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Abstract

In a seminal work, Kopparty et al. [KMRZS17] constructed asymptotically good

n-bit locally decodable codes (LDC) with 2Õ(
√

logn) queries. A key ingredient in their

construction is a distance amplification procedure by Alon et al. [AL96, AEL95]

which amplifies the distance δ of a code to a constant at a poly(1/δ) multiplicative

cost in query complexity. Given the pivotal role of the AEL distance amplification

procedure in the state-of-the-art constructions of LDC as well as LCC and LTC, one

is prompt to ask whether the poly(1/δ) factor in query complexity can be reduced.

Our first contribution is a significantly improved distance amplification proce-

dure for LDC. The cost is reduced from poly(1/δ) to, roughly, the query com-

plexity of a length 1/δ asymptotically good LDC. We derive several applications,

one of which allows us to convert a q-query LDC with extremely poor distance

δ = n−(1−o(1)) to a constant distance LDC with qpoly(log logn) queries. As another

example, amplifying distance δ = 2−(logn)α , for any constant α < 1, will require

qO(log log logn) queries using our procedure.

Motivated by the fruitfulness of distance amplification, we investigate the natu-

ral question of rate amplification. Our second contribution is identifying a rich and

natural class of LDC and devise two (incomparable) rate amplification procedures

for it. These, however, deteriorate the distance, at which point a distance amplifi-

cation procedure is invoked. Combined, the procedures convert any q-query LDC

in our class, having rate ρ and, say, constant distance, to an asymptotically good

LDC with qpoly(1/ρ) queries.
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1 Introduction

Coding theory addresses the problem of communicating over an imperfect channel. Clas-

sically, the setting is as follows. Alice wishes to communicate a message m to Bob over a

channel that can be tampered by an adversary. How should Alice encode m so that if the

amount of errors is not excessive, Bob would be able to recover m? To this end, error-

correcting codes were first introduced [Sha48]. Recall that a function C : Σk → Σn is an

error-correcting code with distance δ if for every distinct x, y ∈ Σk, dist(C(x), C(y)) ≥ δ,

where dist is the relative Hamming distance. The rate of the code C is given by ρ = k/n.

Using an error-correcting code, Alice can encode her message m ∈ Σk and send the re-

sulting code word C(m). Assuming the fraction of errors is less than δ/2, Bob can decode

m from the received z by finding the code word closest to z. We think of a code not

as a single function but as a family of functions, one per message length k. A family of

codes is asymptotically good if both the rate and distance of every code in the family are

uniformly bounded below by constants ρ > 0 and δ > 0, respectively.

1.1 Locally decodable codes

Consider the scenario in which Bob is not interested in the entire original message m, but

rather in a specific symbol mi for some i ∈ [k]. A simple, though wasteful solution, is

for Bob to decode the entire message m and ignore all symbols but for mi. However, it

is desirable to compute mi by reading much fewer than n entries of z. Locally decodable

codes (LDC) are a class of error-correcting codes that have this very strong decoding

capability.

Definition 1.1. A code C : Σk → Σn is (q, δ, ε)-locally decodable if there exists a ran-

domized algorithm D, called a local decoder, that is given i ∈ [k] as input and an oracle

access to z ∈ Σn, and has the following guarantee. For every i ∈ [k], m ∈ Σk and z ∈ Σn

such that dist(C(m), z) ≤ δ it holds that Pr [Dz(i) 6= mi] ≤ ε. Moreover, D makes at most

q queries to z.

We place z in the upper script in our notation Dz(i) to stress that the number of

symbols read from z by D is of importance. The parameter q is called the query com-

plexity, and δ is the local error correction radius. However, we also refer to δ, somewhat

inaccurately, as the local distance of the code. From here on, we do not make any ex-

plicit reference to the “global” distance of a code and so we refer to the local distance

simply as the distance. Throughout the paper, we only consider non-adaptive LDC. In-

formally, these are LDC that sample the entries to be read before the querying step takes
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place. Our distance amplification procedure only works for non-adaptive LDC. To our

knowledge, this is also the case for the AEL distance amplification procedure. For ease

of discussion, throughout the introduction we ignore the error parameter ε. More pre-

cisely, when stating our results, every LDC (both in the hypothesis as well as in the LDC

guaranteed by the theorem) has constant error.

A brief history of LDC. Locally decodable codes were first explicitly defined by Katz

and Trevisan [KT00]. However, codes with local guarantees have been used by complexity

theorists even before (e.g., [BF90, GLR+91, GS92, BFNW93]) and have been around,

implicitly, in the coding theory community almost from the get going [Ree53]. LDC and

related notions such as locally correctable codes (LCC) and locally testable codes (LTC)

were intensively studied by theoretical computer scientists motivated by PCPs [ALM+98,

AS98, BFLS91, GS06], program checking [BLR90, Lip90, RS96], circuit lower bounds

[Dvi11], derandomization [BFNW93, STV01, Tre03], and private information retrieval

[CGKS95] to name a few. Locally correctable codes are very much related to LDC.

Informally, an LCC allows one to retrieve a symbol of the code word C(m) rather than of

the message m using only few queries. Clearly, a systematic LCC is an LDC and so, in

particular, linear LCC induce LDC.

An intensive research effort is devoted to the construction of LDC (see the excellent

survey [Yek11]). Roughly, the literature can be partitioned to two. The first research path

(see e.g., [Yek08, KY09, Efr12, DGY11] and references therein) has the goal of obtaining

LDC with a given, small, number of queries, and an effort is made to maximize the rate

while maintaining constant distance. The second research path, which has received much

attention in recent years [KSY14, GKS13, HOW15, LW19, GKO+18, CGS20, GL20], and

is the focus of this paper, insists on asymptotically good LDC and aims at minimizing

the number of queries.

It is known [KT00, Woo07] that asymptotically good LDC must have query complex-

ity q = Ω(log n). Whether this bound is tight is a fundamental, major open problem,

regardless of explicitness. The Reed Muller code is perhaps the earliest non-trivial exam-

ple of LDC. It can achieve query complexity nν for any desired constant ν > 0. However,

the rate deteriorates rapidly as ν → 0. In fact, up until the introduction of multiplicity

codes by Kopparty, Saraf and Yekhanin [KSY14] no (non-trivial) LDC with rate higher

than 1/2 were known. Guo, Kopparty and Saraf [GKS13] introduced the notion of lifting

of codes which gave a second high-rate LDC, also algebraic in nature. A combinatorial

high-rate construction was obtained by Hemenway, Ostrovsky and Wootters [HOW15]

(see also [LW19]).

Despite this exciting sequence of works which allowed for better rate and introduced
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various interesting techniques, the above constructions all have query complexity nΘ(1).

The fact that three very different constructions were stuck at polynomial query complexity

raised the question of whether no(1)-query asymptotically good LDC exist. This question

was resolved in a seminal work by Kopparty, Meir, Ron-Zewi and Saraf [KMRZS17] who

obtained query complexity q = 2Õ(
√

logn) = no(1). To obtain their result, the authors

first observed that by instantiating multiplicity codes [KSY14] in a certain regime of

parameters, one can get the stated query complexity q above albeit at the cost of having

vanishing distance δ = 1/(log n)Θ(1). To resolve this issue, the authors invoked a distance

amplification procedure due to Alon et al. [AL96, AEL95]. Kopparty et al. [KMRZS17]

showed that the AEL distance amplification procedure, which was originally introduced

in the context of linear-time erasure codes, allows one to convert, in a black-box manner,

an LDC with distance δ and query complexity q to an LDC with constant distance and

query complexity qnew = q · poly(1/δ). This more than sufficed for [KMRZS17] as, in

their setting, q = (1/δ)ω(1), and so the cost of the distance amplification is negligible.

Kopparty et al. [KMRZS17] constructed in fact linear LCC (which then yield LDC) as

well the state-of-the-art LTC using the AEL distance amplification procedure.

1.2 Query-efficient distance amplification

Given the pivotal role of the AEL distance amplification procedure in the state-of-the-

art constructions of LDC (as well as LCC and LTC) one is prompt to ask whether the

poly(1/δ) multiplicative cost in query complexity is inherent. If such is the case, when

aiming at poly(log n)-query complexity, the distance requirement can only be relaxed to

1/poly(log n) which, although proved extremely useful [KMRZS17], might be restrictive

for obtaining better codes.

The first result of this work is a significantly improved distance amplification procedure

for LDC. Roughly speaking, we are able to reduce the poly(1/δ) multiplicative factor in

query complexity to the query complexity of an asymptotically good LDC on message

length 1/δ. More precisely,

Theorem 1.2 (Query-efficient distance amplification; informal). Assume one has a block-

length-n LDC with distance δ, constant rate, and query complexity q. Assume further one

has a family of asymptotically good LDC where on message length k, the query complexity

is qk. Then, one can obtain asymptotically good LDC with query complexity 1

qnew = q · qO(1/δ) ·O(log(1/δ) log n). (1.1)

1If the family of LDC in the hypothesis has sufficiently low error, the query complexity is even smaller

qnew = q · qO(1/δ)qO(log(1/δ)).
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Note that by using a standard error-correcting code, which has qk = n = Θ(k),

Theorem 1.2 gives back the parameters of the AEL distance amplification procedure.

However, one can do much better. Indeed, by using the state-of-the-art LDC [KMRZS17]

which has qk = 2Õ(
√

log k), one get qnew = q · (1/δ)o(1) log n. More generally, Theorem 1.2

states that the lower the query complexity of our asymptotically good codes is, the more

query-efficient is the distance amplification. This “rich getting richer” type of result

opens a path to recursive constructions as, indeed, several of our applications are based

on. We stress that unlike the AEL distance amplification procedure, ours exploits the

local decodability requirement and so it works for LDC but not for LCC. The only other

technique in the literature that we are aware of that exploits the difference between

decodability and correctability, and thus separates LDC from LCC in terms of techniques

is matching vectors based constructions. We further remark that, for ease of discussion,

Theorem 1.2 is stated without any reference to explicitness. Indeed, we currently lack

satisfactory understanding of LDC in the more fundamental information-theoretic level.

In any case, explicitness does not cost much in our reduction, and the only change in the

theorem’s statement when insisting on explicit reductions is replacing Equation (1.1) by

roughly qnew = q · q(1/δ)1+α log n for any desired constant α > 0.

For ease of presentation, some details were omitted in the statement of Theorem 1.2

which we briefly account for here. Most notably is the rate deterioration, as well as

any reference to the alphabet. Unlike the AEL distance amplification procedure, ours

work with the same alphabet throughout the reduction and so saves one from keeping

track of the alphabet size as well as calls to alphabet reduction procedures. This has

the advantage of keeping the construction slightly simpler in that respect. The rate of

the resulting code is the product of rates of the three codes whose query complexity are

multiplied in Equation (1.1).

1.2.1 Corollaries

We turn to draw several corollaries of Theorem 1.2, but first set the context. Given

the Katz-Trevisan Ω(log n) lower bound on the query complexity of asymptotically good

LDC, and reassured by [KMRZS17] that no(1)-query LDC exist, the next natural goal

is to try and construct, or even more fundamentally, prove the existence of LDC with

poly-logarithmic (or perhaps a more modest quasi poly-logarithmic 2poly(log logn)) number

of queries. With this goal in mind, the AEL distance amplification procedure allows one

to relax her effort and construct LDC with distance δ = 1/poly(log n) or slightly lower.

Multiplicity codes are indeed a great example where such a relaxation of the distance

requirement allows one to obtain much better query complexity. Using Theorem 1.2, we
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are able to obtain a reduction to LDC having exponentially lower distance δ = 1/poly(n).

Corollary 1.3 (Amplifying polynomially-small distance). Let 0 < α < 1 be an arbitrary

constant. Assume there exists a family of LDC with distance δ = n−α, rate 1−1/(log n)2,

and query complexity q(n) for block length n. Then, for infinitely many n’s, there exists

an asymptotically good LDC on block-length n with query complexity qnew = q(n)O(log logn).

Corollary 1.3 implies that for constructing asymptotically good LDC with q = 2poly(log logn)

queries, it suffices to construct LDC with extremely poor distance δ = 1/poly(n) for the

same asymptotic query complexity. Note, however, that the rate is required to be suffi-

ciently close to 1. This is because, to prove Corollary 1.3, we apply Theorem 1.2 several

times, in a recursive manner, and so the rate of the resulting code deteriorates with the

depth of the recursion. As a result, the initial rate must be high enough so as to toler-

ate this rate-loss. In fact, we can even amplify extremely small distance δ = n−(1−o(1))

assuming the rate is slightly larger. One instantiation is as follows.

Corollary 1.4. Let c ≥ 1 be any constant. Assume there exists a family of LDC with

distance δ = n−(1− 1
(log logn)c

), rate ρ = 1 − 1
(logn)c+2 , and query complexity q(n) for block-

length n. Then, for infinitely many n’s, there exists an asymptotically good LDC on

block-length n having query complexity qnew = q(n)O((log logn)c+1).

A third interesting application of Theorem 1.2 is when the distance to be amplified is

larger than 1/poly(n), though still very small.

Corollary 1.5. Let α < 1 be an arbitrary constant. Assume there exists a distance

δ = 2−(logn)α LDC having rate 1 − O(1/ log log n), and query complexity q(n) for block-

length n. Then, for infinitely many n’s, there exists an asymptotically good LDC on block

length n with query complexity qnew = q(n)O(log log logn).

We conclude this section by noting that the Katz-Trevisan bound [KT00] holds also for

sub-constant distance. Quantitatively, the query complexity of constant rate codes with

distance δ is Ω(log(δn/ log n)). Thus, even for distance n−α, the Ω(log n) lower bound

holds.

1.3 Rate amplification

The distance amplification procedure is a powerful tool. It is pivotal to the construction

of the state-of-the-art LDC, LCC and LTC [KMRZS17]. More generally, it relaxes one’s

goal of constructing query-efficient codes by allowing codes that are not asymptotically

good. This puts on the table techniques that are otherwise unusable, both algebraic (e.g.,
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the use of multiplicity codes in certain regime of parameters) as well as combinatorial

(iterative applications of the tensor product is one example). Given the fruitfulness of

the distance amplification procedure, which allows one to work with codes that are not

asymptotically good, in this paper we investigate the natural question of devising a rate

amplification procedure.

Puncturing is a coding-theoretic technique that allows one to obtain better rates.

However, it only seems to work when tailored to specific codes with certain structure

or, otherwise, using a randomized encoding. It is unclear to us if rate can be ampli-

fied deterministically in general, regardless of locality, in any meaningful formalization.

Nonetheless, our second main contribution is identifying what we believe to be a natural

class of LDC and devise two rate amplification procedures for it. This class of “nice”

LDC is quite rich. Indeed, it contains most of the known LDC such as Reed-Muller codes

(and therefore also the Hadamard code) as well as codes obtained by lifting [GKS13] and

matching vectors based constructions. Multiplicity codes, however, do not fall into our

class. We defer the introduction of the class itself to Section 1.4, and start by giving the

quantitative results so that the reader will have an idea of how much the rate can be

amplified for “nice” LDC and at what cost. For simplicity, we focus on the rate and state

the theorem for constant distance.

Theorem 1.6 (Rate amplification for “nice” LDC; informal). Assume one has a “nice”

(q, δ = Ω(1))-LDC on block length n0 having rate ρ = ρ(n0). Then, for every integer

` ≥ 1, one can obtain a “nice” (qnew, δnew)-LDC with block length n = n`0, having rate ρnew

where

qnew = q(n0)`,

δnew = Ω(q(n0)−` · n−(1−1/`)),

ρnew = 1− (1− ρ)`.

We remark that the reduction in Theorem 1.6 is explicit. To make sense of the quanti-

tative advantages and disadvantages of Theorem 1.6 let us consider a simple toy example

in which one has a “nice” LDC with rate 1/2 and, say, sub-polynomial query complexity.

