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Abstract14

We present an algorithm for constructing a depth-first search tree in planar digraphs; the algorithm15

can be implemented in the complexity class UL, which is contained in nondeterministic logspace16

NL, which in turn lies in NC2. Prior to this (for more than a quarter-century), the fastest uniform17

deterministic parallel algorithm for this problem was O(log10 n) (corresponding to the complexity18

class AC10 ⊆ NC11).19

We also consider the problem of computing depth-first search trees in other classes of graphs,20

and obtain additional new upper bounds.21
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1 Introduction29

Depth-first search trees (DFS trees) constitute one of the most useful items in the algorithm30

designer’s toolkit, and for this reason they are a standard part of the undergraduate al-31

gorithmic curriculum around the world. When attention shifted to parallel algorithms in32

the 1980’s, the question arose of whether NC algorithms for DFS trees exist. An early33

negative result was that the problem of constructing the lexicographically least DFS tree34

in a given digraph is complete for P [19]. But soon thereafter significant advances were35

made in developing parallel algorithms for DFS trees, culminating in the RNC7 algorithm of36

Aggarwal, Anderson, and Kao [1]. This remains the fastest parallel algorithm for the problem37

of constructing DFS trees in general graphs, in the probabilistic setting, or in the setting of38

nonuniform circuit complexity. It remains unknown if this problem lies in (deterministic) NC39

(and we do not solve that problem here).40

More is known for various restricted classes of graphs. For directed acyclic graphs (DAGs),41

the lexicographically-least DFS tree from a given vertex can be computed in AC1 [9]. (See42

also [10, 7, 12, 18, 15, 14].) For undirected planar graphs, an AC1 algorithm for DFS trees43

was presented by Hagerup [13]. For more general planar directed graphs Kao and Klein44

presented an AC10 algorithm. Kao subsequently presented an AC5 algorithm for DFS in45
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strongly connected planar digraphs. In stating the complexity results for this prior work46

in terms of complexity classes (such as AC1, AC10, etc.), we are ignoring an aspect of this47

earlier work that was of particular interest to the authors of this earlier work: minimizing48

the number of processors. This is because our focus is on classifying the complexity of49

constructing DFS trees in terms of complexity classes. Thus, if we reduce the complexity50

of a problem from AC10 to NC2, then we view this as a significant advance, even if the NC2
51

algorithm uses many more processors (so long as the number of processors remains bounded52

by a polynomial). Indeed, our algorithms rely on the logspace algorithm for undirected53

reachability [20], which does not directly translate into a processor-efficient algorithm. We54

suspect that our approach can be modified to yield a more processor-efficient AC1 algorithm,55

but we leave that for others to investigate.56

1.1 Our Contributions57

First, we observe that, given a DAG G, computation of a DFS tree in G logspace reduces to58

the problem of reachability in G. Thus, for general DAGs, computation of a DFS tree lies in59

NL, and for planar DAGs, the problem lies in UL∩ co-UL [8, 22]. For classes of graphs where60

the reachability problem lies in L, so does the computation of DFS trees. One such class61

of graphs is planar DAGs with a single source (see [2], where this class of graphs is called62

SMPDs, for Single-source, Multiple-sink, Planar DAGs).63

For undirected planar graphs, it was shown in [3] that the approach of Hagerup’s AC1
64

DFS algorithm [13] can be adapted in order to show that construction of a DFS tree in a65

planar undirected graph logspace-reduces to computing the distance between two nodes in66

a planar digraph. Since this latter problem lies in UL ∩ co-UL [23], so does the problem of67

DFS for planar undirected graphs.68

Our main contribution in the current paper is to show that a more sophisticated application69

of the ideas in [13] lead to a UL ∩ co-UL algorithm for construction of DFS trees in planar70

directed graphs. Since UL ⊆ NL ⊆ AC1 ⊆ NC2, this is a significant improvement over the best71

previous parallel algorithm for this problem: the AC10 algorithm of [17], which has stood for72

27 years.73

2 Preliminaries74

We assume that the reader is familiar with depth-first search trees (DFS trees).75

We further assume that the reader is familiar with the standard complexity classes L, NL76

and P (see e.g. the text [6]). We will also make frequent reference to the logspace-uniform77

circuit complexity classes NCk and ACk. NCk is the class of problems for which there is78

a logspace-uniform family of circuits {Cn} consisting AND, OR, and NOT gates, where79

the AND and OR gates have fan-in two and each circuit Cn has depth O(logk n). (The80

logspace-uniformity condition implies that each Cn has only nO(1) gates.) ACk is defined81

similarly, although the AND and OR gates are allowed unbounded fan-in. An equivalent82

characterization of ACk is in terms of concurrent-read concurrent-write PRAMs with running83

time O(logk n). For more background on these circuit complexity classes, see, e.g., the text84

[24].85

A nondeterministic Turing machine is said to be unambiguous if, on every input x, there is86

at most one accepting computation path. If we consider logspace-bounded nondeterministic87

Turing machines, then unambiguous machines yield the class UL. A set A is in co-UL if and88

only if its complement lies in UL.89
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The construction of DFS trees is most naturally viewed as a function that takes a graph90

