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Abstract

A collection of sets displays a proximity gap with respect to some property if for every set in
the collection, either (i) all members are δ-close to the property in relative Hamming distance
or (ii) only a tiny fraction of members are δ-close to the property. In particular, no set in the
collection has roughly half of its members δ-close to the property and the others δ-far from it.

We show that the collection of a�ne spaces displays a proximity gap with respect to Reed�
Solomon (RS) codes, even over small �elds, of size polynomial in the dimension of the code,
and the gap applies to any δ smaller than the Johnson/Guruswami�Sudan list-decoding bound
of the RS code. We also show near-optimal gap results, over �elds of (at least) linear size in the
RS code dimension, for δ smaller than the unique decoding radius. Concretely, if δ is smaller
than half the minimal distance of an RS code V ⊂ Fn

q , every a�ne space is either entirely δ-
close to the code, or alternatively at most an (n/q)-fraction of it is δ-close to the code. Finally,
we discuss several applications of our proximity gap results to distributed storage, multi-party
cryptographic protocols, and concretely e�cient proof systems.

We prove the proximity gap results by analyzing the execution of classical algebraic decoding
algorithms for Reed�Solomon codes (due to Berlekamp�Welch and Guruswami�Sudan) on a
formal element of an a�ne space. This involves working with Reed�Solomon codes whose base
�eld is an (in�nite) rational function �eld. Our proofs are obtained by developing an extension
(to function �elds) of a strategy of Arora and Sudan for analyzing low-degree tests.
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1 Introduction

A variety of protocols, arising in the contexts of interactive proofs, distributed storage and cryptog-
raphy, give rise to the following problem regarding proximity to a linear code V ⊂ Fnq over a �nite
�eld Fq of minimal relative distance δV . These myriad protocols assume oracle access to a batch
of vectors u = {u0, . . . , ul} ⊂ Fnq and their soundness requires that each and every vector ui be
close to V in relative Hamming distance. Furthermore, soundness deteriorates as a function of the
largest distance between some vector ui and the code V . Thus, we seek protocols that minimize the
number of queries to the entries of the vectors in u, while maximizing the probability of recognizing
when some vector ui is signi�cantly far from V .

The linearity of V suggests a natural approach, �rst explored by Rothblum, Vadhan and Wigder-
son [RVW13]: sample a uniformly random vector u′ in the span of u (denoted span(u)) and view
the distance between u′ and V , denoted ∆(u′, V ), as a proxy for the maximal distance between
some member of u and V . To argue soundness, we would like to show that if even a single ui is δ-far
from (all members of) V , then a randomly chosen u′ is also far from V . Indeed, the paper [RVW13]
that suggested this approach also showed for any V , that whenever a single ui is δ-far from V , then
nearly all samples u′ are at least δ/2-far from V . Here and henceforth, we use ∆ to denote relative
Hamming distance and say �u is δ-close to V �, denoted ∆(u, V ) ≤ δ, when ∆(u, v) ≤ δ for some
v ∈ V ; otherwise we say �u is δ-far from V � (denoted ∆(u, V ) > δ).

Note that the result above incurs a 2× degradation in the proximity parameter δ: the worst-case
assumption � that some ui is δ-far from V � implies an average-case distance that is only δ/2.
Eliminating the proximity degradation is easy when the �eld size is exponential in the code length.
More concretely, if q � 2nH(δ), where H is the binary entropy function, then a union bound over
agreement sets shows that for δ < δV , if ui is δ-far from V then so are nearly all u′ ∈ span(u).
However, exponential �eld size is prohibitively large in the context of the motivating applications.
Obtaining similar results over �elds of sub-exponential size appears to be much more challenging.

A number of works looked at this question and were able to remove the degradation in δ with
polynomial �eld size. Ames et al. [AHIV17] showed that for proximity parameters δ that are
smaller than half of the unique-decoding radius of V (i.e., when δ < δV /4), nearly all u′ ∈ span(u)
are δ-far from V . The proximity bound was subsequently improved to δ < δV /3 by Roth and
Zémor [RZ18]. Ben-Sasson et al. [BKS18] showed similar results for δ above the unique decoding
radius, holding for any δ < 1− 4

√
1− δV , and the state of the art1 was given in [BGKS20], holding

for any δ < 1 − 3
√

1− δV . In fact, this latter result was shown to be tight for certain RS codes, in
particular, of maximal blocklength n = q.

Ames et al., who were the �rst to show that in certain cases the average-case distance of u′ ∈
span(u) from V is nearly-always equal to the worst-case distance of ui ∈ u from V , also raised the
following intriguing question, which is at the focus of our investigation here: For which codes and
what range of δ does the following statement hold?

If some u∗ ∈ span(u) is δ-far from V , then so are nearly all u′ ∈ span(u).

One implication of our main result is that when V is an RS code over a su�ciently large �eld �
polynomially large in the code's blocklength � and when δ is smaller than the Johnson/Guruswami�
Sudan list decoding bound, the above phenomenon holds. We refer to it as a proximity gap, as
explained next.

1We note that these improvements give a roughly 2× improvement to the protocol of [RVW13] in which this
question was originally studied, when that protocol is instantiated with codes of su�ciently large relative distance
(see Theorem 3.4 there).
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1.1 Gaps and proximity gaps

When a �gap� in mentioned in theoretical computer science, it usually refers to a situation where all
objects under consideration must fall into one of two categories, and these categories display a large
gap according to some metric. Striking examples are given by PCP reductions whose outputs are
constraint satisfaction problems that lie in one of two categories: satis�able instances in which some
assignment satis�es all constraints, and unsatis�able instances in which all assignments fail to satisfy
more than an ε fraction of constraints. Another gap example underlies randomized algorithms. For
instance, the Miller�Rabin primality test relies on a gap between primes and composites: in the
latter case (composites), at least three-quarters of the integers serve as composite witnesses whereas
for primes none do, leading to a �gap� of measure 3/4.

Our result can be phrased as a proximity gap according to the following de�nition.

De�nition 1.1 (Proximity gap). Let P ⊂ Σn be a property and C ⊂ 2Σn be a collection of sets.
Let ∆ be a distance measure on Σn. We say that C displays a (δ, ε)-proximity gap with respect to P
under ∆ if every S ∈ C satis�es exactly one of the following:

1. Prs∈S[∆(s,P) ≤ δ] = 1.

2. Prs∈S[∆(s,P) ≤ δ] ≤ ε.
We call δ the proximity parameter and ε is the error parameter. By default, ∆ denotes the relative
Hamming distance measure.

Using this de�nition we can state our main result. Informally, it says that if V ⊂ Fn is an
RS-code and A ⊂ Fn is an a�ne space, then either all elements of A are close to V , or otherwise,
nearly all elements of A are far from V . In other words, there is no a�ne A in which roughly half
of the elements are close to V while the other half are far from V .

Throughout this paper, Fq denotes the �eld of size q, and RS[Fq,D, k] is the RS code of dimension
k+ 1 and blocklength n = |D| containing as its codewords the polynomials of degree ≤ k, evaluated
on D. We use ρ to denote the rate ρ = k+1

n of the code. The letter δ will typically denote relative
Hamming distance to the relevant RS code and ε will denote an error parameter, the probability
that a �bad event� occurs (with varying de�nitions of the term �bad event�).

The following result has two parts and each part has its own proof. The �rst part holds only
below the unique decoding radius but has a smaller error parameter, denoted εU; the second part
holds for proximity parameters up to the Johnson/Guruswami�Sudan bound (which is greater than
the unique decoding bound) but has a larger error bound εJ (the proof of the second part is also
signi�cantly harder).

Theorem 1.2 (Proximity Gap for RS codes). The collection CAffine of a�ne spaces in FDq displays a

(δ, ε)-proximity gap with respect to the RS-code V := RS[Fq,D, k] of blocklength n and rate ρ = k+1
n ,

for any δ ∈ (0, 1−√ρ), and ε = ε(q, n, ρ, δ) de�ned as the following piecewise function:

• Unique decoding bound: For δ ∈
(

0, 1−ρ
2

]
, the error parameter ε is

ε = εU = εU(q, n) :=
n

q
. (1.1)

• Johnson bound: For δ ∈
(

1−ρ
2 , 1−√ρ

)
, setting η := 1−√ρ− δ, the error parameter ε is

ε = εJ = εJ(q, n, ρ, δ) :=
(k + 1)2(

2 min
(
η,
√
ρ

20

))7
q

= O

(
1

(ηρ)O(1)
· n

2

q

)
(1.2)
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There are two striking aspects to this result. First, the proximity parameter δ can take any
value smaller than the famous Johnson/Guruswami�Sudan bound, which is the largest distance
for which we know of e�cient (list) decoding algorithms. (Looking ahead, the Guruswami�Sudan
algorithm will play a crucial, though non-algorithmic, role in our proofs.) Second, the size of the
�eld needed to achieve this result is relatively small � linear in the blocklength when δ is below
the unique decoding radius δ < (1 − ρ)/2 and, for �xed rate, quadratic in blocklength for larger δ
up to the list decoding bound.

Remark 1.1 (Tightness of results). The maximal proximity parameter δ for which Theorem 1.2
applies happens to coincide with the Johnson/Guruswami�Sudan list-decoding bound (1−√ρ). This
evidently follows from the techniques we use here, that rely on list-decoding algorithms that reach
that bound. However, we conjecture that Theorem 1.2 holds even for larger proximity parameters,
up to capacity (1− ρ). See Conjecture 7.3 and the discussion there.

Remark 1.2 (Field size). The bound in Eq. (1.2) which reaches the Johnson bound becomes non-
trivial only for �elds of size q that are at least quadratically larger than the blocklength n. In
contrast, the bound for smaller proximity parameters, below the unique decoding radius, works for
q = O(n) (see Eq. (1.1)). We point out that for certain combinations of �elds and rate parameters
one cannot hope to reach the Johnson bound with linear size �elds, as this would contradict prior
results from [BKS18].

In the unique decoding regime, the result is sharp in the sense that a�ne spaces do not all display
a proximity gap with q · ε being sublinear in n, for �xed distance parameter δ. A simple example is
of the a�ne line {u0 + zu1 : z ∈ Fq}, where u0, u1 : D → Fq are such that on a set D′ ⊂ D of size
|D′| = n(1− δ)− 1 we have u0|D′ = u1|D′ = 0, and on the complement we have that u1|D\D′ = 1,

and u0 takes δn+1 pairwise di�erent non-zero values. We then have dist(u0+zu1, V ) ≤ δ for each of
the δn+1 values of z ∈ Fq for which −z is in the image of u0|D\D′ , but that dist(u0, V ) = δ+ 1

n > δ,

thus this line does not display a (δ, δnq ) proximity gap with respect to the code.

1.2 Concentration bounds

Theorem 1.2 implies the following concentration bound, saying that for any a�ne space in which
the element farthest from the RS code is within the Johnson/Guruswami�Sudan radius, nearly all
elements are at exactly the same distance from the code(!).

For two sets U, V ⊂ Σn de�ne the divergence2 of U from V as D(U, V ) := maxu∈U ∆(u, V ).

Corollary 1.3 (Concentration bounds). Let V, q, n, k and ρ be as de�ned in Theorem 1.2. Let U ⊂
FDq be an a�ne space over Fq and denote δ∗ := D(U, V ). If δ∗ is smaller than the Johnson/Guruswami�
Sudan bound, then nearly all elements of U have distance exactly δ∗ from the code. In other words,
if δ∗ ∈ (0, 1−√ρ), then

Pr
u∈U

[∆(u, V ) 6= δ∗] ≤ ε,

where ε = ε(q, n, ρ, δ∗) is as de�ned in Theorem 1.2.

When the divergence of U from the RS code V is greater than the Johnson/Guruswami�Sudan
bound (δ∗ > 1 − √ρ) we may still use Theorem 1.2 to conclude that nearly all elements of U are
≈ (1−√ρ)-far from V , but what remains an interesting open problem is whether nearly all members
of U are maximally far (δ∗-far) from V . An example from [BGKS20] show that this need not be
the case for RS codes where q = O(n).

2 Note that divergence is not symmetric as can be seen, e.g., when U is a strict subset of V .
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1.3 Correlated agreement

Next, we state the main technical theorem proved in the paper. Consider two vectors u0, u1 ∈ FD.
The result says that if su�ciently many elements in the 1-dimensional a�ne space A = {u0 + zu1 :
z ∈ F} are su�ciently close (δ-close) to the RS code V , then there must be a nontrivial subdomain
D′ ⊂ D of density 1−δ in D, such that restricting u0, u1 to D′ gives a valid RS codeword (evaluated
over D′). We refer to the property that such a D′ exists as correlated agreement, in the sense that
u0, u1 and the elements of A do not only have large agreement with the RS code individually, but
also share a common large agreement set. The result has two ranges of parameters, as in prior
statements in this paper. For proximity parameters in the unique decoding regime this is proved in
Theorem 4.1, and for proximity parameters in the list decoding regime this is proved in Theorem 5.1.

Theorem 1.4 (Main Theorem � Correlated agreement over lines). Let V, q, n, k and ρ be as de�ned
in Theorem 1.2. For u0, u1 ∈ FDq , if δ ∈ (0, 1−√ρ) and

Pr
z∈Fq

[∆(u0 + z · u1, V ) ≤ δ] > ε,

where ε is as de�ned in Theorem 1.2, then there exists D′ ⊂ D and v0, v1 ∈ V satisfying

• Density: |D′|/|D| ≥ 1− δ, and

• Agreement: v0 agrees with u0 and v1 agrees with u1 on all of D′.

Remark 1.3 (Sampling from extension �elds). One may sample z from a �nite extension �eld Fq′
of Fq. In this case, the statement above holds with εU and εJ modi�ed by replacing q with q′ in the
denominators of Eqs. (1.1) and (1.2), respectively. Note that even in this setting, the vectors v0, v1

deduced to exist in Theorem 1.2 belong to RS[Fq,D, k], not just in RS[Fq′ ,D, k], because v0, v1 have
high agreement with u0, u1 ∈ FDq . The ability to sample from a larger �eld (and incur smaller error)
applies to the other statements of this section but for simplicity we state all of them using a single
�eld Fq to both de�ne V and sample z from.

Motivated by applications (described later), we generalize the theorem above to two interesting
cases: (i) low-degree parameterized curves, and (ii) higher-dimensional a�ne spaces; details follow.

Correlated agreement over parameterized curves The �rst extension of Theorem 1.4 ex-
tends it from the case of a �line� passing through u0 and u1 (the line being {u0 + zu1 : z ∈ F}) to
a �low-degree curve� with coe�cients u0, u1, . . . , ul, as described below. This result is of particular
importance for two reasons. First, it leads to derandomized testing of veri�able secret sharing and
distributed storage protocols (cf. Section 7.1). Second, it improves the soundness analysis of the
Fast RS IOPP (FRI) protocol [BBHR18b], which is used in concretely e�cient and transparent
(public coin) proof systems [BBHR18a, BBHR19, BCR+18, BCG+19, COS19]. We discuss this
application in Sections 3.2 and 7.2.

Let u = {u0, . . . , ul} ⊂ FDq . The parameterized curve of degree l that is generated by u is the

following collection of vectors in FDq :

curve(u) :=

{
uz :=

l∑
i=0

zi · ui

∣∣∣∣∣ z ∈ Fq

}
.
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Theorem 1.5 (Correlated agreement for low-degree parameterized curves). Let V, q, n, k and ρ be
as de�ned in Theorem 1.2. Let u = {u0, . . . , ul} ⊂ FDq . If δ ∈ (0, 1−√ρ) and

Pr
u∈curve(u)

[∆(u, V ) ≤ δ] > l · ε,

where ε is as de�ned in Theorem 1.2, then there exists D′ ⊂ D and v0, . . . , vl ∈ V satisfying

• Density: |D′|/|D| ≥ 1− δ, and

• Agreement: for all i ∈ {0, . . . , l}, the functions ui and vi agree on all of D′.

Correlated agreement for a�ne spaces The second generalization of our Main Theorem 1.4,
extends it from the 1-dimensional case (a�ne line) to an a�ne space of arbitrary dimension. Theo-
rem 1.2 follows directly from the following statement. Note that Main Theorem 1.4 is actually a case
of the following result (for 1-dimensional spaces). However, we stated that special case separately
because we prove it �rst, and from it deduce the more general case (see Section 6.3).

Theorem 1.6 (Correlated agreement over a�ne spaces). Let V, q, n, k and ρ be as de�ned in The-
orem 1.2. For u0, u1, . . . ul ∈ FDq let U = u0 + span{u1, . . . , ul} ⊂ FDq be an a�ne subspace. If
δ ∈ (0, 1−√ρ) and

Pr
u∈U

[∆(u, V ) ≤ δ] > ε,

where ε is as de�ned in Theorem 1.2, then there exists D′ ⊂ D and v0, . . . , vl ∈ V satisfying

• Density: |D′|/|D| ≥ 1− δ, and

• Agreement: for all i ∈ {0, . . . , l}, the functions ui and vi agree on all of D′.

Furthermore, in the unique decoding regime δ ∈
(

0, 1−ρ
2

]
, there exists a unique maximal D′ satisfying

the above, with unique vi.

Correlated agreement (Theorem 1.6) is a su�cient condition for proximity gaps with the same
error and proximity parameters (Theorem 1.2). We leave as open problems (i) whether correlated
agreement is also a necessary condition for a proximity gap. And, if the answer to this question
is negative, an intriguing possibility arises: (ii) obtaining proximity gaps for δ > 1 − √ρ while
bypassing the correlated agreement approach we took here.

Organization of the rest of the paper: We start with an overview of the proof of Main Theo-
rem 1.4 in Section 2. In Section 3 we survey several applications of our results. Section 4 gives the
(simper) proof of the unique decoding radius part of Main Theorem 1.4. Section 5 gives the proof
of the (harder) list decoding radius part of that theorem, by reducing it to a di�erent, more param-
eterized format (Appendix A provides the preliminary algebraic setup for the proof). In Section 6
we prove the generalizations of Main Theorem 1.4 to curves (Theorem 1.5) and higher dimensional
a�ne spaces (Theorem 1.6). Section 7 concludes with more details on selected applications �
Veri�able Secret Sharing (VSS) and Fast RS IOPs of Proximity (FRI).