By applying Theorem 1.6 with ` = 2, the rate amplifies to 3/4. Unfortunately, however,

the distance deteriorates to about n−1/2. While our distance amplification procedure can

amplify polynomially-small distance (see Corollary 1.3), it requires higher rate to work.

As mentioned, this is because the distance amplification procedure deteriorates the rate.

Thus, to amplify the rate from 1/2 to 3/4, one in fact must amplify the rate even more,

by applying Theorem 1.6 with a larger `, so that the resulted rate after applying the

distance amplification procedure is the desired one. Generally, this has the potential to
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fail as, indeed, by increasing `, the distance deteriorates further, and so the distance am-

plification procedure, in turn, has to “work harder”. As a result, the rate-loss is expected

to be more significant which may indeed be a problem. Nonetheless, we reassure the

reader that our rate and distance amplification procedures amplify the rate and distance

“faster” than they deteriorate the distance and rate, respectively. Indeed, one can invoke

Corollary 1.4 to this end. But, instead of going through that path, we devise a second

rate amplification procedure which has a lower distance deterioration. We remark that

this distance-efficient rate amplification procedure builds on the one discussed above.

1.3.1 Distance-efficient rate amplification procedure

The rate amplification procedure for “nice” LDC that is given by Theorem 1.6 is waste-

ful in terms of distance. Although this can be repaired using our distance-amplification

procedure, it introduces technical difficulties, has some cost in parameters and, more-

over, restricts us to certain regimes of parameters. Generally, it is desirable to have a

more distance-efficient rate-amplification procedure. We devise such a procedure, albeit

with some loss in the other parameters, which makes it incomparable to Theorem 1.6.

Nevertheless, Theorem 1.7 below is superior in most natural regime of parameters.

Theorem 1.7 (Distance-efficient rate amplification for “nice” LDC; informal). Assume

one has a “nice” (q, δ = Ω(1))-LDC with block-length n0 having rate ρ = ρ(n0). Then, for

every integers `, c ≥ 1 such that `2 < c < log n0, one can obtain a “nice” (qnew, δnew)-LDC

with block length n ≈ n`0, having rate ρnew, where

qnew = (cq)poly(`),

δnew = (cq)−poly(`),

ρnew = 1− (1− ρ)` −O
(
`2

c

)
.

Combined with our distance amplification procedure (or even with the AEL distance

amplification procedure as, note, qnew = poly(1/δnew)) the following readily follows.

Corollary 1.8. Assume one has a family of constant distance “nice” LDC with rate

ρ(n) ≥ 1√
logn

and query complexity q(n). Then, for every constant α > 0 2 one can

obtain asymptotically good LDC with rate 1 − α on block length n with query complexity

qnew = (q(n) log n)poly(1/ρ(n)).

2The result holds also for sub-constant α, and the assumption is made only for simplicity. See Theo-

rem 4.23 for the formal, more general, version.
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Discussion. We conclude this section with several remarks. First, we believe that our

rate amplification procedures might be of interest also outside the context of LDC: We

show that “nice” codes, as formalized in the next section, have sufficient structure so

as to allow for rate amplification. That the deterioration in query complexity is man-

ageable must not necessarily take a front-seat. Indeed, note that the AEL distance

amplification procedure was originally devised outside the context of LDC. Secondly,

our rate amplification procedures have the “side effect” of increasing the block length

from n to n`. This by itself is at times a key feature. For example, the tensor prod-

uct of codes also enjoys this fast growth - a property that is exploited by recursive

constructions. The tensor product is known to have very strong testability guarantees

(e.g., [GS06, DSW06, Mei09, Vid13, CMS17, Vid18]). However, it deteriorates both the

rate and the distance. The length n` code obtained by our procedure given by The-

orem 1.7 has, by design, better rate and suffers only a small deterioration in distance

(or, more accurately, in “smoothness” as is formalized in the next section) provided the

query complexity is low. It might be interesting to explore other properties of our rate

amplification procedure.

Last, both our rate and distance amplification procedures are combinatorial in nature

or, more precisely, make use of basic linear algebra (after all, by their very definition, linear

codes are vector spaces). We believe that combinatorial procedures and algorithms that

manipulate the objects of interest–LDC in our case–shed light on the objects themselves

no less than algebraic explicit constructions do. Having said that, for our second rate

amplification procedure (Theorem 1.7), we work with a certain combinatorial object we

call axis-evasive partitions (see Definition 4.12 and Section 5, or Section 1.5.4 for an

overview). Our construction of such partitions is heavily based on properties of finite

fields and field extensions. Interestingly, in the regime of parameters that we care about,

our explicit axis-evasive partitions have good parameters (see Section 5.2) whereas, in

that regime, the probabilistic method (at least the way we applied it) does not seem to be

at all useful (see Section 5.1). We find this interesting given that LDC themselves are not

pseudo-random objects, and so having a better understanding of what kind of structure

they require is of interest.

1.4 Smooth locally recoverable sets (SLR) and dual-SLR

In this section we introduce the class we referred to so far as “nice” LDC. We begin by

introducing the notion of smooth locally recoverable sets (SLR).

Definition 1.9 (Smooth locally recoverable sets; simplified version). Let Σ, P be arbitrary

sets. We say that C ⊆ ΣP is (q, τ)-smooth locally recoverable (SLR for short) if there
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exists a randomized algorithm Rec, called a recovering procedure, that when given as input

p ∈ P and an oracle access to c ∈ C, outputs Recc(p) = cp by making at most q queries

to c. Moreover, for every c ∈ C and p, r ∈ P (not necessarily distinct),

Pr[Recc(p) queries cr] ≤ τ. (1.2)

We will focus on SLR in which Σ is a field and C is a vector space over Σ. In such

case we say that C is linear. Of course, it is trivial to construct a (1, 1)-SLR. Indeed,

simply query cp and output the result. The challenge is to recover cp without being

able to “focus” at any particular entry. This is captured by Equation (1.2) where τ–the

smoothness parameter–bounds the probability a given entry is allowed to be queried. The

formal definition of SLR (see Definition 4.1) also allows the recovering procedure to output

a special “failure” symbol ⊥ with small probability. For ease of discussion, we ignore this

here. We have the following easy claim showing that SLR yield LCC. As a result, linear

SLR induce LDC.

Claim 1.10. Let C ⊆ ΣP be a (q, τ)-SLR. Then, C is a (q, δ)-LCC with δ = Ω (1/(qτ |P |)).

Note that the lowest sensible value for τ is at about q/|P |. Indeed, this will be the

case if each of the q queries is marginally uniform over P , and assuming nothing about

the correlations between the queries. For such τ , if C is linear then, By Claim 1.10, it

yields an LDC with δ = Ω(1/q2). The distance can then be amplified to constant using

our distance amplification procedure to yield query complexity q2+o(1) (or using AEL’s

procedure to get poly(q) queries).

We remark that there is a well-studied notion of locally recoverable codes (LRC) in

the coding theory literature (see [TB14] and references therein). Roughly, these are codes

with the following additional property: One can recover any entry of the (uncorrupted)

code word by querying only few other queries of the code word. Put differently, SLR

as we define them are LRC with the additional requirement of smoothness as given by

Equation (1.2) (hence, their name). However, the smoothness requirement, we believe,

completely changes the structure of the object and so SLR and LRC are probably very

different notions.

1.4.1 Dual SLR and their induced SLR

By Claim 1.10, every linear SLR is an LDC. We believe that the class of SLR is very natural

and captures the essence of correctability. Unfortunately, we are unable to amplify the

rate of every SLR. Rather, we will be working with SLR whose dual has certain structure.

Working with dual of codes in the context of LDC is a very natural approach, and has
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been explored previously [KS07, BIR08] but to the best of our knowledge, the definition

of dual SLR as given below is new. We start by setting some notation. Let P be a set, F
a finite field, and FP the set of all functions {f : P → F}. Note that FP has a natural F-

vector space structure. We consider the natural inner product 〈·, ·〉 : FP ×FP → F that is

defined, for f, g ∈ FP , by 〈f, g〉 =
∑

p∈P f(p)g(p). For f ∈ FP we denote |f | = |P \f−1(0)|.
For p ∈ P define Fp = {f ∈ FP | f(p) 6= 0}.

Definition 1.11 (Dual SLR; simplified version). Let P be a set, F a field. Let D =

{Dp | p ∈ P} be a collection of distributions, where for each p ∈ P , supp(Dp) ⊆ Fp. The

collection D is said to be a (q, τ, ρ)-dual SLR provided the following holds:

1. |f | ≤ q for all f ∈ S ,
⋃
p∈P supp(Dp).

2. For every pair of distinct p, r ∈ P , it holds that

Pr
f∼Dp

[f(r) 6= 0] ≤ τ.

3. Last, dim Sp(S) ≤ (1− ρ)|P |.

The linear subspace S⊥ of FP is called the induced SLR from D. As the name suggests,

the induced SLR S⊥ is indeed an SLR. More precisely, it is a (q − 1, τ) SLR with rate ρ

(see Lemma 4.4). It is for the class of dual-induced SLR that we are able to devise our

rate amplification procedures. Let p be a prime power. We leave it to the reader to show

that, say, the two-dimensional Reed-Muller code over Fp with total-degree p − 2 is an

induced SLR from a (q = p− 1, τ = 1
p+1

, ρ = 1
2
− o(1))-dual SLR. To the reader familiar

with [GKS13], we leave to show that when p is a power of two, the lifted Reed-Solomon

code with degree p− 2 to two variables is an induced SLR from a (q = p− 1, τ = 1
p+1

, ρ =

1− o(1))-dual SLR.

1.5 Proof overview

1.5.1 Query-efficient distance amplification

The AEL distance amplification procedure was originally based on expander graphs [AL96,

AEL95]. Kopparty et al. [KMRZS17] used samplers instead - a point of view that we find

fruitful for our needs 3. Informally, an (ε, δ)-sampler is a bipartite graph on vertex set

3It is interesting to note that an analog advantage of samplers over expanders was exploited in the

study of derandomization of space-bounded computation [BCG18]. The samplers point of view allows

one to consider highly unbalanced samplers which are known to be equivalent to randomness seeded

extractors [Zuc97]. Thus, in a sense, the pseudorandom properties of seeded extractors are more suitable

than those of expanders in some settings.
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L∪R with the following property. For every T ⊆ R, having density µ(T ), all but δ-fraction

of the left vertices have µ(T ) ± ε fraction of their neighbours in T (see Definition 2.1).

For simplicity, we assume regularity with left-degree d and right degree D.

Given a code with poor distance δ, AEL amplifies the distance to constant using an

(ε, δ)-sampler where, for the reduction, ε is taken to be constant. Unfortunately, due

to lack of space, we cannot elaborate on the procedure itself. Instead, we focus on the

quantitative aspect. The AEL procedure has a Dd multiplicative cost in query complexity.

Prior works used either expander graphs or “balanced” samplers, namely, samplers with

|L| = |R| and D = d. With this choice, the lowest possible degree is d = Θ(1/(ε2δ)),

which in turn yields a Θ((1/δ)2) multiplicative cost in query complexity.

Our improved distance amplification procedure is based on two ideas. First, we devise

a variant of the AEL procedure designed specifically for LDC. Our variant has a lower cost

in query complexity: Instead of a Dd factor, our variant has roughly qDqd multiplicative

cost where, recall, qk is the query complexity of an asymptotically good LDC on message

length k. Our variant also makes use of samplers, and when instantiated with a balanced

sampler, the cost is roughly q2
d = q2

1/δ. Our second idea allows us to essentially get rid of

the square. It is known that by working with unbalanced samplers, in which |L| � |R|,
one can obtain (ε, δ)-samplers with a much lower left-degree d = O(log(1/δ)/ε2). We

note that, for the original AEL procedure, working with unbalanced samplers cannot

yield a significant improvement. Indeed, to achieve this saving in left-degree, the ratio

|L|/|R| = Ω(1/(δ log(1/δ))) which in turn implies D = |L|d/|R| = Ω(1/δ). This then only

gives a quadratic improvement over AEL. When instantiated with our variant, unbalanced

samplers yield query complexity roughly q1/δqlog(1/δ).

1.5.2 Rate amplification for dual-induced SLR

For simplicity, we describe our rate amplification procedure only for ` = 2, where ` is as

in the notation of Section 1.3. We briefly explain how to handle larger `’s in Section 1.5.5.

Assume D is a (q, τ, ρ)-dual SLR on FP where the rate ρ is the parameter we wish to

amplify. Consider the mapping Φ : (FP )2 → FP 2
that maps a pair of functions f1, f2 ∈ FP

to the function Φ(f1, f2) : P 2 → F given by Φ(f1, f2)(p1, p2) = f1(p1)f2(p2). Note that

(for ` = 2) this is the outer product operation when thinking of the functions as vectors.

However, thinking in terms of functions will prove to be more intuitive in what follows.

We now show how to convert our poor-rate dual SLR D to a new dual-SLR with a

better rate. Formally, consider the (q2, τ2, ρ2)-dual SLR D2 = {D2
p | p ∈ P 2}, where

for every p = (p1, p2) ∈ P 2, the distribution D2
p is defined as follows. To sample from

D2
p, sample f1 ∼ Dp1 , f2 ∼ Dp2 independently, and return Φ(f1, f2). That q2 ≤ q2

11



is straightforward, and that the new rate ρ2 ≥ 1 − (1 − ρ)2 can be shown using the

bilinearity of Φ (see Claim 4.7). As for the smoothness, we prove (see Lemma 4.9) that

for every p, r ∈ P 2,

Pr [Φ(f1, f2)(r) 6= 0] ≤ τ∆(p,r), (1.3)

where ∆(p, r) is the non-relative Hamming distance between p and r. In particular, for

r 6= p, we get the bound τ2 ≤ τ .

1.5.3 Distance-efficient rate amplification

By Equation (1.3), for most points r ∈ P 2 we in fact have a better bound of τ 2. It is

only those points of distance one from p that cause the smoothness from “squaring” and,

as a result, deteriorate the distance of the induced LDC (recall Claim 1.10). A natural

approach would be to “zero out” the problematic points. To make ‘’zero out” formal, for

a set S ⊆ P 2, let νS : P 2 → F be such that νS(r) = 0 if r ∈ S and νS(r) = 1 otherwise.

Now, instead of Φ(f1, f2) consider the function Φ̂(f1, f2) = Φ(f1, f2) · νL where

L = {r ∈ P 2 | ∆(p, r) = 1 and Φ(f1, f2)(r) 6= 0}.

By construction, Equation (1.3) implies that the smoothness of dual SLR defined using

Φ̂ is bounded by τ 2. Unfortunately, however, we can no longer guarantee anything about

the rate ρ2 which, recall, is the parameter we set out to improve.

Our key idea is to construct carefully chosen functions in addition to those from

S2 = ∪psupp(D2
p) which allows us to zero out the problematic points while deteriorating

the rate only slightly. To describe our solution, let R be a partition of P 2, where each

part has size c + 1 for some parameter c to be chosen later on. We denote the part, or

class, in R containing an element p ∈ P 2 by [p] and write (p) = [p] \ {p} for the open

class of p. For each p ∈ P 2 define the function fp : P 2 → F by fp(r) = 1 if r ∈ [p]

and fp(r) = 0 otherwise. We adjoin all |P |
2

c+1
functions LR = {fp | p ∈ P 2} to S2 by

considering L2
R = Sp(S2) + LR. That is, our dual-induced SLR is redefined to be (L2

R)⊥

rather than (S2)⊥. This has some cost in rate, but a manageable one. Indeed, note that

dim(L2
R) ≤ (1 − ρ2 + 1

c+1
)|P 2|. Thus, for sufficiently large c, the rate loss incurred by

adding the functions in LR can be made small. The advantage we get by adjoining these

functions is that we can now zero out any point r we wish by using the points in its open

class (r). Indeed, for every f ∈ (L2
R)⊥ and r ∈ P 2 we have f(r) = −

∑
w∈(r) f(w). Note

that, on top of the 1
c+1

loss in rate, we expect to pay a multiplicative c cost in query

complexity as |(r)| = c.

