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We study the MaxSAT Resolution (MaxRes) rule in the context of certifying unsatisfiability. We show that it can be exponentially more

powerful than tree-like resolution, and when augmented with weakening (the system MaxResW), 𝑝-simulates tree-like resolution.

In devising a lower bound technique specific to MaxRes (and not merely inheriting lower bounds from Res), we define a new proof

system called the SubCubeSums proof system. This system, which 𝑝-simulates MaxResW, can be viewed as a special case of the

semialgebraic Sherali–Adams proof system. In expressivity, it is the integral restriction of conical juntas studied in the contexts of

communication complexity and extension complexity. We show that it is not simulated by Res. Using a proof technique qualitatively

different from the lower bounds that MaxResW inherits from Res, we show that Tseitin contradictions on expander graphs are hard to

refute in SubCubeSums. We also establish a lower bound technique via lifting: for formulas requiring large degree in SubCubeSums,

their XOR-ification requires large size in SubCubeSums.
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1 INTRODUCTION

The most well-studied propositional proof system is Resolution (Res), [11, 38]. It is a refutational line-based system that

operates on clauses, successively inferring newer clauses until the empty clause is derived, indicating that the initial set

of clauses is unsatisfiable. It has just one satisfiability-preserving rule: if clauses 𝐴 ∨ 𝑥 and 𝐵 ∨ ¬𝑥 have been inferred,

then the clause 𝐴 ∨ 𝐵 can be inferred. Sometimes it is convenient, though not necessary in terms of efficiency, to also

allow a weakening rule: from clause 𝐴, a clause 𝐴 ∨ 𝑥 can be inferred. While there are several lower bounds known for

this system, it is still very useful in practice and underlies many current SAT solvers.

While deciding satisfiability of a propositional formula is NP-complete, the MaxSAT question is an optimization

question, and deciding whether its value is as given (i.e. deciding, given a formula and a number 𝑘 , whether 𝑘 clauses

can be simultaneously satisfied but 𝑘 + 1 clauses cannot be satisfied) is potentially harder since it is hard for both NP

and coNP. A proof system for MaxSAT was proposed in [14, 28]. This system, denoted MaxSAT Resolution or more

briefly MaxRes, operates on multi-sets of clauses. At each step, two clauses from the multi-set are resolved and removed.

The resolvent, as well as certain “disjoint” weakenings of the two clauses, are added to the multiset. The invariant

maintained is that for each assignment 𝜌 , the number of clauses in the multi-set falsified by 𝜌 remains unchanged. The

process stops when the multi-set has a satisfiable instance along with 𝑘 copies of the empty clause; 𝑘 is exactly the

minimum number of clauses of the initial multi-set that must be falsified by every assignment. [14]
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Since MaxRes maintains multi-sets of clauses and replaces used clauses, this suggests a “read-once”-like constraint

[14]. However, this is not the case; read-once resolution is not even complete [26], whereas MaxRes is a complete

system for certifying the MaxSAT value (and in particular, for certifying unsatisfiability). One could use the MaxRes

system to certify unsatisfiability, by stopping the derivation as soon as one empty clause is produced. Such a proof of

unsatisfiability, by the very definition of the system, can be 𝑝-simulated by Resolution. (The MaxRes proof is itself a

proof with resolution and weakening, and weakening can be eliminated at no cost.) Thus, lower bounds for Resolution

automatically apply to MaxRes and to MaxResW (the augmenting of MaxRes with an appropriate weakening rule) as

well. However, since MaxRes needs to maintain a stronger invariant than merely satisfiability, it seems reasonable that

for certifying unsatisfiability, MaxRes is weaker than Resolution. (This would explain why, in practice, MaxSAT solvers

do not seem to use MaxRes – possibly with the exception of [35], but they instead directly call SAT solvers, which use

standard resolution.) Proving this would require a lower bound technique specific to MaxRes.

Associating with each clause the subcube of assignments that falsify it, each MaxRes step manipulates and rearranges

multi-sets of subcubes. This naturally leads us to the formulation of a static proof system that we call the SubCubeSums

proof system. This system, by its very definition, 𝑝-simulates MaxResW. Associating with each subcube the minimal

conjunction of literals (called terms) that is satisfied by all assignments in the subcube, SubCubeSums can be viewed as

a special case of the semi-algebraic Sherali–Adams proof system (see for instance [3, 5, 10, 19]). Given this position in

the ecosystem of simple proof systems, understanding its capabilities and limitations seems an interesting question.

Our contributions and techniques

(1) We observe that for certifying unsatisfiability, the proof system MaxResW 𝑝-simulates the tree-like fragment of

Res, TreeRes (Lemma 3.1). This simulation seems to make essential use of the weakening rule. On the other

hand, we show that even MaxRes without weakening is not simulated by TreeRes (Theorem 3.8). We exhibit

a formula, which is a variant of the pebbling contradiction [9] on a pyramid graph, with short refutations in

MaxRes (Lemma 3.2), and show that it requires exponential size in TreeRes (Lemma 3.7).

(2) We initiate a formal study of the newly-defined proof system SubCubeSums. We discuss how it is a natural

degree-preserving restriction of the Sherali–Adams proof system and touch upon subtleties while defining

size. We show that the system SubCubeSums is not simulated by Res, by showing that the Subset Cardinality

Formulas, known to be hard for Res, have short SubCubeSums refutations (Theorem 4.1). We also give a direct

combinatorial proof that the pigeon-hole principle formulas have short SubCubeSums refutations (Theorem 4.5);

this fact is implicit in a recent result from [29].

(3) We show that the Tseitin contradiction on an odd-charged expander graph is hard for SubCubeSums (Theo-

rem 4.9) and hence also hard for MaxResW. While this already follows from the fact that these formulas are

hard for Sherali–Adams [3], our lower-bound technique is qualitatively different; it crucially uses the fact that a

stricter invariant is maintained in MaxResW and SubCubeSums refutations.

(4) Abstracting the ideas from the lower bound for Tseitin contradictions, we devise a lower-bound technique for

SubCubeSums based on lifting (Theorem 4.15). Namely, we show that if every SubCubeSums refutation of a

formula 𝐹 must have at least one wide clause, then every SubCubeSums refutation of the formula 𝐹 ◦ ⊕ must

have many cubes. We illustrate how the Tseitin contradiction lower bound can be recovered in this way.

The relations among these proof systems are summarized in Figure 1, which also includes two proof systems discussed

in Related Work.
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TreeRes MaxRes

MaxResW

Res SubCubeSums

Sherali–Adams

DRMaxSAT

MaxResE

(∗)
• 𝐴 𝐵 denotes that A simulates B and B does not simulate A.

• 𝐴 𝐵 denotes that A simulates B.

(∗) with caveats.

• 𝐴 𝐵 denotes that A does not simulate B.

Fig. 1. Relations among various proof systems

Related work

One reason why studying MaxRes is interesting is that it displays unexpected power after some preprocessing. As

described in [25] (see also [33]), the PHP formulas that are hard for Resolution can be encoded intoMaxHornSAT, and then

polynomially many weighted MaxRes steps suffice to expose the contradiction. The underlying proof system, weighted

DRMaxSAT, has been studied further in [12], where it is shown to p-simulate general Resolution. While weighted

DRMaxSAT gains power from the encoding, the basic steps are MaxRes steps. Thus, to understand how unweighted or

weighted DRMaxSAT operates, a better understanding of MaxRes could be quite useful. Since SubCubeSums can easily

refute some formulas hard for Resolution, it would be interesting to see how DRMaxSAT relates to SubCubeSums.

Some recent papers [13, 29, 30] study a generalization of the weighted version of MaxRes, under names MaxResE

and MaxResSV. This system allows negative weights in the intermediate steps, as long as all the clauses have positive

weights at the end. The system is used for certifying the MaxSAT value in [29, 30] and for certifying unsatisfiability in

[13]. This difference allows the system to be used in a slightly different way in these papers. Since the satisfiability of a

CNF does not change if we assign arbitrary positive weights to the axioms, [13] allows doing this. On the other hand,

this is not allowed in [29, 30] because this would make the system unsound for MaxSAT. With this added power the

system in [13] is p-equivalent to another recently defined proof system called Circular Resolution [4]; hence by the

results in [4], it is also p-equivalent to Sherali–Adams. Though most results in [29] are for general MaxSAT, there is one

result for a special case of MaxSAT where all axioms have infinite weight. Because of infinite weights, we get a result

similar to that in [13]: the system is p-equivalent to Circular Resolution and Sherali–Adams. As can be seen from [13],

the restriction of Circular Resolution where axioms can be used only once is precisely MaxResW; the further restriction

of disallowing weakening of axioms is MaxRes.

It is also worth noting that MaxResW appears in [30] as MaxRes with a split rule, or ResS. It is shown in [29, 30]

that for certifying the MaxSAT value (that is, the optimization version), weakening provably adds power to MaxRes.

However, whether weakening adds power when MaxRes is used only to certify unsatisfiability remains unclear.

In the setting of communication complexity and of extension complexity of polytopes, non-negative rank is an

important and useful measure. As discussed in [23], the query-complexity analogue is conical juntas; these are non-

negative combinations of subcubes. Our SubCubeSums refutations are a restriction of conical juntas to non-negative

integral combinations. Not surprisingly, our lower bound for Tseitin contradictions is similar to the conical junta degree

lower bound established in [22].



4 Y. Filmus et al.

Recently, in [18], one of the open problems raised in this paper is resolved; a lower bound for SubCubeSums size

is shown for a formula that has short refutations in resolution. Also, in [20], a very close variant of MaxResW called

reversible resolution is studied and separated from resolution. This system has the weakening rule and its reverse; that

is, resolution is permitted only when the antecedent clauses differ in only one variable, which they have in opposing

polarities.

Organisation of the paper

We define the proof systems MaxRes, MaxResW, and SubCubeSums in Section 2. In Section 3 we relate them to TreeRes.

In Section 4, we focus on the SubCubeSums proof system, showing the separation from Res (Section 4.1), the lower

bound for SubCubeSums (Section 4.2), and the lifting technique (Section 4.3).

2 DEFINING THE PROOF SYSTEMS

A literal is a variable or its negation. A clause is the disjunction of a set of literals (hence, without repetitions). In

particular, if 𝐴 and 𝐵 are clauses, then 𝐴 ∨ 𝐵 denotes the clause that is the disjunction of the literals in A and in B

without repetitions. A clause is non-tautologous if it has no pair of contradictory literals (𝑥 and ¬𝑥). We work only

with non-tautological clauses throughout.

For set 𝑋 of variables, let ⟨𝑋 ⟩ denote the set of all total assignments to variables in 𝑋 . For a (multi-) set 𝐹 of clauses,

viol𝐹 : ⟨𝑋 ⟩ → {0} ∪N is the function mapping 𝛼 to the number of clauses in 𝐹 (counted with multiplicity) falsified by 𝛼 .

A (sub)cube is the set of assignments falsifying a clause, or equivalently, the set of assignments satisfying a conjunction

of literals. (We refer to clauses and cubes interchangeably, given the natural bijection between them.) The width of a

clause is the number of literals in it, and the width of a (multi-) set 𝐹 of clauses is the maximum width of the clauses it

contains.

The proof system Res has the resolution rule inferring 𝐶 ∨ 𝐷 from 𝐶 ∨ 𝑥 and 𝐷 ∨ 𝑥 , and optionally the weakening

rule inferring 𝐶 ∨ 𝑥 from 𝐶 if 𝑥 ∉ 𝐶 . A refutation of a CNF formula 𝐹 is a sequence of clauses 𝐶1, . . . ,𝐶𝑡 where each 𝐶𝑖

is either in 𝐹 or is obtained from some 𝑗, 𝑘 < 𝑖 using resolution or weakening, and where 𝐶𝑡 is the empty clause. The

underlying graph of such a refutation has the clauses as nodes, and directed edge from 𝐶 to 𝐷 if 𝐶 is used in the step

deriving 𝐷 . The proof system TreeRes is the fragment of Res where only refutations in which the underlying graph is a

tree are permitted. A proof system 𝑃 simulates (𝑝-simulates) another proof system 𝑃 ′ if proofs in 𝑃 can be transformed

into proofs in 𝑃 ′ with polynomial blow-up (in time polynomial in the size of the proof). See, for instance, [8], for more

details.

2.1 The MaxRes andMaxResW proof systems

The MaxSAT resolution (MaxRes) proof system operates on multi-sets of clauses, and uses the multi-output MaxSAT

resolution (MaxRes) rule [14], defined as follows:
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𝑥 ∨ 𝑎1 ∨ . . . ∨ 𝑎𝑠 (𝑥 ∨𝐴)
𝑥 ∨ 𝑏1 ∨ . . . ∨ 𝑏𝑡 (𝑥 ∨ 𝐵)
𝑎1 ∨ . . . ∨ 𝑎𝑠 ∨ 𝑏1 ∨ . . . ∨ 𝑏𝑡 (the “standard resolvent”)

𝑥 ∨𝐴 ∨ 𝑏1

𝑥 ∨𝐴 ∨ 𝑏1 ∨ 𝑏2

.

.

.

𝑥 ∨𝐴 ∨ 𝑏1 ∨ . . . ∨ 𝑏𝑡−1 ∨ 𝑏𝑡


(weakenings of 𝑥 ∨𝐴)

𝑥 ∨ 𝐵 ∨ 𝑎1

𝑥 ∨ 𝐵 ∨ 𝑎1 ∨ 𝑎2

.

.

.

