
Depth-First Search in Directed Graphs, Revisited1

Eric Allender2

Rutgers University, USA3

http://www.cs.rutgers.edu/~allender4

allender@cs.rutgers.edu5

Archit Chauhan6

Chennai Mathematical Institute, India7

https://www.cmi.ac.in/people/fac-profile.php?id=archit8

archit.chauhan@gmail.com9

Samir Datta10

Chennai Mathematical Institute, India11

https://www.cmi.ac.in/~sdatta/12

sdatta@cmi.ac.in13

Abstract14

We present an algorithm for constructing a depth-first search tree in planar digraphs; the algorithm15

can be implemented in the complexity class AC1(UL ∩ co-UL), which is contained in AC2. Prior to16

this (for more than a quarter-century), the fastest uniform deterministic parallel algorithm for this17

problem was O(log10 n) (corresponding to the complexity class AC10 ⊆ NC11).18

We also consider the problem of computing depth-first search trees in other classes of graphs,19

and obtain additional new upper bounds.20

2012 ACM Subject Classification Complexity Classes, Parallel Algorithms21

Keywords and phrases Depth-First Search, Planar Digraphs, Parallel Algorithms, Space-Bounded22

Complexity Classes23

Funding Eric Allender : Supported in part by NSF Grant CCF-1909216.24

Archit Chauhan: Partially supported by a grant from Infosys foundation and TCS PhD fellowship.25

Samir Datta: Partially supported by a grant from Infosys foundation and SERB-MATRICS grant26

MTR/2017/000480.27

1 Introduction28

Depth-first search trees (DFS trees) constitute one of the most useful items in the algorithm29

designer’s toolkit, and for this reason they are a standard part of the undergraduate al-30

gorithmic curriculum around the world. When attention shifted to parallel algorithms in31

the 1980’s, the question arose of whether NC algorithms for DFS trees exist. An early32

negative result was that the problem of constructing the lexicographically least DFS tree33

in a given digraph is complete for P [20]. But soon thereafter significant advances were34

made in developing parallel algorithms for DFS trees, culminating in the RNC7 algorithm of35

Aggarwal, Anderson, and Kao [1]. This remains the fastest parallel algorithm for the problem36

of constructing DFS trees in general graphs, in the probabilistic setting, or in the setting of37

nonuniform circuit complexity. It remains unknown if this problem lies in (deterministic) NC38

(and we do not solve that problem here).39

More is known for various restricted classes of graphs. For directed acyclic graphs (DAGs),40

the lexicographically-least DFS tree from a given vertex can be computed in AC1 [10]. (See41

also [11, 7, 13, 19, 16, 15].) For undirected planar graphs, an AC1 algorithm for DFS trees42

was presented by Hagerup [14]. For more general planar directed graphs Kao and Klein43

presented an AC10 algorithm. Kao subsequently presented an AC5 algorithm for DFS in44

strongly connected planar digraphs. In stating the complexity results for this prior work45

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 74 (2020)

https://orcid.org/0000-0002-0650-028X
http://www.cs.rutgers.edu/~allender
mailto:allender@cs.rutgers.edu
https://www.cmi.ac.in/people/fac-profile.php?id=archit
mailto:archit.chauhan@gmail.com
https://www.cmi.ac.in/~sdatta/
mailto:sdatta@cmi.ac.in

2 Depth-First Search in Directed Graphs, Revisited

in terms of complexity classes (such as AC1,AC10, etc.), we are ignoring an aspect that46

was of particular interest to the authors of this earlier work: minimizing the number of47

processors. This is because our focus is on classifying the complexity of constructing DFS48

trees in terms of complexity classes. Thus, if we reduce the complexity of a problem from49

AC10 to AC2, then we view this as a significant advance, even if the AC2 algorithm uses many50

more processors (so long as the number of processors remains bounded by a polynomial).51

Indeed, our algorithms rely on the logspace algorithm for undirected reachability [21], which52

does not directly translate into a processor-efficient algorithm. We suspect that our approach53

can be modified to yield a more processor-efficient AC3 algorithm, but we leave that for54

others to investigate.55

1.1 Our Contributions56

First, we observe that, given a DAG G, computation of a DFS tree in G logspace reduces to57

the problem of reachability in G. Thus, for general DAGs, computation of a DFS tree lies in58

NL, and for planar DAGs, the problem lies in UL∩ co-UL [8, 23]. For classes of graphs where59

the reachability problem lies in L, so does the computation of DFS trees. One such class60

of graphs is planar DAGs with a single source (see [2], where this class of graphs is called61

SMPDs, for Single-source, Multiple-sink, Planar DAGs).62

For undirected planar graphs, it was shown in [4] that the approach of Hagerup’s AC1
63

DFS algorithm [14] can be adapted in order to show that construction of a DFS tree in a64

planar undirected graph logspace-reduces to computing the distance between two nodes in65

a planar digraph. Since this latter problem lies in UL ∩ co-UL [24], so does the problem of66

DFS for planar undirected graphs.67

Our main contribution in the current paper is to show that a more sophisticated application68

of the ideas in [14] leads to an AC1(UL ∩ co-UL) algorithm for construction of DFS trees in69

planar directed graphs. (That is, we show DFS trees can be constructed by unbounded fan-in70

log-depth circuits that have oracle gates for a set in UL∩ co-UL.1) Since UL ⊆ NL ⊆ SAC1 ⊆71

AC1, the AC1(UL ∩ co-UL) algorithm can be implemented in AC2. Thus this is a significant72

improvement over the best previous parallel algorithm for this problem: the AC10 algorithm73

of [18], which has stood for 28 years.74

2 Preliminaries75

We assume that the reader is familiar with depth-first search trees (DFS trees).76

We further assume that the reader is familiar with the standard complexity classes L,NL77

and P (see e.g. the text [6]). We will also make frequent reference to the logspace-uniform78

circuit complexity classes NCk and ACk. NCk is the class of problems for which there is a79

logspace-uniform family of circuits {Cn} consisting of AND, OR, and NOT gates, where80

the AND and OR gates have fan-in two and each circuit Cn has depth O(logk n). (The81

logspace-uniformity condition implies that each Cn has only nO(1) gates.) ACk is defined82

similarly, although the AND and OR gates are allowed unbounded fan-in. An equivalent83

characterization of ACk is in terms of concurrent-read concurrent-write PRAMs with running84

time O(logk n), using nO(1) processors. For more background on these circuit complexity85

classes, see, e.g., the text [26].86

1 An earlier version of this work claimed a stronger upper bound, but there was an error in one of the
lemmas in that version [3].

E. Allender, A. Chauhan, and S. Datta 3

A nondeterministic Turing machine is said to be unambiguous if, on every input x, there is87

at most one accepting computation path. If we consider logspace-bounded nondeterministic88

Turing machines, then unambiguous machines yield the class UL. A set A is in co-UL if and89

only if its complement lies in UL.90

The construction of DFS trees is most naturally viewed as a function that takes a graph91

G and a vertex v as input, and produces as output an encoding of a DFS tree in G rooted at92

v. But the complexity classes mentioned above are all defined as sets of languages, instead of93

as sets of functions. Since our goal is to place DFS tree construction into the appropriate94

complexity classes, it is necessary to discuss how the complexity of functions fits into the95

framework of complexity classes.96

When C is one of {L,P}, it is fairly obvious what is meant by “f is computable in C”; the97

classes of logspace-computable functions and polynomial-time-computable functions should98

be familiar to the reader. However, the reader might be less clear as to what is meant by99

“f is computable in NL”. As it turns out, essentially all of the reasonable possibilities are100

equivalent. Let us denote by FNL the class of functions that are computable in NL; it is101

shown in [17] each of the three following conditions is equivalent to “f ∈ FNL”.102

1. f is computed by a logspace machine with an oracle from NL.103

2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language104

in NL.105

3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)106

is b} is in NL.107

Rather than use the unfamiliar notation “FNL”, we will abuse notation slightly and refer to108

certain functions as being “computable in NL”.109

The proof of the equivalence above relies on the fact that NL is closed under complement.110

Thus it is far less clear what it should mean to say that a function is “computable in UL”111

since it remains an open question if UL is closed under complement (although it is widely112

conjectured that UL = NL) [22, 5]). However the proof from [17] carries over immediately to113

the class UL ∩ co-UL. That is, the following conditions are equivalent:114

1. f is computed by a logspace machine with an oracle from UL ∩ co-UL.115

2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language116

in UL ∩ co-UL.117

3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)118

is b} is in UL ∩ co-UL.119

Thus, if any of those conditions hold, we will say that “f is computable in UL ∩ co-UL”.120

