
One-Sided Error Testing of Monomials and Affine Subspaces∗

Oded Goldreich Dana Ron

May 8, 2020

Abstract

We consider the query complexity of three versions of the problem of testing monomials and
affine (and linear) subspaces with one-sided error, and obtain the following results:

1. The general problem, in which the arity of the monomial (resp., co-dimension of the

subspace) is not specified, has query complexity Õ(1/ε), where ε denotes the proximity
parameter.

2. The bounded problem, in which the arity of the monomial (resp., co-dimension of the

subspace) is upper bounded by a fixed parameter, has query complexity Õ(1/ε).

3. The exact problem, in which the arity of the monomial (resp., co-dimension of the sub-

space) is required to equal a fixed parameter (e.g., equals 2), has query complexity Ω̃(log n),
where n denotes the length of the argument for the tested function.

The running time of the testers in the positive results is linear in their query complexity.

∗This research was partially supported by the Israel Science Foundation (grant No. 1146/18).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 68 (2020)

Contents

1 Introduction 1
1.1 Testing monomials . 1
1.2 Testing affine and linear subspaces . 2
1.3 Techniques . 3

1.3.1 Testing monomials of bounded arity via low degree testing 3
1.3.2 Testing monomials and linear subspaces . 4
1.3.3 A lower bound on the complexity of testing k-monomials 5

1.4 More on related work . 5

2 Preliminaries 6

3 Testing Monomials via Low Degree Testing 7
3.1 Background . 8
3.2 The actual tester . 8

4 Testing Affine and Linear Subspaces 9
4.1 The first reduction . 10

4.1.1 Elements taken from [7] . 10
4.1.2 Additional observations . 11
4.1.3 The main procedure . 13
4.1.4 The actual tester . 15

4.2 The second reduction . 18

5 Testing Monomials via Testing Affine Subspaces 21

6 Lower Bounds for the Exact Versions 24

References 28

Appendices 29
A.1 Proof of Claim 4.3 . 29
A.2 Proof of Lemma 3.2 . 29

1

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for approximate decision mak-
ing. These algorithms are given direct access to items of a huge data set, and determine whether
this data set has some predetermined (global) property or is far from having this property, while
accessing a small portion of the data set. Thus, property testing is a relaxation of decision problems
and it focuses on algorithms, called testers, that only read parts of the input and make decisions
which carry a small probability of error.

Consequently, testers are modeled as (randomized) oracle machines and the inputs are modeled
as functions to which the tester has an oracle access. In addition, these testers obtain explicit
inputs that specify the domain of the input function and a proximity parameter, denoted ε. (The
tester is required to accept inputs that have the property and reject inputs that are ε-far from the
property, where both requirements are probabilistic.)

We focus on two main distinctions within the context of property testing. The first is the
distinction between size-oblivious testers and more general testers, where size-oblivious means that
the complexity of the tester depends only on the proximity parameter. The second distinction is
between testers that have one-sided error and testers that have two-sided error, where testers of
one-sided error are required to always accept functions that have the property, while rejecting with
probability at least 2/3 any function that is ε-far from the property (see Definition 2.1).

We consider several testing problems for which size-oblivious (two-sided error) testers are
known [10], and study the complexity of one-sided error testers for them. The problems we consider
are version of the problems of testing monomials and testing affine spaces.

1.1 Testing monomials

We say that a function f : {0, 1}n → {0, 1} is a (monotone) k-monomial if there exists a k-set I ⊆ [n]
such that f(x) =

∧
i∈I xi. In this case, we say that f has arity k. We consider three version of the

problem of testing monomials (equiv., sets of monomials).

1. The general (unbounded) version: Here we consider the set of monimials of unspecified arity.

2. The bounded version: Here, for a fixed parameter k, we consider the set of all momomilas
having arity at most k.

3. The exact version: Here, for a fixed parameter k, we consider the set of all k-momomilas (i.e.,
the set of monomials of arity exactly k).

Note that when considering two-sided error testers, the three versions are essentially equivalent.
This is the case because, when given oracle access to a function f : {0, 1}n → {0, 1}, we can
estimate the density of f−1(1), whereas the density of this set determines the arity of f in case f
is a monomial.1 Such an estimate cannot be obtained without error probability, which means that
the foregoing equivalence does not necessary hold in the context of size-oblivious one-sided error
testers. This raises the question of whether two-sided error is inherent to size-oblivious testers for
the various versions of the problem (cf. [6, Prob. 5.8]). Our first result is that two-sided error is
inherent in the case of the exact version.

1The exact details are irrelevant at this point, and will become clear later on.

1

Theorem 1.1 (one-sided error testing of k-monomials cannot be size-oblivious): For every k ∈
[2, (1 − o(1)) · n], one-sided error testing whether f : {0, 1}n → {0, 1} is a monomial that depends
on exactly k variables requires query complexity Ω̃(log n).

Following the initial posting of this work, Nader Bshouty (private comm., May 2020) proved a lower
bound of Ω(k log(n/k)). His result is tight, since exact learning k-monomials can be performed using
k log n queries. We stress that Theorem 1.1 refers to testing whether f is a monomial that depends
on exactly k variables. In fact, the proof shows that the lower bound applies also to the task of
distinguishing k-monomials from (k − 1)-monomials, when requiring that k-monomials are always
accepted (i.e., one-sided error). In contrast, testing whether a function is a monomial that depends
on at most k variables does admit a size-oblivious one-sided error tester.

Theorem 1.2 (one-sided error testing monomials of size at most k): For every k ∈ [n], there
exists a Õ(1/ε)-time one-sided error tester for the set of all functions f : {0, 1}n → {0, 1} that are
monomials that depend on at most k variables, where the time bound refers to a model in which
basic operations on n-bit strings can be performed in unit time.

A simple approach that yields a (typically) weaker complexity bound generalizes the (two-step)
dictatorship tester of [10] by first testing that the function is a polynomial of degree at most k,
and then applying the conjunction check to a self-corrected version of the function (see details in
Section 1.3). This approach yields a complexity bound of O(1/ε) + Õ(23k), and relies on the work
of [1], which post-dated [10].

Our main approach, which establishes Theorem 1.2, follows the original (two-step) strategy
of [10], as implemented in [7]. Specifically, we first test whether the function f describes an (n−k)-
dimensional affine subspace, and then check whether this affine subspace is of the right form (i.e.,
is a translation by 1n of a linear subspace spanned by axis-parallel vectors). This approach also
allows us to prove the following result.

Theorem 1.3 (one-sided error testing monomials of unbounded arity): There exists a Õ(1/ε)-time
one-sided error tester for the set of all functions f : {0, 1}n → {0, 1} that are monomials, where the
time bound refers to a model in which basic operations on n-bit strings can be performed in unit
time.

This result improves over a recent exp(1/ε)-time (one-sided error) tester that was presented by
Filmus et al. [4] (see [4, Sec. 8]).2

1.2 Testing affine and linear subspaces

The aforementioned approach to testing monomials is based on the observation that f : {0, 1}n →
{0, 1} is a k-monomial if and only if f−1(1) is a translation by 1n of an axis-parallel (n − k)-
dimensional linear subspace; that is, if f−1(1) = {yG + 1n : y ∈ {0, 1}n−k} for some (n − k)-
by-n full-rank matrix G that has k all-zero columns. Hence, the first step is testing whether
h(x) = f(x) + 1n describes an (n − k)-dimensional linear subspace (i.e., h−1(1) is an (n − k)-
dimensional linear subspace), and the second step is to test whether this linear subspace is axis-
parallel. As for monomials, we consider all three versions of this problem; that is, the case that the

2We mention that Filmus et al. [4] analyze a specific tester (i.e., the “and”-test, which is called conjunction testing
in [2, 10]).

2

co-dimension must equal k, the case that it is at most k, and the case in which it is unspecified (or
unbounded).

We first mention that the proof of Theorem 1.1 implies that the lower bound holds for the
task of testing whether a function describes an (n− k)-dimensional linear subspace (i.e., the exact
version). Hence, we turn to the other two versions.

Theorem 1.4 (one-sided error testing of linear subspaces): There exist Õ(1/ε)-time one-sided
error testers for the following two properties.

1. The set of functions that describe linear subspaces.

2. For any k, the set of functions that describe linear subspaces of co-dimension at most k.

As above, the time bound refers to a model in which basic operations on n-bit strings can be per-
formed in unit time.

Theorem 1.4 builds on the randomized reduction of testing (n− k)-dimensional linear subspaces to
testing the linearity of related functions that range over 2k + 1 possible values. While the original
reduction, as presented in [7], incurs a two-sided error, we adapt it to a one-sided error reduction
for the cases in Theorem 1.4. In addition, we use this related function when testing that the linear
subspace is axis-parallel (i.e., the second step). See details in Section 1.3. (We mention that a
version of Theorem 1.4 holds also for testing affine subspaces.)

1.3 Techniques

When allowing two-sided error, all versions of both problems reduce to the exact version problem.
Specifically, testing monomials with proximity parameter ε reduces to testing monomials that de-
pend on at most log2(1/ε) variables with proximity parameter ε, and the latter reduces to testing
k-monomials for k ∈ [log2(1/ε)]. The same holds for testing linear subspaces. The observation
underlying all these claims is that a k-monomial evaluates to 1 on a 2−k fraction of the domain
(resp., a (n− k)-dimensional linear subspace of Fn has density |F|−k, where F is any finite field).
Needless to say, we can approximate the density of 1-values (up to an additive error of ε) by a
two-sided error algorithm (that makes O(1/ε) queries). In contrast, this is not possible when using
a one-sided error algorithm (since it is required to always answer correctly on inputs of a specified
density).

1.3.1 Testing monomials of bounded arity via low degree testing

As hinted above, for the case of k = 1 (a.k.a dictatorships) Parnas, Ron, and Samorodnitsky [10]
presented a one-sided error tester of query-complexity O(1/ε). It operates by first testing whether
the function is linear, and then checking whether its self-corrected version depends on a single
variable by performing a so-called conjunction test. Here we generalize this approach by first
testing whether the function is a polynomial of degree k, and then checking whether its self-
corrected version depends on at most k variable by performing the very same conjunction test. It
seems that this route was not taken in [10] since such low-degree testers (for functions over GF(2)),
let alone self-correctors, were not known at the time.

We obtain a self-corrector of low-degree polynomials over GF(2) by relying on the self-corrector
that is implicit in the analysis of the tester of Alon et al. [1]. We also use their tester for the

3

aforementioned first step, while setting its proximity parameter to ε′ = min(ε, 2−k−3). Under
this setting of parameters, their tester’s complexity is O(1/ε′) + Õ(22k).3 The conjunction test is
repeated O(22k) times, while using self-correction of complexity Õ(2k), which works for functions
that are 2−k−3-close to having degree k. This explains our setting of ε′. Hence, the resulting tester
has complexity O(1/ε) + Õ(23k). A tester of complexity Õ(1/ε) is derived via the connection to
linear subspaces as descibed next.

1.3.2 Testing monomials and linear subspaces

We focus on the “unbounded” version of the problems; that is, the versions in which we test mono-
mials (which depends on an arbitrary number of variables) and linear subspaces (with an arbitrary
number of dimensions). This refers to Theorem 1.3 and Part 1 of Theorem 1.4, respectively.

We follow the original (two-step) strategy of [10], but build on the implementation of [7].
Specifically, we first test whether the function describes an (n−k)-dimensional affine subspace, and
then check whether this affine subspace is of the right form (i.e., is a translation by 1n of a linear
subspace spanned by axis-parallel vectors).

Testing affine subspaces. Following [7], we test whether a function h : Fn → {0, 1} describes
an (n − k)-dimensional linear subspace by defining a related function g : Fn → Fk ∪ {⊥} and
testing whether it is linear, where the symbol ⊥ 6∈ Fk is used only when h does not describe an
(n− k)-dimensional linear subspace.