5



2 Proof overview

In this section, we give an overview of our proof strategy of our main result, Theorem 1.4.
Recall the setup. V = RS[Fq,D, k] of degree k polynomials evaluated at the points of D ⊆ Fq,

where |D| = n. We have functions u0, u1 : D → Fq such that for many z ∈ Fq, the function u0 + zu1

is δ-close to V . We want to deduce that u0 and u1 are themselves close to V .
The main conceptual idea of our analysis is to work with the function �eld K = Fq(Z) with a

formal variable Z, and to study the various received words u0 + zu1 for the code V simultaneously
by considering the formal received word w = u0 + Zu1 : D → K for the (big �eld) Reed�Solomon
code RS[K,D, k]. It turns out that showing that w is close to a (well-structured) codeword of this
Reed�Solomon code is su�cient to show that u0 and u1 are both close to the original Reed�Solomon
code V . With this viewpoint, our proof strategy is to run a decoding algorithm for Reed�Solomon
codes on this received word w = u0 + Zu1. Our goal is to analyze the execution of this algorithm
to show that it succeeds in �nding a nearby Reed�Solomon codeword. We do such an analysis by
relating it to the execution of that decoding algorithm on the various received words u0 + zu1 for
the Reed�Solomon code V over the small �eld Fq.

This strategy is instantiated with two di�erent decoding algorithms for Reed�Solomon codes:
the Berlekamp�Welch unique decoding algorithm, and the Guruswami�Sudan list decoding algo-
rithm [GS99]. Both instantiations give rise to intriguing algebraic questions about polynomials,
which we resolve using nontrivial tools from algebraic geometry and the theory of algebraic function
�elds.

Instantiation with the Berlekamp�Welch Algorithm

Over a �eld F and an evaluation domain D, given a received word r : D → F, the Berlekamp�Welch
decoding algorithm for �nding the (unique) nearby polynomial P (X) ∈ F[X] close to r works as
follows. First it searches for low-degree polynomials A(X), B(X) ∈ F[X] such that for each x ∈ D:

A(x)r(x) = B(x).

Then the nearby polynomial P (X) is recovered as B(X)/A(X) (which a priori may be a rational
function).

In our setting, we �rst run the Berlekamp�Welch algorithm with received word w = u0 + Zu1 :
D → K over the big �eld K = Fq(Z) (we will sometimes view this as a function w(x, z) with
w : D × Fq → Fq). Our goal is to �nd a nearby Reed�Solomon codeword (low-degree polynomial)
P (X) ∈ K[X] which has the special form P0(X) + ZP1(X), where each Pi(X) ∈ Fq[X]. The �rst
step of the Berlekamp�Welch algorithm gives us A(X), B(X) ∈ K[X] = Fq(Z)[X]. Making the
Z dependence explicit, we write these as A(X,Z), B(X,Z). This gives us a candidate, namely
A(X,Z)/B(X,Z), for being a Reed�Solomon codeword close to w. We will show two things: that
A(X,Z)/B(X,Z) is a polynomial in Fq(Z)[X] (a priori it is only a rational function), and that it
is close to w.

The crucial step is to substitute Z = z into A(X,Z) and B(X,Z) for various values of z ∈ Fq.
Letting wz = u0 + zu1 : D → K (the result of substituting Z = z into w), it turns out that
A(X, z), B(X, z) ∈ Fq[X] are what we would get if we run the Berlekamp�Welch algorithm (over
the small �eld Fq) on received word wz. In particular, for many z we get that B(X, z) is divisible by
A(X, z) in Fq[X], and B(X, z)/A(X, z) equals the Reed�Solomon codeword close to wz. This then
allows us to use the Polishchuk�Spielman lemma (a strengthening of the classical Bezout theorem,
which deduces divisibility of bivariate polynomials from divisibility of univariate restrictions) to
conclude that B(X,Z)/A(X,Z) is in fact a polynomial P (X,Z) in K[X] of low degree in X.
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The �nal step is to show that P (X,Z), when viewed as a function from D to K, is close to w,
and that that the Z dependence of P (X,Z) is simple (just linear in Z). This is again achieved by
considering Z substitutions. We know that for many z, P (X, z) is the degree at most k polynomial
Pz(X) that is close to wz. This means that the X degree of P (X, z) is at most k, and that for
many x ∈ D and z there is agreement between P (x, z) and wz(x) = w(x, z). On the other hand,
for any x ∈ D, w(x, ·) is a linear function, and P (x, ·) is a low degree rational function, and so they
cannot agree on too many points unless the low degree rational function P (x, ·) formally equals the
linear function w(x, ·). Therefore this formal equality must happen for many x ∈ D, i.e., P (·, Z) is
close to w. Finally, by simple linear algebra, if P (x, Z) is linear in Z for many x, we conclude that
P (X,Z) is linear in Z. This gives us our desired conclusion.

Instantiation with the Guruswami�Sudan Algorithm

Over a �eld F and an evaluation domain D, given a received word r : D → F, the Sudan and
Guruswami�Sudan decoding algorithms for �nding all nearby polynomials P (X) ∈ F[X] close to r
work as follows. First one searches for a low-degree polynomial Q(X,Y ) ∈ F[X,Y ] such that for
each x ∈ D,

Q(x, r(x)) = 0.

(This is the Sudan algorithm; for the Guruswami�Sudan algorithm we ask that Q vanishes at each
(x, r(x)) with high multiplicity.) Then every nearby polynomial P (X) turns out to have the property
that Y −P (X) divides Q(X,Y ) in the bivariate polynomial ring Fq[X,Y ]. This means that all such
P (X) can be found by factoring Q(X,Y ).

In our setting, we run the Guruswami�Sudan algorithm with received word w = u0 + Zu1 :
D → K over the big �eld K = Fq(Z). Our goal is to �nd a nearby low-degree polynomial P (X) ∈
K[X] which has the special form P0(X) + ZP1(X), where each Pi(X) ∈ Fq[X]. The �rst step
of the Guruswami�Sudan algorithm gives us a bivariate polynomial Q(X,Y ) ∈ K[X,Y ] such that
Q(x,w(x)) = 0 for each x ∈ D. Again, we write Q(X,Y ) as Q(X,Y, Z) ∈ Fq(Z)[X,Y ] to make
the Z dependence explicit (and we can clear denominators in Z without a�ecting the vanishing
property).

Substituting Z = z, we get that Q(x,wz(x), z) = 0 for each x ∈ D. This means that the
polynomial Qz(X,Y ) ∈ Fq[X,Y ] given by Qz(X,Y ) = Q(X,Y, z) ∈ Fq[X,Y ] is the bivariate
polynomial we would have found while running the Guruswami�Sudan algorithm with received
word wz : D → Fq over the small �eld Fq. Since for many z ∈ Fq we have that wz is close to some
codeword Pz(X) ∈ Fq[X] of the Reed�Solomon code V , we get that Y − Pz(X) divides Q(X,Y, z)
for many z ∈ Fq. We would like to deduce from this that over the big �eld K there is a low-degree
polynomial P (X) ∈ K[X] such that Y − P (X) divides Q(X,Y ) in K[X,Y ] (and furthermore, this
P (X) is close to w and has a simple Z dependence).

This is the most involved (and interesting) part of the analysis. We will factor Q(X,Y, Z)
completely into linear factors in Y .

Q(X,Y, Z) = C(X,Z)(Y − γ1(X,Z))(Y − γ2(X,Z)) · · · (Y − γD(X,Z)). (2.1)

This is natural to do, because we are searching for factors that are linear in Y . Then we substitute
Z = z into this, and we should see Pz(X) as one of the factors.

However, getting such a factorization for Q(X,Y, Z) may not be possible with polynomials
γi(X,Z), and we have to look (far) beyond. What kind of objects should we think of the γi as?
After getting the γi(X,Z), we would like to (a) argue about when γi(X,Z) is a polynomial in X,
and (b) substitute Z = z into it and inspect the resulting object. To enable these, we will express
γi(X,Z) in the ring R = K[[X]], the ring of power series in X, whose coe�cients are in the algebraic
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closure of K = Fq(Z). The power series in X representation allows us to see when γi is a polynomial

in X, and the coe�cients being simply algebraic functions in Z (such as
√
Z3 + Z + 1) allows us to

reason about substitutions Z = z. Having decided on R, it is a simple application of Hensel lifting
(after possibly a random shift) to show that a factorization as in (2.1) is possible with the γi ∈ R.

Rather than describe what happens in full generality, we just sketch what would happen in a
special case with most of the action. Suppose Fq is not of characteristic 2, and we have:

Q(X,Y, Z) = Y 2 − (Z3 + Z + 1)(1− ZX).

Going to the ring R, and letting α =
√
Z3 + Z + 1 ∈ K, it turns out that Q(X,Y, Z) factors as:

Q(X,Y, Z) =
(
Y −

√
Z3 + Z + 1

√
1− ZX

)
·
(
Y +

√
Z3 + Z + 1

√
1− ZX

)
=

(
Y −

(
α− α · Z

2
X − α · Z2

16
X2 + . . .

))(
Y +

(
α− α · Z

2
X − α · Z2

16
X2 + . . .

))
where we used the Taylor series expansion for

√
1− ZX. Now substitute Z = z for z ∈ Fq.

Substituting values into algebraic functions like α is a slightly delicate operation (which square root
do you choose? how do you make these choices consistent for di�erent algebraic functions?), but it
can be done using basic concepts from the theory of algebraic function �elds. Another tool that we
need from the theory of algebraic function �elds is an analogue of the degree of a polynomial, to
measure complexity of algebraic functions and bound the number of their zeroes. In this sketch we
avoid going into any such details.

Doing the substitution gives us:

Qz(X,Y ) = Q(X,Y, z)

=

(
Y −

(
α(z)− α(z) · z

2
X + · · ·+ ciα(z)ziXi + · · ·

))
×(

Y +

(
α(z)− α(z) · z

2
X + · · ·+ ciα(z)ziXi + · · ·

))
.

By properties of the Guruswami�Sudan decoding algorithm, we know for all �good� z ∈ Fq where
wz is close to some low degree polynomial Pz, we must have that Y − Pz(X) divides Qz(X,Y ).
Given the factorization above, one of the following must occur:

1. Pz(X) =
(
α(z)− α(z)·z

2 X − α(z)·z2

16 X2 + · · ·+ ciα(z)ziXi + · · ·
)
,

2. Pz(X) = −
(
α(z)− α(z)·z

2 X − α(z)·z2

16 X2 + · · ·+ ciα(z)ziXi + · · ·
)
.

Whichever power series ends up equaling Pz(X), the coe�cient of Xk+1 in that power series must
equal 0. In our particular example, we deduce that ck+1α(z)zk+1 = 0 for some constant ck+1.
Assuming ck+1 is nonzero in Fq, we get that α(z)zk+1 = 0 for every good z. Finally we use the

fact that a nonzero algebraic functions of low �degree� like α(Z)Zk+1 =
√
Z3 + Z + 1 ·Zk+1 cannot

vanish at too many points z. This means that there cannot be too many good z, contradicting our
hypothesis. We conclude that Q(X,Y, Z) cannot equal Y 2 − (Z3 + Z + 1)(1− ZX)!

A very similar argument derives a contradiction unless Q(X,Y, Z) has a factor of the form
Y − P (X) for some P (X) ∈ K[X] of degree at most k. The only twist is that we may have to
focus on the coe�cient of some di�erent power Xk+c in the power series than the coe�cient of
Xk+1 (in case the coe�cient of Xk+1 in the power series is identically 0). To make this argument
work, we need to estimate the �degree� of the algebraic functions that appear as coe�cients in these
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power series. This involves a careful study of the Hensel lifting process, especially its e�ect on the
complexity of its coe�cients.

The �nal part of the argument, showing that some Y − P (X) factor of Q(X,Y, Z) is such that
P (X) has high agreement with w and all the coe�cients of P (X) are linear polynomials in Z, is
similar to what happened in the unique decoding case. Instead of using the fact that a low degree
rational function and a linear function cannot have high agreement unless they are equal, we use the
fact that a low degree algebraic function and a linear function cannot have high agreement unless
they are equal. This completes our sketch of the proof.

Technical issues When we actually implement the argument, there are some technical changes
we make (both for simplicity and for optimizing parameters). First, we do not do the proof by
contradiction, but instead show how to �nd the factor of the form Y − P (X). Next, instead of
directly doing Hensel lifting with Q, we factor Q into irreducible factors over Fq[X,Y, Z] and focus
on a single irreducible factor that is �responsible� for many of the Pz. This helps in that we do
not need to factor arbitrarily messy Q's completely into linear factors, but only those which have
the property that Q(X,Y, z) has a linear factor of the form Y − Pz(X). Finally, instead of arguing
over the algebraic closure K, we go to a small algebraic extension L of K which is rich enough to
express all the coe�cients of the relevant power series. These changes lead to some simpli�cations
and quantitative improvements in our proofs.

Relationship with the Arora-Sudan low degree test [AS03] A beautiful and fundamental
paper of Arora and Sudan [AS03], analyzed the �line vs. line� low degree test for multivariate poly-
nomials in the high error regime. The heart of their paper is a theorem that says that if a function
f : F2

q → Fq is such that for most lines L given by Y = aX+b in F2
q the univariate function obtained

from restricting f to L (denoted f |L) is close to a low degree univariate polynomial, then f is itself
close to a low degree bivariate polynomial. This is closely related to our theorem which deduces a
similar conclusion about a received word w : D × Fq → Fq, also based on restrictions to lines. Our
proof is heavily in�uenced by the proof in [AS03] (which in turn builds on fundamental results on
polynomial factorization and the Hilbert irreducibility theorem by Kaltofen [Kal85, Kal95]). There
is one crucial di�erence in our proof. Our approach is spearheaded by the idea of running all ar-
guments over the big �eld K = Fq(Z) (as opposed to treating Z as another variable over Fq just
like X and Y , as is done in [AS03]). This di�erence a�ects our proofs in a tangible sense: our
proofs are based on bivariate interpolation over the big �eld K rather than trivariate interpolation
over the small �eld Fq. Inside the analysis, our proofs use power series in one variable over function
�elds rather than power series in two variables over �nite extensions of Fq. This leads to more
involved algebraic tools being needed for our proof (most seriously the use of algebraic function
�elds), but also yields three improvements. First, our result is about axis parallel restrictions Z = z
(for z ∈ Fq) instead of more general linear restrictions Z = aX+b (for a, b ∈ Fq). This simpler form
of restriction is important for our applications. Second, our result deduces structure all the way up
to the Johnson radius, while the result in Arora-Sudan is to a smaller radius (polynomially worse
in terms of agreement parameter). Third, our result works over �elds that are quadratic in the
degree of the polynomials involved whereas the Arora-Sudan result requires �elds that are quartic
(at least) in the degree.
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3 Applications

Our proximity gap results are motivated by the following general setting. There are several pur-
ported codewords u = {u1, . . . , ul} ⊂ Fnq of an RS code V . A veri�er would like to be assured that
they are all close to V . This is done by taking a random linear combination of the ui and checking
its proximity to V . The analysis of this simple test, which arises naturally in a variety of application
scenarios, turns out to be surprisingly challenging. Indeed, it is closely related to the proximity gap
problem we study in this work.

This batch veri�cation problem arises in two kinds of settings: a distributed setting, where entries
of u are split between multiple servers and may not be known to any single entity, and a centralized
setting, where u is entirely known to a prover and can be queried by a veri�er. We brie�y explain
the role of proximity gaps in these two types of applications.

In the distributed setting, the coe�cients of the random linear combination is either generated
by a single veri�er or jointly via a distributed coin tossing protocol. Each server then responds with
its own share of the output. Veri�cation succeeds if the joint output is a codeword, or alternatively
it is close to the code. Examples for applications in the distributed setting include Veri�able Secret
Sharing (see Section 7.1) and secure multiparty computation protocols, such as those from [DI06,
IPS09]. These applications typically rely on unique decoding and can thus bene�t from our near-
optimal analysis for this regime. In this type of applications, the main challenge is protecting against
an adaptive adversary who may choose which servers to corrupt after seeing the coe�cients of the
random linear combination. To defeat such an adversary, we need to ensure that if at least one of
the ui is far from the code, then (with high probability) so is their random linear combination. If
this were not the case, an adaptive adversary could eliminate all inconsistencies by corrupting a
small number of servers. Proximity gaps rule out this kind of attack.

In the centralized setting, u is known to a prover and can be queried by the veri�er. A typical
realization is using a tree-based succinct cryptographic commitment that binds the prover to a
uniquely de�ned u and yet enables e�cient local opening of symbols queried by the veri�er. In
this case, the veri�er challenges the prover by choosing the coe�cients ri of the random linear
combination. The prover, who claims that all ui are codewords in V , must respond with a valid
codeword u ∈ V . The veri�er checks that u agrees with u′ = r1u1 + . . .+ rlul by querying a random
entry of u and the corresponding entries of u and checking their consistency. (To amplify soundness,
the veri�er can query several random entries of u.) Here too, proximity gaps guarantee that if one
of the ui is far from V , then (with high probability) so is u′. This ensures that the veri�er detects
an inconsistency with high probability. Examples for applications in the centralized setting include
communication-e�cient proof systems [RVW13, AHIV17, BBHR18b], homomorphic commitment
schemes [CDD+16], and secure two-party computation protocols [IPS08, HIMV19]. See more in
Section 3.2 below.

An appealing feature of the simple �random linear combination� test is that it can be imple-
mented with low communication and computation costs. In particular, in the distributed setting
it su�ces for each server to send a single �eld element to the veri�er. In both settings, communi-
cating the l random coe�cients is typically not a bottleneck. This random challenge can be made
shorter either by using a cryptographic pseudorandom generator or unconditionally by using simple
derandomization techniques. In particular, one can generate all coe�cients as distinct powers of a
single random �eld elements and appeal to the parameterized curves variant of the proximity gap
theorem (Theorem 1.5).