The important fact that the composition of two logspace-computable functions is also121

logspace-computable (see, e.g., [6]) carries over with an identical proof to the functions122

computable in LC for any oracle C. Thus the class of functions computable in UL ∩ co-UL is123

also closed under composition. We make implicit use of this fact frequently when presenting124

our algorithms. For example, we may say that a colored labeling of a graph G is computable125

in UL ∩ co-UL, and that, given such a colored labeling, a decomposition of the graph into126

layers is also computable in logspace, and furthermore, that – given such a decomposition of127

G into layers – an additional coloring of the smaller graphs is computable in UL ∩ co-UL, etc.128

The reader need not worry that a logspace-bounded machine does not have adequate space129

to store these intermediate representations; the fact that the final result is also computable in130

UL ∩ co-UL follows from closure under composition. In effect, the bits of these intermediate131

representations are re-computed each time we need to refer to them.132

Finally, we will consider ACk circuits augmented with oracle gates for an oracle in133

UL ∩ co-UL, which we denote by ACk(UL ∩ co-UL).134

4 Depth-First Search in Directed Graphs, Revisited

3 DFS in DAGs logspace reduces to Reachability135

In this section, we observe that constructing the lexicographically-least DFS tree in a DAG136

G can be done in logspace given an oracle for reachability in G. But first, let us define what137

we mean by the lexicographically-first DFS tree in G:138

I Definition 1. Let G be a DAG, with the neighbours of the vertices given in some order139

in the input. (For example, with adjacency lists, we can consider the ordering in which the140

neighbors are presented in the list). Then the lexicographic first DFS traversal of G is the141

traversal done by the following procedure:

Input: (G, v)
Output: Sequence of edges in DFS tree
visited[v] ← 1
for every out neighbour w of v, in the given order do

if visited[w] = 0 then
print(v, w)
DFS(G,w)

end
end
Algorithm 1 Static DFS routine

142

That is, the lexicographically-first DFS tree is merely a DFS tree, but with the (very143

natural) condition that the children of every vertex are explored in the order given in the144

input.145

When we apply this procedure as part of our algorithm for DFS in planar graphs, we will146

need to to apply it to directed acyclic multigraphs (i.e., graphs with parallel edges between147

vertices) where there is a logspace-computable function f(v, e) that computes the ordering148

of the neighbors of vertex v, assuming that v is entered using edge e. (That is, if the DFS149

tree visits vertex v from vertex x, and there are several parallel edges from x to v, then the150

ordering of the neighbors of v may be different, depending on which edge is followed from x151

to v.)152

As is observed in [10], the unique path from s to another vertex v in the lexicographically-153

least DFS tree in G rooted at s is the lexicographically-least path in G from s to t.154

Now consider the following simple algorithm for constructing the lexicographically-least155

path in a DAG G from s to v:156

Input: (G, s, v, f)
Output: Lex least path from s to v under f
current← s; e← null;
while (current 6= v) do

child← first child of current (in the order given by f(current, e))
while (REACH(child, v) 6= TRUE) do

child ← next child of current (in the order given by f(current, e))
end
e← (current, child); current = child;

end
Algorithm 2 DAG DFS routine

E. Allender, A. Chauhan, and S. Datta 5

The correctness of this algorithm is essentially shown by the proof of Theorem 11 of [10].157

The algorithm for computing the lexicographically-least DFS tree rooted at s can thus158

be presented as the composition of two functions g and h, where g(G, s) = (G, s, L), where159

L is a list of the lexicographically-least paths from s to each vertex v. Note that the set of160

edges in the DFS tree in G rooted at s is exactly the set of edges that occur in the list L161

in g(G, s) = (G, s, L). Then h(G, s, L) is just the result of removing from G each edge that162

does not appear in L. The function h is computable in logspace, whereas g is computable in163

logspace with an oracle for reachability in G.164

Since reachability in DAGs is a canonical complete problem for NL, we obtain the following165

corollary:166

I Corollary 2. Construction of lexicographically-first DFS trees for DAGs lies in NL.167

Similarly, since reachability in planar directed (not-necessarily acyclic) graphs lies in168

UL ∩ co-UL [8, 23], we obtain:169

I Corollary 3. Construction of lexicographically-first DFS trees for planar DAGs lies in170

UL ∩ co-UL.171

A planar DAG G is said to be an SMPD if it contains at most one vertex of indegree172

zero. Reachability in SMPDs is known to lie in L [2].173

I Corollary 4. Construction of lexicographically-first DFS trees for SMPDs lies in L.174

4 Layering the graph175

The main algorithmic insight that led us to the current algorithm was a generalization of176

the layering algorithm that Hagerup developed for undirected graphs [14]. We show that177

this approach can be modified to yield a useful decomposition of directed graphs, where the178

layers of the graph have a restricted structure that can be exploited. More specifically, the179

strongly-connected components of each layer are what we call meshes, which enable us easily180

to construct paths (which will end up being paths in the DFS trees we construct) whose181

removal partitions the graph into significantly smaller strongly connected components.182

The high-level structure of the algorithm is thus:183

1. Construct a planar embedding of G.184

2. Partition the graph planar G into layers (each of which is surrounded by a directed cycle).185

3. Identify one such cycle C that has properties that will allow us to partition the graph186

into smaller weakly connected components.187

4. Depending on which properties C satisfies, create a path p from the exterior face either188

to a vertex on C or to one of the meshes that reside in the layer just inside C. Removal189

of p partitions G into weakly connected components, where each strongly-connected190

component therein is smaller than G by a constant factor.191

5. Let the vertices on this path p be v1, v2, . . . , vk. The DFS tree will start with the path p,192

and append DFS trees for subgraphs G1, G2, . . . , Gk to this path, where Gi consists of193

all of the vertices that are reachable from vi that are not reachable from vj for any j > i.194

(This is obviously a tree, and it will follow that it is a DFS tree.) Further, decompose each195

Gi into a DAG of strongly-connected components. Build a DFS of that DAG, and then196

work on building DFS trees of the remaining (smaller) strongly-connected components.197

6. Each of the steps above can be accomplished in UL ∩ co-UL, which means that there is198

an AC0 circuit with oracle gates from UL ∩ co-UL that takes G as input and produces199

the list of much smaller graphs G1, . . . , Gk, as well as the path p that forms the spine200

6 Depth-First Search in Directed Graphs, Revisited

of the DFS tree. We now recursively apply this procedure (in parallel) to each of these201

smaller graphs. The construction is complete after O(logn) phases, yielding the desired202

AC1(UL ∩ co-UL) circuit family.203

In the exposition below, we first layer the graph in terms of clockwise cycles (which we204

will henceforth call red cycles), and obtain a decomposition of the original graph into smaller205

pieces. We then apply a nested layering in terms of counterclockwise cycles (which we will206

henceforth call blue cycles); ultimately we decompose the graph into units that are structured207

as a DAG, which we can then process using the tools from the earlier sections of the paper.208

The more detailed presentation follows.209

4.1 Degree Reduction and Expansion210

I Definition 5. (of Exp�(G) and Exp	(G)) Let G be a planar digraph. The “expanded”211

digraph Exp�(G) (respectively, Exp	(G) is formed by replacing each vertex v of total degree212

d(v) > 3 by a clockwise (respectively, counterclockwise) cycle Cv on d(v) vertices such that213

the endpoint of the the i-th edge incident on v is now incident on the the i-th vertex of the214

cycle.215

Exp�(G) and Exp	(G) each have maximum degree bounded by 3; i.e., they are subcubic.216

Next we define the clockwise (and counterclockwise) dual for such a graph and also a notion217

of distance.218

Recall that for an undirected plane graph H, the dual (multigraph) H∗ is formed by219

placing, for every edge e ∈ E(H), a dual edge e∗ between the face(s) on either side of e (see220

Section 4.6 from [12] for more details). Faces f of H and the vertices f∗ of H∗ correspond221

to each other as do vertices v of H and faces v∗ of H∗.222

I Definition 6. (of Duals G� and G) Let G be a plane digraph, then the clockwise dual223

