
Lower Bounds on OBDD Proofs with Several Orders

Sam Buss3, Dmitry Itsykson1, Alexander Knop3, Artur Riazanov1, and Dmitry Sokolov1,2

1St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences
2St. Petersburg State University

3University of California, San Diego
sbuss@ucsd.edu, dmitrits@pdmi.ras.ru, aknop@ucsd.edu, aariazanov@gmail.com, sokolov.dmt@gmail.com

May 5, 2020

Abstract

This paper is motivated by seeking lower bounds on OBDD(∧,w, r) refutations, namely OBDD refu-
tations that allow weakening and arbitrary reorderings. We first work with 1-NBP(∧) refutations based
on read-once nondeterministic branching programs. These generalize OBDD(∧, r) refutations. There are
polynomial size 1-NBP(∧) refutations of the pigeonhole principle, hence 1-NBP(∧) is strictly stronger
than OBDD(∧, r). There are also formulas that have polynomial size tree-like resolution refutations but
require exponential size 1-NBP(∧) refutations. As a corollary, OBDD(∧, r) does not simulate tree-like
resolution, answering a previously open question.

The system 1-NBP(∧, ∃) uses projection inferences instead of weakening. 1-NBP(∧, ∃k) is the system
restricted to projection on at most k distinct variables. We construct explicit constant degree graphs Gn
on n vertices and an ε > 0, such that 1-NBP(∧, ∃εn) refutations of the Tseitin formula for Gn require
exponential size.

Second, we study the proof system OBDD(∧,w, r`) which allows ` different variable orders in a refu-
tation. We prove an exponential lower bound on the complexity of tree-like OBDD(∧,w, r`) refutations
for ` = ε logn, where n is the number of variables and ε > 0 is a constant. The lower bound is based on
multiparty communication complexity.

1 Introduction

Ordered Binary Decision Diagrams (OBDD’s) are a flexible way to represent Boolean predicates. Proof
systems based on OBDD’s were introduced by Atserias, Kolaitis and Vardi [4]. Their proof system was
used to refute sets of clauses and allowed only conjunctions (the “∧” rule), projections (the “∃” rule) and
weakenings (the “w” rule). By default, an OBDD proof must use the same variable order for all OBDD’s
in the proof. However, the variable reordering rule (the “r” rule) of [18] can be used to dynamically change
variable orderings. We use notations such as OBDD(∧), OBDD(∧,∃), OBDD(∧, r), OBDD(∧,w, r) to denote
OBDD-based proof systems with the indicated rules of inference. See Section 2 for definitions of these
systems; throughout the present paper, all systems are presumed to be dag-like unless we explicitly mention
that they are tree-like. The known inclusions for the main OBDD proof systems are shown in Figure 1,
where an arrow indicates p-simulation (polynomial time simulation). Given that projection (∃) is a special
case of weakening (w), most of these inclusions follow immediately from the definitions.

Atserias et al. [4] showed that OBDD(∧,∃) p-simulates resolution. They also showed that OBDD(∧,w)
p-simulates cutting planes with unary coefficients (CP∗), but left whether OBDD(∧,∃) p-simulates CP∗ as
an open problem. Also by [4], OBDD(∧,∃) has polynomial size proofs of formulas that encode unsatisfiable
linear systems over GF(2), and by [9], it also has polynomial size proofs of the pigeonhole principle. Neither
of these principles have short resolution proofs; hence OBDD(∧,∃) is strictly stronger than resolution; i.e.,

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2020)

it p-simulates resolution, but it is not p-simulated by resolution. The last two OBDD(∧,∃) proofs (for
GF(2) systems and the pigeonhole principle) can also be carried out in the OBDD-based symbolic quantifier
elimination algorithm of Pan and Vardi [24]. For those algorithms, the join (∧) rules are required to download
the initial clauses sequentially and the projection rule (∃) can be used only if all the clauses containing the
variable are alread downloaded: the resulting OBDD(∧,∃) proofs are linear and consequently tree-like.

The projection rule (∃) is a special case of the weakening rule, so OBDD(∧,w) certainly p-simulates
OBDD(∧,∃). It is open whether the two systems are p-equivalent. Buss et al. [7] proved that OBDD(∧,w)
has polynomial size proofs of the Clique-Coloring tautologies. On the other hand, Pudlák [25] showed
these tautologies require exponential size cutting plane (CP) proofs.1 From this, CP does not p-simulate
OBDD(∧,w). In particular, OBDD(∧,w) p-simulates CP∗, but not vice versa.

Although OBDD(∧,w) is a powerful proof system, we know several known exponential lower bounds.
Segerlind [27] proved an exponential lower bound on the size of tree-like OBDD(∧,w) refutations, and
Kraj́ıček [21] proved an exponential lower bound on the size of dag-like refutations. Both lower bounds used
a similar approach. They first established principles that require exponential size OBDD(∧,w) under some
particular variable ordering π. This part of their arguments were based on lower bounds using communication
complexity; randomized communication complexity in [28] and deterministic communication complexity
in [21]. This by itself does not establish an exponential lower bound on OBDD(∧,w) proofs, since it only
applies to the particular order π, and since an OBDD(∧,w) proof allows an arbitrary variable ordering as
long as the same ordering is used for all OBDD’s in the proof. The second step of the proofs of [28] and [21]
used general methods for coding permutations to convert principles that are hard for OBDD proofs in a
particular order π to principles that are hard for all variables orderings.

The reordering rule (“r”) was proposed by Itsykson et al. [18], to relax the requirement that all OBDD’s
in a proof use the same variable ordering. If D and D′ are a π-OBDD and a π′-OBDD that represent the
same Boolean function, then the reordering rule allows inferring D′ from D (even with different orders π
and π′. It is open whether OBDD(∧,w, r) has subexponential size, or even polynomial size, proofs for all
valid formulas. The lower bound methods of [28, 21] used for OBDD(∧,w) proofs can not be applied to
OBDD(∧,w, r) proofs since the communication complexity arguments fail if there are multiple orders. This is
because a fixed variable ordering can be used to construct a partition of the variables for the communication
complexity game between two players; but this construction fails without a fixed ordering. We even do
not have a good candidate for a formula conjectured to be hard for OBDD(∧,w, r). The main conjectured
candidate hard for OBDD(∧,w, r) is random 3-CNFs; however it is even open whether these have short
OBDD(∧) proofs. (Friedman and Xu [12] proved a lower bound for random CNFs, but only for very
restricted subsystems of OBDD(∧).)

Buss et al. [7] showed that OBDD(∧,w, r) is exponentially stronger than OBDD(∧,w). This separation
was proved for a version of clique-coloring tautologies combined with coded permutations and orification.

Itsykson et al. [18] studied the proof system OBDD(∧, r). This system lacks both weakening (w) and
projection (∃) and this means that each line in an OBDD(∧, r) is equivalent to a conjunction of the initial
hypotheses. Using this, [18] showed that the pigeonhole principle and Tseitin formulas require exponential
size OBDD(∧, r) proofs. However, the pigeonhole principle has polynomial size CP∗ proofs and hence poly-
nomial size OBDD(∧,w) and OBDD(∧,w, r) proofs. Thus these last three systems can have an exponential
speedup over OBDD(∧, r).

In the opposite direction, [7] gave an example where the OBDD(∧,w) proofs may need to be superpolyno-
mially longer than OBDD(∧, r) proofs. This example was based on the Tseitin tautology on a logarithmic-size
complete graph, lifted with an indexing gadget and then transformed with the coded permutation method of
Segerlind [28]. Their separation was only quasipolynomial, however; it is open whether there is an exponential
separation or whether OBDD(∧,w) quasi-polynomially simulates OBDD(∧, r).

[18] proved that OBDD(∧, r) can have exponential speedup over OBDD(∧). For OBDD(∧), [7] showed
that the Tseitin tautologies on a logarithmic-size complete graph require quasipolynomial size resolution
refutations, but have polynomial size (tree-like) OBDD(∧) proofs. They also showed that these Tseitin
tautologies lifted with an indexing gadget require quasipolynomial size CP proofs, but have polynomial size

1By “exponential”, we mean 2m
δ
, where m is the size of the branching program and δ > 0.

2

ResCP∗

OBDD(∧)

OBDD(∧, r)

OBDD(∧,∃)OBDD(∧,w)

OBDD(∧,∃, r)OBDD(∧,w, r)

Figure 1: The known polynomial simulations for the main OBDD proof systems. The top two rows follow
from the definitions and the fact that projection is a special case of weakening. The simulations from the
middle row to the bottom row are from [4].

OBDD(∧) proofs. It is open whether these quasipolynomial separations can be improved to exponential
separations.

The above-discussed results completely characterize the p-simulations between the four systems OBDD(∧,w, r),
OBDD(∧,w), OBDD(∧, r) and OBDD(∧) (refer to Figure 1). The main open question about the relative
strengths of these four systems is whether OBDD(∧,w) can quasipolynomially (or, sub-exponentially) simu-
late OBDD(∧, r). Figure 1 shows two proof systems using projection, OBDD(∧,∃) and OBDD(∧,∃, r). This
raises the question of what separations hold for these systems and the other four OBDD systems of Figure 1.
Not much is known beyond the inclusions shown in the figure. The main result known is that the pigeonhole
and Tseitin tautologies have polynomial size OBDD(∧,∃)) proofs by [4, 9] (since the Tseitin formulas are
a special case of unsatisfiable linear equations over GF(2)), but require exponential size OBDD(∧, r) proofs
by [18].

The present paper is motivated by the problem of giving superpolynomial lower bounds for OBDD(∧,w, r)
proofs. We certainly expect such bounds to hold, as otherwise NP = coNP by [11]. We are unable to solve
this problem, but the present paper gives superpolynomial lower bounds for systems that are connected to
OBDD(∧,w, r).

We also establish that there are formulas where (tree-like) resolution has an exponential speedup over
OBDD(∧, r). Consequently it has the same speedup over OBDD(∧).

Our first collection of results are for proof systems which reason with formulas that are either deterministic
or non-deterministic read-once branching programs, called 1-BP’s or 1-NBP’s. (Figure 2 shows the main
systems studied in the paper, and which ones are known to have superpolynomial or exponential lower
bounds.) Since the branching programs are read-once, any achievable path through the branching program
can read each variable only once; however, different paths may query the variables in different orders. Thus
1-BP’s and 1-NBP’s generalize OBDD’s in that any OBDD is already a 1-BP. On the other hand, it is
well-known that 1-BP’s are more expressive than OBDD’s, see [35].

The inference rules ∧, ∃ and w can also be used in 1-BP and 1-NBP proofs. A major difference however is
that checking the validity of an inference is no longer (known to be) polynomial time checkable. For instance,
for a 1-BP or 1-NBP) proof, the ∧ rule can be used to derive any formula E from D1 and D2 provided that
E is expresses the conjunction of D1 and D2. Here D1, D2 and E must be 1-BP’s or 1-NBP’s, respectively).
Similarly E is derivable from D by the projection rule if E is equivalent to ∃xD for some variable x, and by
the weakening rule if E is implied by D. Note that these inference rules are all semantic, that is the validity
of rule depends only on the functions computed by the formulas. As is shown in Section 2.2, there is no
polynomial time algorithm for checking the validity of ∧ inferences for 1-BP;s unless P = NP.

Many of new results of the present paper are lower bounds for the 1-BP and 1-NBP proof systems. These
lower bounds immediately translate to lower bounds for OBDD proof systems with reordering.

Section 3 goes onto to show an exponential lower bound on the size of 1-NBP proofs of the perfect
matching principle and of the Tseitin tautology, both based on graphs which are algebraic expanders. A
common proof is used for both lower bounds; the arguments are rather involved, but use heavily the fact that
every formula in a 1-NBP(∧) refutation is equivalent to a conjunction of the initial clauses. Certain initial
clauses are designated as “special”, and it is shown that some formula in the proof must be a conjunction

3

of a large (linearly many) special initial clauses. Then it is shown that any 1-NBP representation of such a
conjunction must be exponentially large. See the proof below for details.

Section 4 uses the exponential lower bound for 1-NBP proofs to resolve the question of whether OBDD(∧)
simulates resolution. The history of this question is somewhat entangled; [33] claimed that OBDD(∧)
does not simulate resolution, and [19] claimed that OBDD(∧) does not simulate even tree-like resolution.
However, [7] noticed that proofs in the mentioned papers were incomplete, leaving the question about dag-like
OBDD(∧) open. Section 4 starts by showing that it is not just that the proofs from [33, 19] are incomplete
but some of the main statements are incorrect. The constructions in [33] foundered because applications
of the extension rule can make the OBDD(∧) proofs shorter. (In contrast, it is well known that adding
the extension rule to resolution makes it equivalent to the extended Frege.) This problem can be fixed
by working with 1-NBP’s instead of OBDD’s: it turns out that the extension does not make 1-NBP(∧)
proofs shorter. This observation together with the lower bounds for 1-NBP(∧) proofs allows us close the
gaps in the previous proofs, by showing examples of formulas with polynomial size tree-like resolution proof
which require exponential size 1-NBP(∧) proofs. This immediately gives examples of exponential speedup
of resolution over the systems OBDD(∧) and OBDD(∧, r).

