
Optimal Error Pseudodistributions for Read-Once Branching

Programs

Eshan Chattopadhyay∗

Cornell University
eshanc@cornell.edu

Jyun-Jie Liao∗

Cornell University
jjliao@cs.cornell.edu

May 3, 2020

Abstract

In a seminal work, Nisan (Combinatorica’92) constructed a pseudorandom gen-
erator for length n and width w read-once branching programs with seed length
O(log n · log(nw) + log n · log(1/ε)) and error ε. It remains a central question to re-
duce the seed length to O(log(nw/ε)), which would prove that BPL = L. However,
there has been no improvement on Nisan’s construction for the case n = w, which is most
relevant to space-bounded derandomization.

Recently, in a beautiful work, Braverman, Cohen and Garg (STOC’18) introduced the
notion of a pseudorandom pseudo-distribution (PRPD) and gave an explicit construction
of a PRPD with seed length Õ(log n · log(nw) + log(1/ε)). A PRPD is a relaxation of
a pseudorandom generator, which suffices for derandomizing BPL and also implies a
hitting set. Unfortunately, their construction is quite involved and complicated. Hoza
and Zuckerman (FOCS’18) later constructed a much simpler hitting set generator with
seed length O(log n · log(nw) + log(1/ε)), but their techniques are restricted to hitting
sets.

In this work, we construct a PRPD with seed length

O(log n · log(nw) · log log(nw) + log(1/ε)).

This improves upon the construction in [BCG18] by a O(log log(1/ε)) factor, and is
optimal in the small error regime. In addition, we believe our construction and analysis
to be simpler than the work of Braverman, Cohen and Garg.

1 Introduction

A major challenge in computational complexity is to understand to what extent randomness
is useful for efficient computation. It is widely believed that randomness does not provide
substantial savings in time and space for algorithms. Indeed, under plausible assumption,
every randomized algorithm for decision problem can be made deterministic with only a
polynomial factor slowdown in time (BPP = P) [IW97] or a constant factor blowup in space
(BPL = L) [KvM02].

∗Supported by NSF grant CCF-1849899.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 69 (2020)

However, it remains open for decades to prove these results unconditionally. For de-
randomization in the time-bounded setting, it is known that proving BPP = P implies
circuit lower bounds which seem much beyond reach with current proof techniques [KI04].
However no such implications are known for the space-bounded setting, and there has
been some progress. Savitch’s theorem [Sav70] implies that RL ⊆ L2. Borodin, Cook,
Pippenger [BCP83] and Jung [Jun81] proved that PL ⊆ L2, which implies BPL ⊆ L2.
Nisan [Nis92, Nis94] constructed a pseudorandom generator for log-space computation with
seed length O(log2 n), and used it to show that BPL can be simulated with O(log2 n) space
and polynomial time. Saks and Zhou [SZ99] used Nisan’s generator in a non-trivial way to
show that BPL ⊆ L3/2, which remains the best known result so far. We refer the interested
reader to the beautiful survey by Saks [Sak96] for more background and relevant prior work.

We introduce the notion of a read-once branching programs, which is a non-uniform model
for capturing algorithms that use limited memory.

Definition 1.1 (Read-once branching program). A (n,w)-read-once branching program
(ROBP) B is a directed graph on the vertex set V =

⋃n
i=0 Vi, where each set Vi contains

w nodes. Every edge in this directed graph is labeled either 0 or 1. For every i < n, and every
node v ∈ Vi, there exists exactly two edges starting from v, one with label 0 and the other
with label 1. Every edge starting from a node in Vi connects to a node in Vi+1. We say n is
the length of B, w is the width of B and Vi is the i-th layer of B.

Moreover, there exists exactly one starting state s ∈ V0, and exactly one accepting state
t ∈ Vn. For every x = (x1, . . . , xn) ∈ {0, 1}n, we define B(x) = 1 if starting from s we will
reach t following the edges labeled by x1, . . . , xn. Otherwise we define B(x) = 0.

It is well-known the computation of a probabilistic Turing machine that uses space S and
tosses n coins, on a given input y, can be carried out by a (n, 2O(S))-ROBP By. In particular,
if the string x ∈ {0, 1}n corresponds to the n coin tosses, then By(x) is the output of the
Turing machine.

A standard derandomization technique is via pseudorandom generators. We define this
notion for the class of ROBPs.

Definition 1.2 (Pseudorandom generator). A function G : {0, 1}s → {0, 1}n is a (n,w, ε)-
pseudorandom generator (PRG) if for every (n,w)-ROBP B,∣∣∣∣ E

x∈{0,1}n
[B(x)]− E

r∈{0,1}s
[B(G(r))]

∣∣∣∣ ≤ ε.
The seed length of G is s. G is explicit if G is computable in O(s) space.

To derandomimze space-bounded computation given an explicit (n,w, ε)-PRG, one can
enumerate B(G(r)) for every r ∈ {0, 1}s with O(s) additional space to compute an ε-
approximation of the quantity Ex [B(x)].

Nisan [Nis92] constructed a (n,w, ε)-PRG with seed length O(log n · log(nw/ε)), which
implies BPL ⊆ L2. While there is a lot of progress in constructing PRG with bet-
ter seed length for restricted family of ROBP (see, e.g., [NZ96, Arm98, BV10, BDVY13,
BRRY14, KNP11, De11, Ste12, MRT19] and references therein), Nisan’s generator and its
variants [Nis92, INW94, RR99] remain the best-known generators in the general case.

2

1.1 Pseudorandom pseudodistribution

Recently, a beautiful work of Braverman, Cohen and Garg [BCG18] introduced the notion of
a pseudorandom pseudodistribution (PRPD) that relaxes the definition of a PRG.

Definition 1.3 (Pseudorandom pseudodistribution). A pair of functions (G, ρ) : {0, 1}s →
{0, 1}n×R generates a (n,w, ε)-pseudorandom pseudodistribution (PRPD) if for every (n,w)-
ROBP B, ∣∣∣∣ E

x∈{0,1}n
[B(x)]− E

r∈{0,1}s
[ρ(r) ·B(G(r))]

∣∣∣∣ ≤ ε.
We say s is the seed length of (G, ρ). We say (G, ρ) is k-bounded if |ρ(x)| ≤ k for every
x ∈ {0, 1}s. We say (G, ρ) is explicit if they are computable in space O(s).

Note that a (n,w, ε)-PRG G of seed length s with a constant function ρ(x) = 1 generates
a 1-bounded (n,w, ε)-PRPD. Similar to a PRG, it is possible to derandomize BPL by enu-
merating all seeds of a PRPD and computing an ε-approximation for Ex [B(x)]. In [BCG18]
they observe that given (G, ρ) which generates an (n,w, ε)-PRPD, the function G itself is an
ε-hitting set generator for (n,w)-ROBP.

The main result in [BCG18] is an explicit construction of a (n,w, ε)-PRPD with seed
length

O ((log n · log(nw) + log(1/ε)) · log log(nw/ε)) ,

which is poly(nw/ε)-bounded. This improves on the seed-length of Nisan’s generator and
provides near optimal dependence on error.

Unfortunately, the construction and analysis in [BCG18] is highly complicated. Hoza
and Zuckerman [HZ18] provided a dramatically simpler hitting set generator with slightly
improved seed length. However, it is not clear how to extend their techniques for constructing
a PRPD (or PRG).

1.2 Main result

In this paper, we construct a PRPD with optimal dependence on error (up to constants).

Theorem 1. There exists an explicit (n,w, ε)-PRPD generator (G, ρ) with seed length

O (log n · log(nw) · log log(nw) + log(1/ε)) ,

which is poly(1/ε)-bounded.

This improves upon the construction in [BCG18] by a factor of O(log log(1/ε)), for any
ε < n−Ω(log(nw) log log(nw)).

As observed in [BCG18], the small-error regime is well motivated for application to de-
randomizing space-bounded computation. In particular, Saks and Zhou [SZ99] instantiated
Nisan’s PRG with error n−ω(1) to obtain the result BPL ⊆ L3/2. We note that one can
replace the PRG in the Saks-Zhou scheme1 with a PRPD which is poly(w, 1/ε)-bounded,
and hence improvements to our result will lead to improved derandomization of BPL.

Our construction uses a strategy similar to [BCG18] with the following key differences.

1technically, the Saks-Zhou scheme requires a high-probability property in Nisan’s generator, but Ar-
moni [Arm98] observed that one can use an averaging sampler to obtain this property for any PRG (see also
[HU17]). The same argument works for PRPD with bounded weight.

