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Abstract

The partial string avoidability problem is stated as follows: given a finite set of strings
with possible “holes” (wildcard symbols), determine whether there exists a two-sided in-
finite string containing no substrings from this set, assuming that a hole matches every
symbol. The problem is known to be NP-hard and in PSPACE, and this paper establishes
its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted
as a version of conjunctive normal form satisfiability problem (SAT), where each clause
has infinitely many shifted variants. Non-satisfiability of these formulas can be proved using
variants of classical propositional proof systems, augmented with derivation rules for shifting
proof lines (such as clauses, inequalities, polynomials, etc). First, it is proved that there is
a particular formula that has a short refutation in Resolution with a shift rule, but requires
classical proofs of exponential size At the same time, it is shown that exponential lower
bounds for classical proof systems can be translated for their shifted versions. Finally, it is
shown that superpolynomial lower bounds on the size of shifted proofs would separate NP
from PSPACE; a connection to lower bounds on circuit complexity is also established.

Keywords: Partial strings, partial words, avoidability, proof complexity, lower bound,
PSPACE-completeness.
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1 Introduction

The problem investigated in this paper can be regarded from two different angles. On the one
hand, this is a combinatorial decision problem on strings, which was studied before, but its
computational complexity remains undetermined. On the other hand, the problem is naturally
reformulated as an instance of Boolean satisfiability problem and it can be treated in the proof
complexity framework.

The field of proof complexity is concerned with the size of proofs for different kinds of logical
formulas, under various measures of size. The most common subject, motivated by SAT-solvers,
are Boolean formulas in conjunctive normal form (CNF), and there is a substantial body of
literature on lower bounds on the size of any proof that a given CNF formula is unsatisfiable.
For instance, there are exponential lower bounds on the size of Resolution [Hak85, Urq87],
Cutting Plane [Pud97] and Polynomial Calculus proofs [Raz98, IPS99], whereas for Frege and
Lovász–Schrijver proof systems, no superpolynomial lower bounds are known [Bus12]. This line
of research is aimed, in particular, at separating the NP and co-NP complexity classes [CR79].

This paper investigates the complexity issues for a variant of CNF formulas, defined on an
infinite string of variables . . . x−i . . . x−1x0x1 . . . xi . . ., in which every clause exists in countably
many variants, with variable indices shifted by any constant. For example, if a formula contains
a clause x1 ∨ ¬x4, then it contains all clauses of the form x1+i ∨ ¬x4+i, where i is any integer.
The resulting Shift-CNF depends on countably many variables, and represents uniformly defined
constraints applied to each block of variables. It can be alternatively written as a finite formula,
with each clause using a universal quantifier on position numbers, such as (∀i ∈ Z)(xi+1∨¬xi+4).
These formulas have a compactness property (that is, their satisfiability can be tested on a
sufficiently large finite block of variables), and several proof systems, such as Resolution, can
be applied to clauses of this form. Those systems are a natural subject for proof complexity
studies.

Another motivation to study the satisfiability problem for Shift-CNF is that it is equivalent
to the partial substring avoidability problem, which received some attention in formal language
theory [BJP09, BBGR10]. To see this relationship, first consider the following (fairly obvious)
representation of the satisfiability problem for standard CNF formulas (SAT) in terms of strings.
Let x1, . . . , xn be the set of variables of a CNF formula. Then, each clause in the formula may
be written down as a string of length n over the 3-symbol alphabet Σ = {0, 1,�}, which lists
the values of variables that make this clause false: to be precise, each i-th position in the string
contains 0 if the clause contains a literal xi, or 1 if there is a literal ¬xi, or a “hole” (�) if this
variable does not occur in the clause. Thus, a CNF formula is presented as a set of forbidden
strings, and its satisfying assignments are exactly all binary strings of length n that do not
match the string representation of each clause.

In this setting, all strings are of the same length n, and cannot be moved in relation to
each other, because that would mean shifting variable indices. If this restriction is lifted, then
each forbidden partial string represents a pattern that may not occur in a desired binary string
beginning from any position. This is the partial substring avoidability problem, which precisely
corresponds to the Shift-CNF satisfiability problem (Shift-SAT).
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In the special case when forbidden strings are complete strings (without holes), their avoid-
ability can be decided in linear time using the algorithm by Aho and Corasick [AC75]. Another
solution to this problem, given by Berstel and Perrin [BP02], uses a special case of Resolution
proofs, applied to strings instead of clauses: two strings xy0 and y1 can be resolved to xy.
Berstel and Perrin [BP02] prove that a set of (complete) strings is unavoidable if and only if
the empty string can be derived; furthermore, the length of this derivation is linear.

The computational complexity of the full case of the partial string avoidability problem
was studied by Blanchet-Sadri et al. [BJP09], who proved that it is NP-hard. Soon thereafter,
Blakeley et al. [BBGR10] showed that the problem is in PSPACE. Its exact complexity remained
open. The first result of this paper is that partial string avoidability is actually PSPACE-
complete: this is established in Section 3 by a direct reduction from the polynomial-space
Turing machine membership problem.

This result puts the Shift-SAT problem in the context of proof systems for PSPACE-complete
languages. The proof complexity of such systems is important, in particular, as an approach
to separating NP from PSPACE. A generalized Resolution proof system for the Quantified
Boolean Formula (QBF) problems—the Q-Resolution—was introduced by Kleine Büning et
al. [KKF95], and other proof systems for QBF and their proof complexity have recently been
studied by Beyersdorff et al. [BCJ19, BHP17], by Balabanov et al. [BWJ14] and by Janota and
Marques-Silva [JM15].

The Shift-SAT problem is attractive for being similar to the classical SAT problem, to
the point that all proof systems for UNSAT, such as Resolution, Cutting Plane, Polynomial
Calculus, etc., can be directly applied to Shift-SAT formulas. For every such proof system Π,
there is its shifted version, Shift-Π, with an additional derivation rule for adding an arbitrary
integer to the indices of all variables in a constraint.

Several results on the proof complexity of shifted systems are presented in this paper. Lower
bounds on the size of shifted proofs, given in Section 4.1, are obtained by encoding any of the
known superpolynomial lower bounds on Resolution proofs. Then in Section 5 this result is
extended for an arbitrary refutational proof system with known superpolynomial lower bounds
such as Cutting Plane and Polynomial Calculus. Efficient proofs using shifts are presented in
Section 4.2, as an example of an unsatisfiable shifted CNF formula which has a polynomial-
sized Shift-Resolution proof, whereas its proofs in classical refuational proof systems. Mentioned
results are firstly proved for Resolution in Section 4.1 and then they are generalized to a family
of classical refutational proof systemsin Section 5.

The proof system for complete strings defined by Berstel and Perrin [BP02], is a special case
of Shift-Resolution. Berstel and Perrin’s [BP02] clauses contain contiguous blocks of variables
xi, xi+1, . . . , xj , whereas general CNF and Shift-CNF clauses may have gaps between variable
indices. The results on the proof complexity of Shift-Resolution obtained in this paper, in
particular, imply an unconditional separation between these two problems, in terms of the length
of resolution derivations—as compared to the separation in terms of computational complexity,
which is conditional to P 6= PSPACE.

Cook and Reckhow [CR79] motivated the activity of proving lower bounds on the size of
unsatisfiability proofs for CNF formulas (UNSAT) as a program for proving NP 6= coNP. If
NP 6= coNP, then, for every proof system for UNSAT, there are formulas that have no short
refutations. Cook and Reckhow suggested proving lower bounds for stronger and stronger proof
systems. However, it is not known whether there exists a single proof system, such that a
superpolynomial lower bound for this system alone implies NP 6= coNP.

Since the language of unsatisfiable Shift-CNF formulas (Shift-UNSAT) is PSPACE-complete,
proof systems for this language can be studied in the framework of PSPACE vs. NP problem.
In order to prove that PSPACE 6= NP, it is necessary to show a superpolynomial lower bound
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for every proof system for Shift-UNSAT. It is proved in Section 6.2 that it is sufficient to
consider only propositional proof systems augmented with the Shift rule. Furthermore, the
same argument shows that in order to prove that PSPACE 6= NP it is sufficient to prove
a superpolynomial lower bound for the so-called semantic calculus of existentially quantified
formulas, in which a proof step need not be polynomially verifiable. It is proved in Section 6.3
that even for a weaker semantic calculus of Boolean circuits, a superpolynomial lower bound
for its version augmented with shift rule implies circuit lower bounds PSPACE 6⊆ P/poly. This
suggests that the current method is unlikely to lead to lower bounds for this calculus with the
Shift rule.

Altogether, if a propositional proof system is weak (with known superpolynomial lower
bounds), then there is a lower bound for shift -Π. On the other hand, if Π is a superstrong
semantic circuit calculus, in which one can shortly refute every unsatisfiable CNF formula, then
proving lower bounds for shift−Π is as hard as proving circuit lower bounds. The intermediate
case of a proof system shift -Π, where Π is a propositional proof system with no known lower
bounds, is left for future research.

2 The partial string avoidability problem

Let Σ be a finite set of symbols called an alphabet. A (two-sided) infinite string over Σ is a
mapping α : Z→ Σ. Two infinite strings, α and β, are the same up to a shift, if for some offset
d ∈ Z, α(n) = β(n+ d) for all n ∈ Z; in this case, α and β are said to be equal, and considered
to be the same infinite string.

The set of all infinite strings over an alphabet Σ is denoted by Σ∞, whereas Σ∗ is the set
of all finite strings a1 . . . an, with n > 0 and a1, . . . , an ∈ Σ. Each i-th symbol of a finite string
w = a1 . . . an shall be denoted by w[i] = ai, and a substring ai . . . aj is denoted by w[i..j]. The
same notation is used to extract a finite substring α[i..j] from an infinite string α.

For a set of finite strings L ⊆ Σ∗, the set of infinite strings formed by concatenating any
elements of L is denoted by L∞ = { . . . w−1w0w1w2 . . . | wi ∈ L for all i ∈ Z }. In particular,
the infinite string formed by repeating a finite string w ∈ Σ∗ is w∞ = . . . www . . . Such a string
is called periodic, with a period of length |w|.

A partial string over an alphabet Σ is a finite string over the alphabet Σ ∪ {�}, where a
square (�) denotes an unknown symbol (a hole). For the purposes of string matching, a hole
may stand for any symbol from Σ: to be precise, two partial strings of the same length, u and
v, are said to be compatible, if, whenever they differ in some j-th position (u[j] 6= v[j]), either
u[j] = � or v[j] = �.