Section 5 shows that certain formulas “based on a bipartite graphs” have short 1-BP(∧) refutations.
For example, the pigeonhole principle and Tseitin formulas based on bipartite graphs have short 1-BP(∧)
refutations. Note this does not contradict the exponential lower bounds of Section 3 since algebraic expanders
are not bipartite. It follows that 1-BP(∧), and hence 1-NBP(∧), has exponential speedup over OBDD(∧, r)
for these formulas. (And, this gives another proof that 1-BP’s are more expressive than OBDD’s.) As a
corollary, we get formulas that have polynomial size 1-NBP(∧) proofs, but require exponentially long CP
proofs. By comparison, as mentioned above, the best known speedup for OBDD(∧, r) over CP is quasi-
polynomial [7].

Section 6 works with a proof system OBDD(∧,∃k, r); proofs in this system are restricted to use the
projection (∃) rule on at most k distinct variables. We prove that there is a constant ε > 0 and a family of
Tseitin formulas TSG,f , based on constant degree graphs G on n vertices with vertex labelings f , such that
the formulas TSG,f require exponential size 1-NBP(∧,∃εn) proofs. From this, using a padding argument, we
show that OBDD(∧,∃εn) has exponential speedup over OBDD(∧), for each fixed ε > 0.

The final part of the paper, Section 7, considers the fragment OBDD(∧,w, r`) of OBDD(∧,w, r) in
which at most ` many different variables orderings are permitted. We prove an exponential lower bound on
OBDD(∧,w, r`) proofs with ` = ε log n for ε > 0 sufficiently small. The argument is based on the problem
Searchϕ of searching for a falsified clause under a given truth assignment to an unsatisfiable CNF formula ϕ.
The proof uses lower bounds on k party communication (for k = `+1). We show that a short OBDD(∧,w, r`)
refutation of ϕ means that Searchϕ has small k-party communication complexity for k = ` + 1 under some
balanced partition of the inputs. Then results of [15, 26] imply that the search problem for lifted pebbling
formulas requires almost linear k-party communication complexity in at least one partition of the inputs.
Finally a construction from [20], based on [28], uses a further lifting-like construction to form formulas whose
search problems have almost linear k-party communication complexity under every balanced partition of
their inputs. This implies exponential lower bounds on OBDD(∧,w, r`) refutations. These formulas do have
polynomial size OBDD(∧, r) refutations however.

Section 8 concludes with some discussion about open problems for future research.

2 Preliminaries

2.1 Branching program and OBDD proof systems

A deterministic branching program (BP) is a representation of a Boolean function {0, 1}n → {0, 1} by a
directed acyclic graph with exactly one source and two sinks. Every node other than the sinks is labeled
with an input variable and has exactly two outgoing edges: one labeled with 1 (True) and the other with 0
(False). One of the sinks is labeled with 1 and the other with 0. The value of the Boolean function for a
given assignment of values to the input variables is evaluated by traversing a path starting at the source

4

exponential
lower bounds

before this paper

exponential
lower bounds
in this paper

no
superpolynomial

lower bounds
are known

OBDD(∧)

OBDD(∧, r)OBDD(∧,w)

tree-like
OBDD(∧,w, rε logn)

OBDD(∧,w, rε logn)

1-BP(∧)

1-NBP(∧)

1-NBP(∧,∃cn)

1-NBP(∧,∃)

OBDD(∧,∃cn, r)

OBDD(∧,∃, r)

OBDD(∧,w, r)

1-NBP(∧,w)

Figure 2: A summary of the systems for which exponential lower bounds are known. The systems are
dag-like, except for the one labelled tree-like. The arrows indicate p-simulations.

node and, at every node labeled with an input variable, extending the path along the edge that is labeled
with the value of the variable. This path ends in a sink; the label of the sink is the value of the Boolean
function.

A nondeterministic branching program (NBP) differs from a deterministic one in that the directed acyclic
graph may include non-sink nodes which are unlabeled and have outdegree two; these are called guessing
nodes. That is the directed acyclic graph for a NBP can have three kinds of nodes: labeled nodes (labeled
with a variable), guessing nodes, and sink nodes. A path that reaches a guessing node may be extended
along either outgoing edge. The values of a function represented by a nondeterministic branching program
equals 1 exactly when there exists at least one such path from the source to the sink labeled with 1. Note
that deterministic branching programs are a special case of nondeterministic branching programs.

A deterministic or nondeterministic branching program is (syntactic) read-once if every path from the
source to a sink queries each variable at most once. Read-once BP’s and NBP’s are denoted 1-BP’s and
1-NBP’s.

We generally denote the input variables by x1, . . . , xn, so there are n inputs. We let [n] = {1, . . . , n}. An
order on the input variables x1, . . . , xn is a bijection π from [n] to {x1, . . . , xn}. We often call π a variable
ordering for clarity. We let π[≤s] := {xπ(1), . . . , xπ(s)}, namely the set of the first s variables in the order.
And π[>s] := {xπ(s+1), . . . , xπ(n)}, namely, the set of remaining variables.

An ordered binary decision diagram (OBDD) is a special case of a 1-BP, and thereby a special case of
a 1-NBP. For π a variable ordering, a π-OBDD is a 1-BP ϕ such that, for every path p in ϕ, the order in
which the variables are queried respects the order π. More generally, a 1-BP ϕ is an OBDD provided there
is some order π such that ϕ is a π-OBDD. OBDD’s were first defined by Bryant, see [6].

Definition 2.1. Let ϕ be an (unsatisfiable) CNF formula; i.e, ϕ is a set of clauses. An OBDD proof (also
called a refutation) of ϕ consists of a sequence D1, . . . , Dt of OBDD’s with associated permutations π1, . . . ,

5

πt such that each Di is a πi-OBDD, the last OBDD, Dt, represents the constant false, and each Di either
represents one of the clauses of ϕ or is inferred from earlier OBDD’s in the proof by one of the following
rules of inference:

conjunction or join (∧): Di represents the Boolean function Dj ∧Dk where j, k < i and where Di, Dj Dk

use the same order πi = πj = πk.

weakening (w): Di is semantically implied by Dj where j < i and where Di and Dj use the same order
πi = πj .

projection (∃): Di represents the Boolean function ∃xDj where j < i, where x is a variable, and where
Di and Dj use the same order πi = πj .

reordering (r): Di is equivalent to Dj for some j < i. Here, πi and πj are different orders.

Although we usually use the terminology “OBDD proof of ϕ”, it is actually a refutation of ϕ. It is well-
known that there are polynomial time algorithms for recognizing the validity of each the above inference
rules (see [6, 18]). Therefore, OBDD proof systems are propositional proof systems in the sense of Cook
and Reckhow [10, 11]. The size of an OBDD proof is equal to the sum of the sizes of the OBDD’s in the
proof; the size of an OBDD is the number of vertices in the graph. There is also a well-known algorithm
for converting an π-OBDD to a minimal π-OBDD; hence, we may assume without loss of generality that all
π-OBDD’s have minimal size (for that order).

As discussed in the introduction, we use different OBDD proof systems with different sets of allowed
rules. For example, an OBDD(∧,w) proof is an OBDD proof in which only the ∧ and w rules are used.
Since the projection rule is a special case of the weakening rule, we never use both in the same system. An
OBDD proof is tree-like if each OBDD in the proof is used as a hypothesis at most once.

If the reordering rule is not allowed, then w.l.o.g., all OBDD’s in a proof use a common order π, since
only the reordering rule allows changing to a different order. When we want make the order explicit, we
use terminology such as “π-OBDD(∧,w) proof” to mean that OBDD’s in the proof are restricted to use the
order π.

An OBDD(∧,w, r`) proof is an OBDD(∧,w, r) which uses at most ` distinct variable orderings. An
OBDD(∧, r,∃k) proof is an OBDD(∧, r,∃) which applies the projection inferences with at most k distinct
variables.

1-BP proofs and 1-NBP proofs are defined similarly to OBDD proofs; however, there is no reordering
rule. (And in fact, 1-BP’s and 1-NBP’s do not in general have a fixed order for variable queries.)

Definition 2.2. Let ϕ be an (unsatisfiable) CNF formula. A 1-BP proof, respectively a 1-NBP proof, of ϕ
consists of a sequence D1, . . . , Dt of 1-BP’s, respectively 1-NBP’s, such that Dt represents the constant
false, and each Di either represents one of the clauses of ϕ or is inferred from earlier lines in the proof by
one of the following rules of inference:

conjunction or join (∧): Di represents the Boolean function Dj ∧Dk where j, k < i.

weakening (w): Di is semantically implied by Dj where j < i.

projection (∃): Di represents the Boolean function ∃xDj where j < i and x is a variable.

As discussed in the introduction, 1-BP and 1-NBP proof systems can be defined with different rules of
inference. For example, NBP(∧,w) means that the conjunction rule and weakening rules are permitted. Since
projection is a special case of weakening, this is the strongest of the systems considered in the present paper.
The 1-BP and 1-NBP systems are not propositional proof systems in the sense of Cook and Reckhow. Indeed,
as is discussed in Section 2.2, there is no polynomial time algorithm to decide the validity of conjunction
inferences or weakening inferences unless P = NP. However, note that OBDD proofs are also 1-BP and
1-NBP proofs. Therefore lower bounds for the last two systems imply lower bounds for the corresponding
OBDD proof system.

6

Definitions 2.1 and 2.2 defined refutations. A derivation of D is defined exactly the same as a refutation
except the final line is D instead of the constant false. Derivations are implicationally sound in that any
truth assignment that satisfies ϕ also satisfies D.

Note that if D has a derivation from ϕ in which the only inference rules are conjunction (∧) and re-
ordering (r), then each line Di in the derivation expresses the conjunction of a subset of the clauses of ϕ.
Thus, the above derivation systems without the weakening rule are not semantically complete in that not
all consequences of ϕ can be derived.

Section 4 will discuss the relative strengths of 1-NBP and resolution. For this, an important tool is the
use of the extension rule. An extension rule allows the introduction of a new variable z along with an axiom
z = f(~x) where f is a Boolean function, and ~x are the already-used variables. In applications, f(~x) will be
expressible as a conjunction of clauses, or of branching programs.

Definition 2.3. Let P be a proof system used to derive refutations of CNF formulas. Let ϕ(~x) be a CNF
formula. A set E of extension axioms for ϕ(~x) is a set of clauses expressing zi ↔ ψi(~x, z1, . . . , zi−1), where
each ψi is a conjunction of literals and z1, . . . , z` are new variables. Then, an extension-P refutation of ϕ
is by definition a refutation of ϕ ∧ E where E is a set of extension axioms for ϕ.

For example, a definition by extension of the form z ↔ (y1∧y2) is represented by the three clauses ¬z∨y1,
¬z∨y2, and ¬y1∨¬y2∨z. The canonical example of extension is the “extended resolution” refutation system
of Tseitin [31]. The pigeonhole principle gives an exponential separation between resolution and extended
resolution [17, 11]. It is surprising that extension-1-NBP(∧) is no stronger than 1-NBP(∧); this is proved in
Section 4.

Definition 2.3 required the defining formulas ψi to be conjunctions of literals. This can be generalized
so that ϕi can be represented by an OBDD, a BP or even a Boolean circuit, at the cost of introducing
additional extension variables for the nodes in the branching program or circuit.

2.2 Weirdness with reordering, weakening and extension

This section explores some undesirable situations arise when too strong rules of inferences are allowed. We
first show that if conditions on OBDD inferences are removed to allow dynamically changing the variable
order, then it becomes NP-hard to check the validity of inferences. We second show that using the extension
rule together with weakening can make some of the just discussed systems so powerful that they have poly-
nomial size proofs for all tautologies (that is, to be more accurate, polynomial size refutations of unsatisfiable
sets of clauses). This section is purely foundational, and the rest of the paper does not depend on it.

We start with generalized versions of the OBDD inferences that allow dynamic reorderings. Define the
“∧&r” inference rule to be the same as the ∧ (conjunction) rule for OBDD’s, but without the restriction
that πi = πj = πk. Likewise define the “∃&r” and the w&r inference rules to be the same as the ∃ rule and
w rules but without the restriction that πi = πj .

Theorem 2.4 ([23, Lemma 8.14]). The problem of verifying ∧&r, or w&r, inferences is NP-hard.

