
On Minimizing Regular Expressions Without
Kleene Star

Hermann Gruber1, Markus Holzer2, and Simon Wolfsteiner3

1 Knowledgepark GmbH, Leonrodstr. 68, 80636 München, Germany
hermann.gruber@kpark.de

2 Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

3 Institut für Diskrete Mathematik und Geometrie, TU Wien,
Wiedner Hauptstr. 8–10, 1040 Wien, Austria

simon.wolfsteiner@tuwien.ac.at

Abstract. Finite languages lie at the heart of literally every regular
expression. Therefore, we investigate the approximation complexity of
minimizing regular expressions without Kleene star, or, equivalently,
regular expressions describing finite languages. On the side of approx-
imation hardness, given such an expression of size s, we prove that it
is impossible to approximate the minimum size required by an equiva-

lent regular expression within a factor of O
(

s
(log s)2+δ

)
if the running

time is bounded by a quasipolynomial function depending on δ, for ev-
ery δ > 0, unless the exponential time hypothesis (ETH) fails. For ap-
proximation ratio O(s1−δ), we prove an exponential time lower bound
depending on δ, assuming ETH. The lower bounds apply for alphabets
of constant size. On the algorithmic side, we show that the problem can
be approximated in polynomial time within O(s log log s

log s
), with s being

the size of the given regular expression. For constant alphabet size, the
bound improves to O(s

log s
). Finally, we devise a familiy of superpoly-

nomial approximation algorithms that attain the performance ratios of
the lower bounds, while their running times are only slightly above those
excluded by the ETH.

1 Introduction

Regular expressions are used in many applications and it is well known that
for each regular expression there is a finite automaton that defines the same
language and vice versa. Automata are very well suited for programming tasks
and immediately translate to efficient data structures. On the other hand, regular
expressions are well suited for human users and therefore are often used as
interfaces to specify certain patterns or languages.

Apart from more traditional applications in text processing tools such as
awk, grep, and sed, regular expressions are a pervasive feature in a vast array of
modern application programming interfaces (APIs). Recent practical examples,
for instance, include:

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 79 (2020)

– being an integral part of the Perl programming language,
– querying semi-structured data in the MongoDB NoSql-database,
– defining rewrite rules in the nginx web server,
– specifying trigger rules for builds in continuous deployment with docker hub,

and
– defining entities for matching custom data in the DialogFlow conversational

suite.

Regarding performance optimization, putting effort into the internal representa-
tion inside the regex engine is of course a natural choice [23]. On the other hand,
most of the time developers use existing APIs but are not willing, or able, to
change the source code of these. Thus, sometimes practitioners may see a need
for optimizing the input regular expressions, see, e.g., [19, 25, 26, 29]. In fact,
the regular expressions from the above mentioned research papers are without
Kleene star, that is, they describe only finite languages.

The problem of minimizing regular expressions accepting infinite languages
is PSPACE-complete, and even attaining a sublinear approximation ratio is al-
ready equally hard [9]. When restricting to finite languages, it is not difficult
to show that regular expression minimization is “only” in ΣP

2 , the second level
of the polynomial hierarchy. Although there are hardness results for minimizing
acyclic nondeterministic finite automata [3, 10], and also for minimizing acyclic
context-free grammars [12], apparently no lower bounds about minimizing reg-
ular expression without Kleene star were known prior to this work [29]. Recent
years have seen a renewed interest in the analysis of computational problems,
among others, on formal languages, since more fine-grained hardness results can
be achieved based on the exponential time hypothesis (ETH) than with more
traditional proofs based on the assumption P 6= NP [1, 2, 5, 7, 24, 27]. Roughly
speaking, ETH posits that there is no algorithm that decides 3-SAT formulae
with n variables in time 2o(n), and is one among other strong hypotheses that
are used during the last decade to perform fine grained complexity studies; for
a short survey on some results obtained by some hypotheses we refer to [28].

We contribute a fine grained analysis of approximability and inapproxima-
bility for minimizing regular expressions without Kleene star. On the side of
approximation hardness, given such an expression of size s, we prove that it is
impossible to approximate the minimum size required by an equivalent regular

expression within a factor of O
(

s
(log s)2+δ

)
if the running time is bounded by a

quasipolynomial function depending on δ, for every δ > 0, unless the ETH fails.
For approximation ratio O(s1−δ), we prove an exponential-time lower bound
depending on δ, assuming ETH. These lower bounds apply for alphabets of
constant size. On the algorithmic side, we show that the problem can be approx-
imated in polynomial time within O(s log log s

log s), where s is the size of the given

regular expression. For constant alphabet size, the bound improves to O(s
log s).

Finally, we devise a familiy of superpolynomial approximation algorithms that
attain the performance ratios of the lower bounds, while their running times
are only slightly above those excluded by the ETH. For instance, we attain an

approximation ratio of O
(

s
(log s)2+δ

)
in time sO((log s)2+δ), and a ratio of s1−δ

2

in time 2O(sδ). For these ratios, our inapproximability results rule out running

times of so((log s)
2+δ−ε) and 2o(s

δ−ε), respectively, provided the ETH holds.
This paper is organised as follows: in the next section we define the basic

notions relevant to this paper. Section 3 covers approximation hardness results
for various runtime regimes based on the ETH. Then in Section 4, these negative
results are complemented with approximation algorithms that nearly attain these
lower bounds. To conclude this work, we indicate possible directions for further
research in the last section.