An infinite string α over an alphabet Σ is said to avoid a partial string w, if every substring
of α of the same length as w is incompatible with w: that is, α[i + 1..i + |w|] is incompatible
with w for every i ∈ Z. A finite string avoiding w is defined similarly. A finite or infinite string
is said to avoid a set of partial strings L, if it avoids every element of L.

The partial string avoidability problem is then stated as follows: given an alphabet Σ and
a finite set of partial strings S over Σ, determine whether there exists an infinite string that
avoids this set.

The first thing to observe is that if a finite set of partial strings is avoided by a sufficiently
long finite string, then it is avoided by an infinite string. Therefore, the avoidability problem
may be regarded as a problem on finite strings, and is guaranteed to have an effective solution.

Lemma 1. Let Σ be an alphabet, let S ⊂ (Σ ∪ {�})∗ be a finite set of partial strings, and let `
be the length of the longest string in S. Then, the following three conditions are equivalent:

I. S is avoided by a finite string of length |Σ|` + `.
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II. S is avoided by a periodic infinite string with period at most |Σ|`;

III. S is avoided by an infinite string;

Proof. (I ⇒ II) Assume that a finite string x ∈ Σ∗ of length |Σ|` + ` avoids S, and consider all
its substrings of length `. There are |Σ|` + 1 such substrings, denoted by yi = x[i..i+ `− 1], for
all i ∈ {1, . . . , |Σ|` + 1}. Since, overall, there are |Σ|` distinct strings of length ` over Σ, two of
these substrings must coincide. Let yi = yj , with i < j.

The goal is to prove that the infinite periodic string α = (x[i..j − 1])∞ avoids all partial
strings in S. The first claim is that the string x[i..j−1]k, for some k large enough, has the string
x[i..j + ` − 1] as a prefix. Indeed, x[j + t] = x[i + t] for all t ∈ {0, . . . , ` − 1}, because yj = yi;
in other words, each symbol x[j + t] is equal to the symbol x[j + t − (j − i)] that is earlier by
j − i positions. Therefore, x[i+ t] = x[i+ (t mod j − i)], for all t ∈ {`, . . . , `+ (j − i)− 1}.

Now, suppose that some partial string u ∈ S occurs in α. Then it occurs in the string
x[i..j − 1]k beginning at some position p ∈ {1, . . . , j − i}. Since x[i..j + ` − 1] is a prefix of
x[i..j − 1]k, the string u is also compatible with a substring of x[i..j + ` − 1] beginning at the
same position p; and the latter string contains such a substring, because |u| 6 `. This proves
the first implication.

The two remaining implications are trivial.

Lemma 1 suggests an obvious algorithm for testing partial string avoidability, that is, by
trying all finite strings of length |Σ|`+ ` and checking whether any of them avoids S. This takes
double exponential time, and can be improved to nondeterministic single exponential time by
guessing a single finite string. However, the problem is known to be easier.

Lemma 2 (Blakeley et al. [BBGR10, Cor. 2]). The partial string avoidability problem is in
PSPACE.

Sketch of a proof. Let S ⊆ (Σ∪ {�})∗ be a finite set of partial strings, and let k = maxw∈S |w|
be the maximal length of these strings. Consider a directed graph with the set of vertices
{0, 1}k, which has an arc from u ∈ {0, 1}k to v ∈ {0, 1}k, if the string uv contains no forbidden
substrings from S. An infinite string avoiding all substrings from S exists if and only if there is
a cycle in the graph. A polynomial-space nondeterministic Turing machine can guess this cycle
by walking over the graph.

In addition, Blanchet-Sadri et al. [BJP09] proved that the partial string avoidability problem
is NP-hard, but its exact complexity remained open. In this paper, it is established that this
problem is actually PSPACE-complete.

Another interesting question raised by Blanchet-Sadri et al. [BJP09] is whether the length of
the period in Lemma 1(II) could be reduced to polynomial. A negative answer to this question,
presented in Section 3, is a starting point for the subsequent PSPACE-completeness argument.

Yet another property of the partial string avoidability problem that is worth mentioning is
that the partial string avoidability problem is reducible to the partial string avoidability problem
over the alphabet {0, 1}.

Lemma 3 (Blakeley et al. [BBGR10, Thm. 7]). For every set of partial strings S over an
alphabet Σ, there exists a set of partial strings S′ over {0, 1} with the following properties:

1. S′ is avoidable if and only if S is avoidable;

2. there is a bijection between infinite strings avoiding S and infinite strings avoiding S′,
which maps a string with period of p avoiding S to a string with period of p · O(log2 |Σ|)
avoiding S′;
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3. given S, the set S′ can be constructed in time polynomial in the total length of all strings
in S and in the size of Σ.

In particular, this encoding allows an instance of the partial string avoidability problem to
be interpreted as a logical formula, and opens the study of its proof complexity aspects.

3 The PSPACE-hardness proof

In this section, PSPACE-hardness of the partial string avoidability problem is shown by de-
scribing computation histories of a space-bounded Turing machine by a finite set of prohibited
partial strings. The simulation relies on a timer represented as a counter that counts the number
of steps the machine has passed.

The first goal is to describe such a counter. To be precise, the aim is to construct, for any
given k > 1, a set of partial strings that will be avoided by a unique infinite string—a string of
the form (α0 . . . α2k−1)∞, where each substring αi encodes the number i and is of length around
k. The desired set of forbidden partial strings should ensure that there are no deviations from
this order, and the counter is incremented modulo 2k at each step. The total length of partial
strings in this set should be polynomial in k.

Before presenting a complete solution to this problem, it is convenient to begin with a
simplified construction, which does not work as it is, but conveys the overall idea of the method.
Let the alphabet be Σ = {0, 1,#}, and let every counter value be represented by a block of k
digits, followed by a separator (#). Then the desired infinite string shall be of the following
form. (

00 . . . 00︸ ︷︷ ︸
value 0

# 00 . . . 01︸ ︷︷ ︸
value 1

# 00 . . . 10︸ ︷︷ ︸
value 2

# . . .# 11 . . . 11︸ ︷︷ ︸
value 2k − 1

#
)∞

The prohibited partial strings that ensure incrementation of the counter are defined as follows.
First, the values of the least significant digit should alternate at every step. In order to ensure
that, it is sufficient to prohibit their staying constant, which is expressed by two partial strings,
0#�k−10# and 1#�k−11#. Next, the carry should be propagated towards higher digits. This
is governed by half a dozen rules that express all cases of incorrect handling of digits. For
instance, the partial string 01�k−100 is prohibited, because the digit 1 has been changed to 0
at the next step, and therefore the digit in the higher position should be incremented, but it is
not.

Such rules indeed implement counter incrementation. A few more prohibited partial strings,
such as #�k0, request that each instance of the separator (#) must be followed by another
separator after k positions. A family of partial strings #�i#, for all i between 0 and k − 1,
ensures that the separator symbol cannot appear more often than that. However, the problem
is, that the existence of the separator cannot be guaranteed in this way. In particular, the string
0∞ perfectly avoids all these prohibited strings.

This first unsuccessful attempt motivates the following more elaborate construction, where
a larger alphabet is used to ensure that the infinite string is arranged into blocks of k digits
each; the rest follows the above plan.

Example 4. For every k > 1, let the alphabet be Σ = {0,1} × {1, . . . , k}, where a symbol
(d, i) ∈ Σ indicates a digit d stationed at offset i within its block of k digits. Then, there exists a
set of partial strings of total length Θ(k2) that is avoided by the following unique infinite string.(

(0, 1) . . . (0, k − 1)(0, k)︸ ︷︷ ︸
value 0

(0, 1) . . . (0, k − 1)(1, k)︸ ︷︷ ︸
value 1

(0, 1) . . . (1, k − 1)(0, k)︸ ︷︷ ︸
value 2

. . . (1, 1) . . . (1, k − 1)(1, k)︸ ︷︷ ︸
value 2k − 1

)∞
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Proof. The first task is to ensure that all positions in the infinite string are correctly numbered.
This is implemented by the following Θ(k2) prohibited partial strings of length 2 each, which
list all possible mistakes in the numbering.

(d, i)(e, j), where (d, i), (e, j) ∈ Σ, and i+ 1 6= j (mod k)

The correctness of incrementing the counter at each step is ensured by the following forbidden
strings. Each of them refers to the corresponding digits of two subsequent counter values, which
are k + 1 positions apart. First, 0 and 1 alternate in the least significant digit.

(d, k)�k−1(d′, k), where dd′ ∈ {00, 11}

Next, for each subsequent digit, consider the quadruple formed of (a) the two consequent digits
de in the counter to the left, and (b) the two digits d′e′ in the same positions in the counter
to the right. Then, the digit d′ functionally depends on d, e and e′, as follows. If e = 1 and
e′ = 0, then the digits are still being incremented, and there is a carry to the next position,
so that d′ = f(d, e, e′) = ¬d. Otherwise, if e = 0 and e′ = 1, then the incrementation ends at
this point, and if e = e′, then the incrementation has already ended before, and in both cases
d′ = f(d, e, e′) = d. All other cases are ruled out by the following forbidden strings, each of
length k + 3.

(d, i)(e, i+ 1)�k−1(d′, i)(e′, i+ 1), where i ∈ {1, . . . , k − 1} and d′ 6= f(d, e, e′)

The first group of prohibited partial strings ensures that for every infinite string α over Σ
avoiding all these partial strings, the second components of its symbols must form the string
(012 . . . (k−1))∞. Let α = . . . α−1α0α1α2 . . . α` . . . be any such string, where each αi, with i ∈ Z,
is a k-symbol string of the form αi = (di,k−1, 1) . . . (di,1, k − 1)(di,0, k). Then, the remaining
prohibited partial strings specify that if αi encodes the number j, then αi+1 encodes the number
j+1 modulo k, whereas αi−1 encodes the number j−1 modulo k. This leaves the desired infinite
string as the only one avoiding the given partial strings.

Example 4, in particular, constitutes a negative answer to a question by Blanchet-Sadri et
al. [BJP09, Sect. 4], as the set S is not avoided by any periodic infinite string with a period of
subexponential length. Furthermore, applying Lemma 3 to the set in Example 4 yields such a
set over a two-symbol alphabet. More importantly, the construction in Example 4 serves as a
base for the PSPACE-hardness construction given in the rest of this section.