Proof. The property of being a valid inference is in coNP since it is an assertion about all truth assignments
and since OBDD’s can be evaluated in polynomial time (even, in logspace). Let ϕ be an instance of
satisfiability. Let x1, . . . , xn be the variables in ϕ, and suppose xi appears ki times in ϕ. We introduce new
variables xi,j for 1 ≤ j ≤ ki. Form ϕ∗ by replacing the j-th copy of each xi with xi,j . (If the j-th copy
of xi in ϕ is negated, then xi,j is negated in ϕ∗.) Note every variable xi,j occurs exactly once in ϕ∗. Let
E(x1,1, . . . , xn,kn) be the Boolean function which is true if and only if xi,j is equal to xi,j′ for all i and all
1 ≤ j, j′ ≤ ki. The formula ϕ∗ can easily be written as a π0-OBDD where π0 is the order in which variables
appear in ϕ. And, E can be written as a π1-OBDD where π1 takes the variables xi,j is the lexicographic
order of (i, j).

Clearly ϕ∗ ∧ E is satisfiable if and only if ϕ is satisfiable. Therefore, the inference inferring ⊥ (falsity)
from ϕ∗ and E is a valid ∧&r inference if and only if ϕ is unsatisfiable. Similarly, inferring ¬E from ϕ∗ is a
valid w&r inference if and only if ϕ is unsatisfiable.

7

Note however, that there is a polynomial time algorithm for verifying the correctness of an ∃&r inference
of Di from Dj . This is done, by first forming ∃xDj as πj-OBDD and then checking if the result is equivalent
to Di. The former is in polynomial time by [6]; the latter is by the fact that the correctness of reordering
can be verified in polynomial time [18].

We next consider systems that have weakening and extension, and no restrictions on reordering. These
turn out to be “super” in the sense of [11], namely to have polynomial size refutations of all unsatisfiable
sets of clauses.

Theorem 2.5. Extension-OBDD(∧&r,w) is super. Thus, the same holds for extension-1-BP(∧,w) and
extension-1-NBP(∧,w).

Proof. We modify the construction in the proof of Theorem 2.4. Let ϕ(x1, . . . , xn) be an unsatisfiable set of
clauses. We must show ϕ has a polynomial size extension-OBDD(∧&r,w) refutation. Let E′ be the set of
extension axioms xi,j ↔ xi. Let ϕ` denote the conjunction of the first ` clauses of ϕ. Let ϕ∗` be the result
of replacing each j-th occurrence of xi in ϕ` with xi,j .

The refutation proceeds as follows. It first derives successively, an OBDD representing each ϕ∗` , for
` = 1, 2, . . . , by using conjunction (∧) and then weakening (w) to combine ϕ∗`−1 and, for each variable xi
appearing in the `-th clause, the two clauses in E′ expressing xi,j ↔ xi for the appropriate value of j. At
the end, an OBDD representing ϕ∗ has been derived. Note that each ϕ∗` is polynomial size (in fact, linear
size).

The refutation then derives E from E′ (E is defined in the proof of Theorem 2.4). It does this by deriving
for each pair (I, J), an OBDD EI,J representing the conjunction of the equalities xi,j ↔ xi for all (i, j) equal
to or lexicographically before (I, J). For example, EI,J+1 is derived by conjunction from EI,J and two
clauses from E′. Note En,kn is just E. The EI,J ’s are all linear size OBDD’s.

The refutation concludes by using an ∧&r inference to derive ⊥.

It was crucial for Theorem 2.5 that reordering, extension and weakening are present. On the other hand,
Theorem 3.1 and Lemma 4.5 together give exponential lower bounds for extension-1-NBP(∧) proofs, so that
system is not super. It is open whether either of extension-OBDD(∧,w) or 1-NBP(∧,w) is super.

2.3 Graph based formulas

Section 3 proves lower bounds on 1-NBP(∧) for a general class of formulas that includes perfect matching
principles and Tseitin formulas. These formulas are said to be “based on” a graph, as defined next.

Definition 2.6. Let G(V,E) be an undirected graph without loops, but possibly with multi-edges. Let
EG(v) denote the set of edges incident to v in G. Each edge e ∈ E, has an associated propositional
variable xe. A formula is based on G if it has the form

∧
v∈V ϕv, where each ϕv is a CNF formula depending

only on the variables xe for e ∈ EG(v).
A formula based on G is matching-like if in addition, each ϕv satisfies the following, letting EG(v) =

{e1, . . . , ed}:

• Each ϕv has the form (xe1 ∨xe2 ∨ · · · ∨xed)∧ϕ′v where ϕ′v has value 1 if all the variables xei are set to
0. Thus each clause in ϕ′v contains a negated edge variable ¬xei . Note ϕv has value 0 if all variables
are set to 0.

• ϕv is satisfied by any assignment that sets exactly one of xe1 , . . . , xed to 1.

We call such formulas matching-like because the local constraint ϕv is satisfied only if at least one edge
incident to v has value 1, and ϕv is satisfied whenever exactly one edge set to 1. However, the behavior of ϕv
in all other cases is not specified.

The following formulas are most important examples of formulas based on graphs.

8

Tseitin formulas. The Tseitin formula TSG,f is a formula based on an undirected graph G(V,E) param-
eterized by a function f : V → {0, 1} labelling vertices with 0 or 1. TSG,f =

∧
v∈V ϕv, where ϕv is a

CNF formula expressing
∑
e∈EG(v) xe ≡ f(v) (mod 2). TSG,f is satisfiable iff

∑
v∈S f(v) ≡ 0 (mod 2)

for every connected component S of G [34]. Note that TSG,f is matching-like if f(v) = 1 for all v ∈ V .

Perfect matching principle. The formula PMPG is a matching-like formula based on an undirected graph
G(V,E). PMPG =

∧
v∈V ϕv, where ϕv is a CNF formula expressing |{e ∈ EG(v) | xe = 1}| = 1. The

formula PMPG is satisfiable iff G has a perfect matching.

Graph pigeonhole principle. The formula PHPG is based on a bipartite graph G(V,E) with the vertices
partitioned into two parts, P (pigeons) andH (holes). PHPG =

∧
v∈V ϕv, where for v ∈ P , ϕv expresses

|{e ∈ EG(v) | xe = 1}| ≥ 1 (each pigeon is mapped to at least one hole) and for v ∈ H, ϕv expresses
|{e ∈ EG(v) | xe = 1}| ≤ 1 (at most one pigeon is mapped to each hole).

The standard pigeonhole principle PHPn+1
n is equal to PHPKn+1,n

, where Kn+1,n is the complete
bipartite graph with n+ 1 and n vertices in the parts.

Sometimes we want to use the above formulas, but based on a graph G with loops. In this case, we ignore
the loops in G.

2.4 Expander graphs

The hard formulas from Theorem 3.1 are based on algebraic expanders.

Definition 2.7. Let G(V,E) be an undirected graph possibly with loops and multiple edges. The graph
G is an (n, d, α)-algebraic expander if G is d-regular, |V | = n, and the absolute value of the second largest
eigenvalue of the adjacency matrix of G is at most αd.

It is well-known that for all 1 > α > 0 and all large enough constants d, there exist a natural number
n0 and a family {Gn}∞n=n0

of (n, d, α)-algebraic expanders. With a high probability, a random graph is an
(n, d, α)-algebraic expander. In addition, there are explicit constructions such that Gn can be constructed
in time polynomial in n [22].

For A,B ⊆ V , EG(A,B) denotes the multiset of edges of G that have one end in A and another end in
B. Note that in the case where both ends of an edge are simultaneously in A and in B, we count this edge
twice. We write E(A,B) instead of EG(A,B) when G is clear from the context.

Lemma 2.8 (Expander mixing lemma [2]). Let G(V,E) be an (n, d, α)-algebraic expander, and A,B ⊆ V .
Then ∣∣∣∣|E(A,B)| − d|A||B|

n

∣∣∣∣ ≤ αd√|A||B|.
Lemma 2.9 ([14]). Let G(V,E) be an (n, d, α)-algebraic expander. Then for every set S ⊆ V ,

|E(S, V \ S))| ≥ d|S|
(

1− α− |S|
n

)
.

Proof. |E(S, V \S)| = d|S| − |E(S, S)| ≥ d|S| − d
n |S|

2−αd
√
|S|2 = d|S|(1−α− |S|n). The inequality follows

from Lemma 2.8.

We also use edge expanders. An undirected graph G(V,E) is an edge (r, c)-expander if for every set
A ⊆ V , if |A| ≤ r, then |E(A, V \A)| ≥ c|A|.
Lemma 2.10 ([1], [3, Theorem 21.9]). Let G(V,E) be a d-regular edge (n/2, c)-expander with at least one

loop at each vertex, where n = |V |. Then G is a (n, d, 1−γ)-algebraic expander, where γ = min
{

2
d ,

c2

2d2

}
.

The expansion quality, as measured by α, can be improved using the following method. For an undirected
graph G(V,E) we let Gk denote the graph that vertices V and has edges between vertices u and v for each
path in G from u and v of length exactly k. If G is an (n, d, α)-algebraic expander, then Gk is an (n, dk, αk)-
algebraic expander.

9

2.5 Communication complexity

Section 7 will prove a lower bound on OBDD(∧,w, r`) proofs. The lower bound is based on “number on
forehead” (NOF) communication complexity.

Let f : {0, 1}n → {0, 1} be a Boolean function. We have k players who cooperate to compute f(s). The
function f is known by all of them; in the number on forehead model, each bit is known to all but one of
the players. For this, let Π = (Π1,Π2, . . . ,Πk) be a partition of [n]. (So Πi ∩ Πj = ∅ for every i 6= j ∈ [k].)
The i-th player knows only bits of s with indices from [n] \Πi. The players have a common communication
channel. In each round of play, one player broadcasts a string to everyone else. Their goal is to compute
f(s) with the minimum number of bits sent during all rounds.

In a more general situation, instead of the function f , there is a relation R ⊆ {0, 1}n × Z. Now the
players’ goal is to find z ∈ Z such that (s, z) ∈ R.

More formally, a communication protocol with respect to a partition Π is a tree T where each internal
node v is labeled by a function dv : {0, 1}[n]\Πi → {0, 1}, each leaf is labeled by an element z ∈ Z, each node
has two children, and the edges from a node to its children are labeled by different Boolean values. A node
of this type corresponds to the i-th player broadcasting one bit. The value of the protocol T on an input s
is the label of the leaf reached starting from the root, and traversing a branch of the tree; at each internal
node labeled by d : {0, 1}[n]\Πi → {0, 1}, the traversal uses the edge labeled by f

(
s
∣∣
[n]\Πi

)
. The cost of the

protocol is the depth of T .
The communication complexity, D(R,Π), of a relation R is the minimum cost among the protocols for

this relation with respect to the partition Π.
This paper works with the communication complexity of search problems corresponding to unsatisfiable

CNFs with respect to balanced partitions. Let ϕ =
∧m
i=1 Ci be an unsatisfiable CNF on x1, . . . , xn. Then

Searchϕ ⊆ {0, 1}n × [m] is the relation such that

(~x, i) ∈ Searchϕ ⇐⇒ Ci(~x) = 0.

Then D(Searchϕ,Π) denotes the communication complexity of finding an i such that Ci(~x) = 0, relative to
the partition Π of the inputs x. A partition Π of [n] into k subsets is balanced if |Πi| ≥ bn/kc for every
i ∈ [k].

3 Lower bounds for 1-NBP(∧)
The next theorem gives a lower bound for 1-NBP(∧) proofs of general matching-like formulas.

Theorem 3.1. Let d ∈ N and α < 1
400 be constants. Let Φ be an unsatisfiable matching-like formula based

on an (n, d, α)-algebraic expander G(V,E). Then any 1-NBP(∧) refutation of Φ has size at least 2Ω(n).

The theorem will be proved with the aid of Lemmas 3.3 and 3.4 below. Recall the matching-like formula Φ
has the form

∧
v∈V ϕv. Let Ψ be a conjunction of a subset of the clauses of Φ, so Ψ is

∧
v∈V ψv, where each

ψv is the conjunction of zero or more of the clauses of ϕv. A vertex v ∈ V is active in Ψ if ψv has value 0 if
all variables are set to 0. By the first condition in the definition of “matching-like”, a vertex v ∈ V that is
incident to edges e1, . . . , ed is active if and only if ψv contains the clause xe1 ∨ xe2 ∨ · · · ∨ xed .

The most important role in the proof of Theorem 3.1 is played by the following observation. Suppose
S ⊆ V is the set of active vertices in Ψ. Then Ψ can be satisfied by any matching that covers S (by
substituting 1 to the edges in the matching and 0 to other edges) provided that such a matching exists.

The proof of the theorem will use several constants. Fix α ≤ 1/400. Set β0 = 1−α(
√

8+1)
10 , and β1 =

9
10 (1

2 − α). It is easy to check the following properties.

Remark 3.2. The following inequalities are true:

(i) β1 ≥ β0,

(ii) 2α+ 2β1 < 1,

10

(iii) (
√

8 + 1)α+ 9β0 < 1, and

(iv) β0 ≥ 64α/3.

Lemma 3.3. Let Ψ be a conjunction of some of the clauses of Φ =
∧
v∈V ϕv. If at most β1n vertices are

active in Ψ, then Ψ is satisfiable.