To be more precise, for p ∈ P 2, we define a distribution (D2
R)p, which will avoid using

the problematic points given by L above, as follows. To sample a function f ∼ (D2
R)p

12



proceed as follows:

1. Sample g ∼ D2
p and let L = {r ∈ P 2 | ∆(p, r) = 1 and g(r) 6= 0}.

2. For every r ∈ L and w ∈ (r) sample hr,w ∼ D2
w.

3. Return

f = gνL +
∑
r∈L

g(r)
∑
w∈(r)

hr,wν{w}
hr,w(w)

. (1.4)

Observe that the first summand gνL in Equation (1.4) is the attempt we started with.

However, using the partition R, instead of simply zeroing out L (which prevents us from

arguing about the rate ρ2), for every r ∈ L that was zeroed out, we go over each of the

points w in its open class and add a carefully chosen linear combination of the “freshly”

sampled functions {hr,w ∼ D2
w} to gνL so as to guarantee that f ∈ L2

R (see Claim 4.18).

There is one technical issue the reader should be aware of. It might not be the case

that f(p) 6= 0, which is the basic requirement of dual SLR. Indeed, while g(p) 6= 0 it might

be the case hr,w(p) 6= 0 for one or more pairs (r, w) as well. As a result, a cancellation

may occur, causing f(p) = 0. This is where we make use of the ⊥ symbol in the formal

definition of dual SLR. Before outputting f , we check that this cancellation has not

occurred and otherwise return ⊥.

1.5.4 Axis evasive partitions

The above scheme can be implemented with any partition R. However, not every partition

will enable us to improve the smoothness. Informally, we would like the partition to have

the property that the union of open classes taken over the set of points of distance one

from a given point p, is composed of points that are mostly of distance two from one

another. To make this precise, we note that the set of points of distance one from a given

point p is contained in the union of a horizontal and a vertical line. We refer to such lines,

collectively, as axis-parallel lines. The following definition abstracts what we need from

the partition so to argue about the smoothness.

Definition 1.12. Let P be a set. A partition R of P 2 is said to be (c, s)-axis evasive if

1. For every p ∈ P 2, |(p)| = c.

2. For every pair of axis-parallel lines `, `′ (possibly equal),∣∣` ∩ ⋃
p∈`′

(p)
∣∣ ≤ s.
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3. For every p ∈ P 2 and every axis-parallel line `, |[p] ∩ `| ≤ 1.

We show that by using a (c, s)-axis evasive partition, the dual SLR defined in Sec-

tion 1.5.3 has smoothness τ2 = O(csqτ 2) (see Claim 4.20). The reader should think of c, s

as constants (or slightly sub-constants) and q � τ−1, and so τ2 ≈ τ−2 � τ−1.

Constructing axis-evasive partitions. Assume |P | = m is an odd prime power, and

let c be an even integer such that c + 1 | m + 1. Under these assumptions, we are

able to give an explicit algebraic construction of (c, s)-axis evasive partitions of P 2 where

s = O(c2) (see Section 5.2). Intuitively, as we want to construct a partition that “breaks”

axis-parallel-ness, rotation would be a natural approach. Indeed, for our construction, we

identify P with the finite field Fm and P 2 with Fm2 . For every choice of α ∈ Fm2 \ Fm,

one can identify Fm2 with Fm + αFm. So, informally, Fm and αFm are the horizontal

and vertical axes, respectively. To formalize the intuition of rotation, we take an element

β of order c + 1 in the multiplicative group of Fm2 . Being a cyclic group, and since

c + 1 | m + 1 | m2 − 1, such an element exists. Multiplication by β can, informally, be

thought of as a rotation by a 1
c+1

angle. We take the partition of Fm2 \ {0} according

to the cosets of 〈β〉 - the subgroup generated by β (and do not worry much about the

origin). We show that, with this construction, properties (1) and (2) of Definition 1.12 are

satisfied. Property (3), however, does not and so we need to make a certain modification

of the construction to resolve this. We do not delve into the required alternation of the

construction here.

1.5.5 Rate amplification for dimension higher than two

Our basic rate amplification procedure can be easily generalized to any ` > 2. On the

other hand, our distance-efficient rate amplification procedure is designed for ` = 2.

To go from ` = 2 to higher powers, we more or less do the obvious thing, namely,

apply the dual SLR construction iteratively, where in each iteration we square the size

of the previously obtained set. The only technical issue is that the divisibility by c + 1

requirement is not maintained throughout the process. Indeed, 2 is the only nontrivial

common factor of m + 1 and m2 + 1. To overcome this, we truncate the resulted set,

slightly reducing its size from m2 to a prime m′ that is divisible by c+ 1. The truncation

deteriorates the rate and so we would like m′ ≈ m2. Such prime m′ is guaranteed to exist

by the Siegel–Walfisz Theorem [Sie35, Wal36] that refines Dirichlet’s theorem on primes

in arithmetic progressions.
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2 Preliminaries

Notations and conventions. Unless otherwise stated, all logarithms are taken to the

base 2. We denote by N the set of natural numbers (of course, including 0). For an integer

c ≥ 1, we let [c] = {1, 2, . . . , c}. For ease of readability, we avoid the use of floor and

ceiling. This does not affect the stated results. For two strings x, y of equal length over

a common alphabet, we denote by dist(x, y) their relative hamming distance, namely, the

fraction of indices on which they disagree. Let A 6= ∅ be an ambient (finite) set. For

B ⊆ A, we denote by µ(B) the density of B in A, namely, µ(B) = |B|/|A|.
Let G = (V,E) be an undirected graph with maximal degree D. Assume that the

neighbours of every node v ∈ V are labeled by distinct numbers from 1, . . . , deg(v). We

define the neighbourhood function ΓG : V × [D]→ (V × [D])∪{⊥} as follows. For v ∈ V
and i ∈ [deg(v)] we let ΓG(v, i) = (u, j) where u is the i’th neighbour of v and v is the

j’th neighbour of u. For i ∈ [D] \ [deg(v)] the function is defined to be ⊥ (though this is

only for the sake of formality. We will never use such input i). If G is clear from context

we sometimes omit it from the subscript. When interested only on the node u as above

and not on j, we make a slight abuse of notation and write Γ(v, i) when referring to u.

Last, we write Γ(v) for the set of all neighbours of v.

2.1 Samplers

Our distance amplification procedure makes use of samplers. These are bipartite graphs

with a certain pseudo-random property. Let G = (L,R,E) be a bipartite graph. We say

G is left-regular if all nodes in L have the same degree.

Definition 2.1 ([BR94]). Let 0 < ε, δ < 1. A bipartite graph G = (L,R,E) is an

(ε, δ)-sampler if for every subset T ⊆ R, for all but δ-fraction of vertices v ∈ L it holds

that ∣∣∣∣ |Γ(v) ∩ T |
|Γ(v)|

− µ(T )

∣∣∣∣ ≤ ε.

We will be working with “unbalanced” samplers. These are samplers with |L| �
|R|. The state-of-the-art constructions of these samplers rely on their connection to

randomness seeded extractors. We refer the interested reader to the excellent survey by

Goldreich [Gol11] for more information. When working with samplers, it is rather typical

that the bipartite graph is left-regular, that is, the degree of all vertices in L is the same.

A small additional technical property we need is that the degree of every vertex in R

is close to the average right-degree. We make use of the following theorem which gives
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(non-explicit) samplers with near-optimal parameters having the above properties with

respect to the degrees. We give a proof sketch for completeness.

Theorem 2.2. There exists a universal constant csamp ≥ 1 such that the following holds.

For all integers `, r and all ε > 0, 1/2 > δ > 0 for which ` ≥ r
δ log(1/δ)

, there exists a left-

regular (ε, δ)-sampler G = ([`], [r], E) with left-degree d = csamp · log(1/δ)/ε2. Moreover,

provided that log r < 1/(δε2), every right vertex has degree in [D/2, 2D] where D = `d/r

is the average right degree.

For the proof we need the following well-known lemma.

Lemma 2.3. For every integers 1 ≤ k ≤ n with k
n

= δ ≤ 1
2

it holds that

k∑
i=0

(
n

i

)
≤ 2H(δ)n,

where H(x) = −x log(x)− (1− x) log(1− x) is the binary entropy function.

Proof sketch for Theorem 2.2. The proof is via the probabilistic method, where for every

left vertex we choose d neighbours independently and uniformly at random, and indepen-

dently across all left vertices (note that in the above we allow for parallel edges, but if

that troubles the reader, that can be avoided as well in the regime of interest d � r by

arguing that the probability of a right neighbor to be selected more than once is small.

In any case, our distance amplification procedure works just as well with parallel edges).

Fix T ⊆ [r]. For v ∈ [`] let Fv be the indicator random variables that is 1 if and only if

||Γ(v) ∩ T |/d − µ(T )| > ε. By the Chernoff bound, Pr[Fv] ≤ e−Ω(ε2d). Fix S ⊆ [`] with

|S| = δ`. The probability that for all vertices v ∈ S it holds that Fv = 1 is bounded

above by e−Ω(ε2d·δ`). By taking the union bound over all S and T , we get that except with

probability

2r
(
`

δ`

)
e−Ω(ε2dδ`) ≤ 2r+H(δ)`−cε2dδ`, (2.1)

the sampled graph is an (ε, δ)-sampler. Note that the last inequality follows by Lemma 2.3,

where c > 0 is some constant. By taking csamp ≥ 5/c, one can verify (using that H(x) ≤
2x log(1/x) for all x ≤ 1/2) that the right hand side in Equation (2.1) is bounded by 1/4.

As for the moreover part, again, by the Chernoff bound, the probability that there

exists a right vertex which has degree outside [D/2, 2D] is bounded above by re−Ω(`d/r),

and this is bounded by 1/4 by our choice of parameters and by taking csamp large enough.

We now turn to state the parameters of the explicit construction of samplers that we

use.
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Theorem 2.4 ([RVW01], [Gol11]). 4 For every constant ∆ > 0 there exists a constant

c = c(∆) ≥ 1 such that the following holds. For all ε > 0, δ > 0 5, there exists an explicit

left-regular (ε, δ)-sampler G = ([`], [r], E). The left-degree of G is d = ((1/ε) log(1/δ))c.

Furthermore, the average right degree D = `d/r of G is in [D′, 2D′] where

D′(∆, ε, δ) =
d

2
·
(

2

δ

)∆+1

. (2.2)

2.2 Codes

We make use of “standard” error-correcting codes. In this section we gather some known

results we use.

Theorem 2.5 (The Gilbert-Varshamov bound). Let Σ be a set of size |Σ| = q. For every

n ∈ N, and 0 ≤ δ ≤ 1 − 1
q

there exists a code of block-length n over Σ, with distance at

least δ and rate r ≥ 1 − Hq(δ). Furthermore, if q is a prime power and Σ = Fq, there

exists a linear code over Σ with rate r ≥ 1−Hq(δ)− g(n), where g(n) = O( 1
n
).

Lemma 2.6. There exists a constant β0 > 0 such that the following holds. Let n be an

integer and 1
logn

< β < β0 . Let Σ = Fq for q ≥ 2 a prime power. Then, there exists an

explicit linear code of block-length n over Σ with rate 1− β and relative distance β3.

The existence of these codes follows from a special case of the Zyablov bound [Zya71],

but for completeness we describe a construction which attains the stated parameters. For

the proof, we make use of the following easy claim whose proof is omitted.

Claim 2.7. For every x ∈ (0, 1/2] and q ≥ 2, Hq(x) ≤ x logq(
q3

x
).

Proof of Lemma 2.6. The proof is obtained by taking the code concatenation of two codes,

a Reed-Solomon code and a Gilbert-Varshamov code. Let p be the least prime such that

p ≥ n. Recall that p ≤ 2n. Set CRS to be the Reed-Solomon code over Fp of block

length nRS = (1−β1.1)n
logq p

and message length kRS = (1− β1.1)nRS. So, CRS has rate 1− β1.1

and relative distance at least β1.1. Now take CGV to be a linear code of the following

parameters. The message length is kGV = logq p, the block length is 1
1−β1.1kGV (and

therefore the rate is 1− β1.1), and the relative distance is at least β1.4. We wish to invoke

4The sampler in [RVW01] has a mild requirement on ε which we state the theorem without, as it is

explained in [Gol11] how this requirement can be relaxed, by using a more recent extractor.
5The sampler in [RVW01] has a number of edges z that is a power of two. We state the theorem for

a general z as one can take the subgraph of only part of the left vertices, and get a sampler in which δ is

at most doubled.
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Theorem 2.5 so as to prove that such a code exists. To this end, we must verify that

1−Hq(β
1.4)− g(n) ≥ 1− β1.1. Indeed, by Claim 2.7, we have that

1−Hq(β
1.4)− g(n) ≥ 1− β1.4 logq

(
q3

β1.4

)
− g(n) ≥ 1− β1.1,

where the last inequality holds for all sufficiently small β ≥ 0, and since g(n) = O( 1
n
) and

β ≥ 1
logn

, by assumption.

Note that CGV is not explicit as Theorem 2.5 only guarantees existence of a code with

the stated parameters. However, as the block-length of CGV is O(log n), such a code can

be found by an exhaustive search on generating matrices, in time 2O((logn)2). To improve

on that, we remark that the code CGV can also be found by going only over a limited

family of generating matrices (see [GRS12]), and this can be done in time poly(n).

Consider the concatenated code CRS ◦ CGV. It has block length nRS · nGV = n, rate

(1 − β1.1)2 which is at least 1 − β for all small enough β > 0, and relative distance

β1.2β1.4 ≥ β3, completing the proof.

3 Query-efficient distance amplification

In this section we construct our query-efficient distance amplification procedure. We start

by giving a somewhat more formal definition of locally decodable codes (compared to Def-

inition 1.1) or, more precisely, a more formal definition of their non-adaptive counterparts.

Recall that, informally, these are LDC in which the joint distribution of queries depends

solely on the index one wishes to decode and is independent of the received word. By

inspection, it is our understanding that the AEL distance amplification procedure also

requires non-adaptivity.

Definition 3.1 (Locally decodable codes). Let (C,Q,R) be a tuple of functions

C : Σk
in → Σn

out,

Q : [k]× {0, 1}r → [n]q,

R : [k]× Σq
out × {0, 1}r → Σin.

Define

D : [k]× Σn
out × {0, 1}r → Σin

as follows. For v ∈ [k], y ∈ Σn
out, and s ∈ {0, 1}r, let

Q(v, s) = (u1, . . . , uq),

D(v, y, s) = R(v, yu1 , . . . , yuq , s).
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The tuple (C,Q,R) is called a (q, δ, ε)-locally decodable code (or (q, δ, ε)-LDC for short)

if the following holds. For every v ∈ [k], x ∈ Σk
in, and y ∈ Σn

out for which dist(y, C(x)) ≤ δ,

it holds that

Pr
s∼Ur

[D(v, y, s) = xv] ≥ 1− ε.

We call the function C the encoding function, Q the querying function, and R the re-

construction function. The induced function D is called the decoding function. The

parameters k, n are referred to as the message length and the block length, respectively.

The sets Σin,Σout are called the input alphabet and output alphabet, respectively. We will

be interested mostly in locally decodable codes in which Σin = Σout in which case we refer

to both as the alphabet of the code. The parameter r is called the randomness complexity

of the LDC. We say the LDC is explicit if all three functions C,Q,R are polynomial-time

computable. Note that then the decoding function D is also polynomial-time computable.

3.1 The distance amplification procedure

In this section we present our query-efficient distance amplification procedure. We start

by describing the building blocks we use and specify their parameters.

Building blocks.

• For i = 1, 2 let (Ci, Qi, Ri) be a (qi, δi, εi)-LDC with message length ki and block

length ni over the same alphabet Σ. We denote the rate ki/ni of Ci by ρi.