Let L be any language in PSPACE. This means that there exists a one-tape Turing machine
M and a polynomial s(`), such that on any input string of length `, the machine M uses space
s(`) and eventually halts in an accepting state, if the input is in L, or in a rejecting state
otherwise. The proof of the PSPACE-hardness result relies on the following encoding of M
within an instance of the partial string avoidability problem.

Lemma 5. Let M be a Turing machine that uses at most s(`) space on inputs of length `.
Further, assume that M is modified, so that, instead of halting in a rejecting state, it loops
without using any additional space. Let w ∈ Σ` be any input string. Then, there exists an
alphabet Ω and a finite set of partial strings P ⊂ (Ω ∪ {�})∗, such that the Turing machine
loops on w if and only if there exists a two-sided infinite string α ∈ Ω∞ that avoids all partial
strings in P . Given a machine, the set P can be constructed in time polynomial in s(`).

Consider computation histories of a Turing machine, where its configurations are written
one after another. The general plan is to use forbidden strings to ensure that every next listed
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configuration is the successor of the previously listed one. If the Turing machine loops, then
there is an infinite string containing its infinite computation. A final configuration has no
successor, so if it is ever reached, then the list of configurations cannot be continued to an
infinite string.

However, there is a problem with this idea. If a Turing machine loops on the input, this
means that it loops starting from its initial configuration. But there can also exist some loop-
ing computations beginning from unreachable configurations. These computations give rise to
undesired infinite strings that avoid all the constraints.

This problem can be circumvented in the following way. Let the Turing machine be aug-
mented with an alarm clock containing a counter that is incremented at every step. The time
until the alarm is triggered must be long enough for any accepting computation to terminate.
Then, once the counter overflows, this means that the machine has looped, and the alarm
clock resets the machine to its initial configuration. This shall ensure that if the machine does
not loop starting from the initial configuration, then there is no infinite string satisfying these
constraints.

Let the Turing machine be T = (Σ,Γ, Q, q0, δ, qacc), where Σ is an input alphabet; Γ is a tape
alphabet, with Σ ⊆ Γ; Q is a finite set of states, q0 ∈ Q is the initial state, δ : (Γ∪{`,a})×Q→
(Γ ∪ {`,a})×Q× {−1,+1} is the transition function, and qacc ∈ Q is the accepting state.

The machine operates on a tape containing n = s(`) symbols from Γ enclosed between left
and right end-markers (`, a). It has (n+ 2) · |Q| · |Γ|n possible configurations. Attached to the
tape, there is a separate k-bit counter, with k = dlog2(n + 2) + log2 |Q| + n log2 |Γ| + 1e, that
is, with 2k greater than the number of possible configurations. This information is encoded in
a (n+ k+ 2)-symbol block that consists of a Turing machine configuration (n+ 2 symbols) and
of the alarm clock’s counter (k digits).

Each symbol in the block is of the form (X, i), where i ∈ {0, . . . , n+ k + 1} is a number of
the position in the block, and X is a payload, to be defined later. The Turing machine tape is
encoded in positions 0, . . . , n+ 1, and the counter is in positions n+ 2, . . . , n+ k + 1.

For each symbol used for encoding the tape, the payload is a triple (a, q, f), where a ∈ Γ∪{`
,a} is a tape symbol, q ∈ Q∪ {−} is either a state of the Turing machine (if the head is at this
square) or a minus sign (if the head is elsewhere), while the third component f ∈ {n,r} is a
flag used for restarting the machine.

In each position used for the counter, the payload is any of the two digits: zero (0) and one
(1).

Altogether, the following alphabet is used.

Ω =
(
(Γ ∪ {`,a})× (Q ∪ {−})× {n,r} × {0, . . . , n+ 1}

)
∪
(
{0, 1} × {n+ 2, . . . , n+ k + 1}

)
Some of the symbols in Ω are actually unnecessary. These symbols shall be identified in the
proof, and then they can either be removed from the alphabet, or, equivalently, they can be
listed as 1-symbol forbidden strings.

In this proof, the set of forbidden substrings P is constructed gradually, with each instalment
of substrings ensuring further properties of any infinite string avoiding those substrings.

The first step of the construction is to ensure that the infinite string consists of blocks of
length n + k + 2, each correctly split into n + 2 tape symbols and k counter digits, and with
all positions in the block correctly numbered. The correct order of position numbers is ensured
by the following forbidden strings of length 2; they are generally the same as the first group in
Example 4.

(X, i)(Y, j), where (X, i), (Y, j) ∈ Ω, and i+ 1 6= j (mod n+ k + 2)
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For the tape to be well-formed, it remains to check the position of end-markers, namely, that
they occur in the beginning and in the end of the tape, and nowhere else, that is, the tape
contains a string from `Γna. This can be ensured by removing the following invalid symbols
from the alphabet.

(z, q, f, 0), for all z ∈ Γ ∪ {a}, q and f

(z, q, f, i), for all z ∈ {`,a}, i ∈ {1, . . . , n}, q and f

(z, q, f, n+ 1), for all z ∈ Γ ∪ {`}, q and f

Alternatively, they can be listed as one-symbol forbidden strings.
Altogether, the forbidden strings added to P so far ensure the following property.

Claim 6. If a two-sided infinite string contains no forbidden substrings from P , then it is of
the form . . . α−1α0α1α2 . . . α` . . ., where each αi is a string of the following form, for some tape
symbols a1, . . . , an ∈ Γ, states p0, . . . , pn+1 ∈ Q ∪ {−}, flags f0, . . . , fn+1 ∈ {n,r} and counter
digits d0, . . . , dk−1 ∈ {0, 1}.

αi = (`, p0, f0, 0)(a1, p1, f1, 1) . . . (an, pn, fn, n)(a, pn+1, fn+1, n+ 1)(dk−1, n+ 2) . . . (d0, n+ k + 1)

With the enumeration of positions in place, the next step is to implement the alarm clock.
It is based on the same k-bit binary counter as in Example 4, with the least significant digit
in position n + k + 1 and with the most significant digit in position n + 2. The counter is
incremented at every step, and resets to zero upon overflow.

The forbidden partial strings implementing this behaviour are exactly the same as in Ex-
ample 4. First of all, 0 and 1 alternate in the least significant digit.

(d, n+ k + 1)�n+k+1(d′, n+ k + 1), where dd′ ∈ {00, 11}

Every next digit is defined by the same function f(d, e, e′) as in Example 4, and the following
forbidden strings, each of length n+ k + 4, are defined.

(d, i)(e, i+ 1)�n+k(d′, i)(e′, i+ 1), where i ∈ {n+ 2, . . . , n+ k} and d′ 6= f(d, e, e′)

Claim 7. In every block, the payload in the counter digits forms a binary string, dk−1 . . . d1d0.
The number represented by this string is greater by 1 (modulo 2k) than the number represented
in the previous block.

Then, in particular, the enumeration of the blocks assumed in the proof
(. . . , α−1, α0, α1, α2, . . .) can be shifted, so that the value of the counter in each αi is
exactly i modulo 2k.

Every time the counter overflows, the alarm clock sends a restart signal to the left into
the Turing machine tape. The signal is represented by the restart flag (r) raised in the third
components of all symbols.

The first group of forbidden strings ensures that the restart signal is sent whenever the
counter overflow has occurred, that is, whenever the most significant digit of the counter changes
from 1 to 0. The following forbidden partial strings describe the case when there is an overflow,
but the signal does not start.

(1, n+ 2)�n+k(a, q,n, n+ 1)(0, n+ 2), for all a and q

The second situation to forbid is when there is no overflow, but the signal starts, which is
ensured by the following forbidden strings.

(d, n+ 2)�n+k(a, q,r, n+ 1)(d′, n+ 2), where dd′ 6= 10, for all a and q
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The propagation of the signal over the tape is defined by the following rules ensuring that it
never disappears and never appears from nowhere.

(a′, q, f ′, i)(a, q, f, i+ 1), where i ∈ {0, . . . , n}, f ′ 6= f, for all a′, a and q

The above forbidden strings ensure the following property of the restart signal propagation.

Claim 8. In every block αi, if i 6= 0 (mod 2k), then each tape square is marked as normal (n).
If i = 0 (mod 2k), then each tape square has a restart flag (r).

The next group of restrictions specifies that if the restart signal sweeps over the tape in some
block, then at the same time the Turing machine configuration to overwritten with its initial
configuration. This is implemented by the following one-symbol forbidden strings (alternatively,
these symbols may be excluded from the alphabet).

(`, q,r, 0), where q 6= q0

(a, q,r, i), where i ∈ {1, . . . , `}, (a, q) 6= (w[i],−)

(a, q,r, i), where i ∈ {`+ 1, . . . , n}, (a, q) 6= ( ,−)

(a, q,r, n+ 1), where q 6= −

Here the space (“ ”) is a special tape symbol used to pad the input string of length ` to n = s(`)
tape squares.

Claim 9. If a restart occurs in a block, then this block contains the initial configuration of the
Turing machine on the input string w.

The last group of forbidden strings ensures the simulation of the Turing machine’s transitions
in normal situations, when no reset takes place. Every tape square in a configuration depends
on three squares in the previous configuration: namely, on the same square, its left neighbour
and its right neighbour. This dependence is ensured by prohibiting all mismatches.

First, if the head is not at a square and in its neighbourhood, then the tape symbol at
this square must be copied to the next configuration: strings with mismatched symbols are
prohibited,

(a,−, f, i− 1)(b,−, f, i)(c,−, f, i+ 1)�n+k(b′, q,n, i), where a ∈ Γ ∪ {`,a}, (b, q) 6= (b′,−)

This rule has special cases for the first and for the last tape squares: here the end-marker in the
square cannot be rewritten, but one should still make sure that another head can never appear
out of nowhere.

(`,−, f, 0)(c,−, f, 1)�n+k(`, q,n, 0), where c ∈ Γ ∪ {`,a}, q 6= −
(a,−, f, n)(a,−, f, n+ 1)�n+k+1(a, q,n, n+ 1), where a, c ∈ Γ ∪ {`,a}, q 6= −

If the head is nearby, the following restrictions ensure that nothing can happen contrary
to the Turing machine transitions. Consider a state q ∈ Q and a symbol b ∈ Γ with δ(q, b) =
(s, σ,−1). The next forbidden string ensures that the machine correctly overwrites the symbol
and moves to the left in the new state.

(a,−, f, i− 1)(b, q, f, i)�n+k(a′, r,n, i− 1)(b′, q′,n, i), where (a′, r, b′, q′) 6= (a, s, σ,−)

Another rule requires that the square to the right of this b remains unaffected.

