Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 71 (2020)

A Tight Lower Bound on
Adaptively Secure Full-Information Coin Flip

Iftach Haitner *f Yonatan Karidi-Heller

October 27, 2024

Abstract

In a distributed coin-flipping protocol, Blum [ACM Transactions on Computer Systems '83],
the parties try to output a common (close to) uniform bit, even when some adversarially chosen
parties try to bias the common output. In an adaptively secure full-information coin flip, Ben-Or
and Linial [FOCS ’85], the parties communicate over a broadcast channel, and a computationally
unbounded adversary can choose which parties to corrupt along the protocol execution. Ben-Or
and Linial proved that the n-party majority protocol is resilient to O(y/n) corruptions (ignoring
poly-logarithmic factors), and conjectured this is a tight upper bound for any n-party protocol
(of any round complexity). Their conjecture was proved to be correct for single-turn (each party
sends a single message) single-bit (a message is one bit) protocols Lichtenstein, Linial, and Saks
[Combinatorica ’89], symmetric protocols Goldwasser, Tauman Kalai, and Park [ICALP ’15],
and recently for (arbitrary message length) single-turn protocols Tauman Kalai, Komargodski,
and Raz [DISC ’18]. Yet, the question of many-turn protocols was left entirely open.

In this work, we close the above gap, proving that no n-party protocol (of any round com-
plexity) is resilient to w(y/n) (adaptive) corruptions.

*Stellar Development Foundation and The Blavatnik School of Computer Science, Tel Aviv University. Email:
iftachh@gmail.com.

fResearch supported by ERC starting grant 638121, and Israel Science Foundation grants 666/19 and 836/23.

#The Blavatnik School of Computer Science, Tel Aviv University. Email: ykaridi@gmail.com.

ISSN 1433-8092

Contents

1 Introduction

1.1 Our Results e
1.2 Related Work e e
1.2.1 Full-Information Coin Flip
1.2.2 Data-Poisoning Attacks Lo
2 Our Technique
2.1 Attacking Robust Single-Turn Coin Flip
2.2 Attacking Robust Many-Turn Coin Flip
2.2.1 The Attack
2.3 Attacking Non-Robust Coin Flip
3 Preliminaries
3.1 Notations e e e e e e
3.2 Distributions and Random Variables
3.3 Martingales L
3.4 Full-Information Coin Flip e
3.4.1 Adaptive Adversaries
3.5 Useful Inequalities e e

4 Biasing Robust Coin Flip

4.1 Biasing Normal Robust Coin Flip
4.1.1 Gently Biasing a Distribution o 0oL
4.1.2 The Attack
4.1.3 Coupling X; and Q;
4.1.4 Bounding Y’s Conditional Variance
4.1.5 Bounding KL-Divergence between Attacked and Honest Executions

4.2 Biasing Robust Coin Flip

4.3 Proving Lemma 4.8o

5 Biasing Arbitrary Coin Flip

6 Strongly Adaptive, Bidirectional Adversaries

11
11
11
12
13
14
15

15
16
17
17
22
22
27
28
30

31

32

1 Introduction

In a distributed (also known as collective) coin-flipping protocol, Blum [7], the parties try to output
a common (close to) uniform bit, even when some adversarially chosen parties try to bias the output.
Coin-flipping protocols are fundamental primitives in cryptography and distributed computation,
allowing distrustful parties to agree on a common random string (e.g., public randomness) to be
used in their joint computation. More generally, almost any random process/protocol/algorithm
encapsulates (some form of) a coin-flipping protocol. Consider a random process whose Boolean
output is far from being fixed (e.g., has noticeable variance). Such a process can be thought of as a
coin-flipping protocol: the common coin is the output, and the process’s randomness corresponds
to the parties’ messages. Thus, lower bounds on coin-flipping protocols induce limitations on the
stability of random processes (see Section 1.2.2 for a concrete example).

The focus of this work is full-information coin-flipping protocols, Ben-Or and Linial [4]. In this
variant, the parties communicate solely over a single broadcast channel, and the Byzantine adver-
sary! is assumed to be computationally unbounded. Two types of such adversaries are considered:
A static adversary that chooses the parties it corrupts before the execution begins, and an adaptive
adversary that can choose the parties it wishes to corrupt during the protocol execution (i.e., as
a function of the messages seen so far). For static adversaries, full-information coin flips are well
understood, and almost matching upper (protocols) and lower (attackers) bounds are known, see
Section 1.2. Much less is understood about adaptive adversaries, which are the focus of this work,
and significant gaps exist between the upper and lower bounds. Ben-Or and Linial [4] proved that
the n-party majority protocol is resilient to O(y/n) corruptions (ignoring poly-logarithmic factors
in n), and conjectured that this is a tight upper bound for any n-party protocol (i.e., of any round
complexity). The works of Lichtenstein, Linial, and Saks [19], Goldwasser, Tauman Kalai, and
Park [14] made progress towards proving the conjecture for single-turn (each party sends a single
message) protocols, a case that was eventually proved by Tauman Kalai, Komargodski, and Raz
[27]. Yet, the question of many-turn protocols was left entirely open.

1.1 Owur Results

We solve this intriguing question, showing that the output of any n-party protocol can be fully
biased by an adaptive adversary corrupting O(y/n) parties (ignoring poly-logarithmic factors).

Theorem 1.1 (Biasing full-information coin-flipping protocols, informal). For any n-party full-
information coin-flipping protocol, there exists b € {0,1} and an (unbounded) adversary that, by
adaptively corrupting O(y/n) of the parties, forces the outcome of the protocol to b, except with
probability o(1).

The above lower bound matches (up to poly-logarithmic factors) the upper bound achieved
by the n-party majority protocol [4]. The bound extends to biased protocols, i.e., protocols with
expected outcome (in an all-honest execution) different from 1/2. We also remark that the one-side
restriction (only possible to bias the protocol outcome to some b € {0,1}) is inherent, as there
exists, for instance, an n-party (single-turn) protocol that is resilient to ©(n) corruptions trying to
bias its outcome towards one.?

1Once it corrupts a party, it completely controls it and can send arbitrary messages on its behalf.
2 Consider the n-party single-turn protocol in which each party broadcasts a (1/n, 1 — 1/n)-biased bit (i.e., equals

Although the one-sidedness is inherent in the adaptive case, we can overcome this by allowing
the adversary to perform strongly adaptive corruptions, i.e., the adversary can decide whether to
corrupt a party after seeing the message it is about to send.

Theorem 1.2 (Biasing full-information coin-flipping protocols via strongly adaptive attacks, in-
formal). For any n-party full-information coin-flipping protocol and any non-insignificant output
b € {0,1}, there exists an (unbounded) adversary that by performing at most O(y/n) strongly-
adaptive corruptions, forces the outcome of the protocol to b, except with probability o(1).

1.2 Related Work
1.2.1 Full-Information Coin Flip

We recall the main known results for n-party full-information coin-flipping protocols.

Adaptive adversaries. In the following, we ignore poly-logarithmic factors in n.

Upper bounds (protocols). Ben-Or and Linial [4] proved that the majority protocol is resilient
to O(y/n) corruptions.

Lower bounds (attacks). Lichtenstein, Linial, and Saks [19] proved that no single-bit (messages
are one bit) single-turn protocol is resilient to €2(y/n) adaptive corruptions (hence, majority is
optimal for such protocols). Dodis [9] proved that it is impossible to create a coin-flipping pro-
tocol resilient to £2(y/n) adaptive corruptions by sequentially repeating another coin-flipping
protocol, and then applying a deterministic function to the outcomes. Goldwasser, Tau-
man Kalai, and Park [14] proved that that no symmetric single-turn (many-bit) protocol is
resilient to Q(y/n) adaptive corruptions. Their result extends to strongly adaptive attacks
(the attacker can decide to corrupt a party after seeing the message it is about to send) on
single-turn protocols. Tauman Kalai, Komargodski, and Raz [27] fully answered the single-
turn case by proving that no single-turn protocol is resilient to £2(y/n) adaptive corruptions.
Lastly, Etesami, Mahloujifar, and Mahmoody [11] presented an efficient strongly adaptive
attack on protocols of certain properties (e.g., public coins).

Static adversaries. The case of static adversaries is well studied and understood.

Upper bounds (protocols). Ben-Or and Linial [4] presented a protocol that tolerates O(n
corrupted parties (an improvement on the O(y/n) corrupted parties it takes to bias the major-
ity protocol). Ajtai and Linial [1] presented a protocol that tolerates O(m/log?n) corruptions.
Saks [26] presented a protocol that tolerates O(7/logn) corruptions. The protocol of [26] was
later improved by Alon and Naor [2] to tolerate a constant fraction of corrupted parties.
Shortly afterwards, Boppana and Narayanan [8] presented an optimal protocol resilient to
(1/2 — §)n corruptions for any § > 0.

0.63)

Lower bounds (attacks). Kahn, Kalai, and Linial [18] proved that no single-bit single-turn pro-
tocol can tolerate €2(7/logn) corruptions. Russell, Saks, and Zuckerman [25] proved that a
protocol tolerating €2(n) corruptions is either many-bit or has Q(1/2 — o(1)) - log*(n) rounds.

zero with probability 1/n) and the protocol output is set to the AND of these bits. It is clear that the protocol
expected outcome is (1 — 1/n)" & 1/e (can be made 1/2 by slightly changing the distribution), and that even n/2
adaptive corruptions cannot change the protocol outcome to a value larger than (1 — 1/n)"/2 ~4/1/e.

The reader is referred to Dodis [10] for a more elaborated, somewhat outdated survey on full-
information coin flip and friends.

1.2.2 Data-Poisoning Attacks

Consider a learning algorithm that tries to learn a hypothesis from a training set of samples from
different sources. The random process corresponding to this learning task can be naturally viewed
as a coin-flipping protocol. Moreover, as first noticed by Mahloujifar and Mahmoody [20], an
attacker on the latter coin flip induces a so-called data-poisoning attack: increasing the probability
of a desired property (i.e., poisoning the training data) by tampering with a small number of
sources. For this application, however, the attacker would better be able to force a predetermined
output (rather than forcing some output, as our attack achieves). Hence, the attack we apply on
the coin-flipping protocol should be bidirectional (have the ability to (almost-) fully determine the
coin, rather than biasing it to some arbitrary value). While this goal is unachievable in some models
(see Footnote 2), it is achievable in some important ones (e.g., [12]).

Materializing their observation, Mahloujifar and Mahmoody [20] translated a two-directional
static attack into a static data-poisoning attack on learning algorithms. Their attack was further
improved in [22, 23]. Mahloujifar and Mahmoody [21] translated the two-directional adaptive attack
of [27] on single-bit, single-turn coin-flipping protocols into an adaptive data-poisoning attack.
Finally, Etesami et al. [12] facilitated their strongly adaptive attack on single-turn coin-flipping
protocols (see Section 1.2) to obtain a strongly-adaptive data-poisoning attack.

The adaptive adversaries above cast attacks on single-turn coin-flipping protocols into data-
poisoning attacks that tamper some samples. With the tools we present (see Theorem 1.1), it is
now possible to discuss data-poisoning attacks that scale with the amount sources, rather than the
amount of samples (which we may have orders of magnitude more of).

Open Questions

In this work, we show that the expected outcome of any n-party full-information coin-flipping
protocol can be biased to either o(1) or to 1 — o(1), using O(y/n) corruptions. The above o(1),
however, stands for 1/loglog(n), and it remains an intriguing question whether it can be pushed to
2~ Polylog(n) a5 can be achieved, for instance, when attacking the n-party majority protocol. Such
attacks are known for uniform single-bit single-turn protocols (a secondary result of [27]) and for
strongly adaptive attackers against single-turn protocols [11].

Paper Organization

A rather elaborate description of our attack on coin-flipping protocols is given in Section 2. Basic
notations, definitions, and facts are given in Section 3. We also present there some useful manipula-
tions of coin-flipping protocols. In Section 4, we show how to attack protocols of certain structure,
that we refer to as robust, and in Section 5 we extend this attack to arbitrary protocols. Finally, in
Section 6 we present a bidirectional strongly adaptive attack (a bidirectional attack is impossible
in the standard adaptive model).

2 Our Technique

This section gives a rather elaborate description and analysis of our adaptive attack on full-
information coin-flipping protocols. Let II be an n-party, ¢-round, full-information coin-flipping
protocol. We prove that one can either bias the expected outcome of IT to less than € := 1/ loglog(n),
or to more than 1 — €.

Similarly to previous adaptive attacks on full-information coin-flipping protocols, our attack
makes use of the “jumps” in the protocol’s expected outcome; assume without loss of generality
(see Section 3.4 for justification) that in each round only a single party sends a message, and
let Msg = (Msg,...,Msg,) denote the protocol transcript (i.e., parties’ messages) in a random
all-honest execution of II. For msg € Supp(Msg), let II(msg) denote the final outcome of the
execution described by msg. For msg., € Supp(Msg.; := (Msg,...,Msg;)) let II(msg.;) :=
E[II(Msg) | Msg<; = msg;)] be the expected outcome given a partial transcript, and let

jump(msggi) = H(msggi) - H(m5g<z’)

be the “jump” in the expected outcome induced by the i*® message. Accordingly, we refer to
jump(Msg.;) as the i*" jump in the protocol execution. Our attack manipulates these jumps in a
very different manner than what previous attacks did. First, the decision whether to corrupt a given
message is based on the (conditional) variance of the jumps (Lo norm), a more subtle measure than
the mazimal possible change (Lo, norm) considered by previous attacks. Second, even when the
attacker decides that the next message is useful for biasing the protocol’s outcome, it only gently
alters the message: It corrupts the party about to send the message only with a certain probability,
and even when corrupting, only moderately changes the message distribution. Being gentle allows
the attack to bypass the main obstacles in attacking many-turn protocols. The gentleness also
makes analyzing the attack’s performance easier; the transcript of the gently attacked execution is
not “too different” from the all-honest (un-attacked) execution of the protocol. Consequently, the
analysis requires only a good understanding of the all-honest execution, and not of the typically
very complicated execution the attack induces.® Details below.

We start by describing an attack on robust protocols: for some b € {0,1}, the protocol has no
1/./n jumps towards b,* and for concreteness, we assume b = 0. That is, for every i (w.p. one)

IM(Msg;) > TI(Msg_;) — <*/vn (1)

We first consider single-turn robust protocols and then generalize to many-turn (robust) proto-
cols. The extension to arbitrary (non-robust) protocols is described in Section 2.3.

2.1 Attacking Robust Single-Turn Coin Flip

Our attack gently biases the expected outcome of the protocol by carefully manipulating the mes-
sage distributions of the corrupt parties. This manipulation (to be applied to the party’s next
message distribution) is defined as follows.

3Gentle attacks, in the general sense that the attacker does not try to maximize the effect of the attack in each
round but instead keeps the attacked execution similar to the all-honest one, were found helpful in many other
settings. A partial list includes attacking different types of coin-flipping protocols [24, 16, 5, 3], and proving parallel
repetition of computationally sound proofs [17, 15, 6].

4An almost accurate example of a (bidirectional) robust protocol is the single-bit, single-turn, n-party magjority
protocol: in each round, a single party broadcasts an unbiased coin, and the protocol’s final output is set to the
majority of the coins. It is well known that the absolute value of most jumps is (typically) order of 1/ya.

Definition 2.1 (Biased distribution). For a distribution P, o > 0 and mapping f: Supp(P) —
[—1/a, 00) with E[f(P)] =0, let Biased/ (P) be the distribution defined by

P[Biased/,(P) =¢] :=P[P=¢] - (1 +a- f(e))

That is, the distribution P is “nudged” towards larger values of f, i.e., increasing the probability
of positive elements (causing E[f (Biased£ (P))] = E[f(P)]), and the larger « is the larger the bias

is. Equipped with this definition, our attacker on a (n-party, single-turn, n-round, robust) coin-
flipping protocol II is defined in as follows:

Algorithm 2.2 (Single-turn attacker, informal). For i = 1 to n, do the following before the ith
message 1S sent:

1. Let msg_; be the previously sent messages. Let Q; := Msgi|MSg<i:msg<i, jump; =
jump(msg_;,), let v; := Var[jump,(Q;)].

2. If v; > €*/n, corrupt the i'" party with probability et - \fvi. If corrupted, instruct it to send
the next message according to Biase Jll/lgl (QZ)

That is, a party is corrupted with probability proportional to the (conditional) standard devia-
tion it induces on the expected outcome of II (i.e., messages inducing larger variance on the protocol
outcome are more likely to be corrupted). If corrupted, the message distribution is modified so
that the change it induces on the expected outcome of II is biased towards one, where the bias
is proportional to the inverse of the standard deviation (i.e., messages with smaller variance are
leveraged more aggressively, to “compensate” for the fact they have small variance).

Example 2.3 (Attacking single-turn majority). IfII is the single-turn, n-party, single-bit, majority
protocol, then (typically) each v; is of (absolute) order 1/n. Thus, in expectation, the above attack
corrupts 1/e3 - \/n parties. If corrupted, the party’s bit message is set to 1 with probability =~

Y2 (14 /n-1/yn) =1.

In the following, we argue that the attacker indeed biases the expected outcome of II to 1 — ¢
and that the expected number of corruptions is O(y/n). Therefore, a Markov bound yields the
existence of the required attacker. We prove the success of our attack by showing that the attacked
protocol has too little “liveliness” to resist the attacker’s bias. Consequently, the outcome is (with
high probability) the value the attacker biases towards. Our notion of liveliness is the conditional
variance of some underlying distribution induced by the attack.

Let Msgh = (Msg?,...,Msgﬁ) be the message distribution induced by the above attack.
For i € [n], let @; be the value of @; in the attacked execution, determined by MsgiA_l, and
sample Y; <+ jump(Mngi,Qi). Q; correspond to an honest message distribution, therefore,
[E[Y,’; | Msgﬁi] = 0. Hence, the sequence Y = (Y1,...,Y,) is a martingale difference sequence

with respect to (MsgiA,Yg)?:l.‘r’ This martingale can be seen as an honest execution based on a
corrupted history.

We show that Yi,...,Y, have little “liveliness”: their overall impact on the outcome is small.
It follows protocol’s outcome is determined solely by the adversary’s manipulations. Those manip-
ulations push the outcome towards 1, so we conclude that the protocol outcome must be 1. The

®The Y;’s are sampled such that they are independent of each other even when conditioned on Msg”.

core of our analysis lies in the following lemma, where we argue about the liveliness of Y7,...,Y,
(defined as the sum of conditional variances of Y7,...,Y},).

Lemma 2.4. E[>7 | Var[Y; | Msg?,]] < &3

The proof of Lemma 2.4 is sketched below, but we first use it to analyze the attack’s quality.
Think of Var[}!" ,Y;] as the protocol “liveliness” described before. Y is a martingale difference
sequence with respect to MsgiA, ie., [E[YZ- | Msgéi] =0, and so it is easy to verify that

n

Var [Z Y] = ZVar Y;] = Z([E[Var Y; | Msgéi“ + Var[E]Y] | Msgéi]])

=Y E[Var[Y;| Msg?,]] = E[>_ Var[V;| Msg?,]] < €.
=1 i=1

The first equality follows by Fact 3.7 (martingale increments are orthogonal), the second by the law
of total variance (Fact 3.9), and the last inequality by Lemma 2.4. Thus, by Chebyshev’s inequality

Hiiwzf—:} <e (2)

Consider the sub-martingale S = (Sp,...,S,) with respect to {Msgf‘}?zl defined by S5; =
H(Msgéi), i.e., the expected honest outcome given Msgéi. By definition, Sy = E[II(Msg)] = 1/2
and S, = I(Msg?) € {0,1}. In addition, the attack only increases the conditional expecta-
tion [E[SiH - Si Msgéi] and originally the protocol jumps have (conditional) expectation of zero,
hence, it holds that [E[Szurl -S| Msgéi] > 0. So indeed, S constitutes a sub-martingale sequence.

Since (S;41 — Si) is a “biased towards one” variant of Y;, there exists a (rather) straightforward
coupling between S and Y for which

Si —Si-1>Y;.

By definition Sy = 1/2, and thus P[S, < 0] = P[>, S; — S;_1 < —1/2]. By the properties of the
aforementioned coupling, P[}1" | (S; — Si—1) < —1/2] < P[> 7, Y; < —1/2], and by Equation (2),
P[>r(Si— Si—1) < —1/2] <e. Finally, S, € {0,1} therefore, P[S, = 1] =1—-P[S, <0] > 1—e.
Namely, the output of the attacked protocol is 1 with a probability of at least 1 — €.

We conclude the attack analysis by bounding the expected number of corruptions. By construc-
tion, the probability the attacker corrupts the i party is at most

1/et \/Varm | Msg?;] = /et - VarlYi|Msg]/, /Nar[vi|Msg?]
< /et - (VarlY; | Msgéi] - \/1/et) = Vn/eb - VarlY] | Msgéi].

Overall, the total amount of corruptions is at most
n n
E[) vajes - Var[y; | Msg2]] = viv/es - E[Y Var[y; | Msg2]].
i=1 =1

Consequently, by Lemma 2.4, the expected number of corruptions is at most vi/e6 -3 = vn/e3 =

O(v/n).

Proving Lemma 2.4. By definition of Biased, for any p € [0, 1] it holds that
(p - Biased/, (P)+(1—-p)- P) = Biased{;a (P) (3)

Also note that for any distribution P, constant o > 0 and function f: Supp(P) +— [—1/a, 00)
with E[f(P)] = 0, it holds that

[E[f(Biasedg(P))] = Z f(x) - [Blasedf() =z (4)
z€Supp(P)
= > f@)-P[P=a]-(1+a-f(P))
z€Supp(P)

=E[f(P) - (1+a- f(P)] =E[f] +a-E[f*(P)] =0+ a- Var[f(P)].

Let V; be the value of the variable v; in the execution of the attack (determined by Msgﬁi), and
let C; be the event {V; >¢'/n}, i.e., whether the adversary even considers to corrupt the current
party (see Step 2 of the attacker). Using the above notation, proving Lemma 2.4 translates to
proving that

n

ED) Vi <é (5)

=1

Let msg.; € Supp(Msg?;) be a partial transcript. Denote v; = Var[Y; | Msg?;, = msg_;] (i.e.,
matching v; or V;). For transcripts satisfying v; > */n (i.e., the event C; holds), applying Equa-
tions (3) and (4) with respect to

P = NS, g o 2= Y Vi @i= 1y and jump, = jump(msg.,),

yields
E[S5— Si-1 | Msgf, = msg] — E jump, (Biased P (Mg oy e)] ()
= 1/e - Var[jump(Msg<;) | Msg.; = msg_;]
=1/t - Var[Y; | Msg?; = msg;].
Hence,

E[S; — Si1 | Msgl,] = 1¢, - E[S; — Si1 | Msg2;| = 1¢; - Vet - Vi (7)

The first equality holds by construction (if C; doesn’t hold, the party is not corrupted and thus
expectation is zero). The second equality by Equation (6). Therefore,

n

[E[Sn—SO]:[E[Z(Si—Si 1 —[EZ[ES _Si—1’M8g<z <1/€ . Z]l() (8)
=1

i=1

The second equality follows by the law of total expectation (Fact 3.8). Since Sy and S,, take values
in [0, 1], it follows that

£y 16,V < (9)

In addition, by definition of C;, for any ¢ it holds that
log, - V; <e'/n (10)

Combining Equations (9) and (10), we deduce that E[>7" | V;] <& +¢'/n-n < &>

2.2 Attacking Robust Many-Turn Coin Flip

When attacking many-turn coin-flipping protocols, one encounters two additional problems:

Identify influential parties. In many-turn protocols, each message might have very little influ-
ence on the protocol’s outcome. So, it is unclear for an online attacker to decide which parties
to corrupt; e.g., a party that sends insignificant messages at the beginning of the protocol
might turn out to be influential in the future, or on the flip side a party that had a signifi-
cant influence on the protocol will not necessarily have significant influence in the rest of the
execution.

Preserve corrupted parties’ influence. Even if we have successfully identified potentially in-
fluential parties in the protocol, we must not alter their behavior in a way that makes it
obvious they are corrupted. If the corrupted parties’ messages differ vastly from the honest
execution, it might no longer be the case that those parties stand a chance at significantly
influencing the protocol’s outcome.

Let us exemplify the above obstacles using the following two examples, respectively.

Example 2.5 (Shrinking majority). Consider a “shrinking” n-party n?-round magority protocol:
a magority protocol consisting of n super-rounds in which every player sends a single bit and in
addition, a random (determined by the rounds’ coins) party is cast out (meaning from this super-
round on, its bits are ignored). In such a case, the attacker must decide whether to corrupt a party
without being certain that it will “survive” for many rounds.

Example 2.6 (Punishment mechanism). Consider the n-party n?-round magjority protocol, i.e.,
each party sends n bits, that is equipped with the following “punishment” mechanism: once a
party’s coins are “too suspicious”, say contain a 1-run of length log? n, its coins are ignored from
this point on. So, once corrupting a party, the attack should not attempt to bluntly maximize the
effect of the messages it sends.

We tackle both problems (respectively) following two general ideas.

Corrupt parties at random based on their past influence. Our attacker decides at random
whether to corrupt a party, based on their past influence. That is, the corruption process
can be viewed as a lottery: a party starts with a single ticket (i.e., chance to become cor-
rupted), and every time it contributes a certain amount of influence on the protocol it gets
another ticket (i.e., another chance to become corrupted).® While the above approach does
not identify an influential party before it starts affecting the outcome, it does so before the
party significantly affects the outcome.

n the actual attack, we formalize this approach by partitioning the parties into pseudo-parties with bounded
influence and corrupt each at random independently of each other.

Gently modify corrupted parties. Once deciding to corrupt a party, our attacker only subtly
alters its messages, like in the single-turn case where we use the Biased transformation to
subtly alter the messages of the corrupted parties; such a gentle attack assures that we do
not “drift” too much from a “typical” execution, and in particular, influential parties remain
influential even in the attacked protocol.

Highly influential messages. In addition to that above, we bias highly influential messages ex-
actly like the single-turn case, i.e., the probability we corrupt the matching party is only
related to the influence of the message—without taking into consideration the number of
parties.

2.2.1 The Attack

The above intuition takes form as the following attacker (against a n-party, ¢-round, robust protocol
I).

Algorithm 2.7 (Many-turn protocols attacker, informal).

Fori=1 to ¢, do the following before the i*" message is sent:

1. Let msg_; be the previously sent messages, let Q; := Msggi‘MSg<i=mSg<i7 let jump,; :=
jump(msg_;,), let v; := Var[jump,(Q;)].

2. If v; > €*/n, corrupt the party sending the i message with probability 1/* - Vi If corrupted,

instruct it to send its next message according to Biasedil/l%i (Qz) (i.e., like in the singe-turn
case.)
Else, if the i'" message is the first message to be sent by the party, or the overall contribution
of the messages it sent since the last time it was considered for corruption evceeded €*/n,”
corrupt this party with probability 1/t - 1/\/n (if it was decided not to corrupt the party, we
consider this party honest from now on).

If corrupted (at the last decision point), instruct it to send its next message according to
. jump;
Blasedﬁ (QZ)

That is, a large-jump party is treated like in the single-turn case. In contrast, a small-jumps
party is corrupted with (fixed) probability proportional to 1/y/n (when corrupted, all messages of
the party are modified).

Example 2.8 (Attacking many-turn majority). Consider the n-party, n*-round, single-bit majority
protocol (in which each party sends n bits). Typically, the change induced by any given message is of
order 1/n. Consequently, each v; is of order 1/n?, and each party will be independently corrupted with
probability /3 - /. Thus, in expectation, the above attack corrupts 1/e3 - \/n parties. If corrupt,
each of the single-bit messages the party sends is 1 with probability ~ 1/2- (1+/n-1/n) = 1/24+1/2y/n

"In the main body of the paper, we transform (in the attacker’s head) arbitrary protocols into normal protocols
in which the overall influence of a party’s small-jump messages is limited. Thus, each party needs to be tested for
corruption only once.

Analysis. The analysis of the above attack is similar to the single-turn case. Let Msg? =
(Msg?, ..., Msg?), S = (So,...,5) and Y = (Y1,...,Ys) be as in the single-turn case. Similarly
to the single-turn case, the core of the proof lies in the following lemma.

Lemma 2.9. [E[Zle Var[V; | Msg?,]] = O(e).

The challenge in proving Lemma 2.9 is that, unlike the single-turn proof, it might be that the
following does not hold:

E[S; — Si—1 | Msg?; = msg;] > 1/ - Var[Y; | MsgZ; = msg_,].

Indeed, let V; be the value of the variables v; in the execution of the attack described by Msg?.
Assume that conditioned on Msgéi = msg_;, it holds that V; < ¢'/n and that a party P is about to
send the 7" message. Unlike the single-turn case, the conditional probability that P is corrupted is
no longer guaranteed to match the (non-conditional) probability that P is corrupted: the previous
messages sent by P in msg_; might leak whether P is corrupted or not. If the latter happens, then
(by the same argument we used for proving the lemma in the single-turn case) it might be that
E[S; — Si—1 | Msg2; = msg_;] < 1/ - Var[Y; | Msg?; = msg_;]. Fortunately, since we only slightly
modify each small-jump message and assume no party’s small messages are too influential (which
holds for normal protocols), a KL-divergence argument yields that on average for such messages it
holds that E[S; — Si—1 | Msgh | = msg_;| = Q(1/e* - Var[Y; | Msgh | = msg_;|), which suffices for
the proof of the lemma to go through.

2.3 Attacking Non-Robust Coin Flip

The high-level idea of attacking a non-robust protocol (a protocol that has large jumps in both
directions) is to attempt biasing the protocol towards zero in such a way that if this bias fails, the
protocol will be robust for b = 0 (no large jumps downward)—prime for applying the attack on
robust protocols. More formally, assume that with probability at least 1/logn, the protocol II has a
large negative jump, i.e., less than —1/\/n, and consider the following “one-shot” attacker on II:®

Algorithm 2.10 (Negative jumps attacker). Fori = 1 ton, do the following before the i message
18 sent:

1. Let msg_; be the previously sent messages.

2. If there exists m; € Supp(Msg; |Msg_,=msg_,) such that Il(msg_;,m;") < H(msg.;) — 1/vn,
and no party was corrupted yet, corrupt the party sending the i'" message and instruct it to
send m; .

(2

It is clear that above adversary biases the outcome of IT toward zero by at least 1/\/n-log(n). Let
I1; be the protocol induced by the above (deterministic) attack: all parties emulate the attacker in
their head, and when it decides to (deterministically) corrupt a party, the corrupted party follows
its (deterministic) instructions. If the protocol II; has a large negative jump with probability larger
than 1/logn, apply the above attack on ITj resulting in the protocol Ilg, and so on. Let ¢t < y/n-log(n)

8 Assuming the next-message function of II is efficiently samplable, e.g., II is public-coin, the following attacker is
the only reason for the inefficiency of our attack.

10

denote the number of times we applied the attack in this manner. If the expected outcome of II; is
at most e, then we are done: the implied t-adaptive adversary makes Il output 0 with probability
1 — e. Otherwise, II; has the following property:

P[3j € [n]: W (Msg<;) < I;(Msg.;) — /va] < 1/log(n) (11)

letting 1\7I\s/g be the messages of a random execution of II;. If the above happens, we apply the
attack on robust protocols (Algorithm 2.7) on II;, instructing the adversary to halt if it encounters
a large negative jump.

With careful analysis (and slight modifications to the attacker), one can show that, due to the
gentleness of the attack, the property of encountering large negative jumps only with negligible
probability is preserved. Hence, the attack carries as if there are no large negative jumps, meaning
we have successfully biased the expected output of II; to 1 — O(e). Composing the attack that
transforms II into IT; with the attack on robust protocols (on Il;) yields the required attack on II.°

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. All logarithms considered here are base 2. For n € N, let [n] := {1,...,n}. Given
a Boolean statement S (e.g., X > 5), let 1g be the indicator function that outputs 1 if S is a true
statement and 0 otherwise. For a distribution X, let x < X denote that = was sampled according
to X.

3.2 Distributions and Random Variables

The support of a distribution P over a discrete set X, denoted Supp(P), is defined by Supp(P) :=
{z € X : P(z) > 0}. For random variables X and Y, let the random variable Supp(X |Y’) denote
the conditional support of X given Y. In addition, we define the random variables [E[X | Y] and

Var[X |Y] as (deterministic) functions of Y, by E[X |Y](y) := E[X |Y =y] and Var[X |Y](y) :=

Var[X | Y =y, respectively.

The statistical distance (also known as variation distance) of two distributions P and @ over
a discrete domain X is defined by SD(P,Q) := maxscx|P(S) — Q(S)| = 1>, s|P(z) — Q(2)].
Statistical distance enjoys a data-processing inequality.

Fact 3.1 (Data-processing inequality for statistical distance). For distributions P and Q and func-
tion f over a discrete domain X, it holds that SD(f(P), f(Q)) < SD(P,Q).

The KL-divergence (also known as Kullback-Leibler divergence and relative entropy) between two
distributions P and @ over a discrete domain X, is defined by
P(x) P(z)

D (P||Q) =) P(x)log O) ~ EerloE gy
reX

9In Section 2.1 we proved the quality of our attack for protocols with [E[H] = 1/, Still, the proof can be easily
adapted to the caes of [E[H] > polylog(n).

11

where 0-log 8 =0, and Dky,(P|| Q) := oo if there exists z € X such that P(z) > 0 but Q(z) = 0.
KL-divergence is convex in the following sense:

Fact 3.2 (Convexity of KL-divergence). For finite distributions Pi, Py, Q1,Q2, and A € [0,1] it
holds that DKL()\ . P1 -+ (1 —)\) . P2 H)\Ql + (1 — A) . Qg) < ADKL (Pl H Ql)—i-(l—)\)DKL (P2 H Qg)

In addition, KL-divergence enjoys a chain rule.

Fact 3.3 (KL-divergence chain rule). For distributions P(X,Y) and Q(X,Y) for a pair of
random variables X and Y, it holds that Dk (P(X,Y)||Q(X,Y)) = DkiL(P(X)|Q(X)) +
%;g(x) [DkL(PY | X =2) | QY | X =1))].

The following fact (see Fedotov et al. [13]) relates small KL-divergence to small statistical
distance:

Fact 3.4 (Pinsker bound). For discrete distributions P and @ it holds that SD(P,Q) <
\/%'DKL(PHQ)-

3.3 DMartingales

Martingales play an important role in our analysis.

Definition 3.5 (Martingales). A sequence of random variables M = (M, ..., M,) is a martingale
with respect to a sequence of random variables X1,...,X,, if [E[M;H_l]ng] = M, and M, is

determined by X<y, (for every k € [n]). The sequence M is a martingale if it is a martingale with
respect to itself. The increments (also known as differences) sequence of M are the random variables
{My1 = M 320

In particular, we will be interested in the so-called Doob martingales.

Definition 3.6 (Doob martingales). The Doob martingale of the random wvariables X =
(X1,...,X,) induced by the function f: Supp(X) — R, is the sequence Mj,..., M, defined by
Mk = [E[f(Xl, . ,Xn) ‘ng] .

The proof of the following known facts is immediate.

Fact 3.7 (Martingale increments are orthogonal). Let Xi,..., X, be a sequence of random vari-
ables. If there exist random variables Z1, ..., Z, such that [E[Xk | Z<k] = 0 and X} is determined

by Z<y, (i-e., Y. X; is a martingale with respect to Zy), then Var[y ;| X;] = > 1, Var[X;].

Fact 3.8 (Law of total expectation). For two random wvariables Y, X it holds that [E[Y] =
E[E[Y | X]].

Fact 3.9 (Law of total variance). For two random variables Y, X it holds that Var]Y] =
E[Var[Y | X]] + Var[E[Y | X]].

12

Sub-martingales. We also use the related notion of sub-martingales.

Definition 3.10 (Sub-martingales). A sequence of random variables S = (Si,...,S,) is a sub-
martingale with respect to a sequence of random variables Xy, ..., X,, if[E[Sk+1 |X§k] > S and Sk
is determined by X<y, (for every k € [n]). The sequence S is a sub-martingale if it is a sub-martingale
with respect to itself.

In particular, we make use of the following known inequality.

Fact 3.11 (Doob’s maximal inequality). Let Sy,...,S, be a non-negative sub-martingale, then for
any ¢ > 0 it holds that lP[supk Sk > c] < [E[Sn]/c_

3.4 Full-Information Coin Flip

We start with the formal definition of full-information coin-flipping protocols.

Definition 3.12 (Full-information coin-flipping protocols). A protocol II is a full-information coin-
flipping protocol if it is stateless (i.e., the parties keep no private state between the different com-
munication rounds),'* single turn (i.e., each turn consists of a single party broadcasting a string),
and the parties’ common output is a deterministic Boolean function of the transcript.

Remark 3.13 (Many messages per communication round). Our attack readily applies to the model
in which many parties might broadcast a message in a single round, as long as the adversary controls
the message arrival order in this round (as assumed in Tauman Kalai et al. [27]). The setting in
which many messages per round are allowed, and the adversary has no control over the arrival
order, is equivalent (at least under a natural formulation of this model) to the static adversary
cases, in which we know that ©(n/logn) corruptions (n being the number of parties) are required.

Notation 3.14. We associate the the following notation with an n-party, £-party, full-information
coin-flipping protocol 11:

o Let Msg'! = (Msgll, ..., Msg?) denote a random transcript (i.e., parties’ messages) of II.

e For partial transcript msg<; € Supp(Msggi), let H(msggi) = [E[H(Msgn) | Msggi = msggi].
(Le., the expected outcome of 11 given msg,;.) We let E[II]| :=I1(), and refer to this quantity

as the expected outcome of II.

e For msg_; € Supp(Msgl,), let NxtParty(msg_;) € [n] be the identity of the party to send the

ith message, as determined by msg._;.

e For a party P € [n] and transcript msg € Supp(Msg'), let SentByp(msg) :=
{i € []: NxtParty(msg_;) = P}.

e Formsg.; € Supp(Msg,) and i < j let Speaker, (msg ;) = NxtParty(msg_;).

e For msg.,; € Supp(Msggi), let jump'! (msgSZ») = H(msggi) — II(msg_;).

(Le., jump!! (msggi) is the increment in expectation caused by the i™ message.)

10Gince we consider attackers of unbounded computational power, this assumption is without loss of generality:
given a stateful protocol we can apply our attack on its stateless variant in which each party, samples its state
conditioned on the current public transcript before it acts. It is easy to see that an attack on the stateless variant
implies an attack of the same quality on the original (stateful) protocol.

13

3.4.1 Adaptive Adversaries

Definition 3.15 (Adaptive adversary). A t-adaptive adversary for a full-information coin-flipping
protocol in an unbounded algorithm that can take the following actions during the protocol execution.

1. Before each communication round, it can decide to add the next to speak party to the corrupted
party list, as long as the size of this list does not exceed t.

2. In a communication round where a corrupted party is speaking, the adversary has full control
over the message it sends but is bound to send a valid message (i.e., in the protocol message
space support).

We make use of the following definitions and properties for such adversaries.

The attacked protocol.

Definition 3.16 (The attacked protocol). Given a full-information coin-flipping protocol I1 and a
deterministic (adaptive) adversary A attacking it, let Ilp be the full-information coin-flipping pro-
tocol induced by this attack: the parties act according to II while emulating A. Once a party realizes
it is corrupted, it acts according to the instruction of (the emulated) A. For non-deterministic A,
let TIa be the distribution over protocols induced by the randomness of A.

Derandomization.

Proposition 3.17 (Attacker derandomization). For an adversary A acting on a full-information
coin-flipping protocol I there exist deterministic adversaries AT and A~ such that [E[HA+] > E[HA}

and E[II5-] < E[Ia].

Proof. By simple expectation arguments over the randomness of A. O

Composition of adaptive adversaries.

Definition 3.18 (Adaptive adversary composition). Let IT be a coin-flipping protocol, let A be an
adaptive adversary for I, and let B be an adaptive adversary for Ila. The adversary Bo A on 11 is
defined as follows:

Algorithm 3.19 (Adversary Bo A on II).
For i :=1 to NumMsgs(II):
If C € {A,B} would like to modify the ith ‘message, corrupt the current party (if not already
corrupted), and alter its message according to C (giving priority to B over A).
It is clear that if A is ka-adaptive and B is kg-adaptive, then B o A is (ka + kg)-adaptive.

Proposition 3.20. Let II, A and B be as in Definition 3.18, then E[HBoA] = [E[(HA)B].

Proof. 1t is clear that (IIa)g and Ilgoa induce the same distribution on the protocol tree of II, and
thus induce the same output distribution.]

14

Composition of strongly adaptive adversaries.

Definition 3.21 (Strongly adaptive adversary composition). Let II be a coin-flipping protocol, let
A be a strongly adaptive adversary for I1, and let B be a strongly adaptive adversary for Iln. The
adversary Bo A on 11 is defined as follows:

Algorithm 3.22 (Adversary B o A on II).
For i := 1 to NumMsgs(II):

1. Let msg; be the message sent in the i round.

2. Emulate the i*" round of A, with input msg,. If A wishes to alter msg; to msg, corrupt the
current party (if not already corrupted), alter the sent message to msg, and set msg; < msg.

3. Emulate the i'" round of B, with input msg,. If B wishes to alter msg; to msg, corrupt the
current party (if not already corrupted) and alter the sent message to msg.

It is clear that if A is ka-strongly adaptive and B is kg-strongly adaptive, then BoA is (ka+kg)-
strongly adaptive.

Proposition 3.23. Let I, A and B be as in Definition 3.21, then [E[HBOA] = [E[(HA)B].

Proof. 1t is clear that (IIa)g and IIgoa induce the same distribution on the protocol tree of II, and
thus induce the same output distribution. O

3.5 Useful Inequalities

We use the following standard inequalities.
Fact 3.24. For —% < z it holds that xlog(1 + z) < 222.

Fact 3.25. For 0 < x <1 it holds that xlogxz > —1.

4 Biasing Robust Coin Flip

In this section, we present an attack for biasing robust coin-flipping protocols. To simplify notation,
we focus on robustness towards 0; see below. In the following, n typically represents the number
of parties of the robust (“non-normal”) protocol. We make use of the following notation.

Notation 4.1. For n € N, let &, := 1/ ¥loglogn, A, := 100/e5 =100 - Y/loglogn and J,, := 1/log?n.
The main result of this section is stated below.

Definition 4.2 (Robust coin-flipping protocols). An f-round, full-information, coin-flipping pro-
tocol 1 is (cv, B)-robust, if P[Ji € [¢]: min(Supp (jump™ (Msggi) | Msg?,)) < —a] <B.

Theorem 4.3 (Biasing robust coin-flipping protocols). Let IT be an n-party, (1/(An-v/n), 0y)-robust,
full-information coin-flipping protocol such that [E[H] > e,. Then there exists an O(y/n-logn)-

adaptive adversary A such that [E[HA] >1—e,.

15

We start, Section 4.1, by proving a variant of Theorem 4.3 for “normal” coin-flipping protocols.
Informally, in a normal coin-flipping protocol, parties participating in multiple rounds don’t have
“too large of an influence” on the protocol’s outcome, though a party sending a single message may
greatly influence the outcome. In Section 4.2, we leverage this attack for proving Theorem 4.3 by
transforming any given protocol to a normal protocol, and show that the guaranteed attack on the
latter protocol yields an attack of essentially the same quality on the original protocol.!!

4.1 Biasing Normal Robust Coin Flip

Normal coin-flipping protocols are coin-flipping protocols of a concrete message-ownership struc-
ture. In Section 4.2, we show that an arbitrary coin-flipping protocol can be viewed, with some
parameter adaptation, as a normal coin-flipping protocol.

Notation 4.4 (Parties classification).

Large-jump parties. A party P has a large jump in msg, if 3i € SentByp(msg) s.t.
Var [jumpH (Msggi) | Msggi = msg<i] > 1/(nAy).

Small-jump parties. A party P has small jumps in msg if it participates (sends at least one
message) but has no large jumps in msg.

Unfulfilled parties. A small-jumps party is unfulfilled in msg if
ZiESentByp(msg) Var [jumpn (Msggi) | Msggi = msg<i] < 1/(n>‘n)

Similarly, we refer to jumps as small or big jumps, based on their variance, i.e., large jumps are
jumps of variance > 1/(n\,,) and small jumps are jumps of variance < 1/(n\y).

Definition 4.5 (Normal coin-flipping protocols). Let II be a t-party, ¢-round, full-information
coin-flipping protocol and let n € N. We say I is n-normal, if the following hold:

Large-jump parties send a single message. |SentByp(msg)| = 1, for every large-
jump party P in msg € Supp(Msg!!).

Small-jump party has bounded overall variance.
ZiesemByP(msg) Var [jumpH (Msggi) | Msgll, = msg_;| < 2/(nXy,), for every small-
jumps party P in msg € Supp(Msg™).

Bounded number of unfulfilled parties. In every transcript msg € Supp(Msg'')
there are at most n unfulfilled (participating) parties.

At most one non-robust party. There exists at most one party NonRbst € [t] such
that for every transcript msg € Supp(Msg'!) and i € [¢] \ SentBYnonRbst (MSE)

min (Supp (jump'! (Msglh) | Msg!h; = msg_;)) > —1/(Auv/)

(Namely, only NonRbst can cause large negative jumps.)

171t is worth mentioning that the shift from attacking arbitrary protocols to normal protocols is merely done for
notational convince, and nothing exciting is hidden under the hood of the transformation above.

16

Intuitively, a protocol is n-normal if no small-jump parties have too large influence (as a function
of n). In Section 4.2, we show how to turn any n-party protocol into a t-party, n-normal protocol
(for some ¢t > n).

We present an attack on normal protocols that either corrupts (essentially) all messages sent
by a party or corrupts none of them.

Theorem 4.6 (Biasing normal robust coin-flipping protocols). For every m-normal, (-round,
(Y (xnv/m), 0p)-robust, full-information coin-flipping protocol 11 with [E[H] > &, there exists

O(y/n - log n)-adaptive adversary A with E[TIa] > 1 — &y,.

That is, if IT is n-normal and (1/(x,+/n), 0,)-robust, it can be biased by an O(y/n - log n)-adaptive
adversary.
4.1.1 Gently Biasing a Distribution

We begin by introducing a method of biasing distributions to increase their expectation under some
utility function. Our adversary will then use this technique to modify the messages of the corrupted
parties, with the utility function being the change induced in the protocol’s expected outcome.

Definition 4.7 (Biased distribution). Let P be a distribution, let « > 0 and let f: Supp(P) —
[—1/a,00) be such that E[f(P)] = 0. The distribution Biased/ (P) is defined by lP[Biasedﬁ (P) =

e] =P[P=e] - (1+a-f(e)).

It is easy to verify this is indeed a distribution. If f is the identity function, we sometimes omit
it from the above notation. We use the following properties of the Biased distribution (proven in
Section 4.3).

Lemma 4.8 (Properties of the Biased distribution). For any P, o and f as in Definition 4.7, it
holds that

1. E[f(Biased/ (P))] = a- Var[f(P)].

2. Dy, (Biased/,(P) || P) < 2a2 - Var[f(P)].
3. (p- Biased/ (P) + (1 — p) - P) = Biased/ ,(P) for any p € [0,1].
4. There exist a distribution (A, B) which couples P and Biased£ (P), i.e., A= P and B =
Biased/,(P), such that for any (a,b) < (A, B) it holds that f(B) > f(A).
4.1.2 The Attack

Using the above tool, we define our attack on normal coin-flipping protocols. Fix an
n-normal, /-round, full-information coin-flipping protocol II, such that [E[H] > &, and

P [SentByNoanst(Mng) # (D] < dy,. When clear from the context, we omit the subscript n from the
notations e,, An, 6. The O(y/n - logn)-adaptive attacker A on II is defined as follows.

Algorithm 4.9 (The attacker A).

For i :=1 to ¢, do the following before the i** message is sent:

17

1. Let P be the party about to send the i*™ message. If P = NonRbst, abort.

2. Let msg_; denote the messages sent in the previous rounds. Let ; be the distribution
Msg{[‘Msggi:msg<i’ let jump,(x) := jumpn(msg<i,x) and let v; := Var [Jumpz(Ql)]

3. If this is the first message sent by P, corrupt P according to the following method:

(a) If P is a large-jump party, i.e., v; > /xn, corrupt it with probability \? - \/v;. 12
(b) Else (P is a small-jumps party), corrupt P with probability »*/ym.

4. If P is in the corrupted parties pool:

(a) If P is a large-jump party, instruct P to broadcast its next message according to
Biasedjll/lmpi (Qi).
NG
(b) Else:
i. If IP[P is corrupted by A | Msgg’zi‘ = msg<i} < 160/ m 13 instruct P to broadcast its
next message according to Biased%lpi (QZ)
ii. Else, instruct P to sample its next message honestly (i.e., according to Q;).

The main difference between the above attacker and its simplified variant presented in Section 2,
is that the above attacker might decide not to modify a message of an already corrupted party (see
Step 4b). This change enables us to easily bound the KL-divergence between the attacked and
all-honest distributions, a bound that plays a critical role in our analysis.!? In the rest of this

section, we analyze the expected outcome of IIp and the number of parties A corrupts. The proof
makes use of the following random variables associated with a random execution of Ila.

Notation 4.10 (Random variables associated with a random execution of TIp).
o Msgh = (Msg},... ,Msg?) ;= Msg!'a.
o S = H(Msgék).
(Note that Sy, ..., Sy is sub-martingale with respect to Msg”.)

L4 Xk = Sk - S]cfl.
(Note that Xi,...,X; are the jumps induced by the attacked execution, i.e., X; =
jump!! (Msgék). Also note that So = [E[H] >¢eand Sp = Sy + Zle X;.)

e CorruptedParties: the set of parties corrupted in this execution of A on II.

(Note that CorruptedParties is not determined by Msg?, as there is additional randomness
involved.)

12)2. /i is indeed in the interval [0,1]: P # NonRbst implies that v; < !/axva.

13Recall that IIa is the protocol induced by the attack of A on II, and or Msgg? are the first ¢ — 1 messages in its
execution. Hence, we are defining the strategy of A in the " round using its strategy in the first ¢ — 1 rounds, so
this self-reference is well defined.

143We are not sure whether this change is mandatory for the attack to go through or merely an artifact of our proof

technique that bounds the KL divergence between the attacked and honest execution (see Claim 4.12).

18

o Q1,...,Qy: the value of these variables as computed by A.

We prove Theorem 4.6 via three key observations. The first observation, proved in Section 4.1.3,
guarantees a per-round coupling between the change in expected outcome induced by the attack
and what would have been the change in an honest execution (conditioned on previous messages).

Claim 4.11 (Coupling honest and attacked conditional distributions). There exists a random
variable Y = (Y1,...,Yy) jointly distributed with Msg?®, such that for every i € [{]:

1. X; >2Y;.

2. Conditioned on Msgii: Y; is distributed like jump'! (Msggi ‘Msgn —Msgh), and is independent
- <i <z
of Y<i and {Speakeri(Msgéi) € CorruptedParties}.
That is, Y; is distributed like the (conditional) change in expected outcome induced by the !

step if it were carried out honestly, and is never larger than the (conditional) change induced by
the i*" step of the attacked execution. It is easy to verify that [E[Y;,C] Msgﬁk, Y<k] =0, i.e., Zle Y;

is a martingale difference sequence with respect to (Msg@, Y%). For the rest of this section, let YV
be the random variable guaranteed by Claim 4.11.
Next, we consider the set of indices corresponding to robust jumps, defined by

RobustJumps := [/] \ SentByyonrbet (Msg™) (12)

Note that RobustJumps is a random set, determined by Msg®. The following observation
(proved in Section 4.1.4) states that the overall conditional variance of Y contributed by the robust
jumps is small, which implies that the variance of »_Y; is small. It follows that) Y; is typically
not “too small”, and since X; > Y, that) X, is typically not too small.

Claim 4.12 (Bounding Y’s conditional variance). E[} Var[Y; | Msgéiﬂ < 2/a.

i€RobustJumps

Finally, in Section 4.1.5 we prove that attacked execution does not deviate too much, in KL-
divergence terms, from the honest execution. This implies that, with overwhelming probability,
NonRbst does not participate in the protocol (since it participated in the original protocol with
very small probability).

Claim 4.13 (Bounding KL-Divergence between attacked and honest executions).
Dy, (Msg” || Msg') < 163)3.

Equipped with Claims 4.11 to 4.13, we are ready to prove Theorem 4.6.

Proof of Theorem /.6.

Expected outcome. We start by analyzing the expected bias induced by A. Note that

Var [ZiGRobustJumps le] = Z?:l Var D/z :]liERobustJumps] = [E[ZiERobustJumps Var [i/z ‘ Msgéiﬂ < 2/)\
(13)

19

The first and second equalities holds by Facts 3.7 and 3.9 respectively, since
[E[Yk| Msgék,l@k] = 0 and I;cRobustJumps 18 determined by Msgék,. The inequality holds by

Claim 4.12.

By Equation (13) and Chebyshev’s inequality, (remember that [E[Z YZ] =0)

i€RobustJumps

—2
[P[ZieRobustJumps Y; < _6/2] <P [| ZiERobustJumps Y7«| = 6/2} < (5/2/\/ 2/)‘) = 8/)‘52 = % < 5/4
(14)

We next show that with overwhelming probability RobustJumps = [¢], namely NonRbst does not
participate in the execution. Let Bad" be the event {SentByyonrpst(Msg!) # 0}, and let Bad4
be the event {SentByNoanst(MsgA) #0}. By assumption, [P[Badn] < 4, and by Claim 4.13 and
data-processing of KL-Divergence,

Dxr,(Lgaga || Ipaqn) < Dxr(Msg® || Msg') < 1632? (15)

We also note that,

Dt (Lpug || Lp,gn) = P[Bad] -log<gz[HadA]> + (1 - P[Bad"]) - log (“HW) (16)

[Bad'] 1 — P[Bad"]
= [P[BadA] - log (EE:ZQ) + (1 — [P[BadA]) . (log(l — [P[BadA]) — log(l — [P[Badn]))
> P[Bad”] - log (EE%) +(=1+0) > P[Bad"] ~log<[P[B§dA]> -1

where the penultimate inequality follows by Fact 3.25. We now show that
P[Bad?] < ¢/4 (17)
Indeed, assuming Equation (17) does not hold, then (for sufficiently large n),

1
v/Ioglogn < Og(

log? ”/4 5Y/Tog log n)

4 %/loglogn

—1< DKL(]lBadA |]lBadH) (18)

Dxr,(Lgaga || Ipaqn) < 16°X% < \/loglogn ~ (19)

Inequality (18) follows by Equation (16), and Inequality (19) by Equation (15). Overall—yielding
a contraction. Combining Equations (14) and (17) yields,

[E[HA] :[P[Sg: 1] = [P[Sg > 0] = ﬂD[So—‘réXi > 0] = [P[in > —So] > F[iXZ > —8]

i=1 i=1 i=1
2 [P[ZieRobustJumps Y; > _5] -P [SentBYNoanst(MSgA) 7& (D] > (1 - 8/4) - 5/4 > 1- 5/2'

The second inequality follows by Claim 4.11. The penultimate inequality follows by Equations (14)
and (17).

20

Number of corruptions. It is left to argue that A does not perform too many corruptions. We
calculate the expected number of corruptions, and bound the actual number of corruptions using
Markov’s inequality. We introduce several additional notations. Let SmallParties and LargeParties
be the (random) sets of small-jumps and large-jump parties (that participate in the execution)
with respect to Msg®, respectively. Let SmallJumps := {k € [¢]: Speaker; (Msg”) € SmallParties}
be the set of small jumps, and let LargeJumps := {k € [¢]: Speaker, (Msg?) € LargeParties} be the
set of large jumps. Note that all of the above random sets are determined by Msg”. We first notice
that since a small-jumps party is corrupted with probability 2*/\/x, it holds that

E[|SmallParties N CorruptedParties|] = **/y/n - E[|SmallParties|] (20)

In addition, the definition of n-normal protocols stipulates that for any transcript of II, there
are at most n unfulfilled parties. Since each fulfilled (not unfulfilled) party contributes at least 1/xn
to the sum of variances, which is small by Claim 4.12, we deduce that

E[|SmallParties|] < 3n (21)

Combining the above two observations yields the following bound on the number of corrupted
small-jump parties:

E[|SmallParties N CorruptedParties|] < *°/y/n-3n = 322vn
As for large-jump parties, for any k € [¢], partial transcript ¢t = msg_;, and large-jump party

P sending the k" message, P is corrupted with probability A2 - \/ Var [Yk| Msgék = msg<k] <
A%V An - Var[Yy, | Msgék =msg_;|. Thus, we have that

E[|LargeParties N CorruptedParties|| (22)

=t [ZiELargeJumps /\2 ’ \/Var [Y; | MSgéZH < E [ZiELargeJumpS)\2 TV An - Var [Yv@ | MSgézH

<)\3) \/ﬁ) [E[ZiERobustJumps Var [Y; ’ Msgéz” < AB) \/ﬁ ’ 2/>‘ = 2)‘2\/5
The first inequality follows by the definition of a large jump, i.e., Var [Yk | Msgé = msg<k] > 1/xn,
and last inequality by Claim 4.12. Therefore, the expected amount of corruptions is at most 5A\%\/n.

Hence, by Markov’s inequality, with probability at least 1 —¢/2 the amount of corruptions made by
A is at most 10A°vn/e < 10A*\/n.

Putting it together. Consider the adversary A’ that acts just as A, but aborts (letting players
continue the execution honestly) once the amount of corruptions surpasses 10A*\/n = O(y/n - logn).
It holds that

E[Ila] = P[IIa = 1] > P[IIa = 1 A |CorruptedParties| < 10)\4\/7_1}
> P[IIa = 1] — P[|CorruptedParties| > 10)\4\/5} >1—¢f2—cfa=1—¢,

which concludes the proof of the theorem. O

21

4.1.3 Coupling X; and @);, Proving Claim 4.11

Claim 4.14 (Restatement of Claim 4.11). There exists a random variable Y = (Y1,...,Ys) jointly
distributed with Msg”, such that for every i € [4]:

1. X; > Y.

and is independent

2. Conditioned on Msgéi: Y; is distributed like jump'! (Mng ‘Msg Mg),
<i

of Y<; and {Speaker;(Msg?2,) € CorruptedParties }.

Proof. Fix i € [{] and denote P = Speaker;(Msg”).

Let C' be the event {P € CorruptedParties}. Let Cp be the event {C AP € LargeParties}.
Also let Cg be the event {(C' AP € SmallParties) A (P[C'| Msg?; = msg_;] < 163/ym)}, ie., P is
small-jump corrupted party and A instructs it to alter the current message (see Step 4(b)ii of
Algorithm 4.9). Finally, define the following random variable (determined by Msgéi and 1¢o):

1/Var [YZ\ MsgA<i] if]lC’L =1
a=1<+n iflgg =1
0 otherwise

Now consider the (random) distribution (A, B) guaranteed by Lemma 4.8(4) with respect to
P=qQ;, = jumpl and a.'® Tt is easy to verify that by construction (i.e., Algorithm 4.9):
conditioned on Msg? 2; and 1¢, B distributes like Msg?.

Now, conditioned on on Msg<z and 1o we sample 1\/[sgZ — A‘ B—Msgh" independently of Msg <i-

Finally, we set Y; = Jumpz(Mng) and from the previous observation it immediately follows that

Y; is distributed like jump,; <M5g<l |MSg (=Msg?)
<i

It is clear that conditioned on Msg<z, Msgz is distributed like);. In addition, it is independent
of 1 because it is distributed the same no matter the value of 1o—it is even distributed the same
conditioned on 1¢, ¢y, 1, . And so the same is true for Y;. As for the independence from Y, it

follows immediately by the independence from 1\//[\sfg <i-
All that is left to show is that X; > ;.

Yi = jump,(Msg;) = jump, (A _y,a) < jump; (Msg7') = X;

where the inequality follows by the property f(B) > f(A) guaranteed by Lemma 4.8(4). d

4.1.4 Bounding Y’s Conditional Variance, Proving Claim 4.12

Claim 4.15 (Restatement of Claim 4.12). E[> Var[Y; | Msg?2;]] < 2/x.

i€RobustJumps

Proof. Immediately follows by Claims 4.17 and 4.18, given below. Claim 4.17 states that
E[Y; Var[Y; | Msg?2;]] < 1/ when i ranges over LargeJumps, and Claim 4.18 state the same when

i ranges over SmallJumps. Hence, E[Y;crobust Jumps Var [V; | Msg2,]] < %/ O

15(jumpi(~) = jumpn (mSg<i7))

22

In the following, we use a conditional variant of the biased distribution.

Definition 4.16 (Conditional variant of Biased). Let Y, Z and n be jointly distributed random
variables, and let f: Supp(Y) — R be a function, such that (1) n is determined by Z; (2) f(Y) >
—1/n; (3) E[f(Y)| Z] = 0. Define the random variable Biasedf] (V| 2), jointly distributed with Z,

by sampling Biasedg (y | Z) — Biasedf; (J)‘Z:Z) 16

We now move to proving Claims 4.17 and 4.18.

Large jumps.

Claim 4.17. E[}] Var[Y; | MsgZ2;]] < V/x.

i€LargeJumps
Proof. Let Ly, be the event {k € LargeJumps}. Note that 17, is determined by Msgé - Compute,

lLk . [E[Xk | Msgék] (23)

=1y, <)\2\/Var (V3| Msg?,] - E[Biased](Yk| Msg?,) | Msg?,] (24)

1/ Var [Yk | Msgik

+ <1 — /\2\/Var [V | MSgék]) B[V MSgék])

=1z, - /\2\/Var (V3| Msg?,] - 1/y/var[vi | Msg?,] - Var [V | Msg2,] +0 (25)
=1y, - A% Var[Yy | Msg?,].

Equality (24) follows by construction (see Step 3a and Step 4a of Algorithm 4.9) and Claim 4.11,
and Equality (25) follows by Lemma 4.8(1). Hence,

[[25:1 Xi] = 25:1 [E[Xi] = Zf:l [E[[E[Xi | Msgﬁi” - [E[Zle [E[Xi | Msgéiﬂ (26)

L
> E[) 1, - E[X;| Msg?]] (27)
=1
L
=E[> 1z, - A*-Var[Y;| Msg2,]] (28)
i=1

=)\2 -k [ZiELargeJumpS Var [Y; ‘ Msgél]] :

Equality (26) follows by the law of total expectation (Fact 3.8), Inequality (27) holds since 1y, is
determined by Msg?,; and E[X]| Msgéi] > 0, and Equality (28) follows by Equation (23).
Thus,
A [E[ZiELargeJumps Var[Y; | Msg2,]] < [E[Zf:1 Xi] <1

and so E[} Var[Y; | Msg?,]] < 1/x2 < 1. O

i€LargeJumps

5Here y| _ means we consider the distribution induced by conditioning Y on the current value of Z.

23

Small jumps.

Claim 4.18. E[} Var[Y; | Msgéi]] < 1/

1€SmallJumps

For some party P denote by Zp = SentByp (MsgA), i.e., the indices in which P is the speaker.
Also, consider the following definition for measuring the contribution of a small-jumps party.

Definition 4.19 (Contributional parties). A party P is said to be contributional if
[P[Ziezp Var [Yz| Msgéi} > ﬁ | P e SmallParties] > 1/s.

Let ContribParties be the set of contributional parties, and let SmallContribParties :=
SmallParties N ContribParties.

Note that being a contributional party is determined by the protocol, i.e., ContribParties does
not depend on the transcript. In contrast, SmallContribParties, i.e., the set of contributional small-
jumps parties, does depend on the transcript—because SmallParties is transcript-dependant. We
make use of the following claim.

Claim 4.20. For any contributional party P, it holds that

[E[Ziezp X; | P € CorruptedParties N SmallContribParties| > 1/(256)-v/n).

We prove Claim 4.20 below, but first use it for proving Claim 4.18.

Proof of Claim 4.18. We start by using Claim 4.20 to lower-bound [E[Zle Xl-].

[[25:1 Xi] = 25:1 [E[Xi] = Zf:l [E[[E [Xi | Msgéiﬂ - [E[Zle [E[Xi | Msgéiﬂ
> E[YpesmaliContribParties 2oicz, E[Xi | Msg2,]]
= E [pesmaliContribParties D ity Xi
= E[Y pecontribParties [E[Zz‘ezp X; | P € CorruptedParties N SmallContribParties|
-P [P € CorruptedParties N SmaHContribPartiesH
> [E[ZPGContribParties L/256Ay/n - P [P € CorruptedParties N SmaHContribPartieSH (33)
= E[Y> pecontribparties /256M/@ - (P[P € SmallContribParties] - A*/y/n)] (34)
= A256n - E[|SmallContribParties||.
Inequality (29) follows by the law of total expectation (Fact 3.8). Inequality (30)
holds since [E[XZ- | Msgéi} > 0. Equality (30) follows by the law of total expec-

tation, since {Speakeri(MsgA) € SmallContribParties} is determined by Msgéi. Equal-
ity (32) also follows by the law of total expectation, combined with the fact that
E [Zigp X;| P ¢ CorruptedParties A P € SmallContribParties| = 0. Inequality (33) by Claim 4.20.

Equality (34) by construction (see Step 3b of Algorithm 4.9).
Moving over from contributional parties, for any non-contributional party P, it holds that

[E[Zz‘ezp Var[Y; | Msg?;] | P € SmallParties| < /8- 2/xn + 1/8an < 3/8xn.

24

The first inequality follows by definition of a small jumps party and that of a non-contributional
party, respectively. Finally, by the above inequality,

A .
E [EPGSmallParties\ContribParties EiGIp Var [YYT ’ MSg<7LH S 2 [\SmallPartlesH ! 3/8>\n (35)

Denote v = E[}] Var[Y; | Msgéi]]. Each fulfilled (not unfulfilled) party contributes

at least 1/an to the sum of conditional variances, and so there are at most yAn such parties. Recalling
that there are at most n unfulfilled parties, we deduce that

i€SmallJumps

E[|SmallParties|| < n + nyA (36)

Assume towards a contradiction that v > 1/x. By Equation (36), E[|SmallParties|] < 2ny), and
thus by Equation (35)

E [ZPESmallParties\ContribParties ZiEIp Var [)/Z ‘ Msgéz]] < 3’7/4 (37)

We conclude that E[YpegancontribPartios > ez, Var [Y;| MsgZ2,;]] > /4, and since by definition,

every small jumps party contributes at most 2/xn to the sum of conditional variances, we deduce
that

E[|SmallContribParties|] > vAn/8 (38)

Combining Equations (29) and (38), yields that

14
E[) Xi] > v¥/2048 (39)
i=1
It follows that [E[Sg] = [E[So + Zle Xi] > & + 7A\?/2048, which is larger than 1 for sufficiently large
Var[Y; | Msg2;]] = v < 1/A, concluding the
proof. O

n, yielding a contradiction. Hence, [E[Ziesmamumps

Proving Claim 4.20.

Proof of Claim 4.20. Fix a contributional party P, and consider the following events (jointly dis-
tributed with Msg?®):

e C = {P € CorruptedParties}.

e S = {P € SmallParties}.
o [= {ZiEIP Var|Y; | Msgéi] > 1/8)\77,}, i.e.,, P has large conditional variance.

e H = {Vk € Ip: P[P € CorruptedParties | Msg?,] < 16 - ¥°/ya}, ie., Step 4(b)ii of Algo-
rithm 4.9 never happens for P.

25

We start by proving that P [H A L] S} is large, and then use a KL-divergence argument to deduce
that P [H AL|S /\C] is large, i.e., P encounters large conditional variance even when it is a corrupted
small-jumps party. This will imply that the change in expectation P induces (when a corrupted
small-jumps party) is large.

To prove that P [H AL| S] is large, we move to the conditional probability space where .S occurs
(i.e., P participates in the protocol as a small-jumps party). Consider the martingale Cy, ..., Cy
defined by Cj := [E[]lc\ Msgék] (that is, Cy is the projection of the event C' on the information
held by Msgé ;). Under the conditioning P is a small-jumps party, therefore, the adversary corrupts
P with probability »*/va, i.e., E[1¢] = P[C] = **/ya. Thus by Doob’s maximal inequality (see
Fact 3.11), it holds that

P[-H] = P[sup{Co,...,C¢} > 16 - X*/ya] < 1/16 (40)
Back to the non-conditional probability space, we deduce that
P[LAH|S] >P[L|S] —P[~H|S] >1/s—1/16 =1/16 (41)

where P[L|S] > 1/8 holds since P is contributional. We next bound Dxr,(Msg” | snc Msg? | s)-

Letting 1\//[\sTg; denote the distribution Msg” ‘ gnc compute,
D (Msg” [, | Msg® |) = D, (Msg || Msg”) (42)
l
= Zl Emsg(—Msg DKL (Mng }Msg ,=msg_; ASAC | Mg |M5g ,=msg_; /\S)] (43)
=
- Emsg(—l\//Tsig [ZiESentByp(msg) Dy, (Mng ‘Msg<._msg< ac Msg?* ‘Msg v_mng)] (44)
< E g niog [icsentByp (msg) DKL (MSE! yn _nee e I MSER [y e 120 (45)

Jump (msg<i’) (Msg

S [Emsg<—l\7lgé [ZiGSentByp(msg) DKL (Blasedf ’Msg ;=msg_;) H Msgl ‘Msg _msg<z)j|

(46)
< [Emsg<—1\7[?g [ZiGSentByp(msg) 2n - Var [jumpn (Msggi) | Msggi = msg<i“ (47)
=2n- [Emsgkl\//‘[\sig [ZiESentBYP(mSg) Var [jumpn (Msggl) | MSgEZ = msg<i]] (48)

<2n-E[2/an] < 4Ya

Equality (43) follows by chain-rule of KL Divergence (see Fact 3.3). Equality (44) follows by
the fact that the conditional distribution of messages not sent by P is not affected by conditioning
on C, and we can drop the conditioning on S since it is determined by msg_;. Inequality (45)
follows by convexity of KL-Divergence (Fact 3.2) (Msg? is a convex combination of Msg? |, and
Msg? B o)- Inequality (46) follows by construction (see Step 4b of Algorithm 4.9) and the convexity
of KL-Divergence—the altered messages are a convex combination of honest messages and biased
messages (caused by Step 4(b)ii of Algorithm 4.9). Inequality (47) follows from Lemma 4.8(2), and
the penultimate inequality holds since, by assumption, the protocol II is n-normal.

By Equation (42) and the Pinsker bound (see Fact 3.4), it holds that SD(MsgA ‘S/\C’ Msg? ‘S) <
2/vx. Consequently, by Equation (41) and the data-processing inequality of statistical distance

o

26

(Fact 3.1), it holds that (for sufficiently large n)
P[HAL|SAC]>P[HAL|S] —2/vx=1/16—2/vx>1/3 (49)

In other words, even when P is a corrupted small-jumps party, it still encounters large conditional
variance and biases all jumps it encounters. Therefore, all that is left to do is analyze the expectancy
of P’s increments under this conditioning. For msg € Supp (MsgA) let 1z (msg) be the value of 1g
as determined by Msg” = msg. Compute,

E[Yier Xi | SAC] = E i [DicsentByp (msg) E[Xi | Msgl; = msg; AC]]
> E g s 1100358) sy gy EBinsed 1 (Vs g)]] (50)
= [E[]lH : Ziezp Vn - Var [Yz ’ Msgéi] | SA C] (51)
>E[lg-vn-1p-1/8xm|SAC] (52)
=1/sxyn-P[HAL|SAC]| >1/sxyn-1/32 = 1/256)/n.

Inequality (50) follows by the definition of A (see Step 4b of Algorithm 4.9) and Claim 4.11 (Y;
is independent of C' conditioned on Msgéi). Equality (51) follows from Lemma 4.8(1). Inequality
(52) follows by a point-wise inequality, and the last inequality follows by Equation (49).]

4.1.5 Bounding KL-Divergence between Attacked and Honest Executions, Proving
Claim 4.13

Claim 4.21 (Restatement of Claim 4.13). Dy, (Msg” || Msg'') < 163)3.

The core of the proof relies on Lemma 4.8(3) that states that corrupting some party with
probability p and then biasing its message according to Biasedf;, is equivalent to biasing this
message according to Biased]fa. This fact yields the following observation:

Claim 4.22. For any i € [¢] and msg_; € Supp(Msg?,), it holds that
Dx, (MsgA I 1\/[sgH) < 16°* - Var [jumpH (Msggi) | Msggi = msg<z~].

7 ‘Msgéi:msgd (‘Msggi:msgg
Proof. Let P := NxtParty(msg_;) (i.e., be the party sending the i'" message). If P is NonRbst,
we are done since its messages are unchanged (never corrupted). Otherwise, we separately deal
with the case that P is a small-jumps party and a large-jump party (as determined by the partial
transcript msg_;).

P is a small-jumps party. Conditioned on Msgéi =msg_;, the ih message is altered from
its honest (conditional) distribution according to II, with probability p < 163*//n (see
Step 4b of Algorithm 4.9). If the i*" message is altered, it is sampled according to

jump!! (m -
BiasedJ\l/lﬁp (s)(Msgin). By Lemma 4.8(3), Msg is distributed

: I1
. . jump (msg<i7) I
like Blasedp n (Msgi |Msggi=msg<i

‘Msggi:msg<i ‘Msgii:msgd

). Hence, by Lemma 4.8(2)

A IT
DKL(MSgi ’MSgQiZmSga H MSgi ‘Msggizmsg@')

<2 (pvn)” - Var [jump (Msg,) | Msg, = msg_]
< 2-16%* - Var [jumpH (Msggi) | Msggi = msg@-].

27

P is a large-jump party. Conditioned on Msgéi = msg_;, the ith message is altered from its
honest (conditional) distribution according to II, with probability A?\/v where v :=
Var [jumpH (Msggi) | Msggi = msg<i]. If the i message is altered, it is sampled accord-

o5 -
ing to Biased, (msg <)(Msg{I . Hence, by Lemma 4.8(3), Msg?

’Msggi:mng) ’Msg< i —MSg

NG
is distributed like Blasedmmp Hmi) (Msg;! ‘M no_). By Lemma 4.8(2), we conclude
Sg.;=msg;
that
Dy, (Msgl ‘Msg ,=msg_ H Msg,' |Msggi:msg<i) <2 *-Var [jumpn (MSggi) | Msgl; = msg ;).

0

Proof of Claim 4.13. Let the set RobustJumps(msg) denote the value of RobustJumps determined
by Msg” = msg. Compute,

D, (Msgég I Msggz)

l
11
Z [EmsgeMsg DKL (MSgZ |Msg j=msg_; H Msgi ’Msggi:msg<i)] (53)
i=1
A 11
= Emsg(—MsgA [ziERobustJumps(msg) DKL (Msgl }MSgii:mSgQ || Msgi ’MSgEi:mSgd)] (54)

< EpegMsgh [DicRobustumps(msg) 16°A* - Var [jump'! (MsgZ,) | MsgZ; = msg,]] (55)
= 16°X" - E[Y enobustumps Var [jump' (MsgZ;) | Msgl; = Msg2,]]

= 16°A" - E[3 i cRobustumps Var [V | Msg2;]] (56)
< 16323, (57)

Equality (53) follows by chain rule of KL Divergence (see Fact 3.3). Equality (54) follows since
non-RobustJumps are not corrupted. Inequality (55) follows by Claim 4.22. Inequality (56) follows
by definition of Y; (i.e., its conditional distribution is jump' (Msggz)) And finally, Inequality (57)
follows by Claim 4.12. O

4.2 Biasing Robust Coin Flip

In this section, we use the attack on normal robust protocols proved to exist in Section 4.1, for
attacking arbitrary robust protocols. We do that by transforming an arbitrary robust protocol into
a related normal coin-flipping protocol and proving that the attack on the latter normal protocol
stated in Theorem 4.6, yields an attack of essentially the same quality on the original (non-normal)
protocol, thus proving Theorem 4.3.

We start by defining the normal form variant of a coin-flipping protocol. Let II be an n-party,
£-round, full-information coin-flipping protocol. Letting ¢t = 2¢n+ 1, the t-party, £-round, n-normal
variant of II, is defined as follows:

Protocol 4.23 (n-normal protocol ﬁ)

1. For each party P of the pmtocol II, the protocol I has 2¢ parties Pima”,...,sza” and

Pllalrge ,PIalrge In addition, II has a special party named NonRbst.

PR

2. For each party P of 11, start three counters Lp = Sp =1, and Ap = 0.

28

3. In rounds i =1 to ¢, the protocol is defined as follows.

(a) Let msg_; denote the messages sent in the previous rounds, and let P be the party that
would have sent the i'™ message in II given this transcript.

(b) Let Q; be the distribution Msg)! and let v; := Var[jump" (msg_;, Q;)].

|M5g2i:m5g<i
(c) Set P’ (the “active” party) as follows:
1. If min(Supp(jumpH (msg@, QZ))) < —1/x,v/n, set P’ to NonRbst.
ii. Else, If v; > 1/x.n, set P’ to PILaLge, and update Lp = Lp + 1.
iii. Else, If v; < 1/aun:
Set P’ to PSS’;‘E’” and update Ap = Ap + v;
If Ap > 1/)\nn.'
e Set Sp = Sp + 1.
o Set Ap = 0.

(d) P’ sends the i™ message, as P would in I given the partial transcript msg._;.

Claim 4.24. Assume Il is a n-party full-information coin-flipping protocol, then II is a n-normal
full-information coin-flipping protocol.

Proof. We handle each of the conditions independently,
Single non-robust party: Step 3(c)i properly handles jumps that should belong to NonRbst.

Large-jump party sends a single message: Clearly Step 3(c)ii associates parties of the form
P',:rge with at most one jump, and it is clear that only parties of this form might have large

jumps.

Small-jumps party has bounded overall variance: Step 3(c)iii assures that once Ap > 1/x,n,
namely the active party has a sum of conditional variances which is larger than 1/x,n, it is
never associated with another jump further along the execution. Thus, since Ap increases by
at most 1/x,n at a time, it never surpasses 2 - 1/x,n.

At most n unfulfilled parties: Note that parties which have a sum of conditional variances
which is at most 1/x,n must be parties of the form sza”, and the only parties of this form

that participate in the protocol (namely, unfulfilled parties) are P';”}a” where P is some party
P

(at most n) and SIJ: is the final value of Sp. Therefore, at most n unfulfilled parties exist for

any transcript.
g

Proving Theorem 4.3. Given the above tool and Theorem 4.6, the proof of Theorem 4.3 is
immediate.

Proof of Theorem /.3. Let II be the n-normal variant of II defined by Protocol 4.23. By The-
orem 4.6, there exists a O(y/n-logn)-adaptive adversary A for II such that [E[H/ﬂ > 1-

Consider the adversary A on II that emulates A while transforming corruptions of the parties of
II to parties of II according to the mapping implicitly defined in Protocol 4.23. It is clear that

29

[E[HA] = [E[ﬁ;&] > 1 — €. In addition, corrupting k parties in II is translated to corrupting at

most k parties of II, since by construction the parties in II are refinements of the parties in II. We

conclude that A is the desired O(y/n - logn)-adaptive O

4.3 Proving Lemma 4.8

In this section, we prove Lemma 4.8.

Lemma 4.25 (Restatement of Lemma 4.8). For any P, « and f as in Definition 4.7, it holds that
1. E[f(Biased/ (P))] = a- Var[f(P)].

2. Dxi,(Biased/,(P) || P) < 202 - Var[f(P)].
3. (p - Biased/, (P) +(1-p)- P) = Biasedg_a (P) for any p € 0,1].

4. There exist a distribution (A, B) which couples P and Biased/ (P), i.e., A= P and B =
Biased/, (P), such that for any (a,b) < (A, B) it holds that f(B) > f(A).

Proof of Lemma /.8.

Item 1:
E[f (Biasedl(P))] = > fle) - P[Biased!(P) = ¢]
e€Supp(P)
= > fle)-P[P=¢]-(1+af(e)
e€Supp(P)
=E[f(P)- (1 +af(P)] =E[f(P)] +a-E[f*(P)] = a- Var[f(P)].
Item 2:

Dxq, (Biasedg (P) | P) = Z [P[Biased£ (P) N e} -log<[P[Bi?;F](i£:(Z% : e])
e€Supp(P)

= > P[P=¢| (1+af(e)) log(l+af(e))

e€Supp(P)

= [E[(l + af(P)) - log(1+ ozf(P))] = [E[log(l + af(P))] + [E[af(P) -log(1 4+ af(P))]
< log(1+ E[af(P)]) + E[20%f2(P)] = 202 - Var[f(P)].
The last inequality follows by Jensen’s inequality and Fact 3.24.
Item 3:
I]D[(p - Biased/ (P)+(1—p)- P) = ¢]
:p-[P[Biasedf()=e]+(1—p)-P[P=¢]
—pwwz} (1+af(P))+(1~p) P[P =]
P[P =e] - (1+paf(P)).

30

Item 4: Consider the following random process: Sample a <— P. If f(a) > 0,set b = a. If f(a) <0
with probability 1+ af(a) set b = a, otherwise sample b PJT for

for e € Supp(P) with f(e) >0

. . . [P[P:e] -f(e)
P]jr = {e Wlth pI‘Obablhty W

By construction f(b) > f(a). In addition, it is not hard to verify that the marginal distribu-
tions of a and b are that of P and Biased£ (P), respectively.
O

5 Biasing Arbitrary Coin Flip

In this section, we use the attack on robust protocols, described in Section 4, to prove our main
result: an adaptive attack on any full-information coin-flipping protocols. The main result of our
paper is given below. Recalling our notations,

Notation 5.1 (Restatement of Notation 4.1). For n € N, let g, := 1/ %loglogn, A, 1= 100/c5 =

100 - Vloglogn and &, := 1/10g®n.

Theorem 5.2 (Biasing full-information coin flips). For any n-party, full-information coin-flipping
protocol 11, there exists a O(\/ﬁ -log?® n)—adaptive adversary A, such that [E[HA] < ey or [E[HA] >

1—¢,.

Our proof makes use of the following deterministic one-shot (modifies at most a single message)
adversary attacking an n-party full-information coin-flipping protocol I'. The adversary takes
advantage of large negative jumps in order to bias the I'’s output towards 0,

Algorithm 5.3 (One-shot adaptive adversary B on T').
For i =1 to NumMsgs(I'):

1. Let msg_; be the messages sent in the previous rounds, and let P be the party about to send
the i message.

2. Denote M; := Supp (Msggi | Msgh, = msg_;),

If no message was corrupted before and Im € M;: jumpF(msg<i,m) < —1/x,/m, corrupt and
instruct P to broadcast such a message m as it next message.

The proof of the following fact is immediate.

Claim 5.4. Let I' be an n-party full-information coin-flipping protocol. Then:
E[Tg] > E[T] + Yxuvn - P[3i: min(Supp(jumpF (Msggi) | Msgl;i)) < —1/xnvm].

Equipped with the above tool and the attack presented in Section 4, we are ready to prove our
main result.

31

Proof of Theorem 5.2. Denote t = v/ s = O(\/ﬁ -log? n), consider the protocols I1%, . .., TI* recur-
sively defined by I1° := II and II*t! := II'g. If [E[Ht] < &p, then by Proposition 3.20 there exists

a t-adaptive adversary that biases II’s output to less than e, (the composition of all intermediate
adversaries), and we are done. Else, by Claim 5.4 there exists k € [t] such that for ¥ = II* it holds
that

P[3i: min(Supp (jump” (Msg%-) | Msg?;)) < —1/xuv/m] < 0.

Hence, by Theorem 4.3, there exists an O(y/n - logn)-adaptive adversary A such that

E[Ua] > 1—¢p.

Denote by C the t-adaptive adversary according to Definition 3.18 (the composition of all
intermediate adversaries) such that IIc = IT'. Let A o C be the O(\/ﬁ -log® n)—adaptive adversary
according to Definition 3.18, by Proposition 3.20 it holds that E [HAoc] =L [\I'A] > 1—¢y, concluding

the proof. 0O

6 Strongly Adaptive, Bidirectional Adversaries

In this section, we use strongly adaptive adversaries to make the attacker described in the previous
sections bidirectional (able to bias the protocol’s outcome to both zero and one). Formally (using
the notations of Section 5), we prove the following result.

Notation 6.1 (Restatement of Notation 4.1). For n € N, let &, := 1/ %loglogn, A, 1= 100/c5 =

100 - Vloglogn and &, := 1/10g>n.

Theorem 6.2 (Forcing full-information coin-flipping protocols). For any n-party, full-information
coin-flipping protocol 11 such that [E[H] > &p, there exists a O(\/ﬁ log® n) -strongly adaptive adver-

sary A, such that [E[HA] >1—e,.

Note that this is indeed a bidirectional attack capable of biasing protocols in which both values
are significant enough. If one wants to bias a protocol towards 0, simply apply the attack on the
flipped protocol (exactly the same protocol, besides the output function, which returns the opposite
from the original output function).

The attack. The attack follows the same lines as the one described in Section 5, except in the
immunization phase (Algorithm 5.3) that turns the protocol to be robust. Using strongly adaptive
corruptions, the adversary can always immunize the protocol so that the (non-strong) adaptive
attack described in Section 4 is applicable. The strongly adaptive immunization deals with non-
robust jumps much better; instead of preparing for the worst-case scenario and corrupting every
such jump, the attacker deals with them only if the unfavorable outcome is taken.

Algorithm 6.3 (One-shot strongly adaptive adversary B on T').
For i =1 to NumMsgs(I'):

Let msg.; be the messages sent in the previous (and current) rounds, and let P be the party
that sent the i** message. Let M; = Supp(Msggi | Msggi = msg<i).

32

If no message was corrupted before and jump" (msggi) < —1/xnvm, corrupt P and instruct it
send a message m € M; with jump’ (msg_;, m) > 0.

Similarly to Section 5, consider the following (immediate) claim.

Claim 6.4. Let I' be an n-party, full-information coin-flipping protocol I'. Then
[E[FB] > [E[F] + [E[#Corruptions] <L X/

Proof. Immediate. O

Similarly to the immunization phase presented in Section 5, we iteratively apply B until
P [3i: min(Supp(jumpF(Msggi) | Msgl;i)) < =1 xuva] < 0, /2 (58)
Denote the number of such applications by t. Let II° := II and II'*!' := II’g. By Claim 6.4,
it holds that [E[H”l] > [E[Hi] + xym - [E[#Corruptions in Hig]. Reorganizing the terms,
E[#Corruptions in IT'g] < (E[II"*!] — E[II]) - Apy/n. In total,

(59)
t—1 t—1
Z E [#Corruptions in II'g] = A,v/n - Z([E[H’] — E[II"']) = \ov/n - (E[ITY] — E[II°]) < A/

=0 i=0

Let C be the composition of all intermediate adversaries, according to Definition 3.21, such
that IIc = II'. By the above inequality, the expected amount of strongly adaptive corruptions
C performs is at most A,y/n. Let C' be the variant of C that aborts once it reaches 2\,\/n/d,
corruptions, and denote ¥ = IIc/. By Markov’s inequality, C' aborts with probability at most dy,/2.
Combined with our stopping condition (i.e., Equation (58)) for applying B, it follows that that

P[3i: min(Supp(jump\I’ (Msggi)] Msggi)) < =1 xava| < by

In addition, E[¥] > E[II] > €,. Hence, by Theorem 4.3, there exists an O(y/n - log n)-strongly

adaptive adversary A such that
E[Ua] >1— e,

Consider the attacker A o C’, the composed O(\/ﬁ -log? n)—strongly—adaptive adversary. By
Proposition 3.23, [E[HAoc/] = [E[\IIA] > 1 — &,, concluding the proof.

Acknowledgment

We are grateful to Raz Landau, Nikolaos Makriyannis, Eran Omri, and Eliad Tsfadia for very
helpful discussions. The first author is thankful to Michael Ben-Or for encouraging him to tackle
this beautiful question.

33

References

1]
2]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Ajtai and N. Linial. The influence of large coalitions. Combinatorica, 13(2):129-145, 1993.

N. Alon and M. Naor. Coin-flipping games immune against linear-sized coalitions. SIAM
Journal on Computing, 22(2):403-417, 1993.

A. Beimel, 1. Haitner, N. Makriyannis, and E. Omri. Tighter bounds on multi-party coin
flipping via augmented weak martingales and differentially private sampling. In Proceedings
of the 59th Annual Symposium on Foundations of Computer Science (FOCS)., 2018.

M. Ben-Or and N. Linial. Collective coin flipping, robust voting schemes and minima of
banzhaf values. In Annual Symposium on Foundations of Computer Science (FOCS), pages
408-416, 1985.

I. Berman, I. Haitner, and A. Tentes. Coin flipping of any constant bias implies one-way
functions. Journal of the ACM, 65(3):14, 2018.

I. Berman, I. Haitner, and E. Tsfadia. A tight parallel-repetition theorem for
random-terminating interactive arguments. In Annual International Cryptology Conference
(CRYPTO), 2020.

M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Systems, 1983.

R. B. Boppana and B. O. Narayanan. Perfect-information leader election with optimal re-
silience. SIAM Journal on Computing, 29(4):1304-1320, 2000.

Y. Dodis. New imperfect random source with applications to coin-flipping. In Automata,
Languages and Programming, 24th International Colloquium (ICALP), pages 297-309, 2001.

Y. Dodis. Fault-tolerant leader election and collective coin-flipping in the full information
model. https://cs.nyu.edu/~dodis/ps/cf-survey.pdf, 2006.

O. Etesami, S. Mahloujifar, and M. Mahmoody. Computational concentration of measure:
Optimal bounds, reductions, and more. In Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 345-363, 2020.

O. Etesami, S. Mahloujifar, and M. Mahmoody. Computational concentration of measure:
Optimal bounds, reductions, and more. In Symposium on Discrete Algorithms (SODA), pages
345-363, 2020.

A. A. Fedotov, P. Harremoes, and F. Topsoe. Refinements of pinsker’s inequality. IEEE
Transactions on Information Theory, 49(6):1491-1498, 2003.

S. Goldwasser, Y. Tauman Kalai, and S. Park. Adaptively secure coin-flipping, revisited.
In Automata, Languages and Programming, 24th International Colloquium (ICALP), pages
663674, 2015.

I. Haitner. A parallel repetition theorem for any interactive argument. SIAM Journal on
Computing, 42(6):2487-2501, 2013.

34

https://cs.nyu.edu/~dodis/ps/cf-survey.pdf

[16] I. Haitner and E. Omri. Coin Flipping with Constant Bias Implies One-Way Functions. STAM
Journal on Computing, pages 389—409, 2014. Preliminary version in FOCS’11.

[17] J. Hastad, R. Pass, D. Wikstrom, and K. Pietrzak. An efficient parallel repetition theorem.
In Theory of Cryptography (TCC), pages 1-18, 2010.

[18] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In Annual
Symposium on Foundations of Computer Science (FOCS), pages 68-80, 1988.

[19] D. Lichtenstein, N. Linial, and M. Saks. Some extremal problems arising from discrete control
processes. Combinatorica, 9(3):269-287, 1989.

[20] S. Mahloujifar and M. Mahmoody. Blockwise p-tampering attacks on cryptographic primitives,
extractors, and learners. In Theory of Cryptography (TCC), pages 245-279, 2017.

[21] S. Mahloujifar and M. Mahmoody. Can adversarially robust learning leveragecomputational
hardness? In Algorithmic Learning Theory, pages 581-609, 2019.

[22] S. Mahloujifar, M. Mahmoody, and A. Mohammed. Multi-party poisoning through generalized
p-tampering. Technical Report 1809.03474, arXiv, 2018.

[23] S. Mahloujifar, D. I. Diochnos, and M. Mahmoody. The curse of concentration in robust
learning: Evasion and poisoning attacks from concentration of measure. In AAAI Conference
on Artificial Intelligence, pages 45364543, 2019.

[24] H. K. Maji, M. Prabhakaran, and A. Sahai. On the Computational Complexity of Coin
Flipping. In Annual Symposium on Foundations of Computer Science (FOCS), pages 613—
622, 2010.

[25] A. Russell, M. Saks, and D. Zuckerman. Lower bounds for leader election and collective coin-
flipping in the perfect information model. SIAM Journal on Computing, 31(6):1645-1662,
2002.

[26] M. Saks. A robust noncryptographic protocol for collective coin flipping. SIAM Journal on
Discrete Mathematics, 2(2):240-244, 1989.

[27] Y. Tauman Kalai, I. Komargodski, and R. Raz. A lower bound for adaptively-secure collective
coin-flipping protocols. In International Symposium on Distributed Computing (DISC), 2018.

35

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