G� (respectively, counterclockwise dual G) is a weighted bidirected version of the undirected224

dual of the underlying undirected graph of G in a way so that the orientation formed by225

rotating the corresponding directed edge of G in a clockwise (respectively, counterclockwise)226

way gets a weight of 1 and the other orientation gets weight 0. We inherit the definition of227

dual vertices and faces from the underlying undirected dual.228

I Definition 7. For a plane subcubic digraph G, let f0 be the external face. Define the type229

type�(f) (respectively, type	(f)) of a face to be the singleton set consisting of the distance230

at which f lies from f0 in G�: {d�(f0, f)} (respectively, {d	(f0, f)}). Generalise this to231

edges e by defining type�(e) (respectively type	(e)) as the set consisting of the union of the232

type� (respectively, type) of the two faces adjacent to e, and to vertices v by defining as233

the type�(v) (respectively type	(v)) union of the type� (respectively, type) of the faces234

incident on the vertex v.235

The following is a direct consequence of subcubicity and the triangle inequality:236

I Lemma 8. In every subcubic graph G, the cardinality |type�(x)|, |type	(x)| where x237

is a face, edge or a vertex is at least one and at most 2 and in the latter case consists of238

consecutive non-negative integers.239

Further, if v ∈ V (G) is such that |type�(v)| = 2, then there exist unique u,w ∈ V (G),240

such that (u, v), (v, w) ∈ E(G) and |type�(u, v)| = |type�(v, w)| = 2.241

We first need a simple lemma:242

E. Allender, A. Chauhan, and S. Datta 7

I Lemma 9. Suppose (f1, f2) is a dual edge with weight 1 (and (f2, f1) is of weight 0) then,243

d�(f0, f1) ≤ d�(f0, f2) ≤ d�(f0, f1) + 1.244

Proof. From the triangle inequality d�(f0, f1) ≤ d�(f0, f2) + d�(f2, f1) = d�(f0, f2). Simil-245

arly, d�(f0, f2) ≤ d�(f0, f1) + d�(f1, f2) ≤ d�(f0, f1) + 1. J246

Proof. (of Lemma 8) Since each vertex v ∈ V (G) of a subcubic graph is incident on at247

most 3 faces the only case in which |type�(v)| > 2 corresponds to three distinct faces248

f1, f2, f3 being incident on a vertex. But here the undirected dual edges form a triangle249

such that in the directed dual the edges with weight 1 are oriented either as a cycle or250

acyclically. In the former case by three applications of the first half of Lemma 9 we get251

that d�(f0, f1) ≤ d�(f0, f2) ≤ d�(f0, f3) ≤ d�(f0, f1), hence all 3 distances are the same.252

Therefore |type�(v)| = 1.253

In the latter case, suppose the edges of weight 1 are (f1, f2), (f2, f3), (f1, f3), then254

by Lemma 9 we get: d�(f0, f1) ≤ d�(f0, f2), d�(f0, f3) ≤ d�(f0, f1) + 1. Thus, both255

d�(f0, f2), d�(f0, f3) are sandwiched between two consecutive values d�(f0, f1), d�(f0, f1)+1.256

Hence d�(f0, f1), d�(f0, f2), d�(f0, f3) must take at most two distinct values, and thus257

|type�(v)| ≤ 2. Moreover either type�(f1) 6= type�(f2) = type�(f3) or type�(f1) =258

type�(f2) 6= type�(f3). Let e1, e2, e3 be such that, e1
� = (f2, f3), e2

� = (f1, f3), e3
� =259

(f1, f2). Then the two cases correspond to |type�(e1)| = |type�(e2)| = 2, |type�(e3)| = 1260

and to |type�(e1)| = 1, |type�(e2)| = |type�(e3)| = 2 respectively. Noticing that e1, e3 are261

both incoming or both outgoing edges of v completes the proof for the clockwise case. The262

proof for the counterclockwise case is formally identical. J263

I Definition 10. For a plane subcubic graph G as above, we refer to vertices and edges with264

a type of cardinality two in G� (respectively, in G) as red (respectively, blue) while the265

ones with a cardinality of one as white. The resulting colored graphs are called red(G) and266

blue(G) respectively.267

We will see later how to apply both the duals in G to get red and blue layerings of a268

given input graph.269

Also note that a red (respectively blue) edge must have red (respectively blue) end points,270

as they are adjacent to the same faces as the edge between is.271

We enumerate some properties of red(G), blue(G) (G is subcubic):272

I Lemma 11. 1. Red vertices and edges in red(G) form disjoint clockwise cycles.273

2. No clockwise cycle in red(G) consists of only white edges(and hence white vertices).274

Similar properties hold for blue(G).275

Proof. 1. Firstly, note that a red edge must have red end point vertices, as they are adjacent276

to the same faces that the edge between them is adjacent to. It is immediate from277

Lemma 8 that if v is a red vertex, it has exactly one red incoming edge and one red278

outgoing edge, proving this part.279

2. Suppose C is a clockwise cycle. Consider the shortest path in G� from the external face280

to a face enclosed by C. From the Jordan curve theorem (Theorem 4.1.1 [12]), it must281

cross the cycle C. The edge dual to the crossing must be red.282

J283

The definitions above, which apply only to subcubic plane graphs, can now be extended284

to a general plane graph G, by considering the subcubic graphs Exp�(G) (and Exp	(G)).285

But first, we must make a simple observation about red(Exp�(G)) (respectively about286

blue(Exp	(G))).287

8 Depth-First Search in Directed Graphs, Revisited

I Lemma 12. Let v ∈ V (G) be a vertex of degree more than 3. Let Cv be the corresponding288

expanded cycle in Exp�(G). Suppose at least one edge of Cv is white in red(Exp�(G)) then289

there is a unique red cycle C that shares edges with Cv.290

Proof. First we note that Cv does not contain anything inside it since it is an expanded291

cycle. By lemma 11 we know that Cv has at least one red edge. Suppose it shares one or292

more edges with a red cycle R1. Since both cycles are clockwise and Cv has nothing inside,293

the cycle R1 must enclose Cv. Now suppose there is another red cycle R2 that shares one or294

more edges with Cv. Then R2 must also enclose Cv. But two cycles cannot enclose a cycle295

whilst sharing edges with it without touching each other, which contradicts the above lemma296

that all red cycles in a subcubic graph are vertex disjoint. J297

The last two lemmas allow us to consistently contract the red cycles in red(Exp�(G)):298

I Definition 13. The colored graph Col�(G) (respectively, Col	(G)) is obtained by labeling299

a degree more than 3 vertex v ∈ V (G) as red iff the cycle Cv in red(Exp�(G)) has at least300

one red edge and at least one white edge. Else the color of v is white. All the low degree301

vertices and edges of G inherit their colors from red(Exp�(G)). The coloring of Col	(G)302

is similar.303

v1

v2v3

v4

v5

C1

C2C3

C1

v1

v2v3

C2

v4

C3

v5

Figure 1 An example of contracting expanded cycles. The figure on right shows the graph after
contracting the expanded cycles C1, C2, C3 according to definition 13

We can now characterize the colorings in the graph Col�(G):304

I Lemma 14. The following hold:305

1. A red cycle in Col�(G) is vertex disjoint from every red cycle contained in its interior.306

2. Every 2-connected component of the red subgraph of Col�(G) is a simple clockwise cycle.307

Proof. For v ∈ V (G), let Cv ⊆ Exp�(G) be the expanded cycle. If it has a red vertex it is308

immediately enclosed by a unique red cycle R in Exp�(G) by Lemma 12. Assuming Cv is309

not all red, it consists of alternating red subpaths and white subpaths. On contracting Cv we310

get a collection of clockwise red cycles outside sharing a common cut-vertex v. Notice that311

the new collection of red cycles consists of edges that R did not share with Cv. Also notice312

E. Allender, A. Chauhan, and S. Datta 9

that (as a thought experiment) if we contracted the Cv’s that share a vertex with R, one at313

a time we would get an edge-disjoint set of red cycles with distinct cut vertices. Therefore, in314

Col�(G), the red subgraph consists of a collection of connected components, each of which315

is a remnant of exactly one red cycle in Exp�(G); these connected components consist of316

red cycles that touch externally at cut vertices. Hence both parts of the lemma follow. J317

Although the above lemmas have been proved for the clockwise dual, they also hold for318

counterclockwise dual with red replaced by blue mutatis mutandis.319

4.2 Layering the colored graphs320

I Definition 15. Let x ∈ V (Col�(G)) ∪ E(Col�(G)). Let `�(x) be one more than the321

minimum integer that occurs in type�(x′), for each x′ ∈ V (Exp�(G)) ∪ E(Exp�(G)) that322

is contracted to x. Further let Lk(Col�(G)) = {x ∈ V (Col�(G))∪E(Col�(G)) : `�(x) = k}.323