• Let (C3, Q3, R3) be a family of (q3(k3), δ3(k3), ε3(k3))-LDC having rate ρ3(k3) for

message length k3. The code C3 is also over the alphabet Σ. We will always work

with functions q3, δ3, ε3, ρ3 that are monotone. More precisely, q3 and ρ3 are non-

decreasing and δ3, ε3 are non-increasing. We sometimes write q3, δ3, ε3, ρ3 without

mentioning explicitly the message length, and by that refer to the largest k3 con-

sidered in the construction for q3, δ3 and the smallest k3 when considering ε3, ρ3. In

any case, we assume (mostly for simplicity) that ρ3(k3) ≥ 1/2 for all k3.

• Set ` = n1/k2. Let G = (L,R,E) be a (δ2/2, δ1)-sampler with |L| = ` and |R| = r.

Assume G is left-regular with left-degree d = n2. Assume further that every right-

vertex v of G has degree deg(v) ∈ [D/2, 2D], where D is the average right degree

D = `d/r = n1/(rρ2).

How to think of the parameters? We think of C1 as the code whose distance δ1 we

wish to amplify. Typically, the code C2 has a much shorter message length n2 � n1. In
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all applications in this paper we take δ2 to be either constant or slightly sub constant in

n1. The code C3 has a larger block length than C2 and, depending on the application, it

has either a somewhat smaller or much smaller message length than n1. We typically take

δ3 ≈ δ2. The rates of all three codes is taken to be constant and even close to one. Note

that we take C3 to be a family of codes, whereas C1 and C2 are codes with predetermined

message lengths. The reason is that the sampler G is not necessarily right-regular, and in

the construction, we associate codes from C3 with the right vertices of G. Recall, though

that the ratio of largest to smallest right-degree is bounded by 4, so that is a minor

technicality.

To describe the LDC that is composed of these building blocks, we need to specify the

encoding function, querying function and reconstruction function. We start by describing

the encoding function.

The encoding function

Let n =
∑

v∈R nv where nv is the block length of the code from the family C3 having

message length kv = deg(v). We define the function C : Σk1 → Σn as follows. Let

x ∈ Σk1 .

1. Compute y = C1(x) ∈ Σn1 .

2. Partition y to y = y(1) ◦ · · · ◦ y(`) consecutive blocks, each of length k2. Recall that,

indeed, n1 = `k2.

3. For every u ∈ [`] compute z(u) = C2(y(u)) ∈ Σn2 .

4. For every v ∈ [r] and j ∈ [deg(v)] let (u, j′) = Γ(v, j) ∈ [`]× [n2]. Define the string

w(v) ∈ Σdeg(v) = Σkv as follows: for j ∈ [deg(v)], (w(v))j = (z(u))j′ .

5. For every v ∈ [r] compute t(v) = C3(w(v)) ∈ Σnv .

6. The output of the encoding function on input x is then defined by C(x) = t(1) ◦ · · · ◦
t(r) ∈ Σn, where as usual we identify R with [r].

By the construction of the encoding function, the message length and block length of

the resulted code are k1 and n, respectively. From here on we denote k = k1.

The querying function

We denote the randomness complexity of C1, C2, C3 by r1, r2, r3, respectively. The ran-

domness complexity of the resulting querying function will be r = r1+r2+r3, and the query
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complexity will be q ≤ q1q2q3, where q3 is taken to be the maximum query complexity

taken over all right vertices. We turn to define the querying functionQ : [k]×{0, 1}r → [n]q

as follows. On inputs p ∈ [k], s ∈ {0, 1}r we proceed as follows.

1. Partition s = s1 ◦ s2 ◦ s3 where |s1| = r1, |s2| = r2, |s3| = r3.

2. Compute (a1, . . . , aq1) = Q1(p, s1) ∈ [n1]q1 .

3. For i = 1, . . . , q1

(a) Set ui = dai/k2e and bi = 1 + ((ai − 1) mod k2). Informally, ui is the “bucket”

in which ai resides and bi is its location within the bucket. Note that we start

the counting from 1 rather than 0, hence the slightly annoying addition and

subtraction by 1 in the definition of bi.

(b) Compute (t
(i)
1 , . . . , t

(i)
q2 ) = Q2(bi, s2) ∈ [n2]q2 .

(c) For j = 1, . . . , q2

i. Let (v(i,j), t̂
(i)
j ) = Γ(ui, t

(i)
j ) ∈ [r]× [kv(i,j) ].

ii. Compute (e
(i,j)
1 , . . . , e

(i,j)
q3 ) = Q3(t̂

(i)
j , s3) ∈ [nv(i,j) ]

q3 .

iii. As before, we endow the right vertices of the sampler in a fixed (arbitrary)

order by identifying R with [r]. For h = 1, . . . , q3 set c(i,j,h) to be the

absolute location of e
(i,j)
h in the ordering of R. That is, c(i,j,h) = e

(i,j)
h +∑

v<v(i,j) nv.

4. The result is then given by Q(p, s) = (c(i,j,h))(i,j,h)∈[q1]×[q2]×[q3].

Note that, indeed, the query complexity q of the querying function defined above is at

most q1q2q3 where, recall, q3 = q3(2D). From here on we identify [q] with [q1]× [q2]× [q3].

The reconstruction procedure

We define the reconstruction procedure R : [k]× Σq × {0, 1}r → Σ as follows. On inputs

p ∈ [k], σ = (σ(i,j,h))(i,j,h)∈[q1]×[q2]×[q3] ∈ Σq, and s ∈ {0, 1}r, we proceed as follows.

1. Partition s = s1 ◦ s2 ◦ s3 where |s1| = r1, |s2| = r2, |s3| = r3 as in the querying

function.

2. For i = 1, . . . , q1

(a) For j = 1, . . . , q2

i. Denote (z1, . . . , zq3) = (σ(i,j,1), . . . , σ(i,j,q3)).
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ii. Compute y
(i)
j = R3(t̂

(i)
j , z1, . . . , zq3 , s3), where t̂

(i)
j = t̂

(i)
j (p, s) as defined in

the querying function.

(b) Set xi = R2(bi, y
(i)
1 , . . . , y

(i)
q2 , s2) where bi = bi(p, s) as defined in the querying

function.

3. The output is then given by R(p, σ, s) = R1(p, x1, . . . , xq1 , s1).

3.2 Analysis

In this section we analyze the LDC obtained above. We prove

Proposition 3.2. With the notation of the previous section, C is a (q, δ, ε)-LDC, where

q ≤ q1q2q3,

δ ≥ δ2δ3

16
,

ε ≤ ε1 + (ε2 + ε3)n.

Furthermore, C has rate ρ1ρ2ρ3, where ρ1, ρ2 are as defined in the building blocks para-

graph, and per our convention set above, ρ3 = ρ3(D/2).

Remark regarding the distance. Note that the distance δ of the resulted code C is

independent of δ1, the poor distance of C1 we set out to amplify. This is the key feature of

the AEL distance amplification procedure (which our variant above, of course, maintains).

It is yet another instance of a general strategy in pseudo-randomness that combines objects

in such a way that the resulted object enjoys the upsides of the different parts and avoid

their shortcomings. The Zig-Zag product is another classic example. But, of course, δ1 has

some effect on the resulted code. The effect δ1 has on the code is via the query complexity.

Indeed, as the analysis will show, the smaller δ1 is (i.e., the weaker the guarantee we have

on the distance of C1), the larger k2 = k2(δ1) and k3 = k3(δ1) must be, with a far stronger

effect on k3. More quantitatively, roughly speaking, by taking a sufficiently good sampler

(e.g., the one that is given by Theorem 2.2), k2 ≈ poly log(1/δ1) and k3 ≈ poly(1/δ).

This, in turn, effects the query complexities q2 = q2(k2) and q3 = q3(k3).

Proof. That the query complexity is q ≤ q1q2q3 readily follows by the querying function,

where recall that per our convention q3 = q3(2D). To analyze the rate, recall that ρ3 is

a non-decreasing function. Further, our convention dictates that by writing ρ3 without

explicitly mentioning the message length, we refer to ρ3 applied with the smallest message
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length taken by the construction, namely, ρ3 = ρ3(D/2). Thus,

n =
∑
v∈R

nv =
∑
v∈R

kv
ρ3(kv)

≤ 1

ρ3

∑
v∈R

kv =
`n2

ρ3

=
n1

ρ2ρ3

.

Recall that k = k1 = ρ1n1 which shows that ρ = k/n ≥ ρ1ρ2ρ3.

We turn to analyze the distance δ and error ε. Let x ∈ Σk and let C̃(x) ∈ Σn be such

that dist(C̃(x), C(x)) ≤ δ. Define the set of “errors”, namely, the disagreements between

C(x) and C̃(x) by

B = {i ∈ [n] | C̃(x)i 6= C(x)i}.

By assumption, µ(B) ≤ δ. The error set B induces errors “backwards” throughout the

construction. We proceed by analyzing these induced errors. Recall that, in the encoding

function, we defined for each v ∈ [r] an element t(v) = t(v)(x) ∈ Σnv . Partition C̃(x) to r

substrings C̃(x) = t̃(1) ◦ · · · ◦ t̃(r), where t̃(v) has length nv, and define the set

Bt =
{
v ∈ [r] | dist

(
t(v), t̃(v)

)
≥ δ3

}
.

Informally, v ∈ Bt if the adversary has introduced too many errors on the respective block

to allow for correct decoding via D3.

Claim 3.3. µ(Bt) ≤ 8δ/δ3.

Proof. For v ∈ R let ev = dist(t(v), t̃(v)). We have that
∑

v∈R evnv ≤ δn. On the other

hand, ∑
v∈R

evnv ≥ δ3

∑
v∈Bt

nv ≥
δ3D|Bt|

2
.

But, per our assumption that ρ3 ≥ 1/2, and since kv ≤ 2D for all v ∈ R,

n =
∑
v∈R

nv ≤ 2
∑
v∈R

kv ≤ 4Dr.

The proof follows by the above three inequalities.

For convenience we also denote Bw = Bt. Next, we define

Bz = {u ∈ [`] | |Γ(u) ∩Bw| ≥ δ2n2} . (3.1)

Claim 3.4. µ(Bz) ≤ δ1.

Proof. By Claim 3.3 and by our assumption on δ,

µ(Bw) ≤ 8δ

δ3

=
δ2

2
.

Recall that G is a (δ2/2, δ1)-sampler. Thus, at most δ1-fraction of the left vertices u ∈ [`]

satisfy µ(Γ(u) ∩Bw) ≥ µ(Bw) + δ2/2. The proof then follows since µ(Bw) ≤ δ2/2.
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Lastly, define

By =

{
a ∈ [n1]

∣∣∣ ⌈ a
k2

⌉
∈ Bz

}
.

For v ∈ [r], b ∈ [kv] we define the function w̃
(v)
b : {0, 1}r3 → Σ as follows: on input

s3 ∈ {0, 1}r3

w̃
(v)
b (s3) = D3(b, t̃(v), s3).

Claim 3.5. There exists a set E3 ⊆ {0, 1}r3 with µ(E3) ≤ ε3n such that for every s3 ∈
{0, 1}r3 \ E3, v ∈ [r] \Bt, and b ∈ [k3] it holds that w̃

(v)
b (s3) = w

(v)
b .

Proof. Fix v ∈ [r] \ Bt. By the definition of Bt, one has that dist
(
t(v), t̃(v)

)
≤ δ3. By the

encoding function, t(v) = C3(w(v)). Therefore, for every b ∈ [k3],

Pr
s3∼Ur3

[
D3(b, t̃(v), s3) 6= w

(v)
b

]
≤ ε3.

The proof then follows by taking the union bound over all v ∈ [r] \ Bt and b ∈ [kv] as

indeed
∑
kv ≤ n.

For (u, j) ∈ [`] × [n2] we define the function z̃
(u)
j : {0, 1}r3 → Σ as follows. For

s3 ∈ {0, 1}r3 we have z̃
(u)
j (s3) = w̃

(v)
j′ (s3), where (v, j′) = Γ(u, j) ∈ [r] × [kv]. Further

define the function z̃(u) : {0, 1}r3 → Σn2 by

z̃(u)(s3) = z̃
(u)
1 (s3) ◦ · · · ◦ z̃(u)

n2
(s3).

Claim 3.6. For every u 6∈ Bz and s3 ∈ {0, 1}r3 \ E3 it holds that

dist
(
z̃(u)(s3), z(u)

)
≤ δ2.

Proof. Fix s3 ∈ {0, 1}r3 \ E3 and consider any u ∈ [`] \Bz. By the encoding function, for

every j ∈ [n2] it holds that z
(u)
j = w

(v)
j′ , where (v, j′) = Γ(u, j). As v 6∈ Bz, at most δ2n2

of j ∈ [n2] satisfy v ∈ Bw. For every other j,

z̃
(u)
j = w̃

(v)
j′ (s3) = w

(v)
j′ = z

(u)
j ,

proving the claim.

For u ∈ [`], a ∈ [k2] we define the function ỹ
(u)
a : {0, 1}r2 ×{0, 1}r3 → Σ as follows. On

(s2, s3) ∈ {0, 1}r2 × {0, 1}r3 ,

ỹ(u)
a (s2, s3) = D2(a, z̃(u)(s3), s2).
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Claim 3.7. There exists a set E2 ⊆ {0, 1}r2 with µ(E2) ≤ ε2n such that for every u ∈ [`] \
Bz, a ∈ [k2], and (s2, s3) ∈ ({0, 1}r2 \ E2)× ({0, 1}r3 \ E3) it holds that ỹ

(u)
a (s2, s3) = y

(u)
a .

Proof. Fix u ∈ [`] \Bz. By the encoding function z(u) = C2(y(u)). Recall that

ỹ(u)
a (s2, s3) = D2(a, z̃(u)(s3), s2).

As s3 /∈ E3, u /∈ Bz, Claim 3.6 implies dist(z̃(u)(s3), z(u)) ≤ δ2. Therefore

Pr
s2∼Ur2

[
D2(a, z̃(u)(s3), s2) 6= y(u)

a

]
≤ ε2.

The proof then follows by taking the union bound over all a ∈ [k2] and u ∈ [`] \ Bz, and

noting that k2` = n1 ≤ n.

Claim 3.8. For every (s2, s3) ∈ ({0, 1}r2 \ E2)× ({0, 1}r3 \ E3), it holds that

dist(ỹ(s2, s3), y) ≤ δ1,

where ỹ(s2, s3) is the concatenation of the k2-length strings
(
ỹ(u)(s2, s3) | u ∈ [`]

)
.

Proof. Note that by Claim 3.7, the projection of the two strings ỹ(s2, s3), y to a block

corresponding to u /∈ Bz are in full agreement. The proof then follows by Claim 3.4.

We now conclude the proof of Proposition 3.2. Let p ∈ [k], by Claim 3.8, for every

(s2, s3) ∈ ({0, 1}r2 \ E2)× ({0, 1}r3 \ E3), we have that dist(ỹ(s2, s3), y) ≤ δ1. Since by the

encoding function y = C1(x), it holds

Pr
s1∼Ur1

[D1(p, ỹ(s2, s3), s1) 6= xp] ≤ ε1.

The proof then follows since µ(E2) ≤ ε2n and µ(E3) ≤ ε3n.