𝑥 ∨ 𝐵 ∨ 𝑎1 ∨ . . . ∨ 𝑎𝑠−1 ∨ 𝑎𝑠


(weakenings of 𝑥 ∨ 𝐵)

The weakening rule for MaxSAT resolution replaces a clause 𝐴 by the two clauses 𝐴 ∨ 𝑥 and 𝐴 ∨ 𝑥 . While applying

either of these rules, the antecedents are removed from the multi-set and the non-tautologous consequents are added.

The point of the MaxSAT resolution rule is that if 𝐹 ′ is obtained from 𝐹 by applying these rules, then viol𝐹 and viol𝐹 ′

are the same function.

In the proof system MaxRes, a refutation of 𝐹 is a sequence 𝐹 = 𝐹0, 𝐹1, . . . , 𝐹𝑠 where each 𝐹𝑖 is a multi-set of clauses,

each 𝐹𝑖 is obtained from 𝐹𝑖−1 by an application of the MaxSAT resolution rule, and 𝐹𝑠 contains the empty clause □. In

the proof system MaxResW, 𝐹𝑖 may also be obtained from 𝐹𝑖−1 by using the weakening rule. The size of the proof is

the number of steps, 𝑠 . In [14, 28], MaxRes is shown to be complete for MaxSAT; i.e. if any assignment must falsify at

least 𝑘 clauses, then at least 𝑘 copies of the empty clause can be derived using MaxRes. Hence MaxRes is also complete

for unsatisfiability. Since the proof system MaxRes we consider here is a refutation system rather than a system for

MaxSAT, we can stop as soon as a single □ is derived.

2.2 The SubCubeSums proof system

The SubCubeSums proof system is a static proof system. For an unsatisfiable CNF formula 𝐹 (over variable set 𝑋 ),

a SubCubeSums proof is a multi-set 𝐺 of clauses (or subcubes) over 𝑋 satisfying viol𝐹 (𝛼) = 1 + viol𝐺 (𝛼) for all
assignments 𝛼 ∈ ⟨𝑋 ⟩. The combinatorial size of the proof is the number of clauses in 𝐺 (counting with multiplicity),

and the width of the proof is the width of 𝐺 .

Stated in this form, SubCubeSums may not be a proof system in the sense of Cook-Reckhow [16], since proofs may

not be polynomial-time verifiable. However, proofs in SubCubeSums can be verified in randomized polynomial time.

To see this, we consider an arithmetization of SubCubeSums proofs.

Let 𝐹 be a CNF formula with𝑚 clauses in variables 𝑥1, . . . , 𝑥𝑛 . Each clause𝐶𝑖 , 𝑖 ∈ [𝑚], is translated into a polynomial

equation 𝑓𝑖 = 0. A Boolean assignment either satisfies clause 𝐶𝑖 and equation 𝑓𝑖 = 0, or falsifies clause 𝐶𝑖 and satisfies

equation 𝑓𝑖 = 1. (Encoding 𝑒: 𝑒 (𝑥 𝑗 ) = (1 − 𝑥 𝑗 ); 𝑒 (¬𝑥 𝑗 ) = 𝑥 𝑗 ; 𝑒 (
∨

𝑟 ℓ𝑟 ) =
∏

𝑟 𝑒 (ℓ𝑟 ). So, e.g., clause 𝑥 ∨ ¬𝑦 ∨ 𝑧 translates

to the equation (1 − 𝑥)𝑦 (1 − 𝑧) = 0. Note that for any non-tautologous clause, each such polynomial 𝑓𝑖 is multilinear

and has the form 𝑝𝐴,𝐵 ≜
∏

𝑖∈𝐴 𝑥𝑖
∏

𝑗∈𝐵 (1 − 𝑥 𝑗 ) for disjoint 𝐴, 𝐵 ⊆ [𝑛].)
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Given an alleged SubCubeSums proof 𝐺 of an 𝐹 that we wish to verify, define the polynomial

𝑝0 (𝑥) =
∑︁

𝐴,𝐵⊆[𝑛]:𝐴∩𝐵≠∅
𝛼𝐴,𝐵

∏
𝑖∈𝐴

𝑥𝑖

∏
𝑗∈𝐵

(1 − 𝑥 𝑗 )

where the coefficient 𝛼𝐴,𝐵 is the number of copies in𝐺 of the clause whose encoding is 𝑝𝐴.𝐵 . Define the polynomial

𝑄 (𝑥) = −∑
𝑖∈[𝑚] 𝑓𝑖 (𝑥) + 𝑝0 (𝑥) + 1. That is,

𝑄 (𝑥) = − ©«
∑︁

𝑖∈[𝑚]
𝑓𝑖 (𝑥)ª®¬ + ©«

∑︁
𝐴,𝐵⊆[𝑛]:𝐴∩𝐵≠∅

𝛼𝐴,𝐵

∏
𝑖∈𝐴

𝑥𝑖

∏
𝑗∈𝐵

(1 − 𝑥 𝑗 )ª®¬ + 1

Note that for any Boolean assignment 𝛼 to the variables, 𝑄 (𝛼) = −viol𝐹 (𝛼) + viol𝐺 (𝛼) + 1. Thus 𝐺 is a SubCubeSums

proof for 𝐹 if and only if 𝑄 (𝑥) vanishes on all Boolean assignments.

Now note that 𝑄 (𝑥) has two nice properties with useful consequences for us:

(1) 𝑄 (𝑥) is multilinear.

Hence, 𝑄 (𝑥) vanishes on all Boolean assignments of and only if 𝑄 (𝑥) vanishes everywhere; i.e. 𝑄 (𝑥) = 0 is a

polynomial identity. (See for instance [27, Ex. 2.23 on p. 76])

(2) 𝑄 (𝑥) can be computed by an algebraic circuit that has 𝑂 (𝑛( |𝐹 | + |𝐺 |)) binary operations, and has variables or

the constants −1, +1 at the leaves. (𝑂 (𝑛) operations to encode each copy of each clause, and then 𝑂 ( |𝐹 | + |𝐺 |)
operations to add them all up.)

Hence, whether 𝑄 (𝑥) is identically 0 can be tested by a randomized algorithm in time polynomial in 𝑛, |𝐹 |, |𝐺 |.
(Polynomial identity testing can be done, using randomization, in time polynomial in the size of the circuit

representation; see for instance [1].)

2.3 SubCubeSums as a subsystem of the Sherali–Adams proof system

The arithmetization of SubCubeSums proofs discussed above naturally recalls to mind the semi-algebraic Sherali–Adams

proof system over the reals, typically with integer coefficients. We recapitulate below the definition of the proof system

and observe that SubCubeSums is a subsystem of a specific type.

A Sherali–Adams proof of unsatisfiability of a CNF formula 𝐹 is a sequence of polynomials 𝑔𝑖 , 𝑖 ∈ [𝑚]; 𝑞 𝑗 , 𝑗 ∈ [𝑛];
and a polynomial 𝑝0 of the form

𝑝0 =
∑︁

𝐴,𝐵⊆[𝑛]:𝐴∩𝐵=∅
𝛼𝐴,𝐵𝑝𝐴,𝐵 =

∑︁
𝐴,𝐵⊆[𝑛]:𝐴∩𝐵=∅

𝛼𝐴,𝐵

∏
𝑗∈𝐴

𝑥 𝑗

∏
𝑗∈𝐵

(1 − 𝑥 𝑗 )

where each 𝛼𝐴,𝐵 ≥ 0, such that the following polynomial identity holds:( ∑︁
𝑖∈[𝑚]

𝑔𝑖 𝑓𝑖

)
+

( ∑︁
𝑗∈[𝑛]

𝑞 𝑗 (𝑥2𝑗 − 𝑥 𝑗 )
)
+ 𝑝0 + 1 = 0

(As before, the polynomials 𝑓𝑖 encode the clauses of 𝐹 . The axioms 𝑥2
𝑗
− 𝑥 𝑗 = 0 for 𝑗 ∈ [𝑛], called the Boolean axioms,

are used to restrict the set of assignments to Boolean values.)

Note that each 𝑝𝐴,𝐵 , and hence 𝑝0, is multilinear. The degree or rank of the proof is the maximum degree of any 𝑔𝑖 𝑓𝑖 ,

𝑞 𝑗 (𝑥2𝑗 − 𝑥 𝑗 ), and 𝑝𝐴,𝐵 .
The polynomials 𝑓𝑖 corresponding to the clauses of 𝐹 , as well as the polynomials 𝑝𝐴,𝐵 in 𝑝0, are conjunctions of

literals, thus special kinds of 𝑑-juntas (Boolean functions depending on at most 𝑑 variables). So 𝑝0 is a non-negative

linear combination of non-negative juntas, that is, in the nomenclature of [23], a conical junta.
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Consider the following restriction of Sherali–Adams:

(1) Each 𝑔𝑖 = −1.
(2) Each 𝛼𝐴,𝐵 ∈ Z≥0 (non-negative integers).

(3) Each 𝑞 𝑗 = 0.

Hence, for some non-negative integral 𝛼𝐴,𝐵 , a proof as restricted above is the following polynomial identity:

−
∑︁

𝑖∈[𝑚]
𝑓𝑖 +

( ∑︁
𝐴,𝐵⊆[𝑛]:𝐴∩𝐵=∅

𝛼𝐴,𝐵

∏
𝑗∈𝐴

𝑥 𝑗

∏
𝑗∈𝐵

(1 − 𝑥 𝑗 )
)
+ 1 = 0

This is exactly the form of the arithmetization of SubCubeSums proofs discussed in the previous subsection. That is,

any SubCubeSums proof gives rise to such a restricted Sherali–Adams proof. The converse is also true – each such

restricted Sherali–Adams proof corresponds in a natural way to a SubCubeSums proof as follows: each 𝑝𝐴,𝐵 in 𝑝0

encodes a clause (equivalently, the subcube of assignments falsifying the clause). For each disjoint pair 𝐴, 𝐵 ⊆ [𝑛], the
SubCubeSums proof has 𝛼𝐴,𝐵 copies of the corresponding clause/sub-cube.

It is worth noting that in this equivalence, when we translate a SubCubeSums proof𝐺 of a formula 𝐹 into a restricted

Sherali–Adams proof, the resulting degree is the maximum of the width of 𝐹 and the width of 𝐺 . Conversely, when we

translate a restricted Sherali–Adams proof into a SubCubeSums proof, the width of the resulting SubCubeSums proof is

no more than the original degree.

SubCubeSums: The algebraic view with twinned variables. A Sherali–Adams system may require large number of

monomials for some formulas simply because a clause 𝐶 with𝑤 negated literals gives rise to a polynomial 𝑓 with 2𝑤

monomials. The standard approach to handle this is to use twinned variables, one variable for each literal (i.e. 𝑥 is a new

variable), and include in the set of Boolean axioms the equations 1 − 𝑥𝑖 − 𝑥𝑖 = 0. This makes no difference to the degree

of the proof. (The encoding 𝑒 is modified to 𝑒 (𝑥 𝑗 ) = 𝑥 𝑗 ; 𝑒 (¬𝑥 𝑗 ) = 𝑥 𝑗 ; 𝑒 (
∨

𝑟 ℓ𝑟 ) =
∏

𝑟 𝑒 (ℓ𝑟 ). So, e.g., clause 𝑥 ∨ ¬𝑦 ∨ 𝑧

translates to the equation 𝑥𝑦𝑧 = 0.)

Thus a Sherali–Adams proof is now a sequence of polynomials 𝑔𝑖 , 𝑖 ∈ [𝑚]; 𝑞 𝑗 , 𝑟 𝑗 , 𝑗 ∈ [𝑛]; and a polynomial 𝑝0 of the

form

𝑝0 =
∑︁

𝐴,𝐵⊆[𝑛]:𝐴∩𝐵=∅
𝛼𝐴,𝐵

∏
𝑗∈𝐴

𝑥 𝑗

∏
𝑗∈𝐵

𝑥 𝑗

where each 𝛼𝐴,𝐵 ≥ 0, such that( ∑︁
𝑖∈[𝑚]

𝑔𝑖 𝑓𝑖

)
+

( ∑︁
𝑗∈[𝑛]

𝑞 𝑗 (𝑥2𝑗 − 𝑥 𝑗 )
)
+

( ∑︁
𝑗∈[𝑛]

𝑟 𝑗 (1 − 𝑥 𝑗 − 𝑥 𝑗 )
)
+ 𝑝0 + 1 = 0

We will use this formulation with twinned variables.

The unary size of a Sherali–Adams proof is the sum of (the absolute values of) the coefficients of the polynomials

occurring in the proof. We can also define unary reduced size which excludes the Boolean axioms and the polynomials

𝑞 𝑗 and 𝑟 𝑗 above. (We can also define binary size, accounting for coefficient bit-sizes when represented in binary, or

monomial size, ignoring coefficient sizes altogether and only counting distinct monomials. All these measures have

been considered in the literature in different papers and different contexts; see for instance [2, 3, 6, 19, 21, 31]. For

the purposes of this paper, unary and unary reduced size are most relevant.) The degree or rank of the proof is the

maximum degree of any 𝑔𝑖 𝑓𝑖 , 𝑞 𝑗 (𝑥2𝑗 − 𝑥 𝑗 ), 𝑟 𝑗𝑥 𝑗 and 𝑝𝐴,𝐵 .



8 Y. Filmus et al.

Now, the restriction where each 𝑔𝑖 = −1, each 𝛼𝐴,𝐵 ∈ Z≥0 (non-negative integers), and each 𝑞 𝑗 = 0, gives the

SubCubeSums proof system; an algebraic SubCubeSums proof is a polynomial identity of the form

−
( ∑︁
𝑖∈[𝑚]

𝑓𝑖

)
+

( ∑︁
𝑗∈[𝑛]

𝑟 𝑗 (1 − 𝑥 𝑗 − 𝑥 𝑗 )
)
+

( ∑︁
𝐴,𝐵⊆[𝑛]

𝛼𝐴,𝐵

∏
𝑗∈𝐴

𝑥 𝑗

∏
𝑗∈𝐵

𝑥 𝑗

)
+ 1 = 0.

(To be precise, a SubCubeSums proof corresponds to an equivalence class of Sherali–Adams proofs modulo Boolean

axioms).

With this algebraic view of SubCubeSums in mind, we can define the algebraic size of a SubCubeSums proof to be

the unary size of the smallest corresponding Sherali–Adams proof (note that this includes the Boolean axioms and

𝑟 𝑗 ). We can also define the algebraic reduced size of a SubCubeSums proof to be unary reduced size of the smallest

corresponding Sherali–Adams proof. With these definitions, the following relations are immediate:

For any SubCubeSums proof 𝐺 of a formula |𝐹 |,

(combinatorial size of 𝐺) + |𝐹 | = (algebraic reduced size of 𝐺) ≤ (algebraic size of 𝐺).

max{width(𝐺),width(𝐹 )} = (algebraic degree of 𝐺).

2.4 Relating various measures for SubCubeSums andMaxResW

In the combinatorial view of SubCubeSums, the natural complexity measures are combinatorial size (number of

subcubes) and width. In the algebraic view, there are two measures for size depending on whether or not we count the

monomials from the Boolean axioms (the contributions from 𝑟 𝑗 (1 − 𝑥𝑘 − 𝑥 𝑗 )): algebraic size, and algebraic reduced size.

In the algebraic view, there are also two measures for degree: (1) the usual degree of the Sherali-Adams restriction,

and (2) the conical junta degree, or the degree of the polynomial 𝑝0 alone. As discussed above, the degree equals the

maximum of the initial formula width and the SubCubeSums proof width, while the conical-junta-degree equals the

SubCubeSums width.

width(𝐺) = (conical-junta-degree of 𝐺).

It is worth noting that the combinatorial measures can be significantly smaller than the algebraic measures. If 𝐹 is

the negation of the complete tautology on 𝑛 variables, then the SubCubeSums proof is the empty set, of combinatorial

size and width 0. However, the algebraic degree is 𝑛, and the algebraic size and algebraic reduced size are 2𝑛 , simply

because of the contribution from the initial formula.

Strictly speaking we do not know if unary Sherali–Adams (or even Sherali–Adams with size measured as the sum

of the binary bit-sizes of all coefficients, that is, the usual Sherali–Adams) simulates SubCubeSums with respect to

combinatorial size; hence the caveat in Figure 1. (The simulation holds with respect to algebraic size, as well as with

respect to degree.) However, upper bounds on SubCubeSums algebraic size imply upper bounds on Sherali–Adams

unary size, while known lower bounds on Sherali–Adams unary reduced size imply lower bounds on SubCubeSums

algebraic reduced size. Hence for all practical purposes we can think as if it did.

The following proposition shows why the proposed restriction of Sherali–Adams to SubCubeSums remains complete,

and gives combinatorial and algebraic size bounds in terms of MaxResW refutation size.

Proposition 2.1. SubCubeSums 𝑝-simulates MaxResW.

For any unsatisfiable formula with 𝑛 variables and 𝑚 clauses, a MaxResW refutation of size 𝑠 can be converted (in

polynomial time) to a SubCubeSums proof of both combinatorial size and algebraic size O(𝑚 + 𝑛𝑠).
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Proof. If an unsatisfiable CNF formula 𝐹 with𝑚 clauses and 𝑛 ≥ 3 variables has a MaxResW refutation with 𝑠 steps,

then this derivation produces {□} ∪𝐺 where the number of clauses in𝐺 is at most𝑚 + (𝑛 − 2)𝑠 − 1. (A weakening step

increases the number of clauses by 1, without creating an empty clause. A MaxRes step increases it by at most 𝑛 − 2,

and creates at most one empty clause.) The subcubes falsifying the clauses in 𝐺 give a SubCubeSums proof.

The simulation still holds if we measure algebraic size. To see that, observe that we can simulate a weakening step by

introducing at most 5 new monomials; deriving clauses𝐴∨𝑥 and𝐴∨¬𝑥 from𝐴 corresponds to rewriting the monomial

𝑚 encoding 𝐴 as𝑚𝑥 +𝑚𝑥 +𝑚(1 − 𝑥 − 𝑥). More generally, given a monomial𝑚 and a set of literals 𝐴 = 𝑎1, . . . , 𝑎𝑠 , the

polynomial

𝑊 (𝑚,𝐴) def

= 𝑚𝑎1 +𝑚(1 − 𝑎1 − 𝑎1)

+𝑚𝑎1𝑎2 +𝑚𝑎1 (1 − 𝑎2 − 𝑎2)

+ · · ·

+𝑚𝑎1 · · ·𝑎𝑠−1𝑎𝑠 +𝑚𝑎1 · · ·𝑎𝑠−1 (1 − 𝑎𝑠 − 𝑎𝑠 )

+𝑚𝑎1 · · ·𝑎𝑠

is identically equal to 𝑚. It describes the weakening of 𝑚 by the literals of 𝐴 using the twinning axioms, and has

algebraic size 4𝑠 + 1 ≤ 5𝑠 . Further, given monomials𝑚𝐴 = 𝑥 · 𝑒 (𝐴) and𝑚𝐵 = 𝑥 · 𝑒 (𝐵) encoding clauses 𝑥 ∨𝐴 and 𝑥 ∨ 𝐵,

we can simulate the MaxRes resolution rule by writing

𝑚𝐴 +𝑚𝐵 =𝑊 (𝑚𝐴, 𝐵 \𝐴) −𝑚𝐴 · 𝑒 (𝐵 \𝐴)

+𝑊 (𝑚𝐵, 𝐴 \ 𝐵) −𝑚𝐵 · 𝑒 (𝐴 \ 𝐵)

+ 𝑒 (𝐴 ∪ 𝐵)

− 𝑒 (𝐴 ∪ 𝐵) · (1 − 𝑥 − 𝑥).

The algebraic size of this expression is (4|𝐵 \𝐴| + 1) + (4|𝐴 \ 𝐵 | + 1) + 6 ≤ 8𝑛.

Hence we can simulate a weakening step with 5 monomials and a resolution step with at most 8𝑛 monomials. □

In Section 4.1 we establish combinatorial size upper bounds in SubCubeSums for certain formulas. To show that

these upper bounds also apply to algebraic size, we observe that the measures are equivalent in proofs of constant

positive or negative degree. More formally, defining the positive (negative) degree of a proof as the degree counting

only 𝑥𝑖 variables (resp. 𝑥𝑖 ) in 𝑓𝑖 and 𝑝0, the following holds.

Proposition 2.2. A SubCubeSums proof of combinatorial size 𝑠 and positive (negative) degree 𝑑 has algebraic size

O(2𝑑 ( |𝐹 | + 𝑠)).

Proof. We use the following claim.

Claim 2.1. Let 𝑝 be a polynomial with integer coefficients that

(1) is multilinear, on 2𝑛 variables {𝑥𝑖 , 𝑥𝑖 | 𝑗 ∈ [𝑛]},
(2) has #mon (𝑝) = 𝑠 monomials (with repetition, i.e when written with coefficients ±1),
(3) has positive (negative) degree 𝑑 , and

(4) vanishes on all Boolean assignments to the variables.
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Then there is a polynomial 𝑞 of the form
∑

𝑗∈[𝑛] 𝑟 𝑗 (1 − 𝑥 𝑗 − 𝑥 𝑗 ), with∑
𝑗∈[𝑛] #mon (𝑟 𝑗 (1 − 𝑥 𝑗 − 𝑥 𝑗 )) ≤ 3 · (2𝑑 − 1) · 𝑠 , such that 𝑝 + 𝑞 = 0 (here we count the monomials with repetition).

To see why the proposition follows from the claim, consider a SubCubeSums proof of size 𝑠 = |𝑝0 | and positive

(negative) degree 𝑑 . It has the form
∑
𝑖∈[𝑚] 𝑓𝑖 = 𝑝0 + 1 modulo Boolean (twinning) axioms. Applying the claim to

the polynomial 𝑝 = −∑
𝑖∈[𝑚] 𝑓𝑖 + 𝑝0 + 1, which has |𝐹 | + |𝑝0 | + 1 monomials, we obtain a polynomial 𝑞 such that

−∑
𝑖∈[𝑚] 𝑓𝑖 + 𝑝0 + 1 + 𝑞 is a a Sherali–Adams representative of size at most

(
1 + 3 · (2𝑑 − 1)

)
· ( |𝐹 | + |𝑝0 | + 1). □

Proof. (of Claim) We prove the claim for positive degree; the negative degree argument is identical. We proceed by

induction on 𝑑 .

Base case: 𝑑 = 0. Then 𝑝 is multilinear on the 𝑛 variables {𝑥𝑖 | 𝑖 ∈ [𝑛]}, and vanishes at all 2𝑛 Boolean assignments

to its variables. Since the multilinear polynomial interpolating Boolean values on the Boolean hypercube is unique, and

since the zero polynomial is such an interpolating polynomial, we already have 𝑝 = 0 and can choose 𝑞 = 0.

Inductive Step: For each monomial in 𝑝 with positive degree 𝑑 , pick a positive variable 𝑥 in the monomial arbitrarily,

and rewrite the monomial𝑚𝑥 as𝑚 −𝑚𝑥 −𝑚(1 − 𝑥 − 𝑥). So 𝑝 is rewritten as 𝑝′ + 𝑞′′, where 𝑞′′ collects the parts

𝑚(1 − 𝑥 − 𝑥) introduced above and 𝑝′ collects the remaining monomials.

Note that the monomials𝑚,𝑚𝑥 have positive degree 𝑑 − 1, so 𝑝′ is a multilinear polynomial with positive degree

at most 𝑑 − 1. Also, it has at most 2𝑠 monomials. Since 𝑝 and 𝑞′′ vanish on all Boolean assignments, so does 𝑝′.

The inductive claim applied to 𝑝′ yields 𝑞′ =
∑

𝑗∈[𝑛] 𝑟
′
𝑗
(1 − 𝑥 𝑗 − 𝑥 𝑗 ) such that 𝑝′ + 𝑞′ = 0. Hence for 𝑞 = 𝑞′ − 𝑞′′,

𝑝 + 𝑞 = 0. The polynomial 𝑞 is of the desired form

∑
𝑗∈[𝑛] 𝑟 𝑗 (1 − 𝑥 𝑗 − 𝑥 𝑗 ). Counting monomials, 𝑞′′ contributes at

most 3𝑠 monomials by construction, and the number of monomials contributed by 𝑞′ is bounded by induction, so∑
𝑗∈[𝑛] #mon (𝑟 𝑗 (1 − 𝑥 𝑗 − 𝑥 𝑗 )) ≤ 3𝑠 + 3 · (2𝑑−1 − 1) · 2𝑠 = 3 · (2𝑑 − 1) · 𝑠 .

□

SubCubeSums is also implicationally complete in the following sense. We say that 𝑓 ≥ 𝑔 if for every truth assignment

𝑥 , 𝑓 (𝑥) ≥ 𝑔(𝑥).

Proposition 2.3. If 𝑓 and 𝑔 are polynomials with 𝑓 ≥ 𝑔, then there are subcubes ℎ 𝑗 and non-negative numbers 𝑐 𝑗 such

that on the Boolean hypercube, 𝑓 − 𝑔 =
∑

𝑗 𝑐 𝑗ℎ 𝑗 . Further, if 𝑓 , 𝑔 are integral on the Boolean hypercube, so are the 𝑐 𝑗 .

Proof. A brute-force way to see this is to consider subcubes of degree 𝑛, i.e. a single point (or assignment). For each

𝛽 ∈ {0, 1}𝑛 , define 𝑐𝛽 = (𝑓 − 𝑔) (𝛽) ∈ R≥0. □

3 MAXRES, MAXRESW, AND TREERES

Since TreeRes allows reuse only of input clauses, while MaxRes does not allow any reuse of clauses but produces

multiple clauses at each step, the relative power of these fragments of Res is intriguing. In this section, we show that

MaxRes with the weakening rule, MaxResW, 𝑝-simulates TreeRes, is exponentially separated from it, and even MaxRes

(without weakening) is not simulated by TreeRes.

Lemma 3.1. For every unsatisfiable CNF 𝐹 , size(𝐹 ⊢MaxResW □) ≤ 2size(𝐹 ⊢TreeRes □).

Proof. Let 𝑇 be a tree-like derivation of □ from 𝐹 of size 𝑠 . Without loss of generality, we may assume that 𝑇 is

regular [41]; i.e. no variable is used as pivot twice on the same path.

Since a MaxSAT resolution step always adds the standard resolvent, each step in a tree-like resolution proof can

be performed in MaxResW as well, provided the antecedents are available. However, a tree-like proof may use an
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□

𝑓 𝑓

𝑒 ∨ 𝑓

𝑑 𝑑 ∨ 𝑒 ∨ 𝑓 𝑒

𝑏 ∨ 𝑑 𝑐 ∨ 𝑒

𝑎 𝑎 ∨ 𝑏 ∨ 𝑑 𝑏 𝑏 𝑏 ∨ 𝑐 ∨ 𝑒 𝑐

Fig. 2. A tree-like resolution proof

axiom (a clause in 𝐹 ) multiple times, whereas after it is used once in MaxResW it is no longer available, although some

weakenings are available. So we need to work with weaker antecedents. We describe below how to obtain sufficient

weakenings.

For each axiom 𝐴 ∈ 𝐹 , consider the subtree 𝑇𝐴 of 𝑇 defined by retaining only the paths from leaves labeled 𝐴 to the

final empty clause. We will produce multiple disjoint weakenings of 𝐴, one for each leaf labelled 𝐴. Start with 𝐴 at the

final node (where 𝑇𝐴 has the empty clause) and walk up the tree 𝑇𝐴 towards the leaves. If we reach a branching node 𝑣

with clause 𝐴′
, and the pivot at 𝑣 is 𝑥 , weaken 𝐴′

to 𝐴′ ∨ 𝑥 and 𝐴′ ∨ 𝑥 . Proceed along the edge contributing 𝑥 with

𝐴′ ∨ 𝑥 , and along the other edge with 𝐴′ ∨ 𝑥 . Since 𝑇 is regular, no tautologies are created in this process, which ends

with multiple “disjoint” weakenings of 𝐴.

After doing this for each axiom, we have as many clauses as leaves in 𝑇 . Now we simply perform all the steps in 𝑇 .

Since each weakening step increases the number of clauses by one, and since we finally produce at most 𝑠 clauses for

the leaves, the number of weakening steps required is at most 𝑠 . □

As an illustration, consider the tree-like resolution proof in Figure 2. Following the procedure in the proof of the

Lemma, the axiom 𝑏 is weakened to 𝑏 ∨ 𝑒 and 𝑏 ∨ ¬𝑒 , since 𝑒 is the pivot variable at the branching point where 𝑏 is

used in both sub-derivations.

We now show that even without weakening, MaxRes has short proofs of formulas exponentially hard for TreeRes. We

denote the literals 𝑥 and 𝑥 by 𝑥0 and 𝑥1 respectively. The formulas that exhibit the separation are composed formulas

of the form 𝐹 ◦ 𝑔, where 𝐹 is a CNF formula, 𝑔 : {0, 1}ℓ → {0, 1} is a Boolean function, there are ℓ new variables

𝑥1, . . . , 𝑥ℓ for each original variable 𝑥 of 𝐹 , and there is a block of clauses 𝐶 ◦ 𝑔, a CNF expansion of the expression∨
𝑥𝑏 ∈𝐶 (𝑔(𝑥1, . . . 𝑥ℓ ) = 𝑏), for each original clause 𝐶 ∈ 𝐹 . We use the pebbling formulas on single-sink directed acyclic

graphs: there is a variable for each node, variables at sources must be true, the variable at the sink must be false, and at

each node 𝑣 , if variables at origins of incoming edges are true, then the variable at 𝑣 must also be true.

We denote by PebHint(𝐺) the standard pebbling formula with additional hints 𝑢 ∨ 𝑣 for each pair of siblings

(𝑢, 𝑣)—that is, two incomparable vertices with a common predecessor—, and we prove the separation for PebHint(𝐺)
composed with the OR function. More formally, if 𝐺 is a DAG with a single sink 𝑧, we define PebHint(𝐺) ◦OR as

follows. For each vertex 𝑣 ∈ 𝐺 there are variables 𝑣1 and 𝑣2. The clauses are
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• For each source 𝑣 , the clause 𝑣1 ∨ 𝑣2.

• For each internal vertex𝑤 with predecessors𝑢, 𝑣 , the expression ((𝑢1∨𝑢2) ∧ (𝑣1∨𝑣2)) → (𝑤1∨𝑤2), expanded
into 4 clauses.

• The clauses 𝑧1 and 𝑧2 for the sink 𝑧.

• For each pair of siblings (𝑢, 𝑣), the clause 𝑢1 ∨ 𝑢2 ∨ 𝑣1 ∨ 𝑣2.

Note that the first three types of clauses are also present in standard composed pebbling formulas, while the last type

are the hints.

We prove a MaxRes upper bound for the particular case of pyramid graphs. Let 𝑃ℎ be a pyramid graph of height ℎ

and 𝑛 = Θ(ℎ2) vertices.

Lemma 3.2. The PebHint(𝑃ℎ) ◦OR formulas have Θ(𝑛) size MaxRes refutations.

Proof. We derive the clause 𝑠1 ∨ 𝑠2 for each vertex 𝑠 ∈ 𝑃𝑛 in layered order, and left-to-right within one layer. If 𝑠 is

a source, then 𝑠1 ∨ 𝑠2 is readily available as an axiom. Otherwise assume that for a vertex 𝑠 with predecessors 𝑢 and 𝑣

and siblings 𝑟 and 𝑡 – in this order – we have clauses 𝑢1 ∨𝑢2 ∨ 𝑠1 ∨ 𝑠2 and 𝑣1 ∨ 𝑣2, and let us see how to derive 𝑠1 ∨ 𝑠2.

(Except at the boundary, we don’t have the clause 𝑢1 ∨𝑢2 itself, since it has been used to obtain the sibling 𝑟 and doesn’t

exist anymore.) We also make sure that the clause 𝑣1 ∨ 𝑣2 ∨ 𝑡1 ∨ 𝑡2 becomes available to be used in the next step.

In the following derivation we skip ∨ symbols, and we colour-code clauses so that green clauses are available by

induction, axioms are blue, and red clauses, on the right side in steps with multiple consequents, are additional clauses

that are obtained by the MaxRes rule but not with the usual resolution rule.

𝑢1𝑣1𝑠1𝑠2 𝑢1𝑢2𝑠1𝑠2

𝑢2𝑣1𝑠1𝑠2

𝑢2𝑣1𝑠1𝑠2

𝑣1𝑠1𝑠2

𝑢1𝑢2𝑣1𝑠1𝑠2 𝑢1𝑣2𝑠1𝑠2

𝑢2𝑣1𝑣2𝑠1𝑠2 𝑢2𝑣2𝑠1𝑠2

𝑣1𝑣2𝑠1𝑠2 𝑣1𝑣2

𝑣1𝑠1𝑠2

𝑠1𝑠2

𝑣1𝑣2𝑠1 𝑣1𝑣2𝑠1𝑠2 𝑠1𝑠2𝑡1𝑡2

𝑣1𝑣2𝑠1𝑡1𝑡2

𝑣1𝑣2𝑡1𝑡2

The case where some of the siblings are missing is similar: if 𝑟 is missing then we use the axiom 𝑢1 ∨ 𝑢2 instead of

the clause 𝑢1 ∨ 𝑢2 ∨ 𝑠1 ∨ 𝑠2 that would be available by induction, and if 𝑡 is missing then we skip the steps that use

𝑠1 ∨ 𝑠2 ∨ 𝑡1 ∨ 𝑡2 and lead to deriving 𝑣1 ∨ 𝑣2 ∨ 𝑡1 ∨ 𝑡2.

Finally, once we derive the clause 𝑧1 ∨ 𝑧2 for the sink, we resolve it with axiom clauses 𝑧1 and 𝑧2 to obtain a

contradiction.

A constant number of steps suffice for each vertex, for a total of Θ(𝑛). □

We can prove a tree-like lower bound along the lines of [8], but with some extra care to respect the hints. As in [8]

we derive the hardness of the formula from the pebble game, a game where the single player starts with a DAG and a

set of pebbles, the allowed moves are to place a pebble on a vertex if all its predecessors have pebbles or to remove a

pebble at any time, and the goal is to place a pebble on the sink using the minimum number of pebbles. Denote by

bpeb(𝑃 → 𝑤) the cost of placing a pebble on a vertex𝑤 assuming there are free pebbles on a set of vertices 𝑃 ⊆ 𝑉 – in

other words, the number of pebbles used outside of 𝑃 when the starting position has pebbles in 𝑃 . For a DAG 𝐺 with a

single sink 𝑧, bpeb(𝐺) denotes bpeb(∅ → 𝑧). For𝑈 ⊆ 𝑉 and 𝑣 ∈ 𝑉 , the subgraph of 𝑣 modulo𝑈 is the set of vertices 𝑢

such that there exists a path from 𝑢 to 𝑣 avoiding𝑈 .
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Lemma 3.3 ([15]). bpeb(𝑃ℎ) = ℎ + 1.

Lemma 3.4 ([8]). For all 𝑃, 𝑣,𝑤 , we have bpeb(𝑃 → 𝑣) ≤ max(bpeb(𝑃 → 𝑤), bpeb(𝑃 ∪ {𝑤} → 𝑣) + 1).

We deviate slightly from [8] and, instead of directly translating a proof to a pebbling strategy, we go through query

complexity as an intermediate step. The canonical search problem of a formula 𝐹 is the relation Search(𝐹 ) where inputs
are variable assignments 𝛼 ∈ {0, 1}𝑛 and the valid outputs for 𝛼 are the clauses 𝐶 ∈ 𝐹 that 𝛼 falsifies. Given a relation

𝑓 , we denote by DT1 (𝑓 ) the 1-query complexity of 𝑓 [32], that is the minimum over all decision trees computing 𝑓 of

the maximum of 1-answers that the decision tree receives.
1

Lemma 3.5. For all 𝐺 we have DT1 (Search(PebHint(𝐺))) ≥ bpeb(𝐺) − 1.

Proof. We give an adversarial strategy. Let 𝑅𝑖 be the set of variables that are assigned to 1 at round 𝑖 . We initially

set𝑤0 = 𝑧, and maintain the invariant that

(1) there is a distinguished variable 𝑤𝑖 and a path 𝜋𝑖 from 𝑤𝑖 to the sink 𝑧 such that a queried variable 𝑣 is 0 iff

𝑣 ∈ 𝜋𝑖 ; and

(2) after each query the number of 1 answers so far is at least bpeb(𝐺) − bpeb(𝑅𝑖 → 𝑤𝑖 ).

Assume that a variable 𝑣 is queried. If 𝑣 is not in the subgraph of 𝑤𝑖 modulo 𝑅𝑖 then we answer 0 if 𝑣 ∈ 𝜋𝑖

and 1 otherwise. Otherwise we consider 𝑝0 = bpeb(𝑅𝑖 → 𝑣) and 𝑝1 = bpeb(𝑅𝑖 ∪ {𝑣} → 𝑤𝑖 ). By Lemma 3.4,

bpeb(𝑅𝑖 → 𝑤𝑖 ) ≤ max(𝑝0, 𝑝1 + 1). If 𝑝0 ≥ 𝑝1 then we answer 0, set 𝑤𝑖+1 = 𝑣 , and extend 𝜋𝑖 with a path from

𝑤𝑖+1 to𝑤𝑖 that does not contain any 1 variables (which exists by definition of subgraph modulo 𝑅𝑖 ). This preserves

item 1 of the invariant, and since 𝑝0 ≥ bpeb(𝑅𝑖 → 𝑤𝑖 ), item 2 is also preserved. Otherwise we answer 1 and since

𝑝1 ≥ bpeb(𝑅𝑖 → 𝑤𝑖 ) − 1 the invariant is also preserved.

This strategy does not falsify any hint clause, because all 0 variables lie on a path, or the sink axiom, because the

sink is assigned 0 if at all. Therefore the decision tree ends at a vertex𝑤𝑡 that is set to 0 and all its predecessors are set

to 1, hence bpeb(𝑅𝑡 → 𝑤𝑡 ) = 1. By item 2 of the invariant the number of 1 answers is at least bpeb(𝐺) − 1. □

To complete the lower bound we use the Pudlák–Impagliazzo Prover–Delayer game [37] where Prover points to a

variable, Delayer may answer 0, 1, or ∗, in which case Delayer obtains a point in exchange for letting Prover choose the

answer, and the game ends when a clause is falsified.

Lemma 3.6 ([37]). If Delayer can win 𝑝 points, then all TreeRes proofs require size at least 2𝑝 .

Lemma 3.7. 𝐹 ◦OR requires size exp(Ω(DT1 (Search(𝐹 )))) in tree-like resolution.

Proof. We use a strategy for the 1-query game of Search(𝐹 ) to ensure that Delayer gets DT1 (𝐹 ) points in the

Prover–Delayer game. If Prover queries a variable 𝑥𝑖 then

• If 𝑥 is already queried we answer accordingly.

• Otherwise we query 𝑥 . If the answer is 0 we answer 0, otherwise we answer ∗.

Our strategy ensures that if both 𝑥1 and 𝑥2 are assigned then 𝑥1 ∨ 𝑥2 = 𝑥 . Therefore the game only finishes at a leaf of

the decision tree, at which point Delayer earns as many points as 1s are present in the path leading to the leaf. The

lemma follows by Lemma 3.6. □

1
Essentially the same notion of one-sided query complexity is used in [36] under the name positive depth.
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The formulas PebHint(𝑃𝑛) ◦OR are easy to refute in MaxRes (Lemma 3.2), but from Lemmas 3.3,3.5, and 3.7, they

are exponentially hard for TreeRes. Hence,

Theorem 3.8. TreeRes does not simulate MaxResW and MaxRes.

Note that DT1 (𝑓 ) ≤ DT(𝑓 ) for any relation 𝑓 , therefore Lemma 3.5 also holds for the standard measure of query

complexity. The reason behind using one-sided query complexity is Lemma 3.7, which is false if we replace DT1 by

DT. A counterexample is the standard pebbling formula where the signs of all literals have been flipped, which we

denote by Peb′ (𝐺): on the one hand we have that DT(Search(Peb′ (𝐺))) = Ω(𝑛/log𝑛), and on the other hand there

is a tree-like proof of Peb′ (𝐺) ◦OR of length O(𝑛).
Alternatively we could use standard query complexity in Lemma 3.7 if we composed our formula with ⊕ instead of

OR, but that would make the upper bound in Lemma 3.2 more intricate.

4 THE SUBCUBESUMS PROOF SYSTEM

In this section, we explore the power and limitations of the SubCubeSums proof system. On the one hand we show

(Theorem 4.1) that it has short proofs of the subset cardinality formulas, known to be hard for resolution but easy for

Sherali–Adams. We also give a direct combinatorial argument to show that the pigeonhole principle formulas, known

to be hard for resolution but easy in MaxRes with extension, are easy for SubCubeSums. On the other hand we show a

lower bound for SubCubeSums for the Tseitin formulas on odd-charged expander graphs (Theorem 4.9). Finally, we

establish a technique for obtaining lower bounds on SubCubeSums size: a degree lower bound in SubCubeSums for 𝐹

translates to a size lower bound in SubCubeSums for 𝐹 ◦ ⊕ (Theorem 4.15).

4.1 Res does not simulate SubCubeSums

We now show that Res does not simulate SubCubeSums. We will give two independent proofs using two different

formulas: Subset cardinality formulas and the PHP formulas. The result for PHP formulas is implicit in [29], but we

provide a new combinatorial proof.

4.1.1 The Subset Cardinality formulas.

The first separation is achieved using subset cardinality formulas [34, 39, 42]. These are defined as follows: we have

a bipartite graph 𝐺 (𝑈 ∪ 𝑉 , 𝐸), with |𝑈 | = |𝑉 | = 𝑛. The degree of 𝐺 is 4, except for two vertices that have degree 5.

There is one variable for each edge. For each left vertex 𝑢 ∈ 𝑈 we have a constraint

∑
𝑒∋𝑢 𝑥𝑒 ≥ ⌈𝑑 (𝑢)/2⌉, while for

each right vertex 𝑣 ∈ 𝑉 we have a constraint

∑
𝑒∋𝑣 𝑥𝑒 ≤ ⌊𝑑 (𝑣)/2⌋, both expressed as a CNF. In other words, for each

vertex 𝑢 ∈ 𝑈 we have the clauses

∨
𝑖∈𝐼 𝑥𝑖 for 𝐼 ∈

( 𝐸 (𝑢 )
⌊𝑑 (𝑢 )/2⌋+1

)
, while for each vertex 𝑣 ∈ 𝑉 we have the clauses

∨
𝑖∈𝐼 𝑥𝑖

for 𝐼 ∈
( 𝐸 (𝑣)
⌊𝑑 (𝑣)/2⌋+1

)
.

Theorem 4.1. Subset cardinality formulas have SubCubeSums proofs of combinatorial and algebraic size O(𝑛) but
require resolution length exp(Ω(𝑛)).

The lower bound requires𝐺 to be an expander, and is proven in [34, Theorem 6]. The upper bound is the following

lemma.

Lemma 4.2. Subset cardinality formulas have SubCubeSums proofs of combinatorial and algebraic size O(𝑛).

To obtain the size upper bound, it is convenient to use the algebraic formulation of SubCubeSums. Our proof below is

presented in this framework. For completeness, we also describe, after this proof, the direct presentation of the subcubes



MaxSAT Resolution and Subcube Sums 15

and a combinatorial argument of correctness. The combinatorial proof is simply an unravelling of the algebraic proof,

but can be read independently.

Proof. Our plan is to reconstruct each constraint independently, so that for each vertex we obtain the original

constraints

∑
𝑒∋𝑢 𝑥𝑒 ≥ ⌈𝑑 (𝑢)/2⌉ and ∑

𝑒∋𝑣 𝑥𝑒 ≥ ⌈𝑑 (𝑣)/2⌉, and then add all of these constraints together.

Formally, if 𝐹𝑢 is the set of polynomials that encode the constraint corresponding to vertex 𝑢, we want to find suitable

subcubes ℎ 𝑗 and write ∑︁
𝑓 ∈𝐹𝑢

𝑓 −
(
⌈𝑑 (𝑢)/2⌉ −

∑︁
𝑒∋𝑢

𝑥𝑒

)
=

∑︁
𝑗

𝑐𝑢,𝑗ℎ 𝑗 (1)

and ∑︁
𝑓 ∈𝐹𝑣

𝑓 −
(
⌈𝑑 (𝑣)/2⌉ −

∑︁
𝑒∋𝑣

𝑥𝑒

)
=

∑︁
𝑗

𝑐𝑣,𝑗ℎ 𝑗 (2)

with 𝑐𝑢,𝑗 , 𝑐𝑣,𝑗 ≥ 0 and

∑
𝑗 𝑐𝑢,𝑗 = O(1), so that∑︁

𝑓 ∈𝐹
𝑓 =

∑︁
𝑢∈𝑈

∑︁
𝑓 ∈𝐹𝑢

𝑓 +
∑︁
𝑣∈𝑉

∑︁
𝑓 ∈𝐹𝑣

𝑓

=
∑︁
𝑢∈𝑈

(
⌈𝑑 (𝑢)/2⌉ −

∑︁
𝑒∋𝑢

𝑥𝑒 +
∑︁
𝑗

𝑐𝑢,𝑗ℎ 𝑗

)
+

∑︁
𝑣∈𝑉

(
⌈𝑑 (𝑣)/2⌉ −

∑︁
𝑒∋𝑣

𝑥𝑒 +
∑︁
𝑗

𝑐𝑣,𝑗ℎ 𝑗

)
=

∑︁
𝑢∈𝑈

⌈𝑑 (𝑢)/2⌉ +
∑︁
𝑣∈𝑉

⌈𝑑 (𝑣)/2⌉ −
∑︁
𝑒∈𝐸

(𝑥𝑒 + 𝑥𝑒 ) +
∑︁
𝑗

𝑐 𝑗ℎ 𝑗

=

(
1 +

∑︁
𝑢∈𝑈

2

)
+

(
1 +

∑︁
𝑣∈𝑉

2

)
−

∑︁
𝑒∈𝐸

1 +
∑︁
𝑗

𝑐 𝑗ℎ 𝑗

= (2𝑛 + 1) + (2𝑛 + 1) − (4𝑛 + 1) +
∑︁
𝑗

𝑐 𝑗ℎ 𝑗 = 1 +
∑︁
𝑗

𝑐 𝑗ℎ 𝑗

where 𝑐 𝑗 =
∑

𝑣∈𝑈∪𝑉 𝑐𝑣,𝑗 ≥ 0. Hence we can write

∑
𝑓 ∈𝐹 𝑓 − 1 =

∑
𝑗 𝑐 𝑗ℎ 𝑗 with

∑
𝑗 𝑐 𝑗 = O(𝑛).

It remains to show how to derive equations (1) and (2). The easiest way is to appeal to the implicational completeness

of SubCubeSums, Proposition 2.3. We continue deriving equation (1), assuming for simplicity a vertex of degree

𝑑 and incident edges [𝑑]. Let 𝑥𝐼 =
∏

𝑖∈𝐼 𝑥𝑖 , and let

{
𝑥𝐼 : 𝐼 ∈

( [𝑑 ]
𝑑−𝑘+1

)}
represent a constraint

∑
𝑖∈[𝑑 ] 𝑥𝑖 ≥ 𝑘 . Let

𝑓 =
∑
𝐼 ∈( [𝑑 ]

𝑑−𝑘+1)
𝑥𝐼 and 𝑔 = 𝑘 − ∑

𝑖∈[𝑑 ] 𝑥𝑖 . For each point 𝑥 ∈ {0, 1}𝑑 we have that either 𝑥 satisfies the constraint, in

which case 𝑓 (𝑥) ≥ 0 ≥ 𝑔(𝑥), or it falsifies it, in which case we have on the one hand 𝑔(𝑥) = 𝑠 > 0, and on the other

hand 𝑓 (𝑥) =
(𝑑−𝑘+𝑠
𝑑−𝑘+1

)
=

(𝑑−𝑘+𝑠 ) ·· · · ·𝑠
(𝑑−𝑘+1) ·· · · ·1 ≥ 𝑠 .

We proved that 𝑓 ≥ 𝑔, therefore by Proposition 2.3 we can write 𝑓 −𝑔 as a sum of subcubes of size at most 2𝑑 = O(1).
Equation (2) can be derived analogously, completing the proof for SubCubeSums algebraic reduced size, which is the

same as combinatorial size.

Since the proof has constant degree, Proposition 2.2 implies that combinatorial and algebraic size are at most a

constant factor apart, hence the proof also has algebraic size O(𝑛). □

In proving the upper bound in Lemma 4.2, we invoked implicational completeness from Proposition 2.3. However,

in our case the numbers are small enough that we can show how to derive equation (1) explicitly, by solving the

appropriate LP, and without relying on Proposition 2.3. As a curiosity, and in preparation for the combinatorial proof,
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Clause

Vertex Type 𝑤 ∈ 𝑈 and

deg(𝑤) = 4
𝑤 ∈ 𝑈 and

deg(𝑤) = 5
𝑤 ∈ 𝑉 and

deg(𝑤) = 4
𝑤 ∈ 𝑉 and

deg(𝑤) = 5

For 𝐴 ∈
(𝐸𝑤

3

)
:
∨

𝑒∈𝐴 𝑥𝑒 1 in 𝑓𝑤 1 in 𝑓𝑤

For 𝐴 ∈
(𝐸𝑤

3

)
:
∨

𝑒∈𝐴 𝑥𝑒 1 in 𝑓𝑤 1 in 𝑓𝑤∨
𝑒∈𝐸𝑤

𝑥𝑒 2 in ℎ𝑤 7 in ℎ𝑤 2 in ℎ𝑤 2 in ℎ𝑤∨
𝑒∈𝐸𝑤

𝑥𝑒 2 in ℎ𝑤 2 in ℎ𝑤 2 in ℎ𝑤 7 in ℎ𝑤

For 𝑒 ∈ 𝐸𝑤 :

𝑥𝑒 ∨
∨

𝑓 ∈𝐸𝑤\{𝑒 } 𝑥 𝑓
1 in ℎ𝑤 1 in ℎ𝑤 2 in ℎ𝑤

For 𝑒 ∈ 𝐸𝑤 :

𝑥𝑒 ∨
∨

𝑓 ∈𝐸𝑤\{𝑒 } 𝑥 𝑓
2 in ℎ𝑤 1 in ℎ𝑤 1 in ℎ𝑤

Table 1. The sets 𝑓𝑤 and ℎ𝑤 : The entries give the multiplicity of the clause in the clause sets depending on the type of vertex 𝑤.

we display them next. We have

𝑥1,2,3 + 𝑥1,2,4 + 𝑥1,3,4 + 𝑥2,3,4 − (2 − 𝑥1 − 𝑥2 − 𝑥3 − 𝑥4) = (3)

2𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥4 + 2𝑥1𝑥2𝑥3𝑥4

and

𝑥1,2,3 + 𝑥1,2,4 + 𝑥1,2,5 + 𝑥1,3,4 + 𝑥1,3,5 + 𝑥1,4,5 + 𝑥2,3,4 + 𝑥2,3,5 + 𝑥2,4,5

+ 𝑥3,4,5 − (3 − 𝑥1 − 𝑥2 − 𝑥3 − 𝑥4 − 𝑥5) = (4)

2𝑥1𝑥2𝑥3𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4𝑥5

+ 𝑥1𝑥2𝑥3𝑥4𝑥5 + 2𝑥1𝑥2𝑥3𝑥4𝑥5 + 2𝑥1𝑥2𝑥3𝑥4𝑥5

+ 2𝑥1𝑥2𝑥3𝑥4𝑥5 + 2𝑥1𝑥2𝑥3𝑥4𝑥5 + 2𝑥1𝑥2𝑥3𝑥4𝑥5 + 7𝑥1𝑥2𝑥3𝑥4𝑥5

We now give the direct combinatorial proof for the Subset Cardinality Formulas. The Subset Cardinality Formula

SCF says that𝐺 has a spanning subgraph where each 𝑢 ∈ 𝑈 has degree at least 2, the degree-5 vertex in𝑈 has degree at

least 3, but each 𝑣 ∈ 𝑉 has degree at most 2.

For𝑤 ∈𝑊 = 𝑈 ∪𝑉 , 𝐸𝑤 ⊆ 𝐸 (𝐺) denotes the set of edges incident on𝑤 .

For a vertex 𝑤 , 𝑓𝑤 is the set of clauses enforcing the condition at vertex 𝑤 , and 𝐹 is the union of these sets. A

SubCubeSums proof should give a clause multiset 𝐻 such that

∀𝛼 ∈ {0, 1} |𝐸 (𝐺 ) | : viol𝐹 (𝛼) = 1 + viol𝐻 (𝛼). (5)

In short, viol𝐹 = 1 + viol𝐻 .

We describe such an 𝐻 whose clauses are also naturally associated with vertices, so 𝐻 is the union of clause multisets

ℎ𝑤 for each𝑤 ∈𝑊 . The clause sets 𝑓𝑤 and ℎ𝑤 are described in Table 1.

Towards proving Equation 5, we introduce clause multisets 𝑓 ′𝑤 and ℎ′𝑤 , described in Table 2. (They are not part of the

SubCubeSums proof.) Note that ℎ′𝑤 has only empty clauses, so every assignment falsifies all clauses in all the ℎ′𝑤 put

together, totalling 4𝑛 + 2. The 𝑓 ′𝑤 clauses together have two clauses per edge 𝑒 = (𝑢, 𝑣): the unit clause 𝑥𝑒 in 𝑓 ′𝑢 and the

unit clause 𝑥𝑒 in 𝑓 ′𝑣 . Thus every assignment falsifies exactly |𝐸 | = 4𝑛 + 1 of the clauses in all the 𝑓 ′𝑤 sets put together.
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Clause

Vertex Type 𝑤 ∈ 𝑈 and

deg(𝑤) = 4
𝑤 ∈ 𝑈 and

deg(𝑤) = 5
𝑤 ∈ 𝑉 and

deg(𝑤) = 4
𝑤 ∈ 𝑉 and

deg(𝑤) = 5

For 𝑒 ∋ 𝑤 : 𝑥𝑒 1 in 𝑓 ′𝑤 1 in 𝑓 ′𝑤
For 𝑒 ∋ 𝑤 : 𝑥𝑒 1 in 𝑓 ′𝑤 1 in 𝑓 ′𝑤
□ 2 in ℎ′𝑤 3 in ℎ′𝑤 2 in ℎ′𝑤 3 in ℎ′𝑤

Table 2. The sets 𝑓 ′𝑤 and ℎ′𝑤 : The entries give the multiplicity of the clause in the clause sets depending on the type of vertex 𝑤.

The multisets 𝑓 ′𝑤 and ℎ′𝑤 are related to the multisets 𝑓𝑤 and ℎ𝑤 by Equation 6 below, which can be verified by

inspection (see Equations 3 and 4 for an example).

∀𝛼 ∈ {0, 1}𝐸 (𝐺 ) ;∀𝑤 ∈𝑊 : viol𝑓𝑤 (𝛼) + viol𝑓 ′𝑤 (𝛼) = violℎ𝑤
(𝛼) + violℎ′

𝑤
(𝛼) . (6)

Hence

viol𝐹 =
∑︁
𝑤∈𝑊

viol𝑓𝑤 =
∑︁
𝑤∈𝑊

(
violℎ𝑤

+ violℎ′
𝑤
− viol𝑓 ′𝑤

)
=

( ∑︁
𝑤∈𝑊

violℎ𝑤

)
+

( ∑︁
𝑤∈𝑊

violℎ′
𝑤

)
−

( ∑︁
𝑤∈𝑊

viol𝑓 ′𝑤

)
= viol𝐻 + (2|𝑈 | + 1) + (2|𝑉 | + 1) −

∑︁
𝑒∈𝐸 (𝐺 )

(
viol𝑥𝑒 + viol𝑥𝑒

)
= viol𝐻 + (4𝑛 + 2) − (4𝑛 + 1) = viol𝐻 + 1

4.1.2 The Pigeonhole Principle formulas. Recall the definition of the Pigeonhole Principle (PHP) formulas:

Definition 4.3 (PHP𝑚). The clauses of PHP𝑚 are defined as follows:

• Pigeon axioms – For each 𝑖 ∈ [𝑚 + 1], 𝑃𝑖 is the clause
∨𝑚

𝑗=1 𝑥𝑖, 𝑗

• Hole axioms – For each 𝑗 ∈ [𝑚], 𝐻 𝑗 is the collection of clauses 𝐻𝑖,𝑖′, 𝑗 : ¬𝑥𝑖, 𝑗 ∨ ¬𝑥𝑖′, 𝑗 for 1 ≤ 𝑖 < 𝑖′ ≤ 𝑚 + 1.

These formulas are known to be hard for Resolution ([24]).

In [29] the authors show that these formulas are easy to refute in MaxResE, an extended version of MaxRes. This

extended version allows intermediate clauses with negative weights, and, interpreting viol as the sum of the weights

of the falsified clauses, rather than merely the number of falsified clauses, all rules preserve viol. The system allows

introducing certain clauses “out of nowhere” preserving this invariant; in particular, it allows the introduction of triples

of weighted clauses of the form (□,−1), (𝑥, 1), (¬𝑥, 1). Consider the following set of clauses, called the “residual” of

PHP and denoted PHP
𝛿
:

Definition 4.4 (PHP𝛿 from Theorem 5 of [29]). The clause set PHP𝛿 is the set⋃
𝑖∈[𝑚+1]

𝑃𝛿𝑖 ∪
⋃

𝑗∈[𝑚]
𝐻𝛿
𝑗

where 𝑃𝛿
𝑖
and 𝐻𝛿

𝑗
are defined as follows:
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• The clause set 𝑃𝛿
𝑖
encodes that pigeon 𝑖 goes into at most one hole. It is the set

𝑃𝛿𝑖 =

¬𝑥𝑖, 𝑗 ∨
( ∨
𝑗<ℓ<𝑘

𝑥𝑖,ℓ

)
∨ ¬𝑥𝑖,𝑘

������ 1 ≤ 𝑗 < 𝑘 ≤ 𝑚

 .

• The clause set 𝐻𝛿
𝑗
says that hole 𝑗 has at least one and at most two pigeons. It is defined as 𝐻1𝛿

𝑗
∪ 𝐻2𝛿

𝑗
, where

– 𝐻1𝛿
𝑗
has a single clause encoding that hole 𝑗 is not empty.

𝐻1𝛿𝑗 =

{
𝑚+1∨
𝑖=1

𝑥𝑖, 𝑗

}
.

– 𝐻2𝛿
𝑗
is a set of clauses encoding that no hole has more than two pigeons. It is the set

𝐻2𝛿𝑗 =

{
¬𝑥𝑖, 𝑗 ∨

( ∨
𝑖<ℓ<𝑘

𝑥ℓ, 𝑗

)
∨ ¬𝑥𝑘,𝑗 ∨ ¬𝑥𝑖′, 𝑗

����� 1 ≤ 𝑖 < 𝑘 < 𝑖′ ≤ 𝑚 + 1

}
.

Theorem 4.5 (implicit in [29] Theorem 5). violPHP𝛿 = violPHP − 1.

In the proof of Theorem 5 in [29], a MaxResE derivation transforming PHP to PHP
𝛿 ∪ {□} is described. Each step in

the derivation preserves the weighted sum of violations. (At intermediate stages, some clauses have negative weight,

hence weighted sum.)

More precisely, the three weighted clauses (□,−1), (𝑥, 1), (¬𝑥, 1) have weighted viol = 0: Every assignment falsifies

one of the unit clauses with weight +1 and falsifies the empty clause with weight −1, so the total weight of falsified
clauses is 0. The derivation in [29] adds 𝑚 such triples. It uses the weighted-viol-preserving rules of MaxResE to

transform PHP𝑚 ∪ {(□,−𝑚)} ∪ {𝑥1, 𝑗 ,¬𝑥1, 𝑗 | 𝑗 ∈ [𝑚]} to PHP
𝛿 ∪ {□}. Here all clauses of PHP𝑚 initially have weight

1, and all clauses of PHP
𝛿
finally have weight 1. Thus the proof establishes the following statement:

Corollary 4.6. PHP𝑚 has a SubCubeSums refutation of combinatorial size polynomial in𝑚.

Proof. The cubes falsifying the 𝑂 (𝑚4) clauses of PHP𝛿 are the SubCubeSums refutation of PHP𝑚 . □

In [29] the authors say (just before Theorem 5 and in the footnote) that it is not obvious that the refutation is

complete though we know this because PHP𝑚 is minimally unsat. Actually the fact that PHP
𝛿
is satisfiable is obvious:

the assignment that sets 𝑥𝑖,𝑖 = 1 for 𝑖 ∈ [𝑚] and all other variables to 0 satisfies PHP𝛿 . (Any matching of size𝑚 satisfies

PHP
𝛿
.) Thus, since PHP is minimally unsatisfiable, the MaxSAT value of PHP and {□} ∪ PHP

𝛿
is the same. However, it

is not obvious why viol
PHP

𝛿 = violPHP − 1. We show how to prove this directly without using the MaxResE derivation

route. For every assignment 𝐴 to the variables of PHP, we show below that violPHP (𝐴) = viol
PHP

𝛿 (𝐴).

(1) Let 𝐴 ∈ {0, 1} (𝑚+1)×𝑚
be an assignment to the variables of PHP𝑚 .

(2) Denote the column-sums by 𝑐 𝑗 =
∑
𝑖∈[𝑚+1] 𝐴𝑖, 𝑗 for 𝑗 ∈ [𝑚].

(3) Denote the row-sums by 𝑟𝑖 =
∑

𝑗∈[𝑚] 𝐴𝑖, 𝑗 for 𝑖 ∈ [𝑚 + 1].
(4) Denote the total sum by𝑀 ;𝑀 =

∑
𝑖 𝑟𝑖 =

∑
𝑗 𝑐 𝑗 .

It is straightforward to see that

violPHP (𝐴) = #{𝑖 ∈ [𝑚 + 1] : 𝑟𝑖 = 0} +
∑︁

𝑗∈[𝑚]

(
𝑐 𝑗

2

)
.

To describe viol
PHP

𝛿 (𝐴), consider the three sets of clauses separately.
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(1) For pigeon 𝑖 , if 𝑟𝑖 = 0 or 𝑟𝑖 = 1, then there are no violations in 𝑃𝛿
𝑖
since each clause has two negated literals.

If 𝑟𝑖 ≥ 2, let the positions of the 1s in the 𝑖th row be 𝑗1, 𝑗2, . . . , 𝑗𝑟𝑖 in increasing order. Then the only clauses

falsified are of the form

¬𝑥𝑖, 𝑗𝑝 ∨ ©«
𝑗𝑝+1−1∨
ℓ=𝑗𝑝+1

𝑥𝑖,ℓ
ª®¬ ∨ ¬𝑥𝑖, 𝑗𝑝+1

for 𝑝 ∈ [𝑟𝑖 − 1], and all these clauses are falsified. So viol
𝑃𝛿
𝑖
(𝐴) = 𝑟𝑖 − 1.

(2) The clause in 𝐻1𝛿
𝑗
is falsified iff 𝑐 𝑗 = 0.

(3) For hole 𝑗 , if 𝑐 𝑗 ≤ 2, then there are no violations in 𝐻2𝛿
𝑗
since each clause has three negated literals.

If 𝑐 𝑗 ≥ 3, then suppose the 1s are in positions 𝑖1, 𝑖2, . . . , 𝑖𝑐 𝑗 in increasing order. Then the clauses violated are

exactly those of the form

¬𝑥𝑖𝑞 , 𝑗 ∨
©«
𝑖𝑞+1−1∨
𝑖=𝑖𝑞+1

𝑥𝑖, 𝑗
ª®¬ ∨ ¬𝑥𝑖𝑞+1, 𝑗 ∨ ¬𝑥𝑖𝑞+1+𝑘 , 𝑗

for 𝑞, 𝑘 ≥ 1 and 𝑞 + 1 + 𝑘 ≤ 𝑐 𝑗 . So the number of violations is (𝑐 𝑗 − 2) + (𝑐 𝑗 − 3) + . . . + 1 =
(𝑐 𝑗−1

2

)
.

Putting this together, we have

viol
PHP

𝛿 (𝐴) =
∑︁

𝑖∈[𝑚+1]:𝑟𝑖≥2
(𝑟𝑖 − 1) +#{ 𝑗 ∈ [𝑚] : 𝑐 𝑗 = 0} +

∑︁
𝑗∈[𝑚]:𝑐 𝑗 ≥3

(
𝑐 𝑗 − 1

2

)
.

Consider the following manipulations:∑︁
𝑖∈[𝑚+1]:𝑟𝑖≥2

(𝑟𝑖 − 1) =
∑︁

𝑖∈[𝑚+1]
(𝑟𝑖 − 1) −

∑︁
𝑖∈[𝑚+1]:𝑟𝑖=0

(𝑟𝑖 − 1)

=
©«

∑︁
𝑖∈[𝑚+1]

𝑟𝑖 −
∑︁

𝑖∈[𝑚+1]
1
ª®¬ −

(
(−1) × number of 0-rows

)
= 𝑀 − (𝑚 + 1) + number of 0-rows∑︁

𝑗∈[𝑚]:𝑐 𝑗 ≥3

(
𝑐 𝑗 − 1

2

)
=

∑︁
𝑗∈[𝑚]:𝑐 𝑗 ≥1

(
𝑐 𝑗 − 1

2

)
=

∑︁
𝑗∈[𝑚]:𝑐 𝑗 ≥1

[(
𝑐 𝑗

2

)
− (𝑐 𝑗 − 1)

]
=

∑︁
𝑗∈[𝑚]:𝑐 𝑗 ≥1

(
𝑐 𝑗

2

)
−

∑︁
𝑗∈[𝑚]:𝑐 𝑗 ≥1

(𝑐 𝑗 − 1)

=
∑︁

𝑗∈[𝑚]

(
𝑐 𝑗

2

)
−

∑︁
𝑗∈[𝑚]

𝑐 𝑗 +
∑︁

𝑗∈[𝑚]:𝑐 𝑗 ≥1
1

=
∑︁

𝑗∈[𝑚]

(
𝑐 𝑗

2

)
−𝑀 + (𝑚 − number of 0-columns)
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Putting this together, we obtain

viol
PHP

𝛿 =
∑︁

𝑖∈[𝑚+1]:𝑟𝑖≥2
(𝑟𝑖 − 1) +#{ 𝑗 ∈ [𝑚] : 𝑐 𝑗 = 0} +

∑︁
𝑗∈[𝑚]:𝑐 𝑗 ≥3

(
𝑐 𝑗 − 1

2

)
= 𝑀 − (𝑚 + 1) + number of 0-rows

+number of 0-columns

+
∑︁

𝑗∈[𝑚]

(
𝑐 𝑗

2

)
−𝑀 + (𝑚 − number of 0-columns)

= number of 0-rows +
∑︁

𝑗∈[𝑚]

(
𝑐 𝑗

2

)
− 1

= violPHP − 1

as claimed.

In particular, we have the identity:

Proposition 4.7. For any 𝐴 ∈ {0, 1} (𝑚+1)×𝑚 , with row sums 𝑟𝑖 =
∑

𝑗 𝐴𝑖, 𝑗 and column sums 𝑐 𝑗 =
∑
𝑖 𝐴𝑖, 𝑗 ,

#{𝑖 ∈ [𝑚 + 1] : 𝑟𝑖 = 0} +
∑︁

𝑗∈[𝑚]

(
𝑐 𝑗

2

)
= 1 +#{ 𝑗 ∈ [𝑚] : 𝑐 𝑗 = 0} +

∑︁
𝑖∈[𝑚+1]:𝑟𝑖≥2

(𝑟𝑖 − 1) +
∑︁

𝑗∈[𝑚]:𝑐 𝑗 ≥3

(
𝑐 𝑗 − 1

2

)
We can improve Corollary 4.6 to a stronger claim about algebraic size.

Corollary 4.8. PHP𝑚 has a refutation in SubCubeSums with algebraic size polynomial in𝑚.

Proof. Viewing the SubCubeSums proof in Corollary 4.6 from the algebraic viewpoint, the degree of the proof is

linear. However, the negative degree is 3. So we can still use Proposition 2.2 to conclude that there is a refutation with

algebraic size O(𝑚4). □

4.2 A lower bound for SubCubeSums

Fix any graph 𝐺 with 𝑛 nodes and𝑚 edges, and let 𝐼 be the node-edge incidence matrix. Assign a variable 𝑥𝑒 for each

edge 𝑒 . Let 𝑏 be a vector in {0, 1}𝑛 with

∑
𝑖 𝑏𝑖 ≡ 1 mod 2. The Tseitin contradiction asserts that the system 𝐼𝑋 = 𝑏 has a

solution over F2. The CNF formulation has, for each vertex 𝑢 in𝐺 , with degree 𝑑𝑢 , a set 𝑆𝑢 of 2𝑑𝑢−1 clauses expressing

that the parity of the set of variables {𝑥𝑒 | 𝑒 is incident on 𝑢} equals 𝑏𝑢 .
For these formulas, Res refutations require exponential size [40], and hence MaxResW refutations also require

exponential size. We now show that SubCubeSums refutations also require exponential combinatorial size (and hence

also algebraic size). By Theorem 4.1, this lower bound cannot be inferred from hardness for Res.

We will use these standard facts:

Fact 4.1. For connected graph 𝐺 , over F2,

(1) if
∑
𝑖 𝑏𝑖 ≡ 1 mod 2, then the equations 𝐼𝑋 = 𝑏 have no solution.

(2) If
∑
𝑖 𝑏𝑖 ≡ 0 mod 2, then 𝐼𝑋 = 𝑏 has exactly 2𝑚−𝑛+1 solutions.

(3) Furthermore, for any assignment 𝑎, and any vertex 𝑢, 𝑎 falsifies at most one clause in 𝑆𝑢 .
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A graph is a 𝑐-expander if for all 𝑉 ′ ⊆ 𝑉 with |𝑉 ′ | ≤ |𝑉 |/2, |𝛿 (𝑉 ′) | ≥ 𝑐 |𝑉 ′ |, where 𝛿 (𝑉 ′) = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑉 ′, 𝑣 ∈
𝑉 \𝑉 ′}.

Theorem 4.9. Let 𝐺 be a 𝑑-regular 𝑐-expander on 𝑛 vertices where 𝑛 is odd, and 𝑐, 𝑑 be constants with 𝑐 > 10. Let 𝑏 be

the all-1s vector. All SubCubeSums refutations of the Tseitin contradiction corresponding to 𝐺,𝑏 require combinatorial size

exponential in 𝑛.

We prove this using the combinatorial view of SubCubeSums. At a high level, the proof proceeds as follows. The

Tseitin contradiction 𝐹 has𝑚 = 𝑑𝑛/2 variables and 𝑛2𝑑−1 clauses. The assignments can be partitioned into disjoint sets

𝑋𝑖 , where 𝑋𝑖 consists of assignments falsifying exactly 𝑖 clauses of 𝐹 . By Fact 4.1, 𝑋𝑖 is empty for even 𝑖 . We focus on

𝑋1, 𝑋3, and 𝑋5 for the lower bound.

Let C be a SubCubeSums refutation of 𝐹 , that is, violC = viol𝐹 − 1 = 𝑔. Define a matrix 𝑀 with rows indexed by

assignments to variables and columns indexed by clauses/cubes of C, and entries as follows.

𝑀 (𝑎,𝐶) =
{

1 if 𝑎 falsifies 𝐶

0 otherwise

For each 𝑎 ∈ 𝑋𝑖 , row 𝑎 of𝑀 has exactly (𝑖 − 1) 1s. Thus the submatrix 𝑋3 × C has 2|𝑋3 | 1s, and the submatrix 𝑋5 × C
has 4|𝑋5 | 1s. We say that a clause is heavy if it contributes many more 1s in the 𝑋5 rows than in the 𝑋3 rows; otherwise

it is light.

The proof idea is to show that a significant fraction of the 1s in 𝑋3 × C come from light clauses (Lemma 4.10 below),

and that a light clause can contribute only an exponentially small fraction of the 1s in 𝑋3 × C (Lemma 4.11 below). It

then follows that C must have exponentially many light clauses.

For a clause 𝐶 ∈ C, let 𝑁𝑖 (𝐶) denote the number of 1s it contributes to𝑀 in the rows corresponding to 𝑋𝑖 . That is

viewing 𝐶 as the cube of its falsifying assignments, 𝑁𝑖 (𝐶) = |𝐶 ∩ 𝑋𝑖 |. Define the relative density of a clause 𝐶 , denoted

rel-density(𝐶), to be the ratio 𝑁5 (𝐶)/𝑁3 (𝐶). Say that a clause is light if rel-density(𝐶) ≤ 𝑛2/9. That is, for a light 𝐶 ,

rel-density(𝐶) ≜ number of 1s in 𝑋5 × {𝐶}
number of 1s in 𝑋3 × {𝐶} ≤ 𝑛2

9
.

In particular, if 𝐶 is light, |𝐶 ∩ 𝑋3 | is not zero; hence there is at least one assignment 𝑎 ∈ 𝑋3 that falsifies 𝐶 . This fact

will be significant.

Lemma 4.10.

number of 1s in 𝑋3 × C contributed by light clauses
number of 1s in 𝑋3 × C ≥ 1

10

Lemma 4.11. For a light clause 𝐶 ∈ C,

𝑁3 (𝐶) ≜ |𝐶 ∩ 𝑋3 | ≤
3|𝑋3 |

2𝑛 (0.1𝑐−1)

Before proving these lemmas, we show why they imply the theorem.

Proof. (of Theorem 4.9, assuming Lemmas 4.10,4.11)
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2|𝑋3 | = (number of 1s in 𝑋3 × C)

≤ 10 × (number of 1s in 𝑋3 × C contributed by light clauses) (by Lemma 4.10)

≤ 10 × (number of light clauses) × (max number of 1s contributed by a light clause)

≤ 10 × |C| × 3|𝑋3 |
2𝑛 (0.1𝑐−1)

(by Lemma 4.11)

Hence |C| ≥ 2𝑛 (0.1𝑐−1)

15
= 2Ω (𝑛) .

□

Here is a simple proposition that will be used in proving both Lemmas.

Proposition 4.12. For each odd 𝑖 , |𝑋𝑖 | =
(𝑛
𝑖

)
2𝑚−𝑛+1.

Proof. An assignment in 𝑋𝑖 lies in 𝑖 cubes of 𝑓 . Each cube corresponds to a distinct vertex because the 2𝑑−1 cubes

corresponding to any single vertex are disjoint. Once the 𝑖 vertices are fixed and 𝑏 flipped in those coordinates to get 𝑏′,

there are 2𝑚−𝑛+1
0-1 solutions to 𝐼𝑥 = 𝑏′ (Fact 4.1(2)). □

Now we prove that many 1s in 𝑋3 × C are contributed by light clauses.

Proof. (of Lemma 4.10) Consider the following probability distribution 𝜇 on C:

𝜇 (𝐶) ≜ |𝐶 ∩ 𝑋3 |
number of 1s in 𝑋3 × C =

|𝐶 ∩ 𝑋3 |
2|𝑋3 |

.

This distribution is useful because it can be used to neatly express the quantity we want to bound from below, as

follows:

number of 1s in 𝑋3 × C contributed by light clauses

number of 1s in 𝑋3 × C

=

∑
𝐶∈C;𝐶 light

|𝐶 ∩ 𝑋3 |
2|𝑋3 |

=
∑︁

𝐶∈C;𝐶 light

𝜇 (𝐶)

= Pr
𝐶∼𝜇

[𝐶 is light]

= 1 − Pr
𝐶∼𝜇

[
rel-density(𝐶) > 𝑛2

9

]
≥ 1 −

E𝐶∼𝜇 [rel-density(𝐶)]
𝑛2/9

(by Markov’s inequality)

So it suffices to show that if a clause 𝐶 is sampled from C according to distribution 𝜇, its expected rel-density(𝐶) is
small.

Claim 4.2.

E𝐶∼𝜇 [rel-density(𝐶)] ≤
𝑛2

10
.
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Proof. (of claim)

E𝐶∼𝜇 [rel-density(𝐶)] =
∑︁

𝐶∈C:𝜇 (𝐶 )≠0
𝜇 (𝐶) |𝐶 ∩ 𝑋5 |

|𝐶 ∩ 𝑋3 |

=
∑︁

𝐶∈C:𝜇 (𝐶 )≠0

|𝐶 ∩ 𝑋5 |
2|𝑋3 |

(each row in 𝑋3 × C has exactly 2 1s)

=
1

2|𝑋3 |
∑︁

𝐶∈C:𝜇 (𝐶 )≠0
|𝐶 ∩ 𝑋5 |

≤ 4|𝑋5 |
2|𝑋3 |

(each row in 𝑋5 × C has exactly 4 1s)

=
2
(𝑛
5

)(𝑛
3

) (by proposition 4.12)

≤ 𝑛2

10
.

□

With this claim established, the proof of the Lemma is complete. □

Now we need to show that light clauses cannot contribute many 1s, Lemma 4.11. We will first obtain, for any 𝐶 ∈ C,
estimates for |𝐶 ∩ 𝑋3 | and |𝐶 ∩ 𝑋5 | in terms of the width𝑤 (𝐶) of 𝐶 ; Lemma 4.13 below. Then we will show that if 𝐶 is

light, then it is wide; Lemma 4.14. Putting these together will prove Lemma 4.11.

To state Lemmas 4.13,4.14 we first need to discuss a suitable subgraph of𝐺 . Consider a clause𝐶 ∈ C with non-empty

𝐶 ∩ 𝑋3. Since violC = viol𝐹 − 1, no assignment in 𝑋1 falsifies 𝐶 . We rewrite the system 𝐼𝑋 = 𝑏 as 𝐼 ′𝑋 ′ + 𝐼𝐶𝑋𝐶 = 𝑏,

where 𝑋𝐶 are the variables fixed in cube 𝐶 (to 𝑎𝐶 , say). So 𝐼
′𝑋 ′ = 𝑏 + 𝐼𝐶𝑎𝐶 . An assignment 𝑎 is in 𝐶 ∩ 𝑋𝑟 iff it is of the

form 𝑎′𝑎𝐶 , and 𝑎′ falsifies exactly 𝑟 equations in 𝐼 ′𝑋 ′ = 𝑏′ where 𝑏′ = 𝑏 + 𝐼𝐶𝑎𝐶 . This is a system for the subgraph 𝐺𝐶

where the edges in 𝑋𝐶 have been deleted. This subgraph may not be connected, so we cannot use our size expressions

from Proposition 4.12 directly. Consider the vertex sets 𝑉1,𝑉2, . . . of the components of 𝐺𝐶 . The system 𝐼 ′𝑋 ′ = 𝑏′

can be broken up into independent systems; 𝐼 ′ (𝑖)𝑋 ′ (𝑖) = 𝑏′ (𝑖) for the 𝑖th connected component. Say a component

is odd-charged if

∑
𝑗∈𝑉𝑖 𝑏

′ (𝑖) 𝑗 ≡ 1 mod 2, even-charged otherwise. Let |𝑉𝑖 | = 𝑛𝑖 and |𝐸𝑖 | = 𝑚𝑖 . Any 𝑎′ falsifies an

odd/even number of equations in an odd-charged/even-charged component.

Pick any 𝑎′ ∈ 𝐶 ∩ 𝑋3; at least one such assignment exists by assumption. It must falsify three equations overall, so

𝐺𝐶 must have either one or three odd-charged components. If it has only one odd-charged component, then there is

another assignment in𝐶 falsifying just one equation (from this odd-charged component), so𝐶 ∩𝑋1 ≠ ∅, a contradiction.
Hence 𝐺𝐶 has exactly three odd-charged components, with vertex sets 𝑉1,𝑉2,𝑉3 of sizes 𝑛1, 𝑛2, 𝑛3 respectively, and

overall 𝑘 ≥ 3 components.

We now estimate |𝐶 ∩ 𝑋3 | and |𝐶 ∩ 𝑋5 | in terms of these parameters 𝑛1, 𝑛2, 𝑛3, 𝑘,𝑤 (𝐶), where 𝑤 (𝐶) denotes the
width of the clause 𝐶 . Recall that𝑚 = 𝑛𝑑/2 is the number of edges in 𝐺 and hence the number of variables in 𝐹 .

Lemma 4.13. If a clause 𝐶 ∈ C has |𝐶 ∩ 𝑋3 | ≠ 0, then |𝐶 ∩ 𝑋3 | = 𝑛1𝑛2𝑛32
𝑚−𝑤 (𝐶 )−𝑛+𝑘 and

|𝐶 ∩ 𝑋5 | ≥ 𝑛1𝑛2𝑛32
𝑚−𝑤 (𝐶 )−𝑛+𝑘

(
1

3

𝑘∑︁
𝑖=1

(
𝑛𝑖 − 1

2

))
.
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Proof. An 𝑎 ∈ 𝐶 ∩ 𝑋3 falsifies exactly one equation in the subsystems 𝐼 (1), 𝐼 (2), 𝐼 (3) corresponding to the odd-

charged components of 𝐺𝐶 . We thus arrive at the expression

|𝐶 ∩ 𝑋3 | =
(

3∏
𝑖=1

𝑛𝑖2
𝑚𝑖−𝑛𝑖+1

) (∏
𝑖≥4

2𝑚𝑖−𝑛𝑖+1
)
= 𝑛1𝑛2𝑛32

𝑚−𝑤 (𝐶 )−𝑛+𝑘 .

Similarly, an 𝑎 ∈ 𝐶 ∩𝑋5 must falsify five equations overall. One each must be from 𝑉1,𝑉2,𝑉3. The remaining 2 must be

from the same component. Hence

|𝐶 ∩ 𝑋5 | =
((
𝑛1

3

)
𝑛2𝑛3 + 𝑛1

(
𝑛2

3

)
𝑛3 + 𝑛1𝑛2

(
𝑛3

3

))
2𝑚−𝑤 (𝐶 )−𝑛+𝑘

+ 𝑛1𝑛2𝑛3
𝑘∑︁
𝑖=4

(
𝑛𝑖

2

)
2𝑚−𝑤 (𝐶 )−𝑛+𝑘

≥ 𝑛1𝑛2𝑛32
𝑚−𝑤 (𝐶 )−𝑛+𝑘

(
1

3

𝑘∑︁
𝑖=1

(
𝑛𝑖 − 1

2

))
□

Now we use the structure and parameters of 𝐺𝐶 to show that light clauses must be wide.

Lemma 4.14. For any clause 𝐶 ∈ C, if rel-density(𝐶) = |𝐶∩𝑋5 |
|𝐶∩𝑋3 | ≤

𝑛2

9 , then𝑤 (𝐶) ≥ 𝑐𝑛
10 .

Proof. Each literal in 𝐶 removes one edge from𝐺 while constructing𝐺𝐶 . Counting the sizes of the cuts that isolate

components of 𝐺𝐶 , we count each deleted edge twice. So

2𝑤 (𝐶) =
𝑘∑︁
𝑖=1

|𝛿 (𝑉𝑖 ,𝑉 \𝑉𝑖 ) | =
∑︁

𝑖:𝑛𝑖≤𝑛/2
|𝛿 (𝑉𝑖 ,𝑉 \𝑉𝑖 ) |︸           ︷︷           ︸

𝑄1

+
∑︁

𝑖:𝑛𝑖>𝑛/2
|𝛿 (𝑉𝑖 ,𝑉 \𝑉𝑖 ) |︸           ︷︷           ︸

𝑄2

By the 𝑐-expansion property of 𝐺 , 𝑄1 ≥ 𝑐𝑛𝑖 .

If 𝑛𝑖 > 𝑛/2, it still cannot be too large because 𝐶 is light. Recall

𝑛2

9
≥ |𝐶 ∩ 𝑋5 |

|𝐶 ∩ 𝑋3 |
≥ 1

3

𝑘∑︁
𝑖=1

(
𝑛𝑖 − 1

2

)
If any 𝑛𝑖 is very large, say larger than 5𝑛/6, then the contribution from that component alone,

1
3

(𝑛𝑖−1
2

)
, will exceed

𝑛2

9 .

So each 𝑛𝑖 ≤ 5𝑛/6. Thus even when 𝑛𝑖 > 𝑛/2, we can conclude that 𝑛𝑖/5 ≤ 𝑛/6 ≤ 𝑛 −𝑛𝑖 < 𝑛/2. By expansion of𝑉 \𝑉𝑖 ,
we have 𝑄2 ≥ 𝑐 (𝑛 − 𝑛𝑖 ) ≥ 𝑐𝑛𝑖/5.

2𝑤 (𝐶) =
∑︁

𝑖:𝑛𝑖≤𝑛/2
|𝛿 (𝑉𝑖 ,𝑉 \𝑉𝑖 ) |︸           ︷︷           ︸

𝑄1

+
∑︁

𝑖:𝑛𝑖>𝑛/2
|𝛿 (𝑉𝑖 ,𝑉 \𝑉𝑖 ) |︸           ︷︷           ︸

𝑄2

≥
∑︁

𝑖:𝑛𝑖≤𝑛/2
𝑐𝑛𝑖 +

∑︁
𝑖:𝑛𝑖>𝑛/2

𝑐𝑛𝑖

5
≥ 𝑐𝑛/5

Hence𝑤 (𝐶) ≥ 𝑐𝑛/10 as claimed. □

Now we have all that is needed to prove Lemma 4.11.

Proof. (of Lemma 4.11) Let 𝐶 be a light clause. As discussed above, let𝐺𝐶 be the subgraph of𝐺 where edges whose

variables are set by𝐶 are deleted, let 𝑘 be the number of components of𝐺𝐶 , and let 𝑛1, 𝑛2, 𝑛3 be the number of vertices
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in the three odd-charged components.

|𝐶 ∩ 𝑋3 | = 𝑛1𝑛2𝑛32
𝑚−𝑤 (𝐶 )−𝑛+𝑘

(by Lemma 4.13)

=
𝑛1𝑛2𝑛32

𝑚−𝑤 (𝐶 )−𝑛+𝑘(𝑛
3

)
2𝑚−𝑛+1 × |𝑋3 | (by Proposition 4.12)

=
𝑛1𝑛2𝑛3(𝑛

3

) 2𝑘−𝑤 (𝐶 )−1 × |𝑋3 |

≤ 6 × 2𝑛−𝑤 (𝐶 )−1 × |𝑋3 | = 3 · 2𝑛−𝑤 (𝐶 ) · |𝑋3 |

≤ 3 · 2𝑛−𝑐𝑛/10 · |𝑋3 | (by Lemma 4.14)

=
3|𝑋3 |

2𝑛 (0.1𝑐−1)
as claimed.

This completes the proof of Theorem 4.9. □

Remark. As noted in Section 2, the SubCubeSums proof system can be viewed algebraically as a subsystem of

Sherali-Adams, for which this lower bound is already known. However, our proof is specific to the SubCubeSums proof

system, where all the multipliers for the axiom polynomials are −1. This is implicit in our proof; we use the equation

violC = viol𝐹 − 1, and thus we assume that the axiom polynomials from 𝐹 are multiplied only by −1.

4.3 Lifting degree lower bounds to size

We describe a general technique to lift lower bounds on width, or conical junta degree, to lower bounds on combinatorial

size for SubCubeSums. This is an adaptation of the well-known xorification technique of Alekhnovich and Razborov

(see [7]), which also consists of applying a random restriction to a formula composed with parity.

Theorem 4.15. Let 𝑑 be the minimum width, or conical junta degree, of a SubCubeSums refutation of an unsatisfiable

CNF formula 𝐹 . Then every SubCubeSums refutation of 𝐹 ◦ ⊕ has combinatorial size exp(Ω(𝑑)).

Before proving this theorem, we establish two lemmas. For a function ℎ : {0, 1}𝑛 → R, define the function ℎ ◦
⊕ : {0, 1}2𝑛 → R as (ℎ ◦ ⊕)(𝛼1, 𝛼2) = ℎ(𝛼1 ⊕ 𝛼2), where 𝛼1, 𝛼2 ∈ {0, 1}𝑛 and the ⊕ in 𝛼1 ⊕ 𝛼2 is taken bitwise.

Lemma 4.16. viol𝐹 (𝛼1 ⊕ 𝛼2) = viol𝐹◦⊕ (𝛼1, 𝛼2).

Proof. Fix assignments 𝛼1, 𝛼2 and let 𝛼 = 𝛼1 ⊕ 𝛼2. We claim that for each clause 𝐶 ∈ 𝐹 falsified by 𝛼 there is

exactly one clause 𝐷 ∈ 𝐹 ◦ ⊕ that is falsified by 𝛼1𝛼2. Indeed, by the definition of composed formula the assignment

𝛼1𝛼2 falsifies 𝐶 ◦ ⊕, hence the assignment falsifies some clause 𝐷 ∈ 𝐶 ◦ ⊕. However, the clauses in the CNF expansion

of 𝐶 ◦ ⊕ have disjoint subcubes, hence 𝛼1𝛼2 falsifies at most one clause from the same block. Observing that if 𝛼 does

not falsify 𝐶 , then 𝛼1𝛼2 does not falsify any clause in 𝐶 ◦ ⊕ completes the proof. □

Note that Lemma 4.16 may not be true for gadgets other than ⊕.

Corollary 4.17. viol𝐹◦⊕ − 1 = ((viol𝐹 ) ◦ ⊕) − 1 = (viol𝐹 − 1) ◦ ⊕.

Proof. ((viol𝐹 − 1) ◦ ⊕)(𝛼1, 𝛼2) = (viol𝐹 − 1) (𝛼1 ⊕ 𝛼2) = (viol𝐹 ) (𝛼1 ⊕ 𝛼2) − 1 = (viol𝐹◦⊕) (𝛼1, 𝛼2) − 1. □

Lemma 4.18. If 𝑓 ◦ ⊕ has a (integral) conical junta of size 𝑠 , then 𝑓 has a (integral) conical junta of degree 𝑑 = O(log 𝑠).
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Proof. Let 𝐽 be a conical junta of size 𝑠 that computes 𝑓 ◦ ⊕. Let 𝜌 be the following random restriction: for each

original variable 𝑥 of 𝑓 , pick 𝑖 ∈ {0, 1} and 𝑏 ∈ {0, 1} uniformly and set 𝑥𝑖 = 𝑏. Consider a term 𝐶 of 𝐽 of degree at

least 𝑑 > log4/3 𝑠 . The probability that 𝐶 is not zeroed out by 𝜌 is at most (3/4)𝑑 < 1/𝑠 , hence by a union bound the

probability that the junta 𝐽↾𝜌 has degree larger than 𝑑 is at most 𝑠 · (3/4)𝑑 < 1. Hence there is a restriction 𝜌 such that

𝐽↾𝜌 is a junta of degree at most 𝑑 , although not one that computes 𝑓 . Since for each original variable 𝑥 , 𝜌 sets exactly

one of the variables 𝑥0, 𝑥1, flipping the appropriate surviving variables—those where 𝑥𝑖 is set to 1—gives a junta of

degree at most 𝑑 for 𝑓 . □

Now we can prove Theorem 4.15.

Proof. We prove the contrapositive: if 𝐹 ◦ ⊕ has a SubCubeSums proof of combinatorial size 𝑠 , then there is an

integral conical junta for 𝑔 = viol𝐹 − 1 of degree O(log 𝑠).
Let 𝐻 be the collection of cubes in the SubCubeSums proof for 𝐹 ◦ ⊕. So viol𝐹◦⊕ − 1 = viol𝐻 . By Corollary 4.17, there

is an integral conical junta for (viol𝐹 − 1) ◦ ⊕ of size 𝑠 . By Lemma 4.18 there is an integral conical junta for viol𝐹 − 1 of

degree O(log 𝑠). □

Recovering the Tseitin lower bound: This theorem, along with the Ω(𝑛) conical junta degree lower bound of [22],

yields an exponential lower bound for the SubCubeSums and MaxResW refutation size for Tseitin contradictions.

However, this construction duplicates every edge of the original graph and therefore does not give a lower bound for

all expanders.

A candidate for separating Res from SubCubeSums: We conjecture that the SubCubeSums degree of the pebbling

contradiction on the pyramid graph, or on a minor modification of it (a stack of butterfly networks, say, at the base

of a pyramid), is 𝑛Ω (1)
. This, along with Theorem 4.15 would imply that 𝐹 ◦ ⊕ is hard for SubCubeSums, thereby

separating it from Res. However we have not yet been able to prove the desired degree lower bound. We do know that

SubCubeSums degree is not exactly the same as Res width – for small examples, a brute-force computation has shown

SubCubeSums degree to be strictly larger than Res width.

5 DISCUSSION

We placed MaxRes and MaxResW in a propositional proof complexity frame and compared it to more standard proof

systems, showing that MaxResW is between tree-like resolution (strictly) and resolution. With the goal of also separating

MaxRes and resolution we devised a new lower bound technique, captured by SubCubeSums, and proved lower bounds

for MaxRes without relying on Res lower bounds.

Perhaps the most conspicuous problem left open in this paper is whether our conjecture that pebbling contradictions

composed with XOR separate Res and SubCubeSums holds. (Very recently, in [18], this has been resolved by showing

precisely such a separation.) It remains open to show that MaxRes simulates TreeRes – or even MaxResW – or that

they are incomparable instead.
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