Similarly define, `	(x),Lk(Col	(G)).324

We call Lk(Col�(G)) the kth layer of the graph.325

It is easy to see the following from Lemma 14:326

I Proposition 16. For every x ∈ V (Col�(G))∪E(Col�(G)) the quantity `�(x) is one more327

than the number of red cycles that strictly enclose x in Col�(G). All the vertices and edges328

of a red cycle of Col�(G) lie in the same layer Lk+1(Col�(G)) for the enclosure depth k of329

the cycle.330

We had already noted above that the red subgraph of G had simple clockwise cycles as331

its biconnected components. We note a few more lemmas about the structure of a layer of G:332

I Lemma 17. We have:333

1. A red cycle in a layer Lk+1(Col�(G)) does not contain any vertex/edge of the same layer334

inside it.335

2. Any clockwise cycle in a layer consists of only red vertices and edges.336

Dually, a blue cycle in a layer does not contain any vertex or edge of the same layer inside it.337

I Remark 18. Notice that the conclusion in the second part of the lemma fails to hold if we338

allow cycles spanning more than one layer.339

Proof. The first part is a direct consequence of proposition 16. For the second part we mimic340

the proof of the second part of Lemma 11. Consider a clockwise cycle C ⊆ Lk+1(Col�(G))341

that contains a white edge e. Every face adjacent to C from the outside must have type� = k342

because C is contained in layer k + 1. Then the type� of the faces on either side of e is the343

same and therefore must be k. Let f be a face enclosed by C that has type�(f) = k. Thus344

it must be adjacent to a face of type� = k − 1. But this contradicts that every face inside345

and adjacent to C must have type� at least k. J346

The lemmas above show that the strongly connected components of the red subgraph of a347

layer consist of red cycles touching each other without nesting, in a tree like structure. This348

prompts the following definition:349

I Definition 19. For a red cycle R ⊆ Lk(Col�(G)) we denote by GR, the graph induced by350

vertices of Lk+1(Col�(G)) enclosed by R.351

Now we combine Definitions 13 and 15:352

10 Depth-First Search in Directed Graphs, Revisited

I Definition 20. Each vertex or edge x ∈ V (G) ∪ E(G) gets a red layer number k + 1 if it353

belongs to Lk+1(Col�(G)) and a blue layer number l + 1, if it belongs to Ll+1(Col	(GR))354

where R ⊆ Lk(Col�(G)) is the red cycle immediately enclosing x.355

Moreover this defines the colored graph Col(G) by giving x the color red if it is red in356

Col�(G) and/or blue in Col	(GR) (notice it could be both red and blue) and lastly white if it357

is white in both the graphs. In this case, we say that x belongs to sublayer Lk+1,l+1(Col(G)).358

By proposition 16, we can also say that a sublayer Lk+1,l+1(Col(G)) thus consists of359

edges/vertices that are strictly enclosed inside k red cycles and inside l blue cycles that are360

contained inside the first enclosing red cycle.361

We’ll see some observations and lemmas regarding the structure of a sublayer now.362

Since every edge/vertex in Lk+1,l+1(Col(G)) has the same red AND blue layer number,363

it is clear that there can be no nesting of colored cycles. Also we have:364

I Lemma 21. Every clockwise cycle in a sublayer Lk+1,l+1(Col(G)) consists of all red edges365

and vertices and any every counterclockwise cycle in the sublayer consists of all blue vertices366

and edges. (Some edges/vertices of the cycle can be both red as well as blue)367

Proof. This is a direct consequence of Lemma 17 applied to the sublayer Lk+1,l+1(Col(G)),368

which is a (counterclockwise) layer in graph GR for some red cycle R. J369

Thus we can refer to clockwise cycles and counterclockwise cycles as red and blue cycles370

respectively.371

I Definition 22. For a red or blue colored cycle C of layer Lk,l(Col(G)), we denote by GC372

the graph induced by vertices of Lk′,l′(Col(G)) enclosed by C, where {k′, l′} is {k + 1, 1} or373

{k, l + 1} according to whether C is a red or a blue cycle respectively.374

Note that:375

I Proposition 23. Two cycles of the same color in Lk+1,l+1(G) cannot share an edge376

This is since neither is enclosed by the other as they belong to the same layer, and as they377

also have the same orientation. Cycles of different colors can share edges but we note:378

I Lemma 24. Two cycles of a sublayer Lk+1,l+1(Col(G)) can only share one contiguous379

segment of edges.380

Proof. Let a red cycle R and a blue cycle B in a sublayer share two vertices u, v but let the381

paths R(u, v), B(u, v) in the two cycles be disjoint. Notice that the graph (R\R(u, v))∪B(u, v)382

is also a clockwise cycle that encloses the edges of R(u, v) contradicting the first part of383

Lemma 17. J384

We consider the strongly connected components of a sublayer and note the following385

lemmas regarding them:386

I Lemma 25. The trivial strongly connected components of a sublayer (those that consist387

of a single vertex) are white vertices. The non-trivial strongly connected components of a388

sublayer have the following properties:389

1. Every vertex/edge in them is blue or red (possibly both).390

2. Every face, except possibly the outer face, is a directed cycle.391

3. Every face other than the outer face has at least one edge adjacent to the outer face.392

Proof. 1. In a non-trivial strongly connected graph every vertex and edge lies on a cycle393

and therefore by Lemma 21 must be colored red or blue (or both).394

E. Allender, A. Chauhan, and S. Datta 11

(a)

(b)

(c)

(d)

(e)
(f)

Figure 2 Figure (a) is a graph G. Figure (b) is the graph in (a) after labelling red edges using
clockwise dual. We omit the cycle expansion and contraction procedure here.
Figure (c) shows G after applying blue labellings to each red layer we obtained in the previous
figure. The vertices and edges colored purple are those that are red as well as blue. Figure
(d) represents the sublayer (1, 1). The dashed edges and empty vertices are not part of the
layer. Figure (e) figure represents the sublayer (2, 1). Figure (f) represents the sublayer (3, 1).

12 Depth-First Search in Directed Graphs, Revisited

2. Suppose there is a face f the boundary of which is not a directed cycle. Look at a395

directed dual (say clockwise) of the strongly connected component (just the component396

independently). This dual must be a DAG since the primal is strongly connected. The397

vertex f∗ in the dual corresponding to face f of the strongly connected component has398

in degree at least one and out degree at least one since it has boundary edges of both399

orientations, hence the edges adjacent to f∗ do not form a directed cut of the dual.400

Let o∗ denote the dual vertex corresponding to the outer face of the SCC. In order to401

prove the claim, it is sufficient to show the existence of a directed cut C∗ that separates402

f∗ and o∗, since it would imply by cut cycle duality that there is a directed cycle C in403

the primal SCC that encloses the face f w.r.t the outer face and since the boundary of f404

is not a directed cycle, C must strictly enclose at least one edge of the boundary of f405

contradicting Lemma 17. To see the cut, consider a topological sort ordering of the dual406

(it is a DAG). Let the number of a dual vertex v∗ in the ordering be denoted by n(v∗).407

W.l.o.g, let n(f∗) < n(o∗). Consider the partition of the dual vertices:408

A = {v∗ | n(v∗) ≤ n(f∗)}, B = {v∗ | n(v∗) > n(f∗)}409

By definition of topological sort, all edges across this partition must be directed from A410

to B, hence it is a directed cut, and therefore it must also contain a subset which is a411

minimal directed cut. But clearly the minimal cut is not the set of edges adjacent to f∗412

since it has both out and in degree at least one, hence proving the claim. Hence every413

face in the SCC of a sublayer must be a directed (hence colored) cycle (by Lemma 21).414

3. Let H be an SCC of the sublayer. We observed from the proof above that no vertex in415

the dual of H, except possibly the vertex corresponding to the outer face of H, can have416

both in degree and out degree more than one. (i.e. every dual vertex, except the outer417

face is a source or a sink). Therefore if any dual vertex f∗ has a directed path to o∗ or418

vice versa, then the path must be an edge and we are done. Suppose there is no directed419

path from f∗ to o∗ and w.l.o.g. let f∗ be a source. Consider the trivial directed cut C1:420

A = {f∗}, B = V (H)\A421

This is a cut since there are no edges from B to A, and this cut clearly corresponds to422

the directed cycle which is the boundary of face f in H.423

Now consider the cut C2:424

A′ = {v∗ | v∗is reachable from f∗}, B′ = V (H)\A′425

Clearly this is a f∗-o∗ cut with no edge from a vertex in A′ to a vertex in B′ and o∗ ∈ B′.426

