
A Tight Lower Bound on

Adaptively Secure Full-Information Coin Flip

Iftach Haitner∗† Yonatan Karidi-Heller ∗

May 4, 2020

Abstract

In a distributed coin-flipping protocol, Blum [ACM Transactions on Computer Systems ’83],
the parties try to output a common (close to) uniform bit, even when some adversarially chosen
parties try to bias the common output. In an adaptively secure full-information coin flip, Ben-Or
and Linial [FOCS ’85], the parties communicate over a broadcast channel and a computation-
ally unbounded adversary can choose which parties to corrupt during the protocol execution.
Ben-Or and Linial proved that the `-party majority protocol is resilient to o(

√
`) corruptions

(ignoring log factors), and conjectured this is a tight upper bound for any `-party protocol (of
any round complexity). Their conjecture was proved to be correct for single-turn (each party
sends a single message) single-bit (a message is one bit) protocols, Lichtenstein, Linial, and
Saks [Combinatorica ’89], symmetric protocols Goldwasser, Kalai, and Park [ICALP ’15], and
recently for (arbitrary message length) single-turn protocols Tauman Kalai, Komargodski, and
Raz [DISC ’18]. Yet, the question for many-turn (even single-bit) protocols was left completely
open.

In this work we close the above gap, proving that no `-party protocol (of any round com-
plexity) is resilient to O(

√
`) (adaptive) corruptions.

∗School of Computer Science, Tel Aviv University. Emails: iftachh@cs.tau.ac.il,karidiheller@mail.tau.ac.il.
Research supported by ERC starting grant 638121.
†Director of the Check Point Institute for Information Security.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 71 (2020)

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Related Work . 2

1.2.1 Full-Information Coin Flip . 2
1.2.2 Computationally Secure Coin Flip . 2

2 Our Technique 4
2.1 Attacking Single-Turn Coin Flip . 5
2.2 Attacking Many-Turn Coin Flip . 7
2.3 Attacking Non-Robust Coin Flip . 9

3 Preliminaries 10
3.1 Notations . 10
3.2 Distributions and Random Variables . 10
3.3 Martingales . 11
3.4 Full-Information Coin Flip . 11

3.4.1 Adaptive Adversaries . 12
3.5 Useful Inequalities . 13

4 Biasing Robust Coin Flip 13
4.1 Biasing Normal Robust Coin Flip . 14

4.1.1 Coupling Xi and Qi . 20
4.1.2 Bounding Y ’s Conditional Variance . 21
4.1.3 Bounding KL-Divergence between Attacked and Honest Executions 25

4.2 Biasing Arbitrary Robust Coin Flip . 26

5 Biasing Arbitrary Coin Flip 28

1 Introduction

In a distributed (also known as, collective) coin-flipping protocol, Blum [8], the parties try to
output a common (close to) uniform bit, even when some adversarially chosen parties try to bias
the output. The adversary is assumed to be Byzantine—once it corrupts a party, it completely
controls it and can send arbitrary messages on its behalf. In the full-information variant of such
protocols, Ben-Or and Linial [7], the parties communicate (solely) over a (single) broadcast channel,
and the adversary is assumed to be computationally unbounded. For such protocols, two types of
(Byzantine, unbounded) adversaries are considered: a static adversary that chooses the parties
it corrupts before the execution begins, and an adaptive adversary that can choose the parties it
wishes to corrupt during the protocol execution (i.e., as a function of the messages seen so far).
For static adversaries, full-information coin flip is well understood, and almost matching upper
(protocols) and lower (attackers) bounds are known, see Section 1.2. For adaptive adversaries,
which are the focus of this work, much less is understood, and there are significant gaps between
the upper and lower bounds. Ben-Or and Linial [7] proved that the `-party majority protocol is
resilient to o(

√
`) corruptions (ignoring poly-logarithmic factors in `), and conjectured that this

is a tight upper bound for any `-party protocol (of any round complexity). Their conjecture was
proved to be correct for single-turn (each party sends a single message) single-bit (a message is one
bit) protocols, Lichtenstein, Linial, and Saks [19], single-turn (arbitrary message length) symmetric
protocols Goldwasser, Kalai, and Park [15], and recently for single-turn protocols, Tauman Kalai,
Komargodski, and Raz [24]. Yet, the question for many-turn (even single-bit) protocols was left
completely open.

1.1 Our Results

We solve this intriguing question, showing that the output of any `-party protocol can be fully
biased by an adaptive adversary corrupting

√
` parties (ignoring poly-logarithmic factors).

Theorem 1.1 (Biasing full-information coin-flipping protocols, informal). For any `-party full-
information coin-flipping protocol, there exists b ∈ {0, 1} and an (unbounded) adversary that by
adaptively corrupting

√
` of the parties, enforces the outcome of the protocol to be b, except with

probability o(1).

The above lower bound matches (up to poly-logarithmic factors) the upper bound achieved
by the `-party majority protocol [7]. The bound extends to biased protocols, i.e., the protocol’s
expected outcome (in an all-honest execution) is not 1/2. We also remark that the one side restriction
(only possible to bias the protocol outcome to some b ∈ {0, 1}) is inherent, as there exists, for
instance, an `-party (single-turn) protocol that is resistant to Θ(`) corruptions trying to bias its
outcome towards one.1

1Consider the `-party `-round protocol in which each party broadcasts a (1/`, 1− 1/`)-biased bit (i.e., equals zero
with probability 1/`) and the protocol output is set to the AND of these bits. It is clear that the protocol expected
outcome is (1 − 1/`)` ≈ 1/e (can be made 1/2 by slightly changing the distribution), and that even `/2 adaptive
corruptions cannot change the protocol outcome to a value larger than (1− 1/`)`/2 ≈

√
1/e.

1

1.2 Related Work

1.2.1 Full-Information Coin Flip

We recall the main known results for `-party full-information coin-flipping protocols.

Adaptive adversaries. In the following we ignore poly-logarithmic factors in `.

Upper bounds (protocols). Ben-Or and Linial [7] proved that the majority protocol is resilient
to o(

√
`) corruptions.

Lower bounds (attacks). Lichtenstein, Linial, and Saks [19] proved that no single-bit, single-
turn protocol is resilient to Ω(

√
n) adaptive corruptions (hence, majority is optimal for such

protocols). Dodis [12] proved that it is impossible to create a coin-flipping protocol resilient to
Ω(
√
n) adaptive corruptions by sequentially repeating another coin-flipping protocol, and then

applying a deterministic function to the outcomes. Goldwasser, Kalai, and Park [15] proved
that that no symmetric single-turn (many-bit) protocol is resilient to Ω(

√
n) adaptive corrup-

tions. Their result extends to strongly adaptive attacks (the attacker can decide to corrupt a
party after seeing the message it is about to send) on single-turn protocols. Tauman Kalai,
Komargodski, and Raz [24] fully answered the single-turn case by proving that no single-
turn protocol is resilient to Ω(

√
n) adaptive corruptions. Lastly, Etesami, Mahloujifar, and

Mahmoody [13] presented an efficient and optimal strongly adaptive attack on protocols of
certain properties (e.g., public coins). On a related note, Kalai and Komargodski [18] showed
that for any `-party n-round coin-flipping protocol there exists a related `-party n-round pro-
tocol of the same communication pattern, output distribution and security guarantees, but
of message length polylog(`, n).

Static adversaries. The case of static adversaries is well studied and understood.

Upper bounds (protocols). Ben-Or and Linial [7] presented a protocol that tolerates O
(
`0.63

)
corrupted parties (an improvement on the

√
` corrupted parties it takes to bias the majority

protocol). Ajtai and Linial [1] presented a protocol that tolerates O
(
`/ log2 `

)
corruptions.

Saks [23] presented a protocol that tolerates O(`/ log `) corruptions. The protocol of [23]
was later improved by Alon and Naor [3] to tolerate a constant fraction of corrupted parties.
Shortly afterwards, Boppana and Narayanan [9] presented an optimal protocol resilient to
(1/2− δ)` corruptions for any δ > 0.

Lower bounds (attacks). Kahn, Kalai, and Linial [17] proved that no single-bit single-round
protocol can tolerate Ω(`/ log `) corruptions. Russell, Saks, and Zuckerman [22] proved that
a protocol tolerating Ω(`) corruptions is either many-bit or has Ω(1/2−o(1)) · log∗(`) rounds.

1.2.2 Computationally Secure Coin Flip

There is a rich literature on coin-flipping protocols secure against polynomially bounded adversaries.
Several such models were considered, where the most relevant model to our settings are the so-
called fair coin-flipping protocols: the adversary is polynomially bounded and can corrupt all but
one party, the corrupted parties are statically chosen, and the honest parties must output a bit as
their outcome (i.e., are not allowed to abort even if malicious party is “detected”).

2

Upper bounds. The following results holds under the proper hardness assumptions (existence
of one-way functions or of oblivious transfer protocols). Blum [8] presented a two-party two-round
coin-flipping protocol of (maximal) bias 1/4. Awerbuch, Blum, Chor, Goldwasser, and Micali
[4] presented an `-party n-round protocol with bias O(`/

√
n) (the two-party case appears also in

Cleve [11]). Moran, Naor, and Segev [21] solved the two-party case (matched the lower bound for
such protocols, see below) by giving a two-party n-round protocol with bias Θ(1/n). Haitner and
Tsfadia [16] solved the three-party case (up to poly-logarithmic factor) by presenting a three-party
protocol with bias O(polylog(n)/n). Buchbinder, Haitner, Levi, and Tsfadia [10] presented an `-

party n-round with bias Õ(`32`/n
1
2

+ 1

2`−1−2). In particular, their protocol for four parties has bias
Õ(1/n2/3), and for ` = log log n their protocol has bias smaller than Awerbuch et al. [4].

For the case where less than 2/3 of the parties are corrupt, Beimel, Omri, and Orlov [5] showed

an `-party n-round protocol with bias 22k/n, tolerating up to t = (` + k)/2 corrupt parties. Alon

and Omri [2] showed an `-party n-round protocol with bias Õ(22`/n), tolerating up to t corrupted
parties, for constant ` and t < 3`/4.

Lower bounds. Cleve [11] proved that for any n-message two-party coin-flipping protocol, there
exists an efficient adversary that can bias the output by Ω(1/n). The bound extends to the multi-
party case (with no honest majority) via a simple reduction. Beimel, Haitner, Makriyannis, and
Omri [6] showed that any n-round `-parties coin-flipping protocol with `k > n, for some k ∈ N,
can be biased by 1/(

√
n · (log n)k). Ignoring logarithmic factors, this means that if the number of

parties is nΩ(1), the majority protocol of Awerbuch et al. [4] is optimal.

Open Questions

In this work we show that the outcome of any `-party full-information coin-flipping protocol can
be biased either to o(1) or to 1 − o(1), using

√
` corruptions. However, the above o(1) stands for

1/ loglog(`), and it remains an intriguing question whether it can be pushed to 2−polylog(`) as can
be achieved, for instance, when attacking the `-party majority protocol. Such attacks are known
for uniform single-bit single-turn protocols (a secondary result of [24]) and for strongly adaptive
attackers against single-turn protocols [13].

A second question is when the outcome of a protocol can be biased to both directions. While
there are (single-turn, single-bit) protocols that are resistant to such double-sided attacks (see
Footnote 1), [24] proved that a uniform single-bit single-turn protocols can be always biased to
both direction. Yet, the exact class of protocols and attack models for which such double-sided
attacks always exist in an interesting open question. In particular, it is plausible that double-sided
attacks are always achievable by strongly adaptive adversaries.