(b, q, f, i)(c,−, f, i+ 1)�n+k(b′, q′,n, i)(c′, r,n, i+ 1), where (b′, q′, c′, r) 6= (σ,−, c,−)
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The rules for a state q ∈ Q and a symbol b ∈ Γ, with δ(q, b) = (s, σ,+1), are defined symmetri-
cally.

(b, q, f, i)(c,−, f, i+ 1)�n+k(b′, q′,n, i)(c′, r,n, i+ 1), where (b′, q′, c′, r) 6= (σ,−, c, s)
(a,−, f, i− 1)(b, q, f, i)�n+k(a′, r,n, i− 1)(b′, q′,n, i), where (a′, r, b′, q′) 6= (a,−, σ,−)

Claim 10. If a block contains a syntactically correct Turing machine configuration, and no
reset occurs at the subsequent block, then the subsequent block contains a syntactically correct
configuration at the next step.

It remains to prohibit all one-symbol strings involving the accepting state, so that only
strings not containing an accepting configuration would avoid P .

(a, qacc,n, i), for all a and i

This completes the construction of the set of forbidden strings P that satisfies the lemma.

Proof of Lemma 5. Assume that T loops on w. It is claimed that there exists a two-sided infinite
string that avoids all partial strings from P . This is the string (α0α1 . . . α2k−1)∞, defined as
follows. The string α0 corresponds to the Turing machine’s initial configuration containing the
input string w, with a restart flag (r) in all squares, and with the counter set to zero. Each
string αi, with 1 6 i 6 2k − 1, represents the Turing machine configuration at the i-th step,
with no restart (n) in any square, and with an attached counter with value i. Since the machine
loops, it is possible to make as many such steps as needed. At the boundary between the strings
α2k−1 and α0, the counter overflows and all the squares are marked with a restart flag (r).

Suppose that T does not loop on w, but there exists an infinite string s that avoids all
partial substrings from P . By Claim 6, the string s must be of the form . . . α−1α0α1 . . . , where
every block αi contains a Turing machine configuration and a counter value. Then, according
to Claim 6, in each pair of neighbouring blocks, αi and αi+1, the value of the counter is different
by 1 modulo 2k. Eventually, some block will have value 0 in the counter, and then, by Claim 8,
all tape squares in this block are labelled with the restart flag (r). Furthermore, Claim 9 asserts
that the machine is in the initial configuration in this block, with the string w written on the
tape. According to Claim 10, the next 2k − 1 blocks simply simulate 2k − 1 steps of the Turing
machine. However, since T halts on w, by the choice of k, it does so in fewer than 2k steps, and
at some point the supposed infinite string cannot be continued. Therefore, such a string does
not exist.

The set P contains O(n2) partial strings, each of length O(n). Therefore, their total length
is polynomial in `, and, following the above description, they can be effectively written down
in polynomial time.

Now the main result of this paper follows from Lemma 5 applied to a Turing machine
recognizing any PSPACE-complete set.

Theorem 11. The partial string avoidability problem is PSPACE-complete. It remains
PSPACE-complete if the alphabet is fixed to be binary.

Proof. The problem is in PSPACE by Lemma 2, and it remains to prove that it is PSPACE-hard.
Let L be any set in PSPACE, and let M be a polynomial-space Turing machine that rec-

ognizes L. Then, by Lemma 5, the membership problem in L can be reduced in polynomial
time to the partial string avoidability problem. Therefore, the latter is PSPACE-complete by
definition.

By Lemma 3, the partial string avoidability problem over an arbitrary alphabet is reduced
to the same problem over the binary alphabet, which makes the latter PSPACE-complete as
well.
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4 Resolution proofs with shift

As outlined in the introduction, the avoidability problem over a binary alphabet Σ = {0, 1} can
be treated as a logical question. Let Γ = {xi}i∈Z be the set of numbered Boolean variables. Any
variable xi or its negation ¬xi is called a literal ; a literal of an unknown sign can be denoted
by xσi , with σ ∈ {0, 1}, so that x0

i = xi and x1
i = ¬xi. A clause is a disjunction of finitely many

literals, such as x1 ∨¬x4. A clause is shifted by adding the same integer to all variable indices.
The conjunction of all shifts of a clause C is denoted by Shifts(C) and called a moveable clause.
For instance, in the above example, Shifts(x1 ∨ ¬x4) =

∧
i∈Z(xi+1 ∨ ¬xi+4).

A conjunctive normal form (CNF) formula ϕ is a conjunction of finitely many clauses, and
it accordingly depends on finitely many variables. From the perspective of proof systems, it
may be regarded as a finite set of clauses. If these clauses are replaced with the corresponding
moveable clauses, the resulting formula, denoted by Shifts(ϕ), is called a Shift-CNF. A CNF, or
a Shift-CNF, is said to be satisfiable, if, for some assignment of Boolean values to the variables,
all its clauses hold true.

In terms of strings, a clause is a partial string that lists all values that make its literals false,
with holes instead of the unused variables. A clause is matched at a specific position in the
string, whereas a moveable clause means that a string is matched at all positions. For example,
the above moveable clause Shifts(x1∨¬x4) may be regarded as a forbidden partial string 0��1.
If all the listed values hold at once, then the clause is false. Accordingly, avoidance of all partial
strings representing the moveable clauses in a Shift-CNF is equivalent to its satisfiability.

Remark 12. In view of this equivalence, Lemma 1 states that satisfiability of a Shift-CNF can
be tested by considering finitely many shifts of each moveable clause—namely, those involving
the variables x1, x2, . . . , x2`+`.

Unsatisfiability of sets of clauses can be proved using proof systems. A refutation of a set
of clauses in the Resolution proof system is a sequence of clauses C1, C2, . . . , Cs, where Cs is
the empty clause (false), and each clause Ci, with i ∈ {0, . . . , s− 1}, is either a clause from the
given set, or is derived from some earlier clauses using the weakening rule or the resolution rule.
By the weakening rule, a clause C ∨D is derived from a clause C by adding any extra literals
D. The resolution rule is applied to a pair of clauses x ∨ C and ¬x ∨D, where x is a variable,
deriving the clause C ∨D. The length of a Resolution proof is the number of clauses therein.
For an unsatisfiable formula ϕ, the length of its shortest Resolution refutation is denoted by
SRes(ϕ).

The following estimation of the length of Resolution proofs is well-known.

Lemma 13. Let F be an unsatisfiable CNF formula, and let x be its variable. Then, SRes(F ) 6
SRes(F [x := 0]) + SRes(F [x := 1]) + 1.

A read-once branching program (1-BP) for an unsatisfiable CNF formula F with variables
x1, x2, . . . , xn is a directed acyclic graph with one source and several sinks such that

1. all sinks are labelled with clauses of F ;

2. all other nodes are labelled with variables of F , and each of them has two outgoing edges,
one labelled with 0 and the other labelled with 1;

3. for every path from the source to a sink, every variable appears as a label of non-sink
node at most once;

4. for every path p from the source to a sink, if nodes of p are labelled with variables
xi1 , . . . , xis , edges are labelled with values α1, α2, . . . , αs and the sink at the end of p is
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labelled with a clause C, then the restriction xi1 := α1, xi2 := α2, . . . , xis := αs, falsifies
C.

There is a known connection between resolution proofs and read-once branching programs.

Theorem 14. [[LNNW95]] If an unsatisfiable CNF formula F has 1-BP with S nodes, then
F has a resolution refutation consisting of at most S clauses. Moreover, in every path of the
directed graph of the refutation, the resolution rules are applied for different variables (such
refutations are called regular).

The definition of Resolution proofs equally applies to infinite sets of clauses. It is known that
a set of clauses, finite or infinite, has a Resolution refutation if and only if that set is unsatisfiable.
For infinite sets of clauses, this result generally holds by the compactness theorem, although
it gives no estimations of the size of a refutation. For infinite formulas of the form Shifts(ϕ)
studied in this paper, there is the following upper bound on the length of their Resolution
refutations.

Lemma 15. Let an unsatisfiable CNF formula F depend on variables x1, x2, . . . , xT , and assume
that every clause of F depends on variables whose indices differ by at most k − 1. Then F has
a regular resolution refutation consisting of at most 2kT + 1 clauses.

Proof. By Theorem 14, it is sufficient to create an 1-BP for F of size 2kT + 1. We describe
this 1-BP. Informally, the 1-BP scans all variables from left to right, keeping a buffer of the last
k variables. It checks the buffer against the clauses that fully depend on the variables in the
buffer, and terminates if any of them has been violated. As long as all clauses are of size less
than k, the 1-BP shall check all of them and eventually find a falsified one.

This 1-BP has T + 1 levels and at most 2k nodes at every level. All nodes at level i, with
i ∈ {1, . . . , T}, are either sinks or labelled with xi. Different nodes at the i-th level correspond to
different values of variables xi−k, xi−k+1, . . . , xi−1; if the variable with the corresponding index
does not exist, then we assume that it has value “undefined”. One can say that the branching
program has a buffer for the values of the last k variables. If the values of variables in the buffer
falsify a clause of F , then this node becomes a sink labelled with that clause.

The first level contains exactly one source node labelled with x1: there is nothing in the buffer
yet. If a node labelled with xi stores values xi−k = αi−k, xi−k+1 = αi−k+1, . . . , xi−1 = αi−1,
then the outgoing edge labelled with a ∈ {0, 1} goes to a node that stores values xi−k+1 =
αi−k+1, . . . , xi−1 = αi−1, xi = a: the oldest variable xi−k is thus discarded from the buffer, at
the new variable xi is added. By the construction, we get a correct 1-BP for F of size at most
1 + 2kT . A buffer of size k is sufficient to falsify each clause, because the indices of variables
differ by at most k − 1.

Returning to the avoidability problem for partial strings w1, w2, . . . , wm, Lemma 1 implies
that the avoidability test is given by a CNF with 2k + k consecutive variables, where k =
maxi |wi|. Then, by Lemma 15, this formula has a Resolution refutation of size O(22k).