Thus any unsatisfiable subformula of Φ (i.e., any unsatisfiable conjunction of clauses of Φ) must contain
at least β1n many active vertices. Recall that, since ∧ is the only rule allowed for 1-NBP(∧) proofs, each
line in an 1-NBP(∧) refutation of Φ represents a conjunction of clauses of Φ. Lemma 3.3 implies that any
refutation of Φ contains a line representing a conjunction in which at least β1n many vertices are active.

Lemma 3.4. Let Ψ be a conjunction of some of the clauses of the formula Φ =
∧
v∈V ϕv. Suppose Ψ is

satisfiable. Finally suppose the number of active vertices in Ψ is at least β0n/2 and at most β0n. Then every
1-NBP representation of Ψ has size at least 2Ω(n).

The idea for the proof of Theorem 3.1 is that Lemma 3.3 states the presence of a line for which Lemma 3.4
gives an exponential size lower bound.

Proof of Theorem 3.1. Let D1, D2, . . . , Ds be a 1-NBP(∧) refutation of Φ. Each Di represents the conjunc-
tion of a subset of clauses of Φ. The final line Ds is an unsatisfiable conjunction of clauses; Lemma 3.3 states
that there are more than β1n active vertices in this unsatisfiable conjunction. We have β1 ≥ β0. Hence
β1n ≥ β0n.

Let Ψ1 and Ψ2 be conjunctions of some of the clauses of Φ. The number of active vertices in Ψ1 ∧Ψ2 is
at most the sum of the numbers of active vertices in Ψ1 and in Ψ2. Indeed, a vertex v is active in a formula
Ψ if and only if Ψ contains the clause

∨
e∈E(v) xe, where E(v) is set of edges that are adjacent to v. Hence

there is a j < s such that Dj represents a conjunction of clauses with at least β0n/2 and at most β0n active
vertices. By Lemma 3.3, Dj is satisfiable. Hence by Lemma 3.4 the size of Dj is at least 2Ω(n).

We still need to prove Lemmas 3.3 and 3.4.

3.1 Expanders, matchings, and the proof of Lemma 3.3

To prove Lemma 3.3 we shall show that for any S ⊆ V such that |S| < β1n, there is a matching in G (i.e.,
a perfect matching on a subgraph of G) which covers S. We use Tutte’s classical criterion for the existence
of a matching.

Theorem 3.5 ([32]). A graph G has a perfect matching if and only if, for any set A ⊆ V ,

o(G−A) ≤ |A|,

where G − A denotes the graph G without the vertices from the set A and o(G − A) denotes the number of
connected components with odd cardinality in G−A.

For G(V,E) a graph and S ⊆ V , we let δG(S) denote the set of vertices from V \ S adjacent to vertices
in S.

Lemma 3.6. Let G(V,E) be an undirected graph with n vertices. Let S ⊆ V . Assume that for all subsets
U ⊆ S the inequality |δG(U)| > |U | holds. Then there exists a matching in G that covers all the vertices
from S.

Proof. We define a new graph G′. If |S ∪ δG(S)| is even, set B = δG(S); otherwise, let v0 be a new vertex
and set B = δG(S) ∪ {v0}. The vertices of G′ are S ∪B; the edges of G′ are the induced edges from G plus
all possible edges between vertices in B. We will show that G′ has a perfect matching; since v0 has no edge
to S, this gives a matching in G covering S, after dropping edges between vertices of B.

11

We show that G′ satisfies the conditions of Tutte’s theorem (Theorem 3.5). First consider Tutte’s criterion
with A = ∅. For this, we must show that G′ does not contain a connected component of odd cardinality. In
fact, we claim G′ is connected, and by construction G′ has an even number of vertices. Let v be a vertex
of G′, and U be the connected component of G′ containing v. If U ∩B = ∅, then U is a connected component
in G as well, so |δG(U)| = 0 < |U | which is a contradiction. Thus v is connected to B. Since B is a clique,
G′ is connected.

Now let A ⊆ S ∪B be non-empty. For the sake of contradiction assume that G′ −A has at least |A|+ 1
odd connected components. Since B is a clique, all vertices in B \ A are in the same connected component
of G′ − A. Hence there are at least |A| connected components of G′ − A that contain only vertices from S.
Let U be the union of these connected components. We have |U | ≥ |A|. No member of δG(U) can lie in the
connected component containing the vertices of B \ A; hence δG(U) ⊆ A. The contradicts the hypothesis
that δG(U) > |U | since |U | ≥ |A|.

Thus G′ satisfies the conditions of Tutte’s theorem (Theorem 3.5) and G′ has a perfect matching.

The next lemma will let us prove the existence of sets S satisfying the conditions of Lemma 3.6.

Lemma 3.7. Let G(V,E) be an (n, d, α)-algebraic expander. Let k > 0 and β ∈ (0, 1) satisfy α(
√
k + 1) +

β(k + 1) < 1. Then for every set S ⊆ V , if |S| ≤ βn, then |δ(S)| > k|S|.

Proof. Assume that |S| ≤ βn and |δ(S)| ≤ k|S|. Since E(S, V \ S) = E(S, δG(S)), Lemmas 2.8 and 2.9 say
that

|E(S, V \ S)| ≤ d

n
|S||δG(S)|+ αd

√
|S||δG(S)| ≤ d

n
k|S|2 + αd

√
k|S|

and |E(S, V \ S)| ≥ d|S|(1− |S|n − α). Thus α(
√
k + 1) + |S|

n (k + 1) ≥ 1. This is a contradiction by |S|n ≤ β
and by the hypothesis α(

√
k + 1) + β(k + 1) < 1.

The following special cases of Lemma 3.7 are important for us.

Corollary 3.8. Let G(V,E) be an (n, d, α)-algebraic expander.

1. Then for every set S ⊆ V , if |S| ≤ β1n, then |δ(S)| > |S|.

2. Then for every set S ⊆ V , if |S| ≤ β0n, then |δ(S)| > 8|S|.

Now we are ready to prove Lemma 3.3.

Proof of Lemma 3.3. The graph G is an (n, d, α)-algebraic expander; hence by Corollary 3.8, we get that for
any set S ⊆ V , if |S| ≤ β1n, then |δ(S)| > |S|. Furthermore, by Lemma 3.6, there is a matching in G that
covers S.

The formula Ψ has the form
∧
v∈V ψv where each ψv is a (possibly empty) conjunction of clauses in ϕv.

Let S be the set of active vertices in Ψ, and fix a matching in G that covers S. Let ρ be the assignment to
variables corresponding to this matching; namely, edges from the matching get value 1 and all other edges
get value 0. For any vertex v covered by the matching, exactly one incident edge is assigned the value 1;
hence ψv is true under ρ. For any other vertex v, all incident edges get value 0. Since v is not active, ψv is
a subformula of ϕ′v, so again by the definition of matching-like formulas, ψv is satisfied by ρ. Therefore, ρ
satisfies Ψ.

3.2 The proof of Lemma 3.4

We continue to have G(V,E) an (n, d, α)-algebraic expander, Φ a matching-like formula based on G, and
Ψ a satisfiable conjunction of clauses of Φ. Let S be the set of vertices active in Ψ, and assume S has size
between β0n/2 and β0n. Finally, D is a 1-NBP representation of Ψ. We wish to show D has size 2Ω(n).

Note that for any matching M covering S, D must accept the truth assignment ρM corresponding to M .
Let pM be the (accepting) path traversed in D on input ρM . Fix a vertex v; pM may query some of the
inputs xe for e an edge incident v. Since M is a matching at most one these xe’s has value 1 (for each

12

fixed v). If v ∈ S, then v is active in Ψ, hence pM must find an xe to have value 1 for exactly one edge e
incident to v.

As pM is traversed, more-and-more edges e are found such that xe has value 1. Each such edge e is
incident to either one or two members of S: we say these members of S have been covered by pM . At some
point, pM will have covered dS/2e−1 or dS/2e many members of S. Let uM be the first node in D along pM
where this many vertices of S are covered; and let SM be these covered vertices.

To prove Lemma 3.4, we lower bound the number of vertices equal to uM for some matching M . For
this, Lemma 3.9 shows that if two matchings M and M ′ lead to the same uM = uM ′ , then SM = SM ′ .
We then exploit the fact that M cannot contain any edge between SM and S \ SM . Theorem 3.10 gives a
distribution on matchings such that, for fixed M and randomly chosen M ′, the probability that SM = SM ′

is exponentially small; it follows that there are exponentially many distinct nodes in D of the form uM .

Lemma 3.9. Let M1 and M2 be two matchings in G. If uM1 = uM2 , then SM1 = SM2 .

Proof. For i = 1, 2, we let p′Mi
be the first portion of pMi

leading up to uMi
and p′′Mi

be the remainder
of pMi

. Let ρ′Mi
and ρ′′Mi

denote the partial assignments of values set along the paths p′Mi
and p′′Mi

. Note
that the path p′M1

followed by p′′M2
is an accepting path. The values set along p′M1

cover exactly SM1
among

the vertices of S. Since D is read-once, the values set along p′′M2
cover exactly S \ SM2

among the vertices
of S, and cover nothing from SM1 . Overall, the path covers all vertices of S; hence SM1 ∪ (S \ SM2) = S.
Thus, SM2 ⊆ SM1 . Analogously, SM1 ⊆ SM2 . Hence, SM1 = SM2 .

In the proof of Lemma 3.4 we will use the following theorem:

Theorem 3.10. There is a probability distribution D on matchings covering S such that for every fixed
subset A ⊆ S with |A| ∈ {d|S|/2e, d|S|/2e − 1}, a randomly chosen matching from D contains an edge
connecting a vertex of A with a vertex from S \A with probability 1− 2−Ω(n).

We will prove Theorem 3.10 in the next section.

Proof of Lemma 3.4. Let us fix a matching M covering S. It is clear that M does not have an edge connecting
SM and S \ SM . Therefore

Pr
M ′∼D

[uM = uM ′] ≤ Pr
M ′∼D

[SM = SM ′]

≤ Pr
M ′∼D

[M ′ has no edge connecting SM and S \ SM].

However,
Pr

M ′∼D
[M ′ has no edge connecting SM and S \ SM] ≤ 2−Ω(n).

As a result, for any node u of D, PrM ′∼D[u = uM ′] ≤ 2−Ω(n); i.e., there are at least 2Ω(n) different nodes
in D.

3.3 The proof of Theorem 3.10

We start with an informal idea of the proof. Since S is large, we would expect that a random matching has
Ω(n) edges with both endpoints in S. Likewise, since A is approximately half the size of S, we would expect
that the set of edges between vertices in A and S \A forms a constant fraction of the edges which have both
endpoints in S. Consider the following first attempt at generating a random matching:

1. Let I be the set of edges which have both endpoints in S.

2. M := ∅.
3. While I is not empty

• Take e← I at random;

13

• M := M ∪ {e};
• Remove e and all the edges that share an endpoint with e from I.

4. Try to cover all the still uncovered vertices of S using a matching N joining them to vertices in V \ S.

5. Return M ∪N .

The described algorithm has the following problem: it may be impossible to implement the above step 4
since there may be no such matching N . The idea to fix this is as follows. We first choose a set of bad
vertices B ⊆ S so that there are a relatively small number of edges connecting B and V \ S. We argue that
B is small, and then use Lemma 3.6 to generate a matching N covering B. Let B′ be the set of vertices
covered by N . We have |B′| ≤ 2|B|, hence B′ is also small. Since B′ is small, step 3 of the random process
described below will generate Ω(n) many edges A \ B′ and S \ (A ∪ B′). The next proof carries out the
details.

Proof of Theorem 3.10. Fix a maximal set of vertices B ⊆ S such that at most |B| many vertices in V \ S
have edges to vertices in B. Note that B exists, since the empty set satisfies this property. By the maximality
of B, any X ⊆ S \ B has more than |X| many neighbors in V \ S, since otherwise X ∪ B would contradict
the maximality of B.

Since B ⊆ S, |B| ≤ |S| ≤ β0n. Then by Corollary 3.8, |δ(B)| > 8|B|. Since |δ(B) ∩ (V \ S)| ≤ |B|,
|S ∩ δ(B)| ≥ 7|B|. Hence, |S| ≥ 8|B|, i.e. |B| ≤ |S|/8.

By Lemma 3.6, there exists a matching N that covers B, and w.l.o.g., every edge in N is incident to
a vertex of B. Let B′ be the set of vertices covered by N . Let S′ = S \ B′. We have |B′| ≤ 2|B|, so
|S′| ≥ |S| − 2|B| ≥ 3

4 |S|.
The distribution D is defined by the following random process.