3.2.1 Proof of Theorem 1.2

In this short section we prove Theorem 1.2. We focus on the version that is based on

non-explicit samplers, yielding non-explicit reductions. The explicit reduction, which

entails a bit more technical work, is deferred to Section 3.3 and Section 3.6. We choose

to focus on the non-explicit version first because we believe that understanding LDC in

the information-theoretic level is, at present, a deeper and more urgent problem than the

question of explicitness. Also, the parameters are easier to work with. For the information-

theoretic version, we make use of the sampler that is given by Theorem 2.2. From here

on we refer to the constant csamp ≥ 1 that appears in that theorem.
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Theorem 3.9. Let C be a block-length-n (q, δ, 1/5)-LDC over alphabet Σ having a constant

rate. Let C ′ be a family of asymptotically good (q′n, δ
′, 1/5)-LDC, where q′n is the query

complexity when the code from the family is taken with block length n. Then, there exists

an asymptotically good LDC over Σ, with constant error, having block length Θ(n) and

query complexity

qnew = O
(
q · q′O(1/δ) log(1/δ) log n

)
. (3.2)

Proof. Take C1 to be the code C in the hypothesis of the theorem, namely, a code with

block length n1 = n and distance δ1 = δ. Recall that in the distance amplification proce-

dure from Section 3.1, we make use of a (δ2/2, δ1) sampler G = ([`], [r], E) with ` = n1/k2

and left-degree d = n2. For the proof, we will instantiate the distance amplification proce-

dure with the sampler that is given by Theorem 2.2. We take C2 to be an asymptotically

good code over Σ set with block length

n2 = csamp ·
log (1/δ1)

(δ2/2)2
= O(log(1/δ)),

where δ2 is the (constant) distance of C2, having rate at least 1/2. Note that this choice

of parameters is as required by Theorem 2.2 from the left degree of the sampler. Clearly,

C2 has query complexity O(log(1/δ)) and error ε2 = 0. As for the degree Dv of any given

right vertex v of the sampler, note that the average right degree is

D =
`d

r
=

d

δ log(1/δ)
=

4csamp

δ1δ2
2

= Θ

(
1

δ

)
.

Recall that, by Theorem 2.2, Dv ∈ [D/2, 2D]. For every length in this range, we take a

code from the family C ′ having the required message length. We would like take the family

of codes C3 to be C ′ though we must reduce the error first. Indeed, note that the error ε of

the code obtained by Proposition 3.2 is ε1 +n(ε2 +ε3). As mentioned in the introduction,

one can reduce the error from 1/5 to 1/(10n) by applying the decoding procedure for

c log n times, where c is some large enough constant, and output the symbol according

to plurality. This has no effect on the rate or distance of C ′, and has a multiplicative

O(log n) cost in query complexity. That is, the query complexity of C3 is O(q′O(1/δ1) log n).

The proof then readily follows by Proposition 3.2.

Improving the query complexity further given low-error LDC. We remark that,

if C ′ has error O(1/n) to begin with, n being the block length of C, then one can skip the

error reduction in the proof of Theorem 3.9, and get a slightly better query complexity.

Indeed, this will save the log n factor in Equation (3.2). Moreover, observe that C2

can be taken to be an LDC as well, rather than a standard code, which will reduce its
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deterioration on the query complexity from O(log(1/δ)) to q′O(log(1/δ)). However, for that,

one need the error of C2 to be O(1/n) as well. Assuming one can obtain such low-error

LDC (note that an error of 1/n is at least exponentially-small in the length of C2 since

δ > 1/n), the query complexity can be improved further to

qnew ≤ q · q′O(1/δ)q
′
O(log(1/δ)).

We conclude this section by instantiating Theorem 3.9 with C ′ taken to be the state-

of-the-art construction of asymptotically good LDC.

Theorem 3.10 ([KMRZS17]). Let Σ be a finite alphabet. Then, there exist constants

δ, ρ and an explicit infinite family of (qk, δ, 1/5)-LDC, k being the message length, having

query complexity qk = 2O(
√

log(k) log log k).

Using it, one gets query complexity

qnew ≤ q log(n) · 2O(
√

log(1/δ)·log log(1/δ)) = q log(n)(1/δ)o(1).

3.3 Relaxing the assumption on the sampler G

In the distance amplification procedure described in Section 3.1, the sampler G is assumed

to be a left-regular (δ2/2, δ1)-sampler in which every right degree is in [D/2, 2D]. In order

for the reduction to result in an explicit code, we want to be able to plug in an explicit

sampler in the distance amplification procedure, for which the bounds on the right degree

may not hold. We now describe how a sampler that does not satisfy this assumption can

be used even so. The change to the construction is detailed as follows.

Modified construction.

• For i = 1, 2, 3 let (Ci, Qi, Ri) be as in Section 3.1. Assume further that δ1 ≤ δ2/8.

• Set ` = n1/k2. Let G = (L,R,E) be a (δ2/8, δ1)-sampler with |L| = ` and |R| = r.

Assume G is left-regular with left-degree d = n2, and denote by D = `d
r

the average

right degree (the right degrees may be arbitrary).

• The encoding function C : Σk1 → Σn is the same as in Section 3.1, but for the

following change: if v ∈ [r] has degree outside [D/2, 2D] then discard it.

• The querying function is the same as in Section 3.1, but for the following change: if

v(i,j) is a vertex with degree not in [D/2, 2D], then set (c(i,j,h))h∈[q3] to be an empty

tuple.
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• The reconstruction procedure is the same as in Section 3.1, but for the following

change: if i, j are such that v(i,j) is a vertex with degree not in [D/2, 2D], then set

y
(i)
j =⊥ (or, if one prefers to avoid the use of ⊥, any σ ∈ Σ can be used).

The amendments above have the effect that when encoding the blocks corresponding to

right vertices, that are either too big or too small, the encoding discards such blocks and

their contents, as if they were deleted. The querying function is changed so that whenever

a location in these blocks needs to be queried, that query is skipped. The reconstruction

procedure is accordingly changed so that whenever a location was not queried on the

account of it residing in a block too big or too small, some arbitrary symbol (or ⊥) is

passed on instead. To analyze the altered distance-amplification procedure we start by

proving two simple statements about samplers.

Lemma 3.11. Let G = ([`], [r], E) be a left-regular (ε, δ)-sampler with average right-

degree D. Assume δ ≤ 1/4. Then, G has at most 3εr right vertices with degree less than

D/2.

Proof. Denote by d the left-degree of G. Define A = {v ∈ [r] | deg(v) < D/2}. Since G

is an (ε, δ) sampler, at least (1− δ) fraction of the left vertices have (at least) ( |A|
r
− ε)d

neighbors in A. Hence, A has at least (1 − δ)`( |A|
r
− ε)d edges entering it. Therefore, it

must hold that
(1− δ)`

(
|A|
r
− ε
)
d

|A|
<
D

2
.

As the average right degree is D = `d
r

, and since by assumption δ ≤ 1/4, we conclude

that the average right-degree of A is at least

(1− δ)`
(
|A|
r
− ε
)
d

|A|
= (1− δ)D

(
1− rε

|A|

)
≥ 3D

4

(
1− rε

|A|

)
.

By the above two equation it follows that |A| < 3εr.

Lemma 3.12. Let G = ([`], [r], E) be an (ε, δ)-sampler, which is d-left-regular and has

average right-degree D. Assume ε ≥ δ. Then, G has at most 2εr right vertices with degree

larger than 2D.

Proof. Define B = {v ∈ [r] | deg(v) > 2D}. At least (1 − δ)-fraction of the left vertices

have at least (1− |B|
r
− ε)d neighbors in [r]\B, so [r]\B has at least (1− δ)`(1− |B|

r
− ε)d

edges going into it. We therefore have that

2D|B|+ (1− δ)`
(

1− |B|
r
− ε
)
d ≤ rD.
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As rD = `d, it follows that

|B| ≤
(
ε+ δ − δε

1 + δ

)
r ≤ 2εr.

We now wish to state the correctness of the changed construction.

Proposition 3.13. The encoding function C of the modified construction is a (q, δ, ε)-

LDC, where

q ≤ q1q2q3,

δ ≥ δ2δ3

32
,

ε ≤ ε1 + (ε2 + ε3)n.

Furthermore, C has rate ρ1ρ2ρ3, where ρ1, ρ2 are as defined in the building blocks para-

graph, and per our convention set above, ρ3 = ρ3(D/2).

Proof. That the rate and query complexity are as stated is trivial, since the rate and query

complexity can only be improved by this modification to the construction in which we

discard some of the code word symbols, and skip some of the queries. We now discuss the

distance δ and error ε. Since the proof is almost identical to the proof of Proposition 3.2,

we only state how to change the proof above to get a proof for the current proposition.

Let

X = {v ∈ R | deg(v) /∈ [D/2, 2D]}

be the set of right vertices with “bad” degrees. Recall that these vertices are ignored by

the modified construction. In particular, n =
∑

v∈R\X nv. The proof of Proposition 3.2

starts by defining the set

B = {i ∈ [n] | C̃(x)i 6= C(x)i},

which is the set of “errors”. It then goes on by defining another set, Bt, which is the set

of “bad” right vertices, for which the adversary has introduced too many errors on the

respective block. This is where we make a slight modification, ignoring the vertices in X.

Formally, we define

Bt =
{
v ∈ R \X | dist

(
t(v), t̃(v)

)
≥ δ3

}
.

In the following claim we bound the density of Bt with respect to the set R (rather

than with respect to R \X).
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Claim 3.14. µR(Bt) ≤ 8δ
δ3

.

Proof. The proof is similar to the proof of Claim 3.3 though it takes into account our

modifications as described above. For v ∈ R \ X let ev = dist(t(v), t̃(v)). We have that∑
v∈R\X evnv ≤ δn. On the other hand,

∑
v∈R\X

evnv ≥ δ3

∑
v∈Bt

nv ≥
δ3D|Bt|

2
,

where the last inequality follows as for every v ∈ Bt ⊆ R \X it holds that deg(v) ≥ D/2.

We also have, per our assumption, that ρ3 ≥ 1/2, and since kv ≤ 2D for all v ∈ R \X,

n =
∑
v∈R\X

nv ≤ 2
∑
v∈R\X

kv ≤ 4Dr.

The proof follows by the above three inequalities,

As in Proposition 3.2, we also denote Bw = Bt. The definition of the set Bz is the

same as in the proof of Proposition 3.2 with the modification that it “treats” the vertices

in X as errors. Formally,

Bz = {u ∈ [`] | |Γ(u) ∩ (Bw ∪X)| ≥ δ2n2} , (3.3)

Claim 3.15. µ(Bz) ≤ δ1.

Proof. By Claim 3.14, µR(Bw) ≤ 8δ
δ3

. Now, G is a (δ2/8, δ1)-sampler. Thus, by Lemma 3.11

and Lemma 3.12 (which are applicable as δ1 ≤ δ2/8 per our assumption), µR(X) ≤ 5δ2
8

.

Hence, the density of Bw ∪X with respect to R is

µR(Bw ∪X) ≤ 8δ

δ3

+
5δ2

8
≤ 7δ2

8
,

where the last inequality holds per our assumption δ ≤ δ2δ3/32. Recall that G is a

(δ2/8, δ1)-sampler. Thus, at most δ1-fraction of the left vertices u ∈ [`] satisfy

µΓ(u)(Γ(u) ∩ (Bw ∪X)) ≥ µR(Bw ∪X) +
δ2

8
,

and the proof follows.

The rest of the proof is identical to the proof of Proposition 3.2.
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3.4 Reduction to LDC with polynomially-small (and even smaller)

distance

In this section we prove the following corollary of Proposition 3.2. We then deduce from

it Corollary 1.3 and Corollary 1.4 from the introduction.

Corollary 3.16. There exists a universal constant c′ such that the following holds. Let

c ≥ 1 be any constant. Let α : N→ (0, 1), β : N→ (0, 1) be two monotone non-increasing

functions that satisfy

α(n1.01) ≥ c′β(log n) · log log n. (3.4)

Assume further that α(n) ≤ 0.009 and that β(n) ≤ 0.1 for all n ≥ 1. Assume there exists

a family of (qα(n), n−(1−α(n)),, 1/5)-LDC over alphabet Σ having rate 1− β(n). Then, for

every sufficiently large n there exists a (q, δ, 1/5)-LDC on block length m ∈ [n, n1.01] 6 over

Σ, where

q = (qα(n) log n)
O
(

log logn

α(n1.01)

)
,

ρ = 1−O
(
β(log n) log log n

α(n1.01)

)
,

δ = β(log n)
O
(

log logn

α(n1.01)

)
.

To prove Corollary 3.16, we prove the following claim. In its statement, we refer to

the constant csamp ≥ 1 that is given by Theorem 2.2.

Claim 3.17. Let β2 < 1/2. Assume there exists a (qin, δin, εin)-LDC Cin over alphabet Σ

for every message length kin ∈ [D/2, 2D] where

D =
4csampn

1−α(n)

β6
2

, (3.5)

having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 3.16, there exists a

(qout, δout, εout)-LDC over Σ with block-length n having rate ρout, where

qout

qin

≤ 4csamp log n

β6
2

· qα(n),

δout

δin

≥ β3
2

16
,

ρout

ρin

≥ (1− β2) (1− β(n)) ,

εout ≤
1

5
+ nεin.

6The constant 1.01 in the exponent, which determines the density of lengths for which we can construct

the stated codes, can be replaced by any constant strictly larger than 1, and even by 1 + o(1) for a

“sufficiently large” o(1). However, for ease of presentation, we stick with this fixed choice.
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Proof. Let C1 be the LDC from the hypothesis of Corollary 3.16 taken with block length

n1 = n. Let C2 be a code set with message length k2 = 4csamp logn

β6
2

, over Σ having rate

1− β2 and distance δ2 = β3
2 . A code with such parameters exists, over any alphabet, by

the Gilbert-Varshamov bound. 7

Recall that in the distance amplification procedure (Section 3.1), we make use of a

(δ2/2, δ1)-sampler G = ([`], [r], E) with ` = n1/k2 and left-degree n2. For the proof of the

claim, we will instantiate the distance amplification procedure with the sampler that is

given by Theorem 2.2. To be able to use this sampler, we must verify that the left-degree

is indeed large enough with respect to the parameters of the sampler. As, in our case, the

left degree is n2, we need to verify that

n2 ≥ csamp ·
log (1/δ1)

(δ2/2)2
=

4csamp(1− α(n)) log n

β6
2

. (3.6)

However,
4csamp(1− α(n)) log n

β6
2

≤ 4csamp log n

β6
2

= k2,

and so, Equation (3.6) holds.

As for the degree Dv of any given right vertex v of the sampler, we have by Theorem 2.2

that Dv ∈ [D/2, 2D], where

D =
`d

r
=

4csampn
1−α(n)

β6
2

,

which equals to D as defined in Equation 3.5. Thus, we may use Cin as in the hypothesis

of the claim. We are therefore in a position to apply Proposition 3.2. The assertions

regarding the query complexity, distance and rate readily follow by Proposition 3.2. That

the error is bounded as stated readily follows by noting that ε2 = 0.

It will be more convenient to have no error loss in the reduction that is given by

Claim 3.17. This is easily achievable by amplifying the error of the input code before

applying the previous claim.

Corollary 3.18. Let β2 < 1/2. Assume there exists a (qin, δin, 1/4)-LDC Cin over alphabet

Σ for every message length kin ∈ [D/2, 2D], where D is as in Equation (3.5), having rate

ρin ≥ 1/2. Then, under the hypothesis of Corollary 3.16, there exists a (qout, δout, 1/4)-

7An explicit code with such parameters is also known though we defer the discussion on explicitness

to the full version of this extended abstract.
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LDC over Σ with block-length n having rate ρout, where

qout

qin

≤ 100csamp log2 n

β6
2

· qα(n),

δout

δin

≥ β3
2

16
,

ρout

ρin

≥ (1− β2) (1− β(n)) .

Proof. Let r be a parameter we set later on. Define the code C ′ to be the code Cin though

with the following decoder. To decode C ′, apply the decoder of Cin for r times and return

the symbol according to plurality. Clearly, the rate and distance remain intact. By a

simple application of the Chernoff bound, one can show that the error of C ′ is 2−Ω(r). The

query complexity of C ′ is then rqin. Thus, by taking r = c log n for a sufficiently large

constant c, we can get a code with error 1/n2. The query complexity is then increased by

a multiplicative O(log n) factor. The proof then follows by applying Claim 3.17 to C ′.

With Corollary 3.18 we are ready to prove Corollary 3.16.