Our new proximity gaps imply a tighter analysis of applications that test proximity to RS codes.
Generally speaking, in the distributed setting the improved proximity gap bounds imply a constant-
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factor improvement in the resilience threshold, namely the number of corrupted parties that can
be tolerated. In the centralized setting, one typically gets constant-factor savings in the overall
communication and computation costs. While often ignored in theory-oriented research, the latter
kind of improvements can be very signi�cant in the context of practical succinct proof systems.

Why RS codes? Reed�Solomon codes are commonly used in distributed storage, e�cient proof
systems, and cryptographic protocols. They are useful because of their MDS property, near-linear
encoding, and e�cient (list)-decoding algorithms. A more qualitative feature of RS codes, which
is commonly used in proof systems and cryptography, is the following multiplication-friendliness
property: when n = |D| > 2k, the pointwise products of codewords in V = RS[Fq,D, k] span a
linear code that has nontrivial minimal distance, namely the code RS[Fq,D, 2k].

We now give more concrete examples of applying proximity gaps to analyze batch-veri�cation
tasks that arise in di�erent application scenarios.

3.1 Distributed storage and cryptography

Distributed storage. Consider a scenario in which l users encode their inputs using a length-n
RS code V = RS[Fq,D, k], where server i stores the i-th symbol of each of the l codewords. Suppose
that some of the nl symbols were corrupted, say by a transient malware that overwrites a subset of
the symbols before being discovered and eliminated. A veri�er would like to get a quick estimate of
the amount of damage caused by the malware. A natural idea is to have the servers communicate a
random linear combination u′ of the potentially corrupted codewords uj . Using the basic proximity

gap result (Theorem 1.2), if at least one of uj is δ-far from the code (for δ ≤ 1−ρ
2 or δ < 1 −√ρ),

then u′ is δ-far from the code except with small failure probability (at most n/q for δ ≤ 1−ρ
2 ). Thus,

for su�ciently large Fq, the distance of u′ from V provides a reliable upper bound on the maximal
relative distance of a vector ui from V within the proximity bounds of Theorem 1.2. This estimate
is not too pessimistic in the sense that if only a µ-fraction of the servers were a�ected, the upper
bound obtained by the test is no bigger than µ.

Distributed proximity test for Interleaved RS codes. The above analysis leaves something
to be desired: if u′ is within (su�ciently small) distance δ from V , the veri�er is only assured that
each uj is individually within distance δ from V . In some applications, we would like to get the
stronger guarantee that in such an event there is a δ-fraction of the coordinates whose removal
makes all uj consistent with V . Moreover, we would like to identify this set of coordinates, which
is uniquely de�ned in the unique decoding regime. This is useful even in the above distributed
storage scenario, but will be even more useful for the applications we discuss next. The stronger
feature can be conveniently captured using the notion of an Interleaved Reed�Solomon (IRS) code.
In an IRS(V, l) code, the codewords are l × n matrices in which each row is a codeword in V . The
symbols of such a codeword are the matrix columns. Namely, a codeword consists of n symbols in
F`q. The following theorem, which follows easily from Theorem 1.6, phrases the stronger guarantee
provided by the re�ned analysis in terms of proximity testing for IRS codes. We state it for the
unique decoding regime, which su�ces (and is sometimes required) for the applications we discuss
next. For u within the unique decoding radius of V , we denote by Γ(u, V ) the set of coordinates on
which u disagrees with the closest codeword from V .
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Theorem 3.1 (Distributed proximity test for Interleaved RS codes). Let V = RS[Fq,D, k] for
|D| = n and V = IRS(V, l). We view codewords in V and V as vectors in Fnq and matrices in Fl×nq

respectively. Let ρ = k+1
n and δ ≤ 1−ρ

2 . Let u ∈ Fl×nq and let u′ = rTu where r ∈R Flq.

• Completeness: If ∆(u,V) ≤ δ then Pr[∆(u′, V ) ≤ δ] = 1 and moreover Pr[Γ(u′, V ) 6=
Γ(u,V)] ≤ n/q.

• Soundness: If ∆(u,V) > δ then Pr[∆(u′, V ) ≤ δ] ≤ n/q.

We refer to the above test as distributed because it can be implemented with low communication
complexity in the distributed setting, where each server holds a di�erent column of u. One can
similarly obtain an a�ne version with the same guarantee, where u has an additional row u0 that
is always added to u′ (i.e., with coe�cient r0 = 1), and the code V is extended to by IRS(V, l+ 1).
This a�ne version is useful for zero-knowledge variants of the test, where a single random u0 ∈ V
is used for blinding u1, . . . , ul. This is used in the cryptographic applications we discuss next.

General cryptographic protocols. Theorem 3.1 serves as a useful tool for analyzing cryp-
tographic protocols in the presence of an adaptive adversary who can dynamically choose the
set of corrupted parties. For instance, it shows that secure multiparty computation protocols
from [DI06, IPS09] are adaptively secure when the adversary can corrupt roughly 1/3 of the parties.
The best previous proximity gaps from [RZ18, BKS18, BGKS20] could only get up to 1/4 corruption
threshold in the same setting. Adaptive security, in turn, is crucial for the general transformation
from [IKOS09, IPS08] of these honest-majority protocols to two-party protocols and protocols for
dishonest majority. Indeed, this is the context that gave rise to proximity gap in the analysis of
the Ligero zero-knowledge proof system [AHIV17], which applies a variant of the transformation
from [IKOS09] to a variant of the protocol from [DI06]. We give a detailed exposition of the appli-
cation of proximity gaps to veri�able secret sharing, which serves as a basis for the above results on
secure multiparty computation, in Section 7.

3.2 Soundness of the Fast RS IOPP (FRI) protocol

FRI is an Interactive Oracle Proof of Proximity (IOP of Proximity, or IOPP) as de�ned in [RRR16,
BCS16]. An IOP is an interactive protocol in which the veri�er has oracle access to messages sent
by the prover, so she need not read and store those messages but may query random entries of
them. FRI is one of a family of protocols for testing proximity to the RS code (an �RS proximity
testing� (RPT) protocol). Its purpose is to check whether a received word f : D → Fq belongs to
a pre-speci�ed RS code V := RS[Fq,D, k] and to reject words that are δ-far from the code with
high probability and low query complexity. Due to its e�ciency it is used as a building block in
several recent succinct zero knowledge protocols including scalable and transparent (public coins)
arguments of knowledge (STARKs) [BBHR18a, BBHR19], Aurora [BCR+18] and its succinct ver-
sion [BCG+19], and Fractal [COS19], to name a few. These systems have been shown by Chiesa
et al. to be sound in the quantum random oracle model (hence are �plausibly post-quantum se-
cure�) [CMS19]. Therefore, understanding the concrete soundness error of FRI, denoted εFRI, is of
signi�cant practical value, in addition to being a theoretically interesting question.

Consider the case of f that is maximally far from V , i.e., ∆(f, V ) ≈ 1− ρ (this holds, e.g., for
random f , with high probability). Fix a target soundness error bound 2−λ (in concrete settings,
λ is the �security parameter�, often �xed to λ = 128). The communication complexity of FRI is
dominated by the number t of iterations of the QUERY phase, so the question at hand is:
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How many iterations t of the QUERY phase are needed to obtain εFRI ≤ 2−λ?

The initial analysis of [BBHR18b] required a number t that is quite large, and does not tend to
0 even for tiny rates ρ. This was improved by [BKS18] to t ≈ 4λ log 1

ρ , and then by [BGKS20] to

t ≈ 3λ log 1
ρ . Sadly, that paper also showed that this bound is tight, at least when the �eld size q

equals the code's blocklength n. Our main result regarding FRI (Theorem 7.2) shows that for q � n2

we can reduce the number t of iterations by 33% to t ≈ 2λ log 1
ρ , which leads to communication

complexity that is at least 33% shorter, for provable soundness settings. The actual savings in the
provable soundness case are likely larger, due to smaller �eld size and the ability of the improved
analysis to operate with any sequence of oracle sizes in the FRI COMMIT phase (as discussed after
the statement of Theorem 7.2).

4 Correlated Agreement over Lines � Unique Decoding Radius

In this section we prove the correlated agreement result for proximity parameters that are below
the unique decoding radius, corresponding to the ε = εU part of Theorem 1.4. In this case, where

δ ∈
(

0, 1−ρ
2

]
, our result holds even with �elds that are merely linear in the blocklength of the code.

More importantly, the proof will present several ideas, in simpli�ed form, that will appear again in
the proof of harder, list decoding regime, result (Theorem 5.1).

As usual, let Fq be the �nite �eld of size q, let D ⊆ Fq be an evaluation domain of size |D| = n,

let k ≤ n, and let V = RS[Fq,D, k] be the Reed�Solomon code of rate ρ = k+1
n .

Theorem 4.1. Suppose δ ≤ (1− ρ)/2. Let u0, u1 : D → Fq be functions. Let
S = {z ∈ Fq : ∆(u0 + zu1, V ) ≤ δ}

and suppose |S| > n. Then S = Fq. Furthermore there are v0, v1 ∈ V such that for all z ∈ Fq,
∆(u0 + zu1, v0 + zv1) ≤ δ

and in fact
|{x ∈ D : (u0(x), u1(x)) 6= (v0(x), v1(x))}| ≤ δ|D|.

Remark 4.1. Since δ ≤ 1−ρ
2 is within the unique decoding regime, the above v0, v1, which are

simultaneously and separately δ-close to u0, u1, are also unique.

4.1 The Berlekamp�Welch decoder

Our proof will be based on the Berlekamp�Welch decoding algorithm. Let F be a (general) �eld and
D ⊆ F. For an integer k, consider the Reed�Solomon code V = RS[F,D, k]. We will be instantiating
the Berlekamp�Welch decoder for RS codes over two di�erent �elds: the �standard� �eld Fq and the
�eld of rational functions K = Fq(Z) in the formal variable Z. We now give a quick description of
the Berlekamp�Welch decoding algorithm and some useful aspects of it.

Given a received word w : D → F, where D ⊆ F, and an error parameter e = δn ≤ n−k−1
2 , the

Berlekamp�Welch decoder �nds the unique (if any) polynomial P (X) ∈ F[X] such that ∆(w,P ) ≤ e.
The �rst step of the Berlekamp�Welch decoder is to set up a a homogeneous system of linear

equations to �nd polynomials A(X), B(X) ∈ F[X] with deg(A) ≤ e, deg(B) ≤ k + e such that:

A(x)w(x) = B(x)

for all x ∈ D.
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Lemma 4.2. The homogeneous system of linear equations above has the following properties:

1. Suppose ∆(w, V ) ≤ δ. Then the system of equations has a nonzero solution.

2. Suppose ∆(w, V ) ≤ δ. Then for any nonzero solution A(X), B(X) to the system of equations,
we have that A(X) divides B(X) (in F[X]), and furthermore the element of V which realizes
the distance is B(X)/A(X).

3. If A(X), B(X) is a nonzero solution to the system of equations such that A(X) divides B(X)
(in F[X]), then the polynomial P (X) = B(X)/A(X) has the property3 that ∆(w,P ) ≤ δ.

These properties above are well known and we omit the proof.

4.2 The Polishchuk�Spielman lemma

Another ingredient that will appear in our proof is a version of the Polishchuk�Spielman lemma [PS94].
The version we state below is a variation of [Spi95, Lemma 4.2.18], and we include a derivation in
Appendix D.

Lemma 4.3. Let A(X,Z), B(X,Z) ∈ Fq[X,Z] be polynomials. Suppose there are at least nX
choices of x ∈ Fq such that A(x, Z) divides B(x, Z) as polynomials in Fq[Z], and at least nZ choices
of z ∈ Fq such that A(X, z) divides B(X, z) as polynomials in Fq[X]. If

1. degX(A) + degX(B) < nX ,

2. degZ(A) + degZ(B) < nZ ,

3. degX(B)
nX

+ degZ(B)
nZ

< 1,

then A(X,Z) divides B(X,Z) as polynomials in Fq[X,Z].

4.3 Proof of Theorem 4.1

By de�nition of S, for each z ∈ S, we have a polynomial Pz(X) ∈ Fq[X] with deg(Pz) ≤ k such
that ∆(u0 + zu1, Pz) ≤ δ.

Our strategy is to run the Berlekamp�Welch decoder over the �eld K = Fq(Z) of rational
functions in the formal variable Z.

First de�ne a received word
w : D → K

given by:
w(x) = u0(x) + Zu1(x).

We sometimes also use the notation w(x, Z) to denote u0(x) + Zu1(x).
We will try to �nd a polynomial P (X,Z) ∈ Fq[X,Z] of the form P (X,Z) = v0(X) + Zv1(X),

where degX(P ) ≤ k, such that
P (x, Z) = w(x)

for at least n− e choices of x ∈ D.
3 Note that P (X) may have degree larger than k. The best we can say about the degree of P (X) is that it is at

most k + e.
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4.3.1 Step 1: Finding A(X,Z), B(X,Z)

The �rst step of the Berlekamp�Welch algorithm is to �nd nonzero A(X,Z), B(X,Z) ∈ K[X] of
degrees ≤ e and ≤ k + e (in the variable X) respectively such that

A(x, Z)w(x) = B(x, Z) (4.1)

for all x ∈ D. Setting this up as a homogeneous linear system over K, we get an n × (k + 2e + 2)
matrix M(Z) with entries being polynomials in Z, of degree ≤ 1 for the e + 1 columns of the
A-variables, and degree 0 for the k + e+ 1 columns of the B variables.

We now show that M(Z) has rank < k + 2e + 2 over K. Fix any (k + 2e + 2) × (k + 2e + 2)
minor of M(Z), and consider its determinant R(Z) ∈ Fq[Z]. We will show that R(Z) = 0. This
then implies that M(Z) has rank < k + 2e+ 2 over K.

For any z ∈ S, consider M(z). This is the homogeneous linear system that arises when we run
the Berlekamp�Welch decoder with received word u0 + zu1 ∈ Fnq over the �eld Fq. By de�nition of
S we know that ∆(u0 + zu1, V ) ≤ δ, and so Item 1 of Lemma 4.2 tells us that this linear system
has a nonzero solution. Therefore M(z) has rank < k + 2e + 2. Thus for each z ∈ S, R(z) = 0.
Now notice that deg(R) ≤ e+ 1. Since |S| > e+ 1, we conclude that R(Z) = 0 formally, as desired.

Solving the linear system (4.1) over K by Cramer's rule (and clearing the denominator), we get
A(X,Z), B(X,Z) ∈ Fq[X,Z] with degZ(A) ≤ e, degZ(B) ≤ e+ 1, degX(A) ≤ e, degX(B) ≤ k + e
and:

A(x, Z)w(x) = B(x, Z)

for all x ∈ D. Using our alternate notation for w, we get:

A(x, Z)w(x, Z) = B(x, Z)

for all x ∈ D. Note that in particular, A(x, Z) divides B(x, Z) (as polynomials in Fq[Z]) for all
x ∈ D.

4.3.2 Step 2: Dividing B(X,Z) by A(X,Z) in Fq[X,Z]

Now if z ∈ S, we know that the function w(·, z) : D → Fq has distance ≤ e from V . Consider
the Berlekamp�Welch system of linear equations associated with this received word: namely, we
consider the space of all pairs of polynomials E(X), F (X) of degrees ≤ e,≤ k+ e respectively, such
that

E(x)w(x, z) = F (x)

for all x ∈ D. We see that any solution E(X), F (X) of this system falls into one of two cases:

• E(X) = 0, in which case F (x) = 0 for all x ∈ D, and so F (X) = 0 too.

• E(X) is nonzero, in which case Item 2 of Lemma 4.2 tells us that E(X) divides F (X), and
F (X)
E(X) = Pz(X).

In both these cases, E(X) divides F (X).
For any z ∈ S, A(X, z), B(X, z) are polynomials that satisfy the properties of E,F above, thus

A(X, z) divides B(X, z).
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To recap, we've seen that A(x, Z) divides B(x, Z) for |D| = n values of x, and A(X, z) divides
B(X, z) for |S| values of z. Since

degX(A) + degX(B) ≤ k + 2e < n = |D|,
degZ(A) + degZ(B) ≤ 2e+ 1 ≤ n < |S|, and
degX B

|D|
+

degZ B

|S|
<
k + e

n
+
e

n
< 1,

we may apply the Polishchuk�Spielman lemma 4.3 to get that A(X,Z) divides B(X,Z) in Fq[X,Z],
and de�ne P (X,Z) = B(X,Z)/A(X,Z) ∈ Fq[X,Z].

4.3.3 Step 3: P (X,Z) has X-degree at most k

We will now bound the X degree of P (X,Z) ∈ Fq[X,Z]. The idea is to substitute values for Z.

Observe that degX(P ) ≤ k + e, and degZ(P ) ≤ e+ 1. Write P (X,Z) =
∑k+e

i=0 Pi(Z)Xi, where
each Pi(Z) ∈ Fq[Z] is of degree at most e+ 1.

Let S′ = {z ∈ S : A(X, z) 6= 0}. Since degZ A ≤ e, we have |S′| ≥ |S| − e.
For z ∈ S′, the discussion above about solutions E,F to the Berlekamp�Welch system of linear

equations tells us that B(X, z)/A(X, z) = Pz(X). Thus P (X, z) = Pz(X), and so Pi(z) = 0 for all
i > k.

Since |S′| > e+1, this implies that Pk+1(Z), . . . , Pk+e(Z) are all identically zero. Thus P (X,Z)
has X-degree at most k.

4.3.4 Step 4: P (x, Z) = w(x, Z) for many x

Now we show that P is close to w. We are e�ectively using Item 3 of Lemma 4.2 here, but we
reprove it because we need to keep track of some other information.