3

• The construction in [BCG18] has a more bottom-up nature: their construction follows
the binary tree structure in Nisan’s generator [Nis92], but in each node they maintain
a sophisticated “leveled matrix representation” (LMR) which consists of many pieces
of small-norm matrices, and they show how to combine pieces in two LMRs one by
one to form a LMR in the upper level. Our construction follows the binary tree struc-
ture in Nisan’s generator, but has a more top-down spirit. We give a clean recursive
formula which generates a “robust PRPD” for (n,w)-PRPD given robust PRPDs for
(n/2, w)-ROBP, where a robust PRPD is a family of pseudodistributions such that
the approximation error of pseudodistribution drawn from this family is small on aver-
age. (A formal definition can be found in Definition 6.3.) The top-down nature of our
construction significantly simplifies the construction and analysis.

• Following [BCG18], we use an averaging sampler in our recursive construction, but we
further observe that we can apply a simple “flattening” operation to limit the growth
of seed length. With this observation, we not only improve the seed length but also
simplify the construction and analysis by avoiding some special case treatments that
are necessary in [BCG18]. (Specifically, we do not need the special multiplication rule
“outer product” in [BCG18].)

Independent work. Independent work of Cheng and Hoza [CH20] remarkably prove that a
hitting set generator (HSG) for ROBPs can be used for derandomizing BPL. Their first result
shows that every (n,w)-ROBP f can be deterministically approximated within error ε with
an explicit HSG for (poly(nwε),poly(nwε))-ROBP with seed length s. The space complexity of
their first derandomization is O(s+ log(nw/ε)). Their second result shows that every (n,w)-
ROBP f can be deterministically approximated within error ε with an explicit HSG for
(n, poly(w))-ROBP with seed length s. Their second derandomization has space complexity
O(s+ w log(n/ε)), and only requires black-box access to f .

Their first result does not imply better derandomization algorithms with the state-of-art
HSGs so far. Plugging in the HSG from [HZ18], their second result gives a black-box deran-
domization algorithm for (n,w)-ROBP in space O(log(n) log(nw)+w log(n/ε)). This is better
than the black-box derandomization with our PRPD for the restricted case of w = O(1).
We note that an advantage of PRPDs (over hitting sets) is that they are applicable in the
Saks and Zhou’s scheme [SZ99] (as mentioned above, when applied with Armoni’s sampler
trick [Arm98]).

Organization. In Section 2, we present the matrix representation of ROBPs, see how a
pseudodistribution can be interpreted as matrices, and introduce some basic rules for trans-
lating between matrix operations and operations on pseudodistribution. We use Section 3 to
present an outline of our main construction and proof. Section 4 contains necessary prelimi-
naries. In Section 5, we formally prove several lemmas about using samplers on approximate
matrix multiplication. In Section 6, we present and prove correctness of our main construc-
tion. We conclude with possible future directions in Section 7.

4

2 ROBPs and Matrices

We introduce the matrix representation of ROBPs and some related definitions that are useful
in the rest of the paper. First, we setup some notation.
Notation: Given two strings x, y, we use x‖y to denote the concatenation of x and y. For
every n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We denote a collection of objects Aji
with subscript i ∈ S and superscript j ∈ T by [A]TS for short.

Given a (n,w)-ROBP B with layers V0, . . . , Vn, we can represent the transition from layer
Vt−1 to Vt by two stochastic matrices M0

t and M1
t as follows: suppose layer Vj consists of

the nodes {vj,1, . . . , vj,w}. The entry (M0
t)i,j = 1 if and only if there exist a 0-labeled edge

from vt−1,i to vt,j (else (M0
t)i,j = 0). The matrix M1

t is defined similarly according to the
edges that labeled 1 between layers Vt−1 and Vt. More generally, we can also represents
multi-step transition by a stochastic matrix. That is, for every 0 ≤ a ≤ b ≤ n, and every
r = (ra+1, . . . , rb) ∈ {0, 1}b−a, we can define

M r
a..b =

b∏
t=a+1

M rt
t

which corresponds to the transition matrix from layer a to layer b following the path labeled
by r. Note that every row of M r

a,b contains exactly one 1, and the other entries are 0.
An n-step random walk starting from the first layer can be represented with the following

matrix:

M0..n =
1

2n

∑
r∈{0,1}n

M r
0..n =

n∏
t=1

1

2

(
M0
t +M1

t

)
.

By definition of M0
t ,M

1
t one can observe that the (i, j) entry of M0..n is the probability that

a random walk from v0,i ∈ V0 reaches vn,j ∈ Vn. Therefore, suppose v0,i ∈ V0 is the starting
state of B, vn,j ∈ Vn is the accepting state of B, then Ex [B(x)] equals the (i, j) entry of
M0..n.

Recall that a generator of a (n,w, ε)-PRPD is a pair of function (G, ρ) such that for every
(n,w)-ROBP B, ∣∣∣∣Er [ρ(r) ·B(G(r))]− E

x∈{0,1}n
[B(x)]

∣∣∣∣ ≤ ε.
Equivalently, for every transition matrices M0

1 ,M
1
1 , . . . ,M

0
n,M

1
n, we have∥∥∥E

r

[
ρ(r) ·MG(r)

0..n

]
−M0..n

∥∥∥
max
≤ ε,

where ‖A‖max denotes maxi,j |A(i, j)|.
Therefore it is natural to represents a PRPD (G, ρ) with a mapping G : {0, 1}s → Rw×w

where G(r) = ρ(r) ·MG(r)
0..n . More generally, we will use a notation similar to the “matrix

bundle sequence” (MBS) introduced in [BCG18] to represent a PRPD.

Definition 2.1. Consider a (n,w)-ROBP [M]
{0,1}
[n] and a pair of functions (G, ρ) : {0, 1}sout×

[Sin]→ {0, 1}n×R. The matrix form of (G, ρ) on [M]
{0,1}
[n] is a mapping A : {0, 1}sout×[Sin]→

Rw×w such that for every x ∈ {0, 1}sout and y ∈ [Sin],

A(x, y) = ρ(x, y) ·MG(x,y)
0..n .

5

For every x ∈ {0, 1}sout we abuse the notation and define

A(x) = E
y

[A(x, y)] .

Besides, we define 〈A〉 = Ex,y [A(x, y)]. We say sout is the outer seed length of A, denoted by
sout(A), and Sin is the inner size of A, denoted by Sin(A). We also define sin(A) = dlogSine
to be the inner seed length of A, and s(A) = sout(A) + sin(A) to be the seed length of A.

Remark 2.2. For every fixed x, the collection {A(x, y) : y ∈ [Sin]} corresponds to the “matrix
bundle” in [BCG18]. This should be treated as a collection of matrices which “realizes” the
matrix A(x). The whole structure A corresponds to the “matrix bundle sequence” in [BCG18],
and should be treated as a uniform distribution over the set {A(x) : x ∈ {0, 1}sout}.

When the ROBP [M]
{0,1}
[n] is clear in the context, we will use the matrix formA to represent

the pseudodistribution (G, ρ) directly. We will apply arithmetic operations on matrices A(x),
and these operations can be easily translated back to operations on pseudodistributions as
follows.

Definition 2.3. Consider a (n,w)-ROBP [M]
{0,1}
[n] , and a pair of function (F, σ) : [S] →

{0, 1}n×R. The matrix that is realized by (F, σ) on M0..n is Ei∈[S]

[
σ(i) ·MF (i)

0..n

]
. We say S

is the size of (F, σ).

Scaling the matrix corresponds to scaling the coefficients in the pseudodistribution.

Claim 1. Consider a (n,w)-ROBP [M]
{0,1}
[n] , let A be a matrix realized by matrix bundle

(FA, σA) on M0..n. Then cA is realized by a matrix bundle (F ′A, σ
′
A) of size SA s.t. F ′A = FA

and σ′A(x) = cσA(x) for every x ∈ [S].

The summation on matrices corresponds to re-weighting and union on pseudodistributions.

Claim 2. Consider a (n,w)-ROBP [M]
{0,1}
[n] , let A be a matrix realized by matrix bundle

(FA, σA) of size SA on M0..n and B be a matrix realized by matrix bundle (FB, σB) of size
SB on M0..n. Then A + B is realized by a matrix bundle (F ′, σ′) of size SA + SB on M0..n

s.t.

F ′(x) =

{
FA(x) if x ≤ SA
FB(x− SA) if x > SA

and σ′(x) =

{
SA+SB
SB

· σA(x) if x ≤ SA
SA+SB
SB

· σB(x− SA) if x > SA

The multiplication on matrices corresponds to concatenation of pseudodistributions.

Claim 3. Consider a (n,w)-ROBP [M]
{0,1}
[n] , let A be a matrix realized by matrix bundle

(FA, σA) of size SA on M0..n/2 and B be a matrix realized by matrix bundle (FB, σB) of size
SB on Mn/2..n. Fix a bijection π : [SA]× [SB]→ [SA · SB]. Then AB is realized by a matrix
bundle (F ′, σ′) of size SA · SB s.t. for every a ∈ [SA], b ∈ [SB],

F ′(π(a, b)) = FA(a)‖FB(b) and σ′(π(a, b)) = σ(a) · σ(b).