On a different thread, Mahloujifar, Diochnos, and Mahmoody [20] drew a very interesting
connection between (adaptively) attacking coin-flipping protocols and poisoning attacks on robust
learners. They showed that in some settings, the process of adaptively perturbing the training
data in order to fail the online learner, can be interpreted as an adaptive attack on a related full-
information coin flip. They then used ideas from [24] to build, for some distributions, a poisoning
attack that by adaptively perturbing

√
n points (out of n samples) fails any online learner for the

given distribution. An attack on larger set of distributions was given in [13] by facilitating their
strongly adaptive attack on one-turn coin-flipping protocols (see Section 1.2). The above attacks
are limited to perturbing

√
n points (out of n samples). Assuming the samples are coming from

3

`� n sources, can we facilitate our attack to fail the learner by perturbing only
√
` sources?

Paper Organization

A rather elaborated description of our attack on coin-flipping protocols is given in Section 2.
Basic notations, definitions and facts are given in Section 3. We also present there some useful
manipulations of coin-flipping protocols. In Section 4, we show how to attack protocols of certain
structure, that we refer to as robust, and in Section 5 we extend this attack to arbitrary protocols.

2 Our Technique

In this section we give a rather elaborated description of our adaptive attack, and its analysis, on
full-information coin-flipping protocols.

Let Π be an `-party, n-message full-information coin-flipping protocol. We prove that one can
either bias the expected outcome of Π to less than ε := 1/ loglog(`), or to lager than 1−ε. Similarly
to previous adaptive attacks on full-information coin-flipping protocols, our attack exploits the
“jumps” in the protocol expected outcome; assume without loss of generality (see Section 3.4 for
justification) that in each round only a single party sends a message and let Msg = (Msg1, . . . ,Msgn)
denote the protocol transcript (i.e., parties’ messages) in a random all-honest execution of Π. For
msg ∈ Supp(Msg), let Π(msg) denote the final outcome of the execution described by msg, and for
msg≤i ∈ Supp(Msg≤i := (Msg1, . . . ,Msgi)) let Π(msg≤i) := E

[
Π(Msg) | Msg≤i = msg≤i)

]
be the

expected outcome given a partial transcript. We refer to Π(Msg≤i)−Π(Msg<i) (i.e., the change in
the expected outcome induced by the ith message) as the ith jump in the protocol execution.

Our attack exploits these gaps in a different way than what previous attacks did. First, it
mainly cares about the (conditional) variance of the jumps, rather than their support. Second,
even when it decides that the next message is useful for biasing the protocol’s outcome, it only
gently alters the message: it corrupts the party about to send the message with a certain probability,
and when corrupting, only moderately changes the message distribution. Similar to some of the
previous works, we prove the success of our attack by showing that the attacked protocol has too
little “liveliness” to resist the attacker bias, and thus the final outcome is (with high probability)
the value the attacker biases towards. Our notion of liveliness is the conditional variance of some
underlying distribution induced by the attack. Having little liveliness according to our notion
almost directly implies the success of the attack, with no need for additional tail inequalities as
used by some of the previous works.

We start by describing an attack on robust protocols: for some b ∈ {0, 1}, the protocol has no
1/
√
` jumps towards b.2 In Section 2.3, we explain how to attack arbitrary (non robust) protocols.

For correctness, we focus on robust protocols with respect to b = 0. That is, we assume that (for
simplicity, with probability one)

Π(Msg≤i) ≥ Π(Msg<i)− 1/
√
` (1)

We start by describing an attack on single-turn protocols (i.e., ` = n), and in Section 2.2 extend
it to the more complicated case of many-turn protocols. In the following for msg<i ∈ Supp(Msg≤i),

2An almost accurate example for a (bi-directional) robust protocol is the majority protocol of n ≥ ` rounds: in
each round, a single party broadcasts an unbiased coin, and the protocol’s final output is set to the majority of the
coins. It is well known that apart from the very last jumps, the absolute value of each jump is order of 1/√n ≤ 1/

√
`.

4

let jump(msg≤i) := Π(msg≤i)−Π(msg<i), i.e., the difference in expected outcome induced by the
ith message.

2.1 Attacking Single-Turn Coin Flip

We use the following procedure for biasing a single message of the protocol.

Definition 2.1 (Biased). For a distribution P , a constant t ≥ 0 and a function f : Supp(P) 7→
[−1/t,∞) such that E

P

[
f
]

= 0, let Biasedft
(
P
)

be the distribution defined by

P
[
Biasedft

(
P
)

= x
]

:= P
[
P = x

]
· (1 + t · f(x))

It is easy to verify that Biasedft
(
P
)

is indeed a probability distribution. Note that E
Biasedft

(
P
)[f]

is non negative, and the larger t is, the larger the expectation is (i.e., the bias is more significant).
Given the above definition, our attacker is defined as follows:

Algorithm 2.2 (Single-turn attacker).

For i = 1 to n, do the following before the ith message is sent:

1. Let msg<i be the previously sent messages, let Qi := Msgi |Msg<i=msg<i, let jumpi :=
jump(msg<i, ·) and let vi := Var[jumpi(Qi)].

2. If vi ≥ 1/`, corrupt the ith party with probability 1/ε3 ·√vi. If corrupted, instruct it to send the

next message according to Biased
jumpi
1/√vi

(
Qi
)
.

Else, corrupt the ith party with probability 1/ε3 · 1/√`. If corrupted, instruct it to send the next

message according to Biased
jumpi√
`

(
Qi
)
. 3

That is, a message (party) is corrupted with probability that is proportional to the square
root of the (conditional) variance it induces on the expected outcome of Π, but at least 1/

√
`. If

corrupted, the message is modified so that the change it induces on the expected outcome of Π is
biased towards one, where the bias is proportional to the inverse of the square root of the above
variance (up to

√
`).4 In the following we argue that the attacker indeed biases the outcome of Π

to 1− ε, and that the expected number of corruptions is O(
√
`/ε3). Thus, a Markov bound yields

the existence of the required attacker.
Let M̂sg = (M̂sg1, . . . , M̂sgn) be the message distribution induced by the above attack, and

consider the Doob sub-martingale S = (S0, . . . , Sn) with respect to M̂sg, induced by the outcome of

Π. That is, Si := Π(M̂sg≤i). By definition, S0 = E
[
Π(Msg)

]
= 1/2 and Sn ∈ {0, 1}. For i ∈ [n], let

Qi be the value of Qi in the attack execution, determined by M̂sgi−1, and let Yi = jump(M̂sg<i, q)
for q ∼ Qi. Since Qi is the ith message distribution of the unbiased protocol Π (determined

by M̂sg<i), it holds that E
[
Yi | M̂sg<i

]
= 0. Since the Yi’s are also independent of each other

conditioned on M̂sg, the sequence Y = (Y1, . . . , Yn) is a martingale difference sequence with respect

to (M̂sgi, Yi). The core of our analysis lies in the following lemma.

3Since we assume Equation (1), in both cases Biased
(
Qi
)

is indeed a valid probability distribution.
4Assuming Π is the `-round majority protocol, then (apart from the very last rounds) each vi is of (absolute)

order 1/`. Thus, in expectation, the above attack corrupts 1/ε3 ·
√
` parties. If corrupted, the party’s bit message is

set to 1 with probability ≈ 1/2 · (1 +
√
` · 1/√`) = 1.

5

Lemma 2.3. E
[∑n

i=1 Var[Yi | M̂sg<i]
]
≤ ε3.

The proof of Lemma 2.3 is sketched below, but first we use it for analyzing the quality of the
attack. We first argue about the expected number of corruptions. By construction, the probability
the attacker corrupts the ith party is

1/ε3 ·max

{√
Var[Yi | M̂sg<i], 1/

√
`

}
≤ 1/ε3 ·max

{√
` ·Var[Yi | M̂sg<i], 1/

√
`

}
(2)

≤ 1/ε3(
√
` ·Var[Yi | M̂sg<i] + 1/

√
`).

Hence by Lemma 2.3, the expected number of corruptions is bounded by

1/ε3 · E
[∑̀
i=1

(√
` ·Var[Yi | M̂sg<i] + 1/

√
`

)]
≤
√
`(1 + 1/ε3).

We next argue about the bias induced by the attack. Since Y is a martingale difference sequence
with respect to (M̂sgi, Yi), i.e., E

[
Yi | M̂sg<i, Y<i

]
= 0, it is easy to verify that

E
[(n∑

i=1

Yi
)2]

=

n∑
i=1

E
[
Y 2
i

]
= E

[n∑
i=1

Var[Yi | M̂sg<i]
]

(3)

Hence by Lemma 2.3 and a Markov bound, we deduce that

P
[∣∣∣∣∣

n∑
i=1

Yi

∣∣∣∣∣ ≥ ε] = P
[
(

n∑
i=1

Yi)
2 ≥ ε2

]
≤ ε (4)

Furthermore, since Si are the “biased towards one” variants of Qi (and thus of Yi), there exists
a (rather) straightforward coupling between S and Y for which

Si − Si−1 ≥ Yi (5)

Since, by definition, S0 = 1/2, it follows that P
[
Sn ≤ 0

]
= P

[∑n
i=1 Yi ≤ −1/2

]
≤ ε, and since

Sn ∈ {0, 1}, we deduce that P
[
Sn = 1

]
≥ 1 − ε. Namely, the output of the attacked protocol is 1

with probability at least 1− ε. (The same argument works also if it is only guaranteed that S0 ≥ ε,
as happens in Section 2.3)

Proving Lemma 2.3. We start with two simple observations. The first is that for any distri-
bution P , constant t ≥ 0 and function f : Supp(P) 7→ [−1/α,∞) such that E

P

[
f
]

= 0, it holds

that

E
Biasedft

(
P
)[f] =

∑
x∈Supp(P)

f(x) · P
[
Biasedft

(
P
)

= x
]

(6)

=
∑

x∈Supp(P)

f(x) · P
[
P = x

]
· (1 + tf(P))

= E
P

[
f · (1 + tf)

]
= E

P

[
tf
]

+ E
P

[
t · f2

]
= 0 + t ·Var

P
[f].

6

A second immediate observation is that for any p ∈ [0, 1]:(
p · Biasedft

(
P
)

+ (1− p) · P
)
≡ Biasedfp·t

(
P
)

(7)

Let Vi be the value of the variable vi in the execution of the attack (determined by M̂sg<i), and let

V ′i := max{vi, 1/`}. For a partial transcript msg<i ∈ Supp(M̂sg<i), applying the above observation

with respect to P := Msgi
∣∣
Msg<i=msg<i

, p := 1/ε3 ·
√
V ′i
∣∣
M̂sg<i=msg<i

, t := 1/
√
V ′i

∣∣
M̂sg<i=msg<i

and

f := jump(msg<i, ·), yields that

E
[
Si − Si−1 | M̂sg<i = msg<i

]
= E

[
Biasedf1/ε3

(
Msgi

∣∣
Msg<i=msg<i

)]
(8)

= 1/ε3 ·Var
[
jump(Msg≤i) | Msg<i = msg<i

]
= 1/ε3 ·Var

[
Yi | M̂sg<i = msg<i

]
.