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal language
theory as contained in [15]. In particular, let Σ be an alphabet and Σ∗ the set
of all words over the alphabet Σ, including the empty word ε. The length of a
word w is denoted by |w|, where |ε| = 0, and the total number of occurrences of
the alphabet symbol a in w is denoted by |w|a. In this paper, we mainly deal with
finite languages. The order of a finite language L is the length of a longest word
belonging to L. A finite language L ⊆ Σ∗ is called homogeneous if all words in the
language have the same length. We say that a homogeneous language L ⊆ Σn is
full if L is equal to Σn. For languages L1, L2 ⊆ Σ∗, the left quotient of L1 and L2

is defined as L−11 L2 = { v ∈ Σ∗ | there is some w ∈ L1 such that wv ∈ L2 }.
If L1 is a singleton, i.e., L1 = {w}, for some word w ∈ Σ∗, we omit braces,
that is, we write w−1L2 instead of {w}−1L2. The set w−1L2 is also called the
derivative of L2 w.r.t. the word w. In order to fix the notation, we briefly recall
the definition of regular expressions and the languages described by them.

The regular expressions over an alphabet Σ are defined inductively in the
usual way:4 ∅, ε, and every letter a with a ∈ Σ is a regular expression; and
when E and F are regular expressions, then (E + F), (E · F), and (E)∗ are
also regular expressions. The language defined by a regular expression E, de-
noted by L(E), is defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a},
L(E+F) = L(E)∪L(F), L(E ·F) = L(E) ·L(F), and L(E∗) = L(E)∗. The al-
phabetic width or size of a regular expression E over the alphabet Σ, denoted by
awidth(E), is defined as the total number of occurrences of letters of Σ in E. For
a regular language L, we define its alphabetic width, awidth(L), as the minimum
alphabetic width among all regular expressions describing L.

Let E be a regular expression. According to [13] an expression E is uncol-
lapsible if all of the following conditions hold: if E contains the symbol ∅ then
E = ∅; the expression E contains no subexpression of the form F · G or G · F
with L(F) = {ε}; if E contains a subexpression of the form F +G or G+F with
L(F) = {ε}, then ε 6∈ L(G); if E contains a subexpression of the form F ∗, then
L(F) 6= {ε}. It was shown in [13] that if E is an uncollapsible regular expression

4 For convenience, parentheses in regular expressions are sometimes omitted and the
concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: concatenation is performed before union, and star before both
product and union.

3

describing a homogeneous language, then E is a homogeneous expression, i.e.,
an expression where none of the symbols ∅, ε, and ∗ occur in E, or L(E) = ∅
and E = ∅ or L(E) = {ε} and E = ε.

We are interested in regular expression optimization w.r.t. its alphabetic
width (or, equivalently, its size). An algorithm that returns near-optimal solu-
tions is called an approximation algorithm. Assume that we are working on an
optimization problem in which each potential solution has a positive cost and
that we wish to find a near-optimal solution. Depending on the problem, an
optimal solution may be defined as one with maximum possible cost or one with
minimum possible cost; the problem may be a maximization or a minimization
problem. We say that an approximation algorithm for the problem has a ratio
bound of ρ(n) if for any input of size n, the cost C of the solution produced
by the approximation algorithm is within a factor of ρ(n) of the cost C∗ of an
optimal solution:

max

(
C

C∗
,
C∗

C

)
≤ ρ(n).

Here, the regular expression optimization problem is obviously a minimization
problem. If the approximation algorithm is running in polynomial time, we speak
of a polynomial-time approximation algorithm.

Since the problem we investigate is in the polynomial hierarchy, proving su-
perpolynomial runtime bounds on approximation would imply P 6= NP. We thus
resort to proving conditional lower bounds based on hardness assumptions such
as P 6= NP. A more fine-grained analysis is possible when using the exponential
time hypothesis (ETH) as hardness assumption, as surveyed in [20]. In partic-
ular, using the Sparsification Lemma [18], the ETH implies that there is no
algorithm running in time 2o(n) that decides satisfiability of 3-SAT formulae
with n variables. This is of course a much stronger assumption than P 6= NP.

3 Inapproximability

In this section, we will show that, for a given regular expression without Kleene
star, the minimum size required by an equivalent regular expression cannot be
approximated within a certain factor if the running time is within certain bounds,
assuming the ETH. We start off with an estimate of the required regular expres-
sion size for a language which we shall use as gadget. The proofs of the next
three lemmata can be found in the Appendix.

Lemma 1. Let Sr = {xy ∈ {0, 1}∗ | |x| = |y| = r and x = y } denote the
language of all binary square words of length 2r. Then 2r ≤ awidth(Sr) ≤ 2r ·2r.

Proof. The upper bound follows from the fact that a finite language can be
described by a regular expression that essentially lists all of its words. Each
word in Sr is of length 2r and there are 2r of them.

For the lower bound, we start by giving a fooling set of size 2r + 1, thus
witnessing that every nondeterministic finite state automaton requires at least

4

that number of states. For an introduction into the fooling set method, see, e.g.,
the recent survey in [16]. A fooling set of size 2r is given by

{ (w,w) | w ∈ {0, 1}r }

—it can be readily observed that, for any two distinct pairs (w,w) and (x, x),
it holds that wx /∈ Sr, whereas, for every pair (w,w), it holds that ww ∈ Sr.
It is quite straightforward to add one more pair to this fooling set, for exam-
ple (ε, 02r). By the position automaton construction, see, e.g., [6], each regular
expression of alphabetic width n can be converted into a nondeterministic finite
state automaton with n+1 states which then gives the desired lower bound of 2r

on alphabetic width.

It has been shown in [11] that taking the quotient of a regular language can
cause at most a quadratic blow-up in required regular expression size. Vice versa,
the alphabetic width of a language can be lower-bounded by the order of the
square root of the alphabetic width of any of its quotients. For our reduction,
we need a tighter relationship. This is possible if we resort to special cases. Let
us consider homogeneous languages and expressions in more detail. First, we
need a simple observation that turns out to be very useful in the forthcoming
considerations.

Lemma 2. Let L ⊆ Σn be a homogeneous language. If E is an expression
describing L, then any subexpression of E describes a homogeneous language as
well.

Proof. It suffices to consider homogeneous expressions. Recall that a regular
expression is homogeneous if none of the symbols ∅, ε, and ∗ occur in E, or
L(E) = ∅ and E = ∅ or L(E) = {ε} and E = ε.

In the cases that E = ∅, E = ε, or E = a, for a ∈ Σ, the statement obviously
follows. Because E is a homogeneous expression, we consider two subcases: (i)
Let E = F + G such that L(E) = L(F + G) = L(F) ∪ L(G) is a homogeneous
language, for two regular expressions F and G. Assume, w.l.o.g., that L(F) is
not homogeneous, i.e., there are two words w1, w2 ∈ L(F) such that |w1| 6= |w2|.
Then, we also have that w1, w2 ∈ L(E) and thus L(E) is not homogeneous. This
contradicts the fact that E describes a homogeneous language. (ii) Let E = F ·G
such that L(E) = L(F · G) = L(F) · L(G) is a homogeneous language, for two
regular expressions F and G. Suppose, w.l.o.g., that L(F) is not homogeneous,
i.e., there are two words w1, w2 ∈ L(F) such that |w1| 6= |w2|. Then, there
is some word w3 ∈ L(G) such that w1w3, w2w3 ∈ L(E), but |w1w3| 6= |w2w3|.
This, however, means that L(E) is not homogeneous, a contradiction. Hence, any
subexpression of E describes a homogeneous language as stated in the claim.

Now we are ready to consider the descriptional complexity of quotients of
homogeneous languages in detail.

Lemma 3. Let L ⊆ Σn be a homogeneous language. Then

awidth(w−1L) ≤ awidth(L),

5

for any word w ∈ Σ∗.

Proof. By [13], it suffices to consider a homogeneous expression E describing
the language L, that is, L = L(E). We construct a regular expression E′ for the
language w−1L(E) by induction as follows: for the base cases, let

E′ =

∅ if E = ∅,
ε if E = ε and w = ε,

a if E = a and w = ε,

ε if E = a and w = a,

∅ otherwise.

Finally, we have to consider two subcases: (i) Let E = F + G. Then, by induc-
tion hypothesis, there are regular expressions F ′ and G′ describing the lan-
guages w−1L(F) and w−1L(G). Thus, E′ = F ′ + G′ and it is easy to see
that L(E′) = w−1L(E). (ii) Let E = F · G. By Lemma 2, we know that F
and G describe homogeneous languages. Thus, let L(F) ⊆ Σn1 with n1 < n.
Now assume that w = u1u2 with |u1| = n1. Then E′ = F ′ · G′, where F ′ is a
regular expression describing u−11 L(F), which is either the empty language or
the language containing only the empty word ε, and G′ an expression for the
language u−12 L(G). In case w cannot be decomposed as described above, that
is, |w| < n1, we set E′ = F ′ · G, where F ′ is a regular expression for the lan-
guage w−1L(F). In both of these cases, it is straightforward to verify that L(E′)
is equal to the set w−1L(E). This completes the construction of the expres-
sion E′ and proves the stated claim on the alphabetic width of w−1L w.r.t. the
alphabetic width of the original language L.

We build upon the classical coNP-completeness proof of the inequality prob-
lem for regular expressions without star given in [17, Thm. 2.3]. We recall the
reduction to make this paper more self-contained.

Theorem 4. Let ϕ be a formula in 3-DNF with n variables and m clauses.
Then a regular expression β can be computed in time O(m · n) such that the
language B = L(β) is homogeneous and B is full if and only if ϕ is a tautology.

Proof. Let ϕ =
∨m
i=1 ci be a formula in 3-DNF. For each clause ci, let βi =

βi1βi2 · · ·βin, where

βij =

(0 + 1) if both xj and xj are not literals in ci,

0 if xj is a literal in ci,

1 if xj is a literal in ci.

Let β = β1 + β2 + · · · + βm. Clearly, B = L(β) ⊆ {0, 1}n. Let w in {0, 1}n.
Then w is in B if and only if w satisfies some clause ci. Thus B = {0, 1}n if and
only if ϕ is a tautology. This completes the reduction.

6

Now if we wanted to apply the reduction from Theorem 4 to the minimization
problem of regular expressions, the trouble is that we cannot predict the mini-
mum required regular expression size for B = L(β) in case it is not full. To make
this happen, we use a similar trick as recently used in [12] for the analogous case
of context-free grammars. In the following lemma, we embed the language Sr
of all binary square words of length r together with the language B = L(β) (as
defined in Theorem 4) into a more complex language C. Depending on whether
or not B is full, the alphabetic width of C is at most linear or at least quadratic,
respectively, in n. Recall that n refers to the number of variables in the given 3-
DNF formula ϕ.

Lemma 5. Let ϕ be a formula in 3-DNF with n variables and m clauses and
let β be the regular expression constructed in Theorem 4. Furthermore, let

C = B · {0, 1}2r ∪ {0, 1}n · Sr,

where B = L(β), 2 log n ≤ r ≤ n, and Sr is defined as in Lemma 1. Then

awidth(C) =

{
O(n) if B is full,

Ω(2r) if B is not full.

Proof. We distinguish two cases:

1. On the one hand, if B = {0, 1}n, then the language B · {0, 1}2r is a superset
of {0, 1}n·Sr. Hence, C can be described by the regular expression (0+1)n+2r.
Since we assumed above that 2 log n ≤ r, it follows that this expression has
size O(n).

2. On the other hand, if B is not full, then there is a word w ∈ {0, 1}n that
is not a member of B. Now the derivative of C w.r.t. the word w, that is,
the language w−1C, is equal to the set of squares Sr. By Lemma 3, we have
awidth(C) ≥ awidth(Sr). From Lemma 1, we know that awidth(Sr) ≥ 2r, and
thus we can conclude that awidth(C) = Ω(2r) = Ω(|Sr|) in case B is not
full.

This finishes the proof of the lemma.

The following technical lemma will serve as a main ingredient in the proof of
Theorem 7.

Lemma 6. Let E be a regular expression without Kleene star of size s, and
let σ and τ be constants such that σ ≤ 1

2 and σ < τ < 1. Then no determin-

istic 2o((
s

log s)
σ
)-time algorithm can approximate awidth(L(E)) within a factor

of O(s1−τ), unless ETH fails.

Proof. We give a reduction from the 3-DNF tautology problem as in Lemma 5.
That is, given a formula ϕ in 3-DNF with n variables and m clauses, we construct
a regular expression that generates the language

C = B · {0, 1}2r ∪ {0, 1}n · Sr.

7

The sets Sr and B are defined as in Lemma 1 and Theorem 4, respectively. Here,
the set Sr features some carefully chosen parameter r, which will be fixed later
on. For now, we only assume 2 log n ≤ r ≤ n.

Next, we need to show that the reduction is correct in the sense that if B
is full, then awidth(C) is asymptotically strictly smaller than in the case where
it is not full. By Lemma 5, it follows that awidth(C) = O(n) if B is full and
awidth(C) = Ω(2r), otherwise. Thus, the reduction is correct, since we have
assumed that r ≥ 2 log n and consequently 2r = ω(n).

It is easy to see that the running time of the reduction is linear in the size
of the constructed regular expression describing C. Now we estimate the size of
that regular expression. Recall from Theorem 4 that the regular expression β
has size O(m · n). By the Sparsification Lemma [18], we may safely assume
that m = O(n), so the size is in O(n2). The set {0, 1}n+2r admits a regular
expression of size O(n); and awidth(Sr) = O(2r · r) by Lemma 1. Since we have
assumed that r ≥ 2 log n, the order of magnitude of the constructed regular
expression is s = Θ(2r · r).

Now we need to fix the parameter r in our reduction; let us pick r = 1
σ · log n.

Recall that the statement of the lemma requires 1
σ ≥ 2, so this is a valid choice

for the parameter r—in the sense that the reduction remains correct.

Towards a contradiction, assume that there is an algorithm Aσ approximating

the alphabetic width within O
(
s1−τ

)
running in time 2o((

s
log s)

σ
). Then Aσ could

be used to decide whether B is full as follows: the putative approximation algo-
rithm Aσ returns a regular expression size opt∗ of at most O(s1−τ) · awidth(C).

On the one hand, if B is full, then awidth(C) = O(n) by Lemma 5. In
terms of r, this reads as awidth(C) = O (2σ·r). In this case, the hypothetical
approximation algorithm Aσ returns a solution size opt∗ with

opt∗ = O(n · s1−τ)

= O
(
2σ·r · s1−τ

)
= O

(
2σ·r · (2r · r)1−τ

)
= O

(
2σ·r · 2(1−τ)·r · r1−τ

)
= O

(
2r·(σ+1−τ) · r1−τ

)
= o (2r) .

The last line follows since σ + 1− τ < 1 is equivalent to σ < τ , as postulated in
the statement of the lemma.

On the other hand, in case B is not full, then Lemma 5 states that

awidth(C) = Ω (2r) .

Using the constants implied by the O-notation, the size returned by algorithm Aσ
could thus be used to decide, for large enough n, whether B is full.

8

It remains to show that the running time of Aσ in terms of n is in 2o(n),
which contradicts the ETH. We first express s in terms of n:

s = Θ(2r · r) = Θ(2log(n
1
σ) · log(n

1
σ)) = Θ(n

1
σ · log n).

Next, we observe that log s = Θ(log n), since log(n
1
σ · log n) = 1

σ · log n+log log n.
We thus can express the running time of the algorithm Aσ in terms of n:

2o((
s

log s)
σ
) = 2o((

s
logn)

σ
)

= 2
o

((
n

1
σ ·logn
logn

)σ)

= 2o(n),

which yields the desired contradiction.

Now that we have done the heavy lifting, we are in position to state our first
inapproximability result.

Theorem 7. Let E be a regular expression without Kleene star of size s, and

let δ be a constant such that 0 < δ ≤ 1
2 . Then no deterministic 2o(s

δ−ε)-time
algorithm can approximate awidth(L(E)) within a factor of O(s1−δ), unless ETH
fails. Here, ε can be any small positive constant smaller than δ.

Proof. The result follows by choosing some small positive ε′ < ε and invoking
Lemma 6 with σ = δ−ε′ and τ = δ. To obtain the simpler expression in the lower

bound on running time, observe, that ruling out a running time of 2o((
s

log log s)
σ
),

implies ruling out a running time of 2o(s
δ−ε), because σ = δ − ε′ > δ − ε.

We note that the reduction in Lemma 6 is from an coNP-complete problem
and runs in polynomial time. Hence, we obtain the following:

Corollary 8. Let E be a regular expression without Kleene star of size s, and
let δ > 0 be a constant. Then no deterministic polynomial-time algorithm can
approximate awidth(L(E)) within a factor of O(s1−δ), unless P= NP.

Very careful readers may have noticed the difference in the parameter range
for δ in the statements of Theorem 7 and Corollary 8. An explanation is in
order. We note that for the parameter range δ > 1

2 , the proof of Theorem 7
would yield the same inapproximability bound in terms of δ assuming ETH. But

in that case, the lower bound on the runtime is capped at 2
o
(
s
1
2
−ε
)

and no longer
grows with δ. This runtime cap is immaterial for Corollary 8, which justifies the
parameter range δ > 0 in the statement of the latter.

Again assuming ETH, we can change the parameter r in the reduction in
Lemma 6 to trade a sharper inapproximability ratio against a weaker lower
bound on the running time. To show this result, we need another technical
lemma:

9

Lemma 9. Let E be a regular expression without Kleene star of size s, let τ

and σ be constants such that 0 < τ < σ < 1. Then no deterministic 2o(log s)
1
σ -

time algorithm can approximate awidth(L(E)) within a factor of o(s/(log s)1+
1
τ),

unless ETH fails.

Proof. The ETH rules out o(2n) algorithms for 3-SAT in n variables and, equiv-
alently, for deciding whether a 3-DNF formula in n variables is a tautology.
Consider some 3-DNF formula with n variables and m clauses. We can assume
by the Sparsification Lemma that m = O(n). Essentially, we use the same reduc-
tion as in the proof of Lemma 6, but this time we construct a regular expression
of size s = Θ(2r · r) = Θ(2n

σ · nσ) by putting r = nσ. Observe that the regular
expression can be computed in time O(s), and with σ < 1, the running time of
the reduction is in 2o(n).

For the sake of contradiction, assume that there is an algorithm Aσ that
approximates awidth(L(E)) within a factor of o(s/(log s)1+

1
τ) running in time

2o(log s)
1
σ . In case the language B from the reduction is full, the putative approx-

imation algorithm Aσ returns a solution size opt∗ with

opt∗ = O(n · s/(log s)1+
1
τ)

= O(n) ·Θ
(

2n
σ

nσ
)
/Θ
(

(nσ)1+
1
τ

)
= O(2n

σ

) ·Θ
(
n1+σ−σ·(1+

1
τ)
)

= O(2n
σ

) · o(1)

= o(2r)

The term o(1) follows because 1 + σ − σ · (1 + 1
τ) < 0, or equivalently, σ > τ .

Along the lines of the proof of Lemma 6, this shows that Aσ can be used to tell
apart tautologies from non-tautologies.

It remains to show that the running time of Aσ in terms of n is in 2o(n),
which contradicts the ETH. To begin, note that log s = Θ(nσ + log(nσ)), which
implies log s = O(nσ). Thus,

2o(log s)
1
σ = 2o(n

σ)
1
σ

= 2o(n)

which yields the desired contradiction.

Theorem 10. Let E be a regular expression without Kleene star of size s, and

let δ > 0 be a constant. Then no deterministic so(log s)
δ−ε

-time algorithm can
approximate awidth(L(E)) within a factor of o(s/(log s)2+δ), unless ETH fails.
Here, ε can be any small positive constant smaller than δ.

Proof. By setting 1
σ = 1+ δ− ε and 1

τ = 1+ δ and observing that 2o(log s)
1+δ−ε

=

so(log s)
δ−ε

, the result immediately follows from Lemma 9.

10

4 Approximability

From the previous section, we know that there are severe limits on what we
can expect from efficient approximation algorithms. In this section, we present
different approximation algorithms for minimizing regular expressions describing
finite languages. Each of them introduces a new algorithmic hook, some of which
might be useful in implementations. We start off with an algorithm that requires
the input to be specified non-succinctly as a list of words.

Theorem 11. Let L be a finite language given as a list of words, with s being the
sum of the word lengths. Then awidth(L) can be approximated in deterministic
polynomial time within a factor of O(s√

log s
).

Proof. We start with a case distinction by alphabet size.

1. The alphabet Σ used in L has size exceeding
√

log s. It is easy to specify a
regular expression of size s which simply “lists” the words in L. Since each
alphabet symbol needs to appear at least once in every regular expression
describing the language L, we have awidth(L) >

√
log s, and the regular

expression thus constructed has performance ratio at least s√
log s

.

2. The alphabet Σ used in L has size at most
√

log s. Since L is specified in
a non-succinct manner, we can construct the minimum deterministic finite
automaton A accepting L in polynomial time. We further distinguish the
cases in which A has at most 2

√
log s−log log s−3 states or not.

(a) The minimal deterministic finite automaton A accepting the language

L has more than 2
√
log s−log log s−3 states. Then every nondeterministic

finite automaton accepting L needs at least
√

log s− log log s− 3 states,
and the alphabetic width is at least Ω(

√
log s). Thus the regular expres-

sion we constructed for the first case has performance ratio in O(s√
log s

).

(b) The minimal deterministic finite automaton A accepting the language L

has at most 2
√
log s−log log s−3 states. We make use of the fact that we can

convert an r-state finite automaton accepting a finite language into an
equivalent regular expression of size at most rlog r+3 if the alphabet size
is at most r, see [13]. With r = 2

√
log s−log log s−3, a simple calculation

yields

rlog r+3 =
(

2
√
log s−log log s−3

)log 2
√

log s−log log s−3+3

≤
(

2
√
log s−log log s

)√log s−log log s

= 2(
√
log s−log log s)

2

= 2log
s

log s

=
s

log s
.

11

The edge case where the alphabetic width of L would be zero can be
detected and treated separately; so, without loss of generality, the per-
formance ratio of this regular expression is bounded by s

log s . This meets
the required performance guarantee also in this case.

This completes the proof and shows the stated performance guarantee.

Recall that the minimal deterministic finite automaton can be exponentially
larger than regular expressions in the worst case, also for finite languages [22].
Also, the conversion from deterministic finite automata to regular expressions
is only quasipolynomial in the worst case. These facts of course affect the per-
formance guarantee. Nevertheless, we believe that the scheme from the proof
of Theorem 11 is worth a look, since the minimal deterministic finite automa-
ton may eliminate a lot of redundancy in practice. Furthermore, the algorithm
works equally if we are able to construct a nondeterministic finite automaton
which is smaller than the minimal deterministic finite automaton. To this end,
some recently proposed effective heuristics for size reduction of nondeterministic
automata could be used [4].

Admittedly, regular expressions are exponentially more succinct than a list
of words and our inapproximability results crucially rely on that. So, we now
turn to the second approximation algorithm. It makes use of the fact that if a
given regular expression E describes very short words only, then it is not too
difficult to produce a regular expression that is noticeably more succinct than E.
In that case, the algorithm builds a trie, which then can be converted into an
equivalent regular expression of size linear in the trie.

For the purpose of this paper, a trie (also known as prefix tree) is simply a
tree-shaped deterministic finite automaton with the following properties:

1. The edges are directed away from the root, i.e., towards the leaves.
2. The root is the start state.
3. All leaves are accepting states.
4. Each edge is labelled with a single alphabet symbol.

The last condition is needed if we want to bound the size of an equivalent regular
expression in terms of the nodes in the trie. The following lemma seems to be
folklore; the observation is used, e.g., in [14].

Lemma 12. Let T be a trie with n nodes accepting L. Then an equivalent regular
expression of alphabetic width at most n− 1 can be constructed in deterministic
polynomial time from T .

Proof. The proof is by induction on the height h of T . If the trie consists
of a single node, then L(T) is either empty or consists of the empty word,
and the claimed statement clearly holds in this case. For the induction step,
let T be a trie of height h and assume the statement holds for all tries of
height at most h − 1. When removing the root node and incident edges la-
belled with a1, a2, . . . , at, then T falls apart into t ≥ 1 subtries T1, T2, . . . , Tt.
Let n1, n2, . . . nt denote the number of nodes of T1, T2, . . . , Tt, respectively. By

12

induction, the trie-languages L(T1), L(T2), . . . , L(Tt) can be described by regular
expressions E1, E2, . . . , Et, respectively, whose sum of their alphabet widths is
at most

∑t
i=1(ni− 1) = n− 1− t. Now, as desired, a1 ·E1 +a2 ·E2 + · · ·+at ·Et

is a regular expression of alphabetic width n− 1 describing the language L(T).

Now we have collected all tools for an approximation algorithm that works
with regular expressions as input, which even comes with an improved approxi-
mation ratio.

Theorem 13. Let E be a regular expression without Kleene star of alphabetic
width s. Then awidth(L(E)) can be approximated in deterministic polynomial

time within a factor of O
(
s log log s

log s

)
.

Proof. We again start with a case distinction by alphabet size.

1. The size of the alphabet used in L is at most log s. We further distinguish the
cases in which the order of L(E), i.e., the length of the longest word, is less
than log s

log log s or not. The order of L(E) can be easily computed recursively,
in polynomial time, by traversing the syntax tree of E. We consider two
subcases:
(a) The order of L(E) is less than log s

log log s . We enumerate the words in L(E),
e.g., by performing a membership test for each word of length less than

log s
log log s . Then we use a standard algorithm to construct a trie for L(E).
The worst case for the size of T is when L contains all words of length less
than log s

log log s . Then T is a full (log s)-ary trie of height log s
log log s . All nodes

are accepting, giving a one-to-one correspondence between the number
of nodes in T and the number of words in L(T). That is, the number of
nodes in T is equal to

log s
log log s−1∑
i=0

(log s)i = O

(
(log s)

log s
log log s

log s

)
.

Using the fact that (log s)
log s

log log s = s, this is in O
(

s
log s

)
and we can

construct an equivalent regular expression of that size in deterministic
polynomial time by virtue of Lemma 12.

(b) The order of L(E) is at least log s
log log s . We make use of the observation

that the order of L(E), i.e., the length of the longest word, is a lower
bound on the required regular expression size, as observed, e.g., in [6,
Proposition 6]. That is, the optimal solution is at least of size log s

log log s
and thus the regular expression E given as input is already a feasible
solution that is at most s log log s

log s times larger than the optimum solution
size.

2. The size of the alphabet used in L is greater than log s. The size of the al-
phabet used in L is likewise a lower bound on the required regular expression
size and, similarly to the previous case, the input is a feasible solution that
is at most s

log s times greater than the optimum solution size.

13

This proves the stated claim.

For alphabets of constant size, the performance ratio can be slightly im-
proved—by a factor of log log s.

Theorem 14. Let E be a regular expression without Kleene star of alphabetic
width s over an alphabet of constant size k. Then awidth(L(E)) can be approxi-

mated in deterministic polynomial time within a factor of O
(

s
log s

)
.

Proof. We proceed as in the algorithm of Theorem 11, but this time the ap-
proximation algorithm branches into Case (1a) if the order of L(E) is less than
logk s− logk log s. Then the number of nodes in the trie T is at most

O
(
klogk s−logk log s

)
= O

(
s

log s

)
.

Further, note that logk s−logk log s = Ω(log s), yielding the desired performance
ratio for Case (1b) as well. And of course, we can omit Case (2) altogether, since
we have constant alphabet size.

A better performance ratio can be achieved if we allow for superpolynomial
running time. In order to keep things simple, we stick to binary alphabets.

Theorem 15. Let E be a regular expression without Kleene star of alphabetic
width s over a binary alphabet, and let f(s) be a time constructible5 function
with f(s) = Ω(log s). Then awidth(L(E)) can be approximated in deterministic

time 2O(f(s)) within a factor of O
(

s
f(s)

)
.

Proof. Again, we make a case distinction with respect to the order of the lan-
guage.

1. The order of L(E) is less than f(s). We make use of the fact that there is a
context-free grammar generating all regular expressions over binary alpha-
bets [14]. Such a grammar can be used to enumerate all regular expressions
of size less than f(s) with polynomial delay [8], and there are 2O(f(s)) of these
in total. For each enumerated candidate expression C and each word w of
length less than f(s), we test whether w ∈ L(E), and if so, we verify that
w ∈ L(C). If C passes all these tests, we can conclude that L(E) ⊆ L(C).
To verify whether L(C) ⊆ L(E), we enumerate the words in L(E) and build
a trie T that accepts the language. Notice, that the trie has at most 2O(f(s))

nodes. Since T is a deterministic finite automaton, it can be easily comple-
mented, and we can apply the usual product construction—with the position
automaton of C—to check whether L(C) ∩Σ∗ \ L(T) = ∅. So, in this case,
if L(E) admits an equivalent regular expression of size at most f(s), the

5 We say that a function f(n) is time constructible if there exists an f(n) time-bounded
multitape Turing machine M such that for each n there exists some input on which
M actually makes f(n) moves [15].

14

optimum solution can be found by exhaustive search with a running time
bounded by a polynomial in 2O(f(s)). For the stated bound on the running

time, notice that 2(O(f(s)))O(1)
= 2O(f(s)).

2. The order of L(E) is at least f(s). Again, the order of L(E) is a lower bound
on required regular expression size. Thus the regular expression E given as
input is already a feasible solution with performance ratio s

f(s) .

To compare this with our inapproximability results, we can pick f(s) =

(log s)2+δ to obtain an approximation ratio of O
(

s
(log s)2+δ

)
in time sO((log s)2+δ).

In contrast, for this ratio, Theorem 10 rules out a running time of so((log s)
2+δ−ε),

for every ε > 0. Another pick is f(s) = sδ, yielding an approximation ratio of s1−δ

in time 2O(sδ). For this ratio, Theorem 7 rules out a running time of 2o(s
δ−ε),

for every ε > 0. Thus the upper bound matches the obtained lower bounds (up
to ε), and there is no room for substantial improvements, unless the exponential
time hypothesis fails.

5 Conclusion

We conclude by indicating some possible directions for further research. First, we
would like to continue with investigating inapproximability bounds within poly-
nomial time, based on the strong exponential time hypothesis (SETH). Further
topics are exact exponential-time algorithms and parameterized complexity. In
addition to the natural parameter of desired solution size, the order of the finite
language and the alphabet size seem to be natural choices. We remark that the
proof of Theorem 15 essentially uses a kernelization technique.

Given the practical relevance of the problem we investigated, we think that
implementing some of the ideas from the above approximation algorithms is
worth a try. Also, POSIX regular expressions restricted to finite languages are
a more complex model than the one we investigated, but a more practical one
as well. Although we would rather not expect better approximability bounds in
that model, we suspect that character classes and other mechanisms can offer
practical hooks for reducing the size of regular expressions.

Also, we would like to stress that the classical computational complexity of
minimizing regular expressions without star is not well understood. Here the
main difficulty is the size estimation for the regular expressions used as gadgets
in reductions. Proving asymptotically tight lower bounds on regular expression
size can be quite challenging, even for such simple cases as the set of permuta-
tions [21]. While it is easy to prove that regular expression minimization is in ΣP

2

for finite languages, apparently no lower bounds were known for this problem
prior to this work [29].

Acknowledgments. We would like to thank Michael Wehar for some discussion.

15

References

1. A. Abboud, A. Backurs, and V. V. Williams. If the Current Clique Algorithms Are
Optimal, so Is Valiant’s Parser. SIAM Journal on Computing, 47(6):2527–2555,
2015.

2. K. Bringmann, A. Grnlund, and K. G. Larsen. A Dichotomy for Regular Expres-
sion Membership Testing. In Proceedings of the 58th Annual IEEE Symposium
on Foundations of Computer Science, pages 307–318, Berkeley, California, USA,
October 2017. IEEE.

3. P. Chalermsook, S. Heydrich, E. Holm, and A. Karrenbauer. Nearly tight approx-
imability results for minimum biclique cover and partition. In A. S. Schulz and
D. Wagner, editors, Proceedings of the 22th Annual European Symposium on Algo-
rithms, number 8737 in LNCS, pages 235–246, Wroclaw, Poland, September 2014.
Springer.

4. L. Clemente and R. Mayr. Efficient reduction of nondeterministic automata with
application to language inclusion testing. Logical Methods in Computer Science,
15(1), 2019.

5. M. de Oliveira Oliveira and M. Wehar. On the fine grained complexity of finite
automata non-emptiness of intersection. In Proceedings of the 24nd International
Conference on Developments in Language Theory, LNCS, Tampa, Florida, USA,
March 2020. Springer. To appear.

6. Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-wei Wang. Regular ex-
pressions: New results and open problems. Journal of Automata, Languages and
Combinatorics, 10(4):407–437, 2005.

7. H. Fernau and A. Krebs. Problems on Finite Automata and the Exponential Time
Hypothesis. Algorithms, 10(1), 2017.

8. Ch. C. Florêncio, J. Daenen, J. Ramon, J. Van den Bussche, and D. Van Dyck.
Naive infinite enumeration of context-free languages in incremental polynomial
time. Journal of Universal Computer Science, 21(7):891–911, 2015.

9. G. Gramlich and G. Schnitger. Minimizing nfa’s and regular expressions. Journal
of Computer and System Sciences, 73(6):908–923, September 2007.

10. H. Gruber and M. Holzer. Computational complexity of NFA minimization for
finite and unary languages. In Preproceedings of the 1st International Conference
on Language and Automata Theory and Applications, Technical Report 35/07,
pages 261–272, Tarragona, Spain, March 2007. Research Group on Mathematical
Linguistics, Universitat Rovira i Virgili.

11. H. Gruber and M. Holzer. Language operations with regular expressions of poly-
nomial size. Theoretical Computer Science, 410(35):3281–3289, August 2009.

12. H. Gruber, M. Holzer, and S. Wolfsteiner. On minimal grammar problems for finite
languages. In M. Hoshi and S. Seki, editors, Proceedings of the 22nd International
Conference on Developments in Language Theory, number 11088 in LNCS, pages
342–353, Kyoto, Japan, September 2018. Springer.

13. H. Gruber and J. Johannsen. Tight bounds on the descriptional complexity of
regular expressions. In R. Amadio, editor, Proceedings of the 11th Conference
Foundations of Software Science and Computational Structures, number 4962 in
LNCS, pages 273–286, Budapest, Hungary, March–April 2008. Springer.

14. H. Gruber, J. Lee, and J. Shallit. Enumerating regular expressions and their
languages. arXiv:1204.4982 [cs.FL], April 2012.

15. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

16

16. M. Hospodár, G. Jirásková, and P. Mlynárcik. A survey on fooling sets as effec-
tive tools for lower bounds on nondeterministic complexity. In H.-J. Böckenhauer,
D. Komm, and W. Unger, editors, Adventures Between Lower Bounds and Higher
Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birth-
day, number 11011 in LNCS, pages 17–32. Springer, 2018.

17. H. B. Hunt, III. On the time and tape complexity of languages I. In Proceedings of
the 5th Annual ACM Symposium on Theory of Computing, pages 10–19, Austin,
Texas, USA, April–May 1973. ACM.

18. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

19. P. Krauss. Minimal regular expression that matches a given set of words. Com-
puter Science Stack Exchange, 2017. URL: https://cs.stackexchange.com/q/72344,
Accessed: 2020-03-10.

20. D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of the European Association for Theoretical Computer
Science, 105:41–72, 2011.

21. A. M. Lovett and J. O. Shallit. Optimal regular expressions for permutations.
In Ch. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, editors, Proceed-
ings of the 46th International Colloquium on Automata, Languages, and Program-
ming, volume 132 of LIPIcs, pages 121:1–121:12, Patras, Greece, July 2019. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

22. R. Mandl. Precise bounds associated with the subset construction on various
classes of nondeterministic finite automata. In Proceedings of the 7th Princeton
Conference on Information and System Sciences, pages 263–267, March 1973.

23. Justin Mason. A released perl with trie-based regexps!
http://taint.org/2006/07/07/184022a.html, 2006. Accessed: 2020-03-10.

24. F. Mráz, D. Pr̊uša, and M. Wehar. Two-dimensional pattern matching against basic
picture languages. In M. Hospodár and G. Jirásková, editors, Proceedings of the
24th International Conference on Implementation and Application of Automata,
number 11601 in LNCS, pages 209–221, Košice, Slovakia, July 2019. Springer.

25. pdanese (StackOverflow username). Speed up millions of regex replacements in
python 3. Stack Overflow, 2017. URL: https://stackoverflow.com/q/42742810,
Accessed: 2020-03-10.

26. P. Scheibe. Regex performance: Alternation vs trie. Stack Overflow, 2019. URL:
https://stackoverflow.com/q/56177330, Accessed: 2020-03-10.

27. M. Wehar. Hardness results for intersection non-emptiness. In J. Esparza, P. Fraig-
niaud, T. Husfeldt, and E. Koutsoupias, editors, Proceedings of the 41st Interna-
tional Colloquium on Automata, Languages, and Programming, Part II, number
8573 in LNCS, pages 354–362, Copenhagen, Denmark, July 2014. Springer.

28. V. Vassilevska Williams. On some fine-grained questions in algorithms and com-
plexity. In B. Sirakov, P. Ney de Souza, and M. Viana, editors, Proceedings of
the International Congress of Mathematicians, pages 3447–3487, Rio de Janeiro,
Brazil, April 2018. World Scientific.

29. Ch. Xu. Minimizing size of regular expression for finite sets.
Theoretical Computer Science Stack Exchange, 2013. URL:
https://cstheory.stackexchange.com/q/16860, Accessed: 2020-03-10.

17

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