6

3 Proof Overview

In this section we give an outline of our construction and proof. In Section 3.1, we briefly
recap how a sampler is used in [BCG18] to achieve better seed length in the small-error
regime. We discuss our construction ideas in Section 3.2.

3.1 The sampler argument

Nisan’s generator and its variants recursively use a lemma of the following form.

Lemma 3.1. Consider a (n,w)-ROBP [M]
{0,1}
[n] . Let A be the matrix form of a distribution

on M0..n/2, and B be the matrix form of a distribution on Mn/2..n. Suppose s(A) = s(B) = s.
Then there exists a distribution whose matrix form C on M0..n of seed length s+O(log(w/δ))
such that

‖〈C〉 − 〈A〉 〈B〉‖max ≤ δ.

This lemma is usually achieved with a pseudorandom object. For example, the INW gen-
erator [INW94] uses a bipartite expander with degree poly(w/δ) to construct the distribution
C in the above lemma. That is, for every edge (x, y) in the expander G, they add A(x)B(y)
into C. A similar lemma can also be obtained with universal hash functions [Nis92] or seeded
extractors [RR99]. By recursively constructing good approximations of M0..n/2 and Mn/2..n

and applying Lemma 3.1, one can obtain a PRG which has seed length O(log n · log(nw/ε))
(δ is taken to be ε/n because of a union bound). Observe that in such constructions, one
needs to pay O(log(1/ε)) (in seed length) per level of recursion.

The crucial idea in [BCG18] is to amortize this cost over all log n levels. What makes this
possible is the following argument, which we will refer to as the sampler argument. First we
define the notion of an averaging sampler.

Definition 3.2. A function g : {0, 1}n × {0, 1}d → {0, 1}m is an (ε, δ)-(averaging) sampler
if for every function f : {0, 1}m → [0, 1],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]

∣∣∣∣ ≤ ε] ≥ 1− δ.

The crucial observation in [BCG18] is that if one uses a sampler to prove Lemma 3.1, the
error actually scales with the norm of one of the matrix forms.

Lemma 3.3 ([BCG18]). Consider a (n,w)-ROBP with matrix representation [M]
{0,1}
[n] . Let

A and B be (pseudo)distributions in matrix form on M0..n/2 and Mn/2..n respectively. Let
n = sout(A), m = sout(B). Suppose ∀x ∈ {0, 1}n, ‖A(x)‖ ≤ 1 and ∀y ∈ {0, 1}m, ‖B(y)‖ ≤ 1.
Let g : {0, 1}n×{0, 1}d → {0, 1}m be a (ε, δ) sampler. Then there exists a (pseudo)distribution
C such that

‖〈C〉 − 〈A〉 〈B〉‖ ≤ O
(
w2
(
δ + εE

x
[‖A(x)‖]

))
.

Besides, C has outer seed length n = sout(A), and for every x ∈ {0, 1}n,

C(x) = E
s

[A(x)B (g(x, s))] .

Note that sin(C) = sin(A) + sin(B) + d.

7

The intuition behind this approximation is as follows. If we want to compute the matrix
product precisely, we take every A(x) and multiply it with Ey [B(y)]. However, with the help
of sampler, we can use x as our seed to select some samples from B, and take their average
as an estimate of Ey [B(y)]. The error of this approximation comes in two different way. For
those x which are not good choices of a seed for the sampler, the samples chosen with such
an x can deviate from the average arbitrarily. However, only δ fraction of x can be bad, so
they incur at most δ error. The second kind of error is the estimation error between average
of samples Es [B(g(x, s))] and the real average Ey [B(y)], which can be at most ε. Since this
gets multiplied with A(x), this kind of error actually scales with ‖A(x)‖. Although the first
kind of error (which is δ) does not benefit from ‖A‖ being small, in [BCG18] they observe
that, the parameter δ has almost no influence on the seed length in some cases. To discuss
this more precisely, we first recall explicit constructions of samplers.

Lemma 3.4 ([RVW01, Gol11]). For every δ, ε > 0 and integer m, there exists a space
efficient (ε, δ)-sampler f : {0, 1}n×{0, 1}d → {0, 1}m s.t. d = O(log log(1/δ) + log(1/ε)) and
n = m+O(log(1/δ)) +O(log(1/ε)).

Note that in Lemma 3.3, s(C) = s(A) + d + sin(B). Therefore if n ≥ m + O(log(1/δ)) +
O(log(1/ε)), δ has almost no impact on the seed length.

To use the above ideas, it boils down to working with matrices with small norm, and
making sure that every multiplication is “unbalanced” enough so that δ has no impact.
[BCG18] applies a delicate telescoping sum trick (which they called “delta sampler”) to divide
an ε-approximation into a base approximation with 1/poly(n) error and several “correcting
terms” which have small norm. By carefully choosing the samplers and discarding all the
non-necessary terms, they roughly ensure the following properties: first, a matrix with large
seed length must have small norm; second, every matrix multiplication is unbalanced enough
so that δ has no impact on the seed length.

With these properties and the sampler argument, they show that the total seed length is
bounded by Õ(log(1/ε) + log n log(nw)).

3.2 Our construction

In executing the ideas sketched above, the construction and analysis in [BCG18] turns out
to be quite complicated and involved. One thing which complicates the construction and
analysis is its bottom-up nature. That is, when multiplying two terms, they create more
terms with the telescoping sum trick. Moreover, in the telescoping sum trick one needs to
choose the parameters of each sampler very carefully to make sure the seed length of each
term does not exceed its “smallness”.

Our first step toward a simpler construction is the following top-down formula, which we
will apply recursively to compute an approximation of M0..n:

Lemma 3.5. Let ‖·‖ be a sub-multiplicative matrix norm, and A,B be two matrices s.t.
‖A‖ , ‖B‖ ≤ 1. Let k ∈ N and γ < 1. For every 0 ≤ i ≤ k, let Ai be a γi+1-approximation of
A, and let Bi be a γi+1-approximation of B. Then

k∑
i=0

AiBk−i −
k−1∑
i=0

AiBk−1−i

8

is a ((k + 2)γk+1 + (k + 1)γk+2)-approximation of AB.

Proof. We have,∥∥∥∥∥(
k∑
i=0

AiBk−i −
k−1∑
i=0

AiBk−1−i)−AB

∥∥∥∥∥
=

∥∥∥∥∥
k∑
i=0

(A−Ai)(B −Bk−i)−
k−1∑
i=0

(A−Ai)(B −Bk−1−i) + (Ak −A)B +A(Bk −B)

∥∥∥∥∥
≤

k∑
i=0

‖A−Ai‖ · ‖B −Bk−i‖ +

k−1∑
i=0

‖A−Ai‖ · ‖B −Bk−1−i‖

+ ‖Ak −A‖ · ‖B‖ + ‖A‖ · ‖Bk −B‖
≤ (k + 2)γk+1 + (k + 1)γk+2

This formula shares an important property with the BCG construction: we never need a
γk-approximation (which implies large seed length) on both sides simultaneously. The benefit
of our top-down formula is that we are treating the PRPD as one object instead of the sum
of many different terms. One obvious effect of such treatment is we don’t need to analyze
the “smallness” of each term and the accuracy of the whole PRPD separately.

In this top-down formula, we do not explicitly maintain small-norm matrices as in
[BCG18]. However, observe that in the proof of Lemma 3.5, we are using the fact that
Ak −A is a small norm matrix. Our goal is to apply the sampler argument (Lemma 3.3) on
these “implicit” small-norm matrices. The following is our main technical lemma.

Lemma 3.6 (main lemma, informal). Let A,B ∈ Rw×w, k ∈ N and γ < 1. Suppose
for every i ≤ k there exists pseudodistribution Ai,Bi such that Ex [‖Ai(x)−A‖] ≤ γi+1,
Ex [‖Bi(x)−B‖] ≤ γi+1, and ‖Ai(x)‖ , ‖Bi(x)‖ ≤ 1 for every x. Then there exists a pseudo-
distribution Ck such that

E
x

[
‖Ck(x)−AB‖ ≤ O(γ)k+1

]
,

where Ck(x) =
∑

i+j=k Ax,iBx,j −
∑

i+j=k−1Ax,iBx,j. Ax,i and Bx,i are defined as follows.

• If i > dk/2e, Ax,i = Ai(x) and Bx,i = Bi(x).

• If i ≤ dk/2e, Ax,i = Es
[
Ai(gi(x, s))

]
and Ax,i = Es

[
Bi(gi(x, s))

]
, where gi is a

(γi+1, γk+1)-sampler, and Ai,Bi denote the “flattened” form of Ai and Bi.