It follows that

E
[
Sn − S0

]
= 1/ε3 ·

n∑
i=1

Var[Yi | M̂sg<i] (9)

and since both S0 and Sn take values in [0, 1], we conclude that
∑n

i=1 Var[Yi | M̂sg<i] ≤ ε3.

2.2 Attacking Many-Turn Coin Flip

The first challenge when moving to many-turn protocols is that we can no longer decide whether
to attack a message independently of the other messages. There are simply too many massages,
and whatever such strategy one takes, it either corrupts too many parties, or biases the protocol
outcome by too little. So rather, the strategy we take is to decide whether to corrupt or not, per
party, and not per message, with the exception of “highly influential” messages. A second challenge
is that once deciding to corrupt a party, we should corrupt its messages in a way that does not
significantly reduce the the influence of its future messages. Otherwise, a corrupt party might
never be useful for biasing the protocol outcome. This is achieved by partitioning, if needed, the
messages of the parties into sequences of “bounded influence”, viewing each such sequence as a
separate party, and deciding whether to corrupt it or not independently. In our terminology, we
turn Π into an `-normal protocol.

Normal protocols. Let party(msg<i) be the identity of the party about to send the ith message
as described by the partial transcript msg<i. A party P has large jumps in msg ∈ Supp(Msg), if
party(msg<i) = P for some i ∈ [n] such that Var[jump(Msg≤i) | Msg<i = msg<i] ≥ 1/`. If the above
does not happen and P participates in the execution (sends a message), we say that P has small
jumps (in msg). We assume without loss of generality, in the price of increasing the number of
parties and making the identity of the parties sending the messages dynamic (i.e., function of the
protocol transcript), that Π is `-normal:

Definition 2.4 (`-normal protocols, informal). Protocol Π is `-normal if the following hold:

1. A large-jump party (a party that has large jumps) sends only a single message.

7

2. For a small-jumps party (a party that has small jumps) P it holds that∑
i∈[n] : party(Msg<i)=P Var[jump(Msg≤i) | Msg<i] ≤ 2/`.

(I.e., the overall sum of conditional variances the party P “has” is bounded.)

3. There are at most ` (small-jumps) parties P with∑
i∈[n] : party(Msg<i)=P Var[jump(Msg≤i) | Msg<i] < 1/`.

The advantage of assuming Π is `-normal is that for such protocols our attack either corrupts all
messages sent by a party, or corrupts none of them. Our attack can be easily adapted for arbitrary
protocols, and then it modifies a (typically small, non continuous) subset of the corrupted party’s
messages.

The attack. Given the above assumptions, our many-turn attacker is defined as follows:

Algorithm 2.5 (Many-turn attacker).

For i = 1 to n, do the following before the ith message is sent:

1. Let msg<i be the previously sent messages, let Qi := Msg≤i |Msg<i=msg<i, let jumpi :=
jump(msg<i, ·), and let vi := Var[jumpi(Qi)].

2. If vi ≥ 1/`, corrupt the party sending the ith message with probability 1/ε3 · √vi. If corrupted,

instructs it to send its next message according to Biased
jumpi
1/√vi

(
Qi
)
.

Else, if the ith message is the first message to be sent by the party, corrupt this party with
probability 1/ε3 · 1/

√
`. If corrupted (now or in previous rounds), instruct it to send its next

message according to Biased
jumpi√
`

(
Qi
)
.

That is, a large-jump party is treated like in the single-turn case. Where a small-jumps party is
corrupted with probability proportional to 1/

√
` (again like in the single-turn case). But if corrupt,

all messages of the small-jumps party are modified.5 The analysis of the above attack is similar
to the single-turn case. Let M̂sg = (M̂sg1, . . . , M̂sgn), S = (S0, . . . , Sn) and Y = (Y0, . . . , Yn) be as
in the single-turn case. Similarly to the single turn case, the core of the proof is in the following
lemma.

Lemma 2.6. E
[∑`

i=1 Var[Yi | M̂sg<i]
]

= O(ε3).

The attacks analysis follows by the above lemma very similarly to the single-turn case. The only
difference is that since, in order to turn Π into an `-normal protocol, we might have partitioned
each of its parties into several (pseudo) parties, and since we corrupt each small-jumps party with
probability proportional to 1/

√
`, it seems that we might have corrupted too many parties. But since,

by the `-normality of the protocol, there are at most ` parties with sum of conditional variances less
than 1/`, Lemma 2.6 yields that, in expectation, the above partition only induces O(`) additional
(pseudo) parties.

5Assuming Π is an `2-round majority protocol in which each party sends ` coins, then (apart from the very last
rounds) the change induced by any given message is (absolute) order of 1/`. Hence, each vi is of order 1/`2, and each
party will be independently corrupted with probability 1/ε3 · 1/√` (i.e., first if of Step (2) is never triggered). Thus,
in expectation, the above attack corrupts 1/ε3 ·

√
` parties. If corrupt, each of the ` bit-messages the party sends is 1

with probability ≈ 1/2 · (1 +
√
` · 1/`) = 1/2 + 1/2

√
`.

8

The challenge in proving Lemma 2.6 is that unlike the single-turn proof, it might be that the
following core inequality does not holds:6

E
[
Si − Si−1 | M̂sg<i = msg<i

]
≥ 1/ε3 ·Var[Yi | M̂sg<i = msg<i]

Indeed, let Vi be the value of the variables vi in the execution of the attack described by M̂sg<i.

Assume that conditioned on M̂sg<i = msg<i, it holds that Vi < 1/` and that a small-jumps party P
is about to send the ith message. Unlike the single-turn case, the conditional probability that P is
corrupted is no longer guaranteed to be 1/ε3 · 1/√`: the previous messages sent by P in msg<i might
leak whether P is corrupted or not. If the latter happens, then (by the same argument we used

for proving the lemma in the single-turn case) it might be that E
[
Si − Si−1 | M̂sg<i = msg<i

]
<

1/ε3 ·Var[Yi | M̂sg<i = msg<i].
Fortunately, since we only slightly modify each message of a corrupted small-jumps party (pro-

portionally to the conditional variance the message induces on the protocol’s outcome), and since
(due to the partitioning) the overall variance of the messages a small-jumps party sends is at most
2/`, a KL-divergence argument yields that on average (in some sense) for a message sent by a small-

jumps party it holds that E
[
Si − Si−1 | M̂sgi−1 = msg<i

]
= Ω(1/ε3 · Var

[
Yi | M̂sgi−1 = msg<i

]
),

which suffices for the proof of the lemma to go through.

2.3 Attacking Non-Robust Coin Flip

The high level idea of attacking arbitrary (non-robust) protocols that might have 1/
√
` jumps in

both direction (e.g., Π(Msg≤i) < Π(Msg<i)−1/
√
`) is rather straightforward. Attempt biasing the

protocol toward zero using large negative jumps. If failed, you are essentially in the situation that
allows you to apply the above attack for robust protocols. More formally, assume a protocol Π has
a (large) negative jump with probability at least 1/log `, and consider the following single-corruption
attacker: 7

Algorithm 2.7 (Negative jumps attacker).

For i = 1 to `, do the following before the ith message is sent:

1. Let msg<i be the previously sent messages.

2. If there exists m−i ∈ Supp(Msgi |Msg<i=msg<i) such that Π(msg<i,m
−
i) < Π(msg<i) − 1/

√
`,

and no party was corrupted yet, instruct the party sending the ith message to send m−i .

It is clear that the above adversary biases the outcome of Π toward zero by at least 1/log(`)·
√
`.

Let Π1 be the protocol induced by the above (deterministic) attack: all parties emulate the attacker
in their head, and when it decides to (deterministically) corrupt a party, the corrupted party follows
its (deterministic) instructions. If the protocol Π1 has a negative jump with probability larger than
1/ log n, apply the above attack on Π1 to get a protocol Π2, and so on...

It is clear that the above process halts after at most t ≤ log(`) ·
√
` such iterations. Consider

the t-corruption adversary for Π defined by these t attacks: it runs the t adversaries in parallel,

6Recall that the above equality allowed us to argue that E
[∑`

i=1 Var[Yi | M̂sg<i]
]
≤ ε3 · E

[
Sn − S0

]
≤ ε3.

7Interestingly, assuming the next-message function of Π is efficient, e.g., Π is public-coin, the following attacker,
when used, is the only reason for the inefficiency of our attack.

9

and corrupt a message whenever one of the t adversaries decides to do so. Assuming the expected
outcome of Πt is at most ε, we are done. Otherwise, for some i ∈ [t] the protocol Πi has the
following property:

P
[
∃j ∈ [n] : Πi(M̃sg≤j) < Πi(M̃sg<j)− 1/

√
`
]
≤ 1/ log(`) (10)

letting M̃sg be the messages of a random execution of Πi.
If the above happens, then we apply the attack on robust protocols (Algorithm 2.5) on Πi,

instructing the adversary not to attack a message of large negative jump. With a careful analysis
(actually, we need to slightly refine the attack for that), one can show that the above attack on
Πi encounters a large negative jump with probability only O(ε). Hence, it successfully biases the
expected output of Πi to 1 − O(ε) (since with overwhelming probability the attack carries as if
there are no large negative jumps). Combining the attack that turns Π into Πi with the attack on
Πi, yields the required attacker.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. All logarithms considered here are base 2. For n ∈ N, let [n] := {1, . . . , n} and
(n) := {0, . . . , n}. Given a Boolean statement S (e.g., X ≥ 5), let 1S be the indicator function that
outputs 1 if S is a true statement and 0 otherwise.

3.2 Distributions and Random Variables

The support of a distribution P over a discrete set X , denoted Supp(P), is defined by Supp(P) :=
{x ∈ X : P (x) > 0}. For random variables X,Y let the random variable Supp(X |Y) denote the
conditional support of X given Y . In addition, we define the random variables Var

[
X |Y

]
and

E
[
X |Y

]
as (deterministic) functions of Y , by Var

[
X |Y

]
(y) := Var

[
X |Y = y

]
and E

[
X |Y

]
(y) :=

E
[
X |Y = y

]
, respectively.

The statistical distance (also known as, variation distance) of two distributions P and Q over
a discrete domain X is defined by SD(P,Q) := maxS⊆X |P (S)−Q(S)| = 1

2

∑
x∈S|P (x)−Q(x)|.

Statistical distance enjoys a data processing inequality.

Fact 3.1 (Data processing for statistical distance). For distributions P and Q and function f over
a discrete domain X , it holds that SD(f(P), f(Q)) ≤ SD(P,Q).

The KL-divergence (also known as, Kullback-Leibler divergence and relative entropy) between two
distributions P,Q over a discrete domain X is defined by

DKL

(
P ‖Q

)
:=
∑
x∈X

P (x) log
P (x)

Q(x)
= Ex∼P log

P (x)

Q(x)
,

where 0 · log 0
0 = 0, and if there exists x ∈ X such that P (x) > 0 = Q(x) then DKL

(
P ‖Q

)
:= ∞.

KL-divergence is convex, in the following sense:

10

Fact 3.2 (Convexity of KL-divergence). For finite distributions P,Q and λ ∈ [0, 1] it holds that
DKL

(
λ · P + (1− λ) ·Q ‖Q

)
≤ λ ·DKL

(
P ‖Q

)
.

The following fact (see Fedotov et al. [14]) relates small KL-divergence to small statistical
distance:

Fact 3.3 (Pinsker bound). For discrete distributions P and Q it holds that SD(P,Q) ≤√
1
2 ·DKL

(
P ‖Q

)
.