For the Resolution method for Shift-CNF formulas, there is a natural derivation rule to be
added: the shifting rule, by which, from any clause xσ1

i1
∨xσ2

i2
∨· · ·∨xσkik , one can derive any clause

xσ1
i1+n ∨ x

σ2
i2+n ∨ · · · ∨ x

σk
ik+n, for any n ∈ Z. In the resulting system, called Shift-Resolution, one

can prove only the statements provable in the classical Resolution. Indeed, every application of
the shifting rule can be eliminated by deriving each shifted clause from scratch: this is possible,
because the formula contains all shifts of the original clauses. However, as will be shown in
Section 4.2, there is a formula, for which a Shift-Resolution proof is exponentially shorter than
any classical proofs.
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4.1 Translation of lower bounds

Lower bounds on the size of proofs with shifting can be inferred from the known lower bounds on
classical proofs, as follows. Let ϕn be an unsatisfiable CNF formula in variables x1, . . . , xn. This
formula shall be encoded in a Shift-CNF formula Φn, in a way that from any Shift-Resolution
proof of Φn, one could extract a classical Resolution proof of ϕn, which might be a little larger,
but not much. Then, every known lower bound on the size a Resolution proof of ϕn translates
to a lower bound on the size of Shift-Resolution proof of Φn.

The general idea of encoding a CNF formula ϕ in a Shift-CNF Φ is that every satisfy-
ing assignment x1, . . . , xn to ϕ should be repeated as something like an infinite binary string
(x1 . . . xn)∞ representing a satisfying assignment to Φ. The main challenge is that ϕ is not
designed to be shifted, and therefore Φ should somehow apply ϕ only to every n-th substring
of length n, that is, x1 . . . xn, and not to any improperly shifted substrings xi . . . xnx1 . . . xi−1,
with i ∈ {2, . . . , n}. Since, by definition, shifted formulas apply to all shifts, this selective eval-
uation is not possible, and it is necessary to use some kind of encoding that would disable all
unintended shifts.

The proposed encoding of ϕ represents each of its variables xi as four consecutive Boolean
variables: y4i+1, y4i+2, y4i+3 and y4i+4. The first three of them shall always have values 011,
whereas the last variable, y4i+4, holds the actual value of xi. In order to distinguish the encoded
variable x1, a special separator code 0100 is inserted between every two complete blocks of n
encoded variables.

The formula Φn is a conjunction of two parts: the first part Wn ensures that the infinite
string representing the variable values is a valid encoding of the form described above, while
Hn simulates ϕ over that encoding.

The formula Wn has to verify that an infinite string is of the form (${0̃, 1̃}n)∞, where
$ = 0100, 0̃ = 0110 and 1̃ = 0111. The first task towards this goal is to define all sequences of
the form {$, 0̃, 1̃}∞. This is done by nine constraints (Shift-CNF clauses). First, all substrings
of length 5 that do not contain the control pair 01 are forbidden: namely, 11111, 11110, 11100,
11000, 10000 and 00000. Two more forbidden partial substrings 01��1 and 01��00 ensure
that for each control pair 01, after two symbols, there cannot be anything except another control
pair 01. The last forbidden substring 0101 makes sure that the data digits between two control
pairs cannot be 01.

It remains to ensure that separators ($) never occur close to each other, and that there is a
separator after every n encoded digits. The former is done by adding n forbidden partial strings
0100�4k0100, for all k ∈ {0, ..., n−1}, and the existence of separators is asserted by prohibiting
n + 1 subsequent encoded digits using a partial string (011�)n+1. This completes the formula
Wn.

The second part of the formula, denoted by Hn, contains as many clauses as ϕn. Whenever
ϕn contains a clause xσ1

i1
∨ . . . ∨ xσkik , it is represented in Hn by the following corresponding

clause.
y1 ∨ ¬y2 ∨ y3 ∨ y4︸ ︷︷ ︸

D$: false only on 0100 ($)

∨ yσ1
4i1+4 ∨ . . . ∨ y

σk
4ik+4︸ ︷︷ ︸

p(x
σ1
i1
∨...∨xσkik )

The disjunction of the first four literals is true, unless there is a substring 0100 there, that
is, the separator ($). For that reason, any unintended shifts of this clause hold true, and are
therefore irrelevant. On a correct shift, the first four literals are false, and the rest, denoted by
p(C), correctly apply the original clause C to the encoded variables of ϕn.

Each satisfying assignment to the Shift-CNF formula Shifts(Wn ∧Hn) encodes at least one
satisfying assignment to the original CNF formula ϕ, and since the latter is unsatisfiable by
assumption, so is Shifts(Wn ∧Hn).
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Theorem 16. The length of any Shift-Resolution refutation of Shifts(Wn ∧ Hn) is at least

Ω
(
SRes(ϕn)

n

)
, where SRes(ϕn) is the length of the shortest Resolution refutation of ϕn.

The proof consists of two parts. First, a Shift-Resolution refutation of Shifts(Wn ∧ Hn)
is transformed to a Resolution refutation of the same formula, by mapping each variable yi,
with i ∈ Z, to y(i mod 4n+4) and then eliminating the shift rules. Then the latter Resolution
refutation of Shifts(Wn ∧ Hn) is transformed by substituting the sequence $(011�)n into all
auxiliary variables, resulting in a Resolution refutation of ϕn of the stated size.

These transformations of Resolution refutations are based on the following lemma.

Lemma 17. 1. Let τ be a substitution of a variable with another variable (x := y) or with a
constant (x := 0 or x := 1). If a clause C∨D is derived from a clause C by the weakening
rule, then (C ∨D)[τ ] is derived from C[τ ] by the weakening rule. If a clause C is derived
by resolution from some D1, D2, then C[τ ] can be derived from D1[τ ] and D2[τ ] by an
application of the weakening rule or the resolution rule.

2. Let C1, C2, . . . , Cs be a Resolution refutation of a set of clauses F . Then there exists a
Resolution refutation of F of length at most s that does not use any constant true clauses
from F .

Proof. The case of the weakening rule is straightforward. Consider the resolution rule, with a
clause C ∨D derived from x∨C and ¬x∨D. If the variable the substitution is made into is not
x, then this resolution remains correct after the substitution. If the substitution is made into
x, and it replaces it with another variable y, then the resolution also remains correct. If x is
substituted with 0, then the clause x∨C becomes C, and the clause C ∨D can now be derived
from C using the weakening rule. The case of substituting x with 1 is handled analogously,
with the clause ¬x ∨D becoming D.

To prove the second part, it is sufficient to show that if all constant true clauses are removed
from the refutation, then it remains a refutation. The empty clause is not satisfiable, and
therefore remains in the proof. Weakening of a constant true clause is constant true. If both
premises of a resolution rule are constant true, then the resolvent is constant true as well. If
one of the premises is constant true (that is, contains x ∨ ¬x or contains xa and τ is xa := 1)
and the resolution is made by a variable other than x, then the resolvent is constant true (still
contains x ∨ ¬x or contains xa and τ is xa := 1). If the resolution is made by x, the resolvent
is obtained by applying weaking to the second premise.

Proof of Theorem 16. Consider any refutation π of Shifts(Wn ∧ Hn) in the Shift-Resolution
proof system, and let λn be its length. Let σ be a substitution that maps each variable yi,
with i ∈ Z, to the variable y(i mod m), where m = 4(n+ 1). Then, π[σ] denotes the sequence of
clauses in π under the substitution σ. By Lemma 17 (part 1), every time the resolution rule
or the weakening rules are used in π, this use remains valid in π[σ]. In order to complete the
transformation of the proof π[σ] into a Resolution refutation of the formula Shifts(Wn∧Hn)[σ],
one should eliminate the shift rules.

In fact, under the substitution σ, every application of the shifting rule turns into a cyclic
shift. There are at most m distinct cyclic shifts of every clause C with variables from
{y0, y1, . . . , ym−1}. Hence, instead of using the shifting rule, one can derive each cyclic shift
of every clause along with deriving that clause. The number of clauses thus increases at most
m-fold.

Let π′ be the refutation of the formula Shifts(Wn ∧Hn)[σ], obtained from π[σ] by replacing
every shifting rule with derivations of cyclic shifts of all clauses. Then, as noted above, π′ is of
size at most mλn. Consider a substitution τ into π′, defined by y0 . . . ym−1 := $(011�)n, where
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each square (�) indicates a variable unaffected by the substitution. By Lemma 17 (part 1), π′[τ ]
is a refutation of Shifts(Wn∧Hn)[σ][τ ]. Under the substitution τ , all clauses of Shifts(Wn)[σ] are
satisfied. The clauses of Shifts(Hn)[σ] are either satisfied or are reduced to clauses of the form
p(C), where C is a clause from ϕn. In the end, all such clauses are obtained. Let p(ϕn) denote
their conjunction. By Lemma 17 (part 2), there is a refutation of the formula Shifts(Hn)[σ]
that uses no tautological clauses of this formula. Also, the lemma asserts that the length of the
proof is not increased.

Thus, a Resolution refutation of ϕn of size at most mλn has been obtained. Therefore,

λn > Ω
(
SΠ(ϕn)

n

)
.

Corollary 18. For each number n > 1, there exists a 3-CNF formula ϕn of n variables and
with O(n) clauses, such that every Shift-Resolution proof of the corresponding Shift-CNF Φn is
of size at least 2Ω(n).

Proof. It is sufficient to take any family of formulas with Resolution proof complexity 2Ω(n).
Such a family is constructed, for instance, by Urquhart [Urq87].

4.2 Shifts make proof systems stronger

In this section, it is shown that, in some cases, Shift-Resolution can be exponentially more
succinct than classical proof systems without shifts. This is proved by presenting a certain false
formula, which has a small refutation in Shift-Resolution, whereas in classical proof systems, it
requires exponential-size refutations.

For a constant n > 1, the formula Ψn asserts the existence of an infinite string of the form
. . . $w−1$w0$w1 . . ., where each wi is an n-digit binary notation of a certain natural number, and
every subsequent number in the list is greater by 1 than the previous number. For every number
i ∈ {0, . . . , 2n − 1}, let bin(i) ∈ {0, 1}n be its n-bit binary representation. The longest finite
string, on which this formula is true, is $bin(0)$bin(1)$ . . . $bin(2n − 1)$, but for any longer
string, in particular for any infinite string, the counter eventually overflows and the formula
becomes false. In view of Lemma 1, this formula contains a finite set of contradictory clauses,
and hence is subject to classical proof methods.

The construction of the formula is based on the encoding of digits and separators given in
Section 4.1. In particular, the formula Shifts(Wn) ensuring that the infinite string is of the
form (${0̃, 1̃}n)∞, where $ = 0100, 0̃ = 0110 and 1̃ = 0111, is used again, and so is the clause
D$ = y1 ∨ ¬y2 ∨ y3 ∨ y4 that identifies a separator ($) beginning at y1.