We leave the explanation of “flattened” for later and explain the intuition behind the
lemma first. Our goal is to construct Ck such that Ck(x) is a good approximation of AB on
average over x. We know that Ai and Bi are γi+1-approximation of A and B on average.
Our hope is to use x to draw samples Ai and Bi from Ai and Bi, and apply the formula
in Lemma 3.5 to get a good approximation of AB. In particular, a natural choice would
be setting Ax,i = Ai(x) and Bx,i = Bi(x) for every i ≤ k. However, if there exists a term
Ax,iBx,j such that Ax,i and Bx,j are both bad approximation for a large enough fraction of
x, we cannot guarantee to get a O(γk+1)-approximation on average.

9

To avoid the above case, for every i ≤ dk/2e we use a sampler to approximate 〈Ai〉 and
〈Bi〉. This ensure that the chosen samples Ax,i and Bx,i are good with high probability. This
guarantees that in each term Ax,iBx,j , at least one of Ax,i or Bx,j will be a good choice
with high probability over x. If Ax,i is a good choice with high probability, we can apply
the average-case guarantee on Bx,i to get an average-case guarantee for Ck, and vice versa.
(Indeed, this is the sampler argument.) Therefore we can ensure that Ck(x) is good on
average. Note that we only apply a sampler on Ai (or Bi) when i ≤ dk/2e, which means Ai
(or Bi) has small seed length. Therefore we don’t need to add too much redundant seed to
make the sampler argument work.

In executing the above sketched idea, we run into the following problem: in each mul-
tiplication, the inner seed on both sides aggregates to the upper level. If we start with
pseudodistributions with non-zero inner seed in the bottom level, the inner seed would be-
come Ω(n) in the topmost level. Therefore we need a way to limit the aggregation of inner
seed.

In [BCG18], they run into a similar problem. To deal with this, they apply a different
multiplication rule, “outer product”, in some special cases to deal with this. However, the
outer product does not seem applicable in our construction. Nevertheless, we observe that
whenever we use a sampler to select matrix Ax,i, we only care about whether 〈Ai〉 is close to
A, and we don’t need most of Ai(x) to be close to A anymore. Therefore we will “flatten”
Ai whenever we apply a sampler. That is, recall that each Ai(x) is realized by the average
of some matrices, Ey [Ai(x, y)]. We define the flattened form of Ai, denoted by Ai, such that
Ai(x‖y) = Ai(x, y). Observe that

〈
Ai
〉

= 〈Ai〉 and sin(Ai) = 0. This guarantees that the
inner seed length of Ai will not aggregate in Ck. Moreover, while the flattening will increase
the outer seed length of Ai, this is almost for free since we only flatten Ai when i ≤ dk/2e,
i.e. when Ai has relatively small seed length. As a result, this operation also helps us save a
O(log log(1/ε)) factor in the seed length.

We conclude by briefly discussing the seed length analysis. First note that we set γ =
1/poly(n) to make sure that the error is affordable after a union bound. Now consider the
inner seed length. Consider a term AiBj such that i ≥ j. In this term, part of the inner seed
of C is passed to Ai, and the other is used for the sampler on Bj . Since the seed length of
the sampler only needs to be as large as the “precision gap” between Ai and Ck, the inner
seed length of Ck can be maintained at roughly O(k log(1/γ)) = O(log(1/ε)). However, after
each multiplication, there’s actually a O(log(nw/γ)) = O(log(nw)) additive overhead. Note
that this is necessary since the k = 0 case degenerates to the INW generator. Therefore after
log n levels of recursion, the inner seed length will be O(log(1/ε) + log n · log(nw)).

Besides, we also need the outer seed length of Ck to be long enough so that we can
apply a sampler on Adk/2e and Bdk/2e. The seed length caused by approximation accuracy
ε can be bounded similarly as the inner seed length. However, the O(log n · log(nw)) inner
seed length will be added to the outer seed length several times, because of the flattening
operation. Nevertheless, since we only do flattening for Ai and Bi where i ≤ dk/2e, this
ensures that the flattening operation happens at most log k times. So the total outer seed
length will be bounded by O(log(1/ε)+log k·log n·log(nw)) = O(log(1/ε)+log log(1/ε)·log n·
log(nw)), which is bounded by O(log(1/ε) + log log(nw) · log n · log(nw)) since O(log(1/ε)) is
the dominating term when log(1/ε) ≥ log3(nw).

10

4 Preliminaries

4.1 Averaging samplers

Definition 4.1. A function g : {0, 1}n × {0, 1}d → {0, 1}m is a (ε, δ) (averaging) sampler if
for every function f : {0, 1}m → [0, 1],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]

∣∣∣∣ ≤ ε] ≥ 1− δ.

It’s easy to show that samplers also work for f with general range by scaling and shifting.

Claim 4. Let g : {0, 1}n × {0, 1}d → {0, 1}m be a (ε, δ)-sampler, and let ` < r ∈ R. Then
for every f : {0, 1}m → [`, r],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]

∣∣∣∣ ≤ ε(r − `)] ≥ 1− δ.

Proof. Let f ′ be the function such that f ′(y) = (f(y)− `)/(r− `). Observe that the range of
f ′ is in [0, 1]. By definition of sampler,

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[
f ′(g(x, s))

]
− E
y∈{0,1}m

[
f ′(y)

]∣∣∣∣ ≤ ε] ≥ 1− δ.

By multiplying (r − `) on both sides of the inequality inside the probability above we prove
the claim.

In our construction, we will use the following sampler which is explicitly computable with
small space.

Lemma 4.2 ([RVW01, Gol11]). For every δ, ε > 0 and integer m, there exists a (ε, δ)-sampler
f : {0, 1}n×{0, 1}d → {0, 1}m s.t. d = O(log log(1/δ)+ log(1/ε)) and n = m+O(log(1/δ))+
O(log(1/ε)). Moreover, for every x, y, f(x, y) can be computed in space O(m + log(1/δ) +
log(1/ε)).

Remark 4.3. The original sampler in [RVW01] has a restriction on ε. Such a restriction will
cause a 2O(log∗(nw/ε)) factor in our construction, as in [BCG18]. However, [RVW01] pointed
out that the restriction is inherited from the extractor in [Zuc97], which breaks down when the
error is extremely small. As observed in [Gol11], this restriction can be removed by plugging
in a more recent extractor construction in [GUV09]. Note that there exists a space-efficient
implementation of [GUV09] in [KNW08], so the resulting sampler is also space-efficient. For
completeness we include a proof in Appendix A.

4.2 Matrix norms

As in [BCG18], we will use the infinity norm in this paper.

Definition 4.4. For every matrix A ∈ Rw×w, ‖A‖ = maxi
∑

j |Ai,j |.

We record some well known properties of the infinity norm.

11

Claim 5. Let A,B ∈ Rw×w, c ∈ R. Then

• ‖cA‖ = |c| ‖A‖

• ‖A‖ + ‖B‖ ≤ ‖A+B‖

• ‖AB‖ ≤ ‖A‖ ‖B‖

• maxi,j |Ai,j | ≤ ‖A‖

• If A is stochastic, then ‖A‖ = 1

Note that for any (n,w)-ROBP represented by w × w matrices M
{0,1}
[n] , ‖Mi..j‖ = 1 for

every 0 ≤ i ≤ j ≤ n.

5 Approximate Matrix Multiplication via Samplers

In this section we formally prove the sampler arguments which will be used in our construc-
tion. Our proof strategy resembles that of [BCG18], with the following two crucial differences.
First, we will define two different notions of “smallness” for our flattening idea. Second, in
our construction we need the case where we use samplers to select matrices on both sides
(Lemma 5.4).

We will consider mappings A : {0, 1}n → Rw×w which correspond to the implicit small
norm matrices we discussed in the previous section. Borrowing notation from Definition 2.1,
we use 〈A〉 to denote Ex [A(x)]. First we define two different norms for the mapping A. The
robust norm is similar to the notion of “smallness” in [BCG18], i.e. the average of norm of
A(x), while the norm of A is simply the norm of 〈A〉, i.e. the norm of average of A(x).

Definition 5.1. For every function A : {0, 1}n → Rw×w, we define the norm of A to
be ‖A‖ =

∥∥Ex∈{0,1}n [A(x)]
∥∥, and the robust norm of A to be ‖A‖r = Ex∈{0,1}n [‖A(x)‖].

Besides, we define the weight of A to be µ(A) = maxx ‖A(x)‖.

Claim 6. ‖A‖ ≤ ‖A‖r ≤ µ(A).

Proof. ‖A‖ ≤ ‖A‖r is by sub-additivity of ‖·‖, and ‖A‖r ≤ µ(A) since ‖A‖r is the average
of values no larger than µ(A).

Next we show a simple lemma which will be used later. That is, a sampler for functions with
range [0, 1] is also a sampler for matrix-valued functions, where the error is measured with
infinity norm.