G and a vertex v as input, and produces as output an encoding of a DFS tree in G rooted at91

v. But the complexity classes mentioned above are all defined as sets of languages, instead of92

as sets of functions. Since our goal is to place DFS tree construction into the appropriate93

complexity classes, it is necessary to discuss how the complexity of functions fits into the94

framework of complexity classes.95

When C is one of {L, P}, it is fairly obvious what is meant by “f is computable in C”; the96

classes of logspace-computable functions and polynomial-time-computable functions should97

be familiar to the reader. However, the reader might be less clear as to what is meant by98

“f is computable in NL”. As it turns out, essentially all of the reasonable possibilities are99

equivalent. Let us denote by FNL the class of functions that are computable in NL; it is100

shown in [16] each of the three following conditions is equivalent to “f ∈ FNL”.101

1. f is computed by a logspace machine with an oracle from NL.102

2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language103

in NL.104

3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)105

is b} is in NL.106

Rather than use the unfamiliar notation “FNL”, we will abuse notation slightly and refer to107

certain functions as being “computable in NL”.108

The proof of the equivalence above relies on the fact that NL is closed under complement.109

Thus it is far less clear what it should mean to say that a function is “computable in UL”110

since it remains an open question if UL is closed under complement (although it is widely111

conjectured that UL = NL) [21, 5]). However the proof from [16] carries over immediately to112

the class UL ∩ co-UL. That is, the following conditions are equivalent:113

1. f is computed by a logspace machine with an oracle from UL ∩ co-UL.114

2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language115

in UL ∩ co-UL.116

3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)117

is b} is in UL ∩ co-UL.118

Thus, if any of those conditions hold, we will say that “f is computable in UL ∩ co-UL”.119

The important fact that the composition of two logspace-computable functions is also120

logspace-computable (see, e.g., [6]) carries over with an identical proof to the functions121

computable in LC for any oracle C. Thus the class of functions computable in UL ∩ co-UL is122

also closed under composition. We make implicit use of this fact frequently when presenting123

our algorithms. For example, we may say that a colored labeling of a graph G is computable124

in UL ∩ co-UL, and that, given such a colored labeling, a decomposition of the graph into125

layers is also computable in logspace, and furthermore, that – given such a decomposition of126

G into layers – an additional coloring of the smaller graphs is computable in UL ∩ co-UL, etc.127

The reader need not worry that a logspace-bounded machine does not have adequate space128

to store these intermediate representations; the fact that the final result is also computable in129

UL ∩ co-UL follows from closure under composition. In effect, the bits of these intermediate130

representations are re-computed each time we need to refer to them.131

3 DFS in DAGs logspace reduces to Reachability132

In this section, we observe that constructing the lexicographically-least DFS tree in a DAG133

G can be done in logspace given an oracle for reachability in G. But first, let us define what134

we mean by the lexicographically-first DFS tree in G:135
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I Definition 1. Let G be a DAG, with the neighbours of the vertices given in some order136

in the input. (For example, with adjacency lists, we can consider the ordering in which the137

neighbors are presented in the list). Then the lexicographic first DFS traversal of G is the138

traversal done by the following procedure:

Input: (G, v)
Output: Sequence of edges in DFS tree
visited[v] ← 1
for every out neighbour w of v, in the given order do

if visited[w] = 0 then
print(v, w)
DFS(G, w)

end
end
Algorithm 1 Static DFS routine

139

That is, the lexicographically-first DFS tree is merely a DFS tree, but with the (very140

natural) condition that the children of every vertex are explored in the order given in the141

input.142

When we apply this procedure as part of our algorithm for DFS in planar graphs, we will143

need to to apply it to directed acyclic multigraphs (i.e., graphs with parallel edges between144

vertices) where there is a logspace-computable function f(v, e) that computes the ordering145

of the neighbors of vertex v, assuming that v is entered using edge e. (That is, if the DFS146

tree visits vertex v from vertex x, and there are several parallel edges from x to v, then the147

ordering of the neighbors of v may be different, depending on which edge is followed from x148

to v.)149

As is observed in [9], the unique path from s to another vertex v in the lexicographically-150

least DFS tree in G rooted at s is the lexicographically-least path in G from s to t.151

Now consider the following simple algorithm for constructing the lexicographically-least152

path in a DAG G from s to v, where:153

Input: (G, s, v, f)
Output: Lex least path from s to v under f

current← s; e← null;
while (current 6= v) do

child← first child of current (in the order given by f(current, e))
while (REACH(child, v) 6= TRUE) do

child ← next child of current (in the order given by f(current, e))
end
e← (current, child); current = child;

end
Algorithm 2 DAG DFS routine

The correctness of this algorithm is essentially shown by the proof of Theorem 11 of [9].154

The algorithm for computing the lexicographically-least DFS tree rooted at s can thus be155

presented as the composition of two functions g and h, where g(G, s) = (G, s, L), where L is156

a list of all of the lexicographically-least paths from s to each vertex v. Note that the set of157

edges in the DFS tree in G rooted at s is exactly the set of edges that occur in the list L158
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in g(G, s) = (G, s, L). Then h(G, s, L) is just the result of removing from G each edge that159

does not appear in L. The function h is computable in logspace, whereas g is computable in160

logspace with an oracle for reachability in G.161

Since reachability in DAGs is a canonical complete problem for NL, we obtain the following162

corollary:163

I Corollary 2. Construction of lexicographically-first DFS trees for DAGs lies in NL.164

Similarly, since reachability in planar directed (not-necessarily acyclic) graphs lies in165