Proof of Corollary 3.16. The construction of the asserted code is obtained by devising a

sequence of LDC C ′0, C
′
1, C

′
2, . . . where C ′0 is taken to be a code over Σ with block length

n0 = 2

(
16csamp

β(log n)6

)8/α(n1.01)

, (3.7)

having rate ρ0 = 1 − β(log n) and distance β(log n)3. A code with such parameters

exists, over any alphabet, by the Gilbert-Varshamov bound. Clearly, as an LDC, this

code has error ε0 = 0 and query complexity n0. For t > 0, the code C ′t is obtained by

applying Corollary 3.18 with the code C ′t−1 as Cin in the notations of the corollary and

using β2 = β(log n). Denote the message length and block length of C ′t by kt and nt,

respectively. By construction, for every integer t ≥ 1 such that nt ≤ n1.01 we have that

kt−1 ≤
8csampn

1−α(nt)
t

β(log n)6
≤ 8csampn

1−α(n1.01)
t

β(log n)6
, (3.8)

where we used the fact that α(n) is non-increasing. By Corollary 3.18,

ρt =
kt
nt
≥ (1− β(log n))2ρt−1,

and so

ρt ≥ (1− β(log n))2tρ0 = (1− β(log n))2t+1.
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In particular, for every t ≤ 1
4β(logn)

we get

ρt ≥ (1− β(log n))1+ 1
2β(logn) ≥ 1

2
.

The the last inequality follows since the function (1 − x)1+ 1
2x ≥ 1

2
for all x ≤ 0.1 and,

recall, we assume that the function β is bounded above by 0.1. By Equation (3.8) we

have that for every t ≤ 1
4β(logn)

,

nt−1 ≤ 2kt−1 ≤
16csampn

1−α(n1.01)
t

β(log n)6
.

Thus,

nt ≥
(
nt−1β(log n)6

16csamp

) 1
1−α(n1.01)

. (3.9)

One can prove the following easy claim by induction.

Claim 3.19. Let (nt)t∈N be a sequence of positive integers such that nt ≥ (nt−1/a)b for

some a, b > 1. Then, for every t ≥ 1 we have that nt ≥ (n0/a
h(b,t))b

t
, where h(b, t) =∑t−1

i=0
1
bi

.

With the notation of Claim 3.19, we have

h

(
1

1− α(n1.01)
, t

)
=

t−1∑
i=0

(1− α(n1.01))i ≤ 1

α(n1.01)
.

By applying Claim 3.19 with a = 16csamp/β(log n)6 and b = 1
1−α(n1.01)

we get that for every

t such that nt ≤ n1.01 it holds

nt ≥

 n0(
16csamp

β(logn)6

)1/α(n1.01)


(

1
1−α(n1.01)

)t
≥ 2

(
1

1−α(n1.01)

)t
,

where for the last equality we used our of n0 given in Equation (3.7). We now wish to

take t′ to be the least integer for which the right hand side is larger or equal than n.

However, we must make sure that such t′ exists. Indeed, the above analysis only works

for t such that both nt ≤ n1.01 and t ≤ 1
4β(logn)

holds. So, one must verify that there exists

a t′ ≤ 1
4β(logn)

for which n ≤ nt′ ≤ n1.01. To see this, recall that k ∈ [D/2, 2D] where D is

as given by Equation (3.5). Hence,

nt−1 ≥ kt−1 ≥
2csampn

1−α(n)
t

β6
2

≥ n
1−α(n1.01)
t ,
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Hence, if nt−1 < n then

nt < n
1

1−α(n1.01) < n1.01,

where the last inequality follows as α(nt) ≤ 0.009. Thus,

t′ = Θ

 log log n

log
(

1
1−α(n1.01)

)
 = Θ

(
log log n

α(n1.01)

)
,

and we can thus see that t′ ≤ 1
4β(logn)

per our assumption that is given by Equation (3.4).

It is easy to verify that the query complexity qt′ of and distance δt′ of C ′t′ are

qt′ =

(
log n

β(log n)

)Θ(t′)

,

δt′ = β(log n)Θ(t′).

As for the rate,

ρt′ ≥ (1− β(log n))Θ(t′) = 1−O
(
β(log n) log log n

α(n1.01)

)
,

where the last equality follows by Equation (3.4). Finally, the error of C ′t′ can be reduced

from 1/4 to 1/5 with no asymptotic overhead in query complexity, and so C ′t′ has all the

asserted properties.

3.4.1 Proofs of Corollary 1.3 and Corollary 1.4

In this short section prove Corollary 1.3 and Corollary 1.4.

Proof of Corollary 1.3. With the hypothesis of the corollary, we may apply Corollary 3.16

with α(n) and β(n) in the notation of Corollary 3.16 set to α(n) = min(α, 0.009) and

β(n) = 1
log2 n

(and, in fact, taking β(n) = c
logn

for sufficiently small constant c > 0 will

do as well). Note that Equation (3.4) holds with this choice. Corollary 3.16 then yields a

(q1, δ1, ε1 = 1/5)-LDC, where

q1 = (qα(n) · log n)O(log logn) ,

δ1 = 2−O(log log(n) log log logn),

ρ1 = 1−O
(

1

log log n

)
.

Recall that by the Katz-Trevisan bound [KT00], constant rate LDC with distance δ have

query complexity Ω(log(δn/ log n)) (see, e.g., [ZD]). Thus, qα(n) = Ω(log n) and so, in

fact, q1 = qα(n)O(log logn). The resulted code is obtained by amplifying the distance from

δ1 to constant. Indeed, one can invoke, say, the AEL distance amplification procedure.

Since 1/δ = o(q1), the proof follows.
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Proof of Corollary 1.4. With the hypothesis of the corollary, we may apply Corollary 3.16

with α(n) = 1/(log log n)c and β(n) = 1/(log n)c+2 in the notation of Corollary 3.16. Note

that Equation (3.4) holds with this choice. Corollary 3.16 then yields a (q1, δ1, ε1 = 1/5)-

LDC, where

q1 = (qα(n) · log n)O((log logn)c+1) ,

δ1 = 2−O((log logn)c+1·log log logn),

ρ1 = 1−O
(

1

log log n

)
.

By the Katz-Trevisan bound [KT00], qα(n) = Ω(log n) and so, in fact, q1 = qα(n)O((log logn)c+1).

The resulted code is obtained by amplifying the distance from δ1 to constant. By invoking

the AEL distance amplification procedure.

3.5 Proof of Corollary 1.5

In this section we prove Corollary 1.5 based on Proposition 3.2. We start by prove thing

following.

Corollary 3.20. There exists a constant c ≥ 1 such that the following holds. Let 0 <

α < 1 be an arbitrary constant, and β : N → (0, 1) a monotone non-increasing function

that satisfy

2−
1
6

(logn)α ≤ β(n) ≤ c

log log n
(3.10)

Assume there exists a family of (qα(n), 2−(logn)α , 1/5)-LDC over alphabet Σ having rate

1−β(n). Then, for every sufficiently large n there exists a (q, δ, 1/5)-LDC on block length

m over Σ, for which logm ∈ [log n, (log n)1/(1−α)], and

q = qα(n)O(log log logn),

ρ = 1−O (β(log n) log log log n) ,

δ = β(log n)O(log log logn).

To prove Corollary 3.20, we prove the following claim. In its statement we refer to the

constant csamp ≥ 1 that is given by Theorem 2.2.

Claim 3.21. Let β2 < 1/2. Assume there exists a (qin, δin, εin)-LDC Cin over alphabet Σ

for every message length kin ∈ [D/2, 2D] where

D =
4csamp2

(logn)α

β6
2

, (3.11)
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having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 3.20, there exists a

(qout, δout, εout)-LDC over Σ with block length n having rate ρout, where

qout

qin

≤ 8csamp(log n)α

β6
2

· qα(n),

δout

δin

≥ β3
2

16
,

ρout

ρin

≥ (1− β2) (1− β(n)) ,

εout ≤
1

5
+ nεin.

Proof. Let C1 be the LDC from the hypothesis of Corollary 3.20 taken with block length

n1 = n. Let C2 be a code set with message length k2 = 4csamp(logn)α

β6
2

, over Σ having rate

1− β2 and distance δ2 = β3
2 . A code with such parameters exists, over any alphabet, by

the Gilbert-Varshamov bound.

In the distance amplification procedure (Section 3.1), we make use of a (δ2/2, δ1)

sampler G = ([`], [r], E) with ` = n1/k2 and left-degree d = n2. For the proof of the

claim, we will instantiate the distance amplification procedure with the sampler that is

given by Theorem 2.2, and so we must verify that the left-degree is indeed large enough

with respect to the parameters of the sampler. As, in our case, the left degree is n2, we

need to verify that

n2 ≥ csamp ·
log (1/δ1)

(δ2/2)2
=

4csamp(log n)α

β6
2

, (3.12)

which indeed holds as the right hand side equals k2.

As for the degree Dv of any given right vertex v of the sampler, we have by Theorem 2.2

that Dv ∈ [D/2, 2D], where

D =
`d

r
=

4csampn
1−α(n)

β6
2

,

is as defined in Equation 3.11. Thus, we may use Cin as in the hypothesis of the claim.

We are therefore in a position to apply Proposition 3.2, and the proof readily follows.

As in the previous section, it will be convenient to have no error loss in the reduction

that is given by Claim 3.17. This is easily achievable by amplifying the error of the input

code before applying the previous claim. We state the following corollary whose proof is

similar to the proof of Corollary 3.18 and so we omit it.

Corollary 3.22. Let β2 < 1/2. Assume there exists a (qin, δin, 1/4)-LDC Cin over alphabet

Σ for every message length kin ∈ [D/2, 2D] where D is as defined in Equation (3.11),
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having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 3.20, there exists a

(qout, δout, 1/4)-LDC over Σ with block length n having rate ρout, where

qout

qin

≤ log2 n

β6
2

· qα(n),

δout

δin

≥ β3
2

16
,

ρout

ρin

≥ (1− β2) (1− β(n)) .

With Corollary 3.22 we are ready to prove Corollary 3.20.

Proof of Corollary 3.20. The construction of the asserted code starts by devising a se-

quence of LDC C ′0, C
′
1, C

′
2, . . . where C ′0 is taken to be a code over Σ with block length

n0 = log n, having rate 1 − β(log n) and distance β(log n)3. We obtain such code using

Theorem ??. Clearly, as an LDC, this code has error ε0 = 0 and query complexity n0.

For t > 0, the code C ′t is obtained by applying Corollary 3.22 with the code C ′t−1 as Cin

in the notations of the corollary and using β2 = β(log n). Denote the message length and

block length of C ′t by kt and nt, respectively. By construction, for every integer t ≥ 1 such

that nt ≤ 2(logn)1/(1−α) we have that

kt−1 ≤
8csamp2

(lognt)α

β6
2

By Corollary 3.18,

ρt =
kt
nt
≥ (1− β(log n))2ρt−1,

and so

ρt ≥ (1− β(log n))2tρ0 = (1− β(log n))2t+1.

In particular, for every t ≤ 1
4β(logn)

we get

ρt ≥ (1− β(log n))1+ 1
2β(logn) ≥ 1

2
.

The the last inequality follows since the function (1 − x)1+ 1
2x ≥ 1

2
for all x ≤ 0.1. Note

that, indeed, by our assumption on β if follows that for a large enough n, β(n) is bounded

above by 0.1. Therefore,

nt−1 ≤ 2kt−1 ≤
8csamp2

(lognt)α

β6
2

.

Now, per our assumption that is given by Equation (3.10), we have that

β2 = β(log n) ≥ 2−
1
6

(log logn)α ≥ 2−
1
6

(lognt)α ,
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where the last inequality follows as n0 = log n. Thus, we get

nt−1 ≤ 8csamp2
2(lognt)α ≤ 8(lognt)α .

Thus, log nt ≥
(

lognt−1

3

)1/α

. By Claim 3.19, we get

log nt ≥
(

log n0

3
1

1−α

) 1
αt

≥ 2
1
αt .

We now take t′ to be the least integer for which the right hand side is larger or equal

than log n. Note that t′ = Θ(log log log n). However, the above analysis only holds only

for t ≤ 1
4β(logn)

and so one must verify that t′ ≤ 1
4β(logn)

which does indeed hold per our

assumption that is given by Equation (3.10).

By the above, we get that C ′t′ is a (q′, δ′, 1/4)-LDC having rho ρ′ where

q′ = (qα(n) log n)O(log log logn),

ρ′ = 1−O (β(log n) log log log n) ,

δ′ = β(log n)O(log log logn).

By [KT00], qα(n) = Ω(log n) and so, in fact, q′ = qα(n)O(log log logn). The final code is

obtained by amplifying the distance from δ′ to constant. By invoking, say, the AEL

distance amplification procedure.

3.6 Explicit reduction to LDC with polynomially-small distance

In this section we show a result similar to the one proven in Section 3.4, but with an explicit

reduction that yields an explicit code. Throughout this section we assume Σ = Fp for

some prime power p (this is needed for the existence of explicit base codes). We prove

the following corollary of Proposition 3.13

Corollary 3.23. Let α > 0 be a constant. Let β : N → (0, 1) be a monotone non-

increasing function that satisfies

1

n
≤ β(n) ≤ log(1/α)

24 log n
. (3.13)

Assume there exists a family of explicit (qα(n), n−α,, 1/5)-LDC over alphabet Σ having rate

1 − β(n) for block-length n. Then, for every sufficiently large n there exists an explicit

(q, δ, 1/5)-LDC on block length poly(n) over Σ, where

q = (qα(n) log n)O(log logn) ,

ρ = 1−O (β(log n) log log n) ,

δ = β(log n)O(log logn).
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Note that the distance δ above can then be further amplified to a constant, at the

expense of lowering the rate from 1− o(1) to some constant, without asymptotic cost in

query complexity. Indeed, in the above corollary, 1/δ = poly(q) per our assumption that

β(log n) ≥ 1/ log n.

To prove Corollary 3.23, we prove the following claim. In what follows, we refer to

c = c(∆) - the function that appears in the statement of Theorem 2.4.

Claim 3.24. There exists a universal constant β0 ≤ 1
2

such that the following holds. Let

n be an integer, and β2 ∈ ( 1
logn

, β0). Assume there exists an explicit (qin, δin, εin)-LDC Cin

over alphabet Σ for every message length kin ∈ [D′/2, 4D′] where D′ = D′(1/
√
α, δ2/8, δ1)

is as defined in Equation (2.2), having rate ρin ≥ 1/2. Then, under the hypothesis of

Corollary 3.23, there exists an explicit (qout, δout, εout)-LDC over Σ with block-length n

having rate ρout, where

qout

qin

≤ (log n)10c(1/
√
α) · qα(n),

δout

δin

≥ β3
2

16
,

ρout

ρin

≥ (1− β2) (1− β(n)) ,

εout ≤
1

5
+ nεin.

Proof. Let C1 be the LDC from the hypothesis of Corollary 3.23 taken with block length

n1 = n. Set δ2 = β3
2 . By Theorem 2.4, invoked with ∆ = 1/

√
α, there exists an explicit

(δ2/8, δ1)-sampler with z = n/(1− β2) edges. By Theorem 2.4, G has left-degree

d =

(
8

δ2

log
1

δ1

)c
=

(
8

β3
2

α log n

)c
,

where c = c(∆) = c(1/
√
α) is the constant as defined in Theorem 2.4. Note that since

β2 ≥ 1/ log n we have that d ≤ (log n)10c. We also have that the average right-degree D

is in [D′, 2D′], where

D′ =
d

2
·
(

2

δ1

)∆+1

≤ n2
√
α,

where the inequality holds for all sufficiently large n.

Let C2 be an explicit code set with message length k2 = (1− β2)d over Σ having rate

1−β2 and distance δ2 = β3
2 . An explicit code with such parameters exists, by Lemma 2.6,

as we can choose β0 to be smaller than the least β for which the lemma holds.

We now want to instantiate the distance amplification procedure with C1, C2, the

sampler G, and the code family Cin as C3. Note that since the right degrees of the sampler
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G are not necessarily bounded, we use the relaxed distance amplification of Section 3.3.