Let D′ = {x ∈ D : A(x, Z) 6= 0}. Since A(X,Z) 6= 0 and degX(A) ≤ e, we have |D′| ≥ n−e > k.
Note that for any x ∈ D, we have both A(x, Z)w(x, Z) = B(x, Z) by the decoder's construction,

as well as A(x, Z)P (x, Z) = B(x, Z). Comparing the two equations yields

A(x, Z)P (x, Z) = A(x, Z)w(x, Z), x ∈ D.
If x ∈ D′ ,then A(x, Z) is not identically zero and is invertible in K. We thus conclude that

P (x, Z) = w(x, Z) (4.2)

for all x ∈ D′.

4.3.5 Step 5: P (X,Z) has Z-degree at most 1

Let {x0, . . . , xk} ⊆ D′ be any set of k + 1 distinct elements of D′. Let v0(X), v1(X) ∈ Fq[X] be the
unique degree ≤ k interpolations of u0, u1 at the points x0, . . . , xk. Observe that for each 0 ≤ i ≤ k
we have

P (xi, Z) = w(xi, Z) = u0(xi) + Zu1(xi) = v0(xi) + Zv1(xi).

It follows that the two degree ≤ k polynomials P (X,Z), v0(X) + Zv1(X) ∈ K[X] agree at k + 1
points � thus they must be identical, i.e. P (X,Z) = v0(X) + Zv1(X) identically.

Using equation (4.2) again, we �nd for all x ∈ D′

w(x, Z) = P (x, Z) = v0(x) + Zv1(x),
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and since |D \ D′| ≤ e = δ|D|, we have
∆(u0 + Zu1, v0 + Zv1) ≤ δ,

as claimed. This completes the proof of Theorem 4.1.

5 Correlated Agreement over Lines � List Decoding Radius

In this section we prove the large distance part of the correlated agreement theorem (Theorem 1.4),

corresponding to larger proximity parameters δ ∈
(

1−ρ
2 , 1−√ρ

)
. First, we state the theorem in a

slightly di�erent form that will be easier to work with.

Theorem 5.1. Let u0, u1 : D → Fq, let m ≥ 3, de�ne

δ0(ρ,m) := 1−√ρ−
√
ρ

2m
, (5.1)

and let δ ≤ δ0(ρ,m). De�ne

S = {z ∈ Fq : ∆(u0 + zu1, V ) ≤ δ} (5.2)

and suppose

|S| >
(1 + 1

2m)7m7

3ρ3/2
n2. (5.3)

Then u0, u1 are simultaneously δ-close to V , i.e. ∃v0, v1 ∈ V such that

|{x ∈ D : (u0(x), u1(x)) = (v0(x), v1(x))}| ≥ (1− δ)|D|.

The above version easily implies the large distance part of Theorem 1.4 with the coarser

εJ = O

(
1

(ηρ)O(1)
· n

2

q

)
bound by setting m = O

(√
ρ
η

)
. For the more precise bound on εJ, we need to be a little careful,

and we do this in the following theorem.

Theorem 5.2 (Correlated agreement over lines � alternative formulation). Let u0, u1 : D → Fq.
Let δ, η > 0 satisfy η ≤

√
ρ

20 and δ ≤ δ0(ρ, η) := 1−√ρ− η, and suppose

Pz∈Fq(∆(u0 + zu1, V ) ≤ δ) > ρ2n2

(2η)7q
=: εJ. (5.4)

Then u0, u1 are simultaneously δ-close to V , i.e. ∃v0, v1 ∈ V such that

|{x ∈ D : (u0(x), u1(x)) = (v0(x), v1(x))}| ≥ (1− δ)|D|.

Proof of Theorem 5.2 from Theorem 5.1. Set m =
⌈√

ρ
2η

⌉
≥ 10, and note that δ ≤ δ0(ρ, η) <

δ0(ρ,m). De�ne S as in Theorem 5.1, and observe that (5.3) is satis�ed:

|S| > εJq = (2η)−7ρ2n2 >

(
m− 1
√
ρ

)7

ρ2n2 =
(
1− 1

m

)7 m7

ρ3/2
n2 >

(1 + 1
2m)7m7

3ρ3/2
n2,

where in the last step we use 3
(
1− 1

m

)7
>
(
1 + 1

2m

)7
, which holds for m ≥ 10. Thus we may apply

Theorem 5.1, and conclude (u0, u1) is δ-close to (v0, v1), as claimed.
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5.1 The Guruswami�Sudan decoder

Our proof will be based on the Guruswami�Sudan decoding algorithm. Let F be a (general) �eld
and D ⊆ F. Let V be the Reed�Solomon code RS[F,D, k]. Let ρ = k+1

n denote its rate. We will be
instantiating the Guruswami�Sudan decoder for RS codes over two di�erent �elds: the �standard�
�eld Fq and the �eld of rational functions K = Fq(Z) in the formal variable Z. We now give a quick
description of the Guruswami�Sudan decoding algorithm and some useful aspects of it.

First, some de�nitions related to bivariate polynomials: The (a, b)-weighted degree of a mono-
mial XiY j is ai+ bj. The (a, b)-weighted degree of a polynomial Q(X,Y ) ∈ F[X,Y ] is the maximal
(a, b)-weighted degree of all its non-zero monomials. The vanishing multiplicity of a polynomial
Q(X,Y ) ∈ F[X,Y ] at a point (x, y) ∈ F2 is the smallest m such that the shifted polynomial
Q(x+X, y + Y ), written as:

Q(x+X, y + Y ) =
∑
i,j

aijX
iY j

has aij = 0 for all (i, j) with i + j < m. We denote the vanishing multiplicity of Q at (x, y) by
mult(Q, (x, y)).

Given a received word w : D → F and a multiplicity parameter m, the Guruswami�Sudan de-
coder �rst solves a homogeneous system of linear equations to �nd a nonzero polynomial Q(X,Y ) ∈
F[X,Y ] with (1, k)-weighted degree less than DX(m) (for a certain function DX(m), speci�ed later),
such that:

mult(Q, (x,w(x)) ≥ m
for all x ∈ D.

The key properties of this system of linear equations that enable decoding are given by the
following lemma.

Lemma 5.3. Let δ0(ρ,m) = 1 − √ρ −
√
ρ

2m . With DX(m) = (m + 1
2)
√
ρn, the system of linear

equations set up above has the following properties:

1. The system has a nonzero solution Q(X,Y ).

2. For any nonzero solution Q(X,Y ) of the above system, and for any polynomial P (X) ∈ V
such that ∆(w,P ) ≤ δ0(ρ,m), we have that Y −P (X) divides Q(X,Y ) in the polynomial ring
F[X,Y ].

Note that these choices of δ0 and DX are not quite optimal. The optimal values are only slightly
better, but their formulas are longer and messier, and we opt for simplicity in favor of optimization.

5.2 Proof of Theorem 5.1

By de�nition of S, for each z ∈ S, we have a polynomial Pz(X) ∈ Fq[X] with deg(Pz) ≤ k such
that ∆(u0 + zu1, Pz) ≤ δ.

Our strategy is to run the Guruswami�Sudan decoder over the �eld K = Fq(Z) of rational
functions in the formal variable Z.

First de�ne a received word
w : D → K

given by:
w(x) = u0(x) + Zu1(x).

We sometimes also use the notation w(x, Z) to denote u0(x) + Zu1(x).
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We will try to �nd a polynomial P (X,Z) ∈ Fq[X,Z] of the form P (X,Z) = v0(X) + Zv1(X),
where degX(P ) ≤ k, such that

P (x, Z) = w(x)

for at least than n− e choices of x ∈ D.

5.2.1 Step 1: Interpolating Q(X,Y, Z)

Let DX = DX(m) = (m + 1
2)
√
ρn. The �rst step of the Guruswami�Sudan decoding algorithm is

to �nd a nonzero polynomial Q(X,Y ) ∈ K[X,Y ]:

Q(X,Y ) =
∑

i+k·j≤DX

Qji(Z)XiY j ,

where each Qji(Z) lies in the big �eld K, such that Q(X,Y ) has a zero of multiplicity m at (x,w(x))
for each x ∈ D.

This is possible when the number of available monomials, which is at least k
2

((
DX
k + 1

2

)2
− 1

4

)
,

exceeds the number of homogeneous linear equations
(
m+1

2

)
n. Indeed, this happens for our choice

of DX .
Solving this system of equations for a nonzero solution using Cramer's rule, and clearing Z

denominators, we get such a Q(X,Y ) ∈ K[X,Y ] where each coe�cient Qji(Z) is in fact an element
of Fq[Z] (i.e., a polynomial instead of just a rational function) with controlled degree.

Explicitly, we get:

Claim 5.4. There is a nonzero polynomial Q(X,Y ) ∈ K[X,Y ] with (1, k)-weighted degree less than
DX such that for each x ∈ D, we have:

mult(Q, (x,w(x))) ≥ m,
and furthermore:

•
degX(Q) < DX = (m+ 1

2)
√
ρn. (5.5)

• DY := degY (Q) satis�es:

DY ≤
DX

k
=
m+ 1

2√
ρ

. (5.6)

• Each coe�cient Qji(Z) of Q(X,Y ) is in Fq[Z].

• DY Z := degY,Z(Q) (which is the total Y,Z degree of Q) satis�es:

DY Z ≤
(m+ 1

2)3

6
√
ρ

n. (5.7)

Only the bound on DY Z needs to be discussed, and it is explained and proven in detail in
Appendix B.

Claim 5.4 allows us to express the lower bound on |S| from (5.3) in terms of DX , DY , DY Z , as

|S| >
(1 + 1

2m)7m7

3ρ3/2
n2 = 2

(
(m+ 1

2)
√
ρ

)3(
(m+ 1

2)
√
ρn
)((m+ 1

2)3

6
√
ρ

n

)
> 2D3

YDXDY Z . (5.8)
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5.2.2 Step 2: Q(X,Y, z) is divisible be Y − Pz(X) for many z

Recall that for every z ∈ S there exists a polynomial Pz(X) ∈ Fq[X] of degree at most k with
distance at most δ from u0 + zu1, i.e. (x, Pz(x)) equals (x,wz(x)) for at least n(1 − δ) values of
x ∈ D. In each such point of agreement, the univariate polynomial Q(X,Pz(X), z) ∈ Fq[X] must
then have a zero of order m, thus it has at least mn(1− δ) roots counted with multiplicity. On the
other hand, Since Q is chosen to have (1, k)-weighted degree less than DX , and degPz(X) ≤ k, we
have degX(Q(X,Pz(X), z)) < DX . Thus the polynomial must be identically zero ifDX ≤ mn(1−δ).
Indeed this holds, because

1− δ ≥ 1− δ0 =

(
1 +

1

2m

)
√
ρ =

DX

mn
.

Thus Q(X,Y, z) is divisible by Y − Pz(X) for each z ∈ S.

5.2.3 Step 3: Finding a good x0 to start Hensel lifting

We now begin the process of �nding a power series solution Y = γ(X) ∈ K[[X]] to Q(X,Y, Z) = 0
(thought of as a bivariate equation Q(X,Y ) = 0 with coe�cients in K). To �nd the power series
solution, we will start at a suitable solution (x0, α0) of Q(X,Y ) = 0, and then use Hensel lifting.
In this section, our goal is to �nd such a �suitable� (x0, α0).

Considering Q(X,Y, Z) as a polynomial in Y over Fq[X,Z], it can be uniquely factored as

Q(X,Y, Z) = C(X,Z)
∏
i

Ri(X,Y
pfi , Z)ei , (5.9)

where p is the characteristic of Fq, fi ≥ 0, ei ≥ 1, and each Ri(X,Y, Z) is irreducible and separable4.
In this section we prove the following claim:

Claim 5.5. There exists x0 ∈ Fq such that for all i,

discY (Ri(X,Y, Z))(x0) 6= 0 ∈ Fq[Z].

Before we prove the claim, let us explain its use and motivation. The Hensel lift (described
in more detail in Appendix A.4) shows that any simple root5 Y = α0 ∈ K of Q(x0, Y, Z) can be
uniquely lifted to a power series solution γ(X) ∈ K[[X − x0]] with free coe�cient α0, by iteratively
�nding solutions to Q(X,Y, Z) ≡ 0 (mod (X − x0)s) with increasing s.

However, it may be that Q(X,Y ) has no simple roots. This could happen, for example, if the fac-
tors of Q(X,Y ) appear with multiplicity. To resolve this, we instead focus on an irreducible factor Ri
of Q. Even after focusing on Ri, it might still be the case that the particular root α0 of Ri(x0, Y, Z)
which we would wish to lift non-simple. We avoid this issue by requiring that that Ri(x0, Y, Z)
is separable in Y (i.e., all of its roots in Y are simple). This happens if discY Ri(x0, Y, Z) 6= 0.
Claim 5.5 exactly guarantees the existence of an element x0 such that this occurs for all possible
Ri. For all future sections, we will �x any such x0 arbitrarily.

Henceforth, we will assume for simplicity that Q does not have inseparable irreducible factors,
i.e. that fi = 0 for all i. Note that since any inseparable factor has Y -degree at least p, this is
necessarily the case if the characteristic is larger than DY , for example in the case where Fq is a

4R(X,Y, Z) being separable in Y means it does not have repeated roots in the variable Y , in any extension
�eld. This is equivalent to discY (R(X,Y, Z)) 6= 0. For an irreducible polynomial in Y , it is also equivalent to the
Y -derivative being not identically 0, or to the polynomial not being representable as a polynomial in Y p.

5A root is simple when it has multiplicity 1.
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prime �eld with p = q. The general case, including the possibility of inseparable factors, is very
similar, but has more technicalities, which are discussed in detail in Appendix C.

Proof of Claim 5.5. Since all of the polynomials Ri(X,Y, Z) are separable in Y , the discriminants
discY (Ri(X,Y, Z)) ∈ Fq[X,Z] are non-zero polynomials. We need to �nd an x0 ∈ Fq which makes
all these discriminants evaluate to nonzero polynomials in Fq[Z]. This will simply follow from a
bound on the sum of degrees of all the Ri, which we would like to show is less than q. A crude
bound on the sum of degrees (which would require a stronger bound on |S|) is easy to give. The
rest of the proof is just a more careful bound.

De�ne
disc∗Y (Q) :=

∏
i

discY (Ri(X,Y, Z)) ∈ Fq[Z][X].

It su�ces to show that degX disc∗Y (Q) < q.
The discriminant discY (Q) is possibly the zero polynomial (if any ei > 1), but formally it can be

considered as a polynomial in the Y -coe�cients Qj(X,Z) =
∑

i<DX−k·j Qji(Z)Xi, and its degree
can be computed from the Sylvester matrix regardless of whether it vanishes or not. This polynomial
is formally divisible by disc∗Y (Q), and therefore we can bound

degX(disc∗Y (Q)) ≤ degX(discY (Q)) = (DY − 1)(2DX − 2− kDY )

≤
(⌈

DX

k

⌉
− 2

)(
2DX −

⌈
DX

k

⌉
· k + k − 2

)
≤ DX(DX − 1)

k
<

(m+ 1
2)2ρn2

ρn
= (m+ 1

2)2n.

Note that from (5.3), we in particular have q ≥ |S| > (1+ 1
2m)

7
m7

3ρ3/2 n2 > (m + 1
2)2n, and we have

our desired inequality.

5.2.4 Step 4: Focusing on a useful factor Ri(X,Y, Z)

Our main goal in the following sections is to show that at least one of the factors Ri(X,Y, Z) is
of the form Y − P (X,Z), with P ∈ Fq[X,Z] a polynomial of X-degree at most k and Z-degree at
most 1. Note that for such a factor, we will have in particular that for any z ∈ Fq, Y − P (X, z) is
a factor of Ri(X,Y, z), and P (x0, z) is a rational root of Ri(x0, Y, z). We will see that a converse is
also true: if such factors and roots of Ri exist for su�ciently many z's, then Ri must be divisible
by (and thus of the form) Y − P (X,Z). In this section we will make use of this fact in order to
focus on a useful Ri. More precisely, we prove the following claim:

Claim 5.6. There exists a factor R = Ri of Q, and an irreducible factor H(Y, Z) of R(x0, Y, Z),
such that the set Sx0,R,H of z values for which both R and H vanish at Pz, i.e.

Sx0,R,H = {z ∈ S : R(X,Pz(X), z) ≡ 0 and H(Pz(x0), z) = 0},
is su�ciently large; more precisely, such that

|Sx0,R,H | > 2D2
YDXDY Z . (5.10)

Proof. After substituting X 7→ x0, each of the irreducible Ri(X,Y, Z) can be factored as

Ri(x0, Y, Z) = Ci(Z)
∏
j

Hij(Y, Z),
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where Hij ∈ Fq[Z][Y ] are irreducible, separable in Y , and with positive Y -degree. For Q, this yields
the factorization

Q(x0, Y, Z) =

(
C(x0, Z)

∏
i

Ci(Z)

)∏
i,j

Hij(Y,Z).

In particular, the number of Hij is at most DY .
For any z ∈ S, the polynomial Pz(X) satis�es Q(X,Pz(X), z) = 0, i.e. Y − Pz(X) | Q(X,Y, z),

thus there is some i such that Y − Pz(X) | Ri(X,Y, z), or equivalently Ri(X,Pz(X), z) = 0.
Substituting X 7→ x0 yields also Y −Pz(x0) | Ri(x0, Y, z), thus there is some j such that Y −Pz(x0) |
Hij(Y, z) and equivalently Hij(Pz(x0), z) = 0. Therefore we have z ∈ Sx0,Ri,Hij , by de�nition. Let
(i, j) be the most common pair appearing in this process and set R = Ri, H = Hij . Since the total
number of pairs (i, j) is at most DY , and using (5.8), by the pigeonhole principle we �nd that

|Sx0,R,H | ≥
|S|
DY

> 2D2
YDXDY Z ,

as claimed.