UL ∩ co-UL [8, 22], we obtain:166

I Corollary 3. Construction of lexicographically-first DFS trees for planar DAGs lies in167

UL ∩ co-UL.168

A DAG G is said to be a SMPD if it contains at most one vertex of indegree zero.169

Reachability in SMPDs is known to lie in L [2].170

I Corollary 4. Construction of lexicographically-first DFS trees for SMPDs lies in L.171

3.1 DFS in a planar digraph with a single cycle172

We now consider a special case that will form a useful subroutine for us: graphs in which173

there is a single cycle, forming the external face of the embedding. That is, let G be a174

planar digraph such that the external face is a directed cycle C and G − V (C) is a DAG175

(or, alternatively, a directed acyclic multigraph). Then we can do DFS in G starting from176

an arbitrary vertex in C in UL ∩ co-UL. The DFS completes the cycle first and then, while177

backtracking, performs DFS in the reachable but as yet untraversed part of the digraph.178

We now provide more details: Let the the vertices in the directed cycle C be v0, . . . , vk,179

in this order, where the entry point in the cycle is v0. Let R(vi) ⊆ V (G) \ V (C) be180

the set of vertices reachable from vi in the graph excluding the cycle. We let R′(vi) =181

R(vi) \
⋃k

j=i+1 R(vj).182

A logspace routine with an oracle for the UL ∩ co-UL problem of reachability in planar183

graphs can construct each of the sets R′(vi). It is clear that each R′(vi) induces a DAG184

which (if non-empty) consists of vertices reachable from vi but not from subsequent vj ’s.185

Moreover, the R′(vi)’s are all pairwise disjoint. Thus a DFS of G can be performed by doing186

DFS on the graph induced by each R′(vi) (using Corollary 3) and unioning with the aforesaid187

DFS of the cycle C.188

Note that a graph with a single cycle is a special case of a planar graph in which all189

cycles are clockwise (or all cycles are counterclockwise). By analogy with the Coriolis effect,190

we call such graphs Coriolis graphs. It turns out that Coriolis graphs play an important role191

in our main algorithm.192

4 Layering the graph193

The main algorithmic insight that led us to the current algorithm was an approach for finding194

DFS trees in Coriolis graphs. In the exposition below, we first layer the graph in terms of195

clockwise cycles (which we will henceforth call red cycles), and obtain a decomposition of the196

original graph into (essentially) Coriolis graphs. We then apply a nested layering in terms of197

counterclockwise cycles (which we will henceforth call blue cycles); ultimately we decompose198

the graph into units that are structured as a DAG, which we can then process using the199

tools from the earlier sections of the paper. The more detailed presentation follows.200
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4.1 Degree Reduction and Expansion201

I Definition 5. (of Exp�(G) and Exp	(G)) Let G be a planar digraph. The “expanded”202

digraph Exp�(G) (respectively, Exp	(G) is formed by replacing each vertex v of total degree203

d(v) > 3 by a clockwise (respectively, counterclockwise) cycle Cv on d(v) vertices such that204

the endpoint of the the i-th edge incident on v is now incident on the the i-th vertex of the205

cycle.206

Exp�(G) and Exp	(G) each have maximum degree bounded by 3; i.e., they are subcubic.207

Next we define the clockwise (and counterclockwise) dual for such a graph and also a notion208

of distance.209

Recall that for an undirected plane graph H, the dual (multigraph) H∗ is formed by210

placing, for every edge e ∈ E(H), a dual edge e∗ between the face(s) on either side of e (see211

Section 4.6 from [11] for more details). Faces f of H and the vertices f∗ of H∗ correspond212

to each other as do vertices v of H and faces v∗ of H∗.213

I Definition 6. (of Duals G� and G	) Let G be a plane digraph, then the clockwise dual214

G� (respectively, counterclockwise dual G	) is a weighted bidirected version of the undirected215

dual of the underlying undirected graph of G in a way so that the orientation formed by216

rotating the corresponding directed edge of G in a clockwise (respectively, counterclockwise)217

way gets a weight of 1 and the other orientation gets weight 0. We inherit the definition of218

dual vertices and faces from the underlying undirected dual.219

I Definition 7. For a plane subcubic digraph G, let f0 be the external face. Define the type220

type�(f) (respectively, type	(f)) of a face to be the singleton set consisting of the distance221

at which f lies from f0 in G�: {d�(f0, f)} (respectively, {d	(f0, f)}). Generalise this to222

edges e by defining type�(e) (respectively type	(e)) as the set consisting of the union of the223

type� (respectively, type	) of the two faces adjacent to e, and to vertices v by defining as224

the type�(v) (respectively type	(v)) union of the type� (respectively, type	) of the faces225

incident on the vertex v.226

The following is a direct consequence of subcubicity and the triangle inequality:227

I Lemma 8. In every subcubic graph G, the cardinality |type�(x)|, |type	(x)| where x228

is a face, edge or a vertex is at least one and at most 2 and in the latter case consists of229

consecutive non-negative integers.230

Further, if v ∈ V (G) is such that |type�(v)| = 2, then there exist unique u, w ∈ V (G),231

such that (u, v), (v, w) ∈ E(G) and |type�(u, v)| = |type�(v, w)| = 2.232

We first need a simple lemma:233

I Lemma 9. Suppose (f1, f2) is a dual edge with weight 1 (and (f2, f1) is of weight 0) then,234

d�(f0, f1) ≤ d�(f0, f2) ≤ d�(f0, f1) + 1.235

Proof. From the triangle inequality d�(f0, f1) ≤ d�(f0, f2) + d�(f2, f1) = d�(f0, f2). Simil-236

arly, d�(f0, f2) ≤ d�(f0, f1) + d�(f1, f2) ≤ d�(f0, f1) + 1. J237

Proof. (of Lemma 8) Since each vertex v ∈ V (G) of a subcubic graph is incident on at most238

