
Depth-First Search in Directed Planar Graphs,1

Revisited2

Eric Allender !Ï3

Rutgers University, USA4

Archit Chauhan !Ï5

Chennai Mathematical Institute, India6

Samir Datta ! Ï7

Chennai Mathematical Institute, India8

Abstract9

We present an algorithm for constructing a depth-first search tree in planar digraphs; the algorithm10

can be implemented in the complexity class AC1(UL ∩ co-UL), which is contained in AC2. Prior to11

this (for more than a quarter-century), the fastest uniform deterministic parallel algorithm for this12

problem had a runtime of O(log10 n) (corresponding to the complexity class AC10 ⊆ NC11).13

We also consider the problem of computing depth-first search trees in other classes of graphs,14

and obtain additional new upper bounds.15

2012 ACM Subject Classification Complexity Classes, Parallel Algorithms16

Keywords and phrases Depth-First Search, Planar Digraphs, Parallel Algorithms, Space-Bounded17

Complexity Classes18

Related Version https://eccc.weizmann.ac.il/report/2020/074/19

Funding Eric Allender : Supported in part by NSF Grants CCF-1909216 and CCF-1909683.20

Archit Chauhan: Partially supported by a grant from Infosys foundation and TCS PhD fellowship.21

Samir Datta: Partially supported by a grant from Infosys foundation and SERB-MATRICS grant22

MTR/2017/000480.23

Acknowledgements We thank the anonymous referees for their helpful and insightful suggestions,24

which improved the presentation.25

Preface26

Klaus-Jörn Lange has made fundamental contributions to the study of subclasses of NC27

(such as [20, 25]) and he also was one of the first to identify subtleties in the formulation28

of unambiguity in the logspace setting [13] and he contributed to our understanding of29

unambiguous computation [5, 30, 31, 32].30

In our contribution to the celebration of Klaus-Jörn Lange’s work, we bring together31

these two research threads, in order to give a better understanding of the computational32

complexity of constructing depth-first search trees in planar digraphs.33

1 Introduction34

Depth-first search trees (DFS trees) constitute one of the most useful items in the algorithm35

designer’s toolkit, and for this reason they are a standard part of the undergraduate al-36

gorithmic curriculum around the world. When attention shifted to parallel algorithms in37

the 1980’s, the question arose of whether NC algorithms for DFS trees exist. An early38

negative result was that the problem of constructing the lexicographically-least DFS tree39

in a given digraph is complete for P [34]. But soon thereafter significant advances were40

made in developing parallel algorithms for DFS trees, culminating in the RNC7 algorithm of41

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 74 (2020)

mailto:allender@cs.rutgers.edu
http://www.cs.rutgers.edu/~allender
https://orcid.org/0000-0002-0650-028X
mailto:archit.chauhan@gmail.com
https://www.cmi.ac.in/people/fac-profile.php?id=archit
mailto:sdatta@cmi.ac.in
https://www.cmi.ac.in/~sdatta/

2 Depth-First Search in Directed Planar Graphs, Revisited

Aggarwal, Anderson, and Kao [1]. This remains the fastest parallel algorithm for the problem42

of constructing DFS trees in general graphs, in the probabilistic setting, or in the setting of43

nonuniform circuit complexity. It remains unknown if this problem lies in (deterministic) NC44

(and we do not solve that problem here).45

More is known for various restricted classes of graphs. For directed acyclic graphs (DAGs),46

the lexicographically-least DFS tree from a given vertex can be computed in AC1 [16]. (See47

also [17, 9, 19, 33, 23, 22].) For undirected planar graphs, an AC1 algorithm for DFS trees48

was presented by Hagerup [21]. For more general planar directed graphs Kao and Klein49

presented an AC10 algorithm. Kao subsequently presented an AC5 algorithm for DFS in50

strongly-connected planar digraphs [27]. In stating the complexity results for this prior work51

in terms of complexity classes (such as AC1, AC10, etc.), we are ignoring an aspect that52

was of particular interest to the authors of this earlier work: minimizing the number of53

processors. This is because our focus is on classifying the complexity of constructing DFS54

trees in terms of complexity classes. Thus, if we reduce the complexity of a problem from55

AC10 to AC2, then we view this as a significant advance, even if the AC2 algorithm uses many56

more processors (so long as the number of processors remains bounded by a polynomial).57

Indeed, our algorithms rely on the logspace algorithm for undirected reachability [35], which58

does not directly translate into a processor-efficient algorithm. We suspect that our approach59

can be modified to yield a more processor-efficient AC3 algorithm, but we leave that for60

others to investigate.61

1.1 Our Contributions62

First, we observe that, given a DAG G, computation of a DFS tree in G logspace-reduces to63

the problem of reachability in G. Thus, for general DAGs, computation of a DFS tree lies64

in NL, and for planar DAGs, the problem lies in UL ∩ co-UL [12, 38]. For classes of graphs65

where the reachability problem lies in L, so does the computation of DFS trees. One such66

class of graphs is planar DAGs with a single source (see [2], where this class of graphs is67

called SMPDs, for Single-source, Multiple-sink, Planar DAGs).68

For undirected planar graphs, it was shown in [4] that the approach of Hagerup’s AC1
69

DFS algorithm [21] can be adapted in order to show that construction of a DFS tree in a70

planar undirected graph logspace-reduces to computing the distance between two nodes in a71

planar digraph. Since this latter problem lies in UL ∩ co-UL (see Theorem 1), so does the72

problem of DFS for planar undirected graphs.73

Our main contribution in the current paper is to show that a more sophisticated application74

of the ideas in [21] leads to an AC1(UL ∩ co-UL) algorithm for construction of DFS trees in75

planar directed graphs. (That is, we show DFS trees can be constructed by unbounded fan-in76

log-depth circuits that have oracle gates for a set in UL∩ co-UL.)1 Since UL ⊆ NL ⊆ SAC1 ⊆77

AC1, the AC1(UL ∩ co-UL) algorithm can be implemented in AC2. Thus this is a significant78

improvement over the best previous parallel algorithm for this problem: the AC10 algorithm79

of [28], which has stood for 28 years.80

1 An earlier version of this work claimed a stronger upper bound, but there was an error in one of the
lemmas in that version [3].

E. Allender, A. Chauhan, and S. Datta 3

2 Preliminaries81

We assume that the reader is familiar with depth-first search trees (DFS trees), but we82

provide a few reminders here, to establish the conventions that we will follow.83

Given any node r in a directed graph G, a depth-first traversal of G starting at r is a84

traversal of all of the nodes reachable in G from r obtained by starting with r as the only85

node on a stack, and repeating the following steps until the stack is empty: (1) Pop a node v86

off the stack and ignore it if it has already been visited. (2) Otherwise mark it as visited, and87

push all unvisited out-neighbours of v onto the stack. Different depth-first traversals of G88

result if the out-neighbours of v are placed onto the stack in different orders. Each depth-first89

traversal gives rise to a depth-first search tree (namely, the directed tree rooted at r where90

the children of each node v are the out-neighbours x of v having the property that, when x91

is first marked visited, x has no in-neighbour other than v that has been marked as visited).92

Of course, given a depth-first search tree T , it is possible to traverse T in an order that is93

not a depth-first traversal of G. Thus it is more correct to say that we are constructing a94

depth-first traversal of G, but we follow the established convention by abusing notation and95

referring to depth-first search trees (DFS trees) and depth-first traversals interchangeably96

throughout the paper.97

In this paper a DFS tree is always a directed rooted tree as detailed above. On the other98

hand, when we call a digraph a tree (as opposed to a DFS tree) we mean only that the99

underlying undirected graph forms a connected acyclic graph. Similarly, if the underlying100

undirected graph is acyclic, the directed graph is said to be a forest, and when we refer to101

the k-connected components of G, we are referring to the subgraphs of G corresponding to102

the k-connected components of the underlying undirected graph.103

A graph embedded in the plane with no edge crossings is called a plane graph. A graph is104

planar if it can be so embedded in the plane. Any (directed) cycle C in a plane graph divides105

the plane into two connected regions: the interior and the exterior. Any vertex not on C that106

is embedded in the interior region is said to be enclosed by C. We shall have opportunity to107

speak of colored graphs; when we say that v is immediately enclosed by the colored cycle C,108

it means that v is enclosed by C and there is no other colored cycle C ′ enclosing v whose109

interior is a subset of the interior of C. A subgraph H is strictly enclosed by C if no edge of110

H lies on C and every edge of H (except possibly its endpoints) is embedded in the interior111

of C.112

We further assume that the reader is familiar with the standard complexity classes L, NL113

and P (see e.g. the text [8]). We will also make frequent reference to the logspace-uniform114

circuit complexity classes NCk and ACk. NCk is the class of problems for which there is a115

logspace-uniform family of circuits {Cn} consisting of AND, OR, and NOT gates, where116

the AND and OR gates have fan-in two and each circuit Cn has depth O(logk n). (The117

logspace-uniformity condition implies that each Cn has only nO(1) gates.) ACk is defined118

similarly, although the AND and OR gates are allowed unbounded fan-in. An equivalent119

characterization of ACk is in terms of concurrent-read concurrent-write PRAMs with running120

time O(logk n), using nO(1) processors. For more background on these circuit complexity121

classes, see, e.g., the text [41].122

A nondeterministic Turing machine is said to be unambiguous if, on every input x, there is123

at most one accepting computation path. If we consider logspace-bounded nondeterministic124

Turing machines, then unambiguous machines yield the class UL. A set A is in co-UL if and125

only if its complement lies in UL.126

The construction of DFS trees is most naturally viewed as a function that takes a graph127

4 Depth-First Search in Directed Planar Graphs, Revisited

G and a vertex v as input, and produces as output an encoding of a DFS tree in G rooted at128

v. But the complexity classes mentioned above are all defined as sets of languages, instead of129

as sets of functions. Since our goal is to place DFS tree construction into the appropriate130

complexity classes, it is necessary to discuss how the complexity of functions fits into the131

framework of complexity classes.132

When C is one of {L, P}, it is fairly obvious what is meant by “f is computable in C”; the133

classes of logspace-computable functions and polynomial-time-computable functions should134

be familiar to the reader. However, the reader might be less clear as to what is meant by135

“f is computable in NL”. As it turns out, essentially all of the reasonable possibilities are136

equivalent. Let us denote by FNL the class of functions that are computable in NL; it is137

shown in [24] each of the three following conditions is equivalent to “f ∈ FNL”.138

1. f is computed by a logspace machine with an oracle from NL.139

2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language140

in NL.141

3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)142

is b} is in NL.143

Rather than use the unfamiliar notation “FNL”, we will abuse notation slightly and refer to144

certain functions as being “computable in NL”.145

The proof of the equivalence above relies on the fact that NL is closed under complement.146

Thus it is far less clear what it should mean to say that a function is “computable in UL”147

since it remains an open question if UL is closed under complement (although it is widely148

conjectured that UL = NL) [36, 7]). However the proof from [24] carries over immediately to149

the class UL ∩ co-UL. That is, the following conditions are equivalent:150

1. f is computed by a logspace machine with an oracle from UL ∩ co-UL.151

2. f is computed by a logspace-uniform NC1 circuit family with oracle gates for a language152

in UL ∩ co-UL.153

3. f(x) has length bounded by a polynomial in |x|, and the set {(x, i, b) : the ith bit of f(x)154

is b} is in UL ∩ co-UL.155

Thus, if any of those conditions hold, we will say that “f is computable in UL ∩ co-UL”.156