As mentioned above, our proof will eventually show that both R and H must in fact be linear
in Y , with R(X,Y, Z) = Y − P (X,Z), where P is linear in Z and of degree k in X and H =
R(x0, Y, Z) = Y −P (x0, Z). We will also see that P (x0, z) = Pz(x0) for almost all z ∈ Sx0,R,H . We
will reach this point only later � for now we assume R,H have Y -degrees d, dH ≤ DY , total Y, Z
degrees at most D = DY Z , and are not necessarily monic.

5.2.5 Step 5: Interlude � the algebraic function �eld L and the power series γ(X)

Our next step is to �nd a root of H (if needed, by arti�cially adding it to the �eld Fq(Z)), and
then to lift it to a power series solution Y = γ(X) to R(X,Y, Z) = 0. This process is carried out
in Appendix A, which also provides the required setup and de�nitions from the theory of algebraic
extensions of function �elds.

We strongly encourage reading Appendix A at this point, as the analysis of the aforementioned γ
in the next sections will use the following objects introduced and discussed there: the function �eld
L, the ring of regular functions O, the special polynomials/algebraic functions ζ, ξ,W, H̃, and the
power series γ itself, with its coe�cients αt and their numerators βt. We will also use the de�nition
of the rational substitution maps πz (that allow us to substitute z into the regular algebraic functions
in O) and the weight function Λ(·) (that bounds the number of zeroes of a regular algebraic function)
from that appendix, as well as Lemma A.1.

At the end of the day, the power series γ(X) will be shown to be of the form P (X,Z) ∈ Fq[X,Z]
with X- and Z-degrees at most k and 1, respectively. However, to reach that point, we will analyze
γ(X) as having coe�cients in an algebraic extension of Fq(Z), and unbounded X-degree.

5.2.6 Step 6: Bounding the X-degree of γ

In this section we show that the power series solution γ =
∑∞

t=0 αt(X − x0)t to R(X,Y, Z) = 0 is
in fact a �nite polynomial in X of degree k. In other words, we prove:

Claim 5.7. For all t > k, αt = 0. Equivalently,

γ = γk =

k∑
t=0

αt(X − x0)t.
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The claim is proved in two steps: �rst for all k < t < DX , by showing that πz(αt) is well de�ned
and vanishes for su�ciently many substitutions; then for all t ≥ DX as well, by observing that γk
is already a root of R(X,Y, Z).

Proof. For each z ∈ Sx0,R,H , from H(Pz(x0), z) = 0 we also get H̃(W (z)Pz(x0), z) = 0, and thus
we have a substitution map πz : O → Fq with tz = W (z)Pz(x0). The denominators appearing in
the αt are all powers of W and ξ, so we can evaluate αt at any z which is not a root of W or ξ, i.e.
in the set

S′ = Sx0,R,H \ {z : W (z) = 0 or πz(ξ) = 0}.
Using lemma A.1 and the bounds on degW,Λ(ξ) from claim A.2, as well as (5.10), we �nd

|S′| ≥ |Sx0,R,H | − (degW + dHΛ(ξ))

≥ |Sx0,R,H | − ((d− 1)dH + 1)(D − dH + 1) + 1

> |Sx0,R,H | − dHdD > 2D2
YDXDY Z −D2

YDY Z

= D2
YDY Z(2DX − 1). (5.11)

Note that to apply the lemma we also used ξ 6= 0 in L.
Now for each z ∈ S′, we may apply πz to γ, since we removed all poles of γ from S′, and �nd

R(X,πz(γ), z) = πz(R(X, γ, Z)) = πz(0) = 0. On the other hand, note that πz(α0) = πz(T/W ) =
tz/W (z) = Pz(x0), that R(X,Pz(X), z) = 0, and that

πz(ζ) = πz

(
∂R

∂Y

(
x0,

T

W
,Z

))
=
∂R

∂Y

(
x0,

tz
W (z)

, z

)
=
∂R

∂Y
(x0, Pz(x0), z)

is well-de�ned and non-zero. We've seen that πz(γ), Pz(X) ∈ Fq[[X − x0]] are power series solu-
tions to R(X,Y, z) = 0, with the same free coe�cient πz(α0) = Pz(x0), which is a simple root of
R(x0, Y, z). Thus, they must be identically equal, by the uniqueness of the Hensel lift with a given
starting simple root. In other words, we have

Fq[[X − x0]] 3
∞∑
t=0

πz(αt)(X − x0)t = πz(γ) = Pz(X) ∈ Fq[X − x0]

and in particular, πz(αt) = 0 for all z ∈ S′ and all t > k, since deg(Pz) ≤ k. Thus we also �nd
πz(βt) = 0 for all k < t < DX . Additionally for such t's we have by claim A.2

Λ(βt) < (2t+ 1)dD ≤ dD(2DX − 1),

and from (5.11) it follows that

|S′| > D2
YDY Z(2DX − 1) ≥ dHdD(2DX − 1) > dHΛ(βt).

We can therefore apply lemma A.1 to �nd that indeed βt = 0 and αt = 0 in L.
We thus have that the degree k polynomial

γk =

k∑
t=0

αt(X − x0)t =

DX−1∑
t=0

αt(X − x0)t = γDX−1 ∈ L[X]

satis�es γ ≡ γk (mod (X − x0)DX ), and therefore

R(X, γk, Z) ≡ 0 (mod (X − x0)DX );

but, R(X, γk, Z) ∈ L[X] is a polynomial of degree < DX , since by construction Q has (1, k)-
weighted degree less than DX and so do its factors, and therefore R(X, γk, Z) = 0 identically. By
the uniqueness of the lifting, we thus �nd γ = γk ∈ L[X], as claimed.
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5.2.7 Step 7: Bounding the Z-degree of γ

In the previous section we've seen that γ = γk ∈ L[X] is a polynomial of degree at most k in X,
whose coe�cients lie in L, an extension �eld of Fq(Z). We've also seen that πz(γ) = Pz(X) for all
z ∈ S′. In this section we will show that the coe�cients of γ are all in fact simply linear polynomials
in Z, and thus obtain that γ = P (X,Z) ∈ Fq[X,Z] with X-degree at most k and Z-degree at most
1:

Claim 5.8. The exists degree ≤ k polynomials v0, v1 ∈ Fq[X], such that

γ = v0(X) + Z · v1(X) =: P (X,Z).

We do this by showing that γ(x) agrees with the linear function w(x, Z) on at least k+ 1 values
of x, using su�ciently many Z-substitutions at each x, and then use the fact γ can be interpolated
from such values of γ(x), and this interpolation is also linear in Z. Details follow.

We consider good pairs of x ∈ D, z ∈ S′ satisfying w(x, z) = Pz(x). We de�ne the sets of x's
which are good for each z ∈ S′ and vice versa, that is,

Dz = {x ∈ D : w(x, z) = Pz(x)},
S′x = {z ∈ S′ : w(x, z) = Pz(x)} = {z ∈ S′ : x ∈ Dz}.

By the de�nitions of S and Pz, we have |Dz| ≥ n− e for each z ∈ S′, where e = bδnc. We make the
following claims regarding the sizes of the sets S′x:

Claim 5.9. Suppose |S′x| > (2k+1)dHdD. Then γ(x) = w(x, Z), and in particular, γ(x) is a linear
polynomial in Fq[Z].

Claim 5.10. There exists a set Dtop = {x1, . . . , xk+1} ⊂ D of k + 1 points of D, satisfying |S′xj | >
(2k + 1)dHdD for all 1 ≤ j ≤ k + 1.

Before proving the two claims, let us �rst deduce Claim 5.8 from them:

Proof Claim 5.8. Observe that from Claim 5.9 and Claim 5.10 it follows that γ(x) = w(x, Z) =
u0(x) + Z · u1(Z) is linear in Z for every x = xj ∈ Dtop. But, since γ(X) is a polynomial of degree
at most k, it can be interpolated from its values in any k + 1 points, and this interpolation only
involves operations over Fq. Thus the interpolated polynomial will also have coe�cients which are
linear in Z.

More concretely, let v0(X), v1(X) ∈ Fq[X] be the unique polynomials of degree at most k inter-
polating u0(x), u1(x) at the points of Dtop. Then γ(X) and v0(X) +Z · v1(X) are two polynomials
in L[X] of degree at most k which agree on at least k + 1 evaluations, since

γ(xj) = w(xj , Z) = u0(xj) + Z · u1(xj) = (v0(X) + Z · v1(X))(xj)

for each xj ∈ Dtop. It follows that γ and v0 +Z · v1 are identically equal as polynomials in L[X], as
claimed.

We now proceed to prove the claims:

Proof of Claim 5.9. Since πz(γ) = Pz(X) for each z ∈ S′, by de�nition of S′x we have

πz(γ(x)) = Pz(x) = w(x, z) = u0(x) + z · u1(x)

for each z ∈ S′x, or equivalently
πz
(
γ(x)− (u0(x) + Z · u1(x))

)
= 0. (5.12)
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On the other hand, we can write

γ(x)− (u0(x) + Z · u1(x)) =

(
1

W k+1ξek

k∑
t=0

βt(x− x0)tW k−tξek−et

)
− (u0(x) + Z · u1(x))

=
1

W k+1ξek

(
β(x)− (u0(x) + u1(x) · Z) W k+1ξek

)
, (5.13)

where β(x) :=
∑k

t=0 βt(x− x0)tW k−tξek−et ∈ O, which by Claim A.2 has weight

Λ(β(x)) = 1 + (k + 1)Λ(W ) + ekΛ(ξ) ≤ (2k + 1)dD,

and so does β̃(x) := β(x)−(u0(x)+u1(x)·Z) W k+1ξek . From (5.12) and (5.13) we have πz(β̃(x)) = 0

for all z ∈ S′x, with |S′x| > (2k + 1)dHdD ≥ dHΛ(β̃(x)), by assumption. By Lemma A.1 it follows

that β̃(x) = 0, and thus γ(x) = u0(x) + Z · u1(x) = w(x, Z) identically in L, as claimed.

Proof of Claim 5.10. Let Dtop = {x1, . . . , xk+1} ⊂ D be the set of the xj ∈ D with the k+ 1 largest
sizes of |S′xj |, breaking ties arbitrarily. We �rst claim that for each 1 ≤ j ≤ k + 1,

|S′xj | ≥
n− k − 1− e
n− k − 1

|S′| ≥ 1− ρ− δ
1− ρ

|S′|.

This follows by way of contradiction, for otherwise we would have:

e|S′| ≥
∑
z∈S′
|D \ Dz| =

∑
x∈D
|S′ \ S′x| ≥

∑
x∈D\Dtop

(|S′| − |S′x|)

> (n− k − 1)

(
1− n− k − 1− e

n− k − 1

)
|S′| = e|S′|.

From (5.11) we have

|S′xj | ≥
1− ρ− δ

1− ρ
|S′| > 1− ρ− δ

1− ρ
D2
YDY Z(2DX − 1) =

1− ρ− δ
1− ρ

(2DX − 1)dhdD,

so to conclude |S′xj | > (2k+ 1)dHdD it su�ces to show that 2DX − 1 > 1−ρ
1−ρ−δ (2k+ 1). And indeed

for m ≥ 3, we have

2DX − 1 = (2m+ 1)
√
ρn− 1 > 2 · 3√ρn− 1 >

1 +
√
ρ

√
ρ

(3ρn)− 1

>
1− ρ

√
ρ(1−√ρ)

(2k + 1) >
1− ρ

√
ρ+

√
ρ

2m − ρ
(2k + 1)

=
1− ρ

1− δ0(ρ,m)− ρ
(2k + 1) ≥ 1− ρ

1− ρ− δ
(2k + 1)

as needed.

5.2.8 Step 8: Proving the correlated agreement between ui and vi

We've found a polynomial γ = v0(X) +Z · v1(X) of the required degrees satisfying Q(X, γ, Z) = 0.
To �nish the proof of Theorem 5.1, it now remains only to be seen that γ(x, Z) and w(x, Z) agree
identically on all but δ|D| values of x ∈ D.
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De�ne D′ = {x ∈ D : |S′x| ≥ 2}. Note that for each x ∈ D′, we must have v0(x) = u0(x),
v1(x) = u1(x) (and thus γ(x, Z) = w(x, Z)), since

v0(x) + z · v1(x) = πz(γ(x)) = πz(γ)(x) = Pz(x) = w(x, z)

= u0(x) + z · u1(x)

for at least 2 di�erent values of z ∈ S′x. Note that, from (5.3), (5.6), (5.7) as well as m ≥ 2 and
ρ < 1 we have

|S′| ≥ |S|
DY
−D2

YDY Z >
|S|

2DY
>

(m+ 1
2)6

6ρ
n2 > 2n2,

and therefore the size of D \ D′, i.e. the number of x ∈ D for which |S′x| ≤ 1, is at most

e|S′|
|S′| − 1

<

(
1 +

2

|S′|

)
e <

(
1 +

1

n2

)
e < e+

1

n
< e+ 1,

from which we �nd

|{x ∈ D : (u0(x), u1(x)) = (v0(x), v1(x))}| ≥ |D′| ≥ (1− δ)|D|
as we wanted to show.

Remark 5.1. Note that from γ = v0(X) +Z · v1(X) = P (X,Z) solving R(X, γ, Z) = 0 we �nd that
Y − P (X,Z) | R(X,Y, Z). But since R is irreducible, it indeed follows that R = Y − P (X,Z) is
monic and linear in Y , and so is H, as was mentioned earlier; and, as mentioned, we only reach this
conclusion near the end of the proof. It is an interesting open problem whether this conclusion can
be reached without passing through the various extension �elds as our proof required.

6 Correlated Agreement in Generalized Settings

Both Theorems 4.1 and 5.1 considered two functions u0, u1 : D → F and the corresponding a�ne
line {u0 +zu1 : z ∈ Fq} inside the linear plane span{u0, u1}. A generalization of these theorems that
is particularly important to the soundness analysis of the FRI protocol in Theorem 7.2 is obtained
by considering l + 1 functions u0, . . . , ul : D → F, and the 1-dimensional, degree l parameterized
curve

{u0 + zu1 + z2u2 + · · ·+ zlul : z ∈ Fq}
inside the linear space span{u0, . . . , ul}. This curve can also be viewed as a function w(·, Z) : D → K
given by

w(x, Z) = u0(x) + u1(x)Z + u2(x)Z2 + · · ·+ ul(x)Z l.

The two theorems can then be generalized as follows:

Theorem 6.1. Suppose δ ≤ (1− ρ)/2. Let u0, u1, . . . , ul : D → Fq be functions. Let

S = {z ∈ Fq : ∆(u0 + zu1 + · · ·+ zlul, V ) ≤ δ}
and suppose |S| > l · n. Then for all z ∈ Fq we have

∆(u0 + zu1 + · · ·+ zlul, V ) ≤ δ,
and furthermore there are v0, . . . , vl ∈ V such that for all z ∈ Fq,

∆(u0 + zu1 + · · ·+ zlul, v0 + zv1 + · · ·+ zlvl) ≤ δ
and in fact

|{x ∈ D : (u0(x), . . . , ul(x)) 6= (v0(x), . . . , vl(x))}| ≤ δ|D|.
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Theorem 6.2. Let u0, u1, . . . , ul+1 : D → Fq, let m ≥ 3, de�ne δ0(ρ,m) := 1 − √ρ −
√
ρ

2m , and let
δ ≤ δ0(ρ,m). De�ne

S = {z ∈ Fq : ∆(u0 + zu1 + · · ·+ zlul, V ) ≤ δ}
and suppose

|S| >
(1 + 1

2m)7m7

3ρ3/2
n2 l. (6.1)

Then u0, . . . , ul are simultaneously δ-close to V , i.e. ∃v0, . . . , vl ∈ V such that

|{x ∈ D : ∀0 ≤ i ≤ l, ui(x) = vi(x)}| ≥ (1− δ)|D|.

These generalizations do not greatly a�ect the proofs, which were presented in the previous
sections in the special case l = 1 only for the purposes of simplicity. We will thus not repeat the
arguments in full, but only detail the required changes in subsections 6.1 and 6.2.

Another generalization of interest is to correlated agreement in the entire a�ne space, stated as
Theorem 1.6, restated here for completeness:

Theorem 1.6 (Correlated agreement over a�ne spaces). Let V, q, n, k and ρ be as de�ned in The-
orem 1.2. For u0, u1, . . . ul ∈ FDq let U = u0 + span{u1, . . . , ul} ⊂ FDq be an a�ne subspace. If
δ ∈ (0, 1−√ρ) and

Pr
u∈U

[∆(u, V ) ≤ δ] > ε,

where ε is as de�ned in Theorem 1.2, then there exists D′ ⊂ D and v0, . . . , vl ∈ V satisfying

• Density: |D′|/|D| ≥ 1− δ, and

• Agreement: for all i ∈ {0, . . . , l}, the functions ui and vi agree on all of D′.

Furthermore, in the unique decoding regime δ ∈
(

0, 1−ρ
2

]
, there exists a unique maximal D′ satisfying

the above, with unique vi.

To prove this theorem we will make use of the following lemma:

Lemma 6.3. Let V, q, n, k and ρ be as de�ned in Theorem 1.2. For u0, u1, . . . ul ∈ FDq let U =

u0+span{u1, . . . , ul} ⊂ FDq be an a�ne subspace, and let U ′ = span{u1, . . . , ul} be the corresponding
linear subspace (so that U = u0 + U ′ and U ′ = U − U). If δ ∈ (0, 1−√ρ) and

Pr
u∈U

[∆(u, V ) ≤ δ] > ε,

where ε is as de�ned in Theorem 1.2, then we have ∆(u′, V ) ≤ δ for every u′ ∈ U ′.