3.3 Martingales

Martingales play an important role in our analysis.

Definition 3.4 (Martingales). A sequence of random variables M = (M1, . . . ,Mn) is a martingale
with respect to a sequence of random variables X1, . . . , Xn, if E

[
Mk+1 |X≤k

]
= Mk and Mk is

determined by X≤k for every k ∈ [n]. The sequence M is a martingale, if it is a martingale with
respect to itself. The increments (also known as, differences) sequence of M are the random variables
{Mk+1 −Mk}n−1

k=1 .

In particular, we will be interested in the so-called Doob martingales.

Definition 3.5 (Doob martingales). The Doob martingale of the random variables X =
(X1, . . . , Xn) induced by the function f : Supp(X) 7→ R, is the sequence M1, . . . ,Mn defined by
Mk := E

[
f(X1, . . . , Xn) |X≤k

]
.

The proof of the following known fact is immediate.

Fact 3.6 (Martingale increments are orthogonal). Let X1, . . . , Xn be a sequence of random vari-
ables. If there exist random variables Z1, . . . , Zn such that E

[
Xk |Z<k

]
= 0 and Xk is determined

by Z≤k (i.e.,
∑
Xi is a martingale with respect to Zk), then Var[

∑n
i=1Xi] =

∑n
i=1 Var[Xi].

Sub-martingales. We also use the related notion of sub-martingales.

Definition 3.7 (Sub-martingales). A sequence of random variables S = (S1, . . . , Sn) is a sub-
martingale with respect to a sequence of random variables X1, . . . , Xn, if E

[
Sk+1 |X≤k

]
≥ Sk and Sk

is determined by X≤k for every k ∈ [n]. The sequence S is a sub-martingale if it is a sub-martingale
with respect to itself.

In particular, we make use of the following known inequality.

Lemma 3.8 (Doob’s maximal inequality). Let S1, . . . , Sn be a non-negative sub-martingale, then

for any c > 0 it holds that P
[
supk Sk ≥ c

]
≤ E
[
Sn
]
/c.

3.4 Full-Information Coin Flip

We start with the formal definition of full-information coin-flipping protocols.

11

Definition 3.9 (Full-information coin-flipping protocols). A protocol Π is a full-information coin-
flipping protocol if it is stateless,8 the parties keep no private state between the different communica-
tion rounds, and each turn consists of a single party broadcasting a string, and the parties common
output is a deterministic Boolean function of the transcript.

Remark 3.10 (Many messages per communication round). Note that we restrict that in each round
only a single party broadcasts a message. Our attack readily applies for the model in which many
parties might broadcast a message in a single round, as long as the adversary controls the message
arrival order in this round (as assumed in Tauman Kalai et al. [24]). The setting in which many
messages per round are allowed, and the adversary has no control on the arrival order, is equivalent
(at least under the natural formulation of this model) to the static adversary cases, in which we
know that Θ(`/ log `) corruptions (` being the number of parties) are required.

We associate the the following notation with a full-information coin-flipping protocol.

Notation 3.11. Let Π be an n-round `-party full-information coin-flipping protocol.

• Let MsgΠ = (MsgΠ
1 , . . . ,MsgΠ

n) denote a random transcript (i.e., parties’ messages) of Π.

• For partial transcript msg≤i ∈ Supp
(
MsgΠ

≤i
)
, let Π

(
msg≤i

)
:= E

[
Π
(
MsgΠ

)
| MsgΠ

≤i = msg≤i
]
.

(I.e., the expected outcome of Π given msg≤i)

Let E
[
Π
]

:= Π(), and refer to this quantity as the expected outcome of Π.

• For msg<i ∈ Supp(MsgΠ
<i), let party(msg<i) ∈ [`] be the identity of the party to send the ith

message, as determined by msg<i.

For party P ∈ [`] and transcript msg ∈ Supp(MsgΠ), let IdxP(msg) :=
{i ∈ [n] : party(msg<i) = P}.

• For msg≤i ∈ Supp(MsgΠ
≤i), let jumpΠ

(
msg≤i

)
:= Π

(
msg≤i

)
−Π(msg<i).

(i.e., jumpΠ
(
msg≤i

)
is the increment in expectation caused by the ith message.)

3.4.1 Adaptive Adversaries

Definition 3.12 (Adaptive adversary). A t-adaptive adversary for a full-information coin-flipping
protocol in an unbounded algorithm that can take the following actions during the protocol execution.

1. Before each communication round, it can decide to add the next to speak party to the corrupted
party list, as long as the size of this list does not exceed t.

2. In a communication round in which a corrupted party is speaking, the adversary has full control
over the message it sends, but bounded to send a valid message (i.e., in the protocol message
space support).

We make use of the following definition and properties for such adversaries.

8Since we consider attackers of unbounded computational power, this assumption is without loss of generality:
given a stateful protocol we can apply our attack on its stateless variant in which each party, before it acts, samples
its state conditioned on the current public transcript. It is easy to see that an attack on the stateless variant is also
an attack, with exactly the same parameters, on the original (stateful) protocol.

12

The attacked protocol.

Definition 3.13 (The attacked protocol). Given a full-information coin-flipping protocol Π and a
deterministic (adaptive) adversary A for attacking it, let ΠA be the full-information coin-flipping
protocol induced by this attack: the parties act according to Π while emulating A. Once a party real-
izes it is corrupted, it acts according to the instruction of (the emulated) A. For non-deterministic
A, let ΠA be the distribution over protocols induced by the randomness of A.

Derandomizing.

Proposition 3.14 (Attack derandomization). For an adversary A acting on a full-information
coin-flipping protocol Π there exist deterministic adversaries A+ and A− such that E

[
ΠA+

]
≥ E

[
ΠA

]
and E

[
ΠA−

]
≤ E

[
ΠA

]
.

Proof. By simple expectation arguments over the randomness of A. �

Composition.

Definition 3.15 (Composing adaptive adversaries). Let Π be a coin-flipping protocol, let A be
a deterministic kA-adaptive adversary for Π, and let B be a kB-adaptive adversary for ΠA. The
(kA + kB)-adaptive adversary B ◦ A on Π is defined as follows:

Algorithm 3.16 (Adversary B ◦ A on Π).

For i := 1 to NumMsgs(Π):
If P ∈ {A,B} would like to modify the ith message, alter it according to P.

Proposition 3.17. Let Π, A and B be as in Definition 3.15, then E
[
ΠB◦A

]
= E

[
(ΠA)B

]
.

Proof. Since A is deterministic, B never modifies a message in ΠA that is to be modified by A.
Indeed, since B is a valid attacker it never sends a message out of the support of ΠA, and a message
to be corrupted by A is fixed. It follows that (ΠA)B and ΠB◦A induce the same distribution on the
protocol tree of Π, and thus induce the same output distribution. �

3.5 Useful Inequalities

We use the following standard inequalities.

Fact 3.18. For −1
2 ≤ x it holds that x log(1 + x) ≤ 2x2.

Fact 3.19. For 0 ≤ x ≤ 1 it holds that x log x ≥ −1.

4 Biasing Robust Coin Flip

In this section we present an attack for biasing robust coin-flipping protocols.
To simplify notation, we focus on robustness for 0, see below, fix ` ∈ N (the number of parties

of the robust protocol), and make use of the following constants.

Notation 4.1. Let ε := 1/ 50√log log `, λ := 100/ε5 and δ := 1/log2 `.

13

The main result of this section is stated below.

Definition 4.2 (Robust coin-flipping protocols). An n-round full-information coin-flipping protocol
Π is `-robust, if P

[
∃i ∈ [n] : Supp

(
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i

)
∩ (−∞,−1/λ·

√
`] 6= ∅

]
≤ δ.

Theorem 4.3 (Biasing robust coin-flipping protocols). Let Π be an `-party, `-robust full-

information coin-flipping protocol such that E
[
Π
]
≥ ε. Then there exists an O

(√
` · log `

)
-adaptive

adversary A such that E
[
ΠA

]
≥ 1−O(ε).

We start, Section 4.1, by proving a variant of Theorem 4.3 for “normal” coin-flipping protocol.
Informally, in a normal coin-flipping protocol a party does not influence the protocol “by much”
over multiple rounds, though it might have large influencing over a single round. In Section 4.2, we
use this attack for proving Theorem 4.3, by transforming the given protocol into a normal protocol,
and show that the guaranteed attack on the latter protocol yields an attack of essentially the same
quality on the original protocol.9

4.1 Biasing Normal Robust Coin Flip

Normal coin-flipping protocols are coin-flipping protocols of a very specific message ownership
structure. As we show in Section 4.2, an arbitrary coin-flipping protocol can be viewed, with some
loss in parameters, as a normal coin-flipping protocol.

Definition 4.4 (Normal coin-flipping protocols). Let Π be a t-party, n-round full-information
coin-flipping protocol and let ` ∈ N. We say Π is `-normal, if the following hold:

Single non-robust party: there exists a party NonRobust ∈ [t] such that for every
transcript msg ∈ Supp(MsgΠ) and i ∈ [n]:(
Supp

(
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
)
∩ (−∞,−1/λ·

√
`]
)
6= ∅ ⇐⇒ i ∈ IdxNonRobust(msg).

Large-jump party sends a single message: a party P ∈ [t]\{NonRobust} has large
jumps in msg, if ∃i ∈ IdxP(msg) s.t. Var

[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]
≥ 1/λ`.

Then for every large-jump party P in msg ∈ Supp(MsgΠ) it holds that
|IdxP(msg)| = 1.

Small-jumps party has bounded overall variance: a party P ∈ [t]\{NonRobust}
has small jumps in msg, if it participates (sends a message) but has no large jumps
in msg.

Then for every small-jumps party P in msg ∈ Supp(MsgΠ) it holds that∑
i∈IdxP(msg) Var

[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]
≤ 2 · 1/λ`.

At most ` unfulfilled parties: a small-jumps party is unfulfilled in msg if∑
i∈IdxP(msg) Var

[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]
< 1/λ`.

Then in every msg ∈ Supp(MsgΠ) there are at most ` unfulfilled parties.

In the following, We say that a party P is a large-jump party with respect to msg if it has large
jumps in msg, and is a small-jumps party with respect to msg if it has small-jumps in msg.

9It is worth mentioning that the shift from attacking arbitrary protocols to normal protocols is merely done for
notational convince, and nothing exciting is hidden under the hood of the aforementioned transformation.

14

The advantage of considering normal protocols is that for such protocols our attack either
corrupts (essentially) all message sent by a party, or corrupts none of them. Our attack can be
easily adapted for arbitrary (non-normal) protocols, and then it only corrupts, if at all, a (typically
small, non continuous) subset of the a party’s messages.

Our attack on normal coin-flipping protocols is stated below.

Lemma 4.5 (Biasing normal coin-flipping protocols). Let Π be a `-normal, n-round full-
information coin-flipping protocol. If E

[
Π
]
≥ ε and P

[
IdxNonRobust(MsgΠ) 6= ∅

]
≤ δ, then there

exists an O
(√

` · log `
)

-adaptive adversary A such that E
[
ΠA

]
≥ 1−O(ε).

That is, if Π is `-normal and `-robust, then it can be biased by an O
(√

` · log `
)

-adaptive

adversary.
We begin by introducing a method of biasing distributions in order to increase their expectation

under some utility function. Jumping ahead, our adversary will use this technique in order to modify
the messages of the corrupted parties, with the utility function being the change it induces on the
protocol’s expectation.

Definition 4.6 (Biased distribution). Let X be a distribution, α > 0 and f : Supp(X) 7→ [−1/α,∞)
such that E

[
f(X)

]
= 0. We define the distribution Biasedfα

(
X
)

as follows: P
[
Biasedfα

(
X
)

= x
]

=

P
[
X = x

]
· (1 + αf(x)).

It is easy to verify this is indeed a distribution. If f is the identity function, we sometimes omit
it from the above notation.

Lemma 4.7 (Properties of the Biased distribution). Let X be a distribution, α > 0 and f :
Supp(X) 7→ [−1/2α,∞) such that E

[
f(X)

]
= 0. The following hold:

1. E
[
f
(
Biasedfα

(
X
))]

= α ·Var
[
f(X)

]
.

2. DKL

(
Biasedfα

(
X
)
‖X
)
≤ 2α2 ·Var

[
f(X)

]
.

3. For any 0 ≤ p ≤ 1 it holds that
(
p · Biasedfα

(
X
)

+ (1− p) ·X
)
≡ Biasedfpα

(
X
)
.

4. There exists a pair of random variables (A,B), i.e., a coupling, such that A ≡ X, B ≡
Biasedfα

(
X
)
, and f(B) ≥ f(A).

Proof.

Item 1:

E
[
f
(

Biasedfα
(
X
))]

=
∑

x∈Supp(X)

f(x) · P
[
Biasedfα

(
X
)

= x
]

=
∑

x∈Supp(X)

f(x) · P
[
X = x

]
· (1 + αf(x))

= E
[
f(X) · (1 + αf(X))

]
= E

[
f(X)

]
+ α · E

[
f2(X)

]
= α ·Var

[
f(X)

]
.

15

Item 2:

DKL

(
Biasedfα

(
X
)
‖X
)

=
∑

x∈Supp(X)

P
[
Biasedfα

(
X
)

= x
]
· log

(
P
[
Biasedfα

(
X
)

= x
]

P
[
X = x

])

=
∑

x∈Supp(X)

P
[
X = x

]
· (1 + αf(x)) · log(1 + αf(x))

= E
[
(1 + αf(X)) · log(1 + αf(X))

]
= E

[
log(1 + αf(X))

]
+ E

[
αf(X) · log(1 + αf(X))

]
≤ log

(
1 + E

[
αf(X)

])
+ E

[
2α2f2(X)

]
= 2α2 ·Var

[
f(X)

]
.

The last inequality follows by Jensen’s inequality and Fact 3.18.

Item 3:

P
[(
p · Biasedfα

(
X
)

+ (1− p) ·X
)

= x
]

= p · P
[
Biasedfα

(
X
)

= x
]

+ (1− p) · P
[
X = x

]
= p · P

[
X = x

]
· (1 + αf(X)) + (1− p) · P

[
X = x

]
= P

[
X = x

]
· (1 + pαf(X)).

Item 4: Consider the following random process: Sample a← X. If f(a) ≥ 0, set b = a. Else, with
probability 1 + αf(a) set b = a. Otherwise, sample b← X+

f for

X+
f ≡

{
x with probability

P
[
X=x

]
·f(x)

E
[
|f(X)|

] for x ∈ Supp(X) with f(x) > 0

By construction f(b) ≥ f(a), and it is not hard to verify that the marginal distributions of a
and b are that of X and Biasedfα

(
X
)
, respectively.

�

In the rest of this subsection we fix an `-normal, n-round full-information coin-flipping protocol
Π such that E

[
Π
]
≥ ε and P

[
IdxNonRobust(Msg) 6= ∅

]
≤ δ, for Msg ≡ MsgΠ. The attacker for Π is

defined as follows.

Algorithm 4.8 (Adversary A).

For i := 1 to n, do the following before the ith message is sent:

1. Let P be the the party about to send the ith message. If P = NonRobust, do not intervene in
the current round.

2. Let msg<i denote the messages sent in the previous rounds. Let Qi be the distribution
MsgΠ

i

∣∣
MsgΠ

<i=msg<i
, let jumpi := jumpΠ(msg<i, ·) and let vi := Var

[
jumpi(Qi)

]
.

3. If this is the first message sent by P, corrupt P according to the following method:

(a) If P is a large-jump party, i.e., vi ≥ 1/λ`, corrupt it with probability λ2 · √vi. 10

10λ2 · √vi is indeed a number in the range [0, 1]: P 6= NonRobust implies that vi ≤ 1/λ·
√
`).

16

(b) Else (P is a small-jumps party), corrupt P with probability λ2/
√
`.

4. If P is in the corrupted parties pool:

(a) If P is a large-jump party, instruct P to broadcast its next message according to

Biased
jumpi√
vi

(
Qi
)
.

(b) Else:

i. If P
[
P is corrupted by A | MsgA<i = msg<i

]
≤ 16λ2/

√
`, for MsgA<i which is the distri-

bution of messages sent in a random execution of Π in the presence of A for the first
i−1 rounds,11 instruct P to broadcast its next message according to Biased

jumpi√
`

(
Qi
)
.

ii. Else, instruct P to sample its next message honestly (i.e., according to Qi).

The main difference between the above attacker and its simplified variant presented in Section 2,
is that the above attacker might stop modifying the messages of an already corrupted party (see
Step 4b). This change enables us to easily bound the KL-divergence between the attacked and
all-honest distributions, a bound that plays a critical role in our analysis.12

In the rest of this section we analyze the expected outcome of ΠA and the number of parties
A corrupts. Let M̂sg = (M̂sg1, . . . , M̂sgn) denote the messages sent in a random execution of A
on Π. Let Q1. . . . , Qn be the value of these variables computed by A, and let CorruptedParties be
the set of parties corrupted in this execution of A on Π (all variables are jointly distributed with

M̂sg). Note that CorruptedParties is not determined by M̂sg (as there is additional randomness

involved). Let S0, . . . , Sn be the sub-martingale Sk := Π
(

M̂sg≤k

)
with respect to M̂sg. Let

Xk := Sk − Sk−1 = jumpΠ
(

M̂sg≤k

)
be the jumps induced by the attacked execution. Note that

S0 = E
[
Π
]
≥ ε and Sn = S0 +

∑n
i=1Xi.

We prove Lemma 4.5 using the following three observations. The first observation, proved in
Section 4.1.1, guarantees a per-round coupling between the change in expected outcome induced
by the attack, and what that would have been the change in an honest execution (conditioned on
previous messages).

Claim 4.9 (Coupling honest and attacked conditional distributions). There exists a random vari-

able Y = (Y1, . . . , Yn) jointly distributed with M̂sg, such that the following holds for every i ∈ [n],

msg<i ∈ Supp
(

M̂sg<i

)
and c ∈ {0, 1}:

1. Xi ≥ Yi,

2. Yi
∣∣
M̂sg<i=msg<i

≡ jumpΠ(msg<i, Qi) where P = party(msg<i). Furthermore, conditioned on

M̂sg<i, Yi is independent of Y<i and {P ∈ CorruptedParties}.

That is, Yi is distributed like the (conditional) change in outcome induced by the ith step if
it were carried out honestly, and is never larger than the (conditional) change induced by the ith

step of the attacked execution. It is easy to verify that E
[
Yk | M̂sg<k, Y<k

]
= 0, i.e.,

∑k
i=1 Yi is a

11Since we are defining the strategy of A in the ith round using its strategy in the first i−1 rounds, this self-reference
is well defined.

12We are not certain whether this change is mandatory for the attack to go through, or merely an artifact of our
proof technique that bounds the KL divergence between the attacked and honest execution (see Claim 4.10).

17

martingale with respect to (M̂sgk, Yk). For the rest of this section, let Y be the random variable
guaranteed by Claim 4.9.

Next, we consider the set of robust messages with respect to M̂sg, defined by

RobustJumps := [n] \ IdxNonRobust(M̂sg) (11)

Note that RobustJumps is a random set (determined by M̂sg). The following observation (proved in
Section 4.1.2) states that the overall conditional variance of Y contributed by the robust messages
is small, which implies that the variance of

∑
Yi is small. It follows that

∑
Yi is typically not “too

small”, and since Xi ≥ Yi, that
∑
Xi is typically not too small.

Claim 4.10 (Bounding Y ’s conditional variance). E
[∑

i∈RobustJumps Var
[
Yi | M̂sg<i

]]
< 2/λ.

Finally, in Section 4.1.3 we prove that attacked execution does not deviate too much, in KL-
divergence terms, from the honest execution. This implies that, with overwhelming probability,
NonRobust does not participate in the protocol (since it participated in the original protocol with
very small probability).

Claim 4.11 (Bounding KL-Divergence between attacked and honest executions). It holds that

DKL

(
M̂sg ‖ Msg

)
≤ 163λ3.

Equipped with Claims 4.9 to 4.11, we are ready to prove Lemma 4.5.

Proving Lemma 4.5

Proof of Lemma 4.5.

Expected outcome. We start by analyzing the expected bias induced by A. Note that

Var
[∑
i∈RobustJumps

Yi
]

=
n∑
i=1

Var
[
Yi · 1i∈RobustJumps

]
= E

[∑
i∈RobustJumps

Var
[
Yi | M̂sg<i

]]
≤ 2/λ (12)

The first equality holds by Fact 3.6 (since E
[
Yk | M̂sg<k, Y<k

]
= 0 and 1i∈RobustJumps is determined

by M̂sg<k). The inequality holds by Claim 4.10. Since E
[∑

i∈RobustJumps Yi
]

= 0. Thus, by Markov’s

inequality P
[∣∣∣∑i∈RobustJumps Yi

∣∣∣2 ≥ ε2/4
]
< ε/4, which implies that

P
[∑
i∈RobustJumps

Yi ≤ −ε/2
]
< ε/4 (13)

Next we show that with overwhelming probability RobustJumps = [n], namely NonRobust does
not participate in the execution. Let BadΠ be the event {IdxNonRobust(Msg) 6= ∅}. By assumption,

P
[
BadΠ

]
≤ δ. Let Bad be the event

{
IdxNonRobust(M̂sg) 6= ∅

}
, and let p := P

[
Bad

]
. Note that

DKL

(
1Bad ‖1BadΠ

)
≤ DKL

(
M̂sg≤n ‖ MsgΠ

≤n
)
≤ 163λ3 (14)

18

The first inequality follows by data-processing of KL Divergence, and the last inequality follows by
Claim 4.11. It follows that

DKL

(
1Bad ‖1BadΠ

)
= P

[
Bad

]
· log

(
P
[
Bad

]
P
[
BadΠ

])+
(
1− P

[
Bad

])
· log

(
1− P

[
Bad

]
1− P

[
BadΠ

]) (15)

≥ P
[
Bad

]
· log

(
P
[
Bad

]
P
[
BadΠ

])− 1 ≥ p · log
(p
δ

)
.

The penultimate inequality follows by Fact 3.19. Assume by the way of contradiction that p ≥ ε/4.
Thus (for large enough `),√

log log ` > 163λ3 ≥ DKL

(
1Bad ‖1BadΠ

)
≥ 1/4 · 1/ 50√log log ` · log

(
log2 /̀4 · 1/ 50√log log `

)
≥
√

log log `,

yielding the contraction
√

log log ` >
√

log log ` (for large enough `). We conclude that p ≤ ε/4.
Combining the above observations, we conclude that

E
[
ΠA

]
= P

[
Sn = 1

]
= P

[
Sn > 0

]
= P

[
S0 +

n∑
i=1

Xi > 0
]

= P
[n∑
i=1

Xi > −ε ≥ −S0

]
(16)

≥ P
[∑
i∈RobustJumps

Yi > −ε
]
− P

[
NonRobust

(
M̂sg≤n

)
6= ∅
]
≥ (1− ε/4)− ε/4 ≥ 1− ε/2.