Recall that it is a prerequisite of the distance amplification procedure that the sampler

has n1/k2 left vertices, and that n2 = d, the degree of the sampler. Both of these hold,

as indeed, the block length of C2 is 1
1−β2 (1 − β2)d = d, and the number of left vertices

of the sampler is z
d

= n
d(1−β2)

= n1/k2. Further note that the distance amplification

procedure requires that the family C3 contains a code with message length k3 for every

k3 ∈ [D/2, 2D], and this is indeed satisfied by the assumption regarding the message

lengths of the code family Cin, of the hypothesis of the claim.

With C1, C2, G and Cin at hand, we can now apply Proposition 3.13 of the distance

amplification procedure. The assertions regarding the query complexity, distance and rate

readily follow by Proposition 3.2. That the error is bounded as stated readily follows by

noting that ε2 = 0.

As in the previous sections, it will be convenient to have no error loss in the reduction

that is given by Claim 3.24. This is easily achievable by amplifying the error of the input

code before applying the previous claim. We state the following corollary whose proof is

similar to the proof of Corollary 3.18 and so we omit it.

Corollary 3.25. There exists a universal constant β0 ≤ 1
2

for which the following holds.

Let β2 ∈ ( 1
logn

, β0). Assume there exists an explicit (qin, δin, 1/4)-LDC Cin over alphabet

Σ for every message length kin ∈ [D′/2, 4D′] where D′ = D′(1/
√
α, δ2/8, δ1) is as defined

in Equation (2.2), having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 3.23,

there exists an explicit (qout, δout, 1/4)-LDC over Σ with block-length n having rate ρout,

where

qout

qin

≤ (log n)10c(1/
√
α) · qα(n),

δout

δin

≥ β3
2

16
,

ρout

ρin

≥ (1− β2) (1− β(n)) .

With Corollary 3.25 we are ready to prove Corollary 3.23.

Proof of Corollary 3.23. The construction of the asserted code is obtained by devising

a sequence of LDC C ′0, C
′
1, C

′
2, . . . where C ′0 is taken to be a code over Σ with block

length n0 = log n having rate ρ0 = 1 − β(log n) and distance β(log n)3. By Lemma 2.6

such an explicit code exists, for every large enough n (the lemma holds for every small

enough β, and indeed by Equation (3.13), β(n) is decreasing). Clearly, as an LDC, this

code has error ε0 = 0 and query complexity n0. For t > 0, the code C ′t is obtained
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by applying Corollary 3.25 with the code C ′t−1 as Cin in the notations of the corollary

and using β2 = β(log n). Note that per our assumption given by Equation (3.13), this

choice satisfies β2 ≥ 1
logn

, and for large enough n, β(n) ≤ β0, and so we can apply the

corollary. Denote the message length and block length of C ′t by kt and nt, respectively.

By construction, for every integer t ≥ 1 we have that

kt−1 ≤ n
2
√
α

t ≤ nα
1/4

t , (3.14)

where the last inequality holds for all large enough n. By Corollary 3.25,

ρt =
kt
nt
≥ (1− β(log n))2ρt−1,

and so

ρt ≥ (1− β(log n))2tρ0 = (1− β(log n))2t+1.

In particular, for every t ≤ 1
4β(logn)

we get

ρt ≥ (1− β(log n))1+ 1
2β(logn) ≥ 1

2
.

The last inequality follows since the function (1−x)1+ 1
2x ≥ 1

2
for all x ≤ 0.1, and for every

large enough n, β(n) ≤ 0.1. By Equation (3.14) we have that for every t ≤ 1
4β(logn)

,

nt−1 ≤ 2kt−1 ≤ 2nα
1/4

t ≤ nα
1/5

t .

Thus,

nt ≥ n
1

αt/5

0 . (3.15)

It follows that by taking t′ = d5 log logn
log(1/α)

e we get that nt′ ≥ n. However we need to

verify that this choice satisfies t′ ≤ 1
4β(logn)

for the above analysis to hold. Indeed per our

assumption given by Equation (3.13), it holds that 6 log logn
log(1/α)

≤ 1
4β(logn)

.

It is easy to verify that the query complexity qt′ of and distance δt′ of C ′t′ are

qt′ = ((log n)qα(n))Θ(t′) ,

δt′ = β(log n)Θ(t′).

As for the rate,

ρt′ ≥ (1− β(log n))Θ(t′) = 1−O (β(log n) log log n) .

Finally, the error of C ′t′ can be reduced from 1/4 to 1/5 with no asymptotic overhead in

query complexity, and so C ′t′ has all the asserted properties.
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4 Rate amplification for dual-induced SLR

In this section, we diverge from considering LCC and introduce the notion of smooth

locally recoverable sets (SLR). We show that certain SLR induce LDC (see Claim 4.2).

We consider a certain class of SLR, to which we call dual-induced SLR. These are SLR

that are obtained by the dual of certain structured sets. The structure of these dual-SLR

sets allows us to devise a rate amplification procedures for them. Informally, dual-SLR

are sets of tuples (or linear spaces of vectors if the alphabet over which we are working is

a field) in which every given entry of a tuple in the set can be recovered using only few

queries and in a “smooth” manner, which is to say that the distribution of every query

has high min-entropy.

Definition 4.1 (Smooth locally recoverable sets (SLR)). Let Σ, P be arbitrary non-empty

sets. We say that C ⊆ ΣP is (q, τ, ε)-smooth locally recoverable (SLR for short) if there

exists a randomized algorithm Rec, called a recovering procedure, that is given as input

p ∈ P and an oracle access to c ∈ C. The recovering procedure outputs either an element

of Σ or a symbol ⊥ which is assumed not to be in Σ. The algorithm Rec has the following

properties:

• For every (c, p) ∈ C × P , Recc(p) makes at most q queries to c.

• For every c ∈ C and p, r ∈ P it holds that

Pr[Recc(p) queries cr] ≤ τ.

• For every (c, p) ∈ C × P , the random variable Recc(p) ∈ {cp,⊥}, and

Pr [Recc(p) =⊥] ≤ ε.

When Σ is a field and C is a linear subspace of ΣP , we say that C is linear. In this

case, the rate of C is defined as dim(C)/|P |. We will mostly consider non-adaptive SLR.

These are SLR in which the joint distribution of queries is independent of c.

We have the following easy claim showing that SLR yield LCC and, assuming linearity,

LDC.

Claim 4.2. Let C ⊆ ΣP be a (q, τ, ε)-SLR. Then, for every ε′ > 0, C is a (q, δ, ε+ε′)-LCC

with δ = ε′/(qτ |P |). As a consequence, if C is also linear then C is a (q, δ, ε+ ε′)-LDC.

Proof. To show that C is an LCC, we devise a local corrector for C. Given an oracle

access to c ∈ ΣP , and p ∈ P as input, the local corrector computes z = Recc(p). If
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z =⊥ then the local corrector returns some arbitrary element of Σ, and otherwise return

z. To analyze this local corrector, let c′ ∈ ΣP be such that dist(c, c′) ≤ δ|P |. Denote

B = {p ∈ P | cp 6= c′p}. Note that conditioned on Recc(p) 6=⊥, the local corrector

returns cp successfully if all q queries do not fall into B. The probability that any given

query falls into B is bounded above by τ |B| and so, by the union bound, the probability

that some query falls into B is bounded above by τ |B|q ≤ ε′. This proves that C is a

(q, δ, ε + ε′)-LCC. Note that linear LCC are systematic and so every linear LCC induces

an LDC.

4.1 Dual SLR and their induced SLR

Our construction of SLR sets will be via constructing and analyzing sets which we call

dual SLR sets. The SLR will then be induced from these dual SLR. We start by setting

some notation. Let P be a non-empty finite set and F a finite field. We make use of the

standard notation FP to denote the set of all functions {f : P → F}. Note that FP has a

natural F-vector space structure where addition is point-wise, namely, for every f, g ∈ FP

and a, b ∈ F we have that af + bg ∈ FP is defined by (af + bg)(p) = af(p) + bg(p) for all

p ∈ P . We consider the natural inner product map 〈·, ·〉 : FP ×FP → F that is defined, for

f, g ∈ FP , by 〈f, g〉 =
∑

p∈P f(p)g(p). Given f ∈ FP , we let f⊥ = {g ∈ FP | 〈f, g〉 = 0}.
Note that f⊥ is a linear subspace of FP . More generally, given a set S ⊆ FP we define

the linear subspace S⊥ =
⋂
f∈S f

⊥. For f ∈ FP we denote |f | = |P \ f−1(0)|.
For the sake of readability, the field F and the set P will be omitted from the notation

that we are about the introduce in this section. Both will be clear from context. For p ∈ P
define Fp = {f ∈ FP | f(p) 6= 0}. Informally, a dual SLR is a collection of distributions

over FP , one for each point p ∈ P . The distribution Dp, that corresponds to p, outputs

a function g ∈ FP . We think of g as “passing through” p. We also allow Dp to output

a special “failed symbol” ⊥ with some small probability. A dual SLR has the guarantee

that g does not pass through many other points, namely, |g| is bounded, and that the

dimension of all functions that can be sampled, when considering all distributions Dp,

p ∈ P , is also bounded. Perhaps most importantly is the requirement that for every other

fixed r ∈ P , the sampled g ∼ Dp is likely to have the property that g 6∈ Fr. Formally,

Definition 4.3 (Dual SLR). Let P be a set, F a field. Let D = {Dp | p ∈ P} be

a collection of distributions, where for each p ∈ P , supp(Dp) ⊆ Fp ∪ {⊥}. Denote

S =
⋃
p∈P supp(Dp). Let L be a linear subspace of FP such that S ⊆ L ∪ {⊥}. The

pair (D,L) is said to be a (q, τ, ε, ρ)-dual SLR on FP provided the following holds:

1. |g| ≤ q for all g ∈ S \ {⊥}.
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2. For every pair of distinct p, r ∈ P (not necessarily distinct), it holds that

Pr
g∼Dp

[g(r) 6= 0 | g 6=⊥] ≤ τ.

3. For every p ∈ P , Pr [Dp =⊥] ≤ ε.

4. dim(L) ≤ (1− ρ)|P |.

The linear subspace L⊥ of FP is called the induced SLR from the dual SLR (D,L).

The parameter τ of a dual-SLR is referred to as its smoothness.

Let (D,L) be a dual SLR. We turn to show that, as the name suggests, the induced

SLR L⊥ is indeed an SLR.

Lemma 4.4. Let P be a set, F a field, and let (D,L) be (q, τ, ε, ρ)-dual SLR on FP . Then

the induced SLR L⊥ is a (q − 1, τ, ε)-SLR. Furthermore, L⊥ is linear and has rate ρ or

larger.

Proof. The moreover part readily follows since L⊥ is a linear subspace of FP and since

dim(L⊥) = |P | − dim(L) ≥ ρ|P |.

We describe a recovering procedure for L⊥, namely, a randomized algorithm that is given

an oracle access to f ∈ L⊥ as well as a point p ∈ P as input. The recovering procedure

proceeds as follows:

1. Sample g ∼ Dp. If g =⊥ return ⊥; Otherwise,

2. Query f on all points Q = {r ∈ P \ {p} | g(r) 6= 0}.

3. Return

− 1

g(p)

∑
r∈Q

g(r)f(r).

The query complexity of Rec is bounded by q − 1 as |Q| = |g| − 1 ≤ q − 1. The

probability that ⊥ is returned is at most ε by construction. We turn to prove that

Recf (p) ∈ {f(p),⊥}. By construction, Recf (p) =⊥ if and only if g =⊥. Assume than

that g 6=⊥, hence, g ∈ supp(Dp) ⊆ L. As f ∈ L⊥ we have that 0 = 〈f, g〉, and so

0 =
∑
r∈P

g(r)f(r) = g(p)f(p) +
∑
r∈Q

g(r)f(r).
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As g ∈ supp(Dp) ⊆ Fp we have g(p) 6= 0, and so

f(p) = − 1

g(p)

∑
r∈Q

g(r)f(r) = Recf (p).

To conclude the proof, we turn to analyze the smoothness of Rec. First, note that, by

construction, f is never queried on p itself. Consider then any r ∈ P \ {p}. Conditioned

on g 6=⊥, the function f is queried on r if and only if g(r) 6= 0. Thus,

Pr [f(r) is queried] = Pr
g∼Dp

[g(r) 6= 0 | g 6=⊥] ≤ τ,

and the proof follows.

4.2 Rate amplification for dual-induced SLR

In this section we describe our first rate amplification procedure for SLR that are induced

by dual SLR. Unlike the previous section, it will be more convenient to explicitly state

within the notation the set P over which we are working as we will be dealing with several

such sets. The field F, however, remains suppressed from the notation as it remains fixed

in all SLR under consideration. We start by defining the following map of functions.

Definition 4.5. Let P be a set and F a field. For an integer ` ≥ 1 we define the map

Φ: (FP )` → FP ` as follows. Let g1, . . . , g` ∈ FP . The function Φ(g1, . . . , g`) : P ` → F is

defined by

Φ(g1, . . . , g`)(p1, . . . , p`) =
∏̀
i=1

gi(pi)

for every (p1, . . . , p`) ∈ P `.

Observe that Φ is multi-linear. Further, when ` = 2 and g1, g2 are viewed as vectors

rather than functions, Φ is the outer product of the vectors.

Definition 4.6. Let P be a set, F a field. Let LP be a linear subspace of FP . For an

integer ` ≥ 1, we define

LP ` = Sp {Φ(g1, . . . , g`) | g1, . . . , g` ∈ LP}.

Claim 4.7. With the notation of Definition 4.6,

dim (LP `) ≤
(
dim (LP )

)`
.
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Proof. Let B = {g1, . . . , gb} be a basis for LP , where b = dim(LP ). Define

B′ = {Φ(h1, . . . , h`) | (h1, . . . , h`) ∈ B`}.

Observe that to prove the claim, it suffices to show that for every f1, . . . , f` ∈ LP it

holds that Φ(f1, . . . , f`) ∈ Span(B′). As f1, . . . , f` ∈ LP , for every i ∈ [`] we can write

fi =
∑b

j=1 λi,jgj with λi,j ∈ F. We have that

Φ(f1, . . . , f`) = Φ

(
b∑

j1=1

λ1,j1gj1 , . . . ,

b∑
j`=1

λ`,j`gj`

)

=
∑

j1...,j`∈[b]

(∏̀
t=1

λt,jt

)
· Φ(gj1 , . . . , gj`),

where the last equality follows by the multi-linearity of Φ.

Definition 4.8. Let P be a set, F a field, and let (DP ,LP ) be (q, τ, ε, ρ)-dual SLR. Let

` ≥ 1 be an integer. For p ∈ P ` we define the distribution DP `

p as follows. Write

p = (p1, . . . , p`). To sample an element from DP `

p proceed as follows:

1. Sample g1 ∼ DP
p1
, . . . , g` ∼ DP

p`
independently.

2. If there exists i ∈ [`] such that gi =⊥, return ⊥; Otherwise

3. Return Φ(g1, . . . , g`).

The collection of distributions {DP `

p | p ∈ P `} is denoted by DP `.

We have the following lemma.

Lemma 4.9. Let P be a set, F a field, and let (DP ,LP ) be a (q, τ, ε, ρ)-dual SLR. Let

` ≥ 1 be an integer and DP ` as in Definition 4.8. Then, for every p, r ∈ P `,

Pr
g∼DP`p

[g(r) 6= 0 | g 6=⊥] ≤ τ dist(p,r).

Proof. Write p = (p1, . . . , p`), r = (r1, . . . , r`). By Definition 4.8, conditioned on g 6=⊥ we

have that g = Φ(g1, . . . , g`) with gi ∼ DP
pi

for each i ∈ [`] independently. Thus, g(r) 6= 0

is the event

Φ(g1, . . . , g`)(r1, . . . , r`) =
∏̀
i=1

gi(ri) 6= 0.