Lemma 5.2. For every function A : {0, 1}m → Rw×w and every (ε, δ)-sampler g : {0, 1}n ×
{0, 1}d → {0, 1}m,

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[A(g(x, s))]− 〈A〉
∥∥∥∥ ≤ 2wµ(A)ε

]
≥ 1− w2δ.

12

Proof. Let E(y) = A(y)− 〈A〉. For every i, j ∈ [w], observe that

max
y
E(y)i,j −min

y
E(y)i,j = max

y
A(y)i,j −min

y
A(y)i,j

By the property of sampler it follows that

Pr
x∈{0,1}n

[∣∣∣E
s

[E(g(x, s))i,j]
∣∣∣ ≤ 2εµ(A)

]
≥ 1− δ.

Using a union bound,

Pr
x∈{0,1}n

[
∀i, j ∈ [w],

∣∣∣E
s

[E(g(x, s))i,j]
∣∣∣ ≤ 2εµ(A)

]
≥ 1− w2δ.

Thus by definition of the infinity norm, we can conclude that

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[E(g(x, s))]

∥∥∥∥ ≤ 2wµ(A)ε

]
≥ 1− w2δ.

which by sub-additivity of ‖·‖ implies

Pr
x∈{0,1}n

[∥∥∥E
s

[A(g(x, s))]
∥∥∥ ≤ ‖A‖ + 2wµ(A)ε

]
≥ 1− w2δ.

Corollary 5.3. For every function A : {0, 1}m → Rw×w and every (ε, δ)-sampler g : {0, 1}n×
{0, 1}d → {0, 1}m,

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[A(g(x, s))]

∥∥∥∥ ≤ ‖A‖ + 2wµ(A)ε

]
≥ 1− w2δ.

Proof. By sub-additivity of ‖·‖,
∥∥∥Es∈{0,1}d [A(g(x, s))]− 〈A〉

∥∥∥ ≤ 2wµ(A)ε implies∥∥∥Es∈{0,1}d [A(g(x, s))]
∥∥∥ ≤ ‖〈A〉‖ + 2wµ(A)ε. The claim now directly follows from

Lemma 5.2.

Now we introduce three different matrix multiplication rules. The first one is applying a
sampler on both sides, and the second and third are applying sampler on only one side.

Lemma 5.4 (symmetric product). Consider A : {0, 1}n → Rw×w and B : {0, 1}m → Rw×w.
Let f : {0, 1}k ×{0, 1}dA → {0, 1}n be a (δ, εA) sampler, and g : {0, 1}k ×{0, 1}dB → {0, 1}m
be a (δ, εB) sampler. Then

E
z

[∥∥∥∥Ex,y [A(f(z, x))B(g(z, y))]

∥∥∥∥] ≤ 2w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) (‖B‖ + 2wµ(B)εB) .

Proof. Let

EA =
{
z :
∥∥∥E
x

[A(f(z, x)]
∥∥∥ > ‖A‖ + 2wµ(A)εA

}
,

13

and

EB =

{
z :

∥∥∥∥Ey [B(g(z, y)]

∥∥∥∥ > ‖B‖ + 2wµ(B)εB

}
.

Define E = EA ∪ EB. By Lemma 5.3 and union bound, Prz [z ∈ E] < 2w2δ. Therefore

E
z

[∥∥∥∥Ex,y [A(f(z, x))B(g(z, y))]

∥∥∥∥] = Pr [z ∈ E] E
z∈E

[∥∥∥∥Ex,y [A(f(z, x))B(g(z, y))]

∥∥∥∥]
+ Pr [z 6∈ E] E

z 6∈E

[∥∥∥∥Ex [A(f(z, x))]E
y

[B(g(z, y))]

∥∥∥∥]
≤ 2w2δµ(A)µ(B) + E

z 6∈E

[∥∥∥E
x

[A(f(z, x))]
∥∥∥ ∥∥∥∥Ey [B(g(z, y))]

∥∥∥∥]
≤ 2w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) (‖B‖ + 2wµ(B)εB) .

The second last inequality is by the fact that ‖·‖ is non-negative and sub-multiplicative.

Lemma 5.5 (left product). Consider A : {0, 1}k → Rw×w and B : {0, 1}m → Rw×w. Let
g : {0, 1}k × {0, 1}dB → {0, 1}m be a (δ, εB) sampler. Then

E
z

[∥∥∥∥Ey [A(z)B(g(z, y))]

∥∥∥∥] ≤ w2δµ(A)µ(B) + ‖A‖r (‖B‖ + 2wµ(B)εB) .

Proof. Let

E =

{
z :

∥∥∥∥Ey [B(g(z, y)]

∥∥∥∥ > ‖B‖ + 2wµ(B)εB

}
.

By Lemma 5.3, Prz [z ∈ E] < w2δ. Therefore

E
z

[∥∥∥∥Ey [A(z)B(g(z, y))]

∥∥∥∥] = Pr [z ∈ E] E
z∈E

[∥∥∥∥Ey [A(z)B(g(z, y))]

∥∥∥∥]
+ Pr [z 6∈ E] E

z 6∈E

[∥∥∥∥Ey [A(z)B(g(z, y))]

∥∥∥∥]
≤ w2δµ(A)µ(B) + Pr [z 6∈ E] · E

z 6∈E

[
‖A(z)‖

∥∥∥∥Ey [B(g(z, y))]

∥∥∥∥]
≤ w2δµ(A)µ(B) + Pr [z 6∈ E] E

z 6∈E
[‖A(z)‖] · (‖B‖ + 2wµ(B)εB)

≤ w2δµ(A)µ(B) + ‖A‖r (‖B‖ + 2wµ(B)εB) .

The third last inequality is by sub-multiplicativity of ‖·‖, the second last inequality is by
non-negativity of ‖·‖, and the last inequality is by the fact that

Pr [z 6∈ E] · E
z 6∈E

[‖A(z)‖] = E
z

[‖A(z)‖ · 1(z 6∈ E)] = ‖A‖r .

Lemma 5.6 (right product). Consider A : {0, 1}k → Rw×w and B : {0, 1}m → Rw×w. Let
f : {0, 1}k × {0, 1}dA → {0, 1}n be a (δ, εA) sampler. Then

E
z

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥] ≤ w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) ‖B‖r .

14

Proof. Let

E =
{
z :
∥∥∥E
x

[A(f(z, x)]
∥∥∥ > ‖A‖ + 2wµ(A)εA

}
.

By Lemma 5.3, Prz [z ∈ E] < w2δ. Therefore

E
z

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥] = Pr [z ∈ E] E

z∈E

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥]

+ Pr [z 6∈ E] E
z 6∈E

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥]

≤ w2δµ(A)µ(B) + Pr [z 6∈ E] · E
z 6∈E

[∥∥∥E
x

[A(f(z, x))]
∥∥∥ ‖B(z)‖

]
≤ w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) · Pr [z 6∈ E] E

z 6∈E
[‖B(z)‖]

≤ w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) ‖B‖r .

6 Main Construction

In this section we show our main construction and prove its correctness. We first introduce
several definitions.

Definition 6.1. For every mapping A : {0, 1}n → Rw×w and every matrix A ∈ Rw×w, we
define A−A to be the mapping s.t. (A−A)(x) = A(x)−A.

Definition 6.2. Consider A ∈ Rw×w and A : {0, 1}n → Rw×w. A is a ε-approximator
of A if ‖Ex [A(x)]−A‖ ≤ ε, i.e. ‖A −A‖ ≤ ε. A is a ε-robust approximator of A if
Ex [‖A(x)−A‖] ≤ ε, i.e. ‖A −A‖r ≤ ε.

Now we define a robust PRPD. Note that a (n,w, ε)-robust PRPD (G, ρ) is also a µ(G, ρ)-
bounded (n,w, ε)-PRPD.

Definition 6.3. (G, ρ) : {0, 1}sout × {0, 1}sin × [µ]→ {0, 1}n ×R is a (n,w, ε)-robust PRPD

if for every (n,w)-ROBP and its matrix representation [M]
{0,1}
[n] the following holds. Let

A : {0, 1}sout × {0, 1}sin → Rw×w denote the mapping

A(x, y) = E
i∈[µ]

[
ρ(x, y, i) ·MG(x,y,i)

0..n

]
.

• Every ρ(x, y, i) is either µ or −µ. In other word, A(x, y) is the summation of transition
matrices with coefficient ±1.

• Let Â denote the mapping Â(x) = Ey [A(x, y)]. Then Â is a ε-robust approximator for
M0..n.

We say µ is the weight of (G, ρ), denoted by µ(G, ρ). sout is the outer seed length of (G, ρ),
denoted by sout(G, ρ). sin is the inner seed length of (G, ρ), denoted by sin(G, ρ). We write
s(G, ρ) = sout(G, ρ) + sin(G, ρ) for short. We say (G, ρ) is explicit if it can be computed in
O(s(G, ρ)) space.

We say A is the matrix form of (G, ρ) on M0..n, and the definition of sout, sin, µ on (G, ρ)
also apply to A. We say Â is the robust matrix form of (G, ρ) on M0..n.

15

Remark 6.4. The above definition is similar to Definition 2.1, but each matrix A(x, y) is
realized with µ matrices instead of one matrix. These µ matrices will never be separated even
after flattening. We do this in order to ensure that the matrix form always take bit-strings
as input. This ensures that we can increase the outer and inner seed length of A arbitrarily:
we can construct the new mapping A′ : {0, 1}s′out × {0, 1}s′in such that A′(x, y) = A(xp, yp)
where xp is the length-sout(A) prefix of x and yp is the length-sin(A) prefix of y. In other
word, A′ computes the output only with prefix of necessary length of the input, and ignore
the remaining bits. It is easy to verify that A′ is also the matrix form of a (n,w, ε)-robust
PRPD.

The following is some additional basic properties about robust PRPD and its flattened form.

Claim 7. Let (G, ρ) : {0, 1}sout × {0, 1}sin × [µ] → {0, 1}n × R be a (n,w, ε)-robust PRPD.
For every (n,w)-ROBP M0

1 ,M
1
1 , . . . ,M

0
n,M

1
n the following holds.

• Let Â be the robust matrix form of (G, ρ) on M0..n. Then µ(Â) ≤ µ(G, ρ).

• Let A denote the matrix form of (G, ρ) on M0..n. Let A : {0, 1}sout+sin → Rw×w denote
the mapping A(x‖y) = A(x, y). We say A is the flattened matrix form of (G, ρ) on
M0..n. Then A is an ε-approximator for M0..n, and µ(A) ≤ µ(G, ρ).

Proof. Recall that for every string r ∈ {0, 1}n, ‖M r
0..n‖ = 1. By sub-additivity of ‖·‖ we

have ‖A(x, y)‖ ≤ µ(G, ρ) for every x, y, which implies µ(A) ≤ µ(G, ρ). By sub-additivity
and scalibility of ‖·‖, we have µ(A′) ≤ µ(A). To show that A is a ε-approimxator of M0..n,
observe that A′ is also an ε-approximator of M0..n by Claim 6, and note that 〈A〉 = 〈A′〉.

Now we prove our main lemma. The following lemma allows us to construct robust PRPDs for
(2m,w) ROBPs from robust PRPDs for (m,w) ROBPs, without increasing the seed length
too much. We will recursively apply this lemma for log n levels to get a (n,w, ε)-robust
PRPD. The basic idea is as described in Lemma 3.6.

Lemma 6.5. Suppose there exists sout, sin such that the following conditions hold.

• For every 0 ≤ i ≤ k, there exists a (m,w, γi+1)-robust PRPD (Gi, ρi) s.t. µ(Gi, ρi) ≤(
m−1
i

)
and sout(G, ρ) ≤ sout. Moreover, for every 0 ≤ i ≤ dk/2e, s(Gi, ρi) ≤ sout.

• For every i ≤ dk/2e, there exists a (εi, δ)-sampler gi : {0, 1}sout × {0, 1}di →
{0, 1}s(Gi,ρi), where εi ≤ γi+1/(w ·

(
m−1
i

)
) and δ ≤ γk+1/(w2 ·

(
2m−1
i

)
).

• For every i ≥ j ≥ 0 s.t. i + j ≤ k, if j ≤ i ≤ dk/2e, then di + dj ≤ sin. If i > dk/2e,
then sin(Gi, ρi) + dj ≤ si.

Then there exists a (2m,w, (11γ)k+1)-robust PRPD (G, ρ) s.t. sout(G, ρ) = sout, sin(G, ρ) =
sin and µ(G, ρ) ≤

(
2m−1
i

)
.

Proof. Fix any (2m,w)-ROBP with matrix representation M
{0,1}
[2m] . Let A = M0..m and B =

Mm..2m. For every 0 ≤ i ≤ k, let Ai, Âi,Ai denote the matrix form, robust matrix form and
flattened matrix form of (G, ρ) on M0..m respectively. Let Bi, B̂i,Bi denote the matrix form,
robust matrix form and flattened matrix form of (G, ρ) on Mm..2m respectively. By definition,

16

Âi and B̂i are γi+1-robust approximator for A and B respectively. By Claim 7, Ai and Bi
are γi+1-approximator for A and B respectively. Moreover, we will increase the outer seed
length of Ai and Bi to match the length of the given input when necessary. (See Remark 6.4)

Now for every x, y we define a mapping Ck : {0, 1}sout × sin → Rw×w as follows. Note that
Ck corresponds to the matrix form of (G, ρ) on M0..2m.

(1) For every 0 ≤ i ≤ dk/2e, let ai be the prefix of y of length di and bi be the suffix of y of
length di. Define Ax,y,i = Ai(gi(x, ai)) and Bx,y,i = Bi(gi(x, bi)).

(2) For every dk/2e < i ≤ k, let ai be the prefix of y of length sin(Ai) and bi be the suffix of
y of length sin(Bi). Define Ax,y,i = Ai(x, ai) and Bx,y,i = Bi(x, bi).

(3) Define Ck(x, y) =
∑

i+j=k Ax,y,iBx,y,j −
∑

i+j=k−1Ax,y,iBx,y,j .

Note that for every i+ j ≤ k, prefix ai and suffix bj of y never overlap.
By expanding every Ax,y,iBx,y,j term with distributive law, we can see that each small

term in Ax,y,iBx,y,j has coefficient ±1, which satisfies the first condition of robust PRPD.
Moreover, the total number of terms after expanding is

µ(Ck) ≤
∑
i+j=k

(
m− 1

i

)
·
(
m− 1

j

)
+

∑
i+j=k−1

(
m− 1

i

)
·
(
m− 1

j

)
=

(
2m− 1

k

)
.

It remains to show that Ck satisfies the second condition of robust PRPD, i.e. Ey [Ck(x, y)] is
a good approximation of M0..2m = AB on average over x. Observe that

E
x

[∥∥∥∥Ey [Ck(x, y)]−AB
∥∥∥∥] = E

x

[∥∥∥∥Ey [Ck(x, y)−AB]

∥∥∥∥]
≤
∑
i+j=k

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]

∥∥∥∥]

+
∑

i+j=k−1

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]

∥∥∥∥]

+ E
x

[∥∥∥∥Ey [(Ax,y,k −A)B]

∥∥∥∥]+ E
x

[∥∥∥∥Ey [A(Bx,y,k −B)]

∥∥∥∥] ,
by decomposing Ck(x, y) − AB with the equation in the proof of Lemma 3.5 and applying
sub-additivity of ‖·‖.

First we consider the last two terms. Since ‖B‖ = 1, by sub-multiplicativity we have

E
x

[∥∥∥∥Ey [(Ax,y,k −A)B]

∥∥∥∥] ≤ E
x

[∥∥∥∥Ey [Ax,y,k −A]

∥∥∥∥] .
Now consider two cases. If k ≥ 2, then

E
x

[∥∥∥∥Ey [Ax,y,k −A]

∥∥∥∥] = E
x

[∥∥∥Âk(x)−A
∥∥∥] ≤ γk+1

by definition. If k < 2, then

E
x

[∥∥∥∥Ey [Ax,y,k −A] ·B
∥∥∥∥] = E

x

[∥∥∥∥Eak [Ak(gk(x, ak))−A]
∥∥∥∥ ·B] .

17

Apply Lemma 5.6 on Ak − A and the dummy mapping B s.t. B(x) = B for every x,
we can derive that the above formula is bounded by w2δ

(
m−1
k

)
+ 3γi+1. For the term

Ex
[
‖Ey [A(Bx,y,k −B)]‖

]
we can get the same bound with a similar proof.

Now consider the terms in the form Ex
[
‖Ey [(Ax,y,i −A)(Bx,y,j −B)]‖

]
.