1. Let I be the set of the edges with both endpoints in S′.

2. M := ∅
3. While I is not empty

• Take e← I uniformly at random;

• M := M ∪ {e};
• Remove e and all edges that have a common endpoint with e from I;

4. Choose a matching N ′ so that M ∪N ∪N ′ is a matching which covers all the vertices of S.

5. Return M ∪N ∪N ′.

It does not matter which N ′ is chosen in step 4.; however, we must show it exists. Let T be the subset
of S′ not covered by M ∪N . We show the desired N ′ exists using Hall’s Theorem, applied to the bipartite
subgraph of G induced by the two parts T and V \ S. Let X ⊆ T . We must show that X has at least |X|
many neighbors in V \ S. However, if this does not hold, the set B ∪X violates the maximality of B.

Now fix A ⊆ S such that |A| ∈ {d|S|/2e, d|S|/2e − 1}. We must show that a matching chosen by the
distribution D has an edge between A and S \ A with high probability. Setting A′ = S′ ∩ A, it will suffice
to show that M contains an edge between A′ and S′ \A′ with high probability.

We have |A′| ≤ |A| ≤ |S|/2 ≤ 2
3 |S
′| and |A′| = |A \ B′| ≥ |S|/2− 1− |B′| ≥ |S|/4− 1 ≥ |S′|/4− 1. Let

τ = |S′|/n. It follows that, for sufficiently large n, τn/5 ≤ |A′| ≤ 2τn/3. Therefore, τn/3 ≤ |S′\A′| ≤ 4τn/5.
By the Expander Mixing Lemma,

|E(A′, S′ \A′)| ≥ d

n
|A′||S′ \A′| − αd

√
|A′||S′ \A′| ≥ dn(τ2/15− 8ατ/15)

for large enough n. We need that τ2/15 − 8ατ/15 is positive and bounded away from zero. This holds
since τ ≥ 3

4
β0

2 > 8α by Remark 3.2(iv), and hence τ − 8α is positive and bounded away from zero. Thus

14

|E(A′, S′ \A′)| = Ω(n), so the edges in I between vertices in A′ and S′ \A′ form a constant fraction of the
edges in I.

We claim that with probability 1− 2−Ω(n) the random process puts an edge from E(A′, S′ \A′) into M .
Initially I has Ω(n) many edges from E(A′, S′ \ A′). Each iteration of the loop removes at most 2d − 1
many edges from I. Hence there are Ω(n) many iterations of the loop before half the edges of E(A′, S′ \A′)
are removed. Each of these iterations chooses an edge from E(A′, S′ \ A′) with probability Ω(1). Thus the
probability that the final set M does not contain an edge from E(A′, S′ \A′) is at most 2−Ω(n).

3.4 Tseitin formulas

Theorem 3.11. There exists α0 < 1 such that if G(V,E) is an (n, d, α0)-algebraic expander, then the size
of any 1-NBP(∧) refutation of an unsatisfiable Tseitin formula TSG,c is 2Ω(n).

Proof. A Tseitin formula is a matching-like formula if all vertex labels are equal to 1. Such a Tseitin formula
is unsatisfiable if the number of vertices n is odd. Thus Theorem 3.1 implies the statement if c is identically
one and n is odd.

To prove the lower bound for arbitrary labelling functions c, first suppose n is odd. It is well known that
any two unsatisfiable Tseitin formulas based on the same connected graph can be obtained from each other
by replacing some subset of the variables with their negations. (The idea is that the labels of two vertices
can be flipped, by following a path connecting the vertices, and replacing edge variables along the path with
their negations.)

Now suppose n is even. It is well known that a connected graph contains a vertex v which can be removed
without disconnecting the graph. Thus it is sufficient to prove a lower bound for the graph G−{v}. However,
G−{v} may not be an expander so Theorem 3.1 does not directly apply. The proof of Theorem 3.1, however,
does not use the algebraic expansion property directly. Instead, it uses the fact that algebraic expanders
have good edge expansion properties, which are used to prove Corollary 3.8 and Theorem 3.10. It is possible
to verify that these properties hold also for a graph that can be obtained from an algebraic expander by the
removal of a vertex, by very slightly adjusting constants. Thus, the proof of Theorem 3.1 gives an exponential
lower bound for proofs of the Tseitin formulas for the graph G− {v}.

4 1-NBP(∧) does not simulate tree-like resolution

This section proves results about how extension can affect the size of OBDD representations and OBDD(∧, r)
and 1-NBP(∧) refutations. The first result, Theorem 4.1 is that extensions can provide an exponential
improvement in the size of OBDD’s; this shows a counterexample to [19, Lemma 4]. Then we adapt the
idea of [19] and the earlier [33] and show in Lemma 4.5 that extension does not shorten 1-NBP(∧) proofs.
Consequently, we obtain examples where resolution has exponential speedup over 1-NBP(∧) and hence over
BP(∧) and OBDD(∧, r).

[19, Lemma 4] claimed that if ϕ is a CNF formula, E is a set of extension axioms for ϕ, then the minimal
size of an τ -OBDD for ϕ is bounded by the size of any π-OBDD for ϕ∧E where the order π extends τ . [33,
Lemma 8] made a similar claim for a special case, but did not use any specific properties of the special case.

Theorem 4.1 gives a counterexample by exhibiting a Boolean function f and a set E of extension axioms so
that f∧E is representable by a short π-OBDD, but f requires an exponentially long τ -OBDD representation,
where τ is the restriction of π to the original variables.

Theorem 4.1. There are functions fn : {0, 1}m → {0, 1} with m = O(n), and orders τn such that

• any τn-OBDD representation of fn has size 2Ω(n), and

• for each n, there is a set E of extension axioms and an order π extending τn such that fn ∧ E has a
π-OBDD representation of size poly(n).

15

Proof. Let t = blog nc and ` = 2t. Let fn(y1, . . . , y`, x1, . . . xt) be the index function defined as

fn(y1, . . . , y`, x1, . . . xt) = ybin(~x),

where bin(~x) means the integer with binary representation given by x1, . . . , xt. (We could have also called
fn a “selection” function or “look up” function.) Note that m = blog nc+ 2blognc ≤ 2n.

We add extension variables z1, . . . , zt with the (rather trivial) set E of extension axioms zi ↔ xi. Let τn
be the linear order placing all yi’s before all xi’s. Let π be the linear order placing all zi’s before all yi’s,
and all yi’s before all xi’s, so that π extends τn.

It is easy to prove the first statement by observing that once the τn-OBDD has queried all the yi’s, it
must remember all ` of the values of y1, . . . , y`. To prove this, note that each setting to y1, . . . , y` gives a
different function of x1, . . . , xt. So the size of any τn-OBDD representation of f has size 22t = 2Ω(n).

The second statement is proved by constructing the π-OBDD. The intuition is that the OBDD remembers
all the zj values, checks the appropriate yi value, and compares the zj values to the xj values. The first
stage uses 2t+1 − 1 many nodes to query the variables zj and remember all their values. The second stage
uses exactly 2t nodes, one per yi, to query the needed value of yi with i = bin(~z). If the queried yi has
value 0 (False), the OBDD outputs 0. Otherwise, the third stage checks the values of each xj to see if it is
equal to the corresponding zj . It is obvious that this can be done with t · 2t nodes, but by collapsing nodes,
the third stage can even be done with 2t+1 − 1 many nodes. The overall size of the π-OBDD is less than
5 · 2t = O(2t) = O(n).

We now switch to working with 1-NBP’s, and show that tree-like resolution can have exponential speedup
over 1-NBP proofs.

Theorem 4.2. There are formulas Ψn of size poly(n) such that any 1-NBP(∧) refutation of Ψn has size at
least 2Ω(n) and there is a tree-like resolution refutation of Ψn of size poly(n).

Since 1-NBP(∧) proofs trivially simulate OBDD(∧, r) proofs, we get:

Corollary 4.3. There are formulas Ψn of size poly(n) such that any OBDD(∧, r) refutation of Ψn has size
at least 2Ω(n) and there is a tree-like resolution refutation of Ψn of size poly(n).

Before proving Theorem 4.2, we show how to eliminate extension from 1-NBP’s and 1-NBP(∧) proofs.
We do this in a fairly general way: recall that an extension axiom has the form z ↔ h(~x) where h(~x) is a
conjunction of literals. Let g(z, ~x) be z ↔ h(~x) so that g(z, ~x) expresses the extension condition. In fact, the
next lemma does not need any conditions on g and h except that g(h(~x), ~x) is the constant 1, i.e., is true
for ~x. In particular, there is no requirement that g and h are easy to compute.

Lemma 4.4. Let f(~x), g(z, ~x) and h(~x) be Boolean functions. Assume that g(h(~x), ~x) is the constant 1. If
f(~x)∧g(z, ~x) has a 1-NBP representation of size S, then f(~x) has a 1-NBP representation of size at most S.

Proof. Let D be a 1-NBP for f(~x) ∧ g(z, ~x). Modify D by changing all nodes labeled with z to guessing
nodes; let D′ be the resulting 1-NBP. We claim that D′ is a 1-NBP for f(~x). First note that D′ is still
read-once. Consider fixed values ~α for ~x. Suppose f(~α) = 1. Then, for β = h(~α), D(β, ~α) accepts. The
accepting path in D is also an accepting path for D′, as desired. Now suppose f(~α) = 0, but that D′

has an accepting path. Since D′ is read-once, it non-deterministically branches on z (at most) once. The
corresponding accepting path in D requires z to have some value β (not necessarily equal to h(~α)). This
path witnesses that f(~α) ∧ g(β, ~α) is true, contradicting the assumption.

Lemma 4.5. Let ϕ be an unsatisfiable CNF formula and E be a set of extension axioms. Suppose ϕ ∧ E
has a 1-NBP(∧) refutation of size S. Then ϕ has a 1-NBP(∧) refutation of size at most S.

Proof. Let ϕ use the variables ~x. It is sufficient to assume E contains a single extension axiom, z ↔ h(~x).
Assume that ϕ ∧ (z ↔ h(~x)) has a 1-NBP(∧) refutation D1, . . . , D`. Since the only rule is ∧, each Di is a
conjunction of clauses from ϕ and possibly clauses from z ↔ h(~x). Let D′i be a minimal 1-NBP expressing

16

the conjunction of the clauses from ϕ that are used by Di. By Lemma 4.4, D′i has size at most the size of Di.
We claim that, after discarding any 1-NBP’s equal to the constant 1, the remaining lines among D′1, . . . , D

′
`

form a valid 1-NBP(∧) refutation for ϕ. It is easily checked that ∧ inferences remain valid. Furthermore,
since D` is the constant 0, so is D′`.

It is well known that for every constant-degree graph G(V,E) on n vertices and function f : V → {0, 1},
if the Tseitin formula TSG,f is unsatisfiable, then there exists a tree-like derivation of ¬TSG,f in Extended
Frege proof system of poly(n) size. Hence, there is a tree-like refutation of TSG,f in extended resolution of
poly(n) size. This can be formulated as:

Lemma 4.6. Let Gn be an undirected graph with n vertices, with all vertices of degree at most d. Let fn be
a labeling function for Gn such that TSGn,fn is unsatisfiable. Then there is a set E of extension axioms for
TSGn,fn of size poly(n) such that there is a tree-like resolution refutation of TSGn,fn ∧ E of size poly(n).

Proof of Theorem 4.2. Let Gn be an (n, d, α)-algebraic expander with α < 1/400 and let fn be a labeling
function for Gn such that TSGn,fn is unsatisfiable. Then by Theorem 3.1, the size of any 1-NBP(∧) refutation
of TSGn,fn has size at least 2Ω(n). Let E be the set of extension axioms for TSGn,fn from Lemma 4.6. By
Lemma 4.5, any 1-NBP(∧) refutation of TSGn,fn ∧ E has size at least 2Ω(n). However, by Lemma 4.6, the
formula TSGn,fn ∧ E has a tree-like resolution refutation of size poly(n).

5 Upper bounds for 1-NBP(∧)
This section gives examples of formulas which require long OBDD(∧, r) refutations, but have short 1-NBP(∧)
refutations, and even short 1-BP(∧) refutations.

Theorem 5.1. Let ϕ =
∧
v∈V ϕv be an unsatisfiable formula based on a bipartite graph G(V,E). Suppose

that, for all v ∈ V there is a 1-BP(∧) derivation of ϕv from its clauses of size at most S. Then there exists
a 1-BP(∧) refutation of ϕ of size poly(|V |, S).

Proof. Let V1 and V2 be the two parts of the bipartite graph G. We show that there are a 1-BP(∧) derivation
of
∧
v∈Vi ϕv of size poly(|V |, S), for i ∈ {1, 2}. Note that for a fixed i ∈ {1, 2}, distinct formulas ϕv for v ∈ Vi

do not share variables. For each v ∈ Vi we derive ϕv; the total size of these derivations is at most |Vi|S.
Then we consequently derive the conjunction of the formulas ϕv for v ∈ Vi: by forming the conjunction of
the first two, of the first three, etc. If two 1-BP’s do not share variables, the size of their conjunction is at
most the sum of sizes of initial 1-BPs. Hence size of the derivation of

∧
v∈Vi ϕv is at most O(|Vi|2S).

After deriving
∧
v∈Vi ϕv for i = 1 and i = 2, we apply the conjunction rule and get the constant 0.

Corollary 5.2. Unsatisfiable instances of PMPG, TSG,f , PHPG over bipartite graphs G have polynomial
size 1-BP(∧) refutations.

Theorem 5.3. There are formulas ψn of size poly(n) such that

• any OBDD(∧, r) refutation of ψn has size at least 2Ω(n) but

• there is a 1-BP(∧) refutation of ψn of size poly(n).

Proof. Let Kn,n+1 denote the complete bipartite graph on parts of size n and n + 1. Itsykson et al. [18]
showed that OBDD(∧, r) refutations of PHPKn,n+1

require size 2Ω(n). However by Corollary 5.2, there are
1-BP(∧) refutations of PHPKn,n+1

of size poly(n).

The formula TSKlogn,c ◦ Indnm is the composition of the Tseitin formulas on a complete graph on log n
vertices with the standard indexing gadget. Theorem 23 of [7] showed that, for appropriate parameters, the
lifted Tseitin formulas TSKlogn,c ◦ Indnm have OBDD(∧) refutations which are polynomial size (in the size of
the formula), but require quasipolynomial size cutting planes proofs. The lower bound for the cutting planes

17

proofs was obtained using the translation from resolution width lower bounds to cutting planes refutation
size lower bounds, based on the triangular-dag complexity arguments of Garg et al. [13].

A similar argument, applied to the graph pigeonhole principle, can improve this quasipolyonomial sepa-
ration to an exponential separation. It is known that there are bipartite graphs Gn such that Gn has linearly
many edges, and PHPGn is a k-CNF formula for k = O(1) and requires Ω(n) resolution width [5]. By the
same argument as in [7], we obtain lower bounds for the formulas ψn equal to PHPGn ◦ Indnm.

Proposition 5.4. There are formulas ψn of size poly(n) such that

• cutting planes refutations of ψn require size at least 2n
Ω(1)

, but

• there are 1-BP(∧) refutations of ψn of size poly(n).

Theorem 24 of [7] used the lifted formula TSKlogn,c ◦ Indnm, further transformed with the Segerlind
transformation [28], to obtain formulas ϕn with polynomial size tree-like OBDD(∧, r) refutations, but which
require exponential size OBDD(∧,w) refutations. The only role that the Tseitin principle plays in their
constructions is that they require log2 n width resolution refutations. By modifying their construction to use
the graph pigeonhole formulas PHPGn instead of TSKlogn,c, we obtain formulas ϕn giving an exponential
separation between OBDD(∧, r) and OBDD(∧,w):

Proposition 5.5. There are formulas ϕn of size poly(n) such that

• OBDD(∧,w) refutations of ϕn require size at least 2n
Ω(1)

, but

• there are 1-BP(∧) refutations of ϕn of size poly(n).

6 Lower bounds for 1-NBP(∧,∃`)
The main result of this section is an exponential lower bound for 1-NBP(∧,∃εn). First, however, we use a
padding construction to give an example of formulas with short OBDD(∧,∃εn) refutations, and hence short
1-NBP(∧,∃εn) refutations, that require exponential size 1-NBP(∧) refutations and thus exponential size
OBDD(∧, r) refutations. For N > 0, let ΦN be a Tseitin formula based on an (N, d, α)-algebraic expander G
for α < α0, where α0 is a constant satisfying Theorem 3.11. The number of edges in G is ≤ d · N ; let
n = dN/ε so that εn is greater than the number of variables in ΦN . Let ΨN be ΦN with n − N many
additional dummy variables. Then, by Theorem 3.11, 1-NBP(∧) refutations of the formulas ΨN require
size 2Ω(n). On the other hand, by [4, 9], there are polynomial size OBDD(∧,∃) refutations of ΦN , and
hence of ΨN . Since there are ≤ εn distinct variables in ΦN , there are also polynomial size OBDD(∧,∃εn)
refutations of ΨN .

The construction of the exponential lower bounds on 1-NBP(∧,∃εn) uses the following two steps. The
first step is to show (in Lemma 6.1) that if a CNF ϕ has a 1-NBP(∧,∃) refutation of size S that uses
projection (∃) on only ` = εn many distinct variables, there is a way to fix the values of those ` variables
so that the resulting formula has a 1-NBP(∧) refutation of size at most S. The second, and more technical
part of the proof, constructs Tseitin formulas TSG′,f which can remain hard for 1-NBP(∧) refutations (by
virtue of containing an expander as a subgraph) after any εn many vertices are removed from the graph G′.
This second part is proved using a graph G′ with suitably robust expansion properties.

Lemma 6.1. Let ϕ be a CNF formula with a 1-NBP(∧,∃) refutation of size S and let X be the set of
variables that are used in projection rules. Let ψ be the conjunction of the clauses of ϕ which contain at least
one variable of X. Suppose ρ satisfies ψ. Then there exists a 1-NBP(∧) refutation of ϕ|ρ of size at most S.

Proof. Express ϕ in the form ψ ∧ θ, where θ is the clauses of ϕ not containing variables of X. Consider
a 1-NBP(∧,∃) refutation D1, D2, . . . , Ds of ϕ of size S. We claim that each line Di is equivalent to a
conjunction Ei ∧ Fi where Ei is a conjunction of clauses of ψ, and Fi is true under the assignment ρ. (We
allow the case that Ei or Fi is the constant true.) The claim is proved by induction on i. The base case,

18

where Di is a clause of either ψ or θ is trivial. The case where Di is inferred by a ∧ inference is also trivial.
The case of a projection inference is also simple, since the projection acts on a variable x of X that does not
appear in ψ and since applying projection preserves the property of being made true by ρ.

The sequence D1|ρ, D2|ρ, . . . , Ds|ρ is a 1-NBP(∧,∃) refutation of ψ|ρ∧θ|ρ; note ψ|ρ is the constant true.
The projection rule no longer has any effect since ρ has fixed values for the variables X. In addition, the
initial lines of this refutation are either clauses of ϕ|ρ or constant true clauses. Thus, it can be simplified to
be a 1-NBP(∧) refutation of just ϕ|ρ.

Now we state the main theorem of the section. Recall that, if F is a graph, then F k denotes the k-th
power of F , namely the graph on the vertices of F in which edges correspond to paths in F of length
exactly k.

Theorem 6.2. There are constants k > 0 and ε > 0 such that the following holds. If G(V,E) is an (n, d, 1
24)-

algebraic expander, the graph F is formed from G by adding d self-loops to each vertex and f is an edge
labelling of G′ = F k, then any 1-NBP(∧,∃εn) refutation of TSG′,f has size 2Ω(n).

Corollary 6.3. Let G(V,E) be an (n, d, 1
24)-algebraic expander. Let G′ and ε satisfy the conditions of

Theorem 6.2. Then any OBDD(∧,∃εn, r) refutation of TSG′,f has size 2Ω(n).

Corollary 6.3 follows immediately from the theorem. Theorem 6.2 will be proved from Theorem 6.6 below
that, loosely speaking, shows how to form expander graphs that still have good expansion properties after
removing εn vertices. The next Lemma 6.4 and its corollary are the heart of Theorem 6.6. Those are proved
before we prove Theorem 6.2.

Lemma 6.4. Let G(V,E) be an (n, d, α)-algebraic expander with α ≤ 1/24. Let A ⊆ V with |A| ≤ n/8.
Then there is a set U of size at most 1

8n such that G− (A ∪ U) is an (n/2, d/8)-edge expander.

Proof. Let U be a maximal subset of V of size ≤ 5n/8 such that

|E(U, V \ (A ∪ U))| ≤ 1

8
d|U |. (1)

This condition means, roughly, that U fails to have large expansion within G − A. (It is permitted that U
and A intersect.) Note that U = ∅ satisfies (1), so such a U exists.

We shall first prove U is not too large, namely |U | ≤ n/8. Let B = V \ (A ∪ U). By Lemma 2.8,

|E(U,B)| ≥ d

n
|U ||B| − αd

√
|U ||B|.

By the size bounds on A and U , we have |B| ≥ n/4. Thus,

|E(U,B)| ≥ d

4
|U | − αd

√
|U |n.

Also, by (1), |E(U,B)| ≤ d|U |/8. Therefore, 1
8 |U | ≥

1
4 |U | −α

√
|U |n. Simplifying this gives α

√
n ≥

√
|U |/8,

hence |U | ≤ 64α2n < n/8.
We now prove that G− (A ∪ U), namely G restricted to the vertices B, has the desired edge expansion.

Let S ⊆ B have size at most n/2. Assume, for sake of contradiction, that |E(S,B \ S)| < d|S|/8. Set
H = U ∪ S, so that |H| = |U |+ |S| ≤ 1

8n+ 1
2n = 5

8n. Then

|E(H,V \ (A ∪H))| = |E(U, V \ (A ∪H)|+ |E(S, V \ (A ∪H))|
≤ |E(U, V \ (A ∪ U))|+ |E(S,B \ S)|

<
1

8
d|U |+ 1

8
d|S| =

1

8
d|H|.

The property of H contradicts the maximality of U .

19

Corollary 6.5. Let G(V,E) be an (n, d, 1/24)-algebraic expander. Let A ⊆ V and |A| ≤ n/8, and U be as
in Lemma 6.4. Form a (d+1)-regular graph H from G − (A ∪ U) by adding up to d + 1 self loops to every
vertex. Then H is a (n− |A ∪ U |, d+ 1, 1−γ)-algebraic expander, where γ = min{ 1

128 ,
2
d+1}.

The corollary is proved by noting that each vertex in H has at least one self loop, and applying
Lemma 2.10.

Theorem 6.6. Let G(V,E) be an (n, d, 1/24)-algebraic expander and k be a positive integer. Form the graph
F from G by adding d + 1 self loops to each vertex. Assume that A ⊆ V has size at most n/8. Then there
is a U ⊆ V of size at most n/8, such that F k − (A ∪ U) has a subgraph (obtained by removing edges) which
is an (n− |A ∪ U |, (d+ 1)k, (1−γ)k)-algebraic expander, for γ = min{ 1

128 ,
2
d+1}.

Proof of Theorem 6.6. Fix G, k, and A. Let U ⊆ V and H be as in Lemma 6.4 and Corollary 6.5. Since H
was formed by adding up to d+1 self loops to each vertex, H is a subgraph of F −(A∪U). Therefore Hk is a
subgraph of (F−(A∪U))k, which in turn is a subgraph of F k−(A∪U). Since H is an (n−|A∪U |, d+1, 1−γ)-
algebraic expander, Hk is an (n − |A ∪ U |, (d + 1)k, (1−γ)k)-algebraic expander. Thus Hk is the desired
subgraph of F k − (A ∪ U).

Proof of Theorem 6.2. Let ε = 1/16. Consider a 1-NBP(∧,∃εn) refutation of TSG′,f of size S. We wish to
show S is 2Ω(n). There are at most εn many edge variables of TSG′,f used in projection inferences. Let A
be the set of vertices incident to these edges, so |A| is at most 2εn = n/8.

Let γ = min
{

1
128 ,

2
d+1

}
as in Theorem 6.6. Let k be the minimal integer number such that (1−γ)k ≤ α0.

Recall α0 is the constant from Theorem 3.11. By Theorem 6.6, there exists a set of vertices U ⊆ V of size
at most n/8 such that the graph G′− (A∪U) has a subgraph H ′ which is an (n− |A∪U |, (d+ 1)k, (1−γ)k)-
algebraic expander. (Note that H ′ is the Hk of the proof of Theorem 6.6.)

Since G′ is connected and A∪U is not all of V , there is a truth assignment ρ to the variables incident to
vertices in A∪U which satisfies the the clauses of TSG′,f expressing the parity conditions for the vertices in
A∪U . By Lemma 6.1, there is a 1-NBP(∧)-refutation of (TSG′,f)|ρ of size most S. Furthermore, (TSG′,f)|ρ
is identical to TSG′−(A∪U),f ′ where f ′ is the labelling of the edges of G′− (A∪U) obtained by updating the
parities of vertices according to the partial assignment ρ.

Finally, by assigning value 0 to all edges in G′− (A∪U) but not in H ′, we obtain a refutation of TSH′,f ′

of size S. By Theorem 3.11, S = 2Ω(n).

7 Lower bounds on OBDD(∧,w, r`)
Theorem 7.1. For ` > 0, there are formulas ϕn of size npoly(`) and using poly(`n) variables such that

tree-like OBDD(∧,w, r`) refutations of the formulas ϕn have size 2Ω(n1/8/(2`/2
√
`)), and such that the ϕn’s

have tree-like OBDD(∧, r) refutations of size poly(|ϕn|).

The theorem is meaningful only for ` ≤ ε log n. In this case, ϕn has quasipolynomial size, and the lower

bound 2Ω(n1/8/(2`/2
√
`)) is 2Ω(n1/8−ε) which is exponential in the size of ϕn. Also, the number ` of orders

allowed in the refutations can be as large as (log |ϕn|)δ for some constant δ > 0.
The proof of Theorem 7.1 is based on the next two theorems. Theorem 7.2 converts a refutation using

` orders to an (`+1)-party communication protocol of small complexity. Theorem 7.3 constructs formulas,
such that for every balanced partition of size k, the associated search problem has large communication
complexity. The latter theorem will be proved by combining lifting techniques from [15] and [20].

Theorem 7.2. Suppose ϕ has a tree-like OBDD(∧,w, r`) refutation of size S. Then there is a balanced
partition Π of the variables of ϕ into `+ 1 subsets such that D(Searchϕ,Π) = O(log2 S).

Theorem 7.3. Let k > 0. There are formulas ϕn on poly(kn) variables of size npoly(k) such that D(Searchϕn ,Π) =
Ω(4
√
n/(2kk)) for every balanced partition Π into k subsets.

20

Later, Proposition 7.11 will show that these formulas ϕn have polynomial size tree-like OBDD(∧, r)
refutations.

Theorem 7.1 is proved by noting that, with k = `+ 1, the formulas ϕn of Theorem 7.3 satisfy the desired
properties. Namely, since D(Searchϕn ,Π) = Ω(4

√
n/2kk), Theorem 7.2 implies that any tree-like refutation

of ϕn has size S satisfying (logS)2 = Ω(4
√
n/2kk). From this, S = 2Ω(n1/8/(2k/2

√
k)).

7.1 Lower bounds for multiparty complexity

This section proves Theorem 7.3. We start with a lower bound for communication complexity proven by
Göös and Pitassi [15]. Their construction uses a pebbling formula.

Definition 7.4. Let G be a directed acyclic graph with a single sink t. The pebbling formula PebG for G is
the CNF formula which uses the variables xv for v a vertex of G and has the clauses:

• ¬xt, and

• for each vertex v, the clause xv∨
∨d
i=1 ¬xpi where p1, . . . , pd are the immediate predecessors of v. (Note

d = 0 if v is a source).

It is not hard to see that PebG has short tree-like OBDD(∧) proofs, even though G is a dag:

Theorem 7.5 ([7]). For any directed acyclic graph G(V,E) with n vertices and maximum in-degree d there
is a tree-like OBDD(∧) proof of PebG of size poly(|PebG|), i.e., of size poly(n, d).

Additionally, we need the concept of composition of CNF’s; this is central to the notion of “lifting”
query complexity bounds to communication complexity bounds. Let ϕ(x1, . . . , xn) and g(y1, . . . , ys) be
CNF formulas. Then ϕ ◦ gn denotes the CNF formula obtained from ϕ by replacing each variable xi with
g(yi,1, . . . , yi,s), and using De Morgan’s rules and distributivity to make it a CNF formula.

In our applications, g will depend on only a small number s of inputs. In this case, both g(y1, . . . , ys)
and its negation can be written as a conjunction of at most 2s disjunctions of size at most s. Thus, if ϕ is
an r-CNF, the size of the CNF ϕ ◦ gn is bounded by |ϕ| · s · (2s)r.

Theorem 7.6. Fix k > 0. There are constant degree, directed acyclic graphs Gn on n vertices, a CNF
formula g on s = s(k) = k1+o(1) variables, and partitions Πn such that

• |PebGn ◦ gn| = poly(n, 2s);

• Πn is a partition of the n · s many variables of PebGn ◦ gn into k subsets; and

• D(SearchPebGn◦gn ,Πn) = Ω(4
√
n/(2kk)).

Proof. This a direct corollary of results of Göös and Pitassi [15] and Sherstov [29] (see also Rao and Yehu-
dayoff [26]). The disjointness function DISJk,b : ({0, 1}n)k → {0, 1} is

DISJk,n(~x1, . . . , ~xk) =

n∧
j=1

k∨
i=1

¬xi,j

where each ~xi is a tuple of n bits; this value is 1 if the k sets coded by the ~xi’s have empty intersection
(k-party disjointness). Unique disjointness, UDISJk,n, is the same function, but with the promise that the
intersection of the k sets has cardinality at most one. This is expressed as a NOF k-party communication
problem using the partition Γ where the ith player sees all but the inputs xi: the players only need to succeed
on inputs satisfying the promise of uniqueness. Sherstov [29] proved that this has randomized communication
complexity Drand(UDISJk,n,Γ) = Ω(

√
n/2kk).

Göös and Pitassi [15, Theorem 2 and Theorem 4] showed there are graphs Gn, a CNF formula g
and partitions Πn satisfying the conditions of the theorem, except with Drand(SearchPebGn◦gn ,Πn) ≥
Drand(UDISJk,b,Γ), where b = Θ(

√
n). Theorem 7.6 follows immediately. Göös and Pitassi give several

possible g’s, called “versatile gadgets”; their best asymptotic for g is s(k) = k1+o(1).

21

In order to prove Theorem 7.3, we need to extend Theorem 7.6 to give lower bounds that hold for all
partitions. For this, we recall a transformation introduced by Segerlind [28]. Let t = dlog ne and F be the
field GF(2t). F has 2t elements that are identified with the elements of [2t]. Let Pt be the set of all mappings
given by x 7→ ax+ b with a, b ∈ F and a 6= 0. Elements of Pt may be represented by binary strings of length
2t such that the first t bits are not all zero; the i-th bit of the representation of σ ∈ Pt is denoted rep(σ)i.
The idea is that Pt is a set of pairwise independent permutations of F. A permutation σ in Pt acts on the
input variables by mapping xi to xσ(i). For this, since n ≤ 2t = |F|, we need to add new dummy variables
xn+1, . . . , x2t . For ϕ a CNF on n variables, define

permϕ(z1, . . . , z2t, x1, . . . , x2t) =∧
σ∈Pt

[(∧2t

i=1
zi = rep(σ)i

)
→ ϕ(xσ(1), . . . , xσ(n))

]
∧
∨t

i=1
zi.

Further let ϕ∨m(y1,1, . . . , yn,m) denote the CNF formula that is obtained from ϕ by replacing each xi by the
disjunction of m fresh variables yi,1, . . . , yi,m. (We could equivalently denote ϕ∨m using “lifting” notation
as the composition ϕ ◦ (∨m)n.)

Now we can define the transformation Tk of a CNF formula ϕ(x1, . . . , xn). Let k > 0 be an integer (k will

be the number of players), and define m = m(k, n) to be the least integer satisfying 2k2n
m + kn

mn−1 < 1; note

m = O(k2n). Then Tk(ϕ) is the formula permϕ∨m .

Theorem 7.7. Let k > 0. For every ϕ with sufficiently many variables, every k-partition Π of the variables
of ϕ, and every balanced k-partition Γ of the variables of Tk(ϕ), we have D(SearchTk(ϕ),Γ) ≥ D(Searchϕ,Π).

We need the following two standard lemmas; the first formalizes the fact that the set Pt consists of
pairwise independent permutations.

Lemma 7.8 ([8]). Pt contains 2t(2t − 1) permutations. For any x1 6= x2 and y1 6= y2 in F, then
Pr
π∈Pt

[π(x1) = y1 and π(x2) = y2] = 1
2t(2t−1) .

Lemma 7.9 (Chebyshev’s inequality). If X1, . . . , Xt are random Boolean variables and Y =
∑t
i=1Xi, then

Pr[Y = 0] ≤
EY +

∑
i6=j∈[t] Cov(Xi, Xj)

(EY)
2 .

Proof of Theorem 7.7. Let ϕ be a CNF with variables xi for i ∈ [n]. Let m = m(k, n). The formula ϕ∨m

has N = n ·m many variables yi,j . We also name these variables as v1, . . . , vN , and set t = dlogNe. Then
Tk(ϕ) is a CNF formula on the variables zi for i ∈ [2t] and the variables vi for i ∈ [2t].

Let Π = (Π1, . . . ,Πk) be an arbitrary k-partition of the variables of ϕ. Suppose Γ = (Γ1, . . . ,Γk) is a
balanced k-partition of the variables of Tk(ϕ), and there is a k-party protocol for SearchTk(ϕ) with respect
to Γ, which has communication complexity S. We need to show there is a protocol for Searchϕ with respect
to Π also of communication complexity S.

The variables of ϕ∨m are grouped into the blocks: the i-th block is the variables yi,j . The next lemma
states that we can find a permutation in Pt that sends representatives from every block to every member of
the partition.

Claim 7.10. There is a permutation π ∈ Pt such that, for any i ∈ [n] and ` ∈ [k], there is a j ∈ [m] so that
yi,j is mapped to Γ` by π.

Theorem 7.7 follows almost immediately from the claim. Fix a π satisfying Claim 7.10. Let vr(i,`) be the
variable yi,j given by the claim. Define a substitution ρ on the variables of Tk(ϕ) by setting the values of
ρ(zi) to encode the permutation π, and setting

• ρ(vr(i,`)) = xi if xi ∈ Π`, and

22

• ρ(vj) = 0 in all other cases.

The protocol for Searchϕ with respect to Π runs as follows: It runs the protocol for SearchTk(ϕ) on the
values of the zi’s and vi’s as set by ρ. This is a valid k-party protocol with respect to Π since the variables
vr(i,`) and xi are both in the `-th member of their respective partitions, and all other variables are set to 0.
It correctly solves Searchϕ since the value of yi,1 ∨ · · · ∨ yi,m under ρ is equal to xi; therefore Tk(ϕ)|ρ is
equivalent to ϕ. Since π and ρ can be computed without any communication, the two protocols have the
same communication complexity. Thus, D(Searchϕ,Π) ≤ D(SearchTk(ϕ),Γ).

We now prove Claim 7.10. Γ is a partition of the zi’s and vi’s; it induces a k-partition Γ′ = (Γ′1, . . . ,Γ
′
k)

of the vi’s. Γ′ is not balanced, but is near-balanced since each Γ′` has size at least bN/kc − 2t since Γ is
balanced and there are 2t many zi’s.

Choosing σ ∈ Pt uniformly at random, let χ`i,j be the Boolean random variable such that χ`i,j = 1 iff

yi,j is mapped by π into Γ′`. Set Y ki =
∑m
j=1 χ

k
i,j . By Lemma 7.8, χ`i,j has expectation equal to

|Γ′`|
N , so by

additivity of expectation, the expected value of Y `i is equal to
m|Γ′`|
N . For j0 6= j1,

Cov(χ`i,j0 , χ
`
i,j1) = E

(
χ`i,j0 · χ

`
i,j1

)
− Eχ`i,j0Eχ

`
i,j1

=
∑

vi′ 6=vi′′∈Γ′`

Pr[vσ(i′)=yi,j0 and vσ(i′′)=yi,j1]− |Γ
′
`|2

N2

=
|Γ′`|(|Γ′`|−1)

N(N−1)
− |Γ

′
`|2

N2

<
|Γ′`|2

N

(
1

N − 1
− 1

N

)
=

|Γ′`|2

N2(N − 1)
=

(
EY `i

)2
m2(N − 1)

.

Hence, by Lemma 7.9,

Pr[Y `i = 0] ≤
EY `i +

∑
j0 6=j1∈[m]

Cov(χ`i,j0 , χ
`
i,j1

)(
EY `i

)2 ≤ N

m|Γ′`|
+

m(m− 1)

m2(N − 1)

≤ N

m (bN/kc − 2t)
+

1

N − 1
≤ N

mN
2k

+
1

N − 1
=

2k

m
+

1

nm− 1
,

where the fourth inequality used N/(2k)) > 2t for n sufficiently large.

By the union bound, the probability that some Y `i is equal to zero is at most 2k2n
m + kn

nm−1 < 1. Therefore,

there is π in Pt such that no Y `i is zero. This π satisfies Claim 7.10.

Proof of Theorem 7.3. We let ϕn be the formula Tk(PebGn ◦ gn) with Gn and g as in Theorem 7.6. Letting
Πn be the partition from that theorem, D(SearchPebGn◦gn ,Πn) = Ω(4

√
n/2kk). Thus, by Theorem 7.7, for

every balanced k-partition Γ, D(Searchϕn ,Γ) = Ω(4
√
n/2kk).

Next we estimate the size of ϕn. Gn has constant degree and n vertices, so PebGn is an r-CNF of size
O(rn) on n variables for constant r. The versatile gadget g can be chosen to use only s = k1+o(1) = poly(k)
variables. Therefore PebGn ◦ gn is an (sr)-CNF of size 2srs · |PebGn | on s · n variables. Since s = poly(k)
and r is constant, PebGn ◦ gn is a poly(k)-CNF of size S′ = 2poly(k)n on n′ = poly(k) · n variables.

Define the formula ψn to be (PebGn ◦ gn)∨m with m = O(k2 · n′) as used for the transformation Tk.
The formula ψn is a m · poly(k)-CNF of size mpoly(k) · S′ on m · n′ variables. Thus ψn is a CNF of size
n′′ = npoly(k) and uses poly(k) ·n2 many variables. Finally, ϕn is permψn . Thus ϕn is a CNF formula of size

O((n′′)2 · ψn) = npoly(k) using poly(kn) variables.

Proposition 7.11. The formulas ϕn of Theorem 7.3 have tree-like OBDD(∧, r) refutations of the formu-
las ϕn of size poly(n, k) and thus of size polynomial in |ϕn|.

The proposition is proved using the following result of [7, Lemma 2, Corollary 6, Theorem 5]:

23

Theorem 7.12. Let ϕn be unsatisfiable r-CNFs on ` = poly(n) variables such that there are tree-like
OBDD(∧) refutations of ϕn of size S. Then:

(i) There is a tree-like OBDD(∧, r) refutation of permϕn of size poly(n) · S.

(ii) For every positive integer m, there are tree-like OBDD(∧) refutations of ϕ∨mn of size poly(|ϕ∨mn |, S,m).

(iii) For every formula g on m variables, there are tree-like OBDD(∧) refutations of ϕn◦g` of size poly(|ϕn◦
g`|, S, 2s).

We apply all three parts of this theorem to the formulas ϕn := Tk(PebGn ◦ gn) with Gn and g as in
Theorem 7.6. By Theorem 7.5, there are tree-like OBDD(∧) refutations of PebGn of size poly(n). Hence,
by Proposition 7.12(iii) there are tree-like OBDD(∧) refutations of PebGn ◦ gn of size poly(n). By the above
analysis, the formulas PebGn ◦ gn have size 2poly(k)n and the formulas (PebGn ◦ gn)∨m have size npoly(k)

where m = poly(k, n). Hence by 7.12(ii), the formulas (PebGn ◦ gn)∨m have tree-like OBDD(∧) refutations
of size npoly(k). Finally, by 7.12(i), the formulas Tk(PebGn ◦gn) have tree-like OBDD(∧, r) refutations of size
npoly(k). This proves Proposition 7.11.

7.2 Upper bounds for multiparty complexity

This section proves Theorem 7.2; this completes the proof of Theorem 7.1. We write π[≤s] to denote the set
containing the first s elements of an ordering π, and π[>s] to denote the remaining elements of π.

Lemma 7.13. Let π1, . . . , π` be orderings of the variables x1, . . . , xn. Then there are s1, . . . , s` ∈ [n] and
a partition Π = (Π1, . . . ,Π`+1) of the variables x1, . . . , xn into `+ 1 subsets such that

• Π is a balanced partition (that is, |Πi| ≥ b n
`+1c for each i ∈ [`+ 1]);

• for every i ∈ [`], πi[≤ si] ∩Πi+1 = ∅ and πi[> si] ∩Πi = ∅.

Proof. The partition is constructed by the following algorithm:

• S1 := {x1, x2, . . . , xn};
• For i = 1 to `

– Let Πi be the first b n
`+1c elements of Si in the order πi.

– Let si be the maximal index of an element of Πi in the order πi. That is, si is the minimal value
such that Πi ⊆ πi[≤ si]

– Set Si+1 := Si \Πi.

• Π`+1 := S`+1

By the construction, |Πi| = b n
`+1c for i ∈ [`], and hence |Π`+1| ≥ b n

`+1c. Note that Πi and si are defined so
that πi[>si] ∩Πi = ∅ and πi[≤si] ∩ Si+1 = ∅. Since Πi+1 ⊆ Si+1, we have πi[≤si] ∩Πi+1 = ∅.

Lemma 7.14. Let a function f be computed by a π-OBDD D, s ∈ [n] be an integer, and Π be a partition
of variables of f into k subsets such that Πa ∩ π[≤s] = Πb ∩ π[> s] = ∅ for some a, b ∈ [k]. Then D(f,Π) ≤
dlog |D|e+ 1.

Proof. Player a knows the first s variables in the order π, and starts the computation of D according D using
the variables she knows, i.e., using the variables outside of Πa. She reaches a vertex v of D after reading all
the variables π[≤ s] and sends the number of the vertex v to Player b, using dlog |D|e bits. Player b continues
computing D starting from v using now variables he knows and sends the result of the computation as a
single bit.

24

Proof of Theorem 7.2. Fix a tree-like OBDD(∧,w, r`) refutation D1, . . . , Dm of the formula ϕ of size S.
This proof uses only ` distinct orders π1, . . . , π` over the variables of ϕ, so each Di is a πj-OBDD for some
j ∈ [`].

Let Π be a partition satisfying Lemma 7.13. We construct a (` + 1)-party communication protocol
for Searchφ with respect to the partition Π of complexity at most O(log2 S). The protocol consists of
s = O(logS) steps. At the i-th step in the protocol, there is a tree Ti that is known by all the players. The
inner vertices of Ti are labelled with OBDD’s from the proof of ϕ; the leaves of Ti are labelled with clauses
of φ or with the constant 1. We maintain the invariant that the players know the root of Ti is labelled with
an OBDD that evaluates to false under the input assignment, and therefore that some leaf is labelled with
a clause that is false under the input assignment.

Initially, T1 is the tree of the entire refutation. The protocol ends after reaching a tree that consists of
a single vertex, and this will be labelled with a falsified clause. Each Ti+1 will either be a subtree of Ti or
will be obtained by pruning away some subtree. Specifically, let v be a vertex of Ti such that the subtree T
of Ti rooted at v has size satisfying 1

3 |Ti| ≤ |T | ≤
2
3 |Ti|; the players can find such a vertex v without any

communication. The vertex v is labelled with a πj-OBDD D for some j ∈ [`]. If D evaluates to 0 (False)
under the input assignment, then Ti+1 is T . If, however, it evaluates to 1 (True), then Ti+1 is obtained
from Ti by pruning away T and replacing it with the constant 1.

The players can determine whether the πj-OBDD D labelling v evaluates to 0 using only dlog |D|e+ 1 ≤
2 logS bits of communication. Namely, taking a = j + 1 and b = j, and using Lemma 7.14, the a-th and
b-th players can evaluate D using only this many bits. Trivially, if the value of D equals 0, then the root
of Ti+1 evaluates to 0. Otherwise, the root of Ti+1 is the same as the root of Ti, and it still evaluates to 0.

As each step the players use at most 2 logS bits of communication and there are at most O(logS) steps
(since |Ti+1| ≤ 2

3 |Ti|). Hence, the players use at most O(log2 S) bits of communication.

8 Conclusion

Theorem 7.1 proved superpolynomial lower bounds on tree-like OBDD(∧,w, rεn) refutations. It is open
whether similar lower bounds hold for the corresponding dag-like system. It is even an open problem to give
exponential bounds on (dag-like) OBDD(∧,w, r2) refutations, i.e. refutations that use at most two variable
orderings. It is also an open problem to give exponential bounds on (dag-like) OBDD(∧,∃, r2) refutations.
In fact, we do not know any OBDD or 1-NBP system for which weakening (w) is superpolynomially more
efficient than projection (∃).

One candidate for such a separation is the Clique-Coloring principle. [7] gave polynomial size OBDD(∧,w)
refutations for a version of the Clique-Coloring principle, based on a construction of [16]. It is open, however,
whether this principle has polynomial size OBDD(∧,∃) refutations, or even polynomial size OBDD(∧,∃, r)
or 1-NBP(∧,∃) refutations.

Acknowledgements. The research presented in Sections 3, 5 and 6 is supported by Russian Science
Foundation (project 18-71-10042). The work of Sam Buss on the research presented in Sections 4 and 7 is
partially supported by Simons Foundation Grant 578919.

Dmitry Itsykson is a Young Russian Mathematics award winner and would like to thank sponsors and
jury of the contest.

References

[1] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, June 1986.

[2] Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant networks. Discrete
Mathematics, 306(10-11):1068–1071, 2006.

25

[3] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, New York, 2009.

[4] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propogation as a proof system. In
Proc. Tenth International Conf. on Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science 3258, pages 77–91. Springer Verlag, 2004.

[5] Eli Ben-Sasson and Ave Wigderson. Short proofs are narrow — resolution made simple. Journal of the
ACM, 48:149–169, 2001.

[6] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagram. ACM Com-
puting Surveys, 24(3):293–318, 1992.

[7] Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering rule makes OBDD
proof systems stronger. In Proc. 33rd Computational Complexity Conference, (CCC), LIPIcs 102, pages
16:1–24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[8] Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences, 18(2):143–154, 1979.

[9] Wěi Chén and Wenhui Zhang. A direct construction of polynomial-size OBDD proof of pigeon hole
problem. Information Processing Letters, 109(10):472–477, 2009.

[10] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional calculus,
preliminary version. In Proceedings of the Sixth Annual ACM Symposium on the Theory of Computing,
pages 135–148, 1974.

[11] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. Journal
of Symbolic Logic, 44:36–50, 1979.

[12] Luke Friedman and Yixin Xu. Exponential lower bounds for refuting random formulas using ordered
binary decision diagrams. In Computer Science — Theory and Applications, Proc. 8th Computer Science
Symposium in Russia (CSR), Lecture Notes in Computer Science 7913, pages 127–138. Springer, 2013.

[13] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds from
resolution. In Proc. 50th ACM Symposium on Theory of Computing (STOC), pages 902–911, 2018.

[14] Ludmila Glinskih and Dmitry Itsykson. Satisfiable Tseitin formulas are hard for nondeterministic read-
once branching programs. In 42nd Intl. Symp. on Mathematical Foundations of Computer Science
(MFCS), pages 26:1–26:12, 2017.

[15] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. SIAM
Journal on Computing, 47(5):1778–1906, 2018.

[16] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semi-algebraic proofs. In
Proc. 19th Symp. on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer
Science 2285, pages 419–430. Springer Verlag, 2002.

[17] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.

[18] Dmitry Itsykson, Alexander Knop, Andrei Romashchenko, and Dmitry Sokolov. On ODBB-based
algorithms and proof systems that dynamically change order of variables. In Proc. 34th Symp. on
Theoretical Aspects of Computer Science (STACS 2017), LIPIcs 66, pages 43:1–43:14. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2017. Full version to appear in the Journal of Symbolic Logic.

[19] Matti Järvisalo. On the relative efficiency of DPLL and OBDDs with axiom and join. In Proc. Principles
and Practice of Constraint Programming (CP 2011), Lecture Notes in Computer Science 6876, pages
429–437. Springer Verlag, 2011.

26

[20] Alexander Knop. IPS-like proof systems based on binary decision diagrams. Technical Report ECCC-
TR15-053, Electronic Colloquium on Computational Complexity, November 2017.

[21] Jan Kraj́ıček. An exponential lower bound for a constraint propogation proof system based on ordered
binary decision diagrams. Journal of Symbolic Logic, 73(1):227–237, 2008.

[22] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–
277, 1988.

[23] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI Design: OBDD —
Foundations and Applications. Springer, 1998. Translation of the 1998 German edition.

[24] Guoqiang Pan and Moshe Y. Vardi. Symbolic techniques in satisfiability solving. Journal of Automated
Reasoning, 35(1-3):25–50, 2005.

[25] Pavel Pudlák. Lower bounds for resolution and cutting planes proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, 1997.

[26] Anup Rao and Amir Yehudayoff. Simplified lower bounds on the multiparty communication complexity
of disjointness. In Proc. 30th Conference on Computational Complexity (CCC), LIPIcs 33, pages 88–101,
2015.

[27] Nathan Segerlind. Nearly-exponential size lower bounds for symbolic quantifier elimination algorithms
and OBDD-based proofs of unsatisfiability. Technical Report TR07-009, Electronic Colloquium on
Computational Complexity (ECCC), January, August 2007. eccc.hpi-web.de/eccc-reports/2007/TR07-
009.

[28] Nathan Segerlind. On the relative efficiency of resolution-like proofs and ordered binary decision diagram
proofs. In Proc. 23rd Annual IEEE Conference on Computational Complexity (CCC’08), pages 100–111,
2008.

[29] Alexander A. Sherstov. Communication lower bounds using directional derivatives. J. ACM, 61(6):34:1–
34:71, 2014.

[30] Jorg Siekmann and Graham Wrightson. Automation of Reasoning, volume 1&2. Springer-Verlag, Berlin,
1983.

[31] G. S. Tsejtin. On the complexity of derivation in propositional logic. Studies in Constructive Mathe-
matics and Mathematical Logic, 2:115–125, 1968. Reprinted in: [30, vol 2], pp. 466-483.

[32] William T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society,
s1-22(2):107–111, 1947.

[33] Olga Tvertina, Carsten Sinz, and Hans Zantema. Ordered binary decision diagrams, pigeonhole prin-
ciples and beyond. Journal of Satisfiability, Boolean Modeling and Computation (JSAT), 7(1):35–58,
2010.

[34] Alasdair Urquhart. Hard examples for resolution. Journal of the Association for Computing Machinery,
34:209–219, 1987.

[35] Ingo Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. Mono-
graphs on Discrete Mathematics and Applications 4. SIAM, 1987.

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

