
On the list recoverability of randomly punctured

codes

Ben Lund ∗ Aditya Potukuchi †

May 3, 2020

Abstract

We show that a random puncturing of a code with good distance is
list recoverable beyond the Johnson bound. In particular, this implies
that there are Reed-Solomon codes that are list recoverable beyond the
Johnson bound. It was previously known that there are Reed-Solomon
codes that do not have this property. As an immediate corollary to our
main theorem, we obtain better degree bounds on unbalanced expanders
that come from Reed-Solomon codes.

1 Introduction

List recoverable codes were defined by Guruswami and Rudra [GR06] to demon-
strate a barrier to improving known algorithms for list decoding. Here, we
study list recoverable codes in their own right, showing that random punctur-
ings of codes over a sufficiently large alphabet are list recoverable. Our result
is analogous to earlier work by Rudra and Wooters [RW14, RW15] on the list
decodability of randomly punctured codes.

We use q to denote the alphabet size, and n to denote the block length of an
arbitrary code C ⊂ [q]n. Given two codewords c1, c2 ∈ [q]n, denote the Hamming
distance between c1 and c2 by ∆(c1, c2). Denote the minimum distance between
a codeword c ∈ [q]n and a set L ⊆ [q]n by ∆(c,L).

Definition 1.1 (List recoverability). Let q, n, k be positive integers, and let
δ > 0 and 0 ≤ ρ < 1 be real numbers. A code C ⊂ [q]n is (`, δ, ρ) list recoverable
if, for every collection of sets {Li ⊆ [q]}i∈[n] with |Li| ≤ ` for each i, we have

|{c ∈ C | ∆(c, L1 × · · · × Ln) ≤ ρn}| ≤ `(1 + δ).

∗Department of Mathematics, Princeton University. lund.ben@gmail.com. Research sup-
ported by NSF grant DMS-1802787.
†Department of Computer Science, Rutgers University.

aditya.potukuchi@cs.rutgers.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 70 (2020)

In the above definition, ` is called the list size from which the code can
be recovered. The case ρ = 0 is already interesting, and called zero-error list
recoverability. We say that a code C is (`, δ) zero-error list recoverable if it is
(`, δ, 0) list recoverable.

A puncturing of a code C ⊂ [q]n to a set S ⊂ [n] is the code CS ⊂ [q]S

defined by CS [i] = C[i] for each i ∈ S. A punctured code will typically have
higher rate, but lower distance, than the unpunctured version. Our main result
is that every code over a large enough alphabet [q] can be punctured to a code
of rate R > q−1/2 while being list recoverable with list size roughly R−2. It may
be helpful to first consider the case ρ = 0 of the following theorem.

Theorem 1.2. There are positive constants c, n0, and q0 so that the following
holds. Let 0 < δ ≤ 1 and 0 ≤ ρ < 1 − (1 + δ)−1/2 be real numbers. Denote
γ = (1 + δ)(1 − ρ)2 − 1 and σ = (1 − ρ)(2 − ρ)−1. Let n > n0 and q > q0
be integers. Let q−1/2 < ε < min(c, 2−1γσ). Then, every code C ⊂ [q]n with

distance at least n(1− q−1 − ε2) can be punctured to rate Ω
(

ε
log q

)
so that it is

(ε−2σ2γ, δ, ρ)-list recoverable.

Note that (`, δ, ρ)-list recoverability implies (`, δ′, ρ)-list recoverability for
any δ′ ≥ δ. The hypothesis δ ≤ 1 in Theorem 1.2 is needed only because we
bound the list size as a function of δ.

To attempt to make the parameters more transparent, we would like to draw
the reader’s focus to the list size, i.e., ε−2σ2γ. The main point here is that this
is as large as ε−2, so one way to interpret the above theorem is that we get
(Oδ,ρ(ε

−2), δ, ρ)-list recoverability after the aforementioned puncturing. In fact,
we show a random puncturing of C is list recoverable with the same list size
with high probability; see Theorem 2.1 for a precise statement.

Theorem 1.2 is analogous to a theorem of Rudra and Wooters [RW14, RW15]
on the list decodability of punctured codes over large alphabets. A code C ⊂ [q]n

is (ρ, `)-list decodable if for each x ∈ [q]n, there are at most ` codewords of C
that differ from x in fewer than ρn coordinates.