With the syntactic structure defined by the formula Wn, the desired counter is implemented
by a CNF formula Stepnk(x1, x2, . . . , xn; y1, y2, . . . , yn), with n > 1 and k ∈ {0, 1, 2, . . . , n − 1},
which is true if and only if the binary number (x1x2 . . . xn)2 is greater than (y1y2 . . . yn)2 exactly
by 2k. There is a formula with this property that contains Θ(n) clauses of constant size.

The CNF formula Stepnk(x1, x2, . . . , xn; y1, y2, . . . , yn) is defined by listing the conditions
implemented in this formula. Each condition depends on a constant number of variables, and
therefore can be transcribed as a CNF formula of constant size. There are O(n) conditions in
total, so that the whole formula is of the claimed size.

1. xn−` = yn−` for all 0 6 ` < k, that is, the addition of 2k does not affect any digits in
positions from 0 to k − 1.

2. xn−k 6= yn−k, that is, the addition of 2k always changes the k-th digit.

3. (xi = yi)→ (xi−1 = yi−1), for all i with n− k − 1 > i > 2: this means that if there is no
carry in position (n− i+ 1)-th, then there is no carry in the next position either.
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4. (xi < yi)→ (xi−1 = yi−1), for all i with n− k − 1 > i > 2: this shows the case when the
last incremented digit is in position n+ 1− i, and in the next position, there is no carry
anymore.

5. (xi > yi)→ (xi−1 6= yi−1), for all i with n− k − 1 > i > 2: that is, if the incrementation
has not yet finished in position n+ 1− i, then there is a carry to the next position.

Given two propositions Stepnk about adding 2k, one asserting that x+ 2k = y and the other
that y + 2k = z, one can infer from them that x + 2k+1 = z, that is, a proposition using the
formula Stepnk+1. The next lemma formalizes this intuition, and shows that this inference can
be carried out using resolutions.

Lemma 19. For any n > 1 and k ∈ {0, 1, 2, . . . , n − 2}, given all clauses of the CNF
formula Stepnk(x1, x2, . . . , xn; y1, y2, . . . , yn) ∧ Stepnk(y1, y2, . . . , yn; z1, z2, . . . , zn), all clauses of
Stepnk+1(x1, x2, . . . , xn; z1, z2, . . . , zn) can be derived using O(n) resolutions.

Proof. The proof relies on the implicational completeness of resolutions, which means that if
a clause semantically follows from a set of clauses, then this clause can be derived from them
using the weakening and the resolution rules. This property shall be invoked only for constant
number of clauses depending on a constant number of variables, and hence, the size of this
derivation shall always be bounded by a constant.

All conditions from the definition of the formula Stepnk+1(x1, x2, . . . , xn; z1, z2, . . . , zn) are
derived one by one, as follows.

1. For each ` with 0 6 ` < k, the equality xn−` = zn−` is implied by the equalities xn−` =
yn−` and yn−` = zn−` (condition 1). For ` = k, it follows from xn−k 6= yn−k and yn−k 6=
zn−k (condition 2).

2. For xn−k−1 6= zn−k−1, since xn−k 6= yn−k and yn−k 6= zn−k, there are two cases: xn−k =
zn−k < yn−k and xn−k = zn−k > yn−k. In the former case, condition 4 implies xn−k−1 =
yn−k−1, and condition 5 implies zn−k−1 6= yn−k−1. In the latter case, condition 4 implies
zn−k−1 = yn−k−1, and condition 5 implies xn−k−1 6= yn−k−1.

3. (xi = zi)→ (xi−1 = zi−1) for n− k − 2 > i > 2. Consider two cases:

• xi = zi = yi: in this case, condition 3 guarantees that xi−1 = yi−1 and yi−1 = zi−1;

• xi = zi 6= yi: here, conditions 3–5 (for n− k− 1 > i+ 1) imply both yi−1 < xi−1 and
yi−1 > zi−1, which cannot be the case, because xi−1, yi−1, zi−1 ∈ {0, 1}, and therefore
this case is impossible.

4. (xi < zi)→ (xi−1 = zi−1) for n− k − 2 > i > 2. There are two cases:

• if xi = yi < zi, then xi−1 = yi−1 by condition 3 and zi−1 = yi−1 by condition 4;

• if xi < yi = zi, then xi−1 = yi−1 by condition 4 and zi−1 = yi−1 by condition 3.

5. (xi > zi)→ (xi−1 6= zi−1) for n− k − 1 > i > 2. Consider the two cases:

• if xi = yi > zi, then xi−1 = yi−1 by condition 3 and yi−1 6= zi−1 by condition 5;

• if xi > yi = zi, then xi−1 6= yi−1 by condition 5 and yi−1 = zi−1 by condition 4.

For every formula ϕ and for every number i, let shifti(ϕ) be the formula obtained by adding
i to all variable indices in ϕ.
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Lemma 20. The infinite formula Shifts(Wn ∧D$) has a Resolution refutation of length O(n).

Proof. The formula is false, because Shifts(Wn) requires the existence of a separator ($), while
D$ states that the separator may not occur anywhere.

The resolution refutation of this formula consists of 32 pieces corresponding to different val-
ues of the variables x1, . . . , x5. The pieces are constructed by a case analysis, and once a con-
tradiction is established in each case, the full resolution derivation is obtained using Lemma 13.

In each case where x1x2x3x4x5 does not contain a substring 01, the formula Shifts(Wn)
contains clauses that forbid such substrings, and therefore, once these values are substituted into
the formula, those clauses turn into contradictions. If the substring 01 exists, let a ∈ {1, 2, 3, 4}
be the position where it occurs, with xa = 0 and xa+1 = 1. The clause shifta−1(D$) forbids
the substring 0100, Shifts(Wn) contains a clause that forbids 0101, hence one may derive the
clause xa+2. Using the clauses that forbid 01��1 and 01��00, one may derive ¬xa+4 and xa+5.
Similarly, one may derive xa+6 and so on. Thus, all clauses ¬xa+4k, xa+4k+1 and xa+4k+2 are
derived for all k with 0 6 k 6 n. Then, by the clause that forbids the partial string (011�)n+1,
a contradiction is obtained.

For every CNF formula ϕ = C1∧ . . .∧Ck and for every clause D, the CNF formula obtained
from ϕ by adding all literals from D into every clause is denoted by D ∨ ϕ = (D ∨ C1) ∧ . . . ∧
(D ∨ Ck).

Furthermore, denote by Vn a CNF formula containing the following clauses which assert that
after the current separator ($), there is another one 4n symbols later: D$∨¬x4n+5, D$∨x4n+6,
D$ ∨ ¬x4n+7 and D$ ∨ ¬x4n+8. These conditions actually follow from Wn, but it is more
convenient to add them than to derive them using Resolution.

In this notation, the formula separating classical proof systems from Shift-Resolution is
constructed as follows.

Ψn = Shifts
(
Wn∧

(
D$∨Stepn0 (x8, x12, . . . , x4n+4;x4n+12, x4n+16, . . . , x8n+8)

)
∧Vn∧ (D$∨¬x8)

)
The first part of Ψn is Wn, which enforces the syntactic structure of the string. The second part
(D$∨Stepn0 (x8, x12, . . . , x4n+4;x4n+12, x4n+16, . . . , x8n+8) states that any two subsequent values
of the counter differ by 1. The last part (D$ ∨ ¬x8), requires the highest digit of the counter
to be 0. The formula Ψn is unsatisfiable, because, after a series of incrementations, the highest
digit shall eventually become 1.

Theorem 21. Every Resolution refutation of Ψn is of size Ω(2n). At the same time, there
exists a Shift-Resolution refutation of Ψn of size poly(n).

The lower bound on the size of any refutations of Ψn is based on the fact that every such
refutation must use more than 1

32n−2 clauses of this formula.

Lemma 22. The conjunction of any 1
32n−2 clauses of Ψn is a satisfiable formula.

Proof. Denote m = 4n+ 4.
Let C1, C2, . . . , Ck be all clauses of Ψn, where k 6 1

32n−2, and assume that their conjunction
is unsatisfiable. It can be additionally assumed that, upon removal of any of these clauses, the
formula becomes satisfiable.

Let j be the minimal index of a variable occurring in the clauses C1, C2, . . . , Ck. Beginning
with this variable, let the set of variables be split into blocks of m variables each, so that each
`-th block consists of the variables xj+`m−m, . . . , xj+`m−1. A clause C is said to touch a block,
if the block contains at least one of the variables {xt, xt+1, . . . , xT }, where t is the least index of
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a variable in C, while T is the greatest index. For every clause from Ψn, the difference between
T and t does not exceed 2m, and therefore every clause touches at most three blocks.

Note that there cannot exist an untouched block, with touched blocks both to the left and
to the right of it. Indeed, if this were the case, then the conjunction of the selected clauses
could be split into a conjunction of two formulas in disjoint sets of variables. Therefore, the
selected unsatisfiable set of clauses would not be minimal.

Overall, the clauses C1, . . . , Ck touch at most 2n−2 blocks, and those blocks are adjacent.
Then all these clauses can be satisfied by the following assignment: xj . . . xj+2n−2m−1 :=

$0̃ . . . 0̃0̃$0̃ . . . 0̃1̃$ . . . $0̃1̃0̃ . . . 0̃. This string encodes a correct counter that counts from 0 to
2n−2, and therefore all clauses Ci are satisfied.

Proof of Theorem 21. The lower bound on the size of Resolution proofs follows from Lemma 22.
The key element of a small Shift-Resolution refutation of Ψn is the use of Lemma 19. The

formula contains a clause about incrementing the counter by 1; by Lemma 19, it can be shifted,
and two such clauses resolved, to obtain a clause about incrementing by 2. The latter clause can
be again shifted and resolved, resulting in a clause about adding 4, and so on. This gives a proof
of an appropriate Stepnn−1 formula, in Θ(n) steps. A contradiction is obtained by resolving that
formula with other clauses of Ψn.

Claim 23. There exists a Shift-Resolution derivation from Shifts(Vn) of all clauses D$ ∨
¬x2`m+1, D$ ∨ x2`m+2, D$ ∨ ¬x2`m+3 and D$ ∨ ¬x2`m+4, for all ` ∈ {0, . . . , n}. The length
of the derivation is O(n).