The important fact that the composition of two logspace-computable functions is also157

logspace-computable (see, e.g., [8]) carries over with an identical proof to the functions158

computable in LC for any oracle C. Thus the class of functions computable in UL ∩ co-UL is159

also closed under composition. We make implicit use of this fact frequently when presenting160

our algorithms. For example, we may say that a colored labeling of a graph G is computable161

in UL ∩ co-UL, and that, given such a colored labeling, a decomposition of the graph into162

layers is also computable in logspace, and furthermore, that – given such a decomposition of163

G into layers – an additional coloring of the smaller graphs is computable in UL ∩ co-UL, etc.164

The reader need not worry that a logspace-bounded machine does not have adequate space165

to store these intermediate representations; the fact that the final result is also computable in166

UL ∩ co-UL follows from closure under composition. In effect, the bits of these intermediate167

representations are re-computed each time we need to refer to them.168

The following theorem, due to [39], gives an important example of a function that is169

computable in UL ∩ co-UL.170

▶ Theorem 1. [39] The function that takes as input a directed planar graph G and two171

vertices x and y, and produces as output the length of the shortest path from x to y, lies in172

UL ∩ co-UL.173

Proof. Thierauf and Wagner [39, Section 4] show that the techniques of [12, 36, 2] can be174

E. Allender, A. Chauhan, and S. Datta 5

combined to show that distance in planar graphs can be computed in UL∩co-UL, by reducing175

the computation of distance to the planar reachability problem.176

More precisely, Thierauf and Wagner observe that, given a planar graph G, the argument177

in [2] shows how to produce a grid graph G′ with certain edges labeled as “distinguished”,178

with the property that every path p between two vertices in G can be associated with a179

unique path p′ in G′, where furthermore the length of the path p is equal to the number of180

“distinguished” edges in p′. (Essentially, edges in G are mapped to paths in G′, and some of181

the edges in G′ are marked as corresponding to “real” edges in G.) They then show that a182

modification of the weight function from [12] has the property that, given the weight of a183

path in G′, one can easily determine the number of “distinguished” edges in the path, and184

thereby determine the distance between two vertices in G. ◀185

Finally, we will consider ACk circuits augmented with oracle gates for an oracle in186

UL ∩ co-UL, which we denote by ACk(UL ∩ co-UL).187

3 DFS in DAGs Logspace-Reduces to Reachability188

In this section, we observe that constructing the lexicographically-least DFS tree in a (not-189

necessarily planar) DAG G can be done in logspace given an oracle for reachability in G.190

But first, let us define what we mean by the lexicographically-least DFS tree in G:191

▶ Definition 2. Let G be a DAG, with some ordering on the neighbours of each vertex.192

(For example, with adjacency lists, we can consider the ordering in which the neighbours are193

presented in the list. But we will also need to consider different orderings.) For any such194

ordering, the lexicographic-least DFS traversal of G is the traversal done by the Algorithm 1.

Input: (G, v)
Output: Sequence of edges in DFS tree
visited[v] ← 1
visited[w] ← 0 for all w ̸= v

for every out neighbour w of v, in the given order do
if visited[w] = 0 then

print(v, w)
DFS(G, w)

end
end
Algorithm 1 Static DFS routine

195

That is, the lexicographically-least DFS tree is merely a DFS tree, but with the (very196

natural) condition that the children of every vertex are explored in the given order. Im-197

portantly, when we apply this procedure as part of our algorithm for DFS in planar graphs,198

the ordering on the neighbours of v will be determined dynamically. (Note that, in the199

algorithm that defines the lexicographically-least DFS traversal, no reference is made to200

the ordering of the neighbours of v until it is visited; thus it causes no problems if this201

ordering is not determined until that time.) Also, we will need to apply our algorithm to202

directed acyclic multigraphs (i.e., graphs with parallel edges between vertices) where there203

is a logspace-computable function f(v, e) that computes the ordering of the neighbours of204

vertex v, assuming that v is entered using edge e – where e can also be “null” if v is the205

root of the traversal. (That is, if the DFS tree visits vertex v from vertex x, and there are206

6 Depth-First Search in Directed Planar Graphs, Revisited

several parallel edges from x to v, then the ordering of the neighbours of v may be different,207

depending on which edge is followed from x to v.) 2
208

As is observed in [16], the unique path from s to another vertex v in the lexicographically-209

least DFS tree in G rooted at s is the lexicographically-least path in G from s to v.3210

Now consider the following simple algorithm for constructing the lexicographically-least211

path in a DAG G from s to v, shown in Algorithm 2:212

Input: (G, s, v, f)
Output: Lexicographically-least path from s to v under f

current← s; e← null;
while (current ̸= v) do

child← first child of current (in the order given by f(current, e))
while (REACH(child, v) ̸= TRUE) do

child ← next child of current (in the order given by f(current, e))
end
e← a selected edge from current to child; output e

current← child;
end
Algorithm 2 DAG DFS routine

The correctness of this algorithm is essentially shown by the proof of Theorem 11 of [16].213

The algorithm for computing the lexicographically-least DFS tree rooted at s can thus be214

presented as the composition of two functions g and h, where g(G, s) = (G, s, L), where L is215

a list, containing the lexicographically-least path from s to each vertex v. Note that the set216

of edges in the DFS tree in G rooted at s is exactly the set of edges that occur in the list L217

in g(G, s) = (G, s, L). Then h(G, s, L) is just the result of removing from G each edge that218

does not appear in L. The function h is computable in logspace, whereas g is computable in219

logspace with an oracle for reachability in G.220

As discussed in Section 2, a DFS tree is not only a list of edges; one must also know the221

order in which to explore the children of a node. Given a node v with children x and y,222

in order to determine whether x should be visited prior to y, one can simply compute the223

lexicographically-least path from s to x and from s to y, and compare.224

2 Let us give additional motivation for having a dynamically-computed ordering on the neighbours of v.
We will be considering a DAG whose vertices consist of strongly-connected components (SCCs) of the
original graph G. We will have already pre-computed several DFS trees of each SCC: one rooted at
each node in the SCC. Our final DFS tree will consist of (a) one DFS tree for each SCC (where the root
of the DFS tree for SCC C is some node rC ∈ C) along with (b) a selected edge (vD, rC) connecting
any two SCCs D and C that are adjacent in the DFS tree of the DAG. But of course, to fully specify
the DFS tree, we also need to have an ordering on the neighbours of each vertex. In practice, we will be
using the (precomputed) DFS tree of D (rooted at rD) to determine the order of neighbours of vertex
D in the DAG (whose vertices are SCCs). The “lexicographically least” property of our DFS tree of
the DAG depends only on the ordering of the neighbours (and not on the selection of the specific edge
between vertices in the directed acyclic multigraph).

3 In case a more detailed definition is necessary, here is what is meant by “the lexicographically-least
path from s to v”. Let p and p′ be two paths from s to v. If p is shorter than p′, then p precedes p′ in
the lexicographic ordering. If p and p′ have the same length and are not equal, then they each start
with s and agree up through some vertex x, and first differ at the next vertex. Let us say that p has the
edge (x, w) and p′ has the edge (x, w′) The vertex x is entered via some edge e (where, if x = s, then e
is the null edge). The neighbours of x are ordered according to f(x, e). If w precedes w′ in the ordering
f(x, e), then p precedes p′ in the lexicographic ordering.

E. Allender, A. Chauhan, and S. Datta 7

Since reachability in DAGs is a canonical complete problem for NL, we obtain the following225

corollary:226

▶ Corollary 3. Construction of lexicographically-least DFS trees for DAGs lies in NL.227

Similarly, since reachability in planar directed (not-necessarily acyclic) graphs lies in228

UL ∩ co-UL [12, 38], we obtain:229

▶ Corollary 4. Construction of lexicographically-least DFS trees for planar DAGs lies in230

UL ∩ co-UL.231

A planar DAG G is said to be an SMPD if it contains at most one vertex of indegree232

zero. Reachability in SMPDs is known to lie in L [2].233

▶ Corollary 5. Construction of lexicographically-least DFS trees for SMPDs lies in L.234

4 Overview of the Algorithm235

The main algorithmic insight that led us to the algorithm in this paper was a generalization236

of the layering algorithm that Hagerup developed for undirected graphs [21]. We show that237

this approach can be modified to yield a useful decomposition of directed graphs, where238

the layers of the graph have a restricted structure that can be exploited. More specifically,239

the strongly-connected components of each layer are what we call meshes; we exploit the240

properties of meshes to construct paths (which will end up being paths in the DFS trees we241

construct) whose removal partitions the graph into significantly smaller strongly-connected242

components.243

The high-level structure of the algorithm is thus:244

1. Construct a planar embedding of G.245

2. Partition the graph G into layers (each of which is surrounded by a directed cycle).246

3. Identify one such cycle C that has properties that will allow us to partition the graph247

into smaller weakly-connected components.248

4. Depending on which properties C satisfies, create a path p from the exterior face either249

to a vertex on C or to one of the meshes that reside in the layer just inside C. Removal250

of p partitions G into weakly-connected components, where each strongly-connected251

component therein is smaller than G by a constant factor.252

5. Let the vertices on this path p be v1, v2, . . . , vk. The DFS tree will start with the path p,253

and append DFS trees for subgraphs G1, G2, . . . , Gk to this path, where Gi consists of254

all of the vertices that are reachable from vi that are not reachable from vj for any j > i.255

(This is obviously a tree, and it will follow that it is a DFS tree.) Further, decompose256

each Gi into a DAG of strongly-connected components. Build a DFS tree of that DAG,257

and then work on building DFS trees of the remaining (smaller) strongly-connected258

components.259

6. Each of the steps above can be accomplished in UL ∩ co-UL, which means that there is260

an AC0 circuit with oracle gates from UL ∩ co-UL that takes G as input and produces261

the list of much smaller graphs G1, . . . , Gk, as well as the path p that forms the spine262

of the DFS tree. We now recursively apply this procedure (in parallel) to each of these263

smaller graphs. The construction is complete after O(log n) phases, yielding the desired264

AC1(UL ∩ co-UL) circuit family.265

In the exposition below, we first layer the graph in terms of clockwise cycles (which we266

will henceforth call red cycles), and obtain a decomposition of the original graph into smaller267

8 Depth-First Search in Directed Planar Graphs, Revisited

pieces. We then apply a nested layering in terms of counterclockwise cycles (which we will268

henceforth call blue cycles); ultimately we decompose the graph into units that are structured269

as a DAG, which we can then process using the tools from Section 3. The more detailed270

presentation follows.271

4.1 Degree Reduction and Expansion272

▶ Definition 6. (of Exp⟳(G) and Exp⟲(G)) Let G be a plane digraph. The “expanded”273

digraph Exp⟳(G) (respectively, Exp⟲(G)) is formed by replacing each vertex v of total degree274

d(v) > 3 by a clockwise (respectively, counterclockwise) cycle Cv on d(v) vertices, where275

the d(v) edges incident on v now connect to the d(v) vertices on Cv (so that each of those276

vertices now has degree 3), respecting the cyclic ordering of edges around v.277

We will also find it useful to refer to the process of converting Exp⟳(G) (or Exp⟲(G))278

back to G, by contracting each expanded cycle Cv back to v.279

Exp⟳(G) and Exp⟲(G) each have maximum degree bounded by 3; i.e., they are subcubic.280

Next we define the clockwise (and counterclockwise) dual for such a graph and also a notion281

of distance.282

Recall that for an undirected plane graph H, the dual (multigraph) H∗ is formed by283

placing, for every edge e ∈ E(H), a dual edge e∗ between the face(s) on either side of e (see284

Section 4.6 from [18] for more details). Faces f of H and the vertices f∗ of H∗ correspond285

to each other as do vertices v of H and faces v∗ of H∗. There is also a well-studied notion286

of duality for directed plane graphs. The graph that is called the dual of a directed graph287

in sources such as [10, 29, 11, 26] corresponds to the edges of weight one in what we define288

below as the clockwise dual of G; for technical reasons we also include additional edges (in289

the reverse direction) of weight zero, and we also make use of a counterclockwise dual:290

▶ Definition 7. (of Duals G⟳ and G⟲) Let G be a plane digraph. Then the clockwise dual291

G⟳ (respectively, counterclockwise dual G⟲) is a weighted bidirected version of the undirected292

dual of the underlying undirected graph of G. If e is an edge in G with faces f and g to the293

left and right, respectively (in the direction of travel on e), then there is an edge with weight294

one in G⟳ that is oriented from f∗ to g∗ (thus corresponding to rotating e 90 degrees in a295

clockwise direction). The edge in the other direction, from g∗ to f∗ receives weight zero. (The296

weights in G⟲ are the opposite, with the weight one edge resulting from a counterclockwise297

rotation, and the other direction having weight zero.). We inherit the definition of dual298

vertices and faces from the underlying undirected dual.299

▶ Definition 8. Let G be a plane subcubic graph, and let f and g be faces of G. Define300

d⟳(f, g) to be the weight of the minimal-weight path from f∗ to g∗ in G⟳. We define d⟲(f, g)301

similarly.302

▶ Definition 9. For a plane subcubic digraph G, let f0 be the external face. Define the type303

type⟳(f) (respectively, type⟲(f)) of a face to be the singleton set {d⟳(f0, f)} (respectively,304

{d⟲(f0, f)}). Generalise this to edges e by defining type⟳(e) (respectively type⟲(e)) as the305

set consisting of the union of the type⟳ (respectively, type⟲) of the two faces adjacent to e.306

Also, for a vertex v, define type⟳(v) (respectively type⟲(v)) to be the union, over all faces f307

incident on v, of type⟳(f) (respectively, type⟲(f)).308

It is easy to see by definition of the duals that the types of adjacent faces can differ by309

at most one, and hence no vertex can be adjacent to faces with three distinct types. We310

formalise this in the lemma below:311

E. Allender, A. Chauhan, and S. Datta 9

▶ Lemma 10. In every subcubic graph G, the cardinality |type⟳(x)|, |type⟲(x)| where x is312

a face, edge or a vertex is at least one and at most 2 and in the latter case consists of313

consecutive non-negative integers.314

Further, if v ∈ V (G) is such that |type⟳(v)| = 2, then there exist unique u, w ∈ V (G),315

such that (u, v), (v, w) ∈ E(G) and |type⟳(u, v)| = |type⟳(v, w)| = 2.316

Proof. We first observe that if (f1, f2) is a dual edge with weight 1, then by the triangle317

inequality we have, d⟳(f0, f1) ≤ d⟳(f0, f2) ≤ d⟳(f0, f1)+1. Now, since each vertex v ∈ V (G)318

of a subcubic graph is incident on at most 3 faces the only case in which |type⟳(v)| > 2319

corresponds to three distinct faces f1, f2, f3 being incident on a vertex. But here the320

undirected dual edges form a triangle such that in the directed dual the edges with weight 1321

are oriented either as a cycle or acyclically. In the former case by three applications of the322

above inequality, we get that d⟳(f0, f1) ≤ d⟳(f0, f2) ≤ d⟳(f0, f3) ≤ d⟳(f0, f1), hence all 3323

distances are the same. Therefore |type⟳(v)| = 1.324

In the latter case, suppose the edges of weight 1 are (f1, f2), (f2, f3), (f1, f3), then by the325

above inequality again we get: d⟳(f0, f1) ≤ d⟳(f0, f2), d⟳(f0, f3) ≤ d⟳(f0, f1)+1. Thus, both326

d⟳(f0, f2), d⟳(f0, f3) are sandwiched between two consecutive values d⟳(f0, f1), d⟳(f0, f1) +327

1. Hence d⟳(f0, f1), d⟳(f0, f2), d⟳(f0, f3) must take at most two distinct values, and328

thus |type⟳(v)| ≤ 2. Moreover either type⟳(f1) ̸= type⟳(f2) = type⟳(f3) or type⟳(f1) =329

type⟳(f2) ̸= type⟳(f3). Let e1, e2, e3 be such that, e1
⟳ = (f2, f3), e2

⟳ = (f1, f3), e3
⟳ =330

(f1, f2). Then the two cases correspond to |type⟳(e1)| = |type⟳(e2)| = 2, |type⟳(e3)| = 1 and331

to |type⟳(e1)| = 1, |type⟳(e2)| = |type⟳(e3)| = 2, respectively. Noticing that e1, e3 are both332

incoming or both outgoing edges of v completes the proof for the clockwise case. The proof333

for the counterclockwise case is formally identical. ◀334

▶ Definition 11. For a plane subcubic graph G as above, define red(G) to be a colored version335

of G, where vertices and edges with a type of cardinality two in G⟳ are colored red, and all336

other vertices and edges are white. Similarly, define blue(G) to be the colored version of G,337

where vertices and edges with a type of cardinality two in G⟲ are colored blue, and all other338

vertices and edges are white.339

We will see later how to apply both the duals in G to get red and blue layerings of a340

given input graph.341

We enumerate some properties of red(G) and blue(G), where G is subcubic:342

▶ Lemma 12. 1. Red vertices and edges in red(G) form disjoint clockwise cycles.343

2. No clockwise cycle in red(G) consists of only white edges (and hence white vertices).344

Similar properties hold for blue(G).345

Proof. 1. Firstly, note that a red edge must have red endpoints, as they are adjacent to the346

same faces that the edge between them is adjacent to. It is immediate from Lemma 10347

that if v is a red vertex, it has exactly one red incoming edge and one red outgoing edge,348

proving that they form disjoint cycles. Now consider a red cycle C. The type of each edge349

of C must be the same, since if there are two consecutive edges in C of different types,350

it would make the common vertex adjacent to at least three vertices of different types351

contradicting Lemma 10. This means that the distance in G⟳ of each face bordering the352

“outside” of C from the external face is one less than the distance of each face bordering353

the “inside” of C. But in any counterclockwise cycle, the distance in G⟳ from the external354

face to both sides of C are the same (by the way distances are defined in G⟳). Thus C is355

clockwise.356

10 Depth-First Search in Directed Planar Graphs, Revisited

2. Suppose C is a clockwise cycle. Consider the shortest path in G⟳ from the external face357

to a face enclosed by C. From the Jordan curve theorem (Theorem 4.1.1 [18]), it must358

cross the cycle C. The edge dual to the crossing must be red.359

◀360

The definitions above, which apply only to subcubic plane graphs, can now be extended361

to a general plane graph G, by considering the subcubic graphs Exp⟳(G) (and Exp⟲(G)).362

But first, we must make a simple observation about red(Exp⟳(G)) (respectively about363

blue(Exp⟲(G))).364

▶ Lemma 13. Let v ∈ V (G) be a vertex of degree more than 3. Let Cv be the corresponding365

expanded cycle in Exp⟳(G). Suppose at least one edge of Cv is white in red(Exp⟳(G)). Then366

there is a unique red cycle C that shares edges with Cv.367

Proof. First we note that Cv does not contain anything inside it since it is an expanded368

cycle. By Lemma 12 we know that Cv has at least one red edge. Suppose it shares one or369

more edges with a red cycle R1. Since both cycles are clockwise and Cv has nothing inside,370

the cycle R1 must enclose Cv. Now suppose there is another red cycle R2 that shares one or371

more edges with Cv. Then R2 must also enclose Cv. But two cycles cannot enclose a cycle372

whilst sharing edges with it without touching each other, which contradicts the above lemma373

that all red cycles in a subcubic graph are vertex disjoint. ◀374

The last two lemmas allow us to consistently contract the red cycles in red(Exp⟳(G)), in375

order to obtain a colored version of G which we call Col⟳(G). We make this more precise in376

the following:377

▶ Definition 14. The colored graph Col⟳(G) (respectively, Col⟲(G)) is obtained by labeling378

a vertex v ∈ V (G) having degree more than 3 as red iff the cycle Cv in red(Exp⟳(G)) has at379

least one red edge and at least one white edge. Otherwise the color of v is white4. All the edges380

of G, and all of the vertices of G having degree ≤ 3 inherit their colors from red(Exp⟳(G)).381

The coloring of Col⟲(G) is similar.382

We can now characterize the colorings in the graph Col⟳(G):383

▶ Lemma 15. The following hold:384

1. A red cycle in Col⟳(G) is not connected via a red edge to any vertex in its interior.5385

2. Every 2-connected component of the red subgraph of Col⟳(G) is a simple clockwise cycle.386

Proof. Both parts of the lemma follow, if we can establish that the red subgraph of Col⟳(G)387

consists of a collection of connected components, each of which is a remnant of exactly388

one red cycle in red(Exp⟳(G)), where furthermore, each connected component consists of389

a collection of red cycles that intersect at cut vertices (as illustrated in Figure 5). Recall390

that Col⟳(G) results from taking the subcubic graph Exp⟳(G) and contracting each cycle391

Cv where v is a vertex in G of degree > 3. The red subgraph of red(Exp⟳(G)) consists of392

disjoint cycles, by Lemma 12. Contracting any cycle Cv in red(Exp⟳(G)) does not increase393

the number of red connected components. Thus each red connected component of Col⟳(G) is394

4 This may seem counterintuitive. If Cv is not entirely red, then v participates in some red cycle containing
edges not in Cv. Whereas if Cv is all red, then v is not connected to other red parts of G, and thus we
color it white.

5 The interior of a cycle is the subgraph of G induced on the vertices that are embedded inside C, but
not on C.

E. Allender, A. Chauhan, and S. Datta 11

v5
v2

v1

v4

v3

v6

v7

v8

v9

Figure 1 An example of a directed graph G.

Cv5
Cv2

Cv1

v54

v51

v52
v53

v21

v22

v23

v24

v25

v26

v11

v12
v13

v14

v4

v3

v6

v7

v8

v9

Figure 2 The graph Exp⟳(G).

Cv5
Cv2

Cv1

v54

v51

v52
v53

v21

v22

v23

v24

v25

v26

v11

v12
v13

v14

0

1

1

1 1

1

1

12 22

2

v4

v3

v6

v7

v8

v9

Figure 3 The graph red(Exp⟳(G)), along with types of
the faces.

v5 v2

v1

v4

v3

v6

v7

v8

v9

Figure 4 The graph Col⟲(G). Notice that vertex v5 was
expanded into a red cycle, Cv5 , but is a white vertex in
Col⟲(G) because all of its edges were red in red(Exp⟳(G)).

12 Depth-First Search in Directed Planar Graphs, Revisited

v1

v2v3

v4

v5

C1

C2C3

C1

v1

v2v3

C2

v4

C3

v5

Figure 5 An example of contracting expanded cycles. The figure on right shows the graph G

after contracting the expanded cycles C1, C2, C3 in Exp⟳(G).

a remnant of exactly one red cycle in Exp⟳(G). If Cv contains all red vertices, then v is white395

in Col⟳(G) and thus is not part of any red subgraph. If Cv contains both red and white396

vertices, then Cv consists of alternating red subpaths and white subpaths, and by Lemma 13397

the red subpaths are all part of the same cycle; let us call it R. On contracting Cv, R is398

transformed into a collection of clockwise red cycles (let’s call them R1, R2, . . .) sharing a399

common cut-vertex v. Furthermore, for any other Cx that contains edges from R, after Cv is400

contracted, Cx now shares edges with exactly one of the cycles Ri. (This is because Cx is401

embedded inside R. If it is possible to start at a vertex in Cv ∩R, and travel to Cx and then402

back to Cv, it follows that Cx is embedded in the closed region between R and Cv. When Cv403

is contracted, that segment of R becomes one of the cycles Ri, and Cx is embedded inside404

it.) Thus, when Cx is contracted, Ri in turn is transformed into a collection of cycles with x405

as a cut vertex. Inductively, this establishes the claim that, in turn, completes the proof of406

the lemma.407

◀408

Although the above lemmas have been proved for the clockwise dual, they also hold for409

counterclockwise dual with red replaced by blue.410

4.2 Layering the Colored Graphs411

▶ Definition 16. Let x ∈ V (Col⟳(G)) ∪ E(Col⟳(G)). Let ℓ⟳(x) be one more than the412

minimum integer that occurs in type⟳(x′), for each x′ ∈ V (Exp⟳(G)) ∪ E(Exp⟳(G)) that is413

contracted to x. Further let Lk(Col⟳(G)) = {x ∈ V (Col⟳(G)) ∪ E(Col⟳(G)) : ℓ⟳(x) = k}.414

Similarly, define ℓ⟲(x) and Lk(Col⟲(G)). We call Lk(Col⟳(G)) the kth layer of the graph.415

See Figure 6 for an example. It is easy to see the following from Lemma 15:416

▶ Proposition 17. For every x ∈ V (Col⟳(G)) ∪E(Col⟳(G)) the quantity ℓ⟳(x) is one more417

than the number of red cycles that strictly enclose x in Col⟳(G). All the vertices and edges418

of a red cycle of Col⟳(G) lie in the same layer Lk+1(Col⟳(G)) for the enclosure depth k of419

the cycle.420

E. Allender, A. Chauhan, and S. Datta 13

We had already noted above that the red subgraph of G had simple clockwise cycles as421

its 2-connected components. We note a few more lemmas about the structure of a layer of G:422

▶ Lemma 18. We have:423

1. A red cycle in a layer Lk+1(Col⟳(G)) does not contain any vertex/edge of the same layer424

inside it.425

2. Any clockwise cycle in a layer consists of only red vertices and edges.426

Dually, a blue cycle in a layer does not contain any vertex or edge of the same layer inside it.427

▶ Remark 19. Notice that the conclusion in the second part of the lemma fails to hold if we428

allow cycles spanning more than one layer.429

Proof. The first part is a direct consequence of Proposition 17. For the second part we mimic430

the proof of the second part of Lemma 12. Consider a clockwise cycle C ⊆ Lk+1(Col⟳(G)) that431

contains a white edge e. Every face adjacent to C from the outside must have type⟳ = {k}432

because C is contained in layer k + 1. Then the type⟳ of the faces on either side of e is the433

same and therefore must be {k}. Let f be a face enclosed by C that has type⟳(f) = {k}.434

Thus it must be adjacent to a face of type⟳ = {k − 1}. But this contradicts that every face435

inside and adjacent to C must have type⟳ = {k′} for k′ ≥ k. ◀436

The lemmas above show that the strongly-connected components of the red subgraph of a437

layer consist of red cycles touching each other without nesting, in a tree like structure. This438

prompts the following definition:439

▶ Definition 20. For a red cycle R ⊆ Lk(Col⟳(G)) we denote by GR, the graph induced by440

vertices of Lk+1(Col⟳(G)) enclosed by R.441

Now we combine Definitions 14 and 16:442

▶ Definition 21. Each vertex or edge x ∈ V (G) ∪ E(G) gets a red layer number k + 1 if443

it belongs to Lk+1(Col⟳(G)) and a blue layer number l + 1, if it belongs to Ll+1(Col⟲(GR))444

where R ⊆ Lk(Col⟳(G)) is the red cycle immediately enclosing x. In this case, we say that x445

belongs to sublayer Lk+1,l+1(Col(G)).446

Moreover this defines the colored graph Col(G) by giving x the color red if it is red in447

Col⟳(G), and also giving x the color blue if it is blue in Col⟲(GR). (Notice it could be both448

red and blue). The vertex x is white if it is white in both Col⟳(GR) and Col⟲(GR).449

By Proposition 17, we can also say that a sublayer Lk+1,l+1(Col(G)) thus consists of450

edges/vertices that are strictly enclosed inside k red cycles and inside l blue cycles that are451

contained inside the red cycle that immediately encloses them.452

We now present some observations and lemmas regarding the structure of a sublayer.453

Since every edge/vertex in Lk+1,l+1(Col(G)) has the same red and blue layer number, it454

is clear that there can be no nesting of colored cycles. Also we have:455

▶ Lemma 22. Every clockwise cycle in a sublayer Lk+1,l+1(Col(G)) consists of all red edges456

and vertices and any every counterclockwise cycle in the sublayer consists of all blue vertices457

and edges. (Some edges/vertices of the cycle can be both red as well as blue)458

Proof. This is a direct consequence of Lemma 18 applied to the sublayer Lk+1,l+1(Col(G)),459

which is a (counterclockwise) layer in graph GR for some red cycle R. ◀460

Thus we can refer to clockwise cycles and counterclockwise cycles as red and blue cycles461

respectively.462

14 Depth-First Search in Directed Planar Graphs, Revisited

(a)

(b)

(c)

(d)

(e)
(f)

Figure 6 Figure (a) is a graph G. Figure (b) is the graph Col⟳(G). We omit the cycle expansion
and contraction procedure here. Figure (c) shows Col(G), which we get from G after applying blue
labellings to each red layer we obtained in the previous figure. The vertices and edges colored purple
are those that are red as well as blue. Figure (d) represents the sublayer L1,1. The dashed edges
and empty vertices are not part of the layer. Figure (e) represents the sublayer L2,1. Figure (f)
represents the sublayer L3,1.

▶ Definition 23. For a red or blue colored cycle C of layer Lk,l(Col(G)), we denote by GC463

the graph induced by vertices of Lk′,l′(Col(G)) enclosed by C, where {k′, l′} is {k + 1, 1} or464

{k, l + 1} according to whether C is a red or a blue cycle respectively.465

Note that:466

▶ Proposition 24. Two cycles of the same color in Lk+1,l+1(G) cannot share an edge.467

This is since neither is enclosed by the other as they belong to the same layer, and as they468

also have the same orientation. Cycles of different colors can share edges but we note:469

E. Allender, A. Chauhan, and S. Datta 15

▶ Lemma 25. Two cycles of a sublayer Lk+1,l+1(Col(G)) can only share one contiguous470

segment of edges.471

Proof. Let a red cycle R and a blue cycle B in a sublayer share two different contiguous472

segments of edges, from x to u and from v to y, where the the path R(u, v) in R and the path473

B(u, v) in B share no edges. Notice that the graph (R \R(u, v))∪B(u, v) is also a clockwise474

cycle that encloses the edges of R(u, v), contradicting the first part of Lemma 18. ◀475

We consider the strongly-connected components of a sublayer and note the following lemmas476

regarding them:477

▶ Lemma 26. The trivial strongly-connected components of a sublayer (those that consist of478

a single vertex) are white vertices. Let H be a non-trivial strongly-connected component of a479

sublayer, and let o be the external face of H. Then480

1. Every vertex/edge in H is blue or red (possibly both).481

2. The boundary of every face of H, except possibly o, is a directed cycle.482

3. Every face of H other than o has at least one edge adjacent to o.483

Proof. 1. In a non-trivial strongly-connected graph every vertex and edge lies on a cycle484

and therefore by Lemma 22 must be colored red or blue (or both).485

2. Suppose there is a face f the boundary of which is not a directed cycle. Look at a486

directed dual (say clockwise) of H. This dual must be a DAG since the primal is strongly-487

connected. The vertex f∗ in the dual corresponding to face f of H has in-degree at least488

one and out-degree at least one since it has boundary edges of both orientations, hence489

the edges adjacent to f∗ do not form a directed cut of the dual.490

Let o∗ denote the dual vertex corresponding to the outer face o of H. In order to prove491

the claim, it is sufficient to show the existence of a directed cut C∗ that separates f∗
492

and o∗, since it would imply by cut cycle duality that there is a directed cycle C in H493

that encloses the face f w.r.t the outer face. Since the boundary of f is not a directed494

cycle, this means that C must strictly enclose at least one edge of the boundary of f ,495

contradicting Lemma 18. To see that the cut exists, consider a topological sort ordering496

of the dual (it is a DAG). Let the number of a dual vertex v∗ in the ordering be denoted497

by n(v∗). W.l.o.g, let n(f∗) < n(o∗). Consider the partition of the dual vertices:498

A = {v∗ | n(v∗) ≤ n(f∗)}, B = {v∗ | n(v∗) > n(f∗)}499

By definition of topological sort, all edges across this partition must be directed from A500

to B, hence it is a directed cut, and therefore it must also contain a subset which is a501

minimal directed cut. But clearly the minimal cut is not the set of edges adjacent to f∗
502

since it has both out and in-degree at least one, hence proving the claim. Hence every503

face in H must be a directed (hence colored) cycle (by Lemma 22).504

3. We observed from the proof above that no vertex in the dual of H, except possibly the505

vertex o∗ corresponding to the outer face of H, can have both in-degree and out-degree506

more than zero (i.e. every dual vertex except o∗ is a source or a sink). Therefore if any507

dual vertex f∗ has a directed path to o∗ or vice versa, then the path must be an edge508

and we are done. Suppose there is no directed path from f∗ to o∗ and w.l.o.g. let f∗ be509

a source. Consider the trivial directed cut C1:510

A = {f∗}, B = V (H)\A511

This is a cut since there are no edges from B to A, and this cut clearly corresponds to512

the directed cycle which is the boundary of face f in H.513

Now consider the cut C2:514

16 Depth-First Search in Directed Planar Graphs, Revisited

A′ = {v∗ | v∗ is reachable from f∗}, B′ = V (H)\A′
515

Clearly this is a f∗-o∗ cut with no edge from a vertex in A′ to a vertex in B′ and o∗ ∈ B′.516

But this f∗-o∗ cut is different from C1 since f∗ is a source vertex and hence A′ has at517

least one more vertex than just f∗. Hence this corresponds to a directed cycle in H that518

strictly encloses at least some edge of f , and we again get a contradiction of Lemma 18.519

◀520

The strongly-connected components of a sublayer hence consist of intersecting red and521

blue facial cycles, with every face having at least one boundary edge adjacent to the outer522

face of the component.523

▶ Definition 27. We call the strongly-connected components of a sublayer Lk,l meshes.524

5 Mesh Properties525

▶ Definition 28. Given a subgraph H of G embedded in the plane, we define the closure of526

H, denoted by H̃, to be the induced graph on the vertices of H together with the vertices of527

G that lie in the interior of faces of H (except for the outer face of H).528

For convenience, we call a face of a graph that is not the outer face an internal face.529

From Lemmas 22 and 26, we have a bijection: every face of a mesh, except possibly its530

outer face, is a directed cycle, and every directed cycle in a mesh is the boundary of a face of531

the mesh.532

▶ Definition 29. Let 0 < α < 1. An α separator of a digraph H that is a subgraph of a533

digraph G is a set of vertices of H whose removal from H separates H̃ into subgraphs, where534

no strongly-connected component has size greater than α|G|. An (α, r) path separator is a535

sequence of vertices ⟨v1, . . . , vn⟩, that is an α separator and also is a directed path. Here536

r = v1 is called the root of the path separator. We will have occasion to omit either or both537

of α, r when they are clear from the context.538

▶ Definition 30. Let G be a graph and let M be a mesh in a sublayer of G. For an internal539

face f of M , we define its weight, denoted by w(f), to be |V (f̃)|. Let w(H) where H is a540

subgraph of M be defined as |V (H̃)|.541

▶ Definition 31. For a mesh M , we call a vertex that is adjacent to the outer face of M an542

external vertex, and a vertex that is not adjacent to the outer face an internal vertex. We543

call vertices of degree more than two junction vertices.544

If p = ⟨v1, v2, . . . , vk⟩ is a directed path, for k ≥ 1, such that v2, . . . , vk−1 are all vertices545

of degree two, but v1, vk have degree more than two 6, then we call p a segment. We call vk546

the out junction neighbour of v1 and v1 the in junction neighbour of vk.547

We call a segment with all edges adjacent to the outer face an external segment, and a548

segment with no edge adjacent to the outer face an internal segment. If the end points of an549

internal segment are both internal vertices also, we call the segment an i-i-segment.550

The rest of this section is devoted to a proof of the following, which asserts that we can551

construct a path separator in a mesh, assuming that no internal face of the mesh is too large.552

553

6 Notice that here we explicitly allow k = 1 so that v1 = vk.

E. Allender, A. Chauhan, and S. Datta 17

v

Figure 7 An example of a mesh

v

Vleft

Vright

Vrem

Vf

Figure 8 An example of a path separator.
The vertex v is a central node, and the
green path is a separator.

▶ Lemma 32. Suppose w(f) < w(G)/12 holds for every internal face f of a mesh M that is554

a subgraph of G. Then from any external vertex r of M , we can find (in UL ∩ co-UL) an 11
12555

path separator of M , starting at r.556

The high level idea is that using a clique sum decomposition of 2, 3-cliques (see Figure 12)557

we find a “central” vertex v in the mesh M , such that we can find a path from the external558

vertex r to v, and then extend the path around one of the faces adjacent to v to get the path559

separator (all faces are directed cycles by Lemma 26). Because every face touches the outer560

face and the weight of every face is small by the hypothesis of the lemma, we can always find a561

face adjacent to v to encircle such that removing the path leaves no large (weakly) connected562

component. The vertices of M with degree two (in-degree 1 and out-degree 1 because M is563

strongly-connected) are not important since they can be seen as just “subdivision” vertices.564

Now we will look at the structure of a mesh around an internal junction vertex, and the way565

the rest of the mesh is attached to that structure. Also, we state here that we will abuse the566

notion of 3-connected components by ignoring the non-junction vertices for convenience.567

▶ Lemma 33. If v is an internal junction vertex of a mesh and e1, . . . , ek are the edges568

adjacent to v in the cyclic order of embedding, then the edges alternate in directions i.e. if e1569

is outgoing from v, then e2 is incoming to v and e3 is outgoing and so on. Consequently, v570

has even degree (at least 4).571

Proof. Let ei, ei+1 be two edges adjacent to v, that are also adjacent in the cyclic order of572

the drawing. Since they are adjacent in the drawing, they must enclose between them, a573

region, and hence a face, which is not the outer face. But, by Lemma 26, the boundary of574

every non-outer face in a mesh is a directed cycle, hence v, ei, ei+1 lie on a directed cycle,575

with both edges adjacent to v. Hence one of them must be an out edge from v, and the other576

incident towards v. ◀577

▶ Definition 34. Let v be an internal junction vertex of degree 2d in a mesh M , and let578

its junction neighbours be (u1, w1, u2, w2, . . . , ud, wd) in clockwise order starting from edge579

⟨u1, v⟩(the wi’s are out neighbours, and ui’s the in neighbours, since junction neighbours580

alternate).581

18 Depth-First Search in Directed Planar Graphs, Revisited

Every adjacent pair of edges incident to v borders a face that is not the outer face. Let582

fu,v,w denote the face bordered by v and the junction neighbours u and w of v which are583

adjacent in cyclic order around v. The boundary of fu,v,w can be written as three disjoint584

parts (except for endpoints), segment(u, v) + segment(v, w) + petalw,u, where the third part585

denotes a simple path from w to u along the face boundary. We will use the notation petalw,u586

to denote the corresponding boundary for any face fu,v,w adjacent to v. We define flower(v)587

as
⋃
{vertices on the boundary of faces adjacent to v} (see Figure 9).588

We note the following property of petals.589

▶ Proposition 35. For all adjacent junction neighbour pairs wi, uj of an internal vertex v,590

petalwi,uj are disjoint, except possibly the end points.591

Proof. Petals of two faces must be internally disjoint because the corresponding faces share592

the vertex v and two faces cannot have a non-contiguous intersection, by Lemma 25. ◀593

For an internal junction vertex v, the union of the petals around flower(v) thus form594

an undirected cycle around v, with at least four alternations in directions. Now we define595

bridges of the cycle, which (roughly) are components of M we get after removing flower(v),596

leaving the points of attachment intact. We use the formal definition of bridges from [40]:597

▶ Definition 36. For a subgraph H of M , a vertex of attachment of H is a vertex of H that598

is incident with some edge of M not belonging to H. Let J be an undirected cycle of M . We599

define a bridge of J in M as a subgraph B of M with the following properties:600

1. each vertex of attachment of B is a vertex of J .601

2. B is not a subgraph of J .602

3. no proper subgraph of B has both the above properties.603

We denote by 2-bridge, bridges with exactly two vertices of attachment to the specified cycle,604

and by 3-bridge, bridges with three or more vertices of attachment.605

Note that for the cycle formed by petals of flower(v), the vertex v along with paths leading606

to/ coming from flower(v) also form a bridge, but we call that a trivial bridge and do not607

take it into consideration.608

▶ Lemma 37. 1. The vertices of attachment of a 2-bridge of flower(v) must both lie on one609

petal of flower(v).610

2. The vertices of attachment of a 3-bridge of flower(P) can lie on one, or at most two,611

adjacent petals. Moreover, in the latter case the junction neighbour of v common to both612

petals must be a vertex of attachment of the 3-bridge.613

3. For an internal vertex v, and an external vertex r of M , let p = ⟨r, . . . , u1, v⟩ be a614

simple path from r to v, where u1 is an in junction neighbour of v. Let the other615

junction neighbours of v be named as in Definition 34 in cyclic order from u1. For j ∈616

{i, i+1}, consider an extended path of p, pwi,uj = ⟨r, . . . , u1, v, wi⟩+petalwi,uj +⟨uj , . . . , v⟩,617

excluding the last edge incident to v in the sequence. That is, pwi,uj
goes from r to v,618

then to an out junction neighbour wi, and then wraps around fuj ,v,wi
by taking petalwi,uj

619

and then the segment back towards v from uj. If there is a bridge of flower(v) of which620

u1 is a point of attachment and which also includes the edge of p incoming to u1, we621

denote it by Bin. The set V (M̃) \ V (pwi,uj) can be partitioned into four disconnected622

parts, called Vleft, Vright, Vf , and Vrem, such that:623

Vleft =({f̃u1,v,w1 ∪ f̃u2,v,w1 ∪ f̃u2,v,w2 . . . ∪ f̃ui,v,wi−1} ∪ {f̃ui,v,wi if j = i + 1}
∪ {vertices in the closure of bridges attached to the petals of these faces, excluding Bin}
∪ {the “left” part of Bin (see Figure 13) }) \ V (pwi,uj

)
624

E. Allender, A. Chauhan, and S. Datta 19

Vright =({f̃ui,v,wi+1 ∪ f̃ui+2,v,wi+1 . . . ∪ f̃ud,v,wd
} ∪ {f̃ui+1,v,wi

if j = i}
∪ {vertices in the closure of bridges attached to petals petals these faces, excluding Bin}
∪ {the “right” part of Bin (see Figure 13) } \ V (pwi,uj)

625

626

Vf = f̃uj ,v,wi
\ V (pwi,uj

)627

628

Vrem = (
⋃
{vertices in the closure of all bridges that have vertices

of attachment only in petalwi,uj
}) \ V (pwi,uj

).
629

There is no undirected path between any vertex of one of these four sets to any vertex of630

another. The path pwi,ui
is therefore a path separator that gives these components.631

Proof. 1. Let x, y be the two vertices of attachment of the 2-bridge B on flower(v). Since632

bridges are connected graphs without the edges of the corresponding cycle (by the third633

property of Definition 36), there must be an undirected path, p in the bridge connecting634

x, y, without using any edge of flower(v). If x and y were not on the same petal, then this635

path along with the other petals in flower(v), must clearly enclose a junction neighbour636

of v, say w (see Figure 9). Thus w is not adjacent to the outer face. Now since w is637

an internal junction vertex, and two of its adjacent faces are also adjacent to v, look at638

another face f adjacent to w and not adjacent to v. (Internal junction vertices have at639

least four adjacent faces.) The boundary of this face cannot touch B since that would640

make it a part of B and consequently w would be a vertex of attachment of B to flower(v).641

Therefore the boundary of f is enclosed within the paths p and the part of flower(v) that642

is also enclosed by p. Therefore f has no external edge, contradicting Lemma 26.643

2. Let x1, x2, . . . , xk be the vertices of attachment of the bridge B on flower(v), in the cyclic644

order of boundary of flower(v). Clearly if the vertices of attachment lie on more than645

two petals of v, then at least one petal will be completely enclosed by B, which is not646

possible since every petal must have at least one external edge. Let us say they lie on647

two adjacent petals, and the junction neighbour common to both of them is w. By the648

same argument as above, w must have an edge other than those of adjacent petals of v,649

that connect it to B. Therefore w must be a vertex of attachment of B to flower(v).650

3. First we note that petalwi,uj
will have an external vertex in it since the boundary of every651

face has at least one external vertex (Lemma 26), and segments (uj , v) and (v, wi) are652

internal. Let z be an external vertex on petalwi,uj
. The path p starts at external vertex653

r, comes to u1, v, wi, and reaches external vertex z on its way back to v. It will clearly654

divide M̃ into at least two parts by the Jordan Curve theorem. Since pwi,uj
is just a655

wrap around the face fuj ,v,wi
after z, it is clear that removing p puts all of the vertices656

of f̃u,v,w in one disconnected region, while w1, u2, . . . , wi−1 and everything connected to657

them lie in another region, which we call Vleft, and wi+1, ui+2, . . . , wd and everything658

connected to them lie in yet another (Vright).659

◀660

We introduce another notation for an extension of a bridge:661

▶ Definition 38. For a bridge B of flower(v), we define B◦ as B along with segments662

of flower(v) that lie between consecutive vertices of attachment of B. We call this the663

closed bridge of B.664

Now we will give definitions/lemmas regarding the “internal structure” of meshes, that will665

be useful to define the “center” of a mesh.666

20 Depth-First Search in Directed Planar Graphs, Revisited

v

w
w′

fw′,w,y

x

y

p

flower(v)

B

u

fu,v,w

petalw,u

w
w′

x

y

p
B

w
w′

x

y

p
B

◦

Figure 9 A vertex v and flower(v). B is a bridge with two points of attachment x, y on
two different petals of flower(v). On the right are drawn the bridge B itself, and its closed
version B◦. The only way the boundary of fw′,w,y can have an external edge is if it touches
B, making w a point of attachment of B also.

▶ Definition 39. For a mesh M , we call its internal-skeleton, denoted by I(M), the induced667

subgraph on the vertices of i-i-segments of M . (See Figure 11.)668

▶ Lemma 40. 1. For a mesh M , the graph I(M) is a forest.669

2. If H is a 3-connected induced subgraph of M(ignoring subdivision vertices), then I(H) is670

a tree.671

Proof. 1. Suppose there were an undirected cycle in M of all internal segments, then this672

cycle must enclose a face whose boundaries are also all internal segments. This contradicts673

Lemma 26 as it states that every face must have at least one external edge, and hence674

an external segment. Hence there can be no cycle (directed or undirected) consisting of675

all internal segments, and consequently, no cycle (directed or undirected) of all internal676

vertices.677

2. Let H be a 3-connected induced subgraph of M . By definition, I(H) is obtained from M678

by removing all external edges and external non-junction vertices. Suppose I(H) is not a679

tree, and hence consists of two or more disconnected trees. Let T1 and T2 be any two680

trees in I(H). Let x be a vertex in T1 and y be a vertex in T2. Since H is 3-connected,681

there must be at least three disjoint paths (undirected) between x and y. Clearly in a682

plane graph, if there are three disjoint paths between two vertices, one of the paths must683

be strictly enclosed in the closed region formed by other two. Therefore there must a684

path between x and y that is strictly enclosed inside the boundary of H, and hence does685

not contain any edge or vertex adjacent to the outer face of H. Hence x and y cannot686

become disconnected after removing external edges and external non-junction vertices687

leading to a contradiction that I(H) is disconnected. Therefore I(H) must be a tree.688

◀689

We will next give a procedure to define a “center” of a mesh.690

▶ Definition 41. For a mesh M , let TM denote the tree obtained by the 1, 2-clique sum691

decomposition of M . The nodes of TM are of two types, clique nodes (cut vertices or separating692

pairs), and piece nodes, which are either 3-connected parts or cycles. Every piece node is693

adjacent to a clique node and vice-versa. (See [15, Section 3] for background about this694

decomposition in the special case when the graph is 2-connected. For general planar graphs,695

E. Allender, A. Chauhan, and S. Datta 21

we can first identify the cut vertices and find the block cut tree. For every clique node of a696

cut vertex v that is attached to a piece node of block B containing a 3-connected separating697

pair, we replace the block B by its triconnected decomposition tree, TB, and attach the clique698

node of v to a piece node of the triconnected block of TB that contains v).699

▶ Proposition 42. The tree TM defined above is a tree decomposition.700

Proof. It is easy to see that every vertex, as well as every edge of the graph occurs in at701

least one piece node. To see the coherence property, we observe that the only vertices that702

occur in more than one node are those that are part of a 3-connected separating pair or a703

cut vertex. If v is such a node and is not a cut vertex then it occurs in a subtree of the704

biconnected block it belonged to after the block cut decomposition(since the triconnected705

decomposition is a tree decomposition). If it is a cut vertex, then in our construction, we706

have joined the subtrees in the triconnected decomposition trees to the clique node of v,707

which again gives a subtree. ◀708

We will now use a modified version of the tree vertex separator theorem, to show that709

vertices of one of the nodes of TM form a 1
2 -separator of M . We use the following fact from710

the proof of [14, Lemma 7.19].711

▶ Proposition 43. Let TG be a tree decomposition of a graph G. The vertices of one of the712

bags of TG from a 1
2 separator of G.713

Now we define the center of a mesh.714

▶ Definition 44. Consider the 1
2 separator node of TM as described in Proposition 43. If it715

is a separating pair, a cut vertex, or a face cycle, we call that subgraph the center of M .716

If it is a 3-connected node P , look at its internal skeleton I(P). We construct a new graph717

I ′(P) which is isomorphic to I(P) but has edges directed differently. Let u, v be two adjacent718

internal junction vertices of M . To give direction to a segment(u, v) in I ′(P), we consider719

the unique bridge B of flower(u) that contains v as a point of attachment; we denote the720

closed bridge of B by B◦
u(v). B◦

v(u) is defined analogously. We orient (u, v) in the direction721

of the heavier of B◦
u(v) and B◦

v(u) (breaking ties arbitrarily), where the weights of B◦
u(v), B◦

v(u)722

are |B̃◦
u(v)| and |B̃◦

v(u)|, respectively.723

The center of M is defined to be flower(v) in this case, where v is the sink node of I ′(P).724

We show why I ′(P) cannot have more than one sink.725

▶ Lemma 45. The tree I ′(P) defined above will have exactly one sink vertex.726

Notice, while the underlying undirected graph of I ′(P) is a tree, a sink is defined with respect727

to the orientations specified in the previous definition.728

Proof. Suppose I ′(P) has two junction vertices x and y that are sinks. They cannot be729

adjacent, so consider the unique undirected path in I ′(P) between x and y. There must be a730

source z on the path. Let neighbours of z be x′, y′, lying on the path from x to z and from z731

to y respectively.732

Let B◦
z(x′) and B◦

z(y′) denote the bridges of flower(z) with points of attachments x′ and y′
733

respectively. Then by the orientations of the edges we have: |B̃◦
z(x′)| ≥ |B̃◦

x′(z)| which gives734

|B̃◦
z(x′)| > |B̃◦

z(y′)| since B◦
z(y′) is clearly a proper subgraph of B◦

x′(z) and |B̃◦
z(y′)| ≥ |B̃◦

y′(z)|735

which gives |B̃◦
z(y′)| > |B̃◦

z(x′)| which is clearly a contradiction. ◀736

22 Depth-First Search in Directed Planar Graphs, Revisited

v

Figure 10 An example of a mesh

v

Figure 11 The internal skeleton of the mesh.
One of its components is a single node.

▶ Lemma 46. If the center of M is flower(v), and w is an out neighbour of v, then w(B◦
v(w)) ≤737

1
2 (w(M̃ − w(Vrem(w, u)))), where u is either of the two in neighbours of v that are adjacent738

to w around flower(v), and Vrem(w, u) denotes bridges with all vertices of attachment in739

petalw,u.740

Proof. Since the center is flower(v), we have that w(B◦
v(w)) ≤ w(B◦

w(v)). But Vrem(u, w)741

has empty intersection with each of B◦
v(w) and B◦

w(v). Thus w(B◦
v(w)) + w(B◦

w(v)) ≤742

w(M̃)− w(Vrem(u, w)). The lemma follows. ◀743

▶ Lemma 47. 1. If the center of M is not of the form flower(v) where v is an internal node744

of a 3-connected component, then removing it from M̃ disconnects M̃ into weakly-connected745

components, each with weight less than 1
2 w(M̃).746

2. If the center of M is flower(v) for an internal node v of a 3-connected component P , then747

on removing flower(v) from M̃ , no weakly-connected component has weight more than748

1
2 w(M̃).749

Proof. 1. This follows from the vertex separator lemma for trees with weighted vertices.750

2. This follows from the v being the sink node of I ′(P).751

◀752

▶ Lemma 48. For every possible path pwi,uj
around v as defined in Lemma 37, Vrem consists753

of a disjoint union of weakly-connected components, each of which has weight ≤ 1
2 (w(M)).754

Proof. A (weakly-connected) component of Vrem is a bridge, attached to petalwi,ui or to755

petalwi,ui+1 via its vertices of attachment. In the clique sum decomposition, these vertices of756

attachment will always contain a 1 or 2 separating clique, since if a bridge is attached to a757

petal via three or more nodes, the first and the last vertices of attachment form a separating758

pair that separates the bridge from flower(v). Hence it is a branch remaining in TM after759

removing the 3-connected piece node that is central in TM . Since every branch after removal760

of the central piece of TM has weight ≤ 1
2 (w(M)), every (weakly) connected component of761

Vrem has weight ≤ 1
2 (w(M)). ◀762

For a path pwi,uj (where j ∈ {i, i + 1}) we sometimes use the notation Vrem(wi, uj) to763

specify the petal where the bridges of Vrem are attached.764

E. Allender, A. Chauhan, and S. Datta 23

v

v0

v0

v0

v1

v0

v1

v0

v1

v2

v3

v2

v3 v2

v3

v4

v5

v4

v5

v4

v5

v6

v7

v6

v7

v6

v7

Figure 12 The tree decomposition of the
mesh using 1,2-clique sums. The nodes
encircled red are clique separator nodes.

v

Vleft

Vright

Vrem

wi

uj

VfBin

Figure 13 An example of a path separator.
The vertex v is a central node, and the
green path is a separator.

5.1 Mesh Separator Algorithm765

Now we give the algorithm to find an (α, r) path separator in a mesh M(G), with r ∈ V (M),766

assuming the hypothesis of Lemma 32. Recall from Definition 29 an (α, r) path separator is767

a directed path starting at (the “root”) r that is also an α separator.768

1. Find the decomposition tree, TM of M with 2-cliques and 1-cliques as the separating sets.769

2. Find the center of the mesh M . It will either be a cut vertex, a separating pair, a cycle,770

or flower(v) for some internal vertex v.771

3. If it is a cut vertex, we just find a path from the root r to it. If it is a separating pair772

(u, v), both the vertices must lie on a same face, which is a directed cycle. In both this773

case, and also the case in which the center is a cycle, find a path from the root to any774

vertex of the face that touches it the first time, and then extend the path by encircling775

the cycle.776

4. If it is flower(v) for some internal vertex v, find a path p = ⟨r, . . . , u1, v⟩ to v. Let the777

junction neighbours of v in clockwise order starting from (u1, v), be w1, u2, w2, . . . , wd,778

with the w’s being out junction neighbours and the u’s being in junction neighbours.779

Starting clockwise from segment ⟨u, v⟩, find the first index i and j ∈ {i, i + 1} s.t.780

after removing the extended path pwi,uj , (defined in Lemma 37) the remaining strongly-781

connected components are smaller than 11
12 w(G).782

The algorithm above can clearly be implemented in logspace with an oracle for planar783

reachability, and thus it can be implemented in UL ∩ co-UL.784

It remains to show that the “first i” mentioned in the final step actually exists.785

▶ Lemma 49. If the center of M is flower(v) for some internal vertex v, then there will786

always exist an adjacent face fui,v,wi
s.t. the path pwi,ui

is an 11
12 -separator.787

Proof. We have the following two cases:788

1. For some i and j ∈ {i, i + 1}, w(Vrem(wi, uj)) ≥ 1
2 w(M).789

Then by Lemma 48, pwi,uj
separates Vrem(wi, uj) from the rest of the graph, and also790

every weakly-connected component in Vrem(wi, uj) has weight ≤ 1
2w(M). Hence every791

weakly-connected component in M after removing pwi,uj
has weight ≤ 1

2 w(M).792

24 Depth-First Search in Directed Planar Graphs, Revisited

2. For every pwi,uj
, w(Vrem(wi, uj)) ≤ 1

2 w(M).793

We know that for any index i and j ∈ {i, i + 1}, if f = fuj ,v,wi
, then w(f) ≤ w(G)/12 by794

the hypothesis of Lemma 32. Starting clockwise from pu1,w1 , at first Vleft is small, and795

on shifting from pwi,ui
to pwi,ui+1 or from pwi,ui+1 to pwi+1,ui+1 , the increase in Vleft is796

bounded above by w(f) + w(Vrem(wi, uj)) + w(B̃◦
v(wi)). Recall that797

a. w(f) ≤ w(G)/12 (by the hypothesis of Lemma 32).798

b. w(Vrem(wi, uj)) ≤ 1
2 w(M) (by hypothesis for this case).799

c. w(B̃◦
v(wi)) ≤ 1

2 (w(M)− w(Vrem(wi, uj))) (by Lemma 46).800

Thus the addition to Vleft in each iteration is ≤ 1
12 w(G) + w(Vrem(wi, uj)) + 1

2 (w(M))−801

1
2 (w(Vrem(wi, uj)))), which is equal to 1

12 w(G) + 1
2 w(Vrem(wi, ui)) + 1

2 (w(M)) ≤ 1
12 wG +802

3
4 w(M). Thus we can stop the first time w(Vleft) is greater than w(G)/12. So, we have803

w(Vleft) ≤ 2
12 w(G) + 3

4 w(M) ≤ 11
12 w(G), and w(Vright) ≤ 11

12 w(M), and w(f) ≤ 1
12 w(M),804

and w(Vrem) ≤ 1
2 w(M). Thus we have an upper bound of 11

12 w(G) on all the disconnected805

components. Hence pxi,wi
is a 11

12 path separator.806

◀807

6 Path Separator in a Planar Digraph808

Having seen how to construct a path separator in a mesh, we now show how to use that to809

construct an (11
12 , r) path separator in any planar digraph.810

1. Given a graph G, first embed the graph so that the root r lies on the outer face. Through811

the root, draw a virtual directed cycle C0 that encloses the entire graph, and orient it,812

say clockwise. Find the layering described in Section 4 and output it on a transducer.813

Cycle C0 will be colored red and will be in the sublayer L0,0.814

2. In the laminar family of red/blue cycles, find the cycle C s.t. w(C) is more than |G|/12,815

but no colored cycle C ′ in the interior of C has the same property. Such a cycle will816

clearly exist (it could be the virtual cycle C0). Let the sublayer of C be Lk,l.817

3. Find a path p from the root r to any vertex rC of the cycle C such that no other vertex818

of C is in the path. As seen above in Lemma 26, the graph in the interior of C and819

belonging to the immediately next sublayer (Lk+1,l if C is clockwise and Lk,l+1 if C is820

counter-clockwise) is a DAG of meshes. There are two cases possible:821

a. The graph C̃ has no strongly-connected components of weight larger than |G|/12. In822

this case we simply extend the path p from rC by encircling the cycle C till the last823

vertex and stop.824

b. The graph C̃ has a strongly-connected component of weight more than |G|/12. In825

this case, we extend p from rC by encircling C till the last vertex u on C that can826

reach any such component MC . Then extend the path from u to any vertex of MC827

and apply the mesh separator lemma (Lemma 32) to obtain the desired separator.828

(Observe that MC satisfies the hypothesis of Lemma 32.)829

▶ Lemma 50. The path p obtained by the above procedure is an 11
12 separator.830

Proof. We look at the two cases from step 3 in the algorithm:831

1. In this case it is clear that the interior and exterior of cycle C are disconnected by p.832

The exterior of C has size ≤ 11
12 |G| (by definition of C), and in its interior every strongly-833

connected component has weight at most |G|/12. Thus this satisfies the definition of an834

11
12 separator.835

E. Allender, A. Chauhan, and S. Datta 25

x

M

yC

Figure 14 The cycle C is a cycle satisfying the property
stated in step 2 of the algorithm. The mesh M in the
next sublayer is heavy, so we find a path from the last
vertex on C that can reach M (in this case y), and then
apply the algorithm of previous section on M .

2. We took the last edge in C from rC that can reach the mesh MC , and extended the path836

to MC . Thus after removing p, one weakly-connected component consists of the exterior837

of G, along with (possibly) some vertices in the interior of C that cannot reach any “large”838

mesh in the interior. Since MC has weight greater than 1
12 |G|, no strongly-connected839

component embedded outside of MC can have weight more than 11
12 |G|. Also, after840

removing path p, Lemma 32 guarantees that no other strongly-connected component will841

have weight more than 11
12 |G|. Thus this is an 11

12 separator.842

Hence overall we can guarantee an 11
12 path separator in G. ◀843

7 Building a DFS Tree Using Path Separators844

Given a graph G, one can determine in logspace if G is planar, and then compute a planar845

embedding [6, 35]. Thus it will suffice to give a give a recursive divide and conquer algorithm846

for DFS, assuming that G is presented embedded in the plane, and that we are given a root847

vertex r on the outer face.848

A single phase of the algorithm starts with G and r, and creates a sequence of subgraphs,849

each of size at most 11
12 the size of G. The algorithm then computes DFS trees for each850

of those graphs (recursively), and the results of (some of) the graphs are sewn together to851

obtain a DFS tree for G. Each phase can be computed in AC0(UL ∩ co-UL), and hence the852

entire algorithm can be implemented in AC1(UL ∩ co-UL).853

We now describe a single phase in more detail.854

1. Given a planar drawing of G and a root vertex on the outer face r, find an 11
12 path855

separator p = ⟨r, v1, v2, . . . , vk⟩, as described in Section 6. Path p is included in the DFS856

tree.857

2. Let R(v) denote the set of vertices of G reachable from v. Now for every vertex vi in858

p compute in parallel: R′(vi) = R(v)\(
⋃k

j=i+1 R(vj)) Our DFS will correspond to first859

traveling along p to vk, doing DFS on R(vk), and then while backtracking on p, do DFS860

on R′(vi) for i from k − 1 downto 1. Given G, the encodings of p and R′(vi) can all be861

computed in AC0(UL ∩ co-UL).862

26 Depth-First Search in Directed Planar Graphs, Revisited

3. For any vi, R′(vi) can be written as a DAG of SCCs (strongly-connected components),863

where each SCC is smaller than 11
12 |G|. In AC0(UL ∩ co-UL) we can compute this DAG864

and we can compute an encoding of the tuple (i, M, v) where M is an SCC in R′(vi) and865

v is a vertex in M . Recursively, in parallel, we compute a DFS tree of M for each tuple866

(i, M, v), using v as the root. Now we need to show how to sew together (some of) these867

DFS trees, to form a DFS tree for G with root r. Namely, for each i, for each M ∈ R′(vi),868

we will select exactly one v such that the DFS tree for G will incorporate the DFS tree869

computed for (i, M, v), as described next.870

4. Given a triple (i, M, v), let x0, x1, . . . , xs be the order in which the vertices of M appear871

in a DFS traversal where the root x0 = v. If v is such that the DFS tree for (i, M, v)872

is incorporated into the DFS tree that we are constructing for G, then our DFS will873

correspond to first following the edges from x0 that lead to other SCCs in R′(vi). (No874

vertex reachable in this way can reach any xj , or else that vertex would also be in M .)875

And then we will move on to x1 and repeat the process, etc. Thus let R′′
i,M,v(xj) =876

((R(xj) ∩R′(vi))\M)\(
⋃

k<j R(xk)).877

Our DFS tree for G is composed by using Algorithm 2 of Section 3, on the multigraph that878

has a vertex for each SCC in the DAG of SCCs that makes up any R′′
i,M ′,v(xj). Crucially,879

the ordering on the edges that leave any node M ′′ in this multigraph is determined by880

the order in which the vertices of M ′′ are visited in the DFS tree of M ′′.881

Let us see in more detail how to use the DFS trees that we computed for each (i, M, v),882

by considering how to process the DAG of SCCs in some R′′
i,M ′,v(xj). Every SCC in this883

DAG is reachable from xj . We will be using Algorithm 2 from Section 3 to compute884

the lexicographically-least path from xj to any SCC M ′′ in R′′
i,M ′,v(xj). We can use any885

ordering for the edges that leave xj (such as the order in which the edges are presented).886

For the other SCCs in the DAG, the ordering must be chosen more carefully. Let us say887

that the first edge that leaves xj that lies on some path to a node in M ′′ is (xj , y); this888

edge will be in our DFS tree for G. The node y is in some SCC N in R′′
i,M ′,v(xj). A DFS889

tree Ti,N,y was computed for (i, N, y); the order in which the nodes of Ti,N,y are visited890

imposes an order on the edges that leave N in the acyclic multigraph. That is the order891

that is used, in applying Algorithm 2.892

More generally, when executing the while loop in Algorithm 2, if the variable current893

currently is set to some SCC M1, and M2 is the first SCC adjacent to M1 (using the894

ordering on the edges of M1) that lies on a path to M ′′, and this is because there is an895

edge (w, z) where w is the first node in the traversal of M1 that is adjacent to any node896

of M2, then on the next pass through the while loop, the ordering on the edges leaving897

M2 is determined by the traversal order of the DFS tree that was computed for (i, M2, z).898

Let us denote this node z by vM2 ; the edge (w, vM2) will be in the DFS tree for G.899

5. The final DFS tree for G thus consists of the path p = ⟨r, v1, v2, . . . , vk⟩ along with the900

DFS trees that were computed for each (i, M, vM) (for the unique vertex vM identified in901

the preceding step).902

8 Conclusions and Open Problems903

Although we give an improved upper bound for the problem of finding DFS trees in planar904

digraphs, we do not completely resolve the question of this problem’s complexity. Computing905

DFS trees in planar graphs is clearly at least as hard as the reachability problem in planar906

graphs, and we know of no better lower bound for this problem.907

In any class of graphs, computing breadth-first search trees is no harder than computing908

E. Allender, A. Chauhan, and S. Datta 27

distance in the graph. Reachability always reduces to the problem of computing distance,909

but the complexity of these problems can differ. (Reachability in undirected graphs lies in910

logspace [35], whereas computing distance in undirected graphs is complete for NL [37].) For911

directed planar graphs, we have noted that both these problems lie in UL∩co-UL (Theorem 1).912

Thus we can also ask whether breadth-first search trees are easier to compute in planar913

directed graphs, than DFS trees.914

Note that, for undirected planar graphs, both breadth-first and depth-first search trees915

reduce to computing distance in directed planar graphs [4]. We know of no better lower bound916

for computing DFS trees in undirected planar graphs than the corresponding reachability917

problem.918

Of course, the outstanding open question in this area is to resolve the complexity of919

computing DFS trees in general (directed or undirected) graphs. The RNC7 algorithm of [1]920

is unlikely to be optimal. It would be of interest to improve the complexity even in terms of921

nonuniform circuit complexity classes.922

References923

1 Alok Aggarwal, Richard J. Anderson, and Ming-Yang Kao. Parallel depth-first search in924

general directed graphs. SIAM J. Comput., 19(2):397–409, 1990. doi:10.1137/0219025.925

2 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha926

Roy. Planar and grid graph reachability problems. Theory of Computing Systems, 45(4):675–927

723, 2009. doi:10.1007/s00224-009-9172-z.928

3 Eric Allender, Archit Chauhan, and Samir Datta. Depth-first search in directed graphs,929

revisited. Technical Report TR20-074, Electronic Colloquium on Computational Complexity930

(ECCC), 2020.931

4 Eric Allender, Archit Chauhan, Samir Datta, and Anish Mukherjee. Planarity, exclusivity,932

and unambiguity. Electronic Colloquium on Computational Complexity (ECCC), 26:39, 2019.933

5 Eric Allender and Klaus-Jörn Lange. RUSPACE(log n) ⊆ DSPACE(log2 n/ log log n). Theory934

of Comput. Syst., 31(5):539–550, 1998. doi:10.1007/s002240000102.935

6 Eric Allender and Meena Mahajan. The complexity of planarity testing. Inf. Comput.,936

189:117–134, 2004.937

7 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uniform938

and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164–181,939

1999.940

8 Sanjeev Arora and Boaz Barak. Computational Complexity, a modern approach. Cambridge941

University Press, 2009.942

9 Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi,943

Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using O(n) bits. In944

Hee-Kap Ahn and Chan-Su Shin, editors, Proc. 25th International Symposium on Algorithms945

and Computation (ISAAC), volume 8889 of Lecture Notes in Computer Science, pages 553–564.946

Springer, 2014. doi:10.1007/978-3-319-13075-0_44.947

10 Giuseppe Di Battista, Peter Eades, Roberto Tamassiao, and Ioannis G. Tollis. Graph drawing:948

algorithms for the visualization of graphs. Prentice Hall, 1998.949

11 Glencora Borradaile and Philip N. Klein. An O(n log n) algorithm for maximum st-flow in a950

directed planar graph. J. ACM, 56(2):9:1–9:30, 2009. doi:10.1145/1502793.1502798.951

12 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability is952

in unambiguous log-space. TOCT, 1(1):4:1–4:17, 2009. URL: http://doi.acm.org/10.1145/953

1490270.1490274, doi:10.1145/1490270.1490274.954

13 Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange, and Peter Rossmanith. Unambiguity and955

fewness for logarithmic space. In Lothar Budach, editor, Proc. 8th Symposium on Fundamentals956

http://dx.doi.org/10.1137/0219025
http://dx.doi.org/10.1007/s00224-009-9172-z
http://dx.doi.org/10.1007/s002240000102
http://dx.doi.org/10.1007/978-3-319-13075-0_44
http://dx.doi.org/10.1145/1502793.1502798
http://doi.acm.org/10.1145/1490270.1490274
http://doi.acm.org/10.1145/1490270.1490274
http://doi.acm.org/10.1145/1490270.1490274
http://dx.doi.org/10.1145/1490270.1490274

28 Depth-First Search in Directed Planar Graphs, Revisited

of Computation Theory (FCT), volume 529 of Lecture Notes in Computer Science, pages957

168–179. Springer, 1991. doi:10.1007/3-540-54458-5_61.958

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin959

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing960

Company, Incorporated, 1st edition, 2015.961

15 Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner.962

Planar graph isomorphism is in log-space. In Proceedings of the 24th Annual IEEE Conference963

on Computational Complexity (CCC), pages 203–214, 2009. doi:10.1109/CCC.2009.16.964

16 Pilar de la Torre and Clyde P. Kruskal. Fast parallel algorithms for all-sources lexicographic965

search and path-algebra problems. J. Algorithms, 19(1):1–24, 1995. doi:10.1006/jagm.1995.966

1025.967

17 Pilar de la Torre and Clyde P. Kruskal. Polynomially improved efficiency for fast parallel968

single-source lexicographic depth-first search, breadth-first search, and topological-first search.969

Theory Comput. Syst., 34(4):275–298, 2001. doi:10.1007/s00224-001-1008-4.970

18 Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer,971

2016.972

19 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algorithms.973

In Proc. 32nd International Symposium on Theoretical Aspects of Computer Science (STACS),974

volume 30 of LIPIcs, pages 288–301. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.975

doi:10.4230/LIPIcs.STACS.2015.288.976

20 Henning Fernau, Klaus-Jörn Lange, and Klaus Reinhardt. Advocating ownership. In Vijay977

Chandru and V. Vinay, editors, 16th Foundations of Software Technology and Theoretical978

Computer Science (FSTTCS), volume 1180 of Lecture Notes in Computer Science, pages979

286–297. Springer, 1996. doi:10.1007/3-540-62034-6_57.980

21 Torben Hagerup. Planar depth-first search in O(log n) parallel time. SIAM J. Com-981

put., 19(4):678–704, June 1990. URL: http://dx.doi.org/10.1137/0219047, doi:10.1137/982

0219047.983

22 Torben Hagerup. Space-efficient DFS and applications to connectivity problems: Simpler,984

leaner, faster. Algorithmica, 82(4):1033–1056, 2020. doi:10.1007/s00453-019-00629-x.985

23 Taisuke Izumi and Yota Otachi. Sublinear-space lexicographic depth-first search for bounded986

treewidth graphs and planar graphs. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,987

editors, Proc. 47th International Colloquium on Automata, Languages and Programming988

(ICALP), volume 168 of LIPIcs, pages 67:1–67:17. Schloss Dagstuhl - Leibniz-Zentrum für989

Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.67.990

24 B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz. Dissertation, Universität991

Hamburg, 1989.992

25 Birgit Jenner, Bernd Kirsig, and Klaus-Jörn Lange. The logarithmic alternation hierarchy993

collapses: Aσl
2 = aπl

2. Inf. Comput., 80(3):269–287, 1989. doi:10.1016/0890-5401(89)994

90012-6.995

26 Ming-Yang Kao. Linear-processor NC algorithms for planar directed graphs I: strongly996

connected components. SIAM J. Comput., 22(3):431–459, 1993. doi:10.1137/0222032.997

27 Ming-Yang Kao. Planar strong connectivity helps in parallel depth-first search. SIAM J.998

Comput., 24(1):46–62, 1995. doi:10.1137/S0097539792227077.999

28 Ming-Yang Kao and Philip N. Klein. Towards overcoming the transitive-closure bottleneck:1000

Efficient parallel algorithms for planar digraphs. Journal of Computer and System Sciences,1001

47(3):459–500, 1993. doi:10.1016/0022-0000(93)90042-U.1002

29 Haim Kaplan and Yahav Nussbaum. Maximum flow in directed planar graphs with vertex1003

capacities. Algorithmica, 61(1):174–189, 2011. doi:10.1007/s00453-010-9436-7.1004

30 Klaus-Jörn Lange. Unambiguity of circuits. Theor. Comput. Sci., 107(1):77–94, 1993. URL:1005

https://doi.org/10.1016/0304-3975(93)90255-R, doi:10.1016/0304-3975(93)90255-R.1006

31 Klaus-Jörn Lange. An unambiguous class possessing a complete set. In Rüdiger Reischuk1007

and Michel Morvan, editors, 14th Annual Symposium on Theoretical Aspects of Computer1008

http://dx.doi.org/10.1007/3-540-54458-5_61
http://dx.doi.org/10.1109/CCC.2009.16
http://dx.doi.org/10.1006/jagm.1995.1025
http://dx.doi.org/10.1006/jagm.1995.1025
http://dx.doi.org/10.1006/jagm.1995.1025
http://dx.doi.org/10.1007/s00224-001-1008-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.288
http://dx.doi.org/10.1007/3-540-62034-6_57
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1137/0219047
http://dx.doi.org/10.1007/s00453-019-00629-x
http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.67
http://dx.doi.org/10.1016/0890-5401(89)90012-6
http://dx.doi.org/10.1016/0890-5401(89)90012-6
http://dx.doi.org/10.1016/0890-5401(89)90012-6
http://dx.doi.org/10.1137/0222032
http://dx.doi.org/10.1137/S0097539792227077
http://dx.doi.org/10.1016/0022-0000(93)90042-U
http://dx.doi.org/10.1007/s00453-010-9436-7
https://doi.org/10.1016/0304-3975(93)90255-R
http://dx.doi.org/10.1016/0304-3975(93)90255-R

E. Allender, A. Chauhan, and S. Datta 29

(STACS), volume 1200 of Lecture Notes in Computer Science, pages 339–350. Springer, 1997.1009

doi:10.1007/BFb0023471.1010

32 Klaus-Jörn Lange and Peter Rossmanith. Characterizing unambiguous augmented pushdown1011

automata by circuits. In Branislav Rovan, editor, Proc. Mathematical Foundations of Computer1012

Science (MFCS), volume 452 of Lecture Notes in Computer Science, pages 399–406. Springer,1013

1990. doi:10.1007/BFb0029635.1014

33 Maxim Naumov, Alysson Vrielink, and Michael Garland. Parallel depth-first search for directed1015

acyclic graphs. In Proc. 7th Workshop on Irregular Applications: Architectures and Algorithms,1016

pages 4:1–4:8, 2017. doi:10.1145/3149704.3149764.1017

34 John H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229–234,1018

1985. doi:10.1016/0020-0190(85)90024-9.1019

35 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.1020

36 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Comput.,1021

29(4):1118–1131, 2000. URL: https://doi.org/10.1137/S0097539798339041, doi:10.1137/1022

S0097539798339041.1023

37 Till Tantau. Logspace optimization problems and their approximability properties. Theory1024

Comput. Syst., 41(2):327–350, 2007. doi:10.1007/s00224-007-2011-1.1025

38 Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar1026

graphs. Inf. Comput., 215:1–7, 2012. URL: https://doi.org/10.1016/j.ic.2012.03.002,1027

doi:10.1016/j.ic.2012.03.002.1028

39 Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar 3-connected1029

graphs is in unambiguous logspace. Theory Comput. Syst., 47(3):655–673, 2010. doi:10.1007/1030

s00224-009-9188-4.1031

40 W. T. Tutte. Separation of vertices by a circuit. Discrete Mathematics, 12(2):173–184, 1975.1032

41 H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New1033

York Inc., 1999. doi:10.1007/978-3-662-03927-4.1034

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/BFb0023471
http://dx.doi.org/10.1007/BFb0029635
http://dx.doi.org/10.1145/3149704.3149764
http://dx.doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1007/s00224-007-2011-1
https://doi.org/10.1016/j.ic.2012.03.002
http://dx.doi.org/10.1016/j.ic.2012.03.002
http://dx.doi.org/10.1007/s00224-009-9188-4
http://dx.doi.org/10.1007/s00224-009-9188-4
http://dx.doi.org/10.1007/s00224-009-9188-4
http://dx.doi.org/10.1007/978-3-662-03927-4