But this f∗-o∗ cut is different from C1 since f∗ is a source vertex and hence A′ has at427

least one more vertex than just f∗. Hence this corresponds to a directed cycle in H that428

strictly encloses at least some edge of f , and we again get a contradiction of Lemma 17.429

J430

The strongly connected components of a sublayer hence consist of intersecting red and blue431

facial cycles, with every face having at least one boundary edge adjacent to the outer face of432

the component.433

I Definition 26. We call the strongly connected components of a sublayer L(k, l) meshes.434

5 Mesh Properties435

I Definition 27. Given a subgraph H of G embedded in the plane, we define the closure of436

H, denoted by H̃, to be the induced graph on the vertices of H together with the vertices of437

G that lie in the interior of faces of H (except for the outer face of H).438

E. Allender, A. Chauhan, and S. Datta 13

For convenience, we call a face of a graph that is not the outer face an internal face.439

From Lemmas 21 and 25, we have a bijection: every face of a mesh, except possibly its440

outer face, is a directed cycle, and every directed cycle in a mesh is the boundary of a face of441

the mesh.442

I Definition 28. Let 0 < α < 1. An α separator of a digraph H that is a subgraph of a443

digraph G is a set of vertices of H whose removal from H separates H̃ into subgraphs, where444

no strongly connected component has size greater than α|G|.445

A path separator is a sequence of vertices 〈v1, . . . , vn〉 that is a separator and also is a446

directed path.447

I Definition 29. Let G be a graph and let M be a mesh in a sublayer G.448

For an internal face f of M , we define wt(f) to be |V (f̃)|.449

Let wt(H) where H is a subgraph of M be defined as |V (H̃)|.450

I Definition 30. For a mesh M , we call a vertex that is adjacent to the outer face of M an451

external vertex, and a vertex that is not adjacent to the outer face an internal vertex.452

Also, we call vertices of degree more than two junction vertices.453

If p = 〈v1, v2, . . . , vk〉 is a directed path such that v2, . . . , vk−1 are all vertices of degree454

two, but v1, vk have degree more than two, then we call p a segment. We call vk the out455

junction neighbour of v1 and v1 the in junction neighbour of vk.456

We call a segment with all edges adjacent to the outer face an external segment, and457

a segment with no edge adjacent to the outer face an internal segment.458

If the end points of an internal segment are both internal vertices also, we call the459

segment an i-i-segment.460

The rest of this section is devoted to a proof of the following lemma, which asserts that461

we can construct a path separator in a mesh, assuming that no internal face of the mesh is462

too large.463

I Lemma 31. Suppose wt(f) < wt(G)/12 holds for every internal face f of a mesh M that464

is a subgraph of G. Then from any external vertex r of M , we can find (in UL ∩ co-UL) an465

11
12 path separator of M , starting at r.466

The vertices of M with degree two (in-degree 1 and out-degree 1 because M is strongly467

connected) are not important since they can be seen as just “subdivision” vertices. Now we468

will look at the structure of a mesh around an internal junction vertex, and the way the rest469

of the mesh is attached to that structure. Also, we state here that we will abuse the notion470

of 3-connected components by ignoring the non-junction vertices for convenience.471

I Lemma 32. If v is an internal junction vertex of a mesh and e1, . . . , ek are the edges472

adjacent to v in the cyclic order of embedding, then the edges alternate in directions i.e. if e1473

is outgoing from v, then e2 is incoming to v and e3 is outgoing and so on. Consequently, v474

has even degree (at least 4).475

Proof. Let ei, ei+1 be two edges adjacent to v, that are also adjacent in the cyclic order of476

the drawing. Since they are adjacent in the drawing, they must enclose between them, a477

region, and hence a face, which is not the outer face. But the boundary of every non-outer478

face in a mesh is a directed cycle, hence v, ei, ei+1 lie on a directed cycle, with both edges479

adjacent to v. Hence one of them must be an out edge from v, and the other incident towards480

v. J481

14 Depth-First Search in Directed Graphs, Revisited

I Definition 33. Let v be an internal junction vertex of degree 2d in a mesh M , and let482

its junction neighbours be (u1, w1, u2, w2, . . . , ud, wd) in clockwise order starting from edge483

〈u1, v〉(the wi’s are out neighbours, and ui’s the in neighbours, since junction neighbours484

alternate).485

Every adjacent pair of edges incident to v borders a face that is not the outer face. Let486

fu,v,w denote the face bordered by v and the junction neighbours u and w of v which are487

adjacent in cyclic order around v. The boundary of fu,v,w can be written as three disjoint488

parts (except for endpoints), segment (u, v) + segment (v, w) + petalw,u, where the third489

part denotes a simple path from w to u along the face boundary. We will use the notation490

petalw,u to denote the corresponding boundary for any face fu,v,w adjacent to v.491

We define flower(v) as
⋃
{vertices on boundary of faces adjacent to v}.492

We note the following property of petals:493

I Proposition 34. For all adjacent junction neighbour pairs wi, uj of internal vertex v,494

petalwi,uj are disjoint, except possibly the end points.495

Proof. Petals of two faces must be internally disjoint because the corresponding faces share496

the vertex v and two faces cannot have a non-contiguous intersection, by Lemma 24. J497

For an internal junction vertex v, the union of the petals around flower(v) thus form an498

undirected cycle around v, with at least four alternations in directions. Now we define bridges499

of the cycle, which are components of M − flower(v), along with the points of attachment.500

We use the definition of bridges from [25]:501

I Definition 35. For a subgraph H of M , a vertex of attachment of H is a vertex of H that502

is incident with some edge of M not belonging to H.503

Let J be an undirected cycle of M . We define a bridge of J in M as a subgraph B of504

M with the following properties:505

1. each vertex of attachment of B is a vertex of J .506

2. B is not a subgraph of J .507

3. no proper subgraph of B has both the above properties.508

We denote by 2-bridge, bridges with exactly two vertices of attachment to the specified509

cycle, and by 3-bridge, bridges with three or more vertices of attachment.510

I Lemma 36. 1. The vertices of attachment of a 2-bridge of flower(v) must both lie on511

one petal of flower(v).512

2. The vertices of attachment of a 3-bridge of flower(P) can lie on one or, at most two513

adjacent petals. Moreover, in the latter case the junction neighbour of v common to both514

petals must be a vertex of attachment of the 3-bridge.515

3. For an internal vertex v, and an external vertex r of M , let p = 〈r, . . . , u1, v be a516

simple path from r to v, where u1 is an in junction neighbour of v. Let the other517

junction neighbours of v be named as in Lemma 33 in cyclic order from u1. For j ∈518

{i, i+1}, consider an extended path of p, pwi,uj
= 〈r, . . . , u1, v, wi〉+petalwi,uj

+〈uj , . . . , v〉,519

excluding the last edge incident to v in the sequence. That is, pwi,uj
goes from r to v,520

then to an out junction neighbour wi, and then wraps around fuj ,v,wi by taking petalwi,uj521

and then the segment back towards v from uj.522

E. Allender, A. Chauhan, and S. Datta 15

Let M −pwi,uj denote the induced graph on V (M)\V (pwi,uj). Then V (M)\V (pwi,uj) can523

be partitioned into four disconnected parts, say Vleft and Vright, Vf , Vrem such that:524

Vleft = {petalw1,u1 ∪ petalw1,u2 ∪ petalw2,u2 . . . ∪ petalwi−1,ui−1}⋃
{petalwi,ui if j = i+ 1}⋃
{all vertices in the bridges attached to these petals}

525

Vright = {petalwi+1,ui+1 ∪ petalwi+1,ui+2 . . . ∪ petalwd,ud
}⋃

{petalwi,uj+1 if j = i}⋃
{all vertices in the bridges attached to these petals}

526

Vf = ˜fuj ,v,wi
\V (pwi,uj

)527

Vrem =
⋃
{vertices of all bridges that have vertices

of attachment only in petalwi,uj
}.