Proof. The formula Shifts(Vn) contains the clause shiftm(D$)∨¬x2m+1. Applying the Resolution
rule to the latter clause and to the clauses D$∨¬xm+1, D$∨xm+2, D$∨¬xm+3 and D$∨¬xm+4,
in this order, yields the resolvent D$ ∨ ¬x2m+1. The clauses D$ ∨ x2m+2, D$ ∨ ¬x2m+3 and
D$ ∨ ¬x2m+4 are derived in a similar way.

By the same reasoning, using shifts, one can construct a resolution derivation of length O(`)
for each clause D$ ∨ ¬x2`m+1, D$ ∨ x2`m+2, D$ ∨ ¬x2`m+3 and D$ ∨ ¬x2`m+4.

By Lemma 19, there is a resolution derivation of length O(n) of all clauses
of the formula Stepn1 (x8, x12, . . . , x4n+4;x2m+8, x2m+12, . . . , x2m+4n+4) from the
clauses of the formulas Stepn0 (x8, x12, . . . , x4n+4;xm+8, xm+12, . . . , xm+4n+4) and
Stepn0 (xm+8, xm+12, . . . , xm+4n+4;x2m+8, x2m+12, . . . , x2m+2n+4). Using this derivation as a
model, one can construct the following derivation involving larger clauses. Consider the formula
D$ ∨ Stepn0 (x8, x12, . . . , x4n+4;xm+8, xm+12, . . . , xm+4n+4), which is a part of Ψn. Another for-
mula shiftm(D$) ∨ Stepn0 (xm+8, xm+12, . . . , xm+4n+4;x2m+8, x2m+12, . . . , x2m+2n+4) is obtained
from it by shifting all clauses by m. From these, using the above derivation as a model, one can
derive the clauses in D$∨ shiftm(D$)∨Stepn1 (x8, x12, . . . , x4n+4;x2m+8, x2m+12, . . . , x2m+4n+4)).
Applying resolution to these clauses and the clauses from Vn, one can derive all clauses
D$ ∨ Stepn1 (x8, x12, . . . , x4n+4;x2m+8, x2m+12, . . . , x2m+4n+4)).

By the same reasoning, using shifts and applying Claim 23 (instead of the clauses of
Vn), one can construct a resolution derivation of length O(2`n), of every formula D$ ∨
Stepn` (x8, x12, . . . , x4n+4;x2`m+8, x2`m+12, . . . , x2`m+4n+4)), with ` 6 n− 1.

The last formula in the series is D$ ∨ Stepnn−1(x8, x12, . . . , x4n+4;x2n−1m+8, x2n−1m+12, . . . ,
x2n−1m+4n+4)). By the definition of Stepnn−1 (part 2), this formula contains clauses of the
CNF representation of D$ ∨ (x8 6= x2n−1m+8). Using the clauses shift2n−1m(D$) ∨ ¬x2n−1m+8,
D$∨x2n−1m+1, D$∨x2n−1m+2, D$∨¬x2n−1m+3, D$∨¬x2n−1m+4 one can derive D$∨¬x2n−1m+8.
Using the latter clause, D$ ∨ ¬x8 and D$ ∨ (x8 6= x2n−1m+8) the clause D$ can be derived.

By Lemma 20, the empty clause can be derived from Shifts(Wn ∧D$) in O(n) steps.

19



5 Refutational proof systems

Let Γ = {xi}i∈Z be a set of propositional variables that take values from {0, 1}. We define
a refutational calculus; informally speaking, such calculi are used to show that a given CNF
formula is unsatisfiable. Resolution operates with the CNF clauses directly, whereas other calculi
are expressed in terms of elementary propositions (proof lines) of various forms. Each clause
in the CNF is first translated to a proof line used in the calculus. In the case of Resolution,
proof lines are clauses as they are. Proof lines in the Cutting Planes system are inequalities
over propositional variables with integer coefficients, so that a clause

∨
i∈I xi ∨

∨
i∈J ¬xj turns

into an inequality
∑

i∈I xi +
∑

j∈J(1− xj) ≥ 1.
In general, a proof line can be regarded as a predicate with variables substituted into it: a

proof line of arity k is a pair of a predicate P : {0, 1}k → {0, 1} and a tuple (i1, i2, . . . , ik) ∈ Zk.
A proof line (P, (i1, i2, . . . , ik)) restricts possible values of variables xi1 , xi2 , . . . , xik , so that they
P (xi1 , xi2 , . . . , xik) is true. Let LP be the set of proof lines defined by predicates from P.

Every refutational calculus Π operates with its own set of admissible predicates P used in
the proof lines, along with a representation for these predicates. For example, for Resolution,
P is the set of all disjunctions of literals.

Every refutational calculus has it own finite set of inference rules. Every inference rule of
arity ` defines a set R ⊆ L`+1

P such that if (Q,P1, P2, . . . , P`) ∈ R, then we may derive Q
from P1, P2, . . . , P`. All inference rules should be sound: for all (Q,P1, P2, . . . , P`) ∈ R if an
assignment to variables Γ satisfies all P1, P2, . . . , P`, then it also satisfies Q.

A refutation of a CNF formula φ in a refutational calculus is a sequence of proof lines
F1, F2, . . . , Fs such that 1) for every j ∈ [s], Fj either represents a clause of φ or can be
obtained from Fj1 , . . . , Fj` , for some j1, . . . , j` < j, by an inference rule; 2) Fs is a constant false
proof line. The size of a refutation is the size of representations of proof lines F1, F2, . . . , Fs.
Note that, in different calculi, the same proof line may have representations of different size.
The length of a refutation is the number of proof lines in it.

If a formula φ has a refutation in a refutational calculus Π, then it is unsatisfiable (this
follows by the soundness of inference rules). The minimal length of refutation of a formula φ is
denoted by SΠ(φ).

A refutational calculus Π must be complete, in the sense that every unsatisfiable formula
has a refutation.

We say that a refutational calculus Π is a proof system (in the sense of Cook and
Rekhaw [CR79]) if every refutation can be verified in polynomial time. Namely, for every clause
one can compute the corresponding proof line; for every proof line, one can check whether it can
be inferred from the earlier proof lines, and there is a special proof line representing constant
false, which should be the last one in every refutation.

Similarly to how the Resolution proof system has been augmented to Shift-Resolution, one
can define a “shifted” version of every proof system Π, denoted by Shift-Π. By the shifting rule,
a proof line P (xi1 , xi2 , . . . , xik), can be shifted to P (xi1+n, xi2+n, . . . , xik+n), for every n ∈ Z.

5.1 Generalizations

Now we will generalize results we have proved for Resolution to arbitrary refutatinal proof
systems. In Section 4.2, we have shown that there is a sequence of formulas Ψn that has no
short Resolution refutation, but has short refutation in Shift-Resolution. In fact, Lemma 22
implies that those formulas are hard for any refutational calculus. And, by Theorem 21, for
any refutational proof system Π that can polynomially simulate resolution rules, there are short
refutations of these formulas in Shift-Π.
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The lower bound method in Theorem 16 applies to a class of refutational calculi that satisfy
Lemma 17, so that a lower bound on the size of a Π-proof of ϕn, where Π is a proof system,
implies a fairly close lower bound on the size of Shift-Π proofs for Shifts(Wn ∧Hn).

Theorem 24. Assume that a refutation calculi Π has the following properties:

• Let τ be a substitution of a variable with another variable (x := y) or with a constant
(x := 0 or x := 1). Then, if C is a proof line, then so is C[τ ].

Furthermore, if a proof line C is derived from proof lines C1, C2, . . . , Ck by an inference
rule, then C[τ ] can be derived from C1[τ ], C2[τ ], . . . , Ck[τ ] by an application of an inference
rule.

• Let C1, C2, . . . , Cs be a Π-refutation of a set of clauses F . Then there exists a Π-refutation
of F of length at most s + poly(n) that does not use any constant true clauses from F ,
where n is the number of variables in F .

Then the length of any Shift-Π refutation of Shifts(Wn ∧Hn) is at least Ω
(
SΠ(ϕn)

n

)
− poly(n),

where SΠ(ϕn) is the length of the shortest Π-refutation of ϕn.

The proof almost literally repeats that of Theorem 16, with every reference to Lemma 17
replaced by a reference to the conditions of this theorem.

Corollary 25. There exists such a CNF formula ϕn of size n, that every Shift-Cutting Plane
proof of the corresponding Shift-CNF Φn is of size at least 2n

Ω(1)
.

Proof. The proof uses a family of formulas with the Cutting Plane proof complexity 2n
Ω(1)

.
Such formulas were constructed by Pudlák [Pud97].

Corollary 26. For some CNF formula ϕn of size O(n), the size of every Shift-Polynomial
Calculus proof of the corresponding Shift-CNF Φn is at least 2Ω(n).

Proof. The proof uses random k-CNF formulas, where k is a constant. By the results of
Alekhnovich and Razborov [AR01] and of Impagliazzo et al. [IPS99], every Polynomial Cal-
culus derivation of random k-CNF formulas is of size at least 2Ω(n) with high probability.

6 Shifted proof complexity

Propositional proof complexity came into light as Cook’s approach to the NP vs. co-NP problem.
Proof complexity for quantified boolean formulas similarly applies to the NP vs. PSPACE
problem. The shifted proof complexity, as introduced in this paper, turns out to be another
approach to separating NP from PSPACE, based on the PSPACE-completeness of the language
of unsatisfiable Shift-CNF formulas, see Theorem 11.

6.1 Predicate Filli

The arguments in this section are based on a particular predicate defined for a CNF formula
ϕ. This predicate, called Filli, expresses the satisfiability of Shifts(ϕ) on a large segment of
variables.

Let n − 1 be the maximum difference between the variable indices in a single CNF clause.
The following proposition Fill0(y1, . . . , yn; z1, . . . , zn) determines whether every shift of every
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clause of ϕ is satisfied on a segment of 2n consecutive variables.

Fill0(x1, . . . , xn;xn+1, . . . , x2n) =
∧

c(x1,...,xk)
is a moveable clause in ϕ

2n−k∧
i=1

c(xi+1, . . . , xi+k)

For every k > 1, the proposition Fillk(x1, . . . , xn;xn2k+1, . . . , xn2k+n) asserts that there exists
a binary string of length n ·(2k+1) that begins with the digits x1 . . . xn and ends with the digits
xn2n+1 . . . xn2k+1, such that every shift of every clause is satisfied on that string.

If the original Shifts(ϕ) is satisfiable, then Fillk is satisfiable for every k. If Shifts(ϕ) is
unsatisfiable, then, by Remark 12, it is false on every string of 2n + n variables, and therefore
the proposition Filln(y1, . . . , yn; z1, . . . , zn) is unsatisfiable.