Note that Lemma 6.3 is very similar to Theorem 1.2, the di�erence being only that the conse-
quent ∆(u′, V ) ≤ δ is stated for elements of the linear space U ′ instead of elements of the a�ne
space U . In particular, when U itself is linear and U ′ = U , they are equivalent. Moreover, Theo-
rem 1.2 can be proven from Lemma 6.3, and in fact we will pass through such a proof in the course
of proving Theorem 1.6. Both Lemma 6.3 and Theorem 1.6 are proven in Section 6.3.
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6.1 Proof of Theorem 6.1

Following the proof in Section 4, the �rst change is in the analysis of the matrix M , where the
entries in the columns corresponding to the coe�cients of A are of degree ≤ l in Z instead of 1 (and
the columns corresponding to the coe�cients of B remain of degree 0). The determinants of minors
R(Z) are then of degree at most l(e + 1), which is less than |S|, so are still identically 0, and the
matrix has rank < k + 2e+ 2.

Similarly, the solution A,B of the equation system will have Z-degrees degZ(A) ≤ l·e, degZ(B) ≤
l(e + 1). To apply the Polishchuk�Spielman lemma, the necessary inequalities follow from bounds
on the X-degrees which are unchanged, as well as the bounds

degZ(A)

|S|
<
e

n
,

degZ(B)

|S|
<
e+ 1

n

which are still valid; in both fractions, the bounds on both numerator and denominator are simply
multiplied by l.

The ratio Q = B
A and its coe�cients will have Z-degree at most l(e+ 1), and the set S′ = {z ∈

S : A(X, z) 6= 0} will be of size at least |S′| ≥ |S| − degZ(A) > l(n − e) ≥ l(e + 1), from which it
follows that degX(Q) ≤ k.

The de�nition of D′, the bound on its size, and the choice of {x0, . . . , xk} remain the same. We
again de�ne v0, . . . , vl as the minimal interpolation of u0, . . . , ul at the xi, and we �nd that the K[X]

polynomials Q(X,Z) and
∑l

i=0 vi(X)Zi agree on k + 1 points and thus must be identical. It then
follows that ui(x) = vi(x) for all 0 ≤ i ≤ l and x ∈ D′, with |D \ D′| ≤ δ|D|, as claimed.

6.2 Proof of Theorem 6.2

As in l = 1 case, we apply the Guruswami�Sudan decoder to the KD word w(x, Z) =
∑l

i=0 ui(x)Zi.
We use exactly the same parameters, and the degrees DX , DY are una�ected. In the entries of the
equation system, every appearance of (a power of) the previously linear w(x, Z) is replaced by (a
power of) a polynomial of degree l, thus the bounds on DC , DR, D,DY Z are all multiplied by l, and

speci�cally DY Z <
(m+1/2)3

6
√
ρ n l.

Also note that instead of the Y,Z degrees being graded in Q such that the coe�cient Qji(Z)
of XiY j is of degree at most D − j in Z, it is of degree at most D − l ·j, i.e. when Y and Z are
assigned weights l and 1 (instead of 1 and 1), the total weight of Q, and thus also of R and H, is
at most D. Thus all bounds on Z-degrees and weights are henceforth simply multiplied by l. The
leading coe�cient W of H has degree at most D− l·d, and the variable T = W (Z)Y is assigned the

l times larger weight D− l(d−1), which makes the weight of the monic polynomial H̃ dominated by

its leading monomial T d, thus the weight never increases on reductions modulo H̃. The bounds on
weights of ξ, βt are multiplied by l. Since for Fq[Z] polynomials the weight corresponds to degree,
lemma A.1 remains valid; in all its applications, the upper bounds on weights of the regular elements
are multiplied by l; and so are the lower bounds on the sizes of the sets of vanishing substitutions,
i.e. the sets S, Sx0,R,H , S

′, S′xj . Thus we can still deduce that γ is of degree k, and then by
interpolating u0, . . . , ul by polynomials v0, . . . , vl at k + 1 appropriately chosen points, to deduce
that γ =

∑l
i=0 vi(X)Zi identically.

For the �nal argument we again note that
∑l

i=0 ui(x)zi =
∑l

i=0 vi(x)zi for all x ∈ D and z ∈ S′x.
Since for a �xed x both sides of the equation are degree l polynomials in z, if |S′x| > l then we must
have ui(x) = vi(x) for all 0 ≤ i ≤ l. We have |S′| > 2l ·n2, or equivalently l

|S′| <
2
n2 , and thus the
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number of x ∈ D for which |S′x| ≤ l is at most e|S′|
|S′|−l < e + 1, and again we �nd that ui and vi all

agree on the set D′ = {x ∈ D : |S′x| > l} which is of size at least (1− δ)n, as claimed.

6.3 Proofs of Lemma 6.3 and Theorem 1.6

Proof of Lemma 6.3. Let u′ ∈ U ′ be an arbitrary element. If u′ = 0, then clearly ∆(u′, V ) = 0 ≤ δ.
Otherwise, consider the partition of U into a�ne lines parallel to u′; formally, write U = Ũ ⊕
span{u′}, where Ũ ⊂ U is some direct complement of u′ in U ′ shifted by u0. Then

E
ũ∈Ũ Pr

z∈Fq

[
∆
(
ũ+ z · u′, V

)
≤ δ
]

= Pr
u∈U

[∆(u, V ) ≤ δ] > ε,

and in particular there exists some ũ ∈ Ũ for which Prz∈Fq [∆(ũ+ z · u′, V ) ≤ δ] > ε. We can thus
apply Theorem 1.4 to the line {ũ + z · u′ : z ∈ Fq}, which in particular implies ∆(u′, V ) ≤ δ, as
claimed.

Proof of Theorem 1.6. Let δ∗ = D(U, V ), where D is the divergence as de�ned in subsection 1.2,
and let u∗ ∈ U be an element with ∆(u∗, V ) = δ∗.

We �rst show that δ∗ ≤ δ. Let U = span(U) be the linear space spanned by U , which either
equals U when 0 ∈ U , or otherwise is the disjoint union of U ′ = U − U and {z · U : z ∈ Fq \ {0}}.
By Lemma 6.3 we have ∆(u′, V ) ≤ δ for all u′ ∈ U ′, and we also have ∆(z · u, V ) = ∆(u, V ) for all
z 6= 0 and u ∈ U . Thus in both cases, whether U = U or U = U ′ ·∪ ·

⋃
z 6=0(z · U), we have

Pr
ū∈U

[∆(ū, V ) ≤ δ] ≥ Pr
u∈U

[∆(u, V ) ≤ δ] > ε.

We can therefore apply Lemma 6.3 to U , and in particular for u∗ ∈ U ⊂ U we get δ∗ = ∆(u∗, V ) ≤ δ,
as claimed. As previously noted, this is in fact the content of Theorem 1.2, which is now proved.

Let {v∗1, . . . , v∗L} ⊂ V be all possible codewords at distance at most δ∗ from u∗. Note that they
are all in fact at distance exactly δ∗, not less, since otherwise we would have ∆(u∗, V ) < δ∗. For
each 1 ≤ i ≤ L de�ne the agreement set D′i = {x ∈ D : u∗(x) = v∗i (x)} which has size exactly

(1 − δ∗)|D|. Note that in the unique decoding regime δ∗ ≤ 1−ρ
2 we must have L = 1, and in the

general Johnson/Guruswami�Sudan regime δ∗ < 1−√ρ−η we have L < q: indeed, from ε = εJ < 1

and η <
√
ρ

16 we must have q > (2η)−7 > 217

η ,
221
√
ρ , and from the analysis of the Guruswami�Sudan

algorithm, using (5.6) and m =
⌈√

ρ
2η

⌉
<
√
ρ

2η + 1 we �nd

L ≤ DY <
2m+ 1

2
√
ρ

<
1

2η
+

3

2
√
ρ
< 2−17q < q.

For each i ≤ L, let Ui = {u ∈ U : u|D′i ∈ V |D′i} be the set of all functions in U which agree

with some codeword in V on all of D′i. Note that this condition is linear, therefore each Ui is an

a�ne subspace of U . We claim that U ⊂
⋃L
i=0 Ui, i.e. every element of U belongs to at least one

Ui. This is obvious for u
∗, which belongs to all Ui. Consider any u ∈ U \ {u∗}, and the a�ne line

{u∗ + z · (u− u∗) : z ∈ Fq} ⊂ U containing u∗ and u. By de�nition of δ∗, we have

Pr
z∈Fq

[∆(u∗ + z · (u− u∗), V ) ≤ δ∗] = 1 > ε.

Since δ∗ ≤ δ, by Theorem 1.4 we have correlated agreement in the line, i.e. there exists D′ ⊂ D with
|D′| ≥ (1− δ∗)|D|, and codewords v∗, v ∈ V which respectively agree with u∗, u on D′. In particular
∆(u∗, v∗) ≤ δ∗, thus v∗ must be one of the L decodings {v∗1, . . . , v∗L}, as the list was exhaustive, and
D′ = D′i. This exactly implies u ∈ Ui ⊂

⋃L
i=0 Ui, as claimed.
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Comparing sizes, we �nd that the largest Ui must then satisfy |Ui| ≥ |U |
L > |U |

q . But Ui is a

subspace of U , and it thus follows that Ui = U . Now setting D′ = D′i, we have in particular that the
restrictions of u0, u1, . . . , ul to D′ are codewords, since they are elements or di�erences of elements
in Ui. Then setting v0, v1, . . . , vl ∈ V to be the unique extensions of these codewords from D′ to D,
we �nd that D′, v0, . . . , vl satisfy both conditions. Again note that in the unique decoding regime,
L = 1 and this D′ is therefore uniquely de�ned.

7 Applications to Veri�able Secret Sharing and FRI soundness

In this section we give some more details on applications that were brie�y described in Section 3.

7.1 Veri�able Secret Sharing

We start with an application of distributed proximity testing of Interleaved Reed�Solomon Codes
(Theorem 3.1) to veri�able secret sharing (VSS) [CGMA85]. VSS serves as a building block both for
useful special tasks, such as simultaneous broadcast and fair coin-�ipping, and for general protocols
for secure multiparty computation with an honest majority [BGW88, CCD88, RB89].

A VSS scheme with security threshold t is a two-phase protocol involving a dealer, n servers,
and an honest output client. The sharing phase starts with the dealer distributing the secret s
among the servers by sending a share si to server i and is followed by a veri�cation protocol. In the
reconstruction phase, each server sends its share si to the output client, who reconstructs s from the
shares. Both phases of the protocol are attacked by a malicious adversary who may corrupt at most
t servers and possibly also the dealer. Communication proceeds in synchronous rounds and may
use secure point-to-point channels. We also assume the availability of a common broadcast medium
and a source of unpredictable public coins. These assumptions, which can be eliminated at a small
amortized cost, make the protocol simpler. Finally, while the communication is synchronous, the
adversary has a rushing capability, in the sense that it can wait to receive messages from uncorrupted
parties before sending its own messages.

Here we consider a simpli�ed variant of VSS that allows a denial-of-service attack only in the
sharing phase, but not in the reconstruction phase. The latter �guaranteed output delivery� require-
ment makes the protocol suitable for applications that rely on independence, such as simultaneous
broadcast and fair coin-tossing, as they prevent the adversary from making the protocol selectively
fail based on information obtained in the �nal round via rushing.

A VSS protocol as above should satisfy the following properties:

• Completeness: if the dealer is honest and the sharing phase succeeds, the output client outputs
s. Moreover, the sharing phase succeeds if the adversary does not attack it.

• Secrecy: if the dealer is honest, the adversary learns nothing about s.

• Unique reconstruction: even if the dealer is dishonest, if the sharing phase succeeds then the
messages sent in the sharing phase de�ne a unique s∗ such that (except with small failure
probability) the output client will output s∗ in the end of the reconstruction phase.

Implementing VSS e�ciently is a challenging task. Here we consider the following simple ap-
proach for simultaneously sharing l secrets s1, . . . , sl. This approach underlies the scalable MPC
protocols from [DI06, IPS09]. A centralized variant of this protocol (in a relaxed setting that
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allows reconstruction to fail) is a building block in e�cient two-party protocols for zero knowl-
edge [IKOS09, AHIV17] and secure computation [IPS08, HIMV19].

We will assume here that each secret sj is a single �eld element and all secrets originate from the
same dealer. However, the protocol is even more attractive when the secrets originate from di�erent
dealers and when each secret sj is a vector of ` < n �eld elements that are simultaneously shared
via so-called �packed secret sharing� [FY92]. Moreover, while the communication complexity of the
protocol beats all competing approaches we are aware of in the amortized case when l is large, it is
potentially useful (and nontrivial to analyze) even with l = 1. In fact, if we count public coins and
broadcast as normal communication, the communication complexity of the protocol is nontrivial to
match even in this case.

The two phases of the protocol proceed as follows.

Sharing. In the sharing phase, the dealer uses Shamir's secret sharing scheme for sharing each
secret, with secrecy threshold t. Viewed abstractly, each sj is randomly mapped to a codeword
uj of an [n, t + 1, d] RS code V over Fq, with d = n − t. The dealer distributes uj between
the servers, together with an additional random codeword u0 ∈R V that is used for blinding.
Following a public random challenge r ∈ Flq, each server i broadcasts its view of u′ = rTu, namely

u′(i) = u0(i) +
∑l

j=1 r(i)uj(i). Let u′ ∈ Fnq be the resulting vector. (As discussed in Section 3,

this challenge can be compressed using either cryptography or simple derandomization techniques.)
The sharing phase succeeds if u′ ∈ V .

Reconstruction. In the reconstruction phase, each server sends its shares to output client, who
recovers the secrets sj by error-correcting the (potentially) corrupted codewords u∗j .

We assume in the following that n > 3t, implying that the minimal distance of the underlying
RS code satis�es d = n− t > 2t. We start by considering the case of a static adversary, who decides
in advance which t servers to corrupt. Completeness follows from the fact that t < d/2 and each u∗j
is t-close to V . Secrecy follows from the secrecy property of Shamir's scheme and from the fact that
u0 blinds the information exchanged during the veri�cation process. For the unique reconstruction
property, consider the shares of the n− t > 2t uncorrupted servers. If they are not consistent with
V , then (by a simple analysis) the sharing phase will fail except with 1/q probability. If they are
consistent with V , then (as before) u∗j is within the unique decoding radius and the outputs will be
correct.

What goes wrong when the adversary can be adaptive? In this case, the dealer could potentially
distribute badly formed vectors u that have the following devious property: there is uj which is
very far from the code, and yet u′ is with high probability (say, 1/2) t-close to the code. Now,
the adaptive adversary can corrupt only those servers in T = Γ(u′, V ) and send on their behalf
�eld elements that make u′ consistent with V . This in turn makes the sharing phase succeed. But
since uj is not within the unique decoding distance from V , we lose the unique decoding guarantee.
Theorem 1.2 rules out the existence of such a devious u. But this is not enough. We actually need
to ensure that u is consistent with V when restricted to the n − t servers that are not corrupted
during reconstruction phase.

This is ensured by the stronger guarantee of Theorem 3.1. The analysis proceeds as follows. If
u is t-far from the interleaved code V, then u′ will be t-far from V except with ≤ n/q probability.
In this event, even adaptive corruption cannot make u′ look consistent with V , and the sharing
phase fails. If u is within distance t′ ≤ t from V, then except with ≤ n/q probability we have that
Γ(u′, V ) = Γ(u,V). Denoting this set by T ′, the adversary must corrupt the entire set T ′ for the
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sharing phase to succeed, and may additional corrupt t− t′ more servers. In this case, u restricted
to the n− t uncorrupted servers is fully consistent with V , guaranteeing unique reconstruction.

We �nally note that security against an adaptive adversary can be reduced to security against a
static adversary via a generic union bound argument, taking the union over all

(
n
t

)
sets of servers that

can be eventually be corrupted [CDD+04]. (Alternatively, this follows from the simple derivation
of proximity gaps over exponentially large �elds.) However, this would require the �eld size q to
satisfy q = 2Ω(n), which would make communication grow quadratically (rather than linearly) with
the number of servers n. There are VSS protocols that meet this quadratic bound and achieve
perfect (rather than statistical) security against an adaptive adversary [BGW88].

7.2 Fast RS IOP of Proximity (FRI) Soundness

In this section we use Theorem 1.5 to improve the soundness of the FRI protocol [BBHR18b]. We
start by brie�y recalling the essential components of the protocol, needed to state our theorem (see
[BBHR18b] for a more thorough explanation of the protocol).

The FRI protocol As explained in Section 3.2, the purpose of FRI is to verify, in the IOP model,
the proximity of a received word f (0) : D(0) → F to an RS code V (0) := RS[F,D(0), k(0)]. FRI requires
D(0) to be a �2-smooth� group, meaning |D(0)| = 2s, for integer s. Henceforth we assume the group
D(0) is multiplicative6. The protocol has two phases, called COMMIT and QUERY. During the
COMMIT phase, a sequence of functions f (1) : D(1) → F, f (2) : D(2) → F, . . . , f (r) : D(r) → F is
generated over a �nite number r of interactive rounds. At the beginning of the i-th round, the
prover message f (i) : D(i) → F has already been created (and the veri�er has oracle access to it).
The veri�er now sends a uniformly random z(i) ∈ F and the prover replies with a new function
f (i+1) : D(i+1) → F where D(i+1) is a (2-smooth) strict subgroup of D(i).
D(i+1) partitions D(i) into cosets of size l(i) := |D(i)|/|D(i+1)|. Let Cg denote the coset corre-

sponding to g ∈ D(i+1), namely Cg := {g′ ∈ D(i) | (g′)l
(i)

= g}. For each coset Cg, there exists a

linear map Mg : FCg → Fl(i) over F that maps f (i)|Cg � the restriction of f (i) to domain Cg ⊂ D(i)

� to a sequence u0(g), . . . , ul(i)−1(g) and the following holds (see [BBHR18b, Section 4.1] for a
proof).

Claim 7.1. Suppose that f (i) ∈ RS[F,D(i), k(i)] where k(i) + 1 is an integral power of 2. Then, for

any z(i) ∈ F, the function f (i+1)

z(i) : D(i+1) → F de�ned on g ∈ D(i+1) by

f
(i+1)

z(i) (g) :=

l(i)−1∑
j=0

(
z(i)
)j
· uj(g)

is a valid codeword of RS[F,D(i+1), k(i+1)] where k(i+1) := (k(i) + 1)/l(i) − 1.