528

such that there is no undirected path between any vertex of one of these four sets to529

any vertex in another. The path pwi,ui
is therefore a path separator that gives these530

components.531

Proof. 1. Let x, y be the two vertices of attachment of the 2-bridge B on flower(v). Since532

bridges are connected graphs without the edges of the corresponding cycle, there must be533

an undirected path, p in the bridge connecting x, y, without using any edge of flower(v).534

If x and y were not on the same petal, then this path along with the boundary of535

flower(v) must clearly enclose a junction neighbour of v, say w. Thus w is not adjacent536

to the outer face. Now since w is an internal junction vertex, and two of its adjacent537

faces are also adjacent to v, look at another face f adjacent to w and not adjacent to538

v. (Internal junction vertices have at least four adjacent faces.) The boundary of this539

face cannot touch B since that would make it a part of B and consequently w a vertex of540

attachment of B to flower(v). Therefore the boundary of f is enclosed within the paths541

p and the part of flower(v) that is also enclosed by p. Therefore f has no external edge,542

contradicting Lemma 25.543

2. Let x1, x2, . . . , xk be the vertices of attachment of the bridge B on flower(v), in the544

cyclic order of boundary of flower(v). Clearly if the vertices of attachment lie on more545

than two petals of v, then at least one petal will be completely enclosed by B, which is546

not possible since every petal must have at least one external edge. Lets say they lie on547

two adjacent petals, and the junction neighbour common to both of them is w. By the548

same argument as above, w must have an edge other than those of adjacent petals of v,549

that connect it to B. Therefore w must be a vertex of attachment of B to flower(v).550

3. First we note that petalwi,uj
will have an external vertex in it since the boundary of every551

face has at least one external vertex (Lemma 25), and segments (uj , v) and (v, wi) are552

internal. Let z be an external vertex on petalwi,uj
.553

The path p starts at external vertex r, comes to u1, v, wi, and reaches external vertex z554

on its way back to v. It will clearly divide M into at least two parts by Jordan Curve555

16 Depth-First Search in Directed Graphs, Revisited

theorem. Since pwi,uj is just a wrap around the face fuj ,v,wi after z, is clear that since556

w1, u2, , wi−1 and everything connected to them after removing p lie in one region, which557

we call left, and wi+1, ui+2, . . . , wd and everything connected to them after removing p lie558

in another, and vertices of f̃u,v,w lie in another disconnected region since p wraps around559

fu,v,w.560

J561

We introduce another notation for an extension of a bridge:562

I Definition 37. For a bridge B of flower(v), we define B◦ as B along with segments563

of flower(v) that lie between consecutive vertices of attachment of B. We call this the564

closed bridge of B.565

Now we will give definitions/lemmas regarding the “internal structure” of meshes, that566

will be useful to define the “center” of a mesh.567

I Definition 38. For a mesh M , we call its internal-skeleton, denoted by I(M), the568

induced subgraph on the vertices of i-i-segments of M .569

I Lemma 39. 1. For a mesh M , the graph I(M) is a forest.570

2. If H is a 3-connected induced subgraph of M(ignoring subdivision vertices), then I(H) is571

a tree.572

Proof. 1. Suppose there were an undirected cycle in M of all internal segments, then this573

cycle must enclose a face whose boundaries are also all internal segments. This contradicts574

Lemma 25 as it states that every face must have at least one external edge, and hence575

segment. Hence there can be no cycle (directed or undirected) consisting of all internal576

segments, an consequently, no cycle (directed or undirected) of all internal vertices.577

2. Let H be a 3-connected induced subgraph of M . By definition, I(H) is obtained from M578

by removing all external edges and external non-junction vertices. Suppose I(H) is not a579

tree, and hence consists of two or more disconnected trees. Let T1 and T2 be any two580

trees in I(H). Let x be a vertex in T1 and y be a vertex in T2. Since H is 3-connected,581

there must be at least three disjoint paths(undirected) between x and y. Clearly in a582

planar graph, if there are three disjoint paths between two vertices, one of the paths must583

be strictly enclosed in the closed region formed by other two. Therefore there must a584

path between x and y that is strictly enclosed inside the boundary of H, and hence does585

not contain any edge or vertex adjacent to the outer face of H. Hence x and y cannot586

become disconnected after removing external edges and external non-junction vertices587

leading to a contradiction that I(H) is disconnected. Therefore I(H) must be a tree.588

J589

We state a well-known proposition about a vertex separator in a tree T with weighted590

nodes.591

I Proposition 40. Suppose T is a tree with each node having a weight assigned to it. Let592

wt(T ′) denote sum of weights of each node in a subgraph T ′ of T . Then there exists a node593

vc or a pair of adjacent nodes vc1 , vc2 , such that after removing it (or them in case of a pair),594

no connected component in the remaining forest has weight more than 1
2wt(T).595

Proof. Folklore. J596

We will next give a procedure to define a “center” of a mesh.597

E. Allender, A. Chauhan, and S. Datta 17

I Definition 41. For a mesh M , let TM denote the tree obtained by the 1, 2-clique sum598

decomposition ofM . The nodes of TM are of two types, clique nodes (cut vertices or separating599

pairs), and piece nodes, which are either 3-connected parts or cycles. Every piece node is600

adjacent to a clique node and vice-versa. (See [9, Section 3.1] for background about this601

decomposition.)602

Consider the 1
2 separator node of TM as described in Proposition 40. If it is a separating603

pair, a cut vertex, or a face cycle, we call that subgraph the center of M .604

If it is a 3-connected node P , look at its internal skeleton I(P). We construct a new605

graph I ′(P) which is isomorphic to I(P) but has edges directed differently. let u, v be two606

adjacent internal junction vertices of M . To give direction to a segment (u, v) in I ′(P),607

we consider the unique bridge B of flower(u) that contains v as a point of attachment; we608

denote the closed bridge of B by B◦u(v). B◦v(u) is defined analogously. We orient (u, v) in609

the direction of the heavier of B◦u(v) and B◦v(u) (breaking ties arbitrarily), where the weights610

of B◦u(v),B◦v(u) are |B̃◦u(v)| and |B̃◦v(u)|, respectively.611

The center of M is defined to be flower(v) in this case, where v is the sink node of612

I ′(P).613

We show why I ′(P) cannot have more than one sink.614

I Lemma 42. The tree I ′(P) defined above will have exactly one sink vertex.615

Proof. Suppose I ′(P) has two junction vertices x and y that are sinks. They cannot be616

adjacent, so consider the unique undirected path in I ′(P) between x and y. There must be a617

source z on the path. Let neighbours of z be x′, y′, lying on the path from x to z and from z618

to y respectively.619

Let B◦z(x′) and B◦z(y′) denote the bridges of flower(z) with points of attachments x′620

and y′ respectively. Then by the orientations of the edges we have: |B̃◦z(x′)| ≥ |B̃◦x′(z)|621

which gives|B̃◦z(x′)| > |B̃◦z(y′)|since B◦z(y′) is clearly a proper subgraph of B◦x′(z) and622

|B̃◦z(y′)| ≥ |B̃◦y′(z)| which gives|B̃◦z(y′)| > |B̃◦z(x′)| which is clearly a contradiction. J623

I Lemma 43. If the center of M is flower(v), and w is an out neighbor of v, then624

wt(B◦v(w)) ≤ 1
2 (wt(M̃ − wt(Vrem(u,w))), where u is either of the two in neighbors of v that625

are adjacent to w around flower(v).626

Proof. Since the center is flower(v), we have that wt(B◦v(w)) ≤ wt(B◦w(v)). But Vrem(u,w)627

has empty intersection with each of B◦v(w) and B◦w(v). Thus wt(B◦v(w)) + wt(B◦w(v)) ≤628

wt(M̃)− wt(Vrem(u,w)). The lemma follows. J629

I Lemma 44. 1. If the center of M is not of the form flower(v) where v is an internal630

node of a 3-connected component, then removing it from M̃ disconnects M̃ into weakly631

connected components, each with weight less than 1
2wt(M̃).632

2. If the center of M is flower(v) for an internal node v of a 3-connected component P ,633

then on removing flower(v) from M̃ , no weakly connected component has weight more634

than 1
2wt(M̃).635

Proof. 1. This follows directly from the vertex separator lemma for trees with weighted636

vertices.637

2. This follows from the v being the sink node of I ′(P).638

J639

I Lemma 45. For every possible path pwi,uj around v as defined in Lemma 36, Vrem consists640

of a disjoint union of weakly-connected components, each of which has weight ≤ 1
2 (wt(M)).641

18 Depth-First Search in Directed Graphs, Revisited

v

Figure 3 An example of a mesh

v

Figure 4 The internal skeleton of the mesh.
One of its components is a single node.

v

v0

v0

v0

v1

v0

v1

v0

v1

v2

v3

v2

v3 v2

v3

v4

v5

v4

v5

v4

v5

v6

v7

v6

v7

v6

v7

Figure 5 The tree decomposition of the
mesh using 1,2-clique sums. The nodes
encircled red are clique separator nodes.

v

Vleft

Vright

Vrem

Figure 6 An example of a path separator.
The vertex v is a central node, and the
green path is a separator.