Lemma 27. Every proposition Fillk+1(x1, . . . , xn;xn2k+1+1, . . . , xn2k+1+n) semanti-
cally follows from any pair of propositions Fillk(x1, . . . , xn;xn2k+1, . . . , xn2k+n) and
Fillk(xn2k+1, . . . , xn2k+n;xn2k+1+1, . . . , xn2k+1+n).

Proof. The proposition Fillk(x1, . . . , xn;xn2k+1, . . . , xn2k+n) asserts that the values of all
intermediate variables xi, with n + 1 6 i 6 xn2k , can be filled so that all
clauses of the CNF hold true on all variables from x1 to xn2k+n The proposition
Fillk(xn2k+1, . . . , xn2k+n;xn2k+1+1, . . . , xn2k+1+n) similarly asserts that the variables xi, with
n2k + n+ 1 6 i 6 n2k+1, can be filled to satisfy all the clauses on the variables from xn2k+1 to
xn2k+1+n.

Now, all variables in the entire range from x1 to xn2k+1+n can be filled with some values.
Since, for every clause of the CNF, the indices of its variables differ by at most n, this means
that this clause, applied to any variables in the range from x1 to xn2k+1+n, entirely fits into
one of the subranges, either from x1 to xn2k+n, or from xn2k+1 to xn2k+1+n, and one of the two
premises Fillk asserts that it is satisfied.

Lemma 28. There exists a PSPACE algorithm for testing a given proposition
Fillk(y1, . . . , yn; z1, . . . , zn), for a given k 6 poly(n).

Proof. According to Lemma 27, one can test whether Fillk is true on any given 2n vari-
ables by trying all values of the intermediate variables t1, . . . , tn and testing whether both
Fillk−1(y1, . . . , yn; t1, . . . , tn) and Fillk−1(t1, . . . , tn; z1, . . . , zn) are true. The depth of recursion
is k, and n bits are used at each level, so that the procedure uses polynomial memory.

6.2 The shifting rule and the PSPACE vs. NP problem

The language of unsatisfiable Shift-CNF formulas, denoted by Shift-UNSAT, is PSPACE-
complete by Theorem 11. Hence, in order to prove that PSPACE 6= NP, it is sufficient to
prove that every nondeterministic algorithm solving this problem works in super-polynomial
time on some formula. A stronger result proved in this paper is that it is sufficient to prove
this not for all nondeterministic algorithms, but for algorithms that guess a proof in a certain
proof system, Shift-Π, where Π is a refutational proof system.

Theorem 29. If PSPACE = NP, then there exists a proof system Π, such that every unsatis-
fiable Shift-CNF has a Shift-Π refutation of polynomial size.

Proof. Given an unsatisfiable Shift-CNF Shifts(ϕ) consider the propositions
Filli(y1, . . . , yn; z1, . . . , zn) for ϕ, as defined above, where n − 1 is the maximum differ-
ence between the variable indices in a single clause of ϕ.
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By Lemma 28, the proposition Fillk(y1, . . . , yn; z1, . . . , zn) can be tested in PSPACE for
k 6 n. Then, by the assumption that PSPACE = NP, it can be tested in NP, that is, there
exists a nondeterministic polynomial-time Turing machine that receives y1, . . . , yn, z1, . . . , zn as
an input, and recognises whether the formula is true. Therefore, by the Cook–Levin theorem,
there is a polynomial-size existentially quantified propositional formula that expresses Fillk.

Fillk(y1, . . . , yn; z1, . . . , zn) = ∃t1 . . . ∃tm ϕ(y1, . . . , yn, z1, . . . , zn, t1, . . . , tm) (1)

Let us introduce a new proof system Π, such that Shifts(ϕ) shall have a polynomial-size
refutation in Shift-Π. Proof lines in the system Π shall be quantified propositional formulas
with several free variables and several existentially quantified variables.

ϕ(y1, . . . , y`) = ∃t1 . . . ∃tm f(y1, . . . , y`; t1, . . . , tm)

Proof lines are derived in Π by the so-called semantic inference rule. The general goal is
that, as long as two formulas (proof lines), ϕ(y1, . . . , yn) and ϕ′(y′1, . . . , y

′
n′), logically imply a

formula ψ(y1, . . . , yn, y
′
1, . . . , y

′
n′), one can immediately infer the latter formula from these two

premises. Of course, an inference rule should be effectively checkable, and these details shall be
explained later on.

Using this kind of semantic inference, one can derive a contradiction as follows. First, Fill0
is a conjunction of the clauses of the original formula, and hence semantically follows from
those clauses. By Lemma 27, every next Fillk+1(x1, . . . , xn;xn2k+1+1, . . . , xn2k+1+n) is inferred
from Fillk(x1, . . . , xn;xn2k+1, . . . , xn2k+n) and Fillk(xn2k+1, . . . , xn2k+n;xn2k+1+1, . . . , xn2k+1+n),
where the latter is obtained from the former by the shift rule. The formula Filln is false, and
one can obtain this by semantic derivation.

Now, in order to make semantic inference effectively verifiable, it shall be represented as
two inference rules, each checkable in polynomial time. Consider that the correctness of the
desired implication ϕ∧ϕ′ → ψ, where ϕ,ϕ′, ψ are existentially quantified proposition formulae,
is expressed by a Π2-propositional formula. Since, by assumption, the polynomial hierarchy
collapses to NP, this Π2-formula has a proof of polynomial length. This proof shall be formally
encoded within a true formula of the form σ(x) = (x∨¬x)∨xb1∨xb2∨. . .∨xbk , where (b1, . . . , bk)
is a sequence of bits encoding the proof. Overall, the semantic inference of ψ shall be performed
in two steps; at the first step, the formula ψ ∧ σ is derived instead; at the second step, the
tautology σ is removed.

ϕ,ϕ′

ψ ∧ σ
ψ ∧ σ
ψ

Whereas the second rule is purely syntactical, the first rule includes a “certificate” in the form
of σ, which allows the correctness of semantic inference to be checked in polynomial time.

6.3 Lower bounds on Shift-Π and circuit complexity

As shown in Section 6.2 above, in order to prove that PSPACE 6= NP. it is sufficient to verify
that for every propositional proof system Π there are formulas that have no polynomial-size
proofs in the shift−Π proof system. Furthermore, the proof of Theorem 29 demonstrates that
one can consider one particular refutation calculus, SΣ1FC (semantic Σ1 formula calculus). In
this calculus, proof lines are existential propositional formulas, with semantic inference rules,
which allows any semantic implication of any two formulas to be inferred in a single step.
Proving a superpolynomial lower bound on the size of proofs in the Shift-SΣ1FC calculus would
then separate NP from PSPACE.

Any superpolynomial lower bounds for the Shift-SΣ1FC calculus would also imply a sepa-
ration involving non-uniform complexity class, namely PSPACE 6⊆ P/poly. This result shall
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actually be achieved using a weaker refutational calculus: the Semantic Circuit Calculus (SCC).
In SCC, proof lines are Boolean circuits, each implementing a Boolean predicate in some of the
variables of the original CNF, and there is only one type of derivation rules: the semantic
derivation rule, by which one can take any two circuits and infer any circuit that is their seman-
tic implication. This calculus is weaker than SΣ1FC, because every circuit can be represented
by an existential formula of comparable size. Also, this calculus is not a proof system, be-
cause verifying such a step is an NP-complete problem. Every unsatisfiable CNF formula has a
refutation of linear size in this system.

A superpolynomial lower bound on the size of Shift-SCC proofs would imply a lower bound
on circuit complexity. This suggests that proving any lower bounds on the proof complexity for
Shift-SCC is likely very hard.

Theorem 30. Under the assumption that PSPACE ⊆ P/poly, every unsatisfiable Shift-CNF
has a Shift-SCC refutation of polynomial size.

Proof. The proof follows the same strategy as in Theorem 29.
Let Shifts(ϕ) be an unsatisfiable Shift-CNF and let n − 1 be the maximum difference

between the variable indices in a single clause of ϕ. Propositions Filli(y1, . . . , yn; z1, . . . , zn)
are constructed for ϕ as before. Lemma 28, asserts that Fillk(y1, . . . , yn; z1, . . . , zn) can be
tested in PSPACE. Then, by the assumption that PSPACE ⊆ P/poly, each proposition
Fillk(y1, . . . , yn; z1, . . . , zn), with k 6 poly(n), has a representation by a polynomial-size cir-
cuit.

In Shift-SCC, a contradiction is derived as follows. The circuit representing Fill0 seman-
tically follows from ϕ. By Lemma 27, every Fillk+1(x1, . . . , xn;xn2k+1+1, . . . , xn2k+1+n)
semantically follows from Fillk(x1, . . . , xn;xn2k+1, . . . , xn2k+n) and from its shift
Fillk(xn2k+1, . . . , xn2k+n;xn2k+1+1, . . . , xn2k+1+n). Then, it can be inferred from them in
Shift-SCC. Eventually, a false formula Filln is obtained, and a contradiction is thus derived.

Corollary 31. A super-polynomial lower bound on the proof complexity of Shift-SCC would
imply that PSPACE 6⊆ P/poly.

Using a weaker version of SCC, with circuits replaced by formulas, called the Semantic
Formula Calculus (SFC), the following theorem can be proved by the same method.

Theorem 32. Under the assumption that PSPACE ⊆ non-uniform NC1, every unsatisfiable
Shift-CNF has a Shift-SFC refutation of polynomial size.

Another result on shifted versions of semantic calculi is that the existence of short proofs
implies the collapse of the polynomial hierarchy.

Proposition 33. If every unsatisfiable Shift-CNF formula has a polynomial-size Shift-SCC
refutation, then PSPACE ⊆ ΣP

2 .

Proof. Shift-CNF satisfiability is PSPACE-complete. Then, there is the following NPNP-
algorithm for solving this problem. First, the algorithm guesses a short proof of the formula.
Then, it verifies each semantic derivation using an NP oracle.

7 Conclusion

An interesting direction for further research would be to prove lower bounds for any proof
systems augmented with a shift rule, for which no non-trivial lower bounds are known in the
classical case, such as for the Lovász–Schrijver proof system. This task may potentially be easier
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than proving a lower bound in the classical case, because some instances of shift-CNF encode
harder problems, such as PSPACE-complete problems, and therefore proving lower bounds on
their proof complexity could actually be easier.
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