By the independence of g1, . . . , g`, and since we are working over a field F (and so a

product is nonzero if and only if each of the terms is nonzero), we get

Pr
g∼DP`p

[g(r) 6= 0 | g 6=⊥] =
∏̀
i=1

Pr
gi∼DPpi

[gi(ri) 6= 0 | gi 6=⊥] . (4.1)
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Let T = {i ∈ [`] | pi 6= ri} . As DP is a (q, τ, ε, ρ)-dual SLR, for each i ∈ T it holds that

Pr
gi∼DPpi

[gi(ri) 6= 0 | gi 6=⊥] ≤ τ.

Substituting to Equation (4.1), we get

Pr
g∼DP`p

[g(r) 6= 0 | g 6=⊥] ≤ τ |T |,

which completes the proof.

Definition 4.10. Let P be a set, F a field, and let (DP ,LP ) be a (q, τ, ε, ρ)-dual SLR.

For an integer ` ≥ 1 let LP `, DP ` be as in Definition 4.6 and Definition 4.8, respectively.

We denote the pair (DP ` ,LP `) by (DP ,LP )`.

Proposition 4.11. Let P be a set, F a field, and let (DP ,LP ) be a (q, τ, ε, ρ)-dual SLR.

Then, for every integer ` ≥ 1 we have that (DP ,LP )` is a (q`, τ`, ε`, ρ`)-dual SLR, where

q` ≤ q`,

τ` ≤ τ,

ε` ≤ `ε,

ρ` ≥ 1− (1− ρ)`.

Proof. First note that for every p ∈ P `, the distribution DP `

p is supported on FP `p ∪
{⊥}. Indeed, if we write p = (p1, . . . , p`) then, conditioned on g 6=⊥, we have that

g = Φ(g1, . . . , g`) where gi ∈ DP
pi

. Thus,

g(p) = Φ(g1, . . . , g`)(p1, . . . , p`) =
∏̀
i=1

gi(pi) 6= 0.

Moreover, by Definition 4.6, ⋃
p∈P `

supp(DP `

p ) ⊆ LP ` ∪ {⊥}.

We turn to show that q` ≤ q`. Let p = (p1, . . . , p`) ∈ P ` and consider any g ∈
supp(DP `

p ). By Definition 4.8, if g 6=⊥ then g = Φ(g1, . . . , g`) where gi ∈ supp(DP
pi

) \ {⊥}.
Now, for every r = (r1, . . . , r`) ∈ P ` we have that

g(r) 6= 0 ⇐⇒
∏̀
i=1

gi(ri) 6= 0.
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Since F is a field, the above is equivalent to gi(ri) 6= 0 for all i ∈ [`]. Hence there are at

most q` points r ∈ P ` for which g(r) 6= 0, and so q` ≤ q`.

The bound on the smoothness readily follows by Lemma 4.9. Indeed, consider any

pair of distinct p, r ∈ FP ` . We have that dist(p, r) ≥ 1 and so, by Lemma 4.9,

Pr
g∼DP`p

[g(r) 6= 0 | g 6=⊥] ≤ τ dist(p,r) ≤ τ. (4.2)

To bound the probability that ⊥ is returned, note that the event DP ` =⊥ holds only if

for some i ∈ [`], gi =⊥. Hence, by the union bound, Pr[DP `

p =⊥] ≤ `ε. We conclude

the proof by bounding the dimension of LP ` . By assumption, dim(LP ) ≤ (1 − ρ)|P |.
Claim 4.7 then implies that

dim (LP `) ≤
(
dim (LP )

)` ≤ ((1− ρ)|P |)` = (1− ρ)`|P `|.

Discussion on the smoothness τ` = τ . The downside of the rate amplification pro-

cedure that was given in this section is that τ` does not decrease with ` (which is bad

as, recall, we wish τ to be small as, by Claim 4.2, the distance δ of the resulted LCC

is proportional to 1/τ). Indeed, with the notation of Proposition 4.11, τ` = τ . By ex-

amining the proof and Lemma 4.9 one natural idea is to consider an SLR not over the

entire set P ` but on some subset of it which is a code with distance, say, d > 1. This will

indeed guarantee that for every two points p, r we have dist(p, r) ≥ d and so the bound

in Equation (4.2) will be τ d rather than τ . While natural, this idea fails to yield better

parameters as the rate-loss incurred by using a code (even an MDS) is larger than the

improvement on the rate guaranteed via the rate amplification procedure.

In the next sections we give a more elaborate rate amplification procedure (that is

based on the one that was given in this section) in which τ does decrease with `. Roughly,

τ` = (q · log |P |)poly(`)τ `, and so there is a slight loss in the smoothness, which the reader

should think as negligible. The query complexity q` as well as the rate ρ` and ε` are all

slightly worse than those obtained in the above rate amplification procedure and so the

two techniques are incomparable.

4.3 Distance-efficient rate amplification

Let P be a set, and R a partition of P 2. We denote the part containing p by [p]R or [p]

when R is clear from context. We call (p) = [p]\{p} the open class of p. For a set A ⊆ P 2

we let (A) = ∪p∈A(p). Given p ∈ P we say that {p}×P ⊆ P 2 is vertical line and P ×{p}
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is a horizontal line. Horizontal and vertical lines are referred to as axis-parallel lines, and

we denote the set of such lines by

X =
⋃
p∈P

{{p} × P, P × {p}}.

For a point p = (p1, p2) ∈ P 2 we denote Sp = ({p1} × P ) ∪ (P × {p2}) \ {p}. That is, Sp

is the set of points in P 2 of distance exactly 1 from p. Key to our distance-efficient rate

amplification procedure is a partition of the “square” P 2 with certain properties.

Definition 4.12 (Axis-evasive partitions). Let P be a set. A partition R of P 2 is said to

be (c, s)-axis evasive if

1. For every p ∈ P 2, |(p)| ≤ c.

2. For every `, `′ ∈ X (possibly equal), |`′ ∩ (`)| ≤ s.

3. For every p ∈ P 2 and ` ∈ X , |[p] ∩ `| ≤ 1.

In Section 5 we study such partitions. We prove their existence with certain param-

eters and give explicit constructions. In this section, however, we work with abstract

axis-evasive partitions and analyze our rate amplification procedure with respect to the

parameters c, s of the axis-evasive partition as well as the number of parts which we

typically denote by t.

Claim 4.13. Let p, p′ ∈ P 2 (possibly equal). Then,

|{r ∈ Sp | (r) ∩ Sp′ 6= ∅}| ≤ 4s.

Proof. Note that each of Sp, Sp′ is a subset of the union of two axis-parallel lines. Thus,

to prove the claim, it suffices to show that for every `, `′ ∈ X , not necessarily distinct,

|{r ∈ ` | (r) ∩ `′ 6= ∅}| ≤ s.

Let r1, . . . , rt ∈ ` be such that (ri) ∩ `′ 6= ∅. Note that for every distinct i, j ∈ [t] it holds

that ((ri)∩ `′)∩ ((rj)∩ `′) = ∅. Indeed, since R is a partition, if ((ri)∩ `′)∩ ((rj)∩ `′) 6= ∅
then ri ∈ [rj], but this implies that |` ∩ [rj]| ≥ 2 in contradiction axis evasiveness. Thus,

R =
t⋃
i=1

((ri) ∩ `′)

is a disjoint union of size t. However, R ⊆ (`) ∩ `′, and so t ≤ |R| ≤ |(`) ∩ `′| ≤ s.
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Definition 4.14. Let P be a set, F a field. Let R be a (c, s)-axis evasive partition of P 2.

For every p ∈ P 2 define the function g[p] : P 2 → F as follows:

g[p](r) =

{
1, r ∈ [p];

0, otherwise.

We define LR = {g[p] | p ∈ P 2}.

Definition 4.15. Let P be a set, F a field. For S ⊆ P define the function νS : P → F by

νS(r) =

{
0, r ∈ S;

1, otherwise.

For ease of readability, when S is a singleton S = {p}, we write νp instead of ν{p}.

With the notations and definitions above, we are ready to start developing our second

rate amplification procedure. We start with the following.

Definition 4.16. Let P be a set, F a field, and let (DP ,LP ) be a (q, τ, ε, ρ)-dual SLR.

Let LP 2
be as in Definition 4.6. Let R be a (c, s)-axis evasive partition of P 2. We define

for every p ∈ P 2 the distribution (DP 2

R )p as follows. To sample u from (DP 2

R )p:

1. Sample g ∼ DP 2

p .

2. If g =⊥ return ⊥; Otherwise, denote L = {r ∈ Sp | g(r) 6= 0} and proceed as

follows.

3. For every r ∈ L and w ∈ (r) sample hr,w ∼ DP 2

w .

4. If there exist r ∈ L and w ∈ (r) such that either hr,w =⊥ or hr,w(p) 6= 0 return ⊥.

Otherwise return

u = gνL +
∑
r∈L

g(r)
∑
w∈(r)

hr,wνw
hr,w(w)

. (4.3)

Note that, upon reaching Step (4), u is well-defined as hr,w(w) 6= 0 for all r ∈ L and

w ∈ (r). We denote the collection of distributions {(DP 2

R )p | p ∈ P 2} by DP 2

R .

We start by analyzing the function u that is given by Equation (4.3) above.

Claim 4.17. With the notation of Definition 4.16, if ⊥ is not returned then u ∈ Fp.

Proof. As ⊥ was not returned, for every r ∈ L and w ∈ (r) it holds that hr,w 6=⊥ and

hr,w(p) = 0. Substituting to Equation (4.3), we get

u(p) = g(p)νL(p) = g(p) 6= 0,

where the second equality holds as p 6∈ L and the last inequality follows since g ∈
supp(DP 2

p ) \ {⊥}.
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Claim 4.18. With the notation of Definition 4.16, if ⊥ is not returned then u ∈ LP 2
+LR.

Proof. Take f ∈ (LP 2
+ LR)⊥. To prove the claim, it suffices to show that 〈u, f〉 = 0.

Indeed, this would imply u ∈ ((LP 2
+LR)⊥)⊥ = LP 2

+LR. As u 6=⊥ we have that g 6=⊥.

Note that

〈gνL, f〉 = 〈g, f〉 −
∑
r∈L

g(r)f(r).

Since g ∈ supp(DP 2

p ) we get that g ∈ LP 2
. However, f ∈ (LP 2

+LR)⊥ ⊆ (LP 2
)⊥, implying

〈g, f〉 = 0. Thus,

〈gνL, f〉 = −
∑
r∈L

g(r)f(r). (4.4)

Now, fix r ∈ L and w ∈ (r). By Definition 4.16, as u 6=⊥ we have that hr,w 6=⊥ and so

hr,w ∈ LP
2
. However, by the above, f ∈ (LP 2

)⊥ and so 〈hr,w, f〉 = 0. Thus,

〈hr,wνw, f〉 = 〈hr,w, f〉 − hr,w(w)f(w) = −hr,w(w)f(w).

Therefore, for every fixed r ∈ L one has that〈 ∑
w∈(r)

hr,wνw
hr,w(w)

, f
〉

=
∑
w∈(r)

〈 hr,wνw
hr,w(w)

, f
〉

=
∑
w∈(r)

1

hr,w(w)
〈hr,wνw, f〉

= −
∑
w∈(r)

f(w). (4.5)

Now, f ∈ (LP 2
+ LR)⊥ ⊆ (LR)⊥ whereas g[r] ∈ LR, and so

0 = 〈f, g[r]〉 =
∑
w∈[r]

f(w).

Substituting this to Equation (4.5), we get〈 ∑
w∈(r)

hr,wνw
hr,w(w)

, f
〉

= f(r).

Therefore, 〈∑
r∈L

g(r)
∑
w∈(r)

hr,wνw
hr,w(w)

, f
〉

=
∑
r∈L

g(r)
〈 ∑
w∈(r)

hr,wνw
hr,w(w)

, f
〉

=
∑
r∈L

g(r)f(r).

The above equation together with Equation (4.4) yield 〈u, f〉 = 0.
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Claim 4.19. With the notation of Definition 4.16, for every p ∈ P 2,

Pr[(DP 2

R )p =⊥] ≤ 18csqτ 2 + 2cqε.

Proof. First, the probability that g =⊥ is bounded by ε. Similarly, the probability that

for any specific r ∈ L and w ∈ (r), hr,w =⊥ is bounded by ε. Thus, by the union

bound, and since |L| ≤ 2q − 1 and |(r)| ≤ c, we have that expect with probability

(1 + (2q − 1)c)ε ≤ 2qcε, the sampling process above will result in u 6=⊥.

To complete the analysis, we turn to bound the probability that hr,w(p) = 0 for

some r ∈ L and w ∈ (r). Let L = {r1, . . . , r|L|}. While the random variables in L

may be dependent, marginally, it holds that for every i ∈ [|L|] and every fixed r ∈ Sp,

Pr[ri = r] ≤ τ . With this notation, by Definition 4.16, (DP 2

R )p =⊥ only if there exist

i ∈ [|L|] and w ∈ (ri) such that hri,w(p) 6= 0.

For a fixed r ∈ Sp define the event Er in which there exists w ∈ (r) such that hr,w(p) 6=
0, (when conditioned on hr,w 6=⊥). Note that this event is with respect to the randomness

of sampling hr = {hr,w | w ∈ (r)} whereas r is fixed. By the union bound,

Pr
hr

[Er] ≤
∑
w∈(r)

Pr
hr,w

[hr,w(p) 6= 0 | hr,w 6=⊥].

Observe first that w 6= p. Indeed, as r ∈ Sp, both r and p are on some common axis-

parallel line ` ∈ X . Thus, w = p would imply |[r] ∩ `| ≥ 2 which stands in contradiction

to the definition of axis-evasiveness. Consider w ∈ (r) \ Sp. As w 6= p we have that

dist(w, p) = 2. By Lemma 4.9, as hr,w ∼ DP 2

w we have that

Pr
hr,w

[hr,w(p) 6= 0 | hr,w 6=⊥] ≤ τ 2.

If, on the other hand, w ∈ (r) ∩ Sp then dist(w, p) = 1, and Lemma 4.9 then implies that

Pr
hr,w

[hr,w(p) 6= 0 | hr,w 6=⊥] ≤ τ.

As |(r)| ≤ c we conclude that

Pr
hr

[Er] ≤ cτ 2 + τ |(r) ∩ Sp|.

Fix i ∈ [|L|] and consider the random variable ri. The above equation, together with

|(ri)| ≤ c, yields

Pr
ri,hri

[Eri ] ≤ Pr
ri,hri

[Eri | (ri) ∩ Sp = ∅] + Pr
ri,hri

[Eri | (ri) ∩ Sp 6= ∅] Pr
ri

[(ri) ∩ Sp 6= ∅]

≤ cτ 2 + (cτ 2 + cτ) Pr
ri

[(ri) ∩ Sp 6= ∅] . (4.6)
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Consider now the set B = {r ∈ Sp | (r) ∩ Sp 6= ∅}. As R is (c, s)-axis evasive, Claim 4.13

implies that |B| ≤ 4s, and so

Pr
ri

[(ri) ∩ Sp 6= ∅] = Pr[ri ∈ B] ≤ 4sτ.

Substituting to Equation (4.6), we get Pr [Ei] ≤ 9csτ 2. The proof then follows by taking

the union bound over all i ∈ [|L|] as, indeed, |L| = 2q − 1.

Claim 4.20. With the notation of Definition 4.16, for every pair of distinct p, r ∈ P 2,

Pr
u∼(DP

2
R )p

[u(r) 6= 0 | u 6=⊥] ≤ 10csqτ 2.

Proof. By Equation (4.3), u is a linear combination of the (sampled) functions gνL,

{hr,wνw}. To prove the claim, we will show that, with high probability, all these functions

evaluate to 0 at the point r, implying u(r) = 0. We start by bounding Pr[(gνL)(r) 6= 0].

To this end, consider two cases. First, if r ∈ P 2 \ Sp then, as L ