
Sharp Threshold Results for Computational Complexity*

Lijie Chen
MIT

lijieche@mit.edu

Ce Jin
Tsinghua University

jinc16@mails.tsinghua.edu.cn

R. Ryan Williams
MIT

rrw@mit.edu

Abstract

We establish several “sharp threshold” results for computational complexity. For certain tasks, we
can prove a resource lower bound of nc for c ≥ 1 (or obtain an efficient circuit-analysis algorithm for
nc size), there is strong intuition that a similar result can be proved for larger functions of n, yet we can
also prove that replacing “nc” with “nc+ε” in our results, for any ε > 0, would imply a breakthrough
nω(1) lower bound.

We first establish such a result for Hardness Magnification. We prove (among other results)
that for some c, the Minimum Circuit Size Problem for (log n)c-size circuits on length-n truth tables
(MCSP[(log n)c]) does not have n2−o(1)-size probabilistic formulas. We also prove that an n2+ε lower
bound for MCSP[(log n)c] (for any ε > 0 and c ≥ 1) would imply major lower bound results, such
as NP does not have nk-size formulas for all k, and #SAT does not have log-depth circuits. Similar
results hold for time-bounded Kolmogorov complexity. Note that cubic size lower bounds are known for
probabilistic De Morgan formulas (for other functions).

Next we show a sharp threshold for Quantified Derandomization (QD) of probabilistic formulas.
1. For all α, ε > 0, there is a deterministic polynomial-time algorithm that finds satisfying assign-

ments to every probabilistic formula of n2−2α−ε size with at most 2n
α

falsifying assignments.
2. If for some α, ε > 0, there is such an algorithm for probabilistic formulas of n2−α+ε-size and 2n

α

unsatisfying assignments, then a full derandomization of NC1 follows: a deterministic poly-time
algorithm additively approximating the acceptance probability of any polynomial-size formula.
Consequently, NP does not have nk-size formulas, for all k.

Finally we show a sharp threshold result for Explicit Obstructions, inspired by Mulmuley’s notion
of explicit obstructions from GCT. An explicit obstruction against S(n)-size formulas is a poly-time
algorithm A such that A(1n) outputs a list {(xi, f(xi))}i∈[poly(n)] ⊆ {0, 1}n × {0, 1}, and every S(n)-
size formula F is inconsistent with the (partially defined) function f . We prove that for all ε > 0, there is
an explicit obstruction against n2−ε-size formulas, and prove that there is an explicit obstruction against
n2+ε-size formulas for some ε > 0 if and only if there is an explicit obstruction against all polynomial-
size formulas. This in turn is equivalent to the statement that E does not have 2o(n)-size formulas, which
would be a breakthrough in circuit complexity.

*L.C. and R.W. are supported by NSF CCF-1741615 and a Google Faculty Research Award. Portions of this work were
completed while L.C. and R.W. were visiting the Simons Institute at UC Berkeley.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 65 (2020)

1 Introduction

How far are we from proving major lower bounds such as P 6= NP, polynomial-size formula lower bounds
for NP, or P#P 6= NC1? Well-known complexity barriers [BGS75, RR97, AW09] have shown that, in
the absence of radically new ideas, we appear quite far from resolving many fundamental lower bound
problems, given the current proof methods.

Suppose we accept that prognosis, and resign ourselves to being far (for now). Can we quantify “how
far” we are from various open lower bounds? Is there a fine-grained theory of complexity barriers?1 Such a
theory would ideally help us order lower bound problems by their “distance” from known lower bounds, and
gather better intuition overall for the relative difficulty of proving lower bounds in the complexity landscape.

Our idea for addressing these questions starts with asking: what would a lower bound we are “close to”
look like? We will use the following natural heuristic: If we can prove a resource lower bound of nc, and
we have no evidence against (possibly also evidence for) proving an nc+ε lower bound for arbitrarily small
ε > 0, it seems reasonable to say we are “close to” an nc+ε lower bound. Viewed from this perspective, we
would be “close to” a lower bound L if there is a task Π such that:

• an nc lower bound can be proved for Π,

• we know how to prove nc+ε lower bounds for other natural tasks,

• yet an nc+ε lower bound for Π, for any ε > 0, would imply lower bound L.

(Again, this notion only makes sense if we believe the current lower bound against Π is not optimal.) Note,
saying we are “close to” a lower bound obviously does not mean that it will be easy to prove! It just means
that what is necessary does not look quantitatively far, in our relative estimation of lower bound difficulty.2

In this paper, we establish several counterintuitive “sharp threshold” phenomena for some major open
problems in lower bounds and derandomization. For certain tasks Π, we are able to prove a lower bound of
nc resources and/or provide an efficient derandomization for nc-size objects, we have good reasons to believe
that a stronger result is provable, yet improving our result to nc+ε for some ε > 0 would unexpectedly imply
a superpolynomially-strong lower bound. Whether or not this means we are “close” to a major breakthrough
remains to be seen. Our key message is that our collective intuition about what is a “weak” lower bound
(and what is a “weak” derandomization) is still surprisingly poor and incomplete.

1.1 Sharp Thresholds for MCSP Lower Bounds Against Probabilistic Formulas

A major object of study in this paper is the computational model of probabilistic formulas. This model is a
natural choice because it is an interesting expressive model for which we know how to prove nearly cubic
lower bounds. For simplicity, throughout this paper, “formulas” means “De Morgan formulas” by default.

Definition 1.1. A probabilistic formula is a distribution F over De Morgan formulas. We say F computes
a function f , if for all x, PrF∼F [F (x) = f(x)] ≥ 2/3.

Remark 1.2. By a simple “Chernoff bound, and union bound” argument, we may assume the distribution is
a uniform distribution over O(n) De Morgan formulas. Thus a probabilistic formula can always be written
as an “Approximate-Majority” of O(n) De Morgan formulas. This is helpful when discussing algorithms
that take probabilistic formulas as inputs, as in that case we need a succinct way to describe a (potentially
exponential-sized) distribution over De Morgan formulas.

1See Section 1.4.1 for a brief comparison with the methodology of fine-grained complexity.
2For example, it is reasonable to believe that it will be easier to prove SAT does not have an O(n)-time algorithm in a random

access model, than it will be to prove SAT does not have an O(n2)-time algorithm. That does not mean it will be easy to prove
SAT isn’t in linear time! Note that this example does not quite fit our mold, in that, modulo time hierarchies, we do not really know
how to prove super-linear time lower bounds.

1

We present a sharp hardness magnification threshold for probabilistic formulas. We first show that
slightly super-quadratic probabilistic formula lower bounds for computing basic compression problems
would imply breakthrough complexity separations. The Minimum Circuit Size Problem for size param-
eter s(n) (MCSP[s(n)]) asks whether a given length-n truth-table has an s(n)-size circuit on m = log n
input bits. This a basic problem that has seen a flurry of research activity in recent years (e.g. [Tra84, KC00,
HP15, AHK17, HW16, HS17, MW17, Hir18, HOS18, AH19]). The Minimum Kt-complexity Problem
(MKtP[s(n)]) asks whether a given length-n input string has Kt-complexity at most s(n). See Section 2.2
for formal definitions.

Theorem 1.3 (From “Weak” Lower Bounds to Super-Polynomial Lower Bounds, adapting [CJW19]).

1. If there is an ε > 0 such that for all sufficiently small α > 0, MCSP[nα] does not have n2+ε-size
probabilistic formulas, then ⊕P 6⊂ NC1.

2. If there is an ε > 0 such that for all sufficiently small α > 0, MKtP[nα] does not have n2+ε-size
probabilistic formulas, then EXP 6⊂ NC1.

3. If there is an ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that Lβ is a
2n

β
-sparse NP language and for all β Lβ does not have n2+ε-size probabilistic formulas, then NP

does not have nk-size formulas, for all k.

In fact, lower bounds which are “barely” above quadratic size would still imply a breakthrough.

Theorem 1.4. For any unbounded function f(n), the following hold.

1. If there is a d > 0 such that MCSP[(log n)d] does not have n2(log n)f(n)-size probabilistic formulas,
then ⊕P 6⊂ NC1.

2. If there is a d > 0 such that, MKtP[(log n)d] does not have n2(log n)f(n)-size probabilistic formulas,
then EXP 6⊂ NC1.

Note it is widely believed that MCSP[s(n)] and MKtP[s(n)] are not in P/poly, for any s(n) which is a
sufficiently large poly(log n) [KC00, ABK+02]. We show how to complement the hardness magnification
theorem above in a sharp way, proving lower bounds for MCSP and MKtP that are quantitatively very close
to the hypotheses in Theorem 1.3 and Theorem 1.4.

Theorem 1.5 (Sub-Quadratic MKtP and MCSP Lower Bounds). There are c > 0, d > 0, K > 0 such that
for all t(n) satisfying c log n < t(n) ≤ n/20, and s(n) satisfying (log n)d < s(n) ≤ n/200 log n,

1. MKtP[t(n)] does not have probabilistic formulas of n2−K/ log logn/t(n) size.

2. MCSP[s(n)] does not have probabilistic formulas of n2−K/ log logn/s(n) size.

More generally, the lower bound of Theorem 1.5 holds for “gap” versions of MCSP and MKtP (see
Section 5.2 for details). The MKtP lower bound is particularly interesting because MKtP[c log n] is a
polynomially-sparse language computable in P.3 If the lower bound of Theorem 1.5 can be improved to
n2+ε for a subexponentially-sparse problem computable in 2n

o(1)
time, then EXP 6⊂ NC1.

When the circuit size parameter is close to maximal, Theorem 1.5 can be improved. We adapt recent
MCSP lower bounds for larger circuit sizes [CKLM19] to achieve super-quadratic formula lower bounds.

3To decide whether Kt(x) ≤ c logn, it suffices to enumerate all Turing machines of c logn-bit description length and run them
for nc steps, which takes poly(n) time (see Definition 2.2).

2

Theorem 1.6 (Super-Quadratic MCSP Lower Bounds). For every α ∈ (0, 1) and ε > 0, MCSP[nα] doesn’t
have probabilistic n2+α−ε-size formulas.

Thus, MCSP gets “harder” as the size parameter increases. Theorem 1.6 should be contrasted with
Item (1) of Theorem 1.3. If we could prove a similar theorem for MCSP[no(1)] (or any sparse-enough NP
problem, by Item (3) of Theorem 1.3), then we could apply Theorem 1.3 and conclude a breakthrough
complexity separation.

Comparison With Prior Work. Several recent papers [OS18, OPS19, CT19, Oli19, CMMW19, CJW19]
also establish hardness magnification results for problems such as MCSP and MKtP. Most recently, the
reference [CJW19] proves Theorem 1.3 for deterministic formula lower bounds of size n3+ε; we generalize
their results for probabilistic formula lower bounds of size n2+ε. Our Theorem 1.5 generalizes n2−ε-size
formula lower bounds for MCSP [HS17, OS18, OPS19] on larger circuit sizes. In [OS18, OPS19, CJW19]
it is shown that an n3+ε-size formula lower bound for MKtP[no(1)] implies EXP 6⊂ NC1, and [HS17,
OPS19] showed that MKtP[polylog(n)] does not have n2−ε-size formulas. That is, the “gap” between the
magnification threshold and known lower bounds was n3+ε versus n2−ε. Theorems 1.3 and 1.5 improve
both of these results, and show an arbitrarily small gap between the magnification threshold and known
lower bounds for probabilistic formulas.

Similar sharp threshold results were known before, but apparently only in cases where lower bound
techniques are few. For example, [MMW19] show MCSP[no(1)] /∈ SIZE[n1+ε] implies NP 6⊂ P/poly, and it
is not hard to establish an Ω(n)-size lower bound for MCSP[no(1)]. However, in the case of general circuits,
researchers have been stuck for decades on proving even a 6n-size lower bound for De Morgan circuits,4

so an n1+ε-size lower bound on MCSP seems far, relatively speaking. For another example, Allender and
Koucky [AK10] (later refined by Chen and Tell [CT19]) show that if certain NC1-complete problems do not
have n1+ε size TC0-size circuits, then NC1 does not have polynomial-size TC0 circuits. However, there is
still a gap between these results and the best known lower bounds for TC0 [IPS97, CSS16].

To compare with our case, note that any average-case lower bound for (deterministic) formulas imme-
diately implies worst-case lower bounds for probabilistic formulas. Thus there are already multiple known
methods for proving n3−ε-size lower bounds against probabilistic formulas computing certain functions (see
e.g., [KRT17, CKLM19]).

Additional Related Works on Hardness Magnification. Several other similar hardness magnification
phenomena have been established: for n1−ε approximation to CLIQUE [Sri03], sublinear-depth circuit
lower bounds for P [LW13], proof complexity [MP20], and lower bounds for non-commutative arithmetic
circuits [CILM18].

In [CHO+20], a barrier for proving strong circuit lower bounds via the hardness magnification tech-
niques (termed as “The Locality Barrier”) was formulated, saying that:

(a) almost all current lower bound proofs (random restrictions, polynomial approximation, etc.) satisfy a
certain property, and,

(b) lower bound proofs with such a property cannot be used to prove the required lower bounds for MCSP
or MKtP to achieve hardness magnification.

It is discussed in [CHO+20] (HM Frontier D) that our magnification result for probabilistic formulas is also
subject to this barrier.

4The state-of-the-art lower bound against De Morgan circuits for an explicit function is 5 · n [LR01, IM02], while the state-of-
the-art lower bound against B2-circuits is the very recent (3 + 1/86) · n by [FGHK16].

3

1.2 Sharp Threshold for Quantified Derandomization

Next we discuss sharp thresholds for quantified derandomization of probabilistic formulas. We first provide
the relevant definitions.

Definition 1.7 (Quantified Derandomization (QD) Problem, [GW14]). For a Boolean circuit class C and a
function B : N → N, the QD problem for C with B exceptional inputs is the following: Given an n-input
circuit C ∈ C that evaluates to 0 on at most B(n) inputs, deterministically output an n-bit string on which
C evaluates to 1. 5

Note the standard derandomization problem has B(n) = 2n/3, but studying the case of B(n) = 2n
α

for α < 1 turns out to also be a very interesting and subtle problem [GW14, Tel18, Tel19, CT19], with
implications for general derandomization.

One way to design QD algorithms is by deterministically constructing hitting sets. A hitting set generator
outputs a list Ln of inputs (independent of the given circuit), such that for all possible input circuits C with
at most B(n) exceptional inputs, at least one x ∈ Ln makes C accept. A hitting set generator immediately
implies a black-box QD algorithm, which only needs oracle access to C, rather than an explicit description
ofC. Conversely, from any black-box QD algorithm we obtain a hitting set generator: the hitting set consists
of all input strings queried by the black-box algorithm on the all-zeroes circuit.

Generalized Probabilistic Formulas. By definition, a probabilistic formula has probability at least 2/3
of accepting every YES instance, and at most 1/3 of accepting every NO instance. We can also consider
a generalization of probabilistic formulas which outputs ? if the input does not satisfy either of the two
conditions. This allows us to consider arbitrary distributions of formulas. Specifically, a generalized prob-
abilistic formula F defined to be (simply) a distribution over formulas that take n inputs with a different
output criterion. On input x ∈ {0, 1}n, define px := PrF∼F [F (x) = 1]. We say the value of F on x is 1 if
px ≥ 2/3, 0 if px ≤ 1/3, and ? otherwise. We say F has at most B(n) exceptional inputs, if the value of F
is in {0, ?} for at most B(n) inputs. We can adapt the definition of hitting set accordingly.

Definition 1.8 (Hitting Sets for Generalized Probabilistic Formulas). H ⊆ {0, 1}n is a hitting set for gen-
eralized probabilistic formulas with at most B(n) exceptions if, for every generalized F with at most B(n)
exceptional inputs, there is an x ∈ H such that the value of F on x is 1 or ?.6

Sharp Threshold for QD of Generalized Probabilistic Formulas. We present a sharp threshold for
quantified derandomization of generalized probabilistic formulas. First, we give a polynomial-time con-
struction of hitting sets for QD of subquadratic-size generalized probabilistic formulas with subexponen-
tially many exceptional inputs.

Theorem 1.9 (Quantified Derandomization of Generalized Probabilistic Formulas). Let 1 ≤ s(n) ≤ n/20.
There is a poly-time computable hitting set for generalized probabilistic formulas of size n2−K/ log logn/s(n)2

with at most B(n) = 2s(n) exceptions, where K > 0 is a universal constant.

Complementing Theorem 1.9, we prove that if QD for generalized formulas of any slightly larger size
is possible, then we obtain a full derandomization of all polynomial-size formulas, in polynomial time!

5In this paper we consider the one-sided QD problem, as defined above. By convention, the majority output value is 1 for
B(n) < 2n/2. One can also study a stronger two-sided version, where the majority output value b ∈ {0, 1} is unknown and needs
to be decided deterministically.

6Our definition is a little non-standard: if there is an x ∈ H such that F(x) outputs ?, we also consider F as “hit” by H. The
reason is that in our argument, we are only guaranteed there is x ∈ H with px ≥ 2/3 − δ for some small constant δ, as there are
some losses in the acceptance probability in the proof. See Section 4.2 for details.

4

Theorem 1.10 (From “Weak” QD to Full Derandomization). Suppose there are ε > 0, α ∈ (0, 1), and a
poly-time algorithm for QD of generalized probabilistic formulas of size n2−α+ε with B(n) = 2n

α
excep-

tional inputs. Then, there is a poly-time algorithm finding a satisfying assignment to any poly-size formula
with at most 2n/3 falsifying assignments. As a corollary, NP does not have nk-size formulas for all k.

Moreover, if the hypothesized algorithm is black-box (only calls the input formula as an oracle), then
there is a poly-time algorithm that, for every polynomial-size formula, additively approximates its accep-
tance probability up to any desired constant error.

Theorem 1.11. Suppose there are ε > 0, α ∈ (0, 1), and a 2n
o(1)

-time algorithm for QD of generalized
probabilistic formulas of size n2−α+ε, with B(n) = 2n

α
exceptional inputs. Then, there is a 2n

o(1)
-time

algorithm that finds a satisfying assignment to every polynomial-size formula having at most 2n/3 falsifying
assignments. As a corollary, NE = NTIME[2O(n)] 6⊂ NC1.

Moreover, if the above algorithm is black-box, then there is a 2n
o(1)

-time algorithm that, for every
polynomial-size formula, additively approximates its acceptance probability up to any constant error.

Furthermore, when our probabilistic formulas satisfy the typical BPP-style promise (on every input, it
outputs 1 with probability ≥ 2/3, or 0 with probability ≥ 2/3), we can obtain a slightly improved hitting
set construction than that of Theorem 1.9; see Section Section 4 for details and more results.

Comparison With Prior Work. Several papers [GW14, Tel19, Tel18, CT19] prove obtaining quanti-
fied derandomization “thresholds” for circuit classes such as AC0,TC0 and AC0[⊕]. Most related to ours
is [Tel18, CT19], showing if there is a QD algorithm for n1+1/φd-wire TC0

d circuits with B(n) = 2n
o(1)

exceptional inputs for any φ < 1.62, then a full derandomization of TC0 follows. They also provide a
corresponding QD algorithm for n1+1/cd-wires TC0

d circuits for some constant c ≈ 30 [Tel18]. However, in
their case, the gap is between two constants 1.62 and 30 in the exponent; in our case, the gap in the exponent
can be made arbitrarily small.

1.3 Sharp Threshold for “Explicit Proofs” of Formula Lower Bounds

We can also prove a sharp threshold for proving lower bounds in a certain “explicit” sense, along the lines
of Mulmuley [Mul11] in his pioneering work on GCT. He suggests a concept of explicit obstruction where
a polynomial-time algorithm produces a proof of a lower bound. It turns out that studying the problem
of constructing “explicit proofs” against formulas and branching programs also reveals a sharp threshold
phenomenon. We start by defining an explicit obstruction against a circuit class C. Our definition is more
generic than that of Mulmuley (it has fewer constraints).

Definition 1.12. An explicit C-obstruction (or explicit obstruction against C) is a (deterministic) polynomial-
time algorithm A such that for all large enough n, A(1n) outputs a list Ln = {(xi, yi)} such that xi 6= xj
for all i 6= j, and for all n-input C ∈ C, there is an (xi, yi) ∈ Ln such that C(xi) 6= yi.

First let us compare this obstruction notion with a similar one, that of anti-checkers [LY94, OPS19]. An
anti-checker for a function f against C is a list {(xi, f(xi))} such that every circuit in C fails to compute f
on at least one xi in the list. Observe that every anti-checker is also an obstruction, but an anti-checker is
more constrained than an explicit obstruction (the input-output pairs must be from f). Mulmuley [Mul11]
argues philosophically that, in order to prove results such as NP 6⊂ P/poly, we should strive to construct
explicit obstructions against small circuits. His Geometric Complexity Theory program is rooted in the idea
that this task may be more feasible to achieve for arithmetic circuits. It is clear that explicit obstructions
against C imply lower bounds against C. For example, the following is easy to prove:

Proposition 1.13. If there is an explicit obstruction against C, then there is a function in P that is not in C.

5

However, it still unclear what the extra advantage of this “explicit” approach might be. How could
thinking about explicit obstructions be helpful, compared to other approaches to proving lower bounds?
To understand this question, we ask: what known lower bound techniques can be used to achieve explicit
obstructions in the Boolean world? First, we apply our technical results to construct an explicit obstruction
against sub-quadratic size (De Morgan) formulas.

Theorem 1.14 (Explicit Obstructions Against Sub-Quadratic De Morgan Formulas). For a universal con-
stant K > 0, there is an explicit obstruction against formulas of size n2−K/ log logn.

Therefore certain lower bound techniques (based on random restrictions) can be made explicit. However,
it is well-known that the best De Morgan formula lower bounds are not quadratic size; they are nearly
cubic [Hås98, Tal14]. So one would expect an improvement on Theorem 1.14.

We show that if any super-quadratic formula lower bound can be used to build an explicit obstruction,
we would in fact prove exponential-size formula lower bounds for exponential time! In particular, we
prove an equivalence between explicit obstructions for super-quadratic formulas, exponential-size formula
lower bounds, explicit obstructions for all polynomial-size formulas, and the existence of optimal PRGs for
polynomial-size formulas.

Theorem 1.15 (Better Explicit Obstructions Are Equivalent to Super-Polynomial Obstructions). The fol-
lowing are equivalent:

1. There is an α > 0 and an explicit obstruction against formulas of size n2+α.

2. For all k, there is an explicit obstruction against formulas of size nk.

3. There is an ε > 0 and a function in E = TIME[2O(n)] that does not have 2εn-size formulas, even
infinitely often.

As a corollary, any poly-time computable anti-checker for any f that does not have n2+ε-size De Morgan
formulas would also imply strong formula lower bounds sufficient for a full derandomization of poly(n)-
size De Morgan formulas (any anti-checker is also an obstruction). In fact, extending our explicit obstruction
even slightly beyond quadratic size would imply nω(1) size formula lower bounds:

Theorem 1.16. If there is an unbounded function f(n) and an explicit obstruction against formulas of size
n2 · (log n)f(n), then E 6⊂ NC1.

Explicit Obstructions for Other Models. One can obviously extend the notion of explicit obstruction
to other well-studied models of computation. However, for two natural models just slightly more powerful
than De Morgan formulas, branching programs and B2-formulas (formulas over AND, OR, and XOR), we
observe that a “sharp threshold” already kicks in for explicit obstructions against super-linear size. This
is very interesting, because n2−o(1) lower bounds for both branching programs and B2-formulas are well-
known ([Nec66], [Weg87, p.253–255, p.422]). First, we observe:

Proposition 1.17. There are explicit obstructions againstB2-formulas of size o(n), and branching programs
of size o(n).

However, we can show that any nε improvement in this simple result implies a breakthrough in formula
or branching program complexity:

Theorem 1.18. The following are equivalent:

1. There is an α > 0 and an explicit obstruction against B2-formulas of size n1+α.

6

2. For all k, there is an explicit obstruction against B2-formulas of size nk.

3. There is an ε > 0 such that E cannot be computed by 2εn-size formulas, even infinitely often.

The same equivalence also holds with “branching programs” in place of “B2-formulas.”

Therefore, making lower bounds for branching programs and/or B2-formulas explicit, for any super-
linear polynomial size bounds, would imply exponential size lower bounds for E. Such lower bounds, in
turn, are equivalent to the existence of optimal pseudorandom generators for the corresponding model, by
standard results [NW94, IW97, STV01]. Thus, explicit obstructions would also yield black-box derandom-
izations in this case.

1.4 Intuition

In this section we give a high-level description of our proof techniques.

The Key Technical Ingredient: AnO(log n)-seed Pseudorandom Restriction Generator. Our primary
technical contribution is a pseudorandom restriction generator for subquadratic-size formulas with only
O(log n) seed length. Our starting point is the classical result that the “shrinkage exponent” of De Morgan
formulas is 2, first proved by Håstad [Hås98], with logarithmic factors later removed by [Tal14].

Roughly speaking, Håstad’s result says that the formula complexity of any function f is expected to
“shrink” by a factor of about p2, when each variable is left unassigned with probability p, and is other-
wise assigned a random bit. Such a variable restriction is called a p-regular random restriction. A uniform
random p-regular restriction requires Θ(pn log(1/p)) random bits to encode. Our pseudorandom restric-
tion generator provides a derandomized version of the [Hås98, Tal14] shrinkage theorem with an optimal
O(log n) seed length, albeit with an no(1)-size loss on the expected size.7 (A formal theorem statement can
be found in Section 3.) In particular, it produces an explicit collection C of poly(n) partial assignments
(random restrictions) ρ : [n]→ {0, 1, ?} such that:

(a) For every formulaF , applying a random partial assignment ρ from C “shrinks” the formula complexity
of F by about p2 (with some no(1) loss), and

(b) A random ρ from C has decent probability of leaving at least pn/2 variables unset.

The collection C is highly explicit; we can generate any bit of its description with a poly(log n) size circuit.
Our construction improves generators implicit in [OPS19] which have O(log2 n) seed length. In more

detail, our construction follows the iterated pseudorandom restriction paradigm of [IMZ12, HS17, OPS19].
In each stage, a q-regular random restriction ϕi is applied to the remaining variables, where q is a non-
zero constant. By composing r independent stages of random restrictions, one obtains a p-regular random
restriction ρ = ϕr ◦ · · · ◦ ϕ1 with p = qr. The key observation is that, in each stage, ϕi only has to be
1/q2-wise independent, which takes onlyO(log n) random bits if q is a non-zero constant. The total number
of stages is r = logq(p) ≤ O(log n), and the total seed length is O(log2 n).

To obtain an O(log n) total seed length, our improved construction uses a different parameter setting:
we set r to O(log n/ log logn), and set q to be about 1/(log n)α for small enough α > 0. We then need to
sample each restriction ϕi using only O(log log n) random bits, while still ensuring the shrinkage property.
To achieve this, our one-stage restriction construction uses the following two ideas:

7Observe that Ω(logn) random bits are required for pseudorandom restrictions for all p ≤ n−Ω(1). To see this, assume a
pseudorandom restriction ρ has o(logn) seed-length. Find a restriction φ in its support with maximum |φ−1(?)| ≥ pn. Consider a
formula F of maximum size L(F) = 2Ω(pn) that only depends on |φ−1(?)|. Then F does not shrink under φ. Hence the expected
size of F under ρ is at least n−o(1) · L(F)� p2L(F) + p

√
L(F).

7

(1) Let S = poly(1/q). Fix a small set of restrictions f1, . . . , fS ∈ {0, 1, ?}poly(1/q), such that a
random fi (i ∈ [S]) has a shrinkage property on poly(1/q)-variable 1/q2-size formulas almost as good
as q-regular random restrictions. Such f1, . . . , fS exist, and can be found deterministically in 2poly(1/q) <
poly(n) time by brute force (for α small enough). After that, specifying an fi only takes about logS bits,
which is exponentially shorter than the seed-length of sampling a uniform 1/q2-wise independent q-regular
restriction.

(2) Construct n-variable restrictions, by composing a random (poly(1/q)-variable) restriction fi with an
almost pairwise independent hash function h : [n]→ [poly(1/q)], samplable using onlyO(log poly(1/q)+
log logn) ≤ O(log log n) bits. For a 1/q2-size formula F , with at least 1 − poly(1/q) probability, the
variables that F depends on are hashed into distinct variables. This allows us to extend the shrinkage
property on poly(1/q)-variable formulas to the shrinkage property on n-variable formulas.

Lower Bounds, QD Algorithms, and Explicit Obstructions From the Generator. Now we briefly dis-
cuss how our new optimal pseudorandom restriction generator implies some of our other results.

Lower Bounds for MKtP[c log n]. Let c be a sufficiently large constant. We first provide intuition for the
proof that MKtP[c log n] cannot be computed by probabilistic formulas of size N1.9. Suppose otherwise
that MKtP[c log n] can be computed by a probabilistic formula F of size n1.9. Applying our pseudorandom
restriction generator with parameter p = n−0.98, we show that there must be a restriction ρwith the following
properties: (a) L(F |ρ) < 1 with probability 0.9 for a random F ∼ F and (b) |ρ−1(?)| ≥ pn/2 > n0.01.
Define xρ to be the input obtained by filling every ? of ρ with 0, we show that the efficiency of our generator
implies that MKtP[c log n](xρ) = 1.

Item (a) implies that F must output the same value on every input consistent with ρ, but F must output 1

on every xρ. Therefore, F must output 1 on every input that is consistent with ρ. But there are at least 2n
Ω(1)

many inputs consistent with ρ, and (by a counting argument) at least one of them must make MKtP[c log n]
output 0. This is a contradiction.

Hitting Set for Quantified Derandomization. Now we sketch how to obtain a quantified derandomiza-
tion algorithm for generalized probabilistic formulas. For simplicity we focus on the case of size n1.9, and
B(n) = 2n

0.01
. Apply the pseudorandom restriction generator again with p = n−0.98, and fix a restriction

ρ satisfying (a) and (b). Observe that for generalized probabilistic formulas, (a) implies for every input x
consistent with ρ, F(x) 6= 0. Therefore, we can simply let the hitting set be the collection of xρ (as defined
above) for all ρ generated by our pseudorandom restriction generator.

Explicit Obstructions. We sketch how to obtain an explicit obstruction for n1.9-size formulas. As before,
we use our pseudorandom restriction generator with p = n−0.98. We show that for all formula F of size
n1.9, there is a restriction ρ from our generator such that |ρ−1(?)| > 0, and L(Fρ) < 1. For each ρ and each
i ∈ ρ−1(?), we set xρ,i be the input obtained by extending ρ so that the i-th variable is set to 1 and all other
?’s filled with 0’s. We add both (xρ,PARITY(xρ)) and (xρ,i,PARITY(xρ,i)) to our list S.

We show this is an anti-checker for the PARITY function (hence it is an explicit obstruction). In particu-
lar, for every formula F , since L(Fρ) < 1, F must output the same value on both xρ and xρ,i for i ∈ ρ−1(?),
but their parities are different in S.

Better Explicit Obstructions Imply Breakthrough Lower Bounds. Finally, we sketch how an explicit
obstruction for n2+ε formulas implies strong formula lower bounds. The idea is that, if such an obstruction
exists and 2O(n) time computations have 2o(n)-size formulas, then there is a formula F of only no(1) size
whose truth table is the output of the poly(n)-time algorithm printing the obstruction. Using linear hashing

8

tricks, we can use O(n2)-size PARITY formulas to construct a formula of size n2+o(1) which agrees with
the obstruction on all of its input-output pairs, a contradiction. For branching programs and B2-formulas,
PARITY can be implemented with only O(n) extra size, improving the threshold for those two cases.

1.4.1 Comparison With Some “Barrier” Results in Fine-Grained Complexity.

We note a relationship between our results and some in fine-grained complexity. For some central problems
in fine-grained complexity (see e.g., [BI15, AHVW16, AB17, AB18, AR18, CGL+19]), an nc time algo-
rithm is known, and it is known that nc−ε time (even nc/(log n)8 in some cases [AB18]) would imply a
complexity breakthrough, via an abnormally-faster SAT algorithm for some circuit class. This is generally
viewed as an impossibility result, because the SAT algorithms may not exist.

In the settings of this paper, we strongly believe that nc+ε bounds will hold for our tasks, and it is not
outlandish to think they can be also be proved. However, our results show that achieving an nc+ε bound
suffice for proving super-polynomial bounds. Both types of results can be interpreted in a similar light. The
fine-grained results say that we know an algorithm runs in nc time, but improving (reducing) that exponent
will probably require radically new techniques (if you believe it can be improved at all). In our case, we know
a lower bound of nc, and improving (increasing) that exponent may also require radically new techniques.

Organization. In Section 2 we introduce the necessary preliminaries. In Section 3, we present the main
technical construction of our paper: an O(log n)-seed length pseudorandom restriction generator for for-
mulas of sub-quadratic size. In Section 4, we discuss sharp thresholds for quantified derandomization of
probabilistic formulas. In Section 5, we present sharp thresholds for lower bounds against probabilistic for-
mulas. In Section 6, we establish sharp thresholds for explicit obstructions against (deterministic) formulas
and branching programs.

2 Preliminaries

2.1 Notation

We use Õ(f) as shorthand for O(f · polylog(f)) throughout the paper. All logarithms are base-2. We use
n to denote the number of input bits. We say a language L ⊆ {0, 1}? is f(n)-sparse if |Ln| ≤ f(n), where
Ln = L ∩ {0, 1}n. We assume knowledge of basic complexity theory (see [AB09, Gol08]).

We use U` to denote the uniform distribution over {0, 1}`. The statistical distance between two random
distributions X1 and X2 is

|X1 −X2| :=
1

2

∑
x

∣∣Pr[X1 = x]− Pr[X2 = x]
∣∣.

We consider De Morgan formulas (i.e. formulas with AND, OR, NOT gates). The size of a formula F ,
denoted by L(F), is the number of leaves in F . For a Boolean function f we also use L(f) to denote the
size of the smallest formula that computing f . We say a formula is read-once if each input variable appears
at most once as a leaf in the formula.

2.2 Definitions of MCSP and MKtP

The Minimum Circuit Size Problem (MCSP) [KC00] and the Minimum Kt Complexity Problem (MKtP,
[Lev84, ABK+02]) are studied in this paper. We recall their definitions.

9

Definition 2.1 (MCSP). Let s : N→ N satisfy s(m) ≥ m− 1 for all m.
Problem: MCSP[s(m)].
Input: A function f : {0, 1}m → {0, 1}, presented as a truth table of n = 2m bits.
Decide: Does f have a (fan-in two) Boolean circuit C of size at most s(m)?

Recall that the Kt complexity (time-bounded Kolmogorov complexity) of string x is the smallest c +
log(t), such that there is a Turing machine M of description length c that prints x in at most t steps.

Definition 2.2 (MKtP). Let p : N→ N.
Problem: MKtP[p(n)].
Input: A string x ∈ {0, 1}n.
Decide: Does x have Kt complexity at most p(n)?

In the Gap-MCSP[f(n), g(n)] problem (respectively, Gap-MKtP[f(n), g(n)]), we are given a string
with circuit complexity (respectively, Kt complexity) which is either at least g(n) or at most f(n), and the
goal is to distinguish between the two cases. We remark that when p(n) ≤ O(log n), MKtP[p(n)] ∈ P.

2.3 Useful Tools

We introduce some technical tools used in this paper. The most important tool in this paper is the explicit
construction of (almost) k-wise independent distributions. We recall two explicit constructions of k-wise
independent spaces.

Theorem 2.3 (Explicit k-wise independent hash family, [CW79]; see also [Vad12, Corollary 3.34]). For
n,m, k, there is a family of k-wise independent functions H = {h : {0, 1}n → {0, 1}m} such that every
function from H can be described in k ·max{n,m} random bits, and evaluating a function from H (given
its description, and given an input x ∈ {0, 1}n) takes time poly(n,m, k).

Theorem 2.4 (Explicit k-wise ε-dependent distribution, [AGHP90]). For 1 ≤ k ≤ n and ε > 0, there is a
distributionR on {0, 1}n which can be efficiently sampled using O(k + log log n+ log(1/ε)) random bits,
such that for every k positions 1 ≤ i1 < i2 < · · · < ik ≤ n, we have∣∣∣R∣∣i1,i2,...,ik −Uk

∣∣∣ ≤ ε,
whereR|i1,i2,...,ik denotes the distribution of the k-bit string xi1xi2 · · ·xik for x ∼ R.

Moreover, the i-th coordinate of x ∼ R can be computed in poly(log n, k, log(1/ε)) time, given i ∈ [n]
and the seed as input.

We also need linear-time computable error correcting codes [Spi96].

Theorem 2.5 ([Spi96]). There is a linear error correcting code E (i.e., E is a linear function over F2)
with constant rate and constant minimum relative distance, which can be computed in linear time, and by
logarithmic-depth circuits of linear size.

We will also apply linear extractors in our paper. Here we recall the definition.

Definition 2.6 (Min entropy and extractors). The min entropy of a random variable X is the largest k ∈ R+

such that Pr[X = x] ≤ 2−k for every x in the range of X . A distribution over {0, 1}n with min entropy at
least k is called an (n, k)-source.

A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractor, if for every (n, k)-source X ,

|Ext(X,Ud)−Um| ≤ ε.

We say that Ext is a linear extractor if Ext(·, u) is a linear function over F2, for every u ∈ {0, 1}d.

10

We also use explicit expander graphs.

Definition 2.7 (Expander graph family). An n-vertex undirected graph G is an (n, d, λ)-expander if G
is d-regular and λ(G) ≤ λ, where λ(G) denotes the second largest eigenvalue (in absolute value) of the
normalized adjacency matrix of G (i.e., the adjacency matrix of G divided by d).

A well-known strongly explicit construction [GG81] suffices for our applications.

Theorem 2.8 (Strongly Explicit Expander Construction, e.g., [GG81]). There exists a (λ, d)-expander
family {Gn} for some constants d ∈ N and λ < 1, such that there is an algorithm that on inputs
n, v ∈ [n], i ∈ [d] outputs the i-th neighbor of v in graph Gn in polylog n time.

We also need the following expander Chernoff bound, which shows that a random walk on an expander
graph behaves similarly to a sequence of i.i.d. random vertices.

Theorem 2.9 (Expander Chernoff Bound, [Gil98]). Let G = (V,E) be an (n, d, λ)-expander. Let f : V →
{0, 1} be arbitrary, and let µ = Ev∈V f(v). Let v1, v2, . . . , vt be a random walk on G (where v1 ∈ V is
uniformly chosen). For δ > 0,

Pr
v1,...,vt

[
1

t

t∑
i=1

f(vi) < µ− δ

]
≤ e−(1−λ)δ2t/4.

We also use random restriction methods in this paper; let us recall some notation for them. Fix n ∈ N.
Call a function ρ : [n] → {0, 1, ?} an n-variable restriction; a distribution H over n-variable restrictions
is called a random restriction. We say H is p-regular if Prρ∼H[ρ(i) = ?] = p and Prρ∼H[ρ(i) = 0] =
Prρ∼H[ρ(i) = 1] = (1 − p)/2 for every i ∈ [n]. We use Rp to denote the p-regular random restriction
where all n coordinates are mutually independent.

Definition 2.10. We say H is p-regular k-wise δ-dependent, if for any k coordinates i1, . . . , ik we have
|Di1,...,ik −Rp| ≤ δ, where Di1,...,ik is the distribution of (ρ(i1), . . . , ρ(ik)) where ρ ∼ H. If δ = 0, we say
H is p-regular k-wise independent.

For a function f : {0, 1}n → {0, 1}, we use f |ρ to denote the function {0, 1}|ρ−1(?)| → {0, 1} obtained
by restricting f according to ρ in the natural way. The composition ρ = ρ2 ◦ ρ1 of two restrictions ρ1, ρ2 :
[n]→ {0, 1, ?} is defined as

ρ(i) :=

{
ρ1(i), if ρ1(i) 6= ?
ρ2(i) otherwise

.

We observe the ◦ operator is associative, and (f |ρ1)
∣∣
ρ2

= f |ρ2◦ρ1 .

3 Pseudorandom Restriction Generator with Logarithmic Seed Length

In this section we construct our main technical component: a pseudorandom restriction generator forO(n2−ε)
formulas with O(log n) seed length. We begin with the classical result that the shrinkage exponent of De
Morgan formulas is 2.

Theorem 3.1 (The Shrinkage Constant of De Morgan Formulas is 2 [Hås98, Tal14]). Let f be a Boolean
function. For every p > 0,

E
ρ∼Rp

[L(f |ρ)] = O
(
p2L(f) + p

√
L(f)

)
.

11

That is, when f is “hit” with a p-regular random restriction, we expect its formula complexity to shrink
by about a p2 factor. A uniform random p-regular restriction needs about Θ(pn log(1/p) bits to encode.
The main theorem of this section, stated below, provides a derandomized version of Theorem 3.1, with an
optimal O(log n) seed length, albeit an no(1)-size loss on the expected shrinkage size.

Theorem 3.2. For all sufficiently large n, and probability parameters p ∈ [20/n, 1], there is a family of
pseudorandom restrictions ρ : [n] → {0, 1, ?} that is samplable using O(log n) random bits, such that the
following properties hold for sufficiently large n and a universal constant C > 0:

(Shrinkage) For all n-variable formulas F , E[L(F |ρ)] ≤
(
p2L(F) + p

√
L(F)

)
· nC/ log logn.

(“Close” to p-regular) Pr
[
|ρ−1(?)| ≥ pn/2

]
> 2/3.

(Constructive) There is a poly(n)-time algorithm that outputs ρ(1), . . . , ρ(n) given the seed s. There is
also a polylog n-size circuit that outputs ρ(i), given index i ∈ [n] and seed s as input.

Note that our random restriction ρ is not p-regular, but it is “close enough” on average: with 2/3
probability, at least p/2 fraction of the coordinates are unrestricted. This turns out to be sufficient for
us. Our proof of Theorem 3.2 will crucially exploit the following structure theorem for formulas, which
decomposes a large formula into many small formulas.

Lemma 3.3 (Decomposition of Formulas [IMZ12, Tal14]). Let F be a formula over variables X =
{x1, . . . , xn}, and k ∈ N be some parameter. There are m ≤ 1 + 36 ·L(F)/k formulas over X , denoted by
G1, . . . , Gm, each of size at most k, and a read-once formulaF ′ of sizem, such thatF ′(G1(x), . . . , Gm(x)) =
F (x) for all x ∈ {0, 1}n.

3.1 One-Stage Pseudorandom Restriction

We now describe one “stage” of our pseudorandom restriction generator. As stated in the introduction, our
proof follows the iterated pseudorandom restriction paradigm [IMZ12, HS17, OPS19]. We first need a small
k-perfect hash family, as stated below.

Lemma 3.4 (Adapted from [AYZ95, Section 4]). For 1 ≤ k ≤ n, there is a distribution H over functions
h : [n] → [k20] which can be efficiently sampled by O(log k + log log n) random bits, such that for every
subset S ⊆ [n] of size |S| = k,

Pr
h∼H

[h(i) are distinct for all i ∈ S] ≥ 1− 1/k18.

Proof. Denote K := k20. Let h′ : [n logK] → {0, 1} be sampled from a (2 logK)-wise ε-dependent
distribution (Theorem 2.4) with ε := 1/K, using O(logK + log log(n logK) + log(1/ε)) = O(log k +
log logn) random bits. The function h : [n] → [K] is derived from h′ by grouping logK bits together.
Then h is pairwise ε-dependent. For every S ⊆ [n] of size k, by the union bound, the probability that there
exist two different i, j ∈ S with h(i) = h(j) is at most

(
k
2

)
· (1/K + ε) ≤ 1/k18.

Now we are ready to construct one stage of the pseudorandom restriction.

Lemma 3.5 (One stage of the pseudorandom restriction). Let k ≥ 2 and q := k−1/2. There is a pseu-
dorandom restriction ϕ : [n] → {0, 1, ?}n, samplable using O(log k + log log n) random bits, with the
properties:

(Shrinkage) For all n-variable formulas F , E[L(F |ϕ)] ≤ O
(
q2L(F) + q

√
L(F)

)
.

12

(Regular and Almost Pairwise Independent) ϕ is q-regular pairwise 1/k18-dependent.

(Constructive) There is a
(

2O(k8) + poly(k, n)
)

-time algorithm that outputs ϕ(1), . . . , ϕ(n) given a seed
s of length O(log k + log log n), and a poly(k, log n)-size circuit that outputs ϕ(i), given an index
i ∈ [n] and seed s as input.

Proof. Let K := k20, q := k−1/2. Our proof works by first fixing an optimal pseudorandom restriction on
K variables using non-uniform advice. We then show how to “amplify” that into the required pseudorandom
restriction on n variables, by composing our small pseudorandom restriction with a random hash function
from the k-perfect hash family of Lemma 3.4.

Construction of a “Micro” Pseudorandom Restriction on K Variables. Let f : [K] → [2/q] be a
k-wise independent random function, samplable using O(k log k) random bits (Lemma 2.3), and let g :
[K] → [2/q] be a pairwise independent random function, samplable using O(log k) random bits. Think of
f and g as outputting log(2/q)-bit strings. Then g ⊕ f (where ⊕ denotes XOR on log(2/q) bits) is also
a k-wise independent random function, from which we can obtain a q-regular k-wise independent random
restriction ρ : [K] → {0, 1, ?}. For example, given g ∼ g, we can set ρ(i) := ? if g(i) ∈ {0, 1}, and
set ρ(i) := g(i) mod 2 if g(i) ∈ [2/q] \ {0, 1}. Let F |g⊕f denote the restricted formula F |ρ where ρ is
obtained from g ⊕ f .

For any K-variable formula H of size L(H) ≤ k, by the original shrinkage theorem (Theorem 3.1), we
have

E
f
E
g

[L(H|g⊕f)] = O
(
q2L(H) + q

√
L(H)

)
≤ O

(
q
√
L(H)

)
,

where the last inequality follows from q
√
L(H) ≤ q

√
k = 1.

From f , we draw S i.i.d. random samples (f1, . . . , fS) for a parameter S to be determined later, and
let FS denote the uniform distribution over (f1, . . . , fS). Then for any K-variable formula H of size 1 ≤
L(H) ≤ k, the Chernoff-Hoeffding bound implies:

Pr
f1,...,fS

[
E

f∼FS
E
g

[L(H|g⊕f)] ≥ E
f
E
g

[L(H|g⊕f)] + q
√
L(H)

]
≤ exp

−2S ·

(
q
√
L(H)

k

)2
 ≤ exp

(
−2S

k3

)
.

There are KO(k) ≤ 2O(k log k) formulas H on K variables of size at most k. Set S := O(k5). Then a
union bound implies that, with at least 2/3 probability over the choice of (f1, . . . , fS), for all K-variable
formulas H of size at most k,

E
f∼FS

E
g

[L(H|g⊕f)] = O
(
q
√
L(H)

)
.

We observe that such an S-tuple (f1, . . . , fS) can be found deterministically in 2O(k8) time. We simply
enumerate all 2O(k log k)·S ≤ 2O(k7) possible (f1, . . . , fS), and output the first tuple that satisfies the above
property. To verify the property holds, we enumerate all KO(k) ≤ kO(k) relevant formulas H , and compute
the formula size after shrinkage under each possible g ⊕ f by brute force. Recall that we define FS to be
the uniform distribution over the elements f1, . . . , fS in this S-tuple.

13

Composing With the Hash Function. Let H be a family of perfect hash functions h : [n] → [K] as
defined in Lemma 3.4. For a formula G of size L(G) ≤ k on the variable set {x1, . . . , xn}, we now
consider its expected size under the random restriction defined by

ϕ(i) := ϕK(h(i))

for every i ∈ [n], where h ∼ H and ϕK ∼ g ⊕ FS . That is, we draw a function g ∼ g and a function
f ∼ FS , and let ϕK be the restriction obtained from the function g ⊕ f in the way we have defined above.

From the formula G, we obtain a new formula H on variables {y1, . . . , yK} by replacing every leaf
variable xi of G with the variable yh(i). Since there are at most k leaves, by Lemma 3.4 says that with at
least 1 − 1/k18 probability over the choice of h ∼ H, this replacement does not assign any distinct xi’s to
the same variable yj . In this case, we have

E
ϕK∼g⊕FS

[L(G|ϕK◦h)] = E
ϕK∼g⊕FS

[L(H|ϕK)] = O
(
q
√
L(G)

)
.

Hence,

E
ϕ

[L(G|ϕ)] = E
h∼H

E
ϕK∼g⊕FS

[L(G|ϕK◦h)] ≤
(

1− 1

k18

)
·O
(
q
√
L(G)

)
+

1

k18
· L(G) = O

(
q
√
L(G)

)
.

(1)
For a formula F over {x1, . . . , xn} of size L(F) > k, we apply the decomposition of Lemma 3.3. We

obtain m = O(L(F)/k) formulas G1, . . . , Gm, each of size at most k, along with a read-once formula F ′

of size m such that F ′(G1(x), . . . , Gm(x)) = F (x) for all x ∈ {0, 1}n. By linearity of expectation, we
have

E
ϕ

[L(F |ϕ)] ≤
m∑
i=1

E
ϕ

[L(Gi|ϕ)] ≤ m ·O(q
√
k) = O(q2L(F)). (2)

Combining (1) and (2) finishes the proof of the shrinkage property.
Note that ϕK ∼ g ⊕ FS can be specified using O(log k) + logS = O(log k) bits. Hence a restriction

ϕ = ϕK ◦ h can be sampled by a seed s of O(log k + log log n) bits.
After computing (f1, . . . , fS) in 2O(k8) time, a restriction ϕ ∈ {0, 1, ?}n can be computed in poly(n, k)

time given the seed s. After fixing a seed, we can also implement the function that maps indices i of log(n)
bits to φ(i) ∈ {0, 1, ?} using a poly(log n, k)-size circuit (the tuple (f1, . . . , fS) can be hardwired into the
circuit).

Since g is pairwise independent, ϕK ∼ g ⊕ FS is also. (To see this, note that g ⊕ f is pairwise
independent for any fixed function f .) For two different i1, i2 ∈ [n], with probability at least 1− 1/k18 we
have h(i1) 6= h(i2), in which case ϕK(h(i1)),ϕK(h(i2)) are q-regular independent. Hence ϕ ∼ ϕK ◦h is
q-regular pairwise 1/k18-dependent.

3.2 Multi-stage Pseudorandom Restriction

Now we build our final pseudorandom restriction by composing the one-stage construction from Lemma 3.5.

Proof of Theorem 3.2. Assume L(F) ≥ 1. Set k := (log n)1/10, q := k−1/2, and p := qr, where r =
log(p−1)/ log(q−1) ≤ O(log n/ log log n). Let ϕi denote the distribution of the composed restriction

ϕi ◦ · · · ◦ ϕ1,

where each ϕj (1 ≤ j ≤ i) is independently sampled from the one-stage restriction ϕ (Lemma 3.5), using
O(log k+log log n) = O(log log n) bits. Our pseudorandom restriction ρ is defined asϕr, samplable using

14

r ·O(log log n) = O(log n) random bits. Since 2O(k8) = 2o(logn), each ϕ can be sampled in poly(n) time.
So ρ can also be sampled in poly(n) time, or strongly explicitly by a polylog(n)-size circuit (using the
constructive property of the one-stage restriction).

Since E[L(F |ϕ)] ≤ c
2(q2L(F) + q

√
L(F)) for a constant c > 1, we have

E[L(F |ϕ)] ≤ cqL(F), (3)

and
E[L(F |ϕ)] ≤ c(q2L(F) + 1). (4)

By induction on (3),
E
ϕw

[L(F |ϕw)] ≤ cwqwL(F). (5)

And by induction on (4),

E
ϕu

[L(F |ϕu)] ≤ cuq2uL(F) + c(1 + cq2 + c2q4 + · · ·+ cu−1q2u−2)

≤ cuq2uL(F) + 2c, (6)

for small enough q. Combining (5) and (6) with w := r − u, we have

E[L(F |ρ)] = E
ϕr−u

E
ϕu

[L(F |ϕr−u◦ϕu)]

≤ cr−uqr−u · (cuq2uL(F) + 2c)

≤ cr · qr ·O(quL(F) + q−u).

Since min0≤u≤r{quL(F) + q−u} ≤ O(qrL(F) + q−1
√
L(F)), we have

E[L(F |ρ)] ≤ O
(
crq2rL(F) + crqr−1

√
L(F)

)
≤ (p2L(F) + p

√
L(F)) · nO(1/ log logn). (7)

Note that ρ(i) = ? iff ϕ1(i) = ϕ2(i) = · · · = ϕr(i) = ?. Since ϕ1, . . . , ϕr are independent, and each
of them is q-regular pairwise 1/k18-dependent, for every 1 ≤ i < j ≤ n, we have

Pr[ρ(i) = ρ(j) = ?] ≤ (q2 + 1/k18)r ≤ q2r exp(rq−2/k18) ≤ p2(1 + o(1)),

and
Pr[ρ(i) = ?] ≥ (q − 1/k18)r ≥ p(1− o(1)),

Pr[ρ(i) = ?] ≤ (q + 1/k18)r ≤ p(1 + o(1)).

Hence,
np(1− o(1)) ≤ E[|ρ−1(?)|] ≤ np(1 + o(1)),

and
Var[|ρ−1(?)|] = E[|ρ−1(?)|2]− E[|ρ−1(?)|]2 ≤ np(1− p+ o(1)) + n2p2o(1).

By Chebyshev’s inequality,

Pr[|ρ−1(?)| ≥ np/2] ≥ 1− Var[|ρ−1(?)|]
(np/2− o(1))2

> 2/3.

This completes the proof.

15

4 Sharp Thresholds for Quantified Derandomization

In this section we present sharp threshold results for quantified derandomization.

4.1 Threshold Theorems for Quantified Derandomization

To prove our threshold theorems for quantified derandomization, we need the following construction of
linear extractors with a short seed.

Theorem 4.1 (Adaptation of [Li16, Theorem 3.14]). For all constant β ∈ (0, 1) and sufficiently large n,
there is an explicit (nβ, ε) linear extractor {0, 1}n×{0, 1}d → {0, 1}m with ε = n−β , d ≤ (1+O(β)) log n,
and m = nβ/2.

The theorem above is already implicit in [Li16]. We provide a proof in Appendix A for completeness.
We start with a lemma along the lines of Goldreich and Wigderson [GW14], showing that, given a poly-

time algorithm for QD that finds any input on which the given probabilistic formula has non-zero probability
of outputting 1, we can obtain a full derandomization.

Lemma 4.2. Suppose there is a constant α > 0, and a deterministic poly-time algorithm that, given any
generalized probabilistic formula F of size n2+α with B(n) = 2n

α
exceptional inputs, finds an input x ∈

{0, 1}n on which F has non-zero probability of outputting 1. Then, there is a poly-time algorithm that finds
an accepting assignment to any polynomial-size formula having at most 2n/3 falsifying assignments.

Proof. Our proof follows [GW14]; the idea is to apply a linear extractor appropriately. Let F be a (de-
terministic) polynomial size formula on m variables, which has at least B(m) = 0.9 · 2m YES-inputs (we
amplified the acceptance probability from 2/3 to 0.9 by a standard argument). For simplicity, we assume the
size of F is m, since otherwise we could add “dummy variables”8 so that m equals the size of F , without
affecting the fraction of YES-inputs. Now we will deterministically find a YES-input to F , by reducing to a
quantified derandomization instance.

Let β be a positive constant to be specified later. Let E : {0, 1}n × {0, 1}d → {0, 1}m be the (nβ, ε)
linear extractor from Theorem 4.1, where m = nβ/2, ε ≤ 0.1, and d ≤ (1 + O(β)) log n. We choose β
small enough that d ≤ (1 + α) log n, and β ≤ α.

Define the probablistic formula G := F (E(x,Ud)) on input x ∈ {0, 1}n. Each output bit of E(x, s) is
the XOR of a subset of input bits, which can be computed by a n2-size formula. So for each s ∈ {0, 1}d,
the size of F (E(x, s)) is at most n2 ·m ≤ n2+α.

We claim that there are less than 2n
β ≤ 2n

α
strings x ∈ {0, 1}n such that E[F (E(x,Ud))] ≤ 2/3.

Assume not; then the uniform distribution X over all x such that E[F (E(x,Ud))] > 2/3 has min-entropy
at least nβ . Hence X is an (n, nβ) source, which implies that the statistical distance between E(X ,Ud) and
Um is at most 0.1, since E is an (nβ, 0.1)-extractor. Therefore, E[F (E(X ,Ud))] ≥ E[F (Um)] − 0.1 ≥
0.9− 0.1 = 0.8, contradicting E[F (E(x,Ud))] ≤ 2/3 for all x in the support of X .

Thus there are at most 2n
α

exceptional inputs on which the generalized formula G evaluates to 0 or ?.
By the hypothesis, on such a G we can deterministically find an input x where G has positive probability of
outputting 1. Then, by enumerating all s ∈ {0, 1}d, we can find a YES-input E(x, s) to F .

Reminder of Theorem 1.10. Suppose there are ε > 0, α ∈ (0, 1), and a poly-time algorithm for QD
of generalized probabilistic formulas of size n2−α+ε with B(n) = 2n

α
exceptional inputs. Then, there is

8That is, if there are n < m variables in the m-size formula, we add m − n extra variables which are not accessed by the
formula.

16

a poly-time algorithm finding a satisfying assignment to any poly-size formula with at most 2n/3 falsifying
assignments. As a corollary, NP does not have nk-size formulas for all k.

Moreover, if the above algorithm is black-box, then there is a poly-time algorithm that, for every
polynomial-size formula, additively approximates its acceptance probability up to any desired constant
additive error.

Proof. We show that, assuming the hypothesis of this theorem, we can achieve the hypothesis of Lemma 4.2,
which in turn implies a (one-sided) derandomization of polynomial-size formulas with 2n/3 falsifying as-
signments. By [MW18, Theorem 1.1], this implies that NP does not have nk-size formulas for all k.

Recall the requirement of Lemma 4.2: we need to show that there is a polynomial-time algorithm such
that, on every generalized formula of size n2+α with at most 2n

α
exceptions, the algorithm finds an input

x ∈ {0, 1}n on which F has non-zero probability of outputting 1.
Let β > 0 be a constant to determined later, and let F(x) = {(pi, Fi(x))} be a generalized probabilistic

formula on m variables. In particular, each Fi(x) is evaluated on input x with probability pi. We assume
each Fi has size m2+β , and that there are at most 2m

β
exceptional inputs on which F evaluates to 0 or ?.

Let n := m1/t for a constant t ∈ (0, 1) to be determined. For simplicity, we assume m divides
n. We construct a new probabilistic formula G(y) over n Boolean variables y as follows: denote y =
(x1, x2, . . . , xn/m) with |xj | = m for every j ∈ [n/m], and define

G(y) := {(pi, Gi(y))}, where Gi(y) :=
∨

j∈[n/m]

Fi(xj).

Observe that, for every j ∈ [n/m], EGi∼G Gi(y) ≥ EFi∼F Fi(xj); that is, G is only more likely to output 1.

Thus there are at most
(

2m
β
)n/m

= 2n
1−t+βt

inputs on which G evaluates to 0 or ?.

Now, G(y) is a probabilistic formula of size at most n/m ·m2+β = n1+t+βt. By assumption, we can
find a satisfying assignment y to G in polynomial time, as long as 1+ t+βt ≤ 2−α+ε and α ≥ 1− t+βt.
Setting β := αε/4 and t := (1− α)/(1− β), both inequalities are satisfied. Hence by assumption, we can
deterministically find a y ∈ {0, 1}n on which G has value 1 or ?; that is, the probability G(y) outputs 1 is
at least 1/3. Recalling y = (x1, . . . , xn/m) for xi ∈ {0, 1}m, there is at least one xi on which F outputs 1
with non-zero probability. The proof then follows from Lemma 4.2.

Moreover, if the QD algorithm is black-box, then the above algorithm immediately implies a hitting set
generator for all polynomial-size formulas with at most 2n/3 falsifying assignments. By [GW14, Theo-
rem 2.1] (which relies on [GVW11]), this implies a two-sided derandomization algorithm for polynomial-
size formulas, which allows us to estimate the acceptance probability of any polynomial-size formula up to
any constant additive error.

Remark 4.3. In fact, in the hypothesis of Theorem 1.10, we can assume that the generalized probabilistic
formula has support size at most n1−α+ε. To see this, we note that we can assume F has support size m1+β

(which follows from the small seed length of the extractor used in proving Lemma 4.2). Then we observe
that the support size of G is also m1+β = nt+βt ≤ n1−α+ε.

Reminder of Theorem 1.11. Suppose there are ε > 0, α ∈ (0, 1), and a 2n
o(1)

-time algorithm for QD
of generalized probabilistic formulas of size n2−α+ε, with B(n) = 2n

α
exceptional inputs. Then, there is

a 2n
o(1)

-time algorithm that finds a satisfying assignment to every polynomial-size formula having at most
2n/3 falsifying assignments. As a corollary, NE 6⊂ NC1.

Moreover, if the above algorithm is black-box, then there is a 2n
o(1)

-time algorithm that, for every
polynomial-size formula, additively approximates its acceptance probability up to any constant error.

17

Proof Sketch. The proof follows precisely the same strategy as Theorem 1.10. The NE 6⊂ NC1 consequence
follows from [Wil13, Wil14].

4.2 Quantified Derandomization of Probabilistic Formulas

Complementing the previous theorem, we can prove the following quantified derandomization for general-
ized probabilistic formulas.

Reminder of Theorem 1.9. Let 1 ≤ s(n) ≤ n/20. There is a polynomial time computable hitting set
for generalized probabilistic formulas of size n2−K/ log logn/s(n)2 with B(n) = 2s(n) exceptional inputs,
where K > 0 is a universal constant.

Proof. Let F be a generalized probabilistic formula with B(n) = 2s(n) exceptional inputs, where each
formula F in its support has size L(F) ≤ n2−K/ log logn/s(n)2. Let ρ be the pseudorandom restriction
guaranteed by Theorem 3.2 with parameter p := 20s(n)/n. Let K := 4C, where C is the universal
constant from Theorem 3.2. Then by the shrinkage property of the pseudorandom restriction, for every
formula F with L(F) ≤ n2−K/ log logn/s(n)2, we have

E
ρ
[L(F |ρ)] ≤ (p

√
L(F) + p2L(F)) · nC/ log logn ≤ O(n−C/ log logn) ≤ 1/18

for large enough n. Therefore

E
ρ

E
F∼F

[L(F |ρ)] = E
F∼F

E
ρ
[L(F |ρ)] ≤ 1/18.

By Markov’s inequality, with at least 2/3 probability over the choice of ρ, we have EF∼F [L(F |ρ)] ≤ 1/6,
which (again by Markov’s inequality) implies PrF∼F [L(F |ρ) < 1] ≥ 5/6. Note that when L(F |ρ) < 1,
F |ρ is simply a constant function.

By the “close to p-regular” property of the pseudorandom restriction, Prρ
[
|ρ−1(?)| ≥ np/2

]
≥ 2/3.

Hence there is a ρ from our pseudorandom restriction generator such that |ρ−1(?)| ≥ np/2 > 10s(n), and
PrF∼F [F |ρ is a constant] ≥ 5/6. Let p0 := PrF∼F [F |ρ is the constant 1]. Then for every x ∈ {0, 1}n
consistent with ρ,

E
F∼F

[F (x)] = E
F∼F

[
F (x)

∣∣∣F |ρ is not constant
]
· Pr
F∼F

[F |ρ is not constant] + 1 · p0

∈ [p0, p0 + 1/6].

The number of such x is at least 210s(n), while the number of x that make F output ? and 0 is at most 2s(n).
Therefore p0 + 1/6 ≥ 2/3, and F on such an x has value either ? or 1.

Finally, we observe that if the given probabilistic formula satisfies the standard BPP-style promise (for
each input, it either outputs 1 with probability ≥ 2/3, or outputs 0 with probability ≥ 2/3), we can obtain a
slightly better hitting set construction than that of Theorem 1.9.

Theorem 4.4. For 1 ≤ b(n) ≤ n/20, there is a polynomial time computable hitting set for probabilistic
formulas of size n2−K/ log logn/b(n) with B(n) = 2b(n) exceptional inputs, where K > 0 is a universal
constant.

Proof. Let F be a probabilistic formula with B(n) = 2b(n) exceptional inputs, where each formula F in the
support of F satisfies L(F) ≤ n2−K/ log logn/b(n). We setK := 4C, where C > 0 is the universal constant
in Theorem 3.2. Let ρ be the pseudorandom restriction from Theorem 3.2 with parameter p := 20b(n)/n.

18

By the shrinkage property of Theorem 3.2, for each F with L(F) ≤ n2−K/ log logn/b(n),

E
ρ
[L(F |ρ)] ≤

(
p2L(F) + p

√
L(F)

)
· nC/ log logn

≤ O
(
b(n) · n−C/ log logn

)
.

By Markov, Prρ[L(F |ρ) ≥ b(n)] < 1/60 for large enough n. Hence, by Markov’s inequality,

Pr
ρ

[
Pr
F∼F

[
L(F |ρ) ≥ b(n)

]
≥ 1/20

]
≤ 20 · E

ρ

[
Pr
F∼F

[
L(F |ρ) ≥ b(n)

]]
= 20 · E

F∼F

[
Pr
ρ

[
L(F |ρ) ≥ b(n)

]]
< 1/3. (8)

By the “close to p-regular” property of Theorem 3.2,

Pr
ρ

[|ρ−1(?)| ≥ np/2] > 2/3. (9)

Comparing (9) with (8), we know that there exists a restriction ρ such that

|ρ−1(?)| ≥ np/2 = 10b(n)

and
Pr
F∼F

[
L(F |ρ) ≥ b(n)

]
< 1/20. (10)

Fix such a ρ, and let X ⊆ {x1, . . . , xn} denote the set of input variables xj such that

Pr
F∼F

[F |ρ contains xj] ≥ 1/4. (11)

For all xj ∈ X , by (10), the conditional probability

Pr
F∼F

[
F |ρ contains xj

∣∣∣L(F |ρ) < b(n)
]
≥ 1/4− 1/20 = 1/5.

Therefore

b(n) ≥ E
F∼F

[
L(F |ρ)

∣∣∣L(F |ρ) < b(n)
]

≥
∑
xj∈X

Pr
F∼F

[
F |ρ contains xj

∣∣∣L(F |ρ) < b(n)
]

≥ (1/5) · |X|,

implying
|X| ≤ 5b(n).

We claim that, under restriction ρ, the output value ofF does not depend on the coordinate set ρ−1(?)\X .
Otherwise, there would be two strings x1, x2 ∈ {0, 1}n consistent with ρ that only differ at some bit position
j ∈ ρ−1(?)\X , such that F(x1) 6= F(x2). However, by (11),

∣∣PrF∼F [F (x1) = 1] − PrF∼F [F (x2) =
1]
∣∣ ≤ 1/4, which is smaller than the 1/3 gap of the probabilistic formula. Since |ρ−1(?)\X| ≥ 10b(n) −

5b(n) > b(n), we have 2|ρ
−1(?)\X| > B(n), so F must evaluate to the majority output value on all inputs

that are consistent with ρ. Therefore the following set of strings is a hitting set: the set of all restrictions ρ
with all ? positions filled in with zeroes.

Remark 4.5. Our construction actually implies a two-sided black-box non-adaptive quantified derandom-
ization algorithm. We can enumerate all restrictions ρ satisfying |ρ−1(?)| ≥ np/2. Comparing (9) and (8),
we know the majority of these restrictions satisfy condition (10). Hence it follows from the discussion above
that the majority value of F(ρ) equals the majority value of F .

19

5 Sharp Thresholds for Hardness Magnification

In this section we establish sharp threshold results for hardness magnification. We first prove our magnifi-
cation theorems, and then establish corresponding lower bounds, which are just “an epsilon away” from the
magnification results.

5.1 Magnification Theorems

We first establish the magnification theorems, which are an adaptation of the main results of [CJW19]. We
need the following theorem from [CJW19].

Theorem 5.1 ([CJW19, Theorem 3.6, Lemma 5.1, Lemma 5.2], adapted). Let f : {0, 1}n → {0, 1} be a
function of sparsity Ssparse, where log n ≤ log(Ssparse) ≤ n1−Ω(1).

There is a function H : {0, 1}Θ(logSsparse) → {0, 1}, computable in nondeterministic O(n) time with one
oracle query to f , and a randomized O(n)-time algorithm Orand computing f with error probability 0.01
using O(log n) random bits, O(logSsparse) bits of advice, and only O(1) non-adaptive oracle queries to H .
In particular, for each fixed choice of randomness, each bit of the queries of Orand to H is a parity of a
subset of the input x, and the algorithm Orand simply returns the majority of the answers it receives from the
oracles.

Moreover, if f = MKtP[Ssparse], then we can assume H ∈ E, and we can assume H ∈ (Σ2P)⊕P if
f = MCSP[Ssparse].

Now we are ready to prove Theorem 1.3.

Reminder of Theorem 1.3.

1. If there is an ε > 0 such that for all small enough α > 0, MCSP[nα] does not have n2+ε-size
probabilistic formulas, then ⊕P 6⊂ NC1.

2. If there is an ε > 0 such that for all small enough α > 0, MKtP[nα] does not have n2+ε-size
probabilistic formulas, then EXP 6⊂ NC1.

3. If there is an ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that Lβ is a
2n

β
-sparse NP language and for all β, Lβ does not have n2+ε-size probabilistic formulas, then NP

does not have nk-size formulas, for all k.

Proof Sketch. The proof is a minor adaptation of the main results in [CJW19]; we mainly have to observe
that their proofs extend to superquadratic-size probabilistic formulas.

We first describe the proof of item (3). By Theorem 5.1, for a constant β > and every 2n
β

-sparse NP
language Lβ : {0, 1}n → {0, 1}, there is an NP function H : {0, 1}? → {0, 1}, and a (nonuniform)
randomized algorithm OHrand with error probability 0.01 that can decide Lβ using O(1) non-adaptive oracle
queries to H of length only O(nβ).

Moreover, after we fix the randomness, each bit of each query to H has the form
⊕

i∈S xi for some
subset S ⊆ [n] of the input coordinates; i.e., each bit is a MOD-2 sum of some input bits. Since PARITY
can be computed by De Morgan formulas of size O(n2), each bit of each query can be computed in O(n2)
size.

Now, assume every problem in NP has nk-size formulas, for some k. Then, the H-oracle on O(nβ)-bit
input can be computed by some O(nβk)-size formula. Therefore the randomized algorithm OHrand deciding
Lβ can be implemented with a probabilistic formula of size O(n2) · O(nβk) ≤ n2+ε, by setting β ≤ ε/2k.
This contradicts our assumption.

20

For Item (1) and (2), we can still apply Theorem 5.1, and use the “moreover” part. Note that, assuming
⊕P ⊂ NC1 (respectively, EXP ⊂ NC1), it follows that the H-oracle on Õ(nα)-bit input can be computed
by nO(α)-size formulas, because the complexity class (Σ2P)⊕P collapses to NC1, under the assumption that
⊕P ⊂ NC1.

We note that even slightly super-quadratic lower bounds would suffice.

Reminder of Theorem 1.4. For any unbounded function f(n), the following hold.

1. If there is a d > 0 such that MCSP[(log n)d] does not have n2(log n)f(n)-size probabilistic formulas,
then ⊕P 6⊂ NC1.

2. If there is a d > 0 such that, MKtP[(log n)d] does not have n2(log n)f(n)-size probabilistic formulas,
then EXP 6⊂ NC1.

Proof Sketch. The proof is the same as the first two items of Theorem 1.3. Assuming the hypothesis ⊕P ⊂
NC1 (EXP ⊂ NC1, resp.), the H-oracle on Õ((log n)d)-bit input can be computed by formulas of size
(log n)O(d) � (log n)f(n).

5.2 Nearly Matching Lower Bounds

Now we are ready to prove the nearly matching lower bounds. We first state the following connection
between hitting sets for QD and sparse lower bounds. The promise problems Gap-MKtP and Gap-MCSP
are defined in Section 2.2.

Theorem 5.2 (Hitting Sets Imply Sparse Lower Bounds). Let C be a circuit class that is closed under
negation. Let S ⊆ {0, 1}n be a hitting set against C-circuit with B(n) exceptional inputs.

• If every string s ∈ S has Kt complexity at most A(n), then Gap-MKtP[A(n), logB(n)] /∈ C.

• If every string s ∈ S has circuit size at most A(n), then Gap-MCSP[A(n), logB(n)
10 log logB(n)] /∈ C.

Proof. To prove the first item, suppose circuit C ∈ C computes Gap-MKtP[A(n), logB(n)]. Since there
are at most B(n) strings with Kt complexity ≤ logB(n), C only accepts no more than B(n) inputs. By the
definition of S, there exists s ∈ S such that C rejects s. However, every s ∈ S has Kt complexity at most
A(n) and should be accepted by C, a contradiction.

The second item can be proved similarly.

Combined with Theorem 4.4, we immediately prove Theorem 1.5 as a corollary.

Proof of Theorem 1.5. Every string in the hitting set from Theorem 3.2 is generated by a poly(n) time
algorithm on a O(log n)-bit seed, so they all have Kt complexity O(log n). And, these strings all have
circuit size polylog n. The proof then follows from Theorem 5.2.

5.3 Trade-off Between Sparsity and Formula Lower Bounds

There is a gap between the known formula lower bounds for sparse and non-sparse NP languages (near n2

versus near n3). We can prove a trade-off between lower bounds and sparsity, in particular for the MCSP
problem on different circuit size parameters.

Theorem 5.3 (Local PRG against De Morgan Formulas, [CKLM19]). For any size parameter s ≥ nΩ(1),
there is a PRG G : {0, 1}r → {0, 1}n with seed length r ≤ s1/3+o(1), such that

21

• For every De Morgan formula of size at most s,∣∣∣ E
z∼{0,1}r

[F (G(z))]− E
x∼{0,1}n

[F (x)]
∣∣∣ ≤ 0.1.

• For every seed z ∈ {0, 1}r, the function gz : {0, 1}logn → {0, 1} defined as gz(j) = G(z)j can be
computed by a circuit of size at most s1/3+o(1).

Remark 5.4. The original statement of [CKLM19] assumed s ≥ n, which came from [IMZ12, Lemma 4.8].
In fact, this assumption can be weakened to s ≥ nδ for some constant δ, without affecting the original proof.

Theorem 5.5. Let 0 < α < 1. MCSP[nα] on input length n = 2m does not have n2+α−ε-size probabilistic
formulas, for any ε > 0.

Proof. Let F be a probabilistic formula with error 1/3 (see Definition 1.1), where each formula F in its
support satisfies L(F) ≤ n2+α−ε.

Let ρ be the pseudorandom restriction from Theorem 3.2 with parameter p := 2nα+ε/5−1. Then, by the
shrinkage property of Theorem 3.2, for each formula F ,

E
ρ
[L(F |ρ)] ≤ 2p2 · n2+α · no(1) = n3α−3ε/5+o(1).

Then

E
ρ

E
F∼F

[L(F |ρ)] = E
F∼F

E
ρ
[L(F |ρ)] ≤ n3α−3ε/5+o(1).

By the “close to p-regular” property of Theorem 3.2,

Pr
ρ

[
|ρ−1(?)| ≥ nα+ε/5

]
≥ 2/3.

Applying Markov’s inequality (as in the proof of Theorem 1.9), we can show there is a restriction ρ such
that |ρ−1(?)| ≥ nα+ε/5, and PrF∼F [L(F |ρ) ≤ s(n)] ≥ 0.99 for some s(n) = n3α−3ε/5+o(1). Moreover,
by our construction, ρ is fully explicit: there is a polylog(n)-size circuit computing ρ(i) on input i ∈ [n].

Let x be the n-bit string generated by randomly and independently filling in the ? positions of ρ. By a
counting argument, with probability at least 0.99, the minimum circuit size of x is at least

|ρ−1(?)|
10 log |ρ−1(?)|

≥ nα+ε/5−o(1).

Let G : {0, 1}r → {0, 1}n be the local PRG from Theorem 5.3 with size parameter s(n) = n3α−3ε/5+o(1).
Then, if L(F |ρ) ≤ s(n), then∣∣∣ E

z∼{0,1}r
[F |ρ(G(z))]− E

x∼{0,1}n
[F |ρ(x)]

∣∣∣ ≤ 0.1.

Since F computes MCSP[nα], we have

E
x∼{0,1}n

[F|ρ(x)] ≤ 0.01.

Hence
E

F∼F
E

x∼{0,1}n
[F |ρ(x)] = E

x∼{0,1}n
E

F∼F
[F |ρ(x)] ≤ 0.01 + 0.99 · 1

3
= 0.34.

22

And

E
F∼F

E
z∼{0,1}r

[F |ρ(G(z))]

≤ Pr
F∼F

[L(F |ρ) > s(n)] + E
F∼F

[
E

z∼{0,1}r
[F |ρ(G(z))]

∣∣∣L(F |ρ) ≤ s(n)
]
· Pr
F∼F

[L(F |ρ) ≤ s(n)]

≤ Pr
F∼F

[L(F |ρ) > s(n)] + E
F∼F

[
E

x∼{0,1}n
[F |ρ(x)] + 0.1

∣∣∣L(F |ρ) ≤ s(n)
]
· Pr
F∼F

[L(F |ρ) ≤ s(n)]

≤ 0.01 + E
F∼F

E
x∼{0,1}n

[F |ρ(x)] + 0.1

≤ 0.45.

However, for each z, string G(z) ◦ ρ has circuit size at most s1/3+o(1) ≤ nα−ε/5+o(1) , and should be
accepted by F . So EF∼F [F |ρ(G(z))] ≥ 2/3, a contradiction.

6 Sharp Thresholds for Explicit Obstructions

In this section we give our construction and sharp threshold for explicit obstructions against De Morgan
formulas.

Reminder of Theorem 1.14. For a universal constant K > 0, there is an explicit obstruction against De
Morgan formulas of size n2−K/ log logn.

Proof. We apply the pseudorandom restriction generator from Theorem 3.2 with probability parameter
p(n) := 20/n. More precisely, we will produce a so-called anti-checker for the PARITY function. We
use Q to denote the set of restrictions generated by the pseudorandom restriction generator; note that
|Q| ≤ poly(n).

For each restriction ρ ∈ Q and each i ∈ {0} ∪ [n], we define an n-bit input xρ,i:

for j ∈ [n], xρ,ij :=


ρ(j) ρ(j) 6= ?,
1 ρ(j) = ? and j = i,
0 ρ(j) = ? and j 6= i.

Note that xρ,0 corresponds to filling in all ?’s of ρ with 0’s. We set our obstruction to be

S := {(xρ,i,PARITY(xρ,i)) : ρ ∈ Q, i ∈ {0, 1, . . . , n}}.

Clearly, S is consistent (but it may contain repetitions), and it can be constructed in poly(n) time.
Now let F be a formula of size N2−K/ log logN . Let K = 4C. Applying Markov’s inequality, there is

some restriction ρ from the generator such that |ρ−1(?)| ≥ pn/2 = 10, and L(F |ρ) < 1, i.e., F |ρ is constant
(we argue such a ρ exists in the proof of Theorem 1.9). Now, let i be such that ρ(i) = ?, and consider two
inputs xρ,0 and xρ,i from S. Since F |ρ is constant, F outputs the same value on these two inputs, yet they
have different parities, which completes the proof.

Now we turn to showing how a slightly improved explicit obstruction implies exponential-size formula
lower bounds. We will need a way to efficiently construct a perfect linear hash function for a given input
set.

23

Lemma 6.1 (Efficient Linear Hashing). There is a deterministic algorithm which takes m distinct strings
s1, . . . , sm ∈ {0, 1}n as input, and in poly(mn) time outputs t = O(logm) strings w1, . . . , wt ∈ {0, 1}n,
such that H(si) 6= H(sj) for all i 6= j, where H : {0, 1}n → {0, 1}t is defined as

H(x) = (〈x,w1〉, 〈x,w2〉, . . . , 〈x,wt〉).

Proof. Let E : {0, 1}n → {0, 1}n/cr be the linear error correcting code from Theorem 2.5, where the
constant cr ∈ (0, 1) is the rate of the code. For any two different si, sj ∈ {0, 1}n, we have

Pr
v0∈[n/cr]

[E(si)v0 6= E(sj)v0] ≥ cd,

where constant cd ∈ (0, 1) is the relative distance of E.
Let G be a (strongly explicit) expander graph (with constant parameters λ < 1, d ∈ N) from Theo-

rem 2.8 with [n/cr] as vertices. Let t = c · logm for a constant c to be specified later. Given t elements
v1, v2, . . . , vt from [n/cr], we define the hash function

Hv(x) := (E(x)v1 , E(x)v2 , . . . , E(x)vt) ∈ {0, 1}t.

For any two different si, sj ∈ {0, 1}n, by the Expander Chernoff Bound (Theorem 2.9), if v =
(v1, v2, . . . , vt) is a random walk on G, then

Pr
v

[Hv(si) = Hv(sj)] ≤ Pr
v

[
1

t

t∑
k=1

[E(si)vk 6= E(sj)vk] < cd/2

]
≤ e−(1−λ)(cd/2)2t/4.

Choosing t = c · logm for a sufficiently large constant c, we have

Pr
v

[for every two 1 ≤ i < j ≤ m, Hv(si) 6= Hv(sj)] ≥ 0.99

by union bound. Note that a walk v on G of length t can be specified by O(log(n/cr) + t) = O(log(mn))
bits. We enumerate allO(log(mn))-bit strings and find the lexicographically smallest, such thatHv satisfies
the required condition. Then we can output the strings w1, . . . , wt ∈ {0, 1} which define this linear function
Hv.

Reminder of Theorem 1.15. The following are equivalent:

(1) There is an α > 0 and an explicit obstruction against formulas of size n2+α.

(2) For all k, there is an explicit obstruction against formulas of size nk.

(3) There is an ε > 0 and a function in E that does not have 2εn-size formulas, even infinitely often.

Proof. (1) =⇒ (3). By assumption, there is an explicit obstruction against n2+α-size formulas, consisting
of nc input/output pairs, for some constants α > 0, c ≥ 1. Suppose for contradiction that E has 2εn size
formulas, for all ε > 0.

We run the poly-time algorithm computing the obstruction set S on 1n, then feed S to the algorithm of
Lemma 6.1 to choose a perfect linear hash H : {0, 1}n → {0, 1}dc logn that maps all nc inputs from S to
distinct strings, for some universal constant d.

24

For all n, define the language Ln ⊆ {0, 1}dc logn, where a string y ∈ Ln if and only if there is an
x ∈ {0, 1}n with H(x) = y such that (x, 1) ∈ S. Define L :=

⋃
Ln. Because the obstruction can

be produced in polynomial time, and the hash H is computable in polynomial time, L can be decided in
poly(nc) time. Hence L ∈ E. By assumption, L has formulas of size 2ε(dc logn) ≤ nα/2, for ε > 0
sufficiently small.

Now define an n-variable function F by

F (x) := L(H(x)).

Each output bit ofH is a PARITY of a subset of n input bits, which can be implemented by a formula of size
n2. Thus F has formula complexity at most ≤ nα/2 · n2. Because H maps all of S to distinct strings, the
function F defined above agrees with all input/output pairs in S. This implies that F does not have formulas
of size n2+α, a contradiction.

(3) =⇒ (2). Let L be a function in E that does not have 2εn-size formulas, even infinitely often. In
other words, for all but finitely many n, L ∩ {0, 1}n has formula complexity greater than 2εn.

For every k > 1, we can construct an explicit obstruction against nk-size formulas as follows. Set
m := (2k/ε) log n. For all x ∈ {0, 1}m, include the pair (x0n−m, L(x)) in the obstruction, which can be
computed in poly(nc) time. Now suppose a formula F agrees with all such input-output pairs. Then for all
x, the formula F (x0n−m) computes L(x) on input length m, implying that F itself must have size at least
2εm = n2k.

(2) =⇒ (1). Trivial.

Reminder of Theorem 1.16. If there is an unbounded function f(n) and an explicit obstruction against
formulas of size n2 · (log n)f(n), then E 6⊂ NC1.

Proof Sketch. The proof is essentially the same as the ((1) =⇒ (3)) case of Theorem 1.15. If we assume
E ⊂ NC1 (instead merely assuming that E has 2εn-size formulas), then the function F constructed has
formula complexity at most n2(c log n)t for some constant t, which is smaller than n2 · (log n)f(n) for
sufficiently large n. But F agrees with all input/output pairs in the obstruction, a contradiction.

Reminder of Proposition 1.17. There are explicit obstructions against B2-formulas of size o(n), and
branching programs of size o(n).

Proof. Note that an o(n)-size B2-formula (or o(n)-size branching program) does not depend on all of its
inputs. In such a case, our obstruction can simply be the set S = {(0n, 0)}∪{(0i−110n−i, 1) | i ∈ [n]}.

It is an interesting question to ask: to what degree can this simple proposition be improved? One inter-
esting open problem is whether we can get explicit obstructions against cn-size B2-formulas or branching
programs, for every constant c ≥ 1. We can show that improving the proposition in the exponent would
imply a breakthrough:

Reminder of Theorem 1.18. The following are equivalent:

• There is an α > 0 and an explicit obstruction against B2-formulas of size n1+α.

• For all k, there is an explicit obstruction against B2-formulas of size nk.

• There is an ε > 0 such that E cannot be computed by 2εn-size formulas, even infinitely often.

25

The same equivalence also holds with “branching programs” in place of “B2-formulas.”

Proof Sketch. The proof is analogous to the equivalence proved in Theorem 1.15. The key difference is that
PARITY hasO(n)-size branching programs andB2-formulas. Therefore the function F implemented in that
proof has B2-formula complexity at most n1+α/2, and branching program complexity at most n1+α/2.

By standard hardness-to-randomness connections, we also have:

Proposition 6.2 ([NW94, IW97, STV01]). E does not have 2εn-size formulas (respectively, branching pro-
grams) for some ε > 0 (even infinitely often) if and only if for all k, there is an O(log n)-seed PRG fooling
nk-size formulas (respectively, branching programs) that is computable in poly(n)-time.

Thus the problem of computing non-trivial explicit obstructions for these computational models is al-
ready equivalent to constructing pseudorandom generators.

7 Open Problems

Our results suggest several new directions and interesting open problems. The most interesting open ques-
tion would be to prove some super-polynomial lower bounds (e.g., EXP 6⊂ NC1) via the approaches sug-
gested in this work. In particular:

(1) Can we prove MCSP[polylog(n)] does not have n2.01-size probabilistic formulas?

(2) Is there a quantified derandomization algorithm for n2-size probabilistic formulas with at most 2n
0.01

unsatisfying assignments?

(3) Can we construct an explicit obstruction against n2.01-size formulas?

Since a positive answer to any of the above questions would imply breakthrough complexity separa-
tions, pessimists may believe they are out of reach. Can we provide any formal mathematical reasons to
justify such a belief? As far as we can tell, the standard barriers such as diagonalization [BGS75], alge-
brization [AW09], and natural proofs [RR97] do not directly stand in the way of resolving problems such as
(1), (2), and (3).9 In recent work, Chen et al. [CHO+20] formulated a “locality barrier” which suggests that
inherently new techniques are required to resolve question (1) above. However, its results do not apply to
questions such as (2) and (3).

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[AB17] Amir Abboud and Arturs Backurs. Towards hardness of approximation for polynomial time
problems. In ITCS, pages 11:1–11:26, 2017.

[AB18] Amir Abboud and Karl Bringmann. Tighter connections between Formula-SAT and shaving
logs. In ICALP, pages 8:1–8:18, 2018.

9For example, Problem (1) focuses on the special function MCSP[polylog(n)], which would apparently violate the largeness
condition of natural proofs. Problem (2) is based on constructing a derandomization algorithm. Problem (3) asks for an efficient
algorithm that constructs bad inputs for small formulas where we already know lower bounds. None of these tasks apparently fit
within the framework of natural proofs.

26

[ABK+02] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneb-
urger. Power from random strings. SIAM Journal on Computing, 35(6):1467–1493, 2006.
Preliminary version in FOCS’02.

[AGHP90] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. In FOCS, pages 544–553, 1990.

[AH19] Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimiza-
tion and related problems. TOCT, 11(4):27:1–27:27, 2019.

[AHK17] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size prob-
lem. Computational Complexity, 26(2):469–496, 2017.

[AHVW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Proc. of the 48th STOC, pages 375–388, 2016.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

[AR18] Amir Abboud and Aviad Rubinstein. Fast and deterministic constant factor approximation
algorithms for LCS imply new circuit lower bounds. In ITCS, pages 35:1–35:14, 2018.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
TOCT, 1(1):2:1–2:54, 2009.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. JACM, 42(4):844–856, 1995.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP question.
SIAM J. Comput., 4(4):431–442, 1975.

[BI15] Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (unless SETH is false). In Proc. of the 47th STOC, pages 51–58, 2015.

[CGL+19] Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy N. Rothblum, and Aviad Rubinstein. Fine-
grained complexity meets IP = PSPACE. In SODA, pages 1–20, 2019.

[CHO+20] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. In 11th Innovations
in Theoretical Computer Science Conference, ITCS, pages 70:1–70:48, 2020.

[CI17] Mahdi Cheraghchi and Piotr Indyk. Nearly optimal deterministic algorithm for sparse Walsh-
Hadamard transform. ACM Trans. Algorithms, 13(3):34:1–34:36, 2017.

[CILM18] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness
amplification for non-commutative arithmetic circuits. In 33rd Computational Complexity
Conference, CCC, pages 12:1–12:16, 2018.

[CJW19] Lijie Chen, Ce Jin, and Ryan Williams. Hardness Magnification for all Sparse NP Languages.
In FOCS, pages 1240–1255, 2019.

[CKLM19] Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit lower
bounds for MCSP from local pseudorandom generators. In ICALP, pages 39:1–39:14, 2019.

27

[CMMW19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and equiv-
alences between circuit lower bounds and Karp-Lipton theorems. In CCC, pages 30:1–30:21,
2019.

[CSS16] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower bounds and
satisfiability algorithms for small threshold circuits. In 31st Conference on Computational
Complexity, CCC, pages 1:1–1:35, 2016.

[CT19] Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits ”just beyond” known
lower bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pages 34–41, 2019.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979.

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In FOCS, pages
89–98, 2016.

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. Journal
of Computer and System Sciences, 22(3):407–420, 1981.

[Gil98] David Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal on
Computing, 27(4):1203–1220, 1998.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008.

[GVW11] Oded Goldreich, Salil Vadhan, and Avi Wigderson. Simplified derandomization of bpp using a
hitting set generator. In Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation, pages 59–67. Springer, 2011. Preliminary version in
ECCC, TR00-004, 2000.

[GW14] Oded Goldreich and Avi Widgerson. On derandomizing algorithms that err extremely rarely.
In Proc. of the 47th STOC, pages 109–118, 2014.

[Hås98] Johan Håstad. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 247–258, 2018.

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. Np-hardness of minimum
circuit size problem for OR-AND-MOD circuits. In 33rd Computational Complexity Confer-
ence, CCC, pages 5:1–5:31, 2018.

[HP15] John M. Hitchcock and Aduri Pavan. On the np-completeness of the minimum circuit size
problem. In 35th IARCS Annual Conference on Foundation of Software Technology and The-
oretical Computer Science, FSTTCS, pages 236–245, 2015.

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its
variants. In 32nd Computational Complexity Conference, CCC, pages 7:1–7:20, 2017.

28

[HW16] Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle. In
31st Conference on Computational Complexity, CCC, pages 18:1–18:20, 2016.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n - o(n) for boolean circuits.
In MFCS, pages 353–364, 2002.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrink-
age. J. ACM, 66(2):11:1–11:16, April 2019. Preliminary version in FOCS’12.

[IPS97] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-depth tradeoffs for
threshold circuits. SIAM J. Comput., 26(3):693–707, 1997.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In STOC, pages 220–229, 1997.

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In STOC, pages 73–79,
2000.

[KRT17] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for
de Morgan formula size: Matching worst-case lower bound. SIAM Journal on Computing,
46(1):37–57, 2017.

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information and independence in
mathematical theories. Information and Control, 61(1):15 – 37, 1984.

[Li16] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In
FOCS, pages 168–177, 2016.

[LR01] Oded Lachish and Ran Raz. Explicit lower bound of 4.5n−o(n) for boolean circuits. In Proc.
of 33rd STOC, pages 399–408, 2001.

[LW13] Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against polynomial
time, with applications. Computational Complexity, 22(2):311–343, 2013.

[LY94] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum games with appli-
cations to complexity theory. In STOC, pages 734–740, 1994.

[MMW19] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In STOC, pages 1215–
1225, 2019.

[MP20] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower
bounds. Ann. Pure Appl. Log., 171(2), 2020.

[Mul11] Ketan Mulmuley. On P vs. NP and geometric complexity theory: Dedicated to sri ramakrishna.
J. ACM, 58(2):5:1–5:26, 2011.

[MW17] Cody D. Murray and R. Ryan Williams. On the (non) np-hardness of computing circuit com-
plexity. Theory of Computing, 13(1):1–22, 2017.

[MW18] Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime: an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC, pages 890–901, 2018.

29

[Nec66] E. I. Nechiporuk. On a boolean function. Doklady of the Academy of Sciences of the USSR,
169(4):765–766, 1966. English translation in Soviet Mathematics Doklady 7:4, pages 999–
1000.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

[Oli19] Igor Carboni Oliveira. Randomness and intractability in Kolmogorov complexity. In ICALP,
pages 32:1–32:14, 2019.

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-
the-art lower bounds. In Proc. of the 34th CCC, pages 27:1–27:29, 2019.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems. In
FOCS, pages 65–76, 2018.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–
35, 1997.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Information Theory, 42(6):1723–1731, 1996.

[Sri03] Aravind Srinivasan. On the approximability of clique and related maximization problems. J.
Comput. Syst. Sci., 67(3):633–651, 2003.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the ACM (JACM), 52(2):172–216, 2005.

[Tal14] Avishay Tal. Shrinkage of De Morgan formulae by spectral techniques. In Proc. of 55th
FOCS, pages 551–560, 2014.

[Tel18] Roei Tell. Quantified derandomization of linear threshold circuits. In Proc. of the 50th STOC,
pages 855–865, 2018.

[Tel19] Roei Tell. Improved bounds for quantified derandomization of constant-depth circuits and
polynomials. Computational Complexity, 28(2):259–343, 2019.

[Tra84] B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algo-
rithms. IEEE Ann. Hist. Comput., 6(4), October 1984.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

[Weg87] Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons Ltd, 1987.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42(3):1218–1244, 2013.

[Wil14] Ryan Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM), 61(1):2,
2014.

30

A Construction of Linear Extractors with Short Seed

In this section we prove Theorem 4.1, which is implicit in [Li16]. We first need the concepts of strong
seeded extractor and condenser.

Definition A.1 (Strong seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong
seeded extractor, if for every min-entropy k source X ,

|Ext(X,Ud)− (Um,Ud)| ≤ ε,

where Um is the uniform distribution on m bits and Ud is the uniform distribution on d bits independent of
X . We say that the function is a linear strong seeded extractor if the function Ext(·, u) is a linear function
over F2, for every u ∈ {0, 1}d.

Definition A.2 (Condenser). A function C : {0, 1}n × {0, 1}d → {0, 1}m is an k →ε k
′ condenser if

for every X with min-entropy at least k, C(X,Y) is ε-close to a distribution with min-entropy k′, when
Y is uniformly distributed on {0, 1}d. A condenser is explicit if it is computable in polynomial time. A
condenser is called lossless if k′ = k + d.

Next we need the following two constructions of linear extractors and linear condensers.

Lemma A.3 ([SU05]). For every n ∈ N, constant δ > 0, ε ≥ 2−k
δ/4

, and k ≥ log4/δ n there is an explicit
(k, ε) strong linear seeded extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n+ logn

log k log(1/ε)) and
m = k1−δ.

Lemma A.4 ([CI17]). For any constant α > 0 and any n ∈ N, k ≤ n, ε > 0 there is an explicit strong
(k, ε)-lossless condenser Cond : {0, 1}n×{0, 1}d → {0, 1}m with d ≤ (1 + 1/α)(log(nk/ε) +O(1)) and
m ≤ (1 + α)k. Moreover, Cond is a linear function for every fixed choice of the seed.

Now we are ready to combine the above two constructions to prove Theorem 4.1.

Reminder of Theorem 4.1. For every constant 0 < β < 1 and sufficiently large n, there is an explicit
(nβ, ε) linear extractor {0, 1}n × {0, 1}d → {0, 1}m with d ≤ (1 +O(β)) log n, ε = n−β and m = nβ/2.

Proof. Denote k := nβ . Given any (n, k) sourceX , first use Lemma A.4 and take≤ (1+1/α)(log(2nk/ε)+
O(1)) bits of seed to condense X into an (n′, k) source Y with length n′ ≤ (1 + α)k, and error ε/2. Then
use Lemma A.3 (with parameter δ := 1/2) to extract m =

√
k bits from Y with error ε/2, using another

O(log n′+ logn′

log k log(2/ε)) bits of seed. Since both the condenser and the extractor are linear and strong, the
composed extractor is also a strong linear seeded extractor.

By setting α := 1/β, the total seed length is at most

(1 + 1/α)(log(2nk/ε) +O(1)) +O(log n′ +
log n′

log k
log(2/ε))

≤ (1 + 1/α)(log(nk2) +O(1)) +O(log n′)

≤ (1 + β)((1 + 2β) log n+O(1)) +O(log((1 + 1/β)nβ))

≤ (1 +O(β)) · log n,

for sufficiently large n.

31
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