Theorem 1.3 ([RW15]). Let ε > q−1/2 be a real number, and q, n be sufficiently
large integers. Every code C ⊂ [q]n with distance n(1−q−1−ε2) can be punctured

to rate Ω̃
(

ε
log q

)
so that it is (1−O(ε), O(ε−1))-list decodable.

Theorems 1.2 and 1.3 are most interesting in the case of Reed-Solomon codes.
The codewords of the degree-d Reed-Solomon code over Fq with evaluation set

S ∈
(
[q]
m

)
are the evaluations of all univariate polynomials of degree at most

d on elements of S. In other words, suppose S = {s1, . . . , sm}. The degree-d
Reed-Solomon code on S is the set

{(p(s1), . . . , p(sm)) | deg(p) ≤ d}.

The block length of this code is m ≤ q. Since two distinct polynomials of
degree at most d can agree on at most d locations, the distance of any degree-d
Reed-Solomon code is at least m− d.

2

A fundamental result, which gives a lower bound on the list decodability of
a code with given distance, is the Johnson bound (see, for example Corollary
3.2 in [Gur06]).

Theorem 1.4 (Johnson bound for list decoding). Every code C ⊂ [q]n of mini-
mum distance at least n(1−(1/q)−ε2) is (n(1−q−1−ε), O(ε−1))- list decodable.

One of the main points of Theorem 1.3 is that it shows that there are Reed-
Solomon codes that are list decodable beyond the Johnson bound.

A similar result as Theorem 1.4, using a similar argument, also known as
the Johnson bound, is known for list recoverability (see for example, Lemma 5.2
in [GKdO+18]).

Theorem 1.5 (Johnson bound for list recovery). Let C ⊆ [q]n be a code of
relative distance α. Then C is (`, δ, ρ)-list recoverable for any ρ ≤ 1−

√
`(1− α)

where δ = α
(1−ρ)2−`(1−α) − 1.

A result of Guruswami and Rudra [GR06]) shows that there are Reed-
Solomon codes that are not list recoverable beyond the Johnson bound.

Theorem 1.6. Let q = pm where p is a prime, and let C denote the degree-(
pm−1
p−1

)
Reed-Solomon code over Fq with Fq as the evauation set. Then there

are lists S1, . . . , Sq each of size p such that

|C ∩ (S1 × · · · × Sq)| = q2
m

To understand this, recall that a degree-d Reed-Solomon code has relative
distance 1− 1

q−
d
q . Setting ` = p−1 and ρ = 0 in the Johnson bound tells us that

such a code is (p − 1, O(q), 0)-list recoverable. Setting the list size as p in the
bound gives us nothing, and Theorem 1.6 says that the number of codewords
grows superpolynomially in q. On the other hand, Theorem 1.2 immediately
gives the following corollary.

Corollary 1.7. For a prime power q and ε ≥ q−1/2, there are Reed-Solomon

codes of rate Ω̃
(

ε
log q

)
which are (q/2, 1/2)-list recoverable.

Again, one can easily check that setting k = q/2 in the Johnson bound gives
nothing.

1.1 Unbalanced expander graphs from codes

The zero-error case of Theorem 1.2 leads to some progress on a question of Gu-
ruswami regarding unbalanced expanders obtained from Reed-Solomon graphs.
This was also the main motivation behind this theorem.

Informally, an expander graph is a graph where every small set of vertices has
a relatively large neighborhood. In this case, we say that all small sets expand.
One interesting type of expander graphs are unbalanced expanders. These are
bipartite graphs where one side is much larger than the other side, and we want
that all the small subsets of the larger side expand.

3

Definition 1.8 (Unbalanced expander). A (k, d, ε)-regular unbalanced expander
is a bipartite graph on vertex set L t R, |L| ≥ |R| where the degree of every
vertex in L is d, and for every S ⊆ L such that |S| = k, we have that |N(S)| ≥
d|S|(1− ε).

Note that in the above definition, |N(S)| ≤ d|S|. We are typically interested
in infinite families of unbalanced expanders for which ε = o(1), d = o(|R|), and
k = Ω̃(|R|/d).

For a q-ary error correcting code C ⊂ [q]n, and a subset S := {i1, . . . , i|S|} ⊆
[n] with i1 < · · · < i|S|, we use CS to denote the S-punctured code given by

CS := {(ci1 , . . . , ci|S|) | (c1, . . . , cn) ∈ C}.