Intuitively, when H is an (n − k)-dimensional linear subspace and V is a basis of the linear
subspace that complements H, the value of gH,V (x) identifies the unique coset in which x resides;
that is, gH,V (x) = c if x+ cV ∈ H. This definition is applicable also when H is arbitrary provided
that cV 6∈ H for every c ∈ Fk \{0k}, except that in general the set {c ∈ Fk : xcV ∈ H} may not be
a singleton; in such a case, we define gH,V (x) = ⊥. It turns out that if H is an (n− k)-dimensional
linear subspace, then g = gH,V is linear (for any V as above); whereas if H is ε-far from any
(n − k)-dimensional linear subspace, then g = gH,V is ε-far from linear [7, Clm. 3.4]). This allows
to reduce testing (n−k)-dimensional linear subspaces to testing linearity of functions, provided we
can find a suitable V , which is the main source of the two-sided error in the tester of [7].

Furthermore, the tester of [7] is given the parameter k (i.e., it tests linear subspaces of a specific
co-dimension k), whereas our goal is testing linear subspaces of arbitrary dimension. Intuitively, we

perform this test in iterations, starting with k = 1 and ending at k = t
def
= log|F|(2/ε), where in each

iteration we test whether h describes an (n − k)-dimensional linear subspace. A negative answer
may leads us to either reject or augment the current basis V by one row, where we reject only when
finding evidence that H = h−1(1) is not a linear subspace. We can afford stopping at the end of
iteration k = t by relying on the following dichotomy. If h is ε-far from any (n−(t+1))-dimensional
linear subspace and V is a (t + 1)-by-n full-rank matrix, then we can easily find an x such that
|{c ∈ F t+1 : x + cV ∈ H}| > 1 (see Claim ??), whereas no such x exists if H is a linear subspace
(see Claim ??). Hence, if it iteration k = t we obtain a (t+ 1)-by-n matrix V , then we try to find
such an x, and reject if and only if it is found.

3The more sophisticated analysis of [9], asserting a bound of O(2k/ε′) is not significantly better (if at all) under
this setting of parameters.

4

Testing axis-parallel linear subspace. The function g = gH,V plays a major role also in
our testing that H = h−1(1) is an axis-parallel subspace, assuming that H is a linear subspace.
Specifically, g is used in order to self-correct h, which is needed when h is only close to describing
a linear subspace.

The key observation here that an (n − k)-dimensional linear subspace described by h is axis-
parallel if and only if there are k pairwise disjoint vectors on which h evaluates to 0, where two
vectors u,w ∈ {0, 1}n are called disjoint if {i ∈ [n] : ui=1} ∩ {i ∈ [n] : wi=1} = ∅. Furthermore, if
H = h−1(1) is axis-parallel, then any non-zero linear combination of the foregoing k vectors resides
outside of H (see Claim 5.1), and so these vectors constitute a basis, denoted V ′, of the subspace
that complements H.

Hence, we test whether H is axis-parallel by trying to find as many disjoint vectors outside H
as possible, check whether all their non-zero linear combinations are outside H, and finally check
that the function gH,V ′ defined by the corresponding basis V ′ is linear. Note that violation of the
first condition yields a witness that H is not axis-parallel, whereas violation of the second condition
implies that H is not a linear subspace (although we already verified that it is close to one).

1.3.3 A lower bound on the complexity of testing k-monomials

In contrast to the foregoing results, which refer to testing monomials of unbounded or bounded arity
(resp., linear subspaces of unbounded or bounded co-dimension), we show that, for every k ≥ 2,
testing k-monomials (resp., linear subspaces of co-dimension exactly k), has higher complexity,
where all results refer to one-sided error testing. The lower bound is proved by showing that no
algorithm of query complexity q = o(log n/ log log n) can always accept any 2-monomial, and yet
reject a random 1-monomial with probability at least 1/2.

We prove the foregoing claim by presenting a random process that interacts with the potential
q-query algorithm, and selects a 1-monomial on-the-fly in response to these queries. Specifically,
the process proceeds in q iterations, such that in each iteration it answers one query, while limiting
the set of consistent 1-monomials (see Construction 6.1.1). This is done such that the outcome of
the process (i.e., a uniformly distributed 1-monomial) is independent of the strategy employed by
the algorithm (see Claim 6.1.3), The key observation is that as long as this set contains more than
one element, the answers provided so far are consistent with some 2-monomial. We show that the
latter event occurs with high probability (see Claim 6.1.4), and in this case the algorithm must
accept (per the one-sided error requirement).

1.4 More on related work

As mentioned above, the problem of testing whether a Boolean function is a (monotone) k-monomial
was first studied by Parnas, Ron, and Samorodnitsky [10]. They provided an O(1/ε)-time two-sided
tester for this property, and en route a similar result for testing affine and linear subspaces. The
tester that they presented generalizes their tester of dictatorship (i.e., the case k = 1), and does so
by following the same two-step strategy and using similar arguments at each step.

An alternative approach is taken in [7], where the first step of [10] is replaced by a reduction of
testing (n − k)-dimensional linear subspaces to the testing the linearity of a related function, and
the second step is replaced by testing that this function depends on k variables. This yielded a
Õ(1/ε)-time two-sided tester for both properties.

5

In contrast to the foregoing works that yield two-sided error testers, a exp(1/ε)-time one-sided
error tester for monomials was recently provided by Filmus et al. [4]. They focus on analyzing
the conjuction test (which picks two strings and compares the value of the function on them to
the value of the function on the bit-by-bit conjunction of the two strings), and show that is is a
proximity oblivious test with rejection probability that is independent of the size of the function
(cf. [6, Def. 1.7]): Indeed, while any monomial passes this test with probability 1, any function that
is δ-far from any monomial is rejected with probability at least exp(−1/δ).

2 Preliminaries

We assume that the reader is familiar with the basic definition of property testing (see, e.g., [6]),
but for sake of good order we reproduce it here. The basic definition refers to functions with domain
D and range R.

Definition 2.1 (a tester for property Π): Let Π be a set of functions of the form f : D → R.
A tester for Π is a probabilistic oracle machine, denoted T , that, on input a proximity parameter ε
and oracle access to a function f : D→R, outputs a binary verdict that satisfies the following two
conditions.

1. T accepts inputs in Π: For every ε > 0, and for every f ∈ Π, it holds that Pr[T f (ε)=1] ≥ 2/3.

2. T rejects inputs that are ε-far from Π: For every ε > 0, and for every function f : D→R that
is ε-far from Π it holds that Pr[T f (ε) = 0] ≥ 2/3, where f is ε-far from Π if for every g ∈ Π
it holds that |{x∈D : f(x) 6=g(x)}| > ε · |D|.

If the first condition holds with probability 1 (i.e., Pr[T f (ε) = 1] = 1), then we say that T has
one-sided error; otherwise, we say that T has two-sided error.

We focus on the query complexity of such testers, while viewing |D| as an additional parameter.
We seek testers of query complexity that is independent of |D|, which means that the complexity
will be a function of the proximity parameter ε only.

The properties we shall consider refer to functions over the domain Fn, where F is a finite field.

Definition 2.2 (affine subspaces): For fixed k, n ∈ N and a finite field F , we say that the function
f : Fn→{0, 1} describes an (n − k)-dimensional affine subspace if f−1(1) = {x ∈ Fn : f(x) = 1} is
an (n−k)-dimensional affine subspace; that is, f−1(1) = {yG+s : y ∈ Fn−k}, where G ∈ F (n−k)×n

is an (n− k)-by-n full-rank matrix and s ∈ Fn. When s = 0n, the described subspace is linear.

We mention that, for F = GF(2), the set of k-monomials (see Definition 2.4 below) coincides with
the set of functions that describe (n − k)-dimensional affine subspaces that are spanned by unit
vectors (i.e., the rows of the matrix G are unit vectors).

Definition 2.3 (linear functions): For fixed k, n ∈ N and a finite field F , we say that g : Fn→Fk
is linear if g(x+ y) = g(x) + g(y) for all x, y ∈ Fn. Equivalently, g(z) = zT for a n-by-k matrix T
over F . We say that f is affine if f(z) = f ′(z) + s for a linear function f ′ and some s ∈ Fk.

6

When k = 1 and F = GF(2) ≡ {0, 1}, it holds that f : Fn → {0, 1} describes an (n − k)-
dimensional affine subspace (resp., linear subspace) if and only if f is a non-constant affine function
(resp., f + 1 is a non-constant linear function). However, in all other cases, this does not hold;
in particular, for other fields a non-constant affine function must range over F rather than over
{0, 1}, whereas for F = GF(2) and k > 1 the densities do not match (i.e., an (n− k)-dimensional
affine subspace over GF(2) has density 2−k, but f−1(1) has density 1/2 for any non-constant affine
function f : GF(2)n→GF(2)).

Definition 2.4 (monomial and monotone monomial): A Boolean function f : {0, 1}n → {0, 1}
is called a k-monomial if for some k-subset I ⊆ [n] and σ = σ1 · · ·σn ∈ {0, 1}n it holds f(x) =
∧i∈I(xi ⊕ σi). It is called a monotone k-monomial if σ = 0n.

Indeed, the definitions of (general and monotone) 1-monomials coincide with the notions of (gen-
eral and monotone) dictatorships. We focus on the task of testing monotone k-monomials, while
recalling that the task of testing k-monomials is reducible to it (see [10] or [6, Sec. 5.2.2.1]).4 (A
similar reduction holds when k is not specified.)

Conventions. When writing Prx[event(x)] we refer to the case that x is selected uniformly in
a set that is clear from the context; we sometimes spell out this set by writing Prx∈S [event(x)].
For sake of simplicity, we often use the phrase “with high probability” (abbrev., “w.h.p.”), which
mean that we can obtain arbitrary high constant probability smaller 1 (e.g., 0.99). The image of a
function f : D → R is the set {f(e) : e∈D} ⊆ R. The symbol ⊥ denotes a special symbol that is
not in Fk.

We view F and n as parameters, and when using O-notation we refer to universal constants
that are independent of F and n. However, when stating time-complexity bounds, we shall assume
that basic operations on elements of Fn (e.g., addition, selection of a random element, etc) can be
performed at unit cost. For simplicity, we present all algorithms for fixed F and n, although all
algorithms can actually take these parameters as inputs.

3 Testing Monomials via Low Degree Testing

In this section we describe a one-sided error testing algorithm for the property of being a (monotone)
monomial of arity at most k, where k is a given integer parameter. This algorithm generalizes the
algorithm presented in [10] for the case of k = 1 (singelton/dictatorship functions). We start with
a short high-level description, and then give the precise details.

For fixed n, we consider Boolean fuinctions over n variable. Let M≤k denote the class of
monotone monomials with at most k variables, and P≤k denote the class of polynomials of degree
at most k over GF(2); indeed, M≤k ⊂ P≤k, since we associate {0, 1} with GF(2) (and ∧ with
multipolication). Given f : {0, 1}n → {0, 1}, we shall test whether f ∈ M≤k in two steps. First,
we test whether f ∈ P≤k, by using the one-sided error tester of [1], and reject if this tester rejects.
Otherwise, we may assume that f is very close to a degree k polynomial, and in that case we can
self-correct f by using the self-correction procedure that is implicit in the analysis of the tester
of [1]. In this case, we invoke the conjunction test of [10]. That is, denoting the self-corrected

4The reduction in [6, Sec. 5.2.2.1] has two-sided error, since it rejects in case it does not find an element in f−1(1).
However, accepting in such an unlikely case, we derive a one-sided error reduction.

7

version of f by g, the second step essentially consists of selecting uniformly x, y ∈ {0, 1}n and
checking whether g(x) ∧ g(y) = g(x ∧ y), where z = x ∧ y is the bit-by-bit conjunction of x and y
(i.e., zi = xi ∧ yi for each i ∈ [n]).

3.1 Background

In light of the foregoing, we start by citing two results of [1].

Theorem 3.1 ([1, Thm. 1]): For every k, there exists a one-sided error tester for P≤k of time and
query complexity O(1/ε+ k22k).

Lemma 3.2 (implicit in the proof of [1, Thm. 1]): For every k, there exists a procedure SelfCor-
rectPoly that given x ∈ {0, 1}n and oracle access to a function f : {0, 1}n → {0, 1} makes O(2k)
queries and returns a value SelfCorrectPolyf (x) that satisfies the following conditions.

1. If f is 2−k−3-close to g ∈ P≤k, then SelfCorrectPolyf (x) = g(x) with probability at least 2/3.

2. If f ∈ P≤k, then SelfCorrectPolyf (x) = f(x) always holds.

A proof of Lemma 3.2 that only relies on explicit results of [1] can be found in Appendix A.2. We
shall also make use of the following fact.

Claim 3.3 (analysis of the conjunction test): Let g : {0, 1}n → {0, 1} be a function that belongs to
(P≤k \M≤k) for some k ≥ 1. Then, Pr[g(x ∧ y) = g(x) ∧ g(y)] ≤ 1− 2−2k.

We comment that the inequality in Claim 3.3 is tight; specifically, the function g(z) = z1 · · · zk +
z2 · · · zk+1 is accepted with probability at least 1− 2−2k+2.

Proof: It is instructive to move to the arithmetics of GF(2), and consider the equation

g(x1y1, ..., xnyn) = g(x1, ..., xn) · g(y1, ..., yn),

where x1, ..., xn, y1, ..., yn ∈ GF(2). In this case g has the form
∑

i∈[t]Mi such that t ≥ 2 and the
Mi’s are products of at most t variables. Hence, the equation refers to the equality of two distinct
polynomials that are each of degree 2k, and the claim follows by the Schwartz-Zippel Lemma for
binary fields (see, e.g., [6, Exer. 5.1]).

3.2 The actual tester

On input parameters k and ε, and query access to a function f , the testing algorithm, denoted
TestMon, proceeds as follows:

1. Run the tester of Theorem 3.1 on f with parameters k and ε′ = min(ε, 2−k−3). If this tester
rejects, then TestMon rejects (and terminates).

2. Repeat the following conjunction test (at most) O(22k) times.

(a) Select x, y ∈ {0, 1}n, uniformly, independently at random.

8

(b) Let bx ← SelfCorrectPolyfO(k)(x), by ← SelfCorrectPolyfO(k)(y) and bx∧y ← SelfCorrectPolyfO(k)(x∧
y), where SelfCorrectPolyft (z) denotes invoking SelfCorrectPolyf (z) for t times and taking
a majority vote.

(c) If bx∧y 6= bx ∧ by, then output reject.

3. Output accept.

The query complexity of TestMon is O(1/ε′ + k2k) +O(22k) ·O(k · 2k) = O(1/ε+ k23k).

Theorem 3.4 For any given integer parameter k, TestMon is a one-sided error tester for M≤k.

Proof: Consider first the case that f ∈ M≤k. Since M≤k ⊂ P≤k, and the tester of Theorem 3.1
has one-sided error, f passes the first step of the algorithm with probability 1. By Part 2 of
Lemma 3.2, f also passes the second step with probability 1, and is hence accepted.

We thus turn to the case that f is ε-far fromM≤k. If f is ε′-far from P≤k, then it is rejected with
probability at least 2/3 in Step 1. Hence, assume from this point on that f is ε′-close to P≤k, and so
it satisfies the hypothesis of Part 1 of Lemma 3.2; that is, letting g ∈ P≤k be ε′-close to f , it follows
that Pr[SelfCorrectPolyf (x) = g(x)] ≥ 2/3 for every x ∈ {0, 1}n. Since f is ε-far from M≤k and
ε ≥ ε′, it follows that g ∈ (P≤k \M≤k). Combining Part 1 of Lemma 3.2 with Claim 3.3, we infer
that in each invocation of the conjunction test, with probability at least 2−2k−3 ·2−2k−3 > 2−2k+1,
over the choice of x, y and the coin tosses of SelfCorrectPolyO(k), all of the following events occur

1. g(x) ∧ g(y) 6= g(x ∧ t),

2. bx = gf (x), by = gf (y), and bx∧y = gf (x ∧ y).

Observing that in such a case TestMon rejects, and that this test is invoked O(22k) times, the claim
follows.

4 Testing Affine and Linear Subspaces

We start by restating the problem. For a finite field F and a natural number n, we are given access
to a function h : Fn → {0, 1} and wish to test whether h−1(1) is an affine subspace. We do so by
reducing this problem to testing linearity (of a function that is related to h). Actually, we present
two reductions: The first (and simpler) reduction increases the complexities by a factor of O(1/ε),
whereas the second reduction only incurs an overhead of Õ(log(1/ε)). The first reduction (presented
in Section 4.1) will be used as a subroutine in the second reduction (presented in Section 4.2).

Both reductions are obtained by modifications of the reductions in [7, Sec. 3]. Recall that,
unlike in [7], here we are not given the claimed dimension of the subspace nor do we need to verify
it. On the other hand, we are required to always accept yes-instances (i.e., have one-sided error).

As in [7], we simplify the presentation by first reducing the problem of testing affine subspaces to
testing affine subspaces. The following reduction is different from the one presented in [7, Clm. 3.2],
which has a two-sided error proabability.

Claim 4.1 (reducing to the linear case): Testing whether a function h : Fn → {0, 1} describes an
affine subspace can be randomly reduced to testing whether a function h′ : Fn → {0, 1} describes a
linear subspace, where the reduction introduces an additive overhead of O(1/ε) queries.

9

Proof: On input parameter ε > 0 and oracle access to h, we proceed as follows.

1. We select uniformly a sample of O(1/ε) points in Fn. If h evaluates to 0 on all these points,
then we accept. Otherwise, let u be a point in this sample such that h(u) = 1.

2. We invoke the tester for linear subspaces on input parameter ε and oracle access to h′ defined

by h′(x)
def
= h(x + u), and output its verdict. That is, each query x to h′ is emulated by

making the query x+ u to h.

The overhead of the reduction is due to Step 1, whereas in Step 2 we just invoke the tester for the
special case.

If h describes an affine subspace, then either Step 1 finds u ∈ h−1(1) or it accepts. In the former

case, the function h′ (i.e., h′(x) = h(x+ u)) describes the linear subspace H ′
def
= h−1(1)− u. To see

that H ′ is a linear subspace, note that h−1(1)− u = h−1(1)− h−1(1) (i.e., {x− u : x ∈ h−1(1)} =
{x− y : x, y ∈ h−1(1)}) and that H −H is a linear subspace if H is an affine subspace.5

On the other hand, if h is ε-far from being an affine subspace, then it must be that |h−1(1)| >
ε · |F|n (or else h is ε-close to describing the empty linear subspace). Hence, with high probability,

Step 1 finds some u ∈ h−1(1). But in this case h′ (which was defined by h′(x)
def
= h(x + u)) must

be ε-far from describing a linear subspace.6 Hence, in this case (i.e., h′ is ε-far from describing a
linear subspace), Step 2 rejects with high probability.

4.1 The first reduction

We follow the strategy of [7, Sec. 3.2], except that we refrain from rejection based on statistical
evidence. Needless to say, this complicates the algorithms and their analysis.

4.1.1 Elements taken from [7]

The pivotal step in the reduction is the definition of a function g : Fn → Fk ∪ {⊥} such that

if H
def
= h−1(1) is an (n − k)-dimensional linear subspace, then g is linear (with image Fk) and

g−1(0k) = H. Furthermore, in this case, g(x) indicates one of the |F|k translations of H in which x
resides; that is, if v(1), ..., v(k) ∈ Fn form a basis for the k-dimensional subspace that complements
H, then g(x) represents coefficients (c1, ..., ck) ∈ Fk such that x ∈ H −

∑
i∈[k] civ

(i).
Indeed, the definition of g is based on any fixed sequence of linearly independent vectors

v(1), ..., v(k) ∈ Fn such that for every non-zero sequence of coefficients (c1, ..., ck) ∈ Fk it holds
that

∑
i∈[k] civ

(i) 6∈ H. Such sequences of vectors exist if H is an (n − k)-dimensional linear sub-
space. (The issue of finding such sequences of vectors will be dealt with later.)

Fixing such a sequence of v(i)’s, we define g : Fn → Fk ∪ {⊥} as follows. For each x ∈ Fn, if
(c1, ..., ck) ∈ Fk is the unique sequence that satisfies x +

∑
i∈[k] civ

(i) ∈ H then g(x) = (c1, ..., ck)

and g(x) = ⊥ 6∈ Fk otherwise. Indeed, a unique sequence (c1, ..., ck) ∈ Fk exists for each x ∈ Fn

5Indeed, if H = {yG+s : y∈Fn−k} is an affine subspace, then H−H = {x−x′ : x, x′∈Fn} = {yG+s−(y′G+s) :
y, y′ ∈Fn−k} = {(y − y′)G : y ∈Fn−k} is a linear subspace. We note that the opposite direction holds as well: if
H ′ = {yG : y∈Fn−k} is a linear subspace, then H ′ + u = {yG+ u : y∈F} is an affine subspace.

6This is so because if h′ is ε-close to g′ that describes an (n− k)-dimensional linear subspace (i.e., g′ describes the

linear subspace {yG : y∈Fn−k}), then g(x)
def
= g′(x− u) (equiv., g(x+ u) = g′(x)) describes an affine subspace (i.e.,

g describes the affine subspace {yG+ u : y∈Fn−k}), whereas h is ε-close to g (since h(x) = h′(x− u)).

10

if H is an (n− k)-dimensional linear subspace, and in that case g(x) ∈ Fk for every x ∈ Fn. But
when H is not an (n − k)-dimensional linear subspace, it may happen that for some (or even all)
x’s there is no sequence (c1, ..., ck) ∈ Fk such that x +

∑
i∈[k] civ

(i) ∈ H; similarly, it may happen

that there are several different sequences (c1, ..., ck) ∈ Fk that satisfy x +
∑

i∈[k] civ
(i) ∈ H. In

these cases, g assumes the value ⊥ on some inputs, and consequently it is not linear. In any case,
using matrix notation, we restate the foregoing definition next (where the v(i)’s are the rows of the
matrix V).

Definition 4.2 (the function g = gH,V): Let H ⊆ Fn, and V be a k-by-n full-rank matrix over
F such that cV 6∈ H for every c ∈ Fk \ {0k}. Then, gH,V : Fn → Fk ∪ {⊥} is defined such that
gH,V (x) = c if c ∈ Fk is the unique vector that satisfies x+cV ∈ H, and gH,V (x) = ⊥ if the number
of such k-long vectors is not one.

Note that g(x) = c implies x+ cV ∈ H. Hence, in particular, gH,V (x) = 0k implies x ∈ H; that is,
g−1H,V (0k) ⊆ H. The following result of [7] is pivotal to reducing testing linear subspace to tresting
the linearity of functions.

Claim 4.3 (H versus gV,H , [7, Clm. 3.4]): Let H,V and g = gH,V be as in Definition 4.2. Then,
H is an (n− k)-dimensional linear subspace if and only if g is a linear function with image Fk.

Given the importance of this result for the current work, we reproduce its proof in Appendix A.1.
We stress that whenever we say that g is linear, it holds, in particular, that it never assumes the
value ⊥. (Indeed, when emulating g for the linearity tester, we shall suspend the execution if we
ever encounter the value ⊥.)7 Note that if g is ε-close to being a linear function with image |F|k,
then g−1(0k) is ε-close to being an (n−k)-dimensional linear subspace (i.e., the indicator functions
of these sets are ε-close).8

4.1.2 Additional observations

Recall that V is a full-rank k-by-n matrix such that cV 6∈ H for every c ∈ Fk\{0k}. While Claim 4.3
suffices for the analysis of the tester of (n−k)-dimensional linear subspaces presented in [7], it does
not suffice for the current context. Specifically, Claim 4.3 does not tell us what happens when H
is an (n− k′)-dimensional linear subspace for k′ 6= k. Note that k′ < k is not possible, because in
that case the linear subspace that complements H cannot contain k > k′ independent vectors (as
posulated in the definition of V). Yet, k′ > k is possible, and in this case H ∪ V spans a linear
subspace of dimension (n − k′) + k < n. We observe that in this case (i.e., when H is a linear
subspace of dimension smaller than n − k), the function gH,V assumes the value ⊥ on all vectors
that are not spanned by the vectors in H ∪ V , but otherwise gH,V satisfies the linearity condition.

Claim 4.4 (more on gV,H when H is a linear subspace): Let H,V and g = gH,V be as in Defini-
tion 4.2. Suppose that H is a linear subspace. Then:

7Unlike in [7], we shall distinguish between the case that g(x) = ⊥ due to the non-existence of c ∈ Fk such that
x + cV ∈ H and the existence of several distinct c’s. In the latter case, we shall reject, but in the former case we
shall augment V by x and try again.

8To see this, consider a linear g′ (with image Fk) that is ε-close to g, and note that the (n− k)-dimensional linear
space H ′ = {x∈Fn : g′(x)=0k} is ε-close to g−1(0k), since g′(x) 6= g(x) holds for any x that resides in the symmetric
difference of these sets.

11

1. For every x ∈ Fn, if g(x) = ⊥, then, for every c ∈ Fk, it holds that x+ cV 6∈ H.

2. For every x, y ∈ Fn, if g(x), g(y) and g(x+ y) are all in Fk, then g(x+ y) = g(x) + g(y).

Hence, an x such that x+ cV ∈ H for several distinct c’s constitute a witness that H is not a linear
subspace. Likewise, a pair (x, y) such that g(x), g(y), g(x + y) ∈ Fk and g(x + y) 6= g(x) + g(y)
constitutes a witness that H is not a linear subspace.

Proof: For Part 1, suppose that for c, c′ ∈ Fk it holds that x+ cV ∈ H and x+ c′V ∈ H. Then,
using the linearity of H, it follows that (x+ cV)− (x+ c′V) ∈ H, which implies that (c− c′)V ∈ H.
But then, by the hypothesis regarding V , it must be that c = c′.

Turning to Part 2, suppose that g(x), g(y) and g(x+y) are all in Fk. Then, x+g(x)V , y+g(y)V
and (x+y)+g(x+y)V are all in H. Using the linearity of H, we have (x+g(x)V)+(y+g(y)V) ∈ H,
which implies that (x+ y) + (g(x) + g(y))V ∈ H. Using the fact that g(x+ y) 6= ⊥, which implies
the uniqueness of c such that (x + y) + cV ∈ H, it must be the case that g(x) + g(y) = g(x + y).

Claim 4.5 (more on gV,H when H is not a linear subspace): Let H,V and g = gH,V be as in

Definition 4.2. Suppose that k > log|F|(1/ρ), where ρ
def
= |H|/|F|n. Then, for at least a ρ− |F|−k

fraction of the points x ∈ Fn there exist several distinct c ∈ Fk such that x+cV ∈ H. Furthermore,

letting m
def
= dk · log2 |F|e, there exists i ∈ [m] such that for at least a 2m−i−1 ·(ρ−|F|−k)/m fraction

of the points x ∈ Fn, there are at least 2i−1 + 1 distinct c ∈ Fk such that x+ cV ∈ H.

The title of Claim 4.5 is justified by the fact that the premise (i.e., k > log|F|(1/ρ)) cannot hold
when H is a linear subspace (since if H is a linear subspace of dimension at most n − k, then its
density must be at most |F|−k). Furthermore, Claim 4.5 suggests a procedure for detecting that
H is not a linear subspace (in the case that k > log|F|(|F|

n/|H|)).

Proof: Consider a partition of Fn into |F|n−k equivalence classes such that x and y are in the same
class if and only if x−y is spanned by the rows of V ; that is, x resides in the class {x+cV : c ∈ Fk}.
Letting q denote the number of classes that contain more than one element of H, it follows that
|H| ≤ q · |F|k + (|F|n−k − q) · 1. Hence, q

|F|n−k ≥ ρ− |F|−k, which establishes the main claim.9

To prove the furthermore claim, let qi denote the number of classes that contain between 2i−1+1
and 2i elements of H. Then, |H| ≤ |F|n−k +

∑
i∈[m] qi · 2i, since the size of each class is at most

|F|k ≤ 2m. It follows that there exists i ∈ [m] such that

qi
|F|n−k

≥ |H| − |F|n−k)
m · |F|n−k · 2i

= |F|k · ρ− |F|
−k)

m · ·2i

≥ 2m−i−1
ρ− |F|−k)

m

9This is because q ≥ (|H| − |F|n−k)/|F|k implies

q

|F|n−k
≥ |H| − |F|

n−k

|F|n = ρ− |F|−k.

12

which establishes the claim.

The analysis is simplified by using the following claim, which has also appeared in a recent
version of [7] (see [7, Clm. 3.6]).10

Claim 4.6 (on the linear function closest to gV,H): Let H,V and g = gH,V be as in Definition 4.2.
If g is 0.499-close to a linear function, then this linear function has image Fk.

The constant 0.499 can be replaced by any quantity that is smaller than 1− |F|−1 ≥ 1/2.

Proof: As in the proof of Claim 4.5, we consider a partition of Fn into equivalence classes such

that x ∈ Fn resides in the class Cx
def
= {x + cV : c ∈ Fk}, where, indeed, Cx = Cx+c′V for every

c′ ∈ Fk. A class is considered good if it contains a single element of H, which happens if and only
if g(x) ∈ Fk. The key observation is that if Cx is good (equiv., g(x) ∈ Fk), then, for every c ∈ Fk,
it holds that g(x+ cV) = g(x)− c, since Cx ∩H = {x+ g(x)V } = {(x+ cV) + (g(x)− c)V }. Now,
let f : Fn → Fk be an arbitrary linear function that has an image that is partial to Fk, and note
that this image has size at most |F|k−1 (since the image of f must be a linear subspace). Noting
that g(x) = f(x) implies g(x) ∈ Fk, we get

Prx∈Fn [g(x)=f(x)] = Prx∈Fn,c∈Fk [g(x+ cV)∈Fk & g(x+ cV)=f(x+ cV)]

= Prx∈Fn,c∈Fk [g(x)∈Fk & g(x+ cV)=f(x+ cV)]

≤ max
x∈Fn:g(x)∈Fk

{Prc∈Fk [g(x+ cV)=f(x+ cV)]}

≤ |F|−1.

To verify the last inequality note that for any x ∈ Fn such that g(x) ∈ Fk and a uniformly
distributed c ∈ Fk it holds that g(x+ cV) = g(x)− c is uniformly distributed over Fk, whereas the
image of f contains at most |F|k−1 elements. It follows that g is at distance at least 1−|F|−1 ≥ 1/2
from any linear function that has image that is partial to Fk.

4.1.3 The main procedure

The main procedure will be invoked iteratively with increasing values of k, starting with k = 1,
and ending with k = log|F|(1/ε) +O(1) if not earlier. In each invocation, we provide the procedure

with a k-by-n full-rank matrix V such that cV 6∈ H for all c ∈ Fk \ {0k}. Each invocation yields
one of the following three results.

1. The invocation accepts. This always happens when H is is an (n − k)-dimensional linear
subspace, but may also happen otherwise.

2. The invocation rejects. This is always based on a witness for non-linearity of H.

3. The invocation returns a full-rank (k+ 1)-by-n matrix V ′ that augments V with a single row
such that c′V ′ 6∈ H for all c′ ∈ Fk+1 \ {0k+1}.

10This claim was overlooked in earlier versions of [7], leading to an unnecessary complication of the algorithm and
its analysis.

13

The following Algorithm 4.7 is titled “quasi-tester for (n − k)-dimensional linear subspaces” be-
cause it is not guaranteed to reject no-instances with high probability. We shall only show (see
Proposition 4.8) that, with high probability, no-instances are either rejected or cause the algorithm
to return a matrix that extends V .

We shall assume, without loss of generality that 0n ∈ H, since we can check this condition and
reject if it is not satisfied. (In Section 4.1.4 we set the parameter ε′ to ε, but in Section 4.2 we shall
let ε′ be a small positive constant.)

Algorithm 4.7 (quasi-testing whether H is an (n− k)-dimensional linear subspace): On input a
full-rank k-by-n matrix V , a proximity parameter ε′ ∈ (0, 0.1], and oracle access to h : Fn → {0, 1},
specifying H = h−1(1), we test whether the function g = gH,V is linear by invoking a linearity tester
and emulating g by making queries to h. Specifically, we invoke a linearity test with proximity
parameter ε′, while providing it with oracle access to the function g = gH,V , where gH,V is as in
Definition 4.2. When the linearity tester queries g at x, we query h on x+ cV for all c ∈ Fk, and
answer accordingly; that is, the answer is c if c is the unique vector satisfying h(x+ cV) = 1, and
otherwise (i.e., g(x) = ⊥) the execution is suspended. In the latter case, we distinguish two cases

regarding G(x)
def
= {c ∈ Fk : x+ cV ∈ H}.

1. If |G(x)| ≥ 2, then we reject.

(Recall that by Part 1 of Claim 4.4 distinct c1, c2 ∈ Fk such that x + ciV ∈ H for both
i ∈ {1, 2} constitute a witness that H is not a linear subspace.)

2. If G(x) = ∅, then we check whether G(x′) = ∅ for every x′ that is a non-zero multiple of x.
If this condition holds, then we return the (k + 1)-by-n matrix that contains V as its first k
rows and x as its k + 1st row. Otherwise we reject.

(As shown in the beginning of the proof of Proposition 4.8, this (k + 1)-by-n matrix V ′ is
full-rank and satisfies c′V ′ 6∈ H for every c′ ∈ Fk+1 \ {0k+1}.)

Assuming that the emulation was not suspended, we accept if the linearity tester accepts, and reject
otherwise.

Recalling that linearity testing with proximity parameter ε′ has complexity O(1/ε′), the complexity
of Algorithm 4.7 is O(1/ε′) · |F|k, since each query to g is emulated using |F|k queries to h.

Proposition 4.8 (analysis of Algorithm 4.7): Suppose that ε′ ∈ (0, 0.1] and V is a k-by-n full-rank
matrix such that cV 6∈ H for all c ∈ Fk \ {0k}. Then, the following holds.

1. If h describes an (n− k)-dimensional linear subspace, then Algorithm 4.7 always accepts.

2. If h describes a linear subspace, then Algorithm 4.7 always either accepts or returns a (k+1)-
by-n matrix V ′.

3. If h is ε′-far from describing a linear subspace, then, with high probability, Algorithm 4.7
either rejects h or returns a (k + 1)-by-n matrix V ′.

Furthermore, whenever Algorithm 4.7 returns a matrix V ′ it holds that V ′ is full-rank and c′V ′ 6∈ H
holds for all c′ ∈ Fk+1 \ {0k+1}.

14

Proof: We first show that whenever Algorithm 4.7 returns a (k + 1)-by-n matrix V ′, which
augments V by a row x, it holds that V ′ is full-rank and c′V ′ 6∈ H holds for all c′ ∈ Fk+1 \ {0k+1}.
First observe that this event occurs only when for every x′ that is a non-zero mnultiple of x it
holds that G(x′) = ∅. But in this case, if c′V ′ ∈ H for some c′ = (c, b) ∈ Fk × F , then b = 0
(since otherwise cV + bx ∈ H contradicting G(bx) = ∅), which implies cV ∈ H, which in turn
implies c = 0k (by the corresponding feature of V), and so c′ = 0k+1. Lastly, note that V ′ is
full-rank, since V is full-rank and x cannot be in the span of the rows of V , because x = cV implies
x− cV = 0n ∈ H, which implies G(x) 6= ∅.

Next, suppose that H is an (n−k)-dimensional linear subspace. Then, the algorithm will always
accept, since (by Claim 4.3) the function gH,V is linear. This establishes Part 1. As for Part 2,
using Claim 4.4, it follows that in this case either the execution of the linearity test is suspended or
the test accepts. Furthermore, in the former case, a string x was encountred such that G(x) = ∅,
and G(x′) = ∅ holds for any non-zero multiple of x (by linearity of H), which means that the
algorithm returns an augmented matrix V ′.

Turning to Part 3, we consider a function h that is ε′-far from describing an (n−k)-dimensional
linear subspace, and recall that (by the premise of the proposition) also in this case V is a k-by-n
full-rank matrix such that cV 6∈ H for all c ∈ Fk \ {0k}. We shall show (below) that gH,V is ε′-far
from the set of linear functions, and so (w.h.p.) the algorithm will either reject it or return an
augmented matrix V ′. (Indeed, given that g is far from linear, with high probability, an execution
of the linearity test will either lead to rejection or to encounting a query x such that g(x) = ⊥,
which in turn leads either to rejection or to returning an augmented matrix V ′.)

Assume, contrary to the foregoing claim, that g = gH,V is ε′-close to a linear function g′, and
recall that by Claim 4.6 it must be the case that the image of g′ equals Fk. Then, H ′ = {x ∈
Fn : g′(x) = 0k} is an (n − k)-dimensional linear subspace, since x, x′ ∈ H ′ implies x + x′ ∈ H ′
(because g′(x+ x′) = g′(x) + g′(x′) = 0k + 0k = 0k), and |H ′| = |F|n/|F|k (because each image of
g′ has the same number of preimages). Next, letting h′ : Fn → {0, 1} describe H ′ (i.e., h′(x) = 1
iff x ∈ H ′), we show that g′(x) = g(x) implies h′(x) = h(x). This is because g′(x) = g(x) = 0k

implies h′(x) = 1 and h(x) = 1 (since g−1(0k) ⊆ h−1(1)), whereas g′(x) = g(x) 6∈ {0n,⊥} implies
h′(x) = 0 and h(x) = 0 (since h(x) = 1 implies g(x) ∈ {0n,⊥}). It follows that h is ε′-close to
h′, which contradicts our hypothesis that h is ε′-far from describing an (n− k)-dimensional linear
subspace.

4.1.4 The actual tester

Using Algorithm 4.7, we obtain a tester for functions describing linear subspaces by using the fact
if f−1(1) has density ρ then f is ρ-close to the all-zero function. Hence, on proximity parameter
ε, we can afford to accept any function that seems to have density at most ε. On the other hand,
if h : Fn → {0, 1} has density ρ > 2 · |F|−k, where ρ > ε, and we have a full-rank k-by-n matrix
V such that h(cV) 6= 1 for all c ∈ Fk \ {0k}, then we can find a witness to the non-linearity of
h−1(1) (i.e., x such that |{c : h(x + cV) = 1}| > 1; see Claim 4.5). This means that we may
iteratively invoke Algorithm 4.7 till we get a k-by-n matrix V as above, which means that reaching
k > log|F|(2/ε) > log|F|(2/ρ) suffices. A straightforward implementation of the foregoing idea

follows, where we assume for simplicity that h(0n) = 1.11

11Indeed, this assumption can be eliminated by checking whether h(0n) = 1 and rejecting if this does not hold,
while relying on the fact that 0n reside in any linear subspace.

15

Algorithm 4.9 (testing linear subspaces, naive version): On input ε > 0 and oracle access to
h : Fn → {0, 1} such that h(0n) = 1, we proceed as follows.

1. (Attempts to find an element outside H): We take O(1/ε) random samples of Fn, and accept
if all the sample points reside in H = h−1(1). Otherwise, we pick an arbitrary sample point
x ∈ Fn \H, and define V to be the 1-by-n matrix that contains x. Letting t = blog|F|(2/ε)c,
we set k = 1, and proceed iteratively as follows.

2. (Iterative invocations of the quasi-tester): If k ≤ t, then we invoke Algorithm 4.7 on input
a k-by-n matrix V and ε′ = ε, for at most O(t + 1 − k) times, and handle the outcomes as
follows.

(a) If any of these invocations rejected, then we reject.

(b) If any of these invocations returned a (k+1)-by-n matrix V ′, then we proceed to the next
iteration (of Step 2) using V ← V ′ and k ← k + 1.

(c) Otherwise (i.e., if all invocations accepted), then we halt and accept.12

If k > t, then we proceed to the next step.

(Note that we may proceed to Step 3 both in case H is a linear subspace of dimension smaller
than n− t and in case h is ε-far from describing a linear subspace.)

3. (Additional attempts to find witnesses for the non-linearity of H): We select a random sample
S of O(1/ε) elements of Fn, and reject if for any x ∈ S it holds that |{c ∈ Fk : h(x+ cV)=
1}| ≥ 2. Otherwise, we accept.

Whenever we halt while accepting, we also output the current matrix V , where V is fictitiously
defined as empty in the case of halting in Step 1.

The complexity of the foregoing Algorithm 4.9 is

O(1/ε) +
∑
k∈[t]

O(t+ 1− k) ·O(|F|k/ε) +O(|F|t+1/ε) = O(|F|/ε2),

where the second and third terms account for the complexity of Steps 2 and 3 (and |F|t < 2/ε by
the definition of t).

Proposition 4.10 (analysis of Algorithm 4.9): Algorithm 4.9 constitutes a one-sided error tester
for linear subspaces of Fn. Furthermore:

1. If the tested function h describes an (n − k∗)-dimensional subspace and ε ≤ |F|−k
∗
< 1,

then, with high probability, the algorithm also outputs a k∗-by-n full-rank matrix V such that
h(cV) = 1 if and only if c = 0k

∗
.

2. Whenever Algorithm 4.10 outputs a matrix V , for some k ∈ [t+1], it holds that V is a k-by-n
full-rank matrix and h(cV) = 0 for every c ∈ Fk \ {0k}.

12Indeed, we risk a small probability of accepting a function that is far from describing a linear subspace, but this
could have happened also if we were to proceed to the next step (i.e., Step 3).

16

Proof: Suppose that h : Fn → {0, 1} describes an (n− k∗)-dimensional linear subspace H. Since

Step 1 never rejects (actually, it may even accept (especially, when |H|
|F|n = |F|−k

∗
< 0.8 · ε)), we

consider Steps 2 and 3. Step 2 features invocations of Algorithm 4.7, and by (Parts 1 and 2 of)
Proposition 4.8, each of these invocations either accepts or returns an augmented matrix. Hence,
we either accept in Step 2 or proceed to Step 3. Furthermore, in the latter case, k = t + 1, and
the current matrix V is a full-rank k-by-n matrix such that cV 6∈ H for every c ∈ Fk \ {0k}, which
implies that k ≤ k∗. Anyhow, by Part 1 of Claim 4.4, |{c ∈ Fk : x+cV ∈H}| ≤ 1 for every x ∈ Fn,
and it follows that Step 3 accepts.

We now turn to the case that h : Fn → {0, 1} is ε-far from describing a linear subspace. Note
that H = h−1(1) has density between ε and 1−ε, since otherwise h is ε-close to a constant function.
Using the upper bound on |H|, it follows that, with high probability, we proceed to Step 2 (rather
than accept in Step 1). Now, by Part 3 of Proposition 4.8, with high probability, each invocation
of Algorithm 4.7 either rejects or returns an augmented matrix. Hence, the probability that we
accept in iteration k is upper-bounded by exp(−O(t+ 1− k)), which means that the probability of
accepting in Step 2 is at most

∑
k∈[t] exp(−O(t + 1 − k)). Hence, with high probability, we reach

Step 3, whereas t + 1 > log|F|(2/ε). Using (the main part of) Claim 4.5, it follows that Step 3

accepts with probability at most (1−(ε−|F|−(t+1)))O(1/ε) < (1−(ε/2))O(1/ε). Hence, Step 3 rejects
with high probability.

Turning to the furthermore clause, we first consider the case that h describes an (n − k∗)-
dimensional linear subspace H, observe that if ε ≤ |F|−k

∗
and k∗ > 0, then (w.h.p.) Algorithm 4.9

does not terminate at Step 1, but rather proceeds to Step 2 with some 1-by-n matrix consisting
of a row not in H. Similarly, (w.h.p.) all invocations of Algorithm 4.7 with k < k∗ (which take
place in Step 2) return an augmented matrix. In this case, at termination, which occurs when
k = k∗, Algorithm 4.9 outputs a matrix as claimed. This establishes Part 1 of the furthermore
claim. Lastly, Part 2 follows by inspection (and the furthermore clause of Proposition 4.8).

Reducing the complexity of Step 3 of Algorithm 4.9. Using the furthermore clause of
Claim 4.5, rather than its main part, we can reduce the complexity of Step 3 by searching for a
witness (for non-linearity) in a more economical manner (cf., [6, Sec. 8.2.4]). Specifically, letting
k = t+ 1 and m = k log |F|, for every i ∈ [m] we take a sample of O(mε−1/2m−i) points in Fn and
for each such x we try to find two distinct elements in {c ∈ Fk : h(x+ cV)=1} by taking a sample
of O(2m−i) elements in Fk. That is:

Algorithm 4.11 (revised version of Step 3 of Algorithm 4.9): On input parameter ε, a k-by-n
full-rank-matrix V , and oracle h, letting m = k log |F|, we proceed as follows. For every i ∈ [m],
select a random sample Si of O(mε−1/2m−i) elements of Fn, and a random sample Ti of of O(2m−i)
elements in Fk. If for some i ∈ [m] and x ∈ Si it holds that |{c ∈ Ti : h(x + cV) = 1}| ≥ 2, then
reject. Otherwise, accept.

The complexity of the Algorithm 4.11 is O(m2/ε) = O((k log |F|)2/ε), and replacing Step 3 of
Algorithm 4.9 by it yields a tester for linear subspaces. The latter claim follows by modifying
the proof of Proposition 4.10. Specifically, when reaching Step 3 we use the furthermore clause of
Claim 4.5, which guarantees the existence of i ∈ [m] such that for at least a 2m−i−1 ·(ε−|F|−k)/m =
Ω(ε2m−i/m) fraction of the points x ∈ Fn satisfy |{c ∈ Fk : h(x + cV) = 1}| > 2i−1. For this i,
with high probability, the sample Si contains at least one point x such that |{c ∈ Fk : h(x+ cV)=

17

1}| > 2i−1, and with high probability Ti contains two distinct elements in that set. For sake of
clarity and future reference, we summarize the latter argument as follows. (This argument used
ε > 2 · |F|−k, but it extends to ε− |F|−k = Ω(ε).)

Claim 4.12 (analysis of Algorithm 4.11): Let H,V and g = gH,V be as in Definition 4.2, and

recall that V is a k-by-n full-rank matrix. If H has density at least ε and ε > 1.5 · |F|−k, then
Algorithm 4.11 rejects with high probability.

4.2 The second reduction

Given the revised version of Step 3 of Algorithm 4.9, presented in Algorithm 4.11, the complexity of
the revised algorithm is dominated by Step 2, in which Algorithm 4.7 is invoked with its proximity
parameter, denoted ε′, set to ε. Recall that when invoked with a k-by-n matrix and proximity
parameter ε′, Algorithm 4.7 makes O(|F|k/ε′) queries.

We improve the complexity of Step 2 of Algorithm 4.9 by replacing each invocation of Algo-
rithm 4.7 (in Step 2) with two sub-steps. First (in Step 2A) we invoke Algorithm 4.7 while setting
its proximity parameter to a small constant (e.g., ε′ = 0.1), and then (in Step 2B) we check whether
the function h′ defined based on the linear function that is closest to g = gH,V is ε-close to h.

Our starting point is the fact that, for every ε′ < 1/4, if g is ε′-close to being a linear function,
then it is ε′-close to a unique linear function g′, which can be computed by self-correction of g
(where each invocation of the self-corrector makes two queries to g and is correct with probability
at least 1− 2ε′). Furthermore, the corresponding Boolean function h′ (i.e., h′(x) = 1 iff g′(x) = 0k)
describes an (n − k)-dimensional linear subspace, whereas if h describes an (n − k)-dimensional
linear subspace then g′ = g and h′ = h.

The key observation is that if h is ε-far from describing an (n− k)-dimensional linear subspace,
then, with high probability, either Step 2A rejects or it yields a function g = gH,V that is ε′-close
to a linear function g′ with image Fk. In the latter case, the corresponding h′, which describes an
(n− k)-dimensional linear subspace (i.e., {x ∈ Fn : h′(x) = 1} = {x ∈ Fn : g′(x) = 0k}), must be
ε-far from h (by the foregoing hypothesis). (On the other hand, if h describes an (n−k)-dimensional
linear subspace, then h′ = h.)

As hinted above, Step 2B consists of testing whether h′ equals h, when this testing task is
performed with respect to proximity parameter ε. This testing is performed by using a sample of
O(1/ε) points. For each sample point, the value of h is obtained by querying h, whereas the value
of h′ on all sample points is obtained by obtaining the values of g′ on these points (since h′(x) = 1
iff g′(x) = 0k), where the values of g′ on these points are computed via self-correction of g.

The problem with the foregoing description is that each query to g is implemented by making
|F|k queries to h. Hence, a straightforward implementation of the foregoing procedure will result
in making O(|F|k/ε) queries to h, which is no better than Algorithm 4.9. Instead, we shall use a
sample of O(1/ε) pairwise-independent points such that their g′-values can be determined by the
value of g′ at O(log(1/ε)) points, which in turn are computed by self-correction of g that uses |F|k
queries to h per each point. The details are given in Algorithm 4.13.

Note that if h describes an (n − k)-dimensional linear subspace, then g = g′, and Step 2B
accepts once reached (which always happens). On the other hand, if h is ε-far from this property
and Step 2B is reached (which implies that g, g′ and h′ are well-defined), then h is ε-far from h′,
and a sample of O(1/ε) pairwise-independent points will contain a point of disagreement (w.h.p.).

18

As in Step 2 of Algorithm 4.9, such a point will yield either a witness against linearity of h−1(1)
or an augmentation of the current matrix.

The pairwise independent sample points. The key observation here is that Step 2B can be
implemented within complexity Õ(1/ε) by taking a sample of m = O(1/ε) pairwise independent
points in Fn such that evaluating g′ on these m points only requires time O(m+ |F|k · Õ(logm))
rather than O(|F|k ·m) time. This is done as follows.

For t′ = dlog|F|(m+ 1)e, select uniformly at random s(1),, s(t
′) ∈ Fn, compute each g′(s(j))

via self-correcting g, with error probability 0.01/t′, and use the sample points r(L) = L(s(1), ..., s(t
′))

for m arbitrary distinct non-zero linear functions L : F t′ → F . The key observations are that
(1) the r(L)’s are pairwise independent, and (2) the values of g′ at all r(L)’s can be determined
based on the values of g′ on the s(j)’s. This determination is based on the fact that g′(r(L)) =
L(g′(s(1)), ..., g′(s(t

′))), by linearity of g′. Hence, the values of g′ on t′ random points (i.e., the

s(j)’s) determines the value of g′ on m ≤ |F|t
′
− 1 pairwise independent points (i.e., the r(L)’s).13

This yields the following —

Algorithm 4.13 (implementing Step 2B): On input proximity parameter ε ∈ (0, 0.1], a full-rank
k-by-n matrix V , and oracle access to h : Fn → {0, 1}, letting m = O(1/ε) and t′ = dlog|F|(m+ 1)e,
we set t′′ = O(log2 t

′), and proceed as follows.

1. Select uniformly s(1),, s(t
′) ∈ Fn.

2. Determining the value of g′ at the s(j)’s: For every j ∈ [t′], compute the value of g′(s(j)) by
using self correction on g = gh−1(1),V , which in turn queries h on |F|k points per each query
to g. The self-correction procedure is invoked t′′ times so that the correct value is obtained
with probability 1− 0.01/t′.

Specifically, select uniformly w(1),, w(t′′) ∈ Fn, and set σ(j) to equal the majority vote
among the values g(s(j) + w(1))− g(w(1)), ..., g(s(j) + w(t′′))− g(w(t′′)), where the values of g
at each point x is determined according to the value of h at the points {x + cV : c ∈ Fk}.
(Actually, we can afford to reject if the values in Fk are not in consensus, since this yields a
witness to the non-linearity of g.)

Recall that g(x) = c if c is the unique point in Fk such that h(x + cV) = 1, and g(x) = ⊥
otherwise. If the value of g at any point is set to ⊥, then we suspend the execution and either
reject or return an augmented matrix (as in Algorithm 4.7).14

(Indeed, σ(j) is the self-corrected value of g′(s(j)), and it is correct with probability 1 −
exp(−Ω(t′′)) > 1− 0.01/t′).

3. Determining the value of g′ at the r(L) and checking them against the values at h: For
each of m non-zero linear functions L : F t′ → F , let r(L) = L(s(1), ..., s(t

′)) and check
whether h(r(L)) equals our guess for h′(r(L)), where the latter value is set to 1 if and only
if L(σ(1), ..., σ(t

′)) = 0k. Accept if all checks were successful (i.e., equality holds in all).
Otherwise (i.e., a point of disagreement if found), reject.

13This procedure is inspired by [8] (as presented in [5, Sec. 7.1.3] for F = GF(2)).
14Specifically, letting G(x)

def
= {c ∈ Fk : h(x) = c}, if |G(x)| ≥ 2, then we reject, and otherwise (i.e., when G(x) = ∅)

we augment the matrix with x if G(x′) = ∅ for any x′ that is a non-zero multiple of x (and reject if G(x′) 6= ∅).

19

(Recall that g′(r(L)) = g′(L(s(1), ..., s(t
′))) = L(g′(s(1)), ..., g′(s(t

′))). Hence, L(σ(1), ..., σ(t
′)) is

our educated guess for g′(r(L)), and this guess is correct if all guesses for the g′(s(j))’s are
correct, which happens with probability 0.99).

The time complexity of Algorithm 4.13 is O(t′ ·t′′ ·|F|k+m) = Õ(log|F|(1/ε))·|F|
k+O(1/ε), which is

Õ(1/ε) when ε = O(|F|−k). Hence, the time complexity of Step 2B dominates the time complexity
of Step 2A, which is O(|F|k). For sake of clarity, we spell out the final resulting algorithm.

Algorithm 4.14 (testing linear subspaces, improved version): On input ε > 0 and oracle access
to h : Fn → {0, 1} such that h(0n) = 1, we let t = blog|F|(2/ε)c, and proceed as follows.

1. (Attempts to find an element outside H): As Step 1 of Algorithm 4.9.

2. (Iterative invocations of the quasi-tester): We replace the invocations of Algorithm 4.7 per-
formed in Step 2 of Algorithm 4.9 by Steps 2A and 2B as described above, where Step 2A
invokes Algorithm 4.7 with proximity parameter ε′ = 0.1 and Step 2B is as detailed in Algo-
rithm 4.13. This means that for any k ≤ t, we invoke the combined Steps 2A and 2B for at
most O(t + 1 − k) times, while providing them with a full-rank k-by-n matrix V and oracle
access to H, and handle the outcomes as follows.

(a) If any of these Step 2A+2B invocations rejected, then we reject.

(b) If any of these invocations returned a (k+1)-by-n matrix V ′, then we proceed to the next
iteration using V ← V ′ and k ← k + 1.

(c) Otherwise (i.e., if all invocations accepted), then we halt and accept.

If k > t, then we proceed to the next step.

3. (Additional attempts to find witnesses for the non-linearity of H): We replace Step 3 of
Algorithm 4.9 by Algorithm 4.11.

As in Algorithm 4.9, whenever the algorithm halts while accepting, it outputs the current matrix V ,
which in the case of Step 1 is fictitiously defined as empty.

The complexity of the foregoing algorithm is Õ(1/ε) + (O(|F|t) + Õ(1/ε)) + O((t log |F|)2/ε) =
Õ(1/ε), where the three terms correspond to the complexities of the three steps, and the inequality
uses t ≤ log|F|(2/ε).

Proposition 4.15 (analysis of the foregoing algorithm): Algorithm 4.14 constitutes a one-sided
error tester for linear subspaces, and the furthermore claim of Proposition 4.10 holds too.

Proof Sketch: We consider a single invocation of Steps 2A and 2B, where V is a full-rank k-
by-n matrix such that h(cV) = 0 if and only if c = 0k. If h describes an (n − k)-dimensional
linear subspace, then the execution always reaches Step 2B, which always accepts, since in this
case h′ = h. If h describes an arbitrary linear subspace, then each of these steps never rejects (i.e.,
it either accepts or returns an augmented matrix), where the crucial observation is that rejection
(in either steps) is always backed by a witness of non-linearity of h−1(1). (In particular, note that
a point of disagreement, r(L), found in Step 2B.3 implies that g(r(L)) 6= L(σ(1), ..., σ(t

′)), which in
turn yields a violation of the linearity of g.) On the other hand, if h is ε-far from describing a linear
subspace, then we consider two cases.

20

1. If h is 0.1-far from describing a linear subspace, then (w.h.p.) Step 2A either rejects or returns
an augmented matrix. Furthermore, the latter happens also if g = gH,V is 0.1-far from being
linear.

2. Otherwise, assuming that Step 2B is reached, we consider the corresponding functions g =
gH,V and g′. Recall g′ is a linear function that is 0.1-close to g, since otherwise the foregoing
case holds, and that the image of g′ equals Fk (see Claim 4.6). Hence, h must be ε-far from
h′, since in this case h′ describes an (n− k)-dimensional linear subspace.

In this case, with high probability, in Step 2 of Algorithm 4.13 (which implements Step 2B),
the algorithm either rejects or returns an augmented matrix or obtains the correct values of
g′ at all s(j)’s, where the first two cases are due to encountering ⊥. In the latter case, these
values (i.e., the g′(s(j))’s) correctly determine the values of g′ at all the r(L)’s. Since these
r(L) are uniformly distributed in Fn in a pairwise independent manner, with probability at
least 1 − mε

(mε)2
, the sample contains a point on which h and h′ disagree. In this case Step 3

of Algorithm 4.13 rejects.

In conclusion, if h is ε-far from the being a linear subspace, then (w.h.p.) an execution of Steps 2A
and 2B either rejects or returns an augmented matrix. Combining this with the rest of the proof
of Proposition 4.10, the current claims follows.

Conclusions. Proposition 4.15 implies that there exists a one-sided error tester of complexity
Õ(1/ε) for linear subspaces. This establishes Part 1 of Theorem 1.4. Furthermore, a closer look at
its proof reveals that in case of accepting, the tester can indicate an upper bound on the dimension
of the linear subspace; that is, in this case it can always output k ∈ [0,K] whenever h describes
an (n−K)-dimensional subspace (and does so with high probability when h is close to describing
such a subspace). Hence, we also obtain a tester for the class of linear spaces of dimension at least
n−K. This establishes Part 2 of Theorem 1.4.

5 Testing Monomials via Testing Affine Subspaces

As stated in Section 2, the function f : {0, 1}n → {0, 1} is a monotone k-monomial if and
only if f describes an (n − k)-dimensional affine subspace (over GF(2)n) that is a translation
by 1n of an (n − k)-dimensional axis-parallel linear subspace; that is, if f−1(1) has the form{
yG+ 1n : y ∈ {0, 1}n−k

}
, where G is a full-rank (n − k)-by-n Boolean matrix that contains k

all-zero columns. Hence, we may focus on testing that the function h : {0, 1}n → {0, 1} defined

by h(x)
def
= f(x + 1n) describes an (n − k)-dimensional axis-parallel linear subspace. (Indeed, the

reduction used in the proof of Claim 4.1 is instantiated here by mandating that u = 1n.)
Actually, analogously to the previous section, we aim at presenting one-sided error testers for the

case that the co-dimension is not specified (or is only upper-bounded). Furthermore, we consider
the more general task of testing that a function h : Fn → {0, 1} describes an axis-parallel linear
subspace, where F is an arbitrary finite field (and F = GF(2) is merely the special case used
for testing monomials). As in the previous section, we denoted the tested function by h and let
H = h−1(1).

21

Overview. The basic strategy is to first apply a tester of linear subspaces such as Algorithm 4.9
(or Algorithm 4.14). Ignoring the case that this tester halts in Step 1 (while ruling that H = Fn),
recall that whenever this tester does not reject, it provides a k-by-n matrix V that yields a function
g = gH,V as in Definition 4.2, and that g : Fn → Fk ∪ {⊥} is close to a linear function with image
Fk.

The next step is trying to find k+1 disjoint subsets of [n] that influence h (i.e., each subset con-
tains a variable that influences h) along with Boolean vectors that lie outside H and are supported
by these subsets (see definition below), where this search is performed by using self-correction on
g. Note that if H is an (n − k)-dimensional axis-parallel linear subspace, then this attempt is
bound to fail (since in that case h is influenced by k locations in [n]). Indeed, in case of failure we
halt accepting. On the other hand, we show that if H is (close to) an (n − k)-dimensional linear
subspace that is not axis-parallel, then such k + 1 vectors are found (w.h.p.).

Now, suppose that we found such vectors, denoted v(1),, v(k+1); that is, v(i) 6∈ H and the
non-zero entries of the v(i)’s reside in disjoint locations. Then, we check whether

∑
i∈[k+1] civ

(i) 6∈ H
for all (c1, ..., ck+1) ∈ Fk+1 \{0k+1}, and reject if this condition does not hold. As shown below (see
Claim 5.1), this condition holds when H is an axis-parallel linear subspace. Hence, assuming that
the condition does hold and letting V ′ be the corresponding (k+ 1)-by-n matrix, we invoke Step 3
of Algorithm 4.9 in a final attempt to find evidence that H is not an axis-parallel linear subspace.
If this attempt fails, then we halt accepting. Note that if H is an (n−k)-dimensional subspace that
is not axis-parallel, then such k+ 1 vectors must be dependent and so {c′Fk+1 : x+ c′V ∈ H ′}| ≥ 2
for every x, and Step 3 rejects. We shall show that the same happens also when H is close to being
an (n− k)-dimensional subspace that is not axis-parallel.

Notation and a key observation. The support of a vector v ∈ Fn, denoted supp(v), is defined
as the set of locations in which v holds non-zero entries; that is, i ∈ supp(v) if and only if the ith

element of v is not zero. Hence, the second step in our algorithm is searching for distinct vectors
v(1),, v(k+1) such that supp(v(i))∩ supp(v(j)) = ∅ for every i 6= j ∈ [k+ 1]. We claim that if H is
an axis-parallel linear subspace, then

∑
i∈[k+1] civ

(i) 6∈ H for all (c1, ..., ck+1) ∈ Fk+1 \ {0k+1}. This

follows from the case of two vectors formulated next.15

Claim 5.1 (on axis-parallel linear subspaces): Suppose that H ⊆ Fn is an axis-parallel linear
subspace; that is, for some J ⊆ [n] it holds that H = {x ∈ Fn : xJ = 0|J |}. Then, for any
u,w ∈ Fn\H such that supp(u)∩supp(w) = ∅, and every α, β ∈ F\{0}, it holds that αu+βw 6∈ H.

Proof: Let H and J ⊆ [n] be as in the hypothesis. Then, v ∈ H holds if and only if supp(v)∩J = ∅.
Hence, u 6∈ H implies that supp(u)∩J 6= ∅, and ditto for w. Assuming that supp(u)∩supp(w) = ∅,
we have supp(αu+ βw) = supp(u) ∪ supp(w) for every α, β ∈ F \ {0}. Hence,

supp(αu+ βw) ∩ J = (supp(u) ∪ supp(w)) ∩ J
= (supp(u) ∩ J) ∪ (supp(w) ∩ J)

6= ∅

which implies that αu+ βw 6∈ H.

15That is, we prove by induction on k′ = 2, ..., k + 1 that
∑

i∈[k′] civ
(i) 6∈ H for all (c1, ..., ck′) ∈ Fk′

\ {0k′
}.

22

The actual algorithm. In order to obtain complexity Õ(1/ε) we perform the first step (of testing
linear subspace) by using Algorithm 4.14, although using Algorithm 4.9 (or any other tester that
also provides a basis for the complementing subspace) will alsoi yield a tester. Again, we assume
for simplicity that h(0n) = 1.

Algorithm 5.2 (testing axis-parallel linear subspaces): On input ε > 0 and oracle access to h :
{0, 1}n → {0, 1} such that h(0n) = 1, we proceed as follows, while letting t = blog|F|(2/ε)c.

1. (Testing that H = h−1(1) is a linear subspace by invoking Algorithm 4.14): We invoke
Algorithm 4.14 with proximity parameter set to ε/10, and reject if it rejects. If the said
invocation accepted in its first step (i.e., Step 1 of Algorithm 4.14), then we accept. Otherwise
(i.e., the invocation accepted at a later step), we let V denote the k-by-n matrix output by
the invocation, where k ∈ N, and proceed to the next step using V .

2. (Searching for influential sets and corresponding vectors): If k > t, then we halt and accept.
Otherwise, we select a random partition of [n] into t′ = O(t2) sets, denoted S1, ..., St′, and
proceed as follows.

(a) For every i ∈ [t′], we test whether Si influences h by selecting random assignments to the
variables in Si and checking whether h evaluates to 0 under any of these assignments.
Specifically, we perform t′′ = O(log t) such trials, where in each trial we select a random
vector uniformly among all vectors that have non-zero entries only in locations that
reside in Si. We check whether such a vector v ∈ Fn (with supp(v) ⊆ Si) is in H
by selecting a random r ∈ Fn and checking whether gH,V (v + r) = gH,V (r); that is, if
gH,V (v + r)− gH,V (r) 6= 0k, then it should be the case that v 6∈ H, and we may reject if
h(v) = 1. Otherwise (i.e., gH,V (v+ r) 6= gH,V (r) and h(v) = 0), we let v(i) ← v, and say
that Si influences h.

(This term is justified by the fact that h(0n) = 1.)

(b) Let I ⊆ [t′] be the set of indices of the influential sets. If |I| ≤ k, then we accept.
Otherwise (i.e., |I| > k), if |I| > t, then let I be an arbitrary (t+ 1)-subset of I.

For simplicity, suppose I = [|I|]. If there exists (c1, ..., c|I|) ∈ F |I| \ {0|I|} such that∑
i∈I civ

(i) ∈ H, then we reject. Otherwise (i.e.,
∑

i∈I civ
(i) 6∈ H for all (c1, ..., c|I|) ∈

F |I| \ {0|I|}), we let k ← |I| and V be a |I|-by-n matrix whose rows are the vectors in
{v(i)}i∈I .

3. (Last attempt to find witness for the non-linearity of H): Using the foregoing V , perform

Step 3 of Algorithm 4.14 (equiv., Algorithm 4.11), with proximity parameter set to 1.5|F|−|I|,
and output its verdict.

The complexity of this algorithm is Õ(1/ε) + Õ(t2) · |F|t = Õ(1/ε), where the first term accounts
for Steps 1 and 3, the second term accounts for Step 2, and the inequality uses t = blog|F|(2/ε)c.

Proposition 5.3 (analysis of the algorithm): Algorithm 5.2 constitutes a one-sided error tester
for axis-parallel linear subspaces.

23

Proof: If h describes an axis-parallel linear subspace of co-dimension k∗ > 0, then Algorithm 4.14
always accepts, while outputting a matrix of dimension k ≤ k∗.16 If k > t, then Algorithm 5.2
accepts at the beginning of Step 2. Otherwise (i.e., k ≤ t), then it is always the case that the set I
found in Step 2 has size at most k∗, and if |I| ≤ k, then we accept in Step 2. Hence, whenever we
proceed to Step 3 it holds that k < |I| ≤ k∗ and the corresponding matrix satisfies the condition
of Definition 4.2, which implies that Step 3 (if reached) always accepts (see Claim 4.4). Lastly,
by Claim 5.1, every (non-zero) linear combination of the vectors {v(i)}i∈I is not in h−1(1), which
means that Step 2 never rejects.

We now turn to the case that h is ε-far from describing an axis-parallel linear subspace. If h
is ε/10-far from any linear subspace, then Algorithm 4.14 (invoked in Step 1) rejects with high
probability. Hence, we focus on the case that h is ε/10-close to describing some linear subspace
(which is not axis-parallel). Note that the co-dimension of this subspace, denoted k∗, is at most t,

because otherwise h is ε-close to describing the linear subspace {0n} (since 0.1ε+|F|−(t+1)+|F|−n <
ε). Furthermore, for every k < k∗ it holds that h is 0.3ε-far from describing any (n−k)-dimensional
linear subspace, since the distance between linear subspaces of co-dimensions k∗ ∈ [t] and k ∈ [k∗−1]
is at least |F|−k − |F|−k

∗
≥ |F|−t ≤ ε/2. It follows that, with high probability, Algorithm 4.14

either rejects or accepts while outputting a matrix V of rank k ≥ k∗. Furthermore, in the latter
case, the corresponding function g = gH,V is 0.1ε-close to a linear function g′ : {0, 1}n → {0, 1}k.

Note that g′ must be influenced by more than k variables, since otherwise the subspace described
by the corresponding h′ (i.e., h′(x) = 1 iff g′(x) is the all-zero vector) is axis-parallel.17 Hence,
with high probability, Step 2 finds at least k + 1 influential subsets and the execution proceeds to
Step 3 with a matrix V of dimension |I| ∈ [k + 1, t + 1]. But in this case the density of h−1(1) is

at least |F|−k
∗
− 0.1ε ≥ 0.8|F|−k > 1.5|F|−|I|, since k∗ ≤ k ≤ t ≤ log|F|(2/ε) and |I| > k. Using

Claim 4.12, we conclude that Step 3 rejects with high probability.

Conclusions. Proposition 5.3 implies that there exists a one-sided error tester of complexity
Õ(1/ε) for axis-parallel linear subsoaces, and thus for testing monomials. This establishes Theo-
rem 1.3. Furthermore, a closer look at the proof reveals that in case of accepting the tester may
indicate an upper bound on the dimension of the axis-parallel linear subspace; that is, it may always
output k ∈ [0, k∗] whenever h describes an (n − k∗)-dimensional subspace (and does so with high
probability when h is close to describing such a subspace). Hence, we also obtain a tester for the
class of linear spaces of dimension at least n− k∗. This establishes Theorem 1.2.

6 Lower Bounds for the Exact Versions

Here, we say that f : {0, 1}n → {0, 1} is a k-monomial if f is the product of exactly k variables;
that is, there exists a k-subset I ⊆ [n] such that f(x) =

∏
i∈I xi.

Theorem 6.1 (on the complexity of one-sided error testing k-monomials): For every k ≥ 2,
every one-sided error tester for k-monomials has query complexity Ω̃(log(n− k)), provided that the

16Needless to say, if h ≡ 1, then Algorithm 4.14 always accepts in Step 1, and in that case Algorithm 5.2 always
accepts.

17Recalling that g′ is a linear function with range Fk, it follows that if it depends on at most k variables, then it
assumes the value 0 iff all these variables are set to 0.

24

proximity parameter is smaller than 2−k. Furthermore, this holds even if it is promised that the
tested function is either a k-monomial or a (k − 1)-monomial.

Equivalently, the lower bound holds for testing (n − k)-dimensional axis-parallel linear subspaces
(over GF(2)), even when guaranteed that the tested function describes an (n − k′)-dimensional
axis-parallel linear subspace for k′ ∈ {k − 1, k}. Indeed, this establishes Theorem 1.1.

Proof: We prove the furthermore claim for k = 2, and it follows for general k by considering
monomials that always contain the last k − 2 variables. Moreover, we shall prove that Ω̃(log n)
queries are required from any algorithm that satisfies the following two conditions.

1. The algorithm always accepts any 2-monomial.

2. When given oracle access to a random 1-monomial, the algorithm rejects with probability at
least 1/2, where the probability is taken over the choice of the monomial.

Indeed, it suffices to consider deterministic algorithms, since one may consider the best possible
random-choices of a randomized algorithm. To prove this claim, we fix an arbitrary (deterministic)
algorithm that makes q queries and consider a random iterative process that selects a random
1-monomial on-the-fly, in response to the queries of the algorithm. We shall show that, with
probability exceeding 1/2, after q queries the function is still undetermined and the answers received
are also consistent with some 2-monomial. Since in such a case the algorithm must accept (per
the one-sided error condition), it follows that it accepts a random 1-monomial with probability
exceeding 1/2. This proves that the query complexity of an algorithm that satisfies the foregoing
two conditions must exceed q.

In light of the above, we focus on describing and analyzing the aforementioned random iterative
process. The process maintain a set of indices (of variables), denoted S, such that the corresponding
1-monomials are each consistent with the answers provided so far. Initially, S = [n], and after
q iterations (i.e., queries) we select an index uniformly in the current set S and consider the
corresponding 1-monomial. We shall also show that if |S| ≥ 2, then any 2-monomial with variables
indices that reside in S is consistent with the answers obtained so far.

Construction 6.1.1 (an iteration of the process): Suppose that the current set of indices equals
S, and that the algorithm makes the query x. Let X be the set of 1-coordinates in x; that is,
X = {i ∈ [n] : xi=1}. Then, with probability |X∩S||S| , the process answers 1 and resets S ← S ∩X,

and otherwise it answers 0 and resets S ← S \X (equiv., S ← S ∩ {i ∈ [n] : xi=0}).

Evidently, the process always stops (after q iterations) with a non-empty set S. We call this set
the output of the process. We now analyze this output.

Claim 6.1.2 (monomials consistent with the output of the process): If the process outputs the set
S, then any monomial that has all its variables in S is consistent with the answers provided by the
process; that is, for any I ⊆ S, the monomial fI defined by fI(x) =

∏
i∈I xi is consistent with all

answers.

Proof: Fixing the random choices of the process, let S be its output and x a query made to it
by the algorithm. If x was answered 1 (resp., answered 0), then {i ∈ [n] : xi = 1} ⊇ S (resp.,
{i ∈ [n] : xi=0} ⊇ S), and so fI(x) = 1 (resp., fI(x) = 0) for every I ⊆ S.

25

Claim 6.1.3 (the distribution of a random element in the set output by the process): Suppose that
the process outputs the set S and then we select i uniformly in S. Then, i is distributed uniformly
in [n].

Proof: The execution of the process can be visualized as traversing a tree of depth q in which the
paths represent possible sequences of answers, and the vertices represent the corresponding sets.
The root corresponds to the set [n], and if a vertex corresponds to the set S then its children
correspond to the sets S ∩ X and S \ X, where X corresponds to the query made at this point.
Now, observe that the vertices at each level of the tree correspond to a partition of [n], and that a
vertex that corresponds to the set S is reached with probability |S|/n.

Claim 6.1.4 (the size of the set output by the process): For some q = Ω
(

logn
log logn

)
, with probability

at least 2/3, the output of the process has size at least 2.

Proof: Consider the sequence of sets S1, ..., Sq selected in the q steps of the process, where S0 = [n],
and let X(S1, ..., Si−1) denote the ith query made by the algorithm (when given the corresponding
sequence of answers). Letting, X = X(S1, ..., Si−1), it holds that Si = Si−1 ∩X with probability
|Si−1∩X|
|Si−1| , and Si = Si−1 \ X otherwise. Our aim is to upper-bound the probability that Sq is a

singleton. Hence, without loss of generality, we may assume that X(S1, ..., Si−1) only depends on
Si−1 and that it can be replaced by a function of |Si−1| that merely specifies the relative sizes of
Si−1 ∩X and Si−1 \X; that is, pi(|Si−1|) = |Si−1 ∩X|/|S−i|.

In light of the above, it suffices to consider the sequence of random variables ζ1, ..., ζq that
represent the sizes of the Si’s such that ζi = pi(ζi−1) · ζi−1 with probability pi(ζi−1) and ζi =
(1− pi(ζi−1)) · ζi−1 otherwise. Letting ζ0 = n, our aim is to prove that Pr[ζq=1] ≤ 1/3, which we
write as

Pr

∏
i∈[q]

ζi−1
ζi
≥n

 ≤ 1/3. (1)

Letting ξi = log2(ζi−1/ζi) ≥ 0, we have ξi = log2(1/pi) with probability pi and ξi = log2(1/(1−pi))
otherwise, where we can think of pi as adversarially chosen (given ξi−1). Clearly, E[ξi|ξ1, ..., ξi−1] ≤
1, and our aim is to show that

Pr

∑
i∈[q]

ξi≥n′
 ≤ 1/3, (2)

where n′ = log2 n. Note that the ξi’s essentially satisfy the Martingale condition, so Eq. (2) would
have held if the ξ’s were bounded, alas they are not. We address this problem by using the fact
that Pr[xi > log2(4q)] < 1/4q, defining ξ′i = ξi if ξi ≤ log2(4q) and ξ′i = 0 otherwise, and using

Pr

∑
i∈[q]

ξi≥n′
 ≤ Pr

∑
i∈[q]

ξ′i≥n′
+

1

4
(3)

where the point is that ξ′i ∈ [0, log2(4q)]. Lastly, recalling that E[ξ′i] ≤ 1, assuming that q =

Ω(n′/ log n′) is small enough, and using the Martingale Tail Inequality, we upper-bound Pr
[∑

i∈[q] ξ
′
i ≥ n′

]
by exp(−Ω((n′ − q)/ log(4q))) = o(1), and the claim follows.

26

Conclusion: Combining the foregoing claims, we conclude that for some q = Ω((log n)/ log logn),
no algorithm that makes q queries can always accept any 2-monomial, while rejecting a random
1-monomial with probability at least 1/2. The theorem follows.

27

References

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller codes.
IEEE Transactions on Information Theory, Vol. 51 (11), pages 4032–4039, 2005.

[2] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability –
Towards Tight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804–915,
1998. Extended abstract in 36th FOCS, 1995.

[3] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-
merical Problems. Journal of Computer and System Science, Vol. 47, No. 3, pages 549–595,
1993. Extended abstract in 22nd STOC, 1990.

[4] Y. Filmus, N. Lifshitz, D. Minzer, and E. Mossel. AND Testing and Robust Judgement
Aggregation. arXiv:1911.00159 [cs.DM], 2019.

[5] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[6] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[7] O. Goldreich. Reducing Testing Affine Spaces to Testing Linearity of Functions. In
Computational Complexity and Property Testing (O. Goldreich, Ed.), Springer, Lecture
Notes in Computer Science (Vol. 12050), to appear. Preliminary version in ECCC, TR16-
080, 2016.

[8] O. Goldreich and L.A. Levin. A Hard-Core Predicate for all One-Way Functions. In the
proceedings of 21st ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[9] E. Haramaty, A. Shpilka, and M. Sudan. Optimal Testing of Multivariate Polynomials
over Small Prime Fields. SIAM Journal on Computing, Vol. 42, No. 2, pages 536–562,
2013.

[10] M. Parnas, D. Ron, and A. Samorodnitsky. Testing Basic Boolean Formulae. SIAM
Journal on Disc. Math. and Alg., Vol. 16 (1), pages 20–46, 2002.

28

Appendices

A.1 Proof of Claim 4.3

Recall that Claim 4.3 asserts that for H,V and g = gH,V as in Definition 4.2, it holds that H is
an (n− k)-dimensional linear subspace if and only if g is a linear function with image Fk.

Proof: Recall that g−1(0k) ⊆ H always holds. Furthermore, equality (i.e., g−1(0k) = H) holds if
g never assumes the value ⊥, since in this case x + cV ∈ H implies that g(x) = c (and so x ∈ H
implies g(x) = 0n).

Now, on the one hand, if g is a linear function with image Fk (i.e., g(x) = xT for some full-rank
n-by-k matrix T), then H = g−1(0k) (i.e., H = {x∈Fn : xT = 0k}), which implies that H is an
(n − k)-dimensional linear subspace (since H = {yG : y ∈Fn−k} for any G that is a basis of the
subspace orthogonal to T>).18

On the other hand, if H is an (n − k)-dimensional linear subspace, then, for some full-rank
(n − k)-by-n matrix G, it holds that H = {yG : y ∈ Fn−k}. In this case, for every x ∈ Fn
there exists a unique representation of x as yG− cV , since V is a basis for a k-dimensional linear
subspace that complements the (n − k)-dimensional linear subspace H, Hence, for every x ∈Fn,
there exists a unique (c, y)∈Fk × Fn−k such that x + cV = yG ∈ H, and g(x) = c follows. We
now observe that the image of g equals Fk, since g(0n − cV) = c for every c ∈ Fk, and that g is
linear, since for every x = yG − cV and x′ = y′G − c′V in Fn, it holds that g(x) + g(x′) = c + c′

and c+ c′ = g(y′′G− (c+ c′)V) holds for every y′′ ∈ Fn−k (and in particular for y′′ = y+ y′, which
implies that c+ c′ = g(x+ x′)).

A.2 Proof of Lemma 3.2

The following self-correction procedure, denoted SelfCorrectPolyf (x), is presented in the analysis of
tester underlying [1, Thm. 1]. On input x ∈ {0, 1}n and access to a function f : {0, 1}n → {0, 1},
the procedure selects uniformly at random vectors y1, . . . , yk ∈ {0, 1}n and outputs the sum of all
vectors in the span of x, y1, ..., yk except for x and the empty linear combination; that is, the output
is ∑

∅6=I⊆{0,1,...,n}:I 6={0}

f

(∑
i∈I

yi

)
(4)

where y0 = x. Note that each of the 2k+1−2 inputs to f (i.e.,
∑

i∈I yi for each non-empty I 6= {0})
is uniformly distributed in {0, 1}n.

Claim A.1 (Lemma 1 in [1]): If f ∈ P≤k, then Eq. (4) equals f(y0) for every y0, y1, . . . , yk ∈
{0, 1}n.

This establishes Part 2 of Lemma 3.2. We establish Part 1 by observing that is f is δ-close to f ′

then for every x it holds that SelfCorrectPolyf (x) is (2k+1 − 2) · δ-close to SelfCorrectPolyf
′
(x). It

18Alternatively, if g(x + x′) = g(x) + g(x′) for every x, x′ ∈ Fn, then x, x′ ∈ H implies x + x′ ∈ H (for every
x, x′ ∈ Fn), since g(x) = g(x′) = 0k implies g(x + x′) = 0k. Hence, H = g−1(0k) is a linear subspace. Lastly, we
note that this subspace has dimension n− k, since the image of g equals Fk and |g−1(0k)| = |g−1(c)| holds for every
c ∈ Fk.

29

follows that if f is 2−k−3-close to g ∈ P≤k, then for every x we have

Pr[SelfCorrectPolyf (x) = g(x)] ≥ Pr[SelfCorrectPolyg(x) = g(x)]− (2k+1 − 2) · 2−k−3

= 1− (2k+1 − 2) · 2−k−3.

This establishes Part 1 of Lemma 3.2.

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

