pages 1–11, 1989.

[BT94] Richard Beigel and Jun Tarui. On acc. Computational Complexity, 4(4):350–366,
1994.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–
261, 1988.

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and
resilient functions. Annals of Mathematics, 189(3):653–705, 2019.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007),
October 20-23, 2007, Providence, RI, USA, Proceedings, pages 227–237, 2007.

48

[FG13] Jeff Ford and Anna Gál. Hadamard tensors and lower bounds on multiparty com-
munication complexity. computational complexity, 22(3):595–622, 2013.

[GK18] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, pages 685–698, 2018.

[Gol95] Oded Goldreich. Three xor-lemmas-an exposition. In Electronic Colloquium on
Computational Complexity (ECCC. Citeseer, 1995.

[GW16] Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon codes. In Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 216–226, 2016.

[KMS19] Ashutosh Kumar, Raghu Meka, and Amit Sahai. Leakage-resilient secret sharing
against colluding parties. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 636–660. IEEE, 2019.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient Cryptography,
page 727794. Association for Computing Machinery, New York, NY, USA, 2019.

[Li15] Xin Li. Three-source extractors for polylogarithmic min-entropy. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science, pages 863–882. IEEE,
2015.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In Annual International Cryptology Conference, pages 307–321. Springer, 1997.

[NS19] Jesper Buus Nielsen and Mark Simkin. Lower bounds for leakage-resilient secret
sharing. IACR Cryptology ePrint Archive, 2019:181, 2019.

[Rao07] Anup Rao. An exposition of bourgain’s 2-source extractor. Electronic Colloquium
on Computational Complexity (ECCC), 14(034), 2007.

[RW93] Alexander Razborov and Avi Wigderson. n log n lower bounds on the size of depth-
3 threshold cicuits with and gates at the bottom. Information Processing Letters,
45(6):303–307, 1993.

[SV86] Miklos Santha and Umesh V Vazirani. Generating quasi-random sequences from
semi-random sources. Journal of computer and system sciences, 33(1):75–87, 1986.

[SV19] Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient secret
sharing and applications. In Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II, pages 480–509, 2019.

[V+12] Salil P Vadhan et al. Pseudorandomness. Foundations and Trends R© in Theoretical
Computer Science, 7(1–3):1–336, 2012.

49

[Vaz85] Umesh V Vazirani. Towards a strong communication complexity theory or generating
quasi-random sequences from two communicating slightly-random sources. In Pro-
ceedings of the seventeenth annual ACM symposium on Theory of computing, pages
366–378. ACM, 1985.

[Yao90] AC-C Yao. On acc and threshold circuits. In Proceedings [1990] 31st Annual Sym-
posium on Foundations of Computer Science, pages 619–627. IEEE, 1990.

50

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