3 faces the only case is which |type�(v)| > 2 corresponds to three distinct faces f1, f2, f3239

being incident on a vertex. But here the undirected dual edges form a triangle such that240

in the directed dual the 1 edges are oriented either as a cycle or acyclically. In the former241

case by three applications of the first half of Lemma 9 we get that d�(f0, f1) ≤ d�(f0, f2) ≤242

d�(f0, f3) ≤ d�(f0, f1), hence all 3 distances are the same. Therefore |type�(v)| = 1.243
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In the latter case, suppose the edges of weight 1 are (f1, f2), (f2, f3), (f1, f3), then244

by Lemma 9 we get: d�(f0, f1) ≤ d�(f0, f2), d�(f0, f3) ≤ d�(f0, f1) + 1. Thus, both245

d�(f0, f2), d�(f0, f3) are sandwiched between two consecutive values d�(f0, f1), d�(f0, f1)+1.246

Hence d�(f0, f1), d�(f0, f2), d�(f0, f3) must take at most two distinct values, and thus247

|type�(v)| ≤ 2. Moreover either type�(f1) 6= type�(f2) = type�(f3) or type�(f1) =248

type�(f2) 6= type�(f3). Let e1, e2, e3 be such that, e1
� = (f2, f3), e2

� = (f1, f3), e3
� =249

(f1, f2). Then the two cases correspond to |type�(e1)| = |type�(e2)| = 2, |type�(e3)| = 1250

and to |type�(e1)| = 1, |type�(e2)| = |type�(e3)| = 2 respectively. Noticing that e1, e3 are251

both incoming or both outgoing edges of v completes the proof for the clockwise case. The252

proof for the counterclockwise case is formally identical. J253

I Definition 10. For a plane subcubic graph G as above, we refer to vertices and edges with254

a type of cardinality two in G� (respectively, in G	) as red (respectively, blue) while the255

ones with a cardinality of one as white. The resulting colored graphs are called red(G) and256

blue(G) respectively.257

We will see later how to apply both the duals in G to get red and blue layerings of a258

given input graph.259

Also note that a red (respectively blue) edge must have red (respectively blue) end point260

vertices, as they are adjacent to the same faces as the edge between is.261

We enumerate some properties of red(G), blue(G) (G is subcubic):262

I Lemma 11. 1. Red vertices and edges in red(G) form disjoint clockwise cycles.263

2. No clockwise cycle in red(G) consists of only white edges(and hence white vertices).264

Similar properties hold for blue(G).265

Proof. 1. Firstly, note that a red edge must have red end point vertices, as they are adjacent266

to the same faces that the edge between them is adjacent to. It is immediate from267

Lemma 8 that if v is a red vertex, it has exactly one red incoming edge and one red268

outgoing edge, proving this part.269

2. Suppose C is a clockwise cycle. Consider the shortest path in G� from the external face270

to a face enclosed by C. From the Jordan curve theorem (Theorem 4.1.1 [11]), it must271

cross the cycle C. The edge dual to the crossing must be red.272

J273

The definitions above, which apply only to subcubic plane graphs, can now be extended274

to a general plane graph G, by considering the subcubic graphs Exp�(G) (and Exp	(G)).275

But first, we must make a simple observaion about red(Exp�(G)) (and dually about276

blue(Exp	(G))).277

I Lemma 12. Let v ∈ V (G) be a vertex of degree more than 3. Let Cv be the corresponding278

expanded cycle in Exp�(G). Suppose at least one edge of Cv is white in red(Exp�(G)) then279

there is a unique red cycle C that shares edges with Cv.280

Proof. First we note that Cv does not contain anything inside it since it is an expanded281

cycle. By lemma 11 we know that Cv has at least one red edge. Suppose it shares one or282

more edges with a red cycle R1. Since both cycles are clockwise and Cv has nothing inside,283

the cycle R1 must enclose Cv. Now suppose there is another red cycle R2 that shares one or284

more edges with Cv. Then R2 must also enclose Cv. But two cycles cannot enclose a cycle285

whilst sharing edges with it without touching each other, which contradicts the above lemma286

that all red cycles in a subcubic graph are vertex disjoint. J287
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The last two lemmas allow us to consistently contract the red cycles in red(Exp�(G)):288

I Definition 13. The colored graph Col�(G) (respectively, Col	(G)) is obtained by labeling289

a degree more than 3 vertex v ∈ V (G) as red iff the cycle Cv in red(Exp�(G)) has at least290

one red edge and at least one white edge. Else the color of v is white. All the low degree291

vertices and edges of G inherit their colors from red(Exp�(G)). The coloring of Col	(G)292

is similar.293

v1

v2v3

v4

v5

C1

C2C3

C1

v1

v2v3

C2

v4

C3

v5

Figure 1 An example of contracting expanded cycles. The figure on right shows the graph after
contracting the expanded cycles C1, C2, C3 according to definition 13

We can now characterize the colorings in the graph Col�(G):294

I Lemma 14. The following hold:295

1. A red cycle in Col�(G) is vertex disjoint from every red cycle contained in its interior.296

2. Every 2-connected component of the red subgraph of Col�(G) is a simple clockwise cycle.297

Proof. For v ∈ V (G), let Cv ⊆ Exp�(G) be the expanded cycle. If it has a red vertex it is298

immediately enclosed by a unique red cycle R in Exp�(G) by Lemma 12. Assuming Cv is299

not all red, it consists of alternating red subpaths and white subpaths. On contracting Cv we300

get a collection of clockwise red cycles outside sharing a common cut-vertex v. Notice that301

the new collection of red cycles consists of edges that R did not share with Cv. Also notice302

that (as a thought experiment) if we contracted the Cv’s that share a vertex with R, one at303

a time we would get an edge-disjoint set of red cycles with distinct cut vertices. Therefore, in304

Col�(G), the red subgraph consists of a collection of connected components, each of which305

is a remnant of exactly one red cycle in Exp�(G); these connected components consist of306

red cycles that touch externally at cut vertices. Hence both parts of the lemma follow. J307

Although the above lemmas have been proved for the clockwise dual, they also hold for308

counter clockwise dual with red replaced by blue mutatis mutandis.309

4.2 Layering the colored graphs310

I Definition 15. Let x ∈ V (Col�(G)) ∪ E(Col�(G)). Let `�(x) be one more than the311

minimum integer that occurs in type�(x′), for each x′ ∈ V (Exp�(G)) ∪ E(Exp�(G)) that312
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is contracted to x. Further let Lk(Col�(G)) = {x ∈ V (Col�(G))∪E(Col�(G)) : `�(x) = k}.313

Similarly define, `	(x),Lk(Col	(G)).314

We call Lk(Col�(G)) the kth layer of the graph.315

It is easy to see the following from Lemma 14:316

I Proposition 16. For every x ∈ V (Col�(G))∪E(Col�(G)) the quantity `�(x) is one more317

than the number of red cycles that strictly enclose x in Col�(G). All the vertices and edges318

of a red cycle of Col�(G) lie in the same layer Lk+1(Col�(G)) for the enclosure depth k of319

the cycles.320

We had already noted above that the red subgraph of G had simple clockwise cycles as321

its biconnected components. We note a few more lemmas about the structure of a layer of G:322

I Lemma 17. We have:323

1. A red cycle in a layer Lk+1(Col�(G)) does not contain any vertex/edge of the same layer324

inside it.325

2. Any clockwise cycle in a layer consists of all red vertices and edges.326

Dually, a blue cycle in a layer does not contain any vertex or edge of the same layer inside it.327

I Remark 18. Notice that the conclusion in the second part of the Lemma fails to hold if we328

allow cycles spanning more than one layer.329

Proof. The first part is a direct consequence of proposition 16. For the second part we mimic330

the proof of the second part of Lemma 11. Consider a clockwise cycle C ⊆ Lk+1Col�G331

that passes through a white edge e. Every face adjacent to C from the outside must have332

type� = k because C is contained in layer k + 1. Then the type� of the faces on either333

side of e is the same and therefore must be k. Let f be a face enclosed by C that has334

type�(f) = k. Thus it must be adjacent to a face of type� = k − 1. But this contradicts335

that every face inside and adjacent to C must have type� at least k. J336

The above lemmas show that the strongly connected components of the red subgraph of a337

layer consist of red cycles touching each other without nesting, in a tree like structure. This338

prompts the following definition:339

I Definition 19. For a red cycle R ⊆ Lk(Col�(G)) we denote by GR, the graph induced by340

vertices of Lk+1(Col�(G)) enclosed by R.341

The strongly connected components of the red subgraph of GR are called the red clusters342

of GR.343

The cluster graph Cl�(GR) is formed from GR by contracting the red clusters of GR to344

single nodes along with all the white vertices of GR and adding a directed edge between two345

nodes iff there was a directed edge between corresponding vertices in GR.346

We get:347

I Lemma 20. For each red cycle R ⊆ Lk(Col�(G)), the cluster graph Cl�(GR) does not348

contain any clockwise cycle. That is, it is a Coriolis graph.349

Proof. If there is a clockwise cycle C ⊆ Cl�(GR) then there must be a corresponding350

clockwise cycle C ′ ⊆ GR as well. It cannot be all red since otherwise it would map to a351

single vertex in Cl�(GR). But this contradicts Lemma 17. J352
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Next we aim to remove all the counterclockwise cycles in order to construct a DAG in which353

we can do DFS. For this we apply another layering on every layer Lk(Col�(G)) of the graph354

G again with the help of Definitions 13, 15, but this time using counterclockwise i.e. blue355

cycles. Thus for every red cycle R in G, we consider the graph H = Col	(GR) and its356

layers Ll(H)(w.r.t the counterclockwise dual) for non-negative integers l. Consider a blue357

cycle B ⊆ Ll(H) and consider the corresponding blue graph HB . By Lemma 20 applied in a358

counterclockwise sense, there is no counterclockwise cycle in the cluster graph Cl	(HB).359

The lemmas above about the structure of a red layer also hold for a blue layer with360

suitable changes.361

It turns out that if we compress the strongly connected components of the colored362

subgraph (both red and blue) of a blue layer, we get a DAG.363

Formally, we start with the combined analog of Definitions 13, 15:364

I Definition 21. Each vertex or edge x ∈ V (G) ∪ E(G) gets a red layer number k + 1 if it365

belongs to Lk+1(Col�(G)) and a blue layer number l + 1, if it belongs to Ll+1(Col	(GR))366

where R ⊆ Lk(Col�(G)) is the red cycle immediately enclosing x.367

Moreover this defines the colored graph Col(G) by giving x the color red if it is red in368

Col�(G) and/or blue in Col	(GR) (notice it could be both red and blue) and lastly white if it369

is white in both the graphs. In this case, we say that x belongs to sublayer Lk+1,l+1(Col(G)).370

By proposition 16, we can also say that a sublayer Lk+1,l+1(Col(G)) thus consists of371

edges/vertices that are strictly enclosed inside k red cycles and inside l blue cycles that are372

contained inside the first enclosing red cycle.373

We’ll see some observations and lemmas regarding the structure of a sublayer now.374

Since every edge/vertex in Lk+1,l+1(Col(G)) has the same red AND blue layer number,375

it is clear that there can be no nesting of colored cycles. Also we have:376

I Lemma 22. Every clockwise cycle in a sublayer Lk+1,l+1(Col(G)) consists of all red edges377

and vertices and any every counterclockwise cycle in the sublayer consists of all blue vertices378

and edges. (Some edges/vertices of the cycle can be both red as well as blue)379

Proof. This is a direct consequence of Lemma 17 applied to the sublayer Lk+1,l+1(Col(G)),380

which is a (counterclockwise) layer in graph GR for some red cycle R. J381

Thus we can refer to clockwise cycles and counterclockwise cycles as red and blue cycles382

respectively.383

I Definition 23. For a red or blue colored cycle C of layer Lk,l(Col(G)), we denote by GC384

the graph induced by vertices of Lk′,l′(Col(G)) enclosed by C, where {k′, l′} is {k + 1, 1} or385

{k, l + 1} according to whether C is red or blue cycle respectively.386

Note that two cycles of the same color in Lk+1,l+1(G) cannot share an edge since neither387

is enclosed by the other – since they belong to the same layer, and they also have the same388

orientation. Cycles of different colors can share edges but we note:389

I Lemma 24. Two cycles of a sublayer Lk+1,l+1(Col(G)) can only share one contiguous390

segment of edges.391

Proof. Let a red cycle R and a blue cycle B in a sublayer sublayer share two vertices392

u, v but let the paths R(u, v), B(u, v) in the two cycles be disjoint. Notice that the graph393

(R\R(u, v))∪B(u, v) is also a clockwise cycle that encloses the edges of R(u, v) contradicting394

the first part of Lemma 17. J395
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We consider the strongly connected components of a sublayer and note the following396

lemmas regarding them:397

I Lemma 25. The strongly connected components of a sublayer, which we call clusters, have398

the following properties:399

1. Every vertex/edge in them is either blue or red (or possibly both).400

2. Every face is a directed cycle(red or blue).401

Proof. 1. In a strongly connected graph every vertex and edge lies on a cycle and therefore402

by Lemma 22 must be colored red or blue (or both).403

2. Suppose there is a face f the boundary of which is not a directed cycle. Look at a404

directed dual (say clockwise) of the strongly connected component (just the component405

independently). This dual must be a DAG since the primal is strongly connected. The406

vertex f∗ in the dual corresponding to face f of the strongly connected component has407

in degree at least one and out degree at least one since it has boundary edges of both408

orientations. Consider a vertex u∗ of the dual which has an edge (u∗, f∗) to f∗. If we409

contract this edge, merging u∗ and f∗ to f∗, the modified dual is still a DAG clearly,410

with one less vertex. If we keep merging the vertices incident to f∗ into it, eventually we411

must reach a stage when no vertex is incident to f∗. This merged f∗ is a source since its412

in-degree is 0, and hence its outgoing edges form a directed cut for this modified dual.413

But this also clearly corresponds to a directed cut in the original dual, with one partition414

containing the dual vertex f∗ and all other dual vertices that were merged with f∗. In415

the primal, by cut cycle duality this corresponds to a directed cycle that contains the416

face f and the faces corresponding to the dual vertices merged with f∗. Thus cycle thus417

contains more than one face inside it along with f , which violates lemma 22 since directed418

cycles are empty for that sublayer.419

J420

The strongly connected components or clusters of a sublayer hence consist of intersecting421

red and blue cycles. However they can only intersect in a tree like manner as we will see422

from following definition and lemma.423

We now construct the incidence graph of these strongly connected components. In other424

words,425

I Definition 26. The nodes of the graph Sk+1,l+1(G) are the directed cycles of each of426

the two colors (viz. red and blue) in the layer Lk+1,l+1(Col(G)). Two nodes support an427

undirected edge if the corresponding strongly connected components intersect.428

We have the following:429

I Lemma 27. Sk+1,l+1(G) is a forest. Given an entry point into a component of Sk+1,l+1(G)430

we can, in L, compute the DFS of such a tree.431

Proof. For any two cycles C1, C2 that are adjacent and any v1 ∈ C1, v2 ∈ C2 it is the432

case that there is a directed path in the sublayer from v1 to v2 (via V (C1) ∩ V (C2)); thus433

inductively the same property holds for any two C1, C2 in the same connected component of434

Sk+1,l+1(G). Since Sk+1,l+1(G) is a planar (undirected) graph, it follows that if it is not a435

forest, then it must enclose a facial cycle f . This facial cycle f corresponds to a face f ′ in436

the sublayer Lk+1,l+1(Col(G)). Each node on the boundary of f corresponds to a directed437

cycle in Lk+1,l+1(Col(G)), and the face f ′ must be incident on each of these cycles. By438

Lemma 25, f ′ must be a red cycle or a blue cycle. Without loss of generality, suppose it439

is red. But this means that it cannot intersect a red cycle corresponding to a node on the440
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boundary of f in more than a vertex. Thus it consists exclusively of edges from some blue441

cycles, call them B1, . . . , Bk, on the boundary of f . Thus f ′ is entirely enclosed by the edges442

of ∪k
i=1E(Bi) \ E(f ′), which form a blue cycle. This contradicts Lemma 17. J443

Next,we extend the definition of cluster graphs (Definition 19) by contracting the clusters,444

which are maximal trees of the forest Sk+1,l+1(G) to single vertices:445

I Definition 28. Consider the multigraph Clk+1,l+1(G) on the vertex set V (Cl(G)) = {vT :446

T is a maximal tree in Sk+1,l+1(G)} ∪ {v : v ∈ V (H)is colored white in Col(G)}; each edge447

in G is carried over to Clk+1,l+1(G), resulting in parallel edges when vertices in G are merged448

into a single vertex in Clk+1,l+1(G).449

Thus, we obtain the following:450

I Lemma 29. Clk+1,l+1(G) is a directed acyclic multigraph for every k, l ≥ 0.451

Proof. Trivial since clusters are the strongly connected components of the sublayer. J452

5 The Algorithm for DFS in a Planar Graph453

Now we will use the layering and lemmas from the previous section to give the final algorithm454

for DFS in a general planar digraph H, from a root r. Our output will consist of the edges455

that are included in the DFS tree, along with an ordering on the outgoing tree edges for456

every vertex in the graph, since – in contrast to the case for undirected DFS trees – a457

directed spanning tree may or may not be a DFS tree for different traversals. The ordering458

on outgoing edges for every vertex fixes the traversal.459

The first step is to build the graph G ⊆ H consisting of all vertices that are reachable460

from r, which can be done in UL ∩ co-UL. A planar embedding of G with r on the external461

face f0 can then be constructed, using logarithmic space [4, 20].462

To help make the indexing of our layers simpler, create a “dummy” red cycle (essentially463

just a self loop on a “pseudo-root vertex” r′0 with an edge from r0 to r, where the self loop464

completely encloses G; this has the effect of placing the root r in layer 1.465

Note that the labeling of G (described in the previous section) can be computed in466

logspace with an oracle for computing distance in planar graphs. This is because the type of467

each face, edge, and vertex is given by computing distances in the dual graph. Computing468

distance in planar graphs lies in UL ∩ co-UL [23, Section 4], and thus computing Col(G) can469

be done in UL ∩ co-UL.470

With Col(G) in hand, we define a meta tree of the laminar family of colored cycles of G.471

I Definition 30. For a planar digraph G, with red and blue cycles given by Col(G), the472

meta tree TG is an undirected tree with nodes representing the colored cycles of G. The473

root node of TG is the self-loop on r0 belonging to sublayer L0,1(Col(G)). For a node in TG474

representing cycle C of a sublayer Lk+1,l+1(Col(G)), its children are the cycles of the next475

sublayer that are contained inside C.476

Note that every node of G appears in some subgraph Sk+1,l+1 inside some colored cycle477

C of Col(G)). First, we describe how to process the subgraph C ∪ Sk+1,l+1, and then we478

describe the order in which we process the colored cycles (which will also determine the479

vertex v in which we first enter the cycle C).480

Note that the multigraph consisting of C along with the directed acyclic multigraph481

Clk+1,l+1(G) contained in C is precisely the sort of graph that we showed how to search in482
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Section 3.1. A DFS of this graph can be performed in UL∩ co-UL. But many of the nodes of483

Sk+1,l+1 are not simply nodes of G, but are clusters of cycles in G. Thus we must output a484

DFS not of Clk+1,l+1(G) but a DFS of the corresponding nodes in G.485

1. Start the DFS of C∪ the multigraph Clk+1,l+1(G) that lies within C, as described in486

Section 3.1, by following the edges of C until we come back to the entry vertex v.487

2. Then start backtracking along C and performing a DFS of the directed acyclic multigraph488

Clk+1,l+1(G). Each time we follow an edge to a new vertex D of Clk+1,l+1(G) that489

represents a cluster of G, this edge corresponds to an edge e of G to a node x on one of490

the cycles of the undirected tree of cycles that constitutes the cluster D. The ordering491

of the neighbors of D (that is used in constructing the lexicographic-least DFS tree492

of Clk+1,l+1(G)) consists of the order in which edges out of D are encountered while493

searching the tree of cycles that constitutes D, when starting at vertex x; this ordering494

can be computed in logspace.495

3. Each vertex of D of Clk+1,l+1(G) represents a tree of cycles. Each cycle in the cluster is496

explored by going from its entry vertex directly around the cycle, and then backtracking497

to explore its neighbor cycles in the cluster. This is easy to perform in logspace. (This498

sequence of exploring the cycles in D imposes the order on the edges that leave D to other499

clusters in Clk+1,l+1(G), which gives us the ordering that determines the lexicographically-500

least DFS tree of Clk+1,l+1(G).)501

4. The lexicographically-least DFS tree of Clk+1,l+1(G) identifies the edge that should be502

used to visit each neighbor of D. Explore each vertex of Clk+1,l+1(G) in turn in this way.503

And now we describe the algorithm that determines the order in which we process the504

colored cycles. For each node C in the meta tree TG, (and recall that each node in TG505

corresponds to a colored cycle), find the unique path in TG from the root to C. Then start506

following that path; for each edge C1 → C2 in that path, we start by knowing the vertex v507

in C1 where the tree constructed thus far entered C1. (Initially, C is the self loop on r0, and508

v = r0.)509

Follow the procedure outlined above for processing the DFS tree inside of C1, but do not510

produce any output. Instead, wait for the moment when C2 is encountered in that process.511

(It will be encountered, because otherwise there would not be an edge C1 → C2 in the meta512

tree.) At that point, remember the vertex x where cycle C2 is first entered, and then start513

processing the next edge in the path from the root to C.514

When C is finally reached, we remember the vertex where C was entered, and start515

outputting the DFS tree for the subgraph inside C, as above.516

We must also give the orderings of outgoing tree edges around every vertex. For a white517

vertex of any sublayer, the outgoing edges belong to the same sublayer and their ordering is518

already defined by the algorithm in section 3.1. For the other case, we analyze:519

Suppose v is a vertex on a colored cycle C of some sublayer. Let the outgoing tree edges520

be e, e′1, e′2...e′k, e′′1 , e′′2 ...e′′l , where e is the outgoing edge that belongs to cycle C, e′1, e′2...e′k521

are the outgoing edges other than e that belong to the same layer as v (they consist of edges522

going out of C, either white edges going out from the cluster or colored edges of the same523

cluster), and e′′1 , e′′2 ...e′′l are the outgoing edges of the next layer (edges going inside of C).524

Then the order of these edges for DFS is:525

First we take the white edges among e′1...e′k.526

Then we take e(finish the cycle).527

Then we take the colored outgoing edges among e′1...e′k.528

Then we take the edges of the next layer, e′′1 ...e′′l .529
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The order of edges within each of these steps is already defined in section 3.1 or in steps530

2 and 3 of the algorithm above. This gives an ordering of all outgoing tree edges for any531

vertex v.532

We could interchange between last two points of the ordering, and still the algorithm533

would give DFS trees albeit different ones. However it is crucial that e is taken before e′′1 ...e′′l534

for all vertices, i.e. we finish the cycle before going inside to higher sublayers.535

The algorithm clearly can be implemented in logspace with an oracle for UL∩ co-UL, and536

it clearly outputs a tree that spans G.537

Now we must show that the tree that is produced is a DFS tree.538

Our algorithm definitely produces a spanning tree of the set of all vertices in G that are539

reachable from the start vertex r. In order to show that the tree is a DFS tree, it suffices to540

show that, for any edge (u, v) of G that is not in the tree, in our depth-first traversal of the541

tree the vertex v is visited before u, or else v is visited from a descendent of u in the tree.542

Either u and v are in the same level, or else u and v are at different levels.543

Case 1: u and v are in the same sublayer:544

Then either u and v are in the same cluster, or they are not. If they are not in the same545

cluster, then the cluster that v is in is visited by some lexicographically-earlier edge from546

the cluster in which u resides. Thus v is visited before u in the depth-first traversal of547

the tree.548

If u and v are in the same cluster, then either they in the same colored cycle, or they are549

not. If they are in the same colored cycle, and the edge (u, v) is not in the tree, it can550

either be because v is the first vertex visited in the cycle, and thus v is visited before u,551

or else edge (u, v) is a chord of the cycle containing u, v (but the chord itself is in the552

next sublayer by definition). Since we traverse the cycle first and then branch inside,553

edge (u, v) is either a forward edge or a back edge depending on whether u comes first in554

cycle or v.555

If u and v are in different colored cycles in the same cluster, then there is not an edge556

(u, v).557

Case 2: v is in a higher sublayer than u558

In this case u must be on a colored cycle C and v lies inside C, in the next sublayer.559

Since in our algorithm we complete the traversal of cycle C first and then explore the560

clusters inside, the only way (u, v) can be a non tree edge is when v has been explored in561

the subtree of a vertex u′ that occurs after u in traversal of C, while backtracking. The562

edge (u, v) is therefore a forward edge.563

Case 3: u is in a higher sublayer than v564

This case is similar to previous one and the same argument shows that v must be on a565

colored cycle and the edge (u, v) is a back edge.566

Thus our tree is a DFS tree.567
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(a)

(b)

Figure 2 Figure (a) is a graph G. Figure (b) is the graph in (a) after labelling red edges using
clockwise dual. We omit the cycle expansion and contraction procedure here.
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Figure 3 This figure shows G after applying blue labellings to each red layer we obtained in the
previous figure. The vertices and edges colored purple are those that are red as well as blue.

Figure 4 This figure represents the sublayer (1, 1). The dashed edges and empty vertices are not
part of the layer.
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Figure 5 This figure represents the sublayer (2, 1).

Figure 6 This figure represents the sublayer (3, 1)
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