Thus, CS is just the set of codewords of C restricted to the coordinates in S.
Given a code C ⊆ [q]n, it is natural to look at the bipartite graph, which

we will denote by G(C) where the vertex sets are C t ([n] × [q]). For every
c = (c1, . . . , cn) ∈ C the set of neighbors is {(1, c1), . . . , (n, cn)}. This graph is
especially interesting when C is a low-degree Reed-Solomon code evaluated at
an appropriate set.

The following is a open question in the study of pseudorandomness that is
attributed to Guruswami [Gur], (also explicitly stated in [CZ18]): Fix an integer

d. For a subset S ∈
(
[q]
m

)
, define CS to be the degree-d Reed-Solomon code with

S as the evaluation set, where d is a constant.

Question: What is the smallest m such that when S is chosen uniformly at
random, G(CS) is, with high probability, a (o(q), o(1))-unbalanced expander?

There are examples of explicit constructions unbalanced expanders that
come from other means (in fact, other codes) [GUV09]. However, the above
“natural” geometric/combinatorial question is still interesting in its own right
and so far, seems to evade known techniques.

It was probably well known that m = Ω(log q), and we also give a proof
of this (Theorem 3.1) since we could not find it in the literature. But for
upper bounds, it seems nothing better than the almost trivial m = O(q) was
known [Che]. Since the zero-error list recoverability of C is equivalent to the
expansion of G(C), an immediate Corollary to Theorem 2.1 gives an improved
upper bound.

Corollary 1.9. Let q, n be sufficiently large integers and δ ∈ (0, 1), ε > q−1/2

be real numbers. For every code C ⊂ [q]n with relative distance 1 − q−1 − ε2,
there is a subset S ⊂ [n] such that |S| = O(εn log q) such that G(CS) is a
(δε−2, |S|, δ)-unbalanced expander.

Instantiating the above theorem for degree-d Reed-Solomon codes, we have
n = q and ε = (d/q)−

1
2 . This gives, m = Õ(

√
q).

4

2 Proof of Theorem 1.2

The bulk of this section is the statement and proof of Theorem 2.1. After the
proof of Theorem 2.1, we show how to derive Theorem 1.2 from it.

2.1 A sketch of the proof

Here, we sketch the proof when ρ = 0, i.e., for zero-error list recovery. This
contains most of the main ideas required for the general theorem. Let S =
{x1, . . . , xm} ⊂ [n] be a randomly chosen evaluation set. The main observation
is that if there are input lists L1, . . . , Lm ⊆ [q], such that (L1×· · ·×Lm) contains
a large subset D ⊆ C of codewords, then there is a small subset C′ ⊆ D ⊆ C
which agree on an unusually high number of coordinates. An appropriately
sized random subset of D does this. Thus the event that a given puncturing is
bad is contained witnessed by the event that there are few codewords that agree
a lot on the coordinates chosen in S. The number of events of the latter kind
are far fewer in number, leaving us with fewer bad events to overcome for the
union bound.

2.2 Proof of Theorem 1.2

The calculations in the proof of Theorem 2.1 are all explicit, but we have not
tried to optimize the constant terms.

Theorem 2.1. Let 0 < δ < 1 and 0 ≤ ρ < 1− (1 + δ)−1/2 be real numbers. Let
q, n, d, `, and m be positive integers. Let C ⊂ [q]n be a code of distance at least
n−nq−1−d. Denote γ = (1 + δ)(1−ρ)2− 1 and σ = (1−ρ)(2−ρ)−1. Suppose
that the following inequalities are satisfied:

d ≥ nq−1,
4γ−1 ≤ ` ≤ 800−1 σγnd−1,

σm ≥ 1280
√
`γ−1 log |C|,

m < n.

Then, for S ∈
(
[n]
m

)
chosen uniformly at random, the probability that CS is

(`, δ, ρ)-list recoverable is at least 1− e−σm/64.

Proof. For any C′ ⊆ C, denote by T (C′) the set of coordinates i ∈ [n] such that
there is a pair c1, c2 ∈ C′ with c1[i] = c2[i].

The basic outline of the proof is to first show that, for any S such that CS
is not (`, δ, ρ)-list recoverable, there is a pair S′, C′ such that S′ is large and
|T (C′) ∩ S′| is unusually large. Taking a union bound over all candidates for C′
then shows that there cannot be too many pairs of this sort.

5

Let S ∈
(
[n]
m

)
so that CS is not (`, δ, ρ)-list recoverable. We will show that

there is a set C′ ⊂ CS such that

|C′| ≤ 10
√
`/γ, and (1)

|T (C′) ∩ S| ≥ σm/4. (2)

Since CS is not (`, δ, ρ)-list recoverable, there are subsets Li ⊆ [q] for each
i ∈ S such that each |Li| ≤ ` and |{c ∈ CS : ∆(c,

∏
i∈S Li) ≤ ρn}| > k(1 + δ).

Let
D = {c ∈ Cs : ∆(c,

∏
i∈S

Li) ≤ ρn}.

For i ∈ S, let
Di = {c ∈ D : c[i] ∈ Li}.

Let
I = {(c, i) ∈ D × S : c ∈ Di}.

From the definition of D, we have

|I| ≥ |D|(1− ρ)m. (3)

Note that the average cardinality of the Di is (1− ρ)|D|. Let

S′ = {i ∈ S : |Di| ≥ (1− ρ)2|D|}.

If ρ = 0, then Di = D for each i, and hence |S′| = m. Next we show that, if
ρ > 0, then |S′| ≥ (1− ρ)(2− ρ)−1m = σm. Since |Di ≤ |D| for each i, we have

|S′| |D| ≥
∑
i∈S′
|Di| = |I| −

∑
i∈S\S′

Di. (4)

Since |Di| < (1− ρ)2|D| for each i ∈ S \ S′, we have∑
i∈S\S′

≤ (m− |S′|)(1− ρ)2|D|. (5)

A straightforward rearrangement of (3), (4), and (5) using the assumption
that ρ > 0 leads to the claimed lower bound on |S′|:

|S′| ≥ σm. (6)

Since σ < 1, the bound |S′| ≥ σm holds for the case ρ = 0 as well.
For each i ∈ S′, choose a set Pi ⊂

(D
2

)
of |Pi| ≥ γk/2 disjoint pairs of

codewords in Di such that for each {c1, c2} ∈ Pi, we have c1[i] = c2[i]. This is
always possible since |Li| ≤ ` and |Di| ≥ (1 + ρ)2|D| ≥ (1 + γ)`.

Now choose C′ randomly by including each element of D with probability
p = (γ`/2)−1/2`(1 + δ)|D|−1. Since ` ≥ 4γ−1 by hypothesis and |D| ≥ `(1 + δ)

6

by the assumption that CS is not (`, δ, ρ)-list recoverable, we have p < 1. The
expected size of C′ is

IE[|C′|] = p|D| ≤ (γ/(2`))−1/2(1 + δ) ≤ (8`/γ)1/2.

We remark that this is the only place where we use the assumption that
δ < 1.

For any fixed pair c1 6= c2 of codewords in D, the probability that both are
included in C′ is p2. Since the pairs in Pi are disjoint, the events that two distinct
pairs {c1, c2}, {c3, c4} ∈ Pi are both included in C′ are independent. Hence, the

probability that no pair in Pi is included in C′ is (1 − p2)|Pi| < e−p
2|Pi| < 1/2.

Consequently, for each fixed i ∈ S′, the probability that i ∈ T (C′) is greater
than 1/2. By linearity of expectation, IE[|T (C′) ∩ S′|] ≥ |S′|/2 ≥ σm/2.

Let

Y = |T (C′) ∩ S′| − σm

4

|C′|
IE[|C′|]

.

By linearity of expectation, IE[Y] ≥ σm/4, hence there is some specific choice of
C′ for which Y ≥ σm/4. This can hold only if |T (C′) ∩ S| ≥ |T (C′) ∩ S′| ≥ m/4
and |C′| ≤ 3IE(|C′|) simultaneously, which establishes (1) and (2).

Next we bound the probability that, for a fixed choice of C′ and random S, we
have have |T (C ′)∩S| large. Let C′ ⊂ C be an arbitrary set of |C′| ≤ 10`1/2γ−1/2

codewords. Since the distance of C′ is at least n − nq−1 − d and d ≥ nq−1, we
have

|T (C′)| ≤ (nq−1 + d)

(
|C′|
2

)
< d|C′|2. (7)

For S ∈
(
[n]
m

)
chosen uniformly at random, |T (C′) ∩ S| follows a hypergeo-

metric distribution. Specifically, we are making m draws from a population size
of n of which |T (C′)| ≤ d|C′|2 contribute to |T (C′) ∩ S|. Using the assumption
that ` ≤ γσn(800d)−1, the expected value of |T (C′) ∩ S| is

IE [|T (C′) ∩ S|] ≤ d|C′|2n−1m ≤ 100
d`

γn
m ≤ σm

8
. (8)

Next we use the following large deviation inequality for hypergeometric random
variables (see [DP09]). Let X be a hypergeometric random variable with mean
µ. Then for any α ≥ 1,

P(X ≥ (1 + α)µ) ≤ exp(−αµ/4). (9)

Together with (8), this gives

P(|T (C′) ∩ S| ≥ σm/4) ≤ exp
(
−σm

32

)
. (10)

Finally, we take a union over all candidates for C′. Let X be the event that
CS is not (`, δ, ρ) list recoverable, with S ∈

(
[n]
m

)
uniformly at random. Using

7

the assumption that σm ≥ 1280
√
`/γ log |C|, we have

P(X) ≤
∑

C′⊂CS :|C′|≤10
√
`/γ

P(|T (C′ ∩ S)| ≥ σm/4)

≤
(|C|
d10
√
`/γe+ 1

)
exp

(
−m

32

)
< exp

(
20
√
`/γ log |C| − σm/32

)
≤ exp(−σm/64),

as claimed.

We now show how to derive Theorem 1.2 from Theorem 2.1.

Proof of Theorem 1.2. Suppose we have δ, ρ, n, q, and ε as in the hypotheses of
Theorem 1.2. Let m = d1280ε−1 log |C|e. The singleton bound combined with
the assumption that ε < c for a suitably chosen absolute constant c implies that
m < n. Choose S ∈

(
[n]
m

)
uniformly at random. The rate of CS is

R = log |C|(m log q)−1 = Ω(ε(log q)−1).

It is straightforward to check that the hypotheses of Theorem 2.1 are satisfied if
we take ` = ε−2σ2γ, and hence we have that CS is (ε−2σ2γ, δ, ρ)-list recoverable
with high probability.

3 Upper bound

Here we show the aforementioned upper bound for the rate to which a degree-d
Reed-Solomon code over Fq can be randomly punctured to be (q/2, 1/2)-zero-
error list-recoverable.

First, we recall a bit of standard and relevant sumset notation. For a group
G and subsets A,B ⊆ G, we denote the sumset A+B = {a+ b | a ∈ A, b ∈ B}.
Clearly, we have |A+B| ≤ |A| · |B|. If G = Zp, then for n < p/2, we have that
[n] + [n] = {2, . . . , 2n}. We are now ready to state and prove the upper bound.

Theorem 3.1. Let m = o(log q), and X = {x0, . . . , xm} be a uniformly random
subset of Fq where q is a prime. Then every d ≥ 1, the degree-d Reed-Solomon
code with the evaluation set at X is, with high probability, not (q/2, 1/2)-zero-
error list-recoverable.

Proof. Let X = {x0, . . . , xm}. Let n be a large number such that nm = o(
√
q).

We are using the fact that m = o(log q) for the existence of such an n. W.L.O.G
assume x0 = 0 and x1 = 1 (if 0, 1 6∈ S, then adding them to S only makes the
lower bound stronger). Consider the two sets

X0 =
1

1− x2
[n] + · · · 1

1− xm−1
[n]

8

and

X1 =
1

x2
[n] + · · · 1

xm−1
[n].

Claim 3.2. With high probability over the choice of X, we have that |X0|, |X1| =
Ω(
(
nm−2

)
).

Proof. We do the proof for X0, the case for X1 follows analogously. Let P be
the set of “collisions” in X0. Formally:

P :=

{
(a2, . . . , am−2, b2, . . . , bm−2) |

m−2∑
i=2

aixi =

m−2∑
i=2

bixi

}
.

So the number of distinct elements in X0 is at least nm−2 − |P |. We observe
that

IE[|P |] =
∑

a2,...,am−2∈[n]
b2,...,bm−2∈[n]

P

(
m−2∑
i=2

aixi =

m−2∑
i=2

bixi

)

≤ 1

p
n2m−4

= o(nm−2).

So by Markov’s Inequality, with high probability, |X0| ∼ nm−2.

Consider D, the set of degree-1 Reed-Solomon codes given by the lines

{Y = aX + b}b∈X0,a∈X1 .

First, we note that |Y | = Ω(n2m−4). Geometrically, D is just the set of all
lines passing through some point of {0}×X0 and {1}×X1. Clearly, {c[0] | c ∈
C} = X0 and {c[1] | c ∈ D} = X1. For i 6= 0, 1, let us similarly define Xi :=
{c[xi] | c ∈ D}.We have that

Xi = {a(1− xi) + bxi}b∈X0,a∈X1

= (1− xi)
(

1

1− x2
[n] + · · · 1

1− xm−1
[n]

)
+ xi

(
1

x2
[n] + · · · 1

xm−1
[n]

)

=

[n] +
∑

2≤j≤m, j 6=i

1− xi
1− xj

[n]

+

[n] +
∑

2≤j≤m, j 6=i

xi
xj

[n]


= {2, . . . , 2n}+

∑
2≤j≤m, j 6=i

1− xi
1− xj

[n] +
∑

2≤j≤m, j 6=i

xi
xj

[n].

Thus, |Xi| ≤ (2n)× n2m−6 ≤ 2n2m−5.
This shows that there are lists X0, X1, . . . , Xm each of size at most ` :=

2n2m−5 such that there are at least Ω(n2m−4) = `1+
1
k codewords, namely D,

contained in X0 × · · · ×Xm.

9

For a fixed d, the above theorem rules out hope of randomly puncturing

degree-d Reed-Solomon codes to rate ω
(

1
log q

)
for the desired list recoverability.

We believe that this is essentially the barrier. We state the concrete conjecture
that we alluded to in Section 1.1.

Conjecture 3.3. For any δ > 0, the degree-d Reed-Solomon code with evalua-

tion set Fq can be randomly punctured to rate Ωd

(
1

log q

)
so that is it (δq, δ)-list

recoverable with high probability.

4 Discussion and open problems

The main open problem that we would like to showcase is Conjecture 3.3. This
was probably believed to be true but we could not find it written down explic-
itly in the literature. List recoverable codes have connections to various other
combinatorial objects (see [Vad07]) and if true, Conjecture 3.3 could lead to the
construction of some other interesting combinatorial objects.

The second open problem is to derandomize Theorem 1.2, i.e., to find an
explicit Reed-Solomon code which is list recoverable beyond the Johnson bound
at least in the zero-error case. Understanding how these evaluation sets look
like could lead to progress on Conjecture 3.3, or could be interesting in its own
right.

Finally, the last open problem is that given a Reed-Solomon code C ⊂ [q]m

of rate R on a randomly chosen evaluation set S, find an efficient algorithm
for list recovery, i.e., take input lists L1, . . . , Lm of size O(R−2(log q)−1), and
output all the codewords contained in L1×· · ·×Lm with high probability (over
the choice of S and the randomness used by the algorithm). This would also
likely require some understanding of the properties of the evaluation set.

References

[Che] Xue Chen. personal communication.

[CZ18] Xue Chen and David Zuckerman. Existence of simple extractors.
Electronic Colloquium on Computational Complexity (ECCC),
25:116, 2018.

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentration of
Measure for the Analysis of Randomized Algorithms. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

[GKdO+18] Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira,
Noga Ron-Zewi, and Shubhangi Saraf. Locally testable and lo-
cally correctable codes approaching the Gilbert-Varshamov bound.
IEEE Trans. Information Theory, 64(8):5813–5831, 2018.

10

[GR06] Venkatesan Guruswami and Atri Rudra. Limits to list de-
coding Reed-Solomon codes. IEEE Trans. Information Theory,
52(8):3642–3649, 2006.

[Gur] Venkatesan Guruswami. personal communication.

[Gur06] Venkatesan Guruswami. Algorithmic results in list decoding. Foun-
dations and Trends in Theoretical Computer Science, 2(2), 2006.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan.
Unbalanced expanders and randomness extractors from parvaresh-
vardy codes. J. ACM, 56(4):20:1–20:34, 2009.

[RW14] Atri Rudra and Mary Wootters. Every list-decodable code for high
noise has abundant near-optimal rate puncturings. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 764–773, 2014.

[RW15] Atri Rudra and Mary Wootters. It’ll probably work out: Improved
list-decoding through random operations. In Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science,
ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 287–296,
2015.

[Vad07] Salil P. Vadhan. The unified theory of pseudorandomness: guest
column. SIGACT News, 38(3):39–54, 2007.

11

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