This claim implies that an honest prover starting with a legitimate codeword f (0) ∈ V (0) may
use it to construct f (1), . . . , f (r). And the QUERY phase of FRI checks whether this is the case, by
sampling a random g(1) ∈ D(1), checking whether f (1)

(
g(1)
)
indeed equals what the claim predicts

based on the values of f (0)|C
g(1)

, and then repeating the process inductively for g(2), . . . , g(r). (We

refer the reader to [BBHR18b, BKS18] for more details.)
Summarizing what is stated above:

6 Generalizing the results here to (i) the additive case, (ii) t-smooth groups for larger constant t and (iii) cosets
of such groups, is straightforward and omitted.
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1. At the end of the protocol's COMMIT phase the veri�er will have oracle access to a sequence
of functions f (0) : D(0) → F, . . . , f (r) : D(r) → F where D(0) ) . . . ,) D(r) is a sequence of
2-smooth groups and f (i) depends arbitrarily on z(0), . . . , z(i) (and f (0), . . . , f (i−1)).

2. There exists a l(i)-to-1 map that can be applied to cosets of f (i) and transform them into a

sequence of vectors u = {u0, . . . , ul(i)} ⊂ FD(i+1)
. Furthermore, if f (i) is a valid RS codeword

over D(i) of rate ρ, then each vector on the parameterized curve passing through u is a valid
RS codeword over D(i+1) of the same rate ρ.

3. Each iteration of the QUERY phase checks whether f (i+1) was constructed from f (i) via the
process speci�ed by Claim 7.1.

Claim 7.1 implies perfect completeness. Regarding soundness, Theorem 1.5 implies the following
statement.

Theorem 7.2 (FRI Soundness). Consider the code RS[F,D(0), k(0)] where D(0) is a coset of a 2-

smooth group of size n(0) = |D(0)|, and ρ = k(0)+1
n(0) satis�es ρ = 2−R for positive integer R. Let

n(0) > n(1) > . . . n(r) be the sequence of sizes of functions sent by the prover during the COMMIT
phase, and let l(i) := n(i)/n(i+1) for i < r. Suppose f (0) : D(0) → F is at least δ-far from the code,

for δ ≤ 1−√ρ− η and 0 < η ≤
√
ρ

20 .
In this case, the FRI protocol has COMMIT soundness error at most

εC ≤
ρ2

(2η)7 · |F|
·
∑
j<r

(
l(j) − 1

)
·
(
n(j+1)

)2
<

(
k(0) + 1

)2
(2η)7 · |F|

.

Thus, for any malicious FRI prover, with probability ≥ 1 − εCOMMIT over the randomly selected
(z(0), . . . , z(r−1)), the probability of accepting f (0) erroneously during the QUERY phase, using a
single iteration of the QUERY protocol, is at most

εQ ≤ (1− δ).
Consequently, for f (0) speci�ed above and any malicious prover, the total soundness error εFRI of
the FRI protocol with t iterations of the QUERY phase is at most

εFRI = εC + εtQ ≤
(
k(0) + 1

)2
(2η)7 · |F|

+ (1− δ)t.

Numerical Example: Suppose q ≥ 2256, n = 220, ρ = 2−4, so k+ 1 = 216, an entirely reasonable
choice for practical applications (In STARKs, k corresponds to the length of a computation for
which a STARK proof is being generated). Set η = 2−14, so

εC ≤ 232+7·13−256 = 2−133.

Assume f (0) is δ-far from V for

δ = 1−√ρ− η ≈ 0.7499 ≈ 3

4
.

Invoking the QUERY protocol for t = 65 invocations gives

εtQ ≈ 0.2500665 < 2−129.9

So the total FRI error is bounded by

εFRI ≤ εC + εtQ < 2−128.
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Thus we can get 128-bit security for the FRI protocol for this setting of parameters with 65
invocations of the QUERY phase.

Proof sketch of Theorem 7.2. The proof follows directly the proof of [BKS18, Theorem 16], while
replacing Theorem 10 there with our improved Theorem 1.5. Notice this leads to a version of
Corollary 17 there with proximity and error parameters as in our Theorem 1.5, which directly leads
to Theorem 7.2.

Discussion and Two Open Questions Theorem 7.2 improves on the previous state of the art,
due to [BKS18, BGKS20], in several ways. First, as explained in Section 3.2, the prior state of the art
required a proximity parameter that is smaller than the �one-and-a-half Johnson bound�: δ < 1− 3

√
ρ;

the current result pushes the proximity parameter (for large �elds) up to the Johnson/Guruswami�
Sudan bound. Second, the error parameter during the COMMIT phase was worse, and the analysis
incurred an additional loss in the proximity parameter during the QUERY phase, which led to
worse concrete soundness bounds across all proximity parameter settings. Last, but not least, the
prior bounds on δ (above the unique decoding radius) were only valid for the case where the �folding
parameters� l(0), . . . , l(r−1) were all equal to the �xed value l? = 2, and deteriorated swiftly for larger
l(i) (they only work up to radius 1 − (l(i)+1)

√
ρ). The current bounds deteriorate much more slowly

with l(i), and this is important because large values of l(i) are often preferable in practice.
Ben-Sasson et al. showed in [BBHR18b] that for the FRI protocol to achieve security parameter

λ (i.e., εFRI ≤ 2−λ), we need to take the repetition parameter t ≥ λ log 1
ρ and conjectured that this

lower bound on t is also su�cient (for su�ciently large �elds). As noted earlier in Section 3.2 our
results imply that taking t ≤ 2λ log 1

ρ su�ces to get security parameter λ for quadratically large
�elds. Closing the gap between the provable upper and lower bounds on t is left as an interesting
open problem. Concretely, the following conjectured improvement to our main correlated agreement
theorem (Theorem 1.4) will imply the conjecture of [BBHR18b]. To the best of our knowledge,
nothing contradicts setting c1 = c2 = 2 in the conjecture below. When limiting the scope to �elds
of characteristic greater than k (degree of the RS code), we are not aware of anything contradicting
c1 = c2 = 1; note that [BGKS20, Appendix B] shows these smaller exponents cannot hold for �elds
of characteristic two.

Conjecture 7.3. There exist constants c1, c2 such that the following statements hold for all η > 0.

• Theorems 1.2, 1.4 and 1.6 hold for proximity parameter δ ≤ 1− ρ− η with error

ε ≤ 1

(ηρ)c1
· n

c2

q
.

• Theorem 1.5 holds for proximity parameter δ ≤ 1− ρ− η and parameterized curves of degree
l with error

ε ≤ 1

(ηρ)c1
· (l · n)c2

q
.

DEEP FRI is another RPT protocol that is closely related to FRI (as its name suggests).
Introduced in [BGKS20], it is slightly less e�cient (in terms of prover and veri�er complexity) than
FRI because it requires more from the prover, making it harder for a malicious prover to cheat.
Prior to this work, the extra complexity of DEEP FRI led to improved soundness, which reaches
the Johnson/Guruswami�Sudan bound. But Theorem 7.2 shows that FRI has soundness that also
reaches the same bound. Moreover, when nearing the Johnson bound, DEEP FRI requires cubic
size �elds for the arguments to work, whereas FRI is shown here to require only quadratic size
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�elds. Thus, according to our new understanding, in terms of both complexity and �eld size, FRI
dominates DEEP FRI, even though DEEP FRI demands strictly more from the prover side.7 Thus,
an interesting second question raised by our work is understanding how the techniques developed
here may be combined with the techniques of the DEEP FRI protocol to derive better soundness
bounds for DEEP FRI and new, improved RPT protocols.

7The one remaining virtue of DEEP FRI is that its soundness is closely connected to a classically studied problem

(the list-decodability of Reed�Solomon codes), and under a simple, plausible conjecture about that problem, it
achieves the optimal bound on the required repetition parameter t = (1 + o(1))λ log 1

ρ
.
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A Algebraic Extensions of Fq(Z)
In this section we develop preliminaries that will be necessary for the proof of Theorem 5.1. In the
proof, we will have a trivariate polynomial Q(X,Y, Z), with an irreducible factor R(X,Y, Z). When
evaluated at a certain X = x0 ∈ Fq, R(x0, Y, Z) will have an irreducible factor H(Y, Z). For both
R and H, irreducible means irreducible in the respective ring of polynomials over Fq. Our goal will
be to show that Q has a factor of the form Y − P (X,Z), where P has low X and Z degree, and in
fact R is this factor. Considering Q and R as polynomials in Y over Fq[X,Z], this is equivalent to
�nding a rational root P (X,Z) of Q, which is also a root of R, and P (x0, Z) is thus a root of H.
To do so, we will instead start by understanding roots of H, not necessarily of the required form or
even lying in Fq(Z), lifting them to roots of R (and Q), and then investigating these lifts to prove
that they are indeed of the required form P (X,Z).

We will therefore need to understand the roots of H(Y,Z), which naturally lie in the �eld
Fq(Z)[T ]/(H(T,Z)), which is a �nite algebraic extension of Fq(Z). We will construct this �eld, in
a slightly di�erent way, and also introduce its ring of regular elements, in Appendix A.1. In this
�eld, we will need a concept of weight, which is an extension of the concept of �degree� from Fq(Z),
and is introduced in Appendix A.2. A major tool that we will use in several ways is of substitution
maps from this �eld to Fq, extending the concept of substituting Z = z in a rational function in
Fq(Z). These substitutions and a useful lemma regarding them are introduced in Appendix A.3.
The �nal tool we need is the lifting of roots of H(Y,Z) to roots of R(X,Y, Z), which is known as
Hensel lifting. We describe this process and state an important lemma on the weights of the �eld
elements appearing in this lift in Appendix A.4.

A.1 The algebraic extension and its regular elements

Let d ≥ 1 be integers, and let

H(Y, Z) = h0(Z)Y d + h1(Z)Y d−1 + · · ·+ hd(Z) ∈ Fq[Y,Z]

be an irreducible bivariate polynomial, expressed as a polynomial in Y over Fq[Z]. Denote the
leading coe�cient of H also as W = h0.

We wish to understand the �eld Fq(Z)[T ]/(H(T,Z)), of polynomials in T over Fq(Z) modulo
H. The presence of the leading coe�cientW means that T is not an integer in this �eld, and makes
the arithmetic modulo H unpleasant to keep track of, with possible emergence of high powers of
W in denominators whenever a reduction modulo H is performed. To avoid this, we �rst de�ne a
�monicized� version of H, denoted H̃, which is a monic, irreducible polynomial generating the same
�eld as H:

H̃(T,Z) = W (Z)d−1H(T/W (Z), Z)

= T d + h1(Z)T d−1 + h2(Z)W (Z)T d−2 + · · ·+ hd(Z)W (Z)d−1.

We now denote L = Fq(Z)[T ]/(H̃(T,Z)), and observe that Y = T
W (Z) is a root of H(Y,Z)

in L. We say that an element of L is regular if it can be expressed as a polynomial in T with
coe�cients only in the ring Fq[Z] instead of the �eld Fq(Z); equivalently, if this is true for its
canonical form as a polynomial in T of degree less than d. We denote the set of regular elements
by O = Fq[Z][T ]/(H̃(T,Z)). The regular elements are in fact a ring, which is a subring of the ring
of integers of L.
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A.2 Algebraic weights

Let D ≥ d be the total Y,Z degree of H, so that degZ hk ≤ D + k − d for all k. We de�ne a
weight function Λ on Fq[T,Z] by assigning Λ(Z) = 1 and Λ(T ) = D+ 1− d, extended additively to
monomials, i.e. Λ(T aZb) = aΛ(T )+bΛ(Z), and the weight of a polynomial is the maximal weight of
all monomials appearing in it with non-zero coe�cients (with the weight of the 0 polynomial being
−∞). Note that Λ is fully additive on Fq[T,Z], i.e. for any A,B ∈ Fq[T,Z], Λ(AB) = Λ(A)+Λ(B).
Also note that when restricted to Fq[Z], Λ = degZ .

Observe that H̃(T,Z) has weight Λ(H̃) = d(D + 1 − d) = dD − d(d − 1), with the leading
monomial being of this exact weight and every other monomial bounded by it. It follows that any
simple modulo Λ(H̃) operation of the form

T d+k → −
d∑
i=1

hi(Z)W (Z)i−1T d+k−i

never increases the weight Λ, and so does complete reduction modulo H̃.
We now de�ne the weight Λ(α) of a regular element α ∈ O as the weight of the canonical

representative of α with degree less than d, which by the above is also the minimal value of Λ over
all representatives of α. It also follows that for any α, β ∈ O, if A(T,Z), B(T,Z) are their canonical

representatives, and C(T,Z) = A(T,Z)B(T,Z) mod H̃(T,Z) is the canonical representative of
γ = αβ, then

Λ(γ) = Λ(C) ≤ Λ(AB) = Λ(A) + Λ(B) = Λ(α) + Λ(β).

In other words, Λ is sub-additive in O.

A.3 Rational substitutions

Let z ∈ Fq be such that H̃(T, z) has a rational root T = tz. In other words, (tz, z) ∈ F2
q is a root of

H̃, with tz considered as depending on z (in our applications, it will in fact be given as a function of
z). For any such root-pair, we de�ne the substitution πz, which is the homomorphism πz : O → Fq
given by πz(Z) = z, πz(T ) = tz. The homomorphism is well de�ned since O = Fq[T,Z]/(H̃(T,Z))

and πz(H̃(T,Z)) = H̃(tz, z) = 0. The substitution πz can be extended naturally to any element of

L for which z is not a pole, i.e. elements of the form β
C(Z) with β ∈ O and z not a root of C, by

πz

(
β

C(Z)

)
= πz(β)

C(z) .

The following lemma gives an upper bound on the number of substitutions in which an element
β ∈ O can vanish in terms of its weight. It is analogous to the statement that a polynomial of
degree at most d which vanishes for more than d evaluations must be the 0 polynomial.

Lemma A.1. Let β ∈ O be regular with weight Λ(β). Let

Sβ = {z ∈ Fq : ∃tz ∈ Fq, H̃(tz, z) = 0 and πz(β) = 0}
and suppose |Sβ| > d · Λ(β). Then β = 0 ∈ L.

Proof. Let β =
∑d−1

i=0 βi(Z)T i ∈ Fq[Z][T ] be the canonical representative, with

degZ(βi) = ΛZ(βi) ≤ Λ(β)− iΛ(T ) = Λ(β)− i(D + 1− d).

Consider the resultant R(Z) = ResT (β, H̃). From the Sylvester matrix, or considering weights
of roots, we �nd degZ R ≤ d · Λ(β) < |Sβ|. On the other hand, every z ∈ Sβ is a root of R, since
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H̃(T, z) and β(T, z) have a common root tz. It follows that R is identically 0, i.e. β and H̃ are not

coprime, but since H̃ is irreducible and degT (β) < degT (H̃), we have β = 0, as claimed.

A.4 Hensel lifts

Suppose H(Y,Z) as above is a factor of Rx0(Y,Z) = R(x0, Y, Z), where x0 ∈ Fq, and R(X,Y, Z)
is irreducible in Fq[X,Y, Z]. Additionally assume that R and Rx0 are both separable in Y , which
means that they do not have double roots when considered as polynomials in Y , or equivalently,
that they are coprime to their Y -derivatives. Denoting α0 = T

W ∈ L, we �nd R(x0, α0, Z) = 0 ∈ L,
or equivalently in L[X],

R(X,α0, Z) ≡ 0 (mod X − x0).

The separability of Rx0 implies that ζ = ∂R
∂Y (x0, α0, Z) 6= 0, or in other words ζ ∈ L is invertible.

This fact allows us to iteratively lift the root α0 of R(X,Y, Z) (mod X − x0) to a root

α0 + α1(X − x0) of R(X,Y, Z) (mod (X − x0)2),

then to a root

α0 + α1(X − x0) + α2(X − x0)2 of R(X,Y, Z) (mod (X − x0)3),

and so on. Moreover, at each step the lifting is unique.
We obtain an in�nite sequence (αt)

∞
t=0, such that at each step s the truncated series γs =∑s

t=0 αt(X − x0)t ∈ L[X] satis�es

R(X, γs, Z) ≡ 0 (mod (X − x0)s+1).

Equivalently, for the in�nite formal power series γ =
∑∞

t=0 αt(X − x0)t ∈ L[[X − x0]], we have
R(X, γ, Z) = 0 ∈ L[[X − x0]]. Here L[[X − x0]] is the ring of formal power series in X − x0 with
coe�cients in L. This power series γ is the Hensel lift of α0, and the process by which it is computed
is the Hensel lifting.

We make a slight change to the notation, and henceforth d will be the Y -degree of R, and
dH ≤ d will denote the Y -degree of H (previously denoted by d). We will also assume that D is an
upper bound not only on the total degree of H but also of R. Note that W , the leading coe�cient
of H, divides the leading coe�cient of Rx0 , and has weight Λ(W ) ≤ D − dH .

The following claim describes the coe�cients αt appearing in the Hensel lift, and bounds their
denominators and the weights of their numerators:

Claim A.2. αt is of the form
βt

W t+1ξet
, where

• ξ = W (Z)d−2ζ ∈ O with ζ = ∂R
∂Y (x0,

T
W , Z) ∈ L, and

Λ(ξ) ≤ (D − 1) + (d− 2)Λ(W ) ≤ (d− 1)(D − dH + 1),

• et = max(0, 2t− 1), i.e. e0 = 0 and et = 2t− 1 for t ≥ 1,

• βt ∈ O with

Λ(βt) = 1 + (t+ 1)Λ(W ) + etΛ(ξ)

≤ ((d− 1) · et + t+ 1)(D − dH + 1)− t < (2t+ 1)dD.

The claim is proven by straight-forwardly expanding R(X, γ, Z) as a series in X−x0, comparing
each coe�cient to 0, and using induction on t. The existence and uniqueness of the Hensel lift γ,
and how each new coe�cient αt is computed from the previous ones, will also follow from the proof.
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Proof. We prove the statement by induction on t. For t = 0, we have simply α0 = T
W mod H̃, i.e.

β0 = T mod H̃ and indeed Λ(T ) = Λ(W ) + 1.
We wish to write R(X, γ, Z) as a power series in X − x0. A partition of t is a sequence of

non-negative integers λ = (λl)l≥1 with
∑

l l · λl = t. Such sequences are non-zero only �nitely
many times, and we trim any trailing 0s in writing, e.g. (1) = (1, 0, 0, 0, . . . ). We also denote
Σλ =

∑
l≥1 λl. Let P(t) be the set of partitions of t. For any t, i1 ≤ t, and λ ∈ P(t− i1), denote

Ai1,λ =
∑
j0

j = j0 + Σλ

(
j

j0, λ1, . . . , λl, . . .

)
αj00

∑
i0

i = i0 + i1

(
i

i0, i1

)
Rji(Z)xi00

=
∑
i0, j0

i = i0 + i1
j = j0 + Σλ

(
i

i0, i1

)(
j

j0, λ1, . . . , λl, . . .

)
Rji(Z)xi00 α

j0
0

=

(
Σλ

λ1, . . . , λl, . . .

)∑
i, j

(
i

i1

)(
j

Σλ

)
Rji(Z)xi−i10 αj−Σλ

0

=

(
Σλ

λ1, . . . , λl, . . .

) (
∆i1
X∆Σλ

Y R(X,Y, Z)
)∣∣∣

(x0,α0,Z)

where the sums are taken only over non-zero terms, i.e. with i+kj < DX , and ∆k
V is the k-th Hasse

derivative with respect to the variable V . In particular, whenever λ is such that Σλ = 1, we have

A0,λ = (∆YR)(x0, α0, Z) =
∂R

∂Y
(x0, α0, Z) = ζ.

Since the maximal degree of α0 = T
W appearing in Ai1,λ is d − Σλ, we can generally write

Ai1,λ =
Bi1,λ
W d−Σλ , where Bi1,λ ∈ O has weight Λ(Bi1,λ) = (D − Σλ) + (d − Σλ)Λ(W ). In the special

case i1 = 0, the coe�cient of αd−Σλ
0 is a multiple of

∑
iRdi(Z)xi0, which is the leading coe�cient of

Rx0 , hence divisible by W , and thus we can save a little and write A0,λ =
B0,λ

W d−1−Σλ , where B0,λ ∈ O
has weight (D − Σλ) + (d − 1 − Σλ)Λ(W ). When Σλ = 1 we then get ζ = A0,λ =

B0,λ

W d−2 = ξ
W d−2

where ξ ∈ O has weight (D−1)+(d−2)Λ(W ) as stated. To generalize the two cases, we may write

Ai1,λ =
Bi1,λ

W
d−δi1,0−Σλ , where δi1,0 = 1 if i1 = 0 and δi1,0 = 0 otherwise.

Now, expanding R(X, γ, Z), we get

0 = R(X, γ, Z) =R
(
x0 + (X − x0),

∑
l

αl(X − x)l, Z
)

=
∑
ij

Rji(Z)(x0 + (X − x0))i
(∑

l

αl(X − x)l
)j

=
∑
ij

Rji(Z)

( ∑
i0+i1=i

(
i

i0, i1

)
xi00 (X − x0)i1

×
∑

j0+Σλ=j

(
j

j0, λ

)(
αj00
∏
l

αλll

)
(X − x0)

∑
l l·λl

)
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=

∞∑
t=0

(X − x0)t
∑
i1

λ ∈ P(t− i1)

Ai1,λ
∏
l≥1

αλll

Note that αt appears for the �rst time in the term corresponding to (X − x0)t, and only with

i1 = 0 and λ = λ(t) de�ned by λ
(t)
t = 1, λ

(t)
l = 0 for l 6= t, with the coe�cient A0,λ(t) = ζ. All other

summands in the coe�cient of (X −x0)t involve only αl with l < t, so we may apply the induction.
Comparing the coe�cient to 0, we get

αt = −1

ζ

∑
i1;λ ∈ P(t− i1)

λ 6= λ(t)

Ai1,λ
∏
l≥1

αλll

= −W
d−2

ξ

∑
i1;λ ∈ P(t− i1)

λ 6= λ(t)

Bi1,λ

W d−δi1,0−Σλ

∏
l≥1

(
βl

W l+1ξel

)λl

=
∑

i1;λ ∈ P(t− i1)

λ 6= λ(t)

Bi1,λ
∏
l β

λl
l

W 2−δi1,0−Σλ+
∑
l(l+1)λlξ1+

∑
l(2l−1)λl

=
∑

i1;λ ∈ P(t− i1)

λ 6= λ(t)

Bi1,λ
∏
l β

λl
l

W t−i1−δi1,0+2ξ2t−2i1−Σλ+1
,

=
1

W t+1ξ2t−1

∑
i1;λ ∈ P(t− i1)

λ 6= λ(t)

W i1+δi1,0−1ξ2i1+Σλ−2Bi1,λ
∏
l

βλll ,

thus we have
βt =

∑
i1;λ ∈ P(t− i1)

λ 6= λ(t)

W i1+δi1,0−1ξ2i1+Σλ−2Bi1,λ
∏
l

βλll (A.1)

which is indeed regular, as the W , ξ, the B's and the β's are all regular and the exponents are
non-negative: for the exponent of W , it is always the case that i1 + δi1,0 ≥ 1. For the exponent

of ξ, for i1 = 0, every λ ∈ P(t) with λ 6= λ(t) indeed has Σλ ≥ 2, and for i1 ≥ 1 we even have
2i1 + Σλ− 2 ≥ 1, since Σλ ≥ 1.

The upper bound on the weight of β can be shown by induction using the recursion (A.1), but
an easier way to understand it is by considering the weight of αt: Since γ =

∑∞
t=0 αt(X − x0)t is a

solution to R(X,Y, Z) = 0, γ has the same weight as Y ; since X,x0 have weight 0, each αt also has
weight Λ(αt) = Λ(Y ) = 1. Thus

Λ(βt) = Λ(αtW
t+1ξet) = 1 + (t+ 1)Λ(W ) + etΛ(ξ)

as claimed.
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B The Y, Z-degree of Q

In this section we prove inequality (5.7) of Claim 5.4, which claims that the total Y,Z-degree of

Q(X,Y, Z) is bounded by (m+1/2)3

6
√
ρ n.

The bound on DY Z = degY,Z(Q) comes from minors of the matrixM representing the system of
equations de�ning Q. These equations are all of the form �the (mX ,mY )-th derivative of Q vanishes
at (x,w(x))�, for x ∈ D and non-negative integers mX ,mY with mX + mY < m. Computing the
derivative8 and substituting (x,w(x)), we see that the (x,mX ,mY )-th equation is

∆mX
X ∆mY

Y Q(x,w(x, Z), Z) =
∑

i+k·j<DX

Qji(Z)

(
i

mX

)(
j

mY

)
xi−mX (u0(x) + Zu1(x))j−mY = 0.

The coe�cient of Qji(Z) in this equation is therefore(
i

mX

)(
j

mY

)
xi−mX (u0(x) + Zu1(x))j−mY ,

and this coe�cient appears in the matrix M at row (x,mX ,mY ) and column ji. Note that as a
polynomial in Z, it has degree at most j − mY , which is the sum of j, which is determined by
the column, and −mY , determined by the row. We thus call j and −mY the contributions of the
column and the row, respectively, to the Z-degree of the matrix's entry.

Let r be the rank of M , which is bounded from above by the number of rows
(
m+1

2

)
n. To �nd

a non-zero solution of the system, �rst �nd an r × r non-singular submatrix, and add an arbitrary
single column. Cramer's rule then tells us that a solution to the r × (r + 1) subsystem is given by
taking each Qji to be the r × r minor obtained by removing the ji-th column from the submatrix
and taking the determinant, with alternating signs. These Qji will then be a solution to the original
system, since these r rows span the entire row-space of the original matrix. The determinant
corresponding to Qji is a sum over products corresponding to permutations, each containing a
single entry from each row and each column of the r × r submatrix. The degree of each such
product is thus bounded by the sum of the degree contributions from all columns and rows of the
r× r submatrix, regardless of the permutation, or of all columns and rows of the r× (r+ 1) matrix,
minus that of the ji-th column. In other words, it is at most D − j, where D = DC − DR is the
sum of the contributions of all columns and (negative) contributions of all rows from the r× (r+ 1)
matrix. Thus the total Y,Z degree of the monomial QjiX

iY j is at most (D− j)+ j ≤ D, and hence
the total Y, Z degree of Q is at most D, i.e. DY Z ≤ D.

It remains to bound D = DC − DR from above. We do this by simply using DR ≥ 0 and
bounding DC by the sum of column contributions of the entire matrix. It is possible to improve
this bound by �nding the worst r for which the sum of the largest r+1 column contributions minus
the sum of the smallest r row contributions is maximal, and computing these sums. We opt for
the simpler bound, since the optimal bound requires a more technical and involved computation,
and only ends up improving on the simple bound by a small constant factor, with an unpleasant
dependence on ρ.

Write s =
⌊
DX
k

⌋
, t =

{
DX
k

}
∈ [0, 1) with DX = k(s+ t). Then

DY Z = degY,Z(Q) ≤ D = DC −DR ≤ DC ≤
∑

i+kj<DX

j

8 We use the Hasse derivatives ∆m
X(Xi) :=

(
i
m

)
Xi−m instead of the regular derivatives to avoid complications due

to the characteristic of the �eld.
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=
∑
j<

DX
k

j(DX − j · k) = DX

s∑
j=0

j − k
s∑
j=0

j2 = k(s+ t)
s(s+ 1)

2
− ks(s+ 1)(2s+ 1)

6

=
ks(s+ 1)(s+ 3t− 1)

6
=
k

6
(s3 + 3ts2 + (3t− 1)s) =

k

6
((s+ t)3 − (1− 3t+ 3t2)s− t3)

=
k

6
((s+ t)3 − (1− t)3s− (s+ 1)t3) <

k

6
(s+ t)3 =

D3
X

6k2
≤

(m+ 1
2)3

6
√
ρ

n,

as claimed in (5.7).

C The Inseparable Factor Case in the List Decoding Regime

Recall that in Section 5.2.3, we had assumed that in the decomposition

Q(X,Y, Z) = C(X,Z)
∏
i

Ri(X,Y
pfi , Z)ei ,

the factors Ri(X,Y
pfi , Z) were all separable, i.e. fi = 0. This assumption was in fact necessary only

for the factor R on which we focused in Section 5.2.4. We now consider the case where f = fi > 0,
and our relevant factor is of the form R(X,Y p, Z), where p = pf and R(X, Ỹ , Z) is separable and

irreducible in Ỹ . Note that we still have that R(x0, Ỹ , Z) is separable. The elements of Sx0,R,H

now satisfy Y − Pz(X) | R(X,Y p, Z), and equivalently Ỹ = Pz(X)p is a root of R(X, Ỹ , Z) and

Y p − Pz(X)p | R(X,Y p, Z). Similarly, Ỹ = Pz(x0)p is a root of the irreducible factor H(Ỹ , Z) of

R(x0, Ỹ , Z) � and a simple root of both, since they are separable.
Note that p ≤ degY (R(X,Y p, Z)) ≤ degY (Q(X,Y, Z)) = DY and therefore

degX(Pz(X)p) ≤ pfk ≤ kDY < DX .

We construct the �eld L for the polynomial H(Ỹ , Z) exactly as before, but noting that Ỹ = Y p

will have weight p, which correspondingly a�ects the weight of T = W (Z)Ỹ = W (Z)Y p, now de�ned

as D − (dH − 1)p. Note that the upper bound on dH , d (the Ỹ degrees of R,H) is also changed,
and is now DY

p instead of simply DY . With these adaptations in mind, we perform the Hensel lift,

lifting the root α0 = T
W ∈ L of R(x0, Ỹ , Z) to the power series root γ ∈ L[[X − x0]] of R(X, Ỹ , Z).

Claim A.2 still holds and gives us

Λ(ξ) ≤ (D − p) + (d− 2)Λ(W ) ≤ (d− 1)(D − (dH − 1)p),

Λ(βt) = p + (t+ 1)Λ(W ) + etΛ(ξ)

≤ ((d− 1) · et + t+ 1)(D − (dH − 1)p)− pt < (2t+ 1)dD.

As in Section 5.2.6, the substitution πz(γ) for z ∈ S′ is a root of R(X, Ỹ , z) which is the lift of

the simple root Ỹ = Pz(x0)p of R(x0, Ỹ , Z). Since Pz(X)p is also of this form, by the uniqueness
of the lifting we get πz(γ) = Pz(X)p, and in particular πz(αt) = 0 and πz(βt) = 0 for all t except
for 0 ≤ t ≤ pk < DX which are divisible by p. As before, we have |S′| ≥ dHΛ(βt) for all t < DX :

the right hand side is bounded from above by
D2
YDY Z(2DX−1)

p2 , which only decreases as p increases.

It thus follows that βt = 0 and αt = 0 for all t < DX except for those which are at most pk and
divisible by p. In other words we have

γDX−1 =
k∑
t=0

αpt(X − x0)pt.
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Out next goal is to show that γDX−1 is a p-th power of a polynomial of degree k (and later that
γ = γDX−1, and that this polynomial is in fact in Fq[Z][X −x0], with coe�cients linear in Z). This
part did not appear in Section 5, as it is trivial for p = 1. This polynomial should naturally be the
p-th root of γDX−1 � but in order to construct such roots, we will need some more preliminaries
about the �eld in which they live.

Let σ : Fq → Fq be the automorphism mapping each element a to its unique p-th root σ(a) =

a1/p. Let L̂ be the inseparable algebraic �eld extension of L with elements T̂ , Ẑ satisfying T̂ p−T =
Ẑp−Z = 0; equivalently, T̂ = T 1/p and Ẑ = Z1/p. Note that L̂ can also be directly de�ned directly
as the �eld Fq

(
Ẑ
)[
T̂
]
/
(
Ĥ
(
T̂ , Ẑ

))
, where Ĥ = σ(H̃) is the (irreducible) polynomial obtained by

applying σ to the coe�cients of H̃, which satis�es

Ĥ
(
T̂ , Ẑ

)p
= H̃

(
T̂ p, Ẑp

)
= H̃(T,Z).

Since the monomials of Ĥ have the same T̂ - and Ẑ-degrees as the T - and Z-degrees of H̃, a weight
Λ̂ can be de�ned for regular elements in L̂ in exactly the same way as in L. Additionally, σ can
be extended to a map σ̂ : L → L̂ satisfying σ̂(α)p = α for all α ∈ L by de�ning σ̂(T ) = T̂

and σ̂(Z) = Ẑ. Note that Λ(β) = Λ̂(σ̂(β)) for any β ∈ O, since σ̂ preserves degrees. The

substitution maps πz for z ∈ S′ can also be extended to L̂ by setting πz(Ẑ) = σ(z) = z1/p and

πz(T̂ ) = σ(tz) = t
1/p
z = Ŵ

(
z1/p

)
Pz(x0), where Ŵ = σ(W ).

De�ne

γ̂ =

k∑
t=0

σ̂(αpt)(X − x0)t ∈ L̂[X − x0]

which indeed satis�es γDX−1 = γ̂p, and therefore R(X, γ̂p, Z) ≡ 0 (mod (X − x0)DX ). Since
R(X,Y p, Z) is a divisor of Q(X,Y, Z), it follows as before that degX R(X, γ̂p, Z) < DX , and there-
fore R(X, γ̂p, Z) = 0 identically, and γ = γDX−1 = γ̂p by the uniqueness of the lifting. Furthermore,
for every z ∈ S′, since πz(γ̂)p = πz(γ̂

p) = πz(γ) = Pz(X)p, we also have πz(γ̂) = Pz(X).
As in Section 5.2.7, our next goal is now to show that the coe�cients α̂t = σ̂(αpt) of γ̂ are linear

polynomials in Fq[Z], rather than general elements of L̂. This is done in exactly the same way, by
comparing the values of πz(γ̂(x)) and w(x, z) at every x = xj ∈ Dtop and z ∈ S′x, deducing that

γ̂(x) and w(x, Z) must be equal in L̂ since

dHΛ̂(β̂k) = dHΛ̂(σ̂(βpk)) = dHΛ(βpk) ≤ dH(2pk + 1)dD <
(2k + 1)D2

YDY Z

p

< (2k + 1)D2
YDY Z < |S′x|,

Finally, having shown that γ̂ ∈ Fq[X,Z], the arguments of Section 5.2.8 can be applied without
any further changes, only with γ̂ in the role γ, concluding the proof.

D Proof of Lemma 4.3

The di�erence between what we have to prove and the original version in [Spi95, Lemma 4.2.18]
is very small. The conclusion is the same, but the hypotheses are slightly di�erent. The three
hypotheses in the original version are

(a) degX(A) ≤ degX(B),

(b) degZ(A) ≤ degZ(B), and
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(c) degX(B)
nX

+ degZ(B)
nZ

< 1.

Item (c) is the same as Item 3 in the hypothesis of Lemma 4.3. We will use hypotheses 1 and 2 of
Lemma 4.3 to derive (b) and (a), respectively.

Let A0(Z), B0(Z) be the leading coe�cients of A,B when considered as polynomials in X with
coe�cients in Fq[Z]. Since nZ > degZ(A) + degZ(B) ≥ deg(A0) + deg(B0), there must be some
z ∈ Fq for which A(X, z) divides B(X, z) but z is not a root of either A0 nor B0. From B0(z) 6= 0
we get that B(X, z) 6= 0, and then since A0(z) 6= 0 and A(X, z) divides B(X, z) we �nd

degX(A) = deg(A(X, z)) ≤ deg(B(X, z)) ≤ degX(B)

as claimed.
Similarly degZ(A) ≤ degZ(B) follows from degX(A) + degX(B) < nX .
Then [Spi95, Lemma 4.2.18] gives us the desired conclusion.
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