Number of corruptions. So it is left to prove that A does not make too many corruptions. We
do that by calculating the expected number of corruptions, and use a Markov bound. We introduce
several additional notations. Let SmallParties and LargeParties be the (random) set of small-

jumps and large-jump parties with respect to M̂sg (that participate in the execution), respectively.

Let SmallJumps :=
{
k ∈ [n]: party(M̂sg<k) ∈ SmallParties

}
be the set of small jumps, and let

LargeJumps :=
{
k ∈ [n]: party(M̂sg<k) ∈ LargeParties

}
be the set of large jumps. Note that the

above random sets are determined by M̂sg.
We first notice that since a small-jumps party is corrupted with probability λ2/

√
`, it holds that

E
[
|SmallParties ∩ CorruptedParties|

]
= λ2/

√
` · E

[
|SmallParties|

]
(17)

In addition, the definition of an `-normal protocols stipulates that for any transcript of Π there are
at most ` unfulfilled parties. Since all non-unfulfilled parties contribute at least 1/λ` to the sum of
variances, which is small by Claim 4.10, we deduce that

E
[
|SmallParties|

]
≤ 3` (18)

Combining the above two observations yields the following bound on the number of corrupted
small-jump parties:

E
[
|SmallParties ∩ CorruptedParties|

]
≤ λ2/

√
` · 3` = 3λ2

√
` (19)

19

As for large-jump parties, for any k ∈ [n], partial transcript t = msg<k and the large-jump

party P sending the kth message, P is corrupted with probability λ2 ·
√

Var
[
Yk | M̂sg<k = msg<k

]
.

Thus, we have that

E
[
|LargeParties ∩ CorruptedParties|

]
(20)

= E
[∑
i∈LargeJumps

λ2 ·
√

Var
[
Yi | M̂sg<i

]]
≤ E

[∑
i∈LargeJumps

λ2 ·
√
λ` ·Var

[
Yi | M̂sg<i

]]
≤ λ3 ·

√
` · E

[∑
i∈RobustJumps

Var
[
Yi | M̂sg<i

]]
≤ λ3 ·

√
` · 2/λ = 2λ2

√
`.

The last inequality follows by Claim 4.10. Thus in total, the expected amount of corruptions is at
most 5λ2

√
`. Hence by Markov inequality, with probability at least 1−ε/2 the amount of corruptions

made by A is at most 10λ3
√
/̀ε < 10λ4

√
`.

Putting it together. Consider the adversary A′ that acts just as A, but aborts (letting players

continue the execution honestly) once the amount of corruptions surpasses 10λ4
√
` = O

(√
` · log `

)
.

It holds that

E
[
ΠA′
]

= P
[
ΠA′ = 1

]
≥ P

[
ΠA = 1 ∧ |CorruptedParties| < 10λ4

√
`
]

≥ P
[
ΠA = 1

]
− P

[
|CorruptedParties| ≥ 10λ4

√
`
]
≥ 1− ε/2− ε/2 = 1− ε,

which concludes the proof of the lemma. �

4.1.1 Coupling Xi and Qi, Proving Claim 4.9

Proof of Claim 4.9. Fix i ∈ [n] and let C be the event
{

party(M̂sg<i) ∈ CorruptedParties
}

. We

show how to sample Yi, jointly with 1C and Msg≤i, such that Yi
∣∣
M̂sg<i=msg<i

has the stated distri-

bution for every msg<i ∈ Supp
(

M̂sg<i

)
.

To that end, we define a random variable Zi, jointly distributed with M̂sg≤i and independent

of Y<i and C. Fix msg≤i ∈ M̂sg≤i, to sample Zi
∣∣
M̂sg≤i=msg≤i

we make use of Lemma 4.7(4): let

Qi, vi, and jumpi be the values of these variables (in the execution of Algorithm 4.8), determined

by M̂sg<i = msg<i. If the condition of Step 4b does not hold (i.e., party(msg<i) is a small-jumps

party but P
[
C | M̂sg<i = msg<i

]
> 16λ2/

√
`), let α = 0. Else, let α = min{1/√vi,1/√`}. Let (A,B)

be the random variables guaranteed by Lemma 4.7(4) with respect to X := Qi, f := jumpi and α.
Sample Zi

∣∣
M̂sg≤i=msg≤i

(independently of Y<i and C) according to jumpi(A
∣∣
B=msgi

).

By Lemma 4.7(4), jumpi(B) ≥ jumpi(A) and thus Xi

∣∣
M̂sg≤i=msg≤i

≡ jumpi(msgi) ≥
jumpi(A

∣∣
B=msgi

) ≡ Zi. In addition, Zi
∣∣
M̂sg<i=msg<i ∧C

≡ jumpΠ(msg<i, Qi) for any msg<i ∈

Supp(M̂sg<i). This holds since B
∣∣
M̂sg<i=msg<i ∧C

≡ Biasedfα
(
Qi
)
≡ M̂sgi

∣∣
M̂sg<i=msg<i ∧C

, and thus

A
∣∣
M̂sg<i=msg<i ∧B=M̂sgi

≡ Qi.

20

To conclude the proof, set Yi =

{
Xi 1C = 0

Zi 1C = 1
. It is clear that Xi ≥ Yi, that the conditional

distributions are as required, and that Yi is independent of Y<i and C (conditioned on M̂sg<i). �

4.1.2 Bounding Y ’s Conditional Variance, Proving Claim 4.10

Proof of Claim 4.10. Immediately follows by Claims 4.13 and 4.14, stated below, that handle large
and small jumps, respectively. �

Recall that RobustJumps = [n] \ IdxNonRobust(M̂sg) = SmallJumps ∪ LargeJumps.
In addition, we make use of the following conditional variant of the biased distribution,

Definition 4.12 (Conditional variant of Biased). Let X,Z be jointly distributed random vari-
ables, α : Supp(Z) 7→ R+ and f : Supp(X) 7→ R such that ∀z ∈ Supp(Z): f

(
X
∣∣
Z=z

)
≥ −1/α(z),

and E
[
f(X) |Z

]
= 0. We define a random variable Biasedfα

(
X |Z

)
jointly distributed with Z, by

Biasedfα
(
X |Z

)∣∣
Z=z
≡ Biasedfα(z)

(
X
∣∣
Z=z

)
, for any z ∈ Supp(Z).

Large jumps.

Claim 4.13. E
[∑

i∈LargeJumps Var
[
Yi | M̂sg<i

]]
< 1/λ.

Proof. We assume towards a contradiction that E
[∑

i∈LargeJumps Var
[
Yi | M̂sg<i

]]
≥ 1/λ, prove that

this implies that E
[
Sn
]
> 1, and derive a contradiction to the fact that Sn ∈ {0, 1}. For k ∈ [n],

let Ek := {k ∈ LargeJumps}, and note that 1Ek is determined by M̂sg<k. Compute,

1Ek · E
[
Xk | M̂sg<k

]
(21)

= 1Ek · λ
2
√

Var
[
Yk | M̂sg<k

]
· E
[
Biased

1/
√

Var

[
Yk | M̂sg<k

](Yk | M̂sg<k
)
| M̂sg<k

]
(22)

+ 1Ek ·
(

1− λ2
√

Var
[
Yk | M̂sg<k

])
· E
[
Yk | M̂sg<k

]
= 1Ek · λ

2
√

Var
[
Yk | M̂sg<k

]
· 1/

√
Var
[
Yk | M̂sg<k

]
·Var

[
Yk | M̂sg<k

]
+ 0 (23)

= 1Ek · λ
2 ·Var

[
Yk | M̂sg<k

]
.

Equality (22) follows by construction (see Step 3a and Step 4a of Algorithm 4.8) and Claim 4.9,
and Equality (23) follows by Lemma 4.7(1). Hence (for large enough `),

E
[
Sn
]

= E
[
S0 +

n∑
i=1

Xi

]
= E

[
S0

]
+ E

[n∑
i=1

E
[
Xi | M̂sg<i

]]
(24)

≥ ε+ E
[n∑
i=1

1{i∈LargeJumps} · E
[
Xi | M̂sg<i

]]
(25)

= ε+ E
[n∑
i=1

1{i∈LargeJumps} · λ2 ·Var
[
Yi | M̂sg<i

]]
(26)

21

= ε+ λ2 · E
[∑
i∈LargeJumps

Var
[
Yi | M̂sg<i

]]
≥ ε+ λ2/λ > 1.

Inequality (25) holds since E
[
S0

]
≥ ε and E

[
Xi | M̂sg<i

]
≥ 0, Equality (26) follows by Equation (21),

and the penultimate inequality follows by assumption. The last inequality holds for sufficiently large
` since λ is super-constant in `. Thus Equation (24) is in contradiction to the fact that Sn ∈ {0, 1},
and we conclude that E

[∑
i∈LargeJumps Var

[
Yi | M̂sg<i

]]
< 1/λ. �

Small jumps.

Claim 4.14. E
[∑

i∈SmallJumps Var
[
Yi | M̂sg<i

]]
< 1/λ.

In the following for a party P, let IP be the random variable IdxP
(

M̂sg
)

.

Proof. We assume towards a contradiction that γ := E
[∑

i∈SmallJumps Var
[
Yi | M̂sg<i

]]
≥ 1/λ, and

prove this implies that E
[
Sn
]
> 1, which contradicts the fact that Sn ∈ {0, 1}. By definition of

an `-normal protocol, for any transcript of Π there are at most ` unfulfilled parties. Since all
non-unfulfilled parties contribute at least 1/λ` to the sum of conditional variances, it holds that

E
[
|SmallParties|

]
≤ γλ`+ ` < 2γλ` (27)

We say a party P is contributional if

P

[∑
i∈IP

Var
[
Yi | M̂sg<i

]
>

1

8
· 1

λ`
| P ∈ SmallParties

]
≥ 1/8 (28)

Note that being contributional is a function of the protocol itself, and not of a given transcript.
Let ContribParties denote the set of contributional parties. In addition, let SmallContribParties
be the (random) set of contributional small-jumps parties according to M̂sg. By definition, all
non-contributional small-jumps parties contribute at most 3γ/4 to Var

[∑
i∈SmallJumps Yi

]
. Hence,

E
[∑

P∈SmallContribParties

∑
i∈IP Var

[
Yi | M̂sg<i

]]
≥ γ/4. Since a small-jumps party has sum of condi-

tional variances at most 2/λ`, we conclude that

E
[
|SmallContribParties|

]
≥ γλ /̀8 (29)

We conclude the proof using the following claim (proven below).

Claim 4.15. For any contributional party P it holds that

E
[∑
i∈IP

Xi |P ∈ CorruptedParties ∧ P ∈ SmallContribParties
]
≥ 1/256λ

√
`.

Given the above claim, compute

E
[n∑
i=1

Xi

]
= E

[n∑
i=1

E
[
Xi | M̂sg<i

]]
≥ E

[∑
P∈SmallContribParties

∑
i∈IP

E
[
Xi | M̂sg<i

]]
(30)

22

= E
[∑
P∈SmallContribParties

∑
i∈IP

Xi

]
=

∑
P∈ContribParties

E
[∑
i∈IP

Xi |P ∈ CorruptedParties ∧ P ∈ SmallContribParties
]

(31)

· P
[
P ∈ CorruptedParties ∧ P ∈ SmallContribParties

]
≥

∑
P∈ContribParties

1/256λ
√
` · P

[
P ∈ CorruptedParties ∧ P ∈ SmallContribParties

]
(32)

=
∑

P∈ContribParties

1/256λ
√
` ·
(
P
[
P ∈ SmallContribParties

]
· λ2/

√
`
)

(33)

= λ/256` · E
[
|SmallContribParties|

]
≥ γλ2/2048. (34)

Inequality (30) holds since E
[
Xi | M̂sg<i

]
≥ 0. Equality (31) holds since

E
[∑

i∈IP Xi |P /∈ CorruptedParties ∧ P ∈ SmallContribParties
]

= 0. Inequality (32) by Claim 4.15.

Equality (33) by construction (see Step 3b of Algorithm 4.8). Finally, Inequality (34) follows by
Equation (29).

In total, E
[
Sn
]

= E
[
S0 +

∑n
i=1Xi

]
≥ ε+ γλ2/2048. Thus, since λ is super constant in `, for large

enough ` it holds that E
[∑n

i=1Xi

]
> 1. This stands in contradiction to the fact that Sn ∈ {0, 1}.

�

Proving Claim 4.15.

Proof of Claim 4.15. Fix a contributional party P, and consider the following events (jointly dis-

tributed with M̂sg), let C := {P ∈ CorruptedParties}, let S := {P ∈ SmallParties}, let L :={∑
i∈IP Var

[
Yi | M̂sg<i

]
> 1/8λ`

}
, i.e., P has large conditional variance, and let

H :=
{
∀k ∈ IP: E

[
1{P∈CorruptedParties} | M̂sg<k

]
< 16 · λ2/

√
`

}
,

i.e., Step 4(b)ii never happens for P. We start by proving that P
[
H ∧ L |S

]
is large, and then use

a KL-divergence argument show that P
[
H ∧L |S ∧C

]
is large, i.e., P encounters large conditional

variance even when it is a corrupted small-jumps party. Finally, this implies that the change in
expectation P induces (when a corrupted small-jumps party) is large.

To prove that P
[
H ∧ L |S

]
is large, we momentarily move to the conditional probability space

where S occurs (i.e., P participates in the protocol as a small-jumps party). Consider the martingale

C0, . . . , Cn defined by Ck := E
[
1C | M̂sg≤k

]
(that is, Ck is the projection of the event C on the

information held by M̂sg≤k). Since, under the conditioning, P is a small-jumps party, it holds that
the adversary corrupts P with probability λ2/

√
`, i.e., E

[
1C

]
= P

[
C
]

= λ2/
√
`. Thus by Doob’s

maximal inequality (see Lemma 3.8), it holds that

P
[
¬H
]

= P
[
sup
k
Ck ≥ 16 · λ2/

√
`
]
≤ 1/16 (35)

Back to the regular probability space, we deduce that

P
[
L ∧H |S

]
≥ P

[
L |S

]
− P

[
¬H |S

]
≥ 1/8− 1/16 = 1/16 (36)

23

where P
[
L |P ∈ SmallParties

]
≥ 1/8 holds by assumption. We next bound DKL

(
M̂sg

∣∣
S∧C ‖ M̂sg

∣∣
S

)
.

Compute,

DKL

(
M̂sg

∣∣
S∧C ‖ M̂sg

∣∣
S

)
(37)

=
∑̀
i=1

E
msg<i←M̂sg<i

∣∣
S∧C

[
DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i ∧C

‖ M̂sgi
∣∣
M̂sg<i=msg<i

)]
= E

msg←M̂sg
∣∣
S∧C

[∑
i∈IdxP(msg)

DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i ∧C

‖ M̂sgi
∣∣
M̂sg<i=msg<i

)]
(38)

≤ E
msg←M̂sg

∣∣
S∧C

[∑
i∈IdxP(msg)

DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i ∧C

‖ M̂sgi
∣∣
M̂sg<i=msg<i ∧¬C

)]
(39)

≤ E
msg←M̂sg

∣∣
S∧C

[∑
i∈IdxP(msg)

DKL

(
Biased

jumpΠ(msg<i, ·)√
`

(
MsgΠ

i

∣∣
MsgΠ

<i=msg<i

)
‖ MsgΠ

i

∣∣
MsgΠ

<i=msg<i

)]
(40)

≤ E
msg←M̂sg

∣∣
S∧C

[∑
i∈IdxP(msg)

2` ·Var
[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]]

(41)

≤ 2` · E
[
2/λ`
]
≤ 4/λ.

The first equality follows by chain-rule of KL Divergence. Equality (38) follows by the fact that
the distribution of messages not sent by P is not affected by conditioning on C. Inequality (39)

follows by Fact 3.2 (M̂sgi is a convex combination of M̂sgi
∣∣
C

and M̂sgi
∣∣
¬C). Inequality (40) follows

by construction (see Step 4b of Algorithm 4.8), Inequality (41) follows from Lemma 4.7(2), and the
penultimate inequality hold since, by assumption, the protocol Π is `-normal.

By Equation (37) and the Pinsker bound (see Fact 3.3), it holds that SD
(

M̂sg
∣∣
S∧C , M̂sg

∣∣
S

)
≤

2/
√
λ. Hence, by Equation (36) and the data-processing inequality of statistical distance (Fact 3.1),

it holds that (for large enough `)

P
[
H ∧ L |S ∧ C

]
≥ 1/32 (42)

In other words, when P is a corrupted small-jumps party, it still encounters large conditional
variance and biases all jumps it encounters. Thus, all is left to do is analyze the expectancy
of P’s increments under this conditioning. Let M̃sg denote the distribution M̂sg

∣∣
S∧C , and for

msg ∈ Supp
(

M̂sg
)

let 1H(msg) be the value of 1H determined by M̂sg = msg. Compute,

E
[∑
i∈IP

Xi |S ∧ C
]

= E
[∑
i∈IP

Xi |S ∧ C
]

= E
msg←M̃sg

[∑
i∈IdxP(msg)

E
[
Xi | M̂sg<i = msg<i ∧C

]]
≥ E

msg←M̃sg

[
1H(msg) ·

∑
i∈IdxP(msg)

E
[
Biased√

`

(
Yi | M̂sg<i

)
| M̂sg<i = msg<i ∧C

]]
(43)

= E
[
1H ·

∑
i∈IP

√
` ·Var

[
Yi | M̂sg<i

]
|S ∧ C

]
≥
√
` · E

[
1H · 1/8λ` · 1L |S ∧ C

]
(44)

24

= 1/8λ
√
` · P

[
H ∧ L |S ∧ C

]
≥ 1/8λ

√
` · 1/32 = 1/256λ

√
`. (45)

Inequality (43) follows by the definition of A (see Step 4b of Algorithm 4.8) and Claim 4.9 (Yi is

independent of C conditioned on M̂sg<i). Equality (44) follows from Lemma 4.7(1). The penulti-
mate inequality follows by a point-wise inequality, and Inequality (45) follows by Equation (42). �

4.1.3 Bounding KL-Divergence between Attacked and Honest Executions, Proving
Claim 4.11

In this section we show that the KL Divergence between M̂sg≤n and MsgΠ
≤n is small. In particular

we prove the following claim,

Claim 4.16 (Restatement of Claim 4.11). DKL

(
M̂sg≤n ‖ MsgΠ

≤n
)
≤ 163λ3.

The core of the proof relies on Lemma 4.7(3), which states that corrupting some party with
probability p and then biasing its message according to Biasedfα, is equivalent to biasing this message
according to Biasedfpα. This fact yields the following observation:

Claim 4.17. For any i ∈ [n] and partial transcript msg<i ∈ Supp(M̂sg<i), it holds that

DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i

‖ MsgΠ
i

∣∣
MsgΠ

<i=msg<i

)
≤ 163λ4 ·Var

[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]
.

Proof. Let P := party(msg<i) be the party sending the ith message. If P is NonRobust, we are done
since its messages are left unchanged (it is never corrupted). Else, we separately deal with the case
that P is a small-jumps party and a large-jump party (with respect to the partial transcript msg<i,
which suffices to determine the type of the party).

P is a small-jumps party. Conditioned on M̂sg<i = msg<i, the ith message is altered from
its honest (conditional) distribution according Π, with probability p ≤ 16λ2/

√
` (see

Step 4b of Algorithm 4.8). If the ith message is altered, it is sampled according to

Biased
jumpΠ(msg<i, ·)√
`

(
MsgΠ

i

∣∣
MsgΠ

<i=msg<i

)
. By Lemma 4.7(3), M̂sgi

∣∣
M̂sg<i=msg<i

is distributed

like Biased
jumpΠ(msg<i, ·)
p·
√
`

(
MsgΠ

i

∣∣
MsgΠ

<i=msg<i

)
. Hence, by Lemma 4.7(2)

DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i

‖ MsgΠ
i

∣∣
MsgΠ

<i=msg<i

)
≤ 2 ·

(
p
√
`
)2
·Var

[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]

≤ 2 · 162λ4 ·Var
[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]
.

P is a large-jump party. Conditioned on M̂sg<i = msg<i, the ith message is altered from
its honest (conditional) distribution according Π, with probability λ2 ·

√
v where v :=

Var
[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]
. If the ith message is altered, it is sampled accord-

ing to Biased
jumpΠ(msg<i, ·)
1/
√
v

(
MsgΠ

i

∣∣
MsgΠ

<i=msg<i

)
. Hence, by Lemma 4.7(3), M̂sgi

∣∣
M̂sg<i=msg<i

is distributed like Biased
jumpΠ(msg<i, ·)
λ2·
√
v·1/√v

(
MsgΠ

i

∣∣
MsgΠ

<i=msg<i

)
. By Lemma 4.7(2), we conclude

that

DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i

‖ MsgΠ
i

∣∣
MsgΠ

<i=msg<i

)
≤ 2 · λ4 ·Var

[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]
.

25

�

Proof of Claim 4.11. Let RobustJumps(msg), a set, denote the value of RobustJumps determined

by M̂sg = msg. Compute,

DKL

(
M̂sg≤n ‖ MsgΠ

≤n
)

=
∑̀
i=1

E
msg<i←M̂sg≤i

[
DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i

‖ MsgΠ
i

∣∣
MsgΠ

<i=msg<i

)]
(46)

= E
msg←M̂sg

[∑
i∈RobustJumps(msg)

DKL

(
M̂sgi

∣∣
M̂sg<i=msg<i

‖ MsgΠ
i

∣∣
MsgΠ

<i=msg<i

)]
(47)

≤ E
msg←M̂sg

[∑
i∈RobustJumps(msg)

163λ4 ·Var
[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = msg<i
]]

(48)

= 163λ4 · E
[∑
i∈RobustJumps

Var
[
jumpΠ

(
MsgΠ

≤i
)
| MsgΠ

<i = M̂sg<i
]]

= 163λ4 · E
[∑
i∈RobustJumps

Var
[
Yi | M̂sg<i

]]
(49)

≤ 163λ3. (50)

Equality (46) follows by chain rule of KL Divergence, Equality (47) follows since non-
RobustJumps are not corrupted (as they belong to NonRobust), Inequality (48) follows by
Claim 4.17, Inequality (49) follows by definition of Yi (see Claim 4.9) and inequality (50) fol-
lows by Claim 4.10. �

4.2 Biasing Arbitrary Robust Coin Flip

In this section we use the attack on normal robust protocol proved to exists in Section 4.1, for
attacking arbitrary robust protocols. We do that by transforming an arbitrary robust protocol into
a related normal coin-flipping protocol, and proving that the attack on the latter normal protocol
stated in Lemma 4.5, yields an attack of essentially the same quality on the original (non normal)
protocol, thus proving Theorem 4.3.

We start with defining the normal form variant of a coin-flipping protocol. Let Π be an n-round,
`-party full-information coin-flipping protocol. Its n-round, (t := 2n · `+ 1)-party, `-normal variant
Π̃ is defined as follows:

Protocol 4.18 (`-normal protocol Π̃).

• For each party P of the protocol Π, the protocol Π̃ has 2n parties Psmall
1 , . . . ,Psmall

n and

Plarge
1 , . . . ,Plarge

n . In addition, Π̃ has an special party named NonRobust.

• For each party P of Π, start three counters LP = SP = 1, and AP = 0.

• In rounds i = 1 to n, the protocol is defined as follows.

1. Let msg<i denote the messages sent in the previous rounds, and let P be the party that
would have sent the ith message in Π given this transcript.

26

2. Let Qi be the distribution MsgΠ
i

∣∣
MsgΠ

<i=msg<i
and let vi := Var

[
jumpΠ(msg<i, Qi)

]
.

3. Set P′ (the “active” party) as follows:

(a) If Supp
(
jumpΠ

(
msg<i,Qi

))
∩ (−∞, 1/λ·

√
`] 6= ∅, set P′ to NonRobust.

(b) Else, If vi ≥ 1/λ`, set P′ to Plarge
LP

, and update LP = LP + 1.

(c) Else, If vi < 1/λ`:
Set P′ to Psmall

SP
and update AP = AP + vi

If AP > 1/λ`:

– Set SP = SP + 1.

– Set AP = 0.

4. P′ sends the ith message, as P would in Π given the partial transcript msg<i.

Claim 4.19. Assume Π is an `-party full-information coin-flipping protocol, then Π̃ is a an `-
normal full-information coin-flipping protocol.

Proof. We handle each of the conditions independently,

Single non-robust party: Step (3a) properly handles jumps that should belong to NonRobust.

Large-jump party sends a single message: Clearly Step (3b) associates parties of the form

Plarge
k with at most one jump. It is clear that only parties of this form might have large

jumps.

Small-jumps party has bounded overall variance: Step (3c) assures that once AP > 1/λ`,
namely the active party has sum of conditional variances larger than 1/λ`, it is never associated
with another jump further along the execution. Thus, since AP increases by at most 1/λ` at
a time, it never surpasses 2 · 1/λ`.

At most ` unfulfilled parties: Note that parties which have sum of conditional variances at
most 1/λ` must be parties of the form Psmall

k , and it holds that the only parties of this form
that participate in the protocol (namely, unfulfilled parties) are Psmall

SfP
where P is some party

(at most `) and SfP is the final value of SP. Thus, in total indeed at most ` unfulfilled parties
exist for any transcript.

�

Proving Theorem 4.3. Given the above tool and Lemma 4.5, the proof of Theorem 4.3 is
immediate.

Proof of Theorem 4.3. Let Π̃ be the `-normal variant of Π defined by Protocol 4.18. By Lemma 4.5

and Claim 5.4, there exits a O
(√

` · log `
)

-adaptive adversary Ã for Π̃ such that E
[
Π̃

Ã

]
≥ 1−O(ε).

Consider the adversary A on Π that emulates Ã while transforming corruptions of the parties of
Π̃ to parties of Π according to the mapping implicitly defined in Protocol 4.18. It is clear that
E
[
ΠA

]
= E

[
Π̃

Ã

]
≥ 1−O(ε). In addition, since by construction the parties in Π̃ are refinements of

the parties in Π, corrupting k parties in Π̃ is translated to corrupting at most k parties of Π. We

conclude that A is the desired O
(√

` · log `
)

-adaptive �

27

5 Biasing Arbitrary Coin Flip

In this section we use the attack on robust protocol described in Section 4 to prove our main result:
an adaptive attack on any full-information coin-flipping protocols.

We fix ` ∈ N (the number of parties of the robust protocol), and make use of the following
constants.

Notation 5.1. Let ε := 1/ 50√log log `, λ := 1/100ε5 and δ := 1/log2 `.

This main result of our paper is given below.

Theorem 5.2 (Biasing full-information coin flips). For any `-party full-information coin-flipping

protocol Π, there exists a O
(√

` · log3 `
)

-adaptive adversary A, such that E
[
ΠA

]
≤ ε or E

[
ΠA

]
≥

1−O(ε).

Our proof make use of the following deterministic one-shot (modifies at most a single message)
adversary that take advantage of large negative jumps for biasing the protocol output towards 0.

Algorithm 5.3 (One-shot adversary B for protocol Γ).

For i = 1 to NumMsgs(Γ):

1. Let msg<i be the messages sent in the previous rounds, and let P be the the party about to
send the ith message.

2. If no message was corrupted before, and Mi := Supp
(
jumpΓ

(
MsgΓ

i

)
| MsgΓ

<i = msg<i
)
∩

(−∞,−1/λ·
√
`] 6= ∅:

Instruct P to broadcast m as it next message, for some m ∈Mi.

The proof of the following fact is immediate.

Claim 5.4. For any `-party full-information coin-flipping protocol Γ, it holds that:

E
[
ΓB

]
≥ E

[
Γ
]

+ 1/λ·
√
` · P

[
∃i: Supp

(
jumpΓ

(
MsgΓ

≤i
)
| MsgΓ

<i

)
∩ (−∞, 1/λ·

√
`] 6= ∅

]
.

Equipped with the above tool, and the one developed in Section 4, we are ready to prove our
main result.

Proof of Theorem 5.2. For t :=
√
/̀λδ = O

(√
` · log3 `

)
, consider the protocols Π0, . . . ,Πt recur-

sively defined by Π0 := Π and Πi+1 := Πi
B, where B is according to Algorithm 5.3. If E

[
Πt
]
< ε,

then by Proposition 3.17 there exists a t-adaptive adversary that biases Π’s output to less than ε
(the composition of all intermediate adversaries), and we are done. Else, by Claim 5.4 there exists
i ∈ [t] such that for τ := Πi it holds that

P
[
∃i: Supp

(
jumpτ

(
Msgτ≤i

)
| Msgτ<i

)
∩ (−∞, 1/λ·

√
`] 6= ∅

]
≤ δ.

Hence by Theorem 4.3, there exists an O
(√

` · log `
)

-adaptive adversary A (which we assume

without loss of generality to be deterministic, see Proposition 3.14) such that

E
[
τA
]
≥ 1−O(ε).

28

Denote by C the (deterministic) i-adaptive adversary according to Definition 3.15 (the compo-

sition of all intermediate adversaries) such that ΠC ≡ Πi. Let A ◦ C be the O
(√

` · log3 `
)

attacker

according to Definition 3.15, by Proposition 3.17 it holds that E
[
ΠA◦C

]
= E

[
τA
]
≥ 1 − O(ε), con-

cluding the proof. �

Acknowledgment

We are grateful to Raz Landau, Nikolaos Makriyannis, Eran Omri and Eliad Tsfadia for very
helpful discussions. The first author is thankful to Michael Ben-Or for encouraging him to tackle
this beautiful question.

References

[1] M. Ajtai and N. Linial. The influence of large coalitions. Combinatorica, 13(2):129–145, 1993.

[2] B. Alon and E. Omri. Almost-optimally fair multiparty coin-tossing with nearly three-quarters
malicious. In Theory of Cryptography Conference (TCC), 2016-A, pages 307–335, 2016.

[3] N. Alon and M. Naor. Coin-flipping games immune against linear-sized coalitions. SIAM
Journal on Computing, 22(2):403–417, 1993.

[4] B. Awerbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement Bracha’s
O(log n) byzantine agreement algorithm. Unpublished manuscript, 1985.

[5] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with a dishonest majority.
Journal of Cryptology, 28(3):551–600, 2015.

[6] A. Beimel, I. Haitner, N. Makriyannis, and E. Omri. Tighter bounds on multi-party coin
flipping via augmented weak martingales and differentially private sampling. In Annual Sym-
posium on Foundations of Computer Science (FOCS), 2018.

[7] M. Ben-Or and N. Linial. Collective coin flipping, robust voting schemes and minima of
banzhaf values. In Annual Symposium on Foundations of Computer Science (FOCS), pages
408–416, 1985.

[8] M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Systems, 1983.

[9] R. B. Boppana and B. O. Narayanan. Perfect-information leader election with optimal re-
silience. SIAM Journal on Computing, 29(4):1304–1320, 2000.

[10] N. Buchbinder, I. Haitner, N. Levi, and E. Tsfadia. Fair coin flipping: Tighter analysis and
the many-party case. In Symposium on Discrete Algorithms (SODA), pages 2580–2600, 2017.

[11] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Annual
ACM Symposium on Theory of Computing (STOC), pages 364–369, 1986.

[12] Y. Dodis. Impossibility of black-box reduction from non-adaptively to adaptively secure coin-
flipping. Technical Report TR00-39, Electronic Colloquium on Computational Complexity,
2000.

29

[13] O. Etesami, S. Mahloujifar, and M. Mahmoody. Computational concentration of measure:
Optimal bounds, reductions, and more. In Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 345–363, 2020.

[14] A. A. Fedotov, P. Harremoes, and F. Topsoe. Refinements of pinsker’s inequality. IEEE
Transactions on Information Theory, 49(6):1491–1498, 2003.

[15] S. Goldwasser, Y. T. Kalai, and S. Park. Adaptively secure coin-flipping, revisited. In Au-
tomata, Languages and Programming, 24th International Colloquium (ICALP), pages 663–674,
2015.

[16] I. Haitner and E. Tsfadia. An almost-optimally fair three-party coin-flipping protocol. In
Annual ACM Symposium on Theory of Computing (STOC), pages 817–836, 2014.

[17] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In Annual
Symposium on Foundations of Computer Science (FOCS), pages 68–80, 1988.

[18] Y. T. Kalai and I. Komargodski. Compressing communication in distributed protocols. In
International Symposium on Distributed Computing (DISC), pages 467–479, 2015.

[19] D. Lichtenstein, N. Linial, and M. Saks. Some extremal problems arising from discrete control
processes. Combinatorica, 9(3):269–287, 1989.

[20] S. Mahloujifar, D. I. Diochnos, and M. Mahmoody. The curse of concentration in robust
learning: Evasion and poisoning attacks from concentration of measure. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 4536–4543, 2019.

[21] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Theory of Cryptography
(TCC), pages 1–18, 2009.

[22] A. Russell, M. Saks, and D. Zuckerman. Lower bounds for leader election and collective coin-
flipping in the perfect information model. SIAM Journal on Computing, 31(6):1645–1662,
2002.

[23] M. Saks. A robust noncryptographic protocol for collective coin flipping. SIAM Journal on
Discrete Mathematics, 2(2):240–244, 1989.

[24] Y. Tauman Kalai, I. Komargodski, and R. Raz. A lower bound for adaptively-secure collective
coin-flipping protocols. In International Symposium on Distributed Computing (DISC), 2018.

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