Proof. A (weakly connected) component of Vrem is a bridge, attached to petalwi,ui
or to642

petalwi,ui+1 via its vertices of attachment. In the clique sum decomposition, these vertices643

of attachment will always contain a 1 or 2 separating clique, since if a bridge is attached644

to a petal via three or more nodes, the first and the last vertices of attachment form a645

separating pair that separates the bridge from flower(v). Hence it is a branch remaining in646

TM after removing the 3− connected piece node that is central in TM . Since every branch647

after removal of the central piece of TM has weight ≤ 1
2 (wt(M)), every (weakly) connected648

component of Vrem has weight ≤ 1
2 (wt(M)). J649

For a path pwi,uj
(where j ∈ {i, i+ 1}) we sometimes use the notation Vrem(wi, uj) to specify650

the petal where the bridges of Vrem are attached.651

5.1 Mesh Separator Algorithm652

Now we give the algorithm to find an α separator in a mesh M(G), assuming the hypothesis653

of Lemma 31.654

1. Find the decomposition tree, TM of M with 2-cliques and 1-cliques as the separating sets.655

2. Find the center of the mesh M . It will either be a cut vertex, a separating pair, a cycle,656

or flower(v) for some internal vertex v.657

E. Allender, A. Chauhan, and S. Datta 19

3. If it is a cut vertex, we just find a path from the root r to it. If it is a separating pair658

(u, v), both the vertices must lie on a same face, which is a directed cycle. In both this659

case, and also the case in which the center is a cycle, find a path from the root to any660

vertex of the face that touches it the first time, and then extend the path by encircling661

the cycle.662

4. If it is flower(v) for some internal vertex v, find a path p = 〈r, . . . , u1, v〉 to v. Let the663

junction neighbours of v in clockwise order starting from (u1, v), be w1, u2, w2, . . . , wd,664

with the w’s being out junction neighbours and the u’s being in junction neighbours.665

Starting clockwise from segment 〈u, v〉, find the first index i and j ∈ {i, i + 1} s.t.666

after removing the extended path pwi,uj
, (defined in Lemma 36) the remaining strongly667

connected components are smaller than 11
12wt(G).668

The algorithm above can clearly be implemented in logspace with an oracle for planar669

reachability, and thus it can be implemented in UL ∩ co-UL.670

It remains to show that the “first i” mentioned in the final step actually exists.671

I Lemma 46. If the center of M is flower(v) for some internal vertex v, then there will672

always exist an adjacent face fui,v,wi s.t. the path pwi,ui is a 11
12 -separator.673

Proof. There are following two cases674

1. For some i and j ∈ {i, i+ 1}, pwi,uj
, wt(Vrem(wi, uj)) ≥ 1

2wt(M).675

Then by Lemma 45, pwi,uj separates Vrem(wi, uj) from the rest of the graph, and also676

every weakly connected component in Vrem(wi, uj) has weight ≤ 1
2wt(M). Hence every677

weakly connected component in M after removing pwi,uj
has weight ≤ 1

2wt(M).678

2. For every pwi,uj , wt(Vrem(wi, uj)) ≤ 1
2wt(M).679

We know that for any index i and j ∈ {i, i+ 1}, if f = fuj ,v,wi
, then wt(Vf) ≤ wt(G)/12680

by the hypothesis of Lemma 31. Starting clockwise from pu1,w1 , at first Vleft is small,681

and on shifting from pwi,ui
to pwi,ui+1 or from pwi,ui+1 to pwi+1,ui+1 , the increase in Vleft682

is bounded above by wt(Vf) + wt(Vrem(wi, uj)) + wt(B◦◦v(wi)).683

Recall that684

a. wt(Vf) ≤ wt(G)/12 (by the hypothesis of Lemma 31).685

b. wt(Vrem(wi, uj)) ≤ 1
2wt(M) (by hypothesis for this case).686

c. wt(B◦◦v(wi)) ≤ 1
2 (wt(M)− wt(Vrem(wi, uj))) (by Lemma 43).687

Thus the addition to Vleft in each iteration is ≤ 1
12wt(G)+wt(Vrem(wi, uj))+ 1

2 (wt(M))−688

1
2 (wt(Vrem(wi, uj)))), which is equal to 1

12wt(G) + 1
2wt(Vrem(wi, ui)) + 1

2 (wt(M)) ≤689

1
12wtG + 3

4wt(M). Hence we can stop the first time wt(Vleft) becomes greater than690

wt(G)/12. At this point, we have wt(Vleft) ≤ 2
12wt(G) + 3

4wt(M) ≤ 11
12wt(G), and691

wt(Vright) ≤ 11
12wt(M), and wt(Vf) ≤ 1

12wt(M), and wt(vrem) ≤ 1
2wt(M).692

Thus we have an upper bound of 11
12wt(G) on all the disconnected components. Hence693

pxi,wi
is a 11

12 path separator.694

J695

6 Path separator in a planar digraph696

Having seen how to construct a path separator in a mesh, we now show how to use that to697

construct an 11
12 separator in any planar digraph.698

1. Given a graph G, first embed the graph so that the root r lies on the outer face. Through699

the root, draw a virtual directed cycle C0 that encloses the entire graph, and orient it,700

say clockwise. Find the layering described in Section 4 and output it on a transducer.701

Cycle C0 will be colored red and will be in the sublayer (0, 0).702

20 Depth-First Search in Directed Graphs, Revisited

2. In the laminar family of red/blue cycles, find the cycle C s.t. wt(C) is more than |G|/12,703

but no colored cycle C ′ in the interior of C has the same property. Such a cycle will704

clearly exist (it could be the virtual cycle C0). Let the sublayer of C be (k, l).705

3. Find a path p from the root r to any vertex rC of the cycle C such that no other vertex706

of C is in the path. As seen above in Lemma 25, the graph in the interior of C and707

belonging to the immediately next sublayer ((k + 1, l) if C is clockwise and (k, l+ 1) if C708

is counter-clockwise) is a DAG of meshes. There are two cases possible:709

a. The graph C̃ has no strongly connected components of weight larger than |G|/12. In710

this case we simply extend the path p from rC by encircling the cycle C till the last711

vertex and stop.712

b. The graph C̃ has a strongly connected component of weight more than |G|/12. In713

this case, we extend p from rC by encircling C till the last vertex u on C that can714

reach any such component MC . Then extend the path from u to any vertex of MC715

and apply the mesh separator lemma (Lemma 31) to obtain the desired separator.716

(Observe that MC satisfies the hypothesis of Lemma 31.)717

I Lemma 47. The path p obtained by the above procedure is an 11
12 separator.718

Proof. We look at the two cases:719

1. In this case it is clear that the interior and exterior of cycle C are disconnected by p.720

The exterior of C has size ≤ 11
12 |G| (by definition of C), and in its interior every strongly-721

connected component has weight at most |G|/12. Thus this satisfies the definition of an722

11
12 separator.723

2. We took the last edge in C from rC that can reach the mesh MC , and extended the path724

to MC . Thus after removing p, one weakly-connected component consists of the exterior725

of G, along with (possibly) some vertices in the interior of C that cannot reach any “large”726

mesh in the interior. Since MC has weight greater than 1
12 |G|, no strongly-connected727

component embedded outside of MC can have weight more than 11
12 |G|. Also, after728

removing path p, Lemma 31 guarantees that no other strongly-connected component will729

have weight more than 11
12 |G|. Thus this satisfies the definition of an 11

12 separator.730

Hence overall we can guarantee an 11
12 path separator in G. J731

7 Building a DFS tree using path separators732

We give a recursive divide and conquer algorithm for DFS:733

1. Given a planar drawing of G and a root vertex on the outer face r, find an 11
12 path734

separator p = 〈r, v1, v2..vk〉. Path p is included in the DFS tree.735

2. Let R(v) denote the set of vertices of G reachable from v. Now for every vertex vi in p736

compute in parallel:737

R′(vi) = R(v)\(
⋃k

j=i+1 R(vj))738

Our DFS will correspond to first traveling along p to vk, doing DFS on R(vk), and then739

while backtracking on p, do DFS on R′(vi) for i from k − 1 downto 1. Given G, the740

encodings of p and R′(vi) can all be computed in AC0(UL ∩ co-UL).741

3. For any vi, R′(vi) can be written as a DAG of SCCs (strongly connected components),742

where each SCC is smaller than 11
12 |G|. In AC0(UL ∩ co-UL) we can compute this DAG743

and we can compute an encoding of the tuple (i,M, v) where M is a SCC in R′(i) and v744

is a vertex in M . Recursively, in parallel, we compute a DFS tree of M for each tuple745

(i,M, v), using v is the root. Now we need to show how to sew together (some of) these746

trees, to form a DFS tree for G with root r.747

E. Allender, A. Chauhan, and S. Datta 21

x

M

yC

Figure 7 The cycle C is a cycle satisfying the property
stated in step 2 of the algorithm. The mesh M in the
next sublayer is heavy, so we find a path from the last
vertex on C that can reach M (in this case y), and then
apply the algorithm of previous section on M .

4. Given a triple (i,M, v), let x0, x1, . . . , xr be the order in which the vertices of M appear748

in a DFS traversal where the root x0 = v. Our DFS will correspond to first following the749

edges from x0 that lead to other SCCs in R(vi). (No vertex reachable in this way can750

reach any xj , or else that vertex would also be in M .) And then we will move on to x1751

and repeat the process, etc. Thus let R′′i,M,v(xj) = (R′(xj)\M)\(
⋃

k<j R
′(xk)).752

Our DFS tree is composed by computing a DFS tree T of the DAG of meshes (considering753

each mesh to be a vertex) using the algorithm of Section 3. A logspace machine can do754

a DFS traversal of T , starting with the node containing vi as the root, and using (as755

auxiliary information) the DFS tree that was computed for (i,M, vi). If this traversal756

contains an edge (M,M ′) (where M and M ′ are SCCs in R′(vi)), then there is exactly757

one j such that there is an edge from xj in the DFS tree for (i,M, vi) to a vertex (call it758

vM ′) in M ′ ∩R′′i,M,v(xj). [Namely, xj is the first vertex in this tree that has an edge to759

M ′.] The edge from xj to vM ′ will be in our DFS tree, as will the DFS tree that was760

computed for (i,M ′, vM ′). We then continue the traversal of T , and process each node of761

the DAG in the same way. All of this can be accomplished in AC0(UL ∩ co-UL).762

5. The final DFS tree for Ri consists of all of the edges that appear in the trees for tuples763

(i,M, v) that were utilized in the traversal of T . The tree for G consists of p together764

with the trees for each Ri.765

References766

1 Alok Aggarwal, Richard J. Anderson, and Ming-Yang Kao. Parallel depth-first search in767

general directed graphs. SIAM J. Comput., 19(2):397–409, 1990. doi:10.1137/0219025.768

https://doi.org/10.1137/0219025

22 Depth-First Search in Directed Graphs, Revisited

2 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha769

Roy. Planar and grid graph reachability problems. Theory of Computing Systems, 45(4):675–770

723, 2009. doi:10.1007/s00224-009-9172-z.771

3 Eric Allender, Archit Chauhan, and Samir Datta. Depth-first search in directed graphs,772

revisited. Technical Report TR20-074, Electronic Colloquium on Computational Complexity773

(ECCC), 2020.774

4 Eric Allender, Archit Chauhan, Samir Datta, and Anish Mukherjee. Planarity, exclusivity,775

and unambiguity. Electronic Colloquium on Computational Complexity (ECCC), 26:39, 2019.776

5 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uniform777

and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164–181,778

1999.779

6 Sanjeev Arora and Boaz Barak. Computational Complexity, a modern approach. Cambridge780

University Press, 2009.781

7 Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi,782

Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using O(n) bits. In783

Hee-Kap Ahn and Chan-Su Shin, editors, Proc. 25th International Symposium on Algorithms784

and Computation (ISAAC), volume 8889 of Lecture Notes in Computer Science, pages 553–564.785

Springer, 2014. doi:10.1007/978-3-319-13075-0_44.786

8 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability is787

in unambiguous log-space. TOCT, 1(1):4:1–4:17, 2009. URL: http://doi.acm.org/10.1145/788

1490270.1490274, doi:10.1145/1490270.1490274.789

9 Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner.790

Planar graph isomorphism is in log-space. In Proceedings of the 24th Annual IEEE Conference791

on Computational Complexity (CCC), pages 203–214, 2009. doi:10.1109/CCC.2009.16.792

10 Pilar de la Torre and Clyde P. Kruskal. Fast parallel algorithms for all-sources lexicographic793

search and path-algebra problems. J. Algorithms, 19(1):1–24, 1995. doi:10.1006/jagm.1995.794

1025.795

11 Pilar de la Torre and Clyde P. Kruskal. Polynomially improved efficiency for fast parallel796

single-source lexicographic depth-first search, breadth-first search, and topological-first search.797

Theory Comput. Syst., 34(4):275–298, 2001. doi:10.1007/s00224-001-1008-4.798

12 Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer,799

2016.800

13 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algorithms.801

In Proc. 32nd International Symposium on Theoretical Aspects of Computer Science (STACS),802

volume 30 of LIPIcs, pages 288–301. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.803

doi:10.4230/LIPIcs.STACS.2015.288.804

14 Torben Hagerup. Planar depth-first search in O(log n) parallel time. SIAM J. Com-805

put., 19(4):678–704, June 1990. URL: http://dx.doi.org/10.1137/0219047, doi:10.1137/806

0219047.807

15 Torben Hagerup. Space-efficient DFS and applications to connectivity problems: Simpler,808

leaner, faster. Algorithmica, 82(4):1033–1056, 2020. doi:10.1007/s00453-019-00629-x.809

16 Taisuke Izumi and Yota Otachi. Sublinear-space lexicographic depth-first search for bounded810

treewidth graphs and planar graphs. In Proc. 47th International Colloquium on Automata, Lan-811

guages and Programming (ICALP), LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,812

2020. to appear.813

17 B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz. Dissertation, Universität814

Hamburg, 1989.815

18 Ming-Yang Kao and Philip N. Klein. Towards overcoming the transitive-closure bottleneck:816

Efficient parallel algorithms for planar digraphs. Journal of Computer and System Sciences,817

47(3):459–500, 1993. doi:10.1016/0022-0000(93)90042-U.818

https://doi.org/10.1007/s00224-009-9172-z
https://doi.org/10.1007/978-3-319-13075-0_44
http://doi.acm.org/10.1145/1490270.1490274
http://doi.acm.org/10.1145/1490270.1490274
http://doi.acm.org/10.1145/1490270.1490274
https://doi.org/10.1145/1490270.1490274
https://doi.org/10.1109/CCC.2009.16
https://doi.org/10.1006/jagm.1995.1025
https://doi.org/10.1006/jagm.1995.1025
https://doi.org/10.1006/jagm.1995.1025
https://doi.org/10.1007/s00224-001-1008-4
https://doi.org/10.4230/LIPIcs.STACS.2015.288
http://dx.doi.org/10.1137/0219047
https://doi.org/10.1137/0219047
https://doi.org/10.1137/0219047
https://doi.org/10.1137/0219047
https://doi.org/10.1007/s00453-019-00629-x
https://doi.org/10.1016/0022-0000(93)90042-U

E. Allender, A. Chauhan, and S. Datta 23

19 Maxim Naumov, Alysson Vrielink, and Michael Garland. Parallel depth-first search for directed819

acyclic graphs. In Proc. 7th Workshop on Irregular Applications: Architectures and Algorithms,820

pages 4:1–4:8, 2017. doi:10.1145/3149704.3149764.821

20 John H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229–234,822

1985. doi:10.1016/0020-0190(85)90024-9.823

21 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.824

22 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Comput.,825

29(4):1118–1131, 2000. doi:10.1137/S0097539798339041.826

23 Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar graphs.827

Inf. Comput., 215:1–7, 2012. doi:10.1016/j.ic.2012.03.002.828

24 Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar 3-connected829

graphs is in unambiguous logspace. Theory Comput. Syst., 47(3):655–673, 2010. doi:10.1007/830

s00224-009-9188-4.831

25 W. T. Tutte. Separation of vertices by a circuit. Discrete Mathematics, 12(2):173–184, 1975.832

26 H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New833

York Inc., 1999. doi:10.1007/978-3-662-03927-4.834

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1145/3149704.3149764
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1137/S0097539798339041
https://doi.org/10.1016/j.ic.2012.03.002
https://doi.org/10.1007/s00224-009-9188-4
https://doi.org/10.1007/s00224-009-9188-4
https://doi.org/10.1007/s00224-009-9188-4
https://doi.org/10.1007/978-3-662-03927-4