First consider the case i, j ≤ dk/2e. Then

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]

∥∥∥∥]
= E

x

[∥∥∥∥Eai [Ai(gi(x, ai))−A]Ebj [Bk(gj(x, bj))−B]
∥∥∥∥] (since ai, bj don’t overlap)

≤ 2w2δ ·
(
m− 1

i

)
·
(
m− 1

j

)
+ 9γi+j+2. (by Lemma 5.4)

Next consider the case i > dk/2e, j ≤ dk/2e. Then

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]

∥∥∥∥]
= E

x

[∥∥∥∥Âi(x) · E
bj

[
Bk(gj(x, bj))−B

]∥∥∥∥] (since ai, bj don’t overlap)

≤ w2δ ·
(
m− 1

i

)
·
(
m− 1

j

)
+ 3γi+j+2. (by Lemma 5.6)

Similarly for the case that i ≤ dk/2e, j > dk/2e we can show that

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]

∥∥∥∥] ≤ w2δ ·
(
m− 1

i

)
·
(
m− 1

j

)
+ 3γi+j+2

by Lemma 5.5. Finally, note that the case i, j > dk/2e does not exist because i+ j ≤ k.
Taking the summation of all the cases, we get

E
x

[∥∥∥∥Ey [Ck(x, y)]−AB
∥∥∥∥]

≤ 2w2δ ·

 ∑
i+j=k

(
m− 1

i

)(
m− 1

j

)
+

∑
i+j=k−1

(
m− 1

i

)(
m− 1

j

)
+

(
m− 1

k

)
+ (k + 1) · 9γk+2 + k · 9γk+1 + 2 · 3γk+1

≤ 4w2δ ·
(

2m− 1

k

)
+ (9k + 9)γk+2 + (9k + 6)γk+1

≤ (10k + 11)γk+1

≤ (11γ)k+1.

Moreover, note that AB = M0..2m, and the construction of Ck does not depend on the matrices

M
{0,1}
[2m] . (See Section 2 for how the arithmetic operations in Ck(x, y) are translated back to

operations on pseudo-distributions.) Therefore there exists a (2m,w, (11γ)k+1)-robust PRPD
(G, ρ).

18

Finally we analyze the seed length of the recursive construction, and present the main theo-
rem.

Theorem 6.6. There exists an explicit (n,w, ε)-robust PRPD (G, ρ) such that

• sout(G, ρ) = O
(

log(1/ε) + log n log(nw) log
(

log(1/ε)
logn

))
• sin(G, ρ) = O

(
log(1/ε) + log n log(nw) log

(
log(1/ε)

logn

))
• µ(G, ρ) = poly(1/ε)

Moreover, for every B the approximator G has the same corresponding pseudodistribution.

Proof. Let c be the constant such that for every ε, δ > 0 there exists a (ε, δ)-sampler g :
{0, 1}n × {0, 1}d → {0, 1}m such that n = m + c log(1/ε) + c log(1/δ) and d = c log(1/ε) +
c log log(1/δ), as guaranteed in Lemma 4.2. WLOG assume that n is a power of 2. Define
γ = 1/n4. For every 0 ≤ h ≤ log n, every k ≥ 0, we will inductively prove that there exists a
(2h, w, (11hγ)k+1)-robust PRPD (Gh,k, ρh,k) with the following parameters.

• If k ≤ 1, sout(Gh,k, ρh,k) ≤ h · (3ck log(n/γ) + 7c log(w/γ))

• If k > 1, sout(Gh,k, ρh,k) ≤ 4ck log(n/γ) + (dlog ke+ 1) · h · (10c log(w/γ))

• If k ≤ 1, sin(Gh,k, ρh,k) ≤ ck log(n/γ) + 4c log(w/γ)

• If k > 1, sin(Gh,k, ρh,k) ≤ ck log(n/γ) + h · (4c log(kw/γ))

• µ(Gh,k, ρh,k) ≤ max(1,
(

2h−1
k

)
)

We will write sout,h,k = sout(Gh,k, ρh,k) and sin,h,k = sout(Gh,k, ρh,k) for short. First consider
the terminal case 2k ≥ 2h or h = 0. In this case we simply take sout,h,k = 0, sin,h,k = 2h ≤ 2k
and µ(Gh,k, ρh,k) = 1 s.t. Gh,k(x, y, i) = y and ρh,k(x, y, i) = 1. For the other cases, we
show that we can get the intended parameters by constructing (Gh,k, ρh,k) with the recursion
in Lemma 6.5. Note that based on the induction hypothesis we can assume Ga,h−1,k and
Ga+2h−1,h−1,k have exactly the same parameters, so we consider the parameter of Ga,h−1,k

only. We have seen that the bound for µ(Gh,k, ρh,k) is correct. First we show that the
bound for sin,h,k is correct. Recall that in the recursion we take parameters di = c log(1/εi)+

c log log(1/δ) ≤ ci log(n/γ)+2c log(knw/γ), based on the fact that
(

2h−1
i

)
≤ ni. Now consider

the restriction on sin(Gk) in our recursion. For i+ j ≤ k and j ≤ i ≤ dk/2e, we need

di + dj ≤ ck log(n/γ) + 4c log(knw/γ) ≤ sin,h,k

which is true. For i+ j ≤ k and i > dk/2e, we need

sin,h−1,i + dj ≤ ci log(1/γ) + (h− 1) · 4c log(inw/γ) + (cj log(1/γ) + 2c log(knw/γ))

≤ ck log(1/γ) + h · 4c log(knw/γ)

≤ sin,h,k

which is also true. Moreover, observe that when k ≤ 1 it is always the case that i, j ≤ dk/2e.
Therefore the third condition is also true. Finally we show that the bound for sout,h,k is also

19

correct. First observe that the restriction sout,h−1,i ≤ sout,h,k is trivially true. Then the only
condition left is that for every i ≤ dk/2e,

sout,h−1,i + sin,h−1,i + c log(1/δ) + c log(1/εi) ≤ sout,h,k.

Since sout,h−1,i ≤ sout,h−1,dk/2e and sin,h−1,i ≤ sin,h−1,dk/2e for every i, it suffices to show that

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e) ≤ sout,h,k.

First we consider k ≤ 1, which is the case that dk/2e = k. Then

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e)

≤ sout(Ga,h−1,k) + 3ck log(n/γ) + 7c log(n/γ)

≤ h · (3ck log(n/γ) + 7c log(n/γ))

≤ sout,h,k.

Finally we consider the case k > 1. Observe that

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e)

≤ sout,h−1,dk/2e + sin,h−1,dk/2e +
3k + 1

2
· c log(n/γ) + 3c log(w/γ)

≤ sout,h−1,dk/2e + (2k + 1) · c log(n/γ) + (h− 1) · 4c log(w/γ) + 7c log(w/γ)

≤ 4c · k + 1

2
· log(n/γ) +

(
dlogdk

2
ee+ 1

)
· (h− 1) · (10c log(nw/γ))

+ (2k + 1) · c log(n/γ) + (h− 1) · 4c log(w/γ) + 7c log(w/γ)

≤ 4ck log(n/γ) +

(
dlogdk

2
ee+ 1

)
· (h− 1) · (10c log(nw/γ)) + h · 10c log(nw/γ)

≤ sout,h,k.

In the last inequality we use the fact that dlog ke = dlog(dk/2e)e+ 1 for every k > 1.
Finally, note that (11lognγ) = nlog2 11 · n−4 ≤ n−0.5. By taking h = log n and k =

log(1/ε)
log(1/n0.5)

, we get a (n,w, ε)-robust PRPD.

Remark 6.7. To get the seed length we claimed in Theorem 1, observe that the log(1/ε) term
is dominating when log(1/ε) ≥ log3(nw). Therefore we can simply replace the log log(1/ε)
factor on the O(log n log(nw)) term with log log(nw).

7 Discussion and Open Questions

We discuss some natural questions that arise from our work.

• In our construction, we applied the sampler argument in [BCG18] without constructing
small-norm matrices explicitly. This is probably hinting that negative weight is not
essentially required for the sampler argument. Is it possible to apply the sampler
argument to construct a PRG (instead of PRPD) with improved dependency on error?

20

• Is there an explicit PRPD which matches the seed length of the hitting set generator
in [HZ18], i.e. O(log(w/ε)) when n = poly log(w)? A possible direction is to adapt our
construction to a t-ary recursion tree where t = log1−Ω(1) n instead of a binary tree,
as in [NZ96, Arm98]. However, a direct adaption requires us to apply a sampler on
(t− 1)-children in each recursion, and for every sampler we will lose some “inner seed”
which cannot be recycled. In our construction we see that the inner seed of a sampler
contains a logw term. Therefore in each recursion we need to pay at least (t− 1) logw
which is too expensive. Is it possible to make the sampler argument work with a shorter
inner seed?

• Is it possible to improve the seed length to Õ(log2 n+log(w/ε)), even in some restricted
settings? We note that there are two things which cause the Ω(log n · logw) term in our
construction. The first one is the inner seed of sampler, which is related to the question
above. The second one is the restriction on the outer seed length, which is analogous
to “entropy loss” if we view the samplers as extractors. Note that [RR99] shows how to
“recycle entropy” in the INW generator in some restricted settings, but it is not clear
how to apply the extractor-type analysis of INW generator in our construction.

References

[Arm98] Roy Armoni. On the derandomization of space-bounded computations. In Michael
Luby, José D. P. Rolim, and Maria J. Serna, editors, Randomization and Ap-
proximation Techniques in Computer Science, Second International Workshop,
RANDOM’98, Barcelona, Spain, October 8-10, 1998, Proceedings, volume 1518
of Lecture Notes in Computer Science, pages 47–59. Springer, 1998.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal
error for read-once branching programs. In Ilias Diakonikolas, David Kempe,
and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 353–362. ACM, 2018.

[BCP83] Allan Borodin, Stephen A. Cook, and Nicholas Pippenger. Parallel computation
for well-endowed rings and space-bounded probabilistic machines. Information
and Control, 58(1-3):113–136, 1983.

[BDVY13] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandom-
ness for width-2 branching programs. Theory of Computing, 9:283–293, 2013.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom
generators for regular branching programs. SIAM J. Comput., 43(3):973–986,
2014.

[BV10] Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for
branching programs. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages
30–39. IEEE Computer Society, 2010.

21

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput., 17(2):230–261,
1988.

[CH20] Kuan Cheng and William Hoza. Hitting sets give two-sided derandomization of
small space. Electronic Colloquium on Computational Complexity (ECCC), 2020.

[De11] Anindya De. Pseudorandomness for permutation and regular branching programs.
In Proceedings of the 26th Annual IEEE Conference on Computational Complex-
ity, CCC 2011, San Jose, California, USA, June 8-10, 2011, pages 221–231. IEEE
Computer Society, 2011.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective on sampling.
In Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation - In Collaboration with
Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali
Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan,
Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes
in Computer Science, pages 302–332. Springer, 2011.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced
expanders and randomness extractors from parvaresh-vardy codes. J. ACM,
56(4):20:1–20:34, 2009.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random prop-
erties: A quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–
343, 1997.

[HU17] William M. Hoza and Chris Umans. Targeted pseudorandom generators, sim-
ulation advice generators, and derandomizing logspace. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 629–640. ACM, 2017.

[HZ18] William Hoza and David Zuckerman. Simple optimal hitting sets for small-success
RL. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 59–64.
IEEE Computer Society, 2018.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for
network algorithms. In Frank Thomson Leighton and Michael T. Goodrich, ed-
itors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of
Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 356–364. ACM,
1994.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Frank Thomson Leighton and Pe-
ter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–
229. ACM, 1997.

22

[Jun81] H. Jung. Relationships between probabilistic and deterministic tape complex-
ity. In Jozef Gruska and Michal Chytil, editors, Mathematical Foundations of
Computer Science 1981, Strbske Pleso, Czechoslovakia, August 31 - September
4, 1981, Proceedings, volume 118 of Lecture Notes in Computer Science, pages
339–346. Springer, 1981.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Computational Complexity, 13(1-2):1–
46, 2004.

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom gen-
erators for group products: extended abstract. In Lance Fortnow and Salil P.
Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Com-
puting, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 263–272. ACM,
2011.

[KNW08] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. Revisiting norm estima-
tion in data streams. CoRR, abs/0811.3648, 2008.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subex-
ponential size proofs unless the polynomial-time hierarchy collapses. SIAM J.
Comput., 31(5):1501–1526, 2002.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for
width-3 branching programs. In Moses Charikar and Edith Cohen, editors, Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 626–637. ACM, 2019.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combi-
natorica, 12(4):449–461, 1992.

[Nis94] Noam Nisan. RL <= SC. Computational Complexity, 4:1–11, 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput.
Syst. Sci., 52(1):43–52, 1996.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space
bounded computation. In Jeffrey Scott Vitter, Lawrence L. Larmore, and
Frank Thomson Leighton, editors, Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA,
pages 159–168. ACM, 1999.

[RVW01] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders and extractors. Electronic
Colloquium on Computational Complexity (ECCC), 8(18), 2001.

[Sak96] Michael Saks. Randomization and derandomization in space-bounded computa-
tion. In Proceedings of Computational Complexity (Formerly Structure in Com-
plexity Theory), pages 128–149. IEEE, 1996.

23

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[Ste12] Thomas Steinke. Pseudorandomness for permutation branching programs without
the group theory. Electronic Colloquium on Computational Complexity (ECCC),
19:83, 2012.

[SZ99] Michael E. Saks and Shiyu Zhou. BP hspace(s) subseteq dspace(s3/2). J. Comput.
Syst. Sci., 58(2):376–403, 1999.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1–336, 2012.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct.
Algorithms, 11(4):345–367, 1997.

A Proof of Lemma 4.2

Lemma A.1 (Lemma 4.2, restated. [RVW01, Gol11]). For every δ, ε > 0 and integer m,
there exists a (ε, δ)-sampler f : {0, 1}n×{0, 1}d → {0, 1}m s.t. d = O(log log(1/δ)+log(1/ε))
and n = m + O(log(1/δ)) + O(log(1/ε)). Moreover, for every x, y, f(x, y) can be computed
in space O(m+ log(1/δ) + log(1/ε)).

We will use the equivalence between seeded randomness extractor and oblivious sampler
by Zuckeman [Zuc97]. To achieve the parameter we need, we need a “high-entropy seeded
extractor” such that the seed length only depends on entropy loss but not the length of source.
We will use the standard “block-source” construction for high-entropy extractor which can be
found in [GW97, RVW01]. For simplicity, we will use simple composition instead of zig-zag
composition [RVW01] because we are not aiming for optimal entropy loss. We will use the
following standard lemmas for the extractor construction. Some of the following lemmas are
implicit in their original source, and we recommend the readers to see [GUV09, Vad12] for a
proof.

Definition A.2 ([CG88]). (X1, X2) is a (k1, k2)-block source if X1 is a k1-source, and for
every x1 ∈ Supp(X), X2 conditioned on X1 = x1 is a k2-source.

Lemma A.3 ([GW97]). Let X ∈ {0, 1}n be a (n − ∆) source. Then for every integer
0 ≤ t ≤ n, X is ε-close to a (t − ∆, n − t − ∆ − log(1/ε))-block source (X1, X2) where
X1 ∈ {0, 1}t and X2 ∈ {0, 1}n−t.

Lemma A.4 ([NZ96]). Let E1 : {0, 1}n1 ×{0, 1}d → {0, 1}d2 be a (k1, ε1) extractor and E2 :
{0, 1}n2×{0, 1}d2 → {0, 1}m be a (k2, ε2) extractor. Define E((x1, x2), s) = E1(x2, E2(x1, s)).
Then for every (k1, k2)-block source (X1, X2) ∈ {0, 1}n1 × {0, 1}n2, E((X1, X2), Ud) is
(ε1 + ε2)-close to uniform.

Lemma A.5 ([GW97]). For every ε,∆ > 0 and integer n there exists a (n−∆, ε) extractor
E : {0, 1}n × {0, 1}d → {0, 1}n with d = O(∆ + log(1/ε)), and for every x, y, E(x, y) can be
computed in space O(n+ log(1/ε)).

24

Lemma A.6 ([GUV09, KNW08]). For every ε > 0, integer m > 0 and n ≥ 2m, there exists
a (2m, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d = O(logm + log(1/ε)), and for
every x, y, E(x, y) can be computed in space O(m+ log(1/ε)).

Lemma A.7 ([Zuc97]). Every (n− log(1/δ)− 1, ε)-extractor is a (ε, δ)-sampler.

Now we show how to construct the sampler we need, and that it is indeed space efficient.

Proof. Let ∆ = log(1/δ) + 1. Let E1 : {0, 1}m × {0, 1}d1 → {0, 1}m be an (m − ∆, ε/3)-
extractor from Lemma A.5, w.l.o.g. assume that d1 ≥ ∆+log(3/ε). Then let E2 : {0, 1}3d1×
{0, 1}d → {0, 1}d1 be an (2d1, ε/3)-extractor from Lemma A.6. Then we claim that E :
{0, 1}m+3d1 ×{0, 1}d → {0, 1}m, defined as E((x1, x2), s) = E1(x1, E2(x2, s)), is a (m+ 3d1−
∆, ε) extractor, and hence a (ε, δ) sampler by Lemma A.7.

To prove the claim, consider any (m + 3d1 − ∆)-source X. By Lemma A.3, X is
(ε/3)-close to a (m − ∆, 3d1 − ∆ − log(3/ε))-block source (X1, X2) ∈ {0, 1}3d1 × {0, 1}m.
By Lemma A.4, E1(X1, E2(X2, Ud)) is 2ε/3-close to uniform. Since E(X,Ud) is ε/3-
close to E1(X1, E2(X2, Ud)), by triangle inequality it is ε-close to uniform. Moreover,
d = O(log(d1/ε)) = O(log log(1/δ)+log(1/ε)), n = m+3d1 = m+O(log(1/δ)+log(1/ε)), and
the required space to compute E is O(m+ d1 + log(1/ε)) = O(m+ log(1/ε) + log(1/δ)).

25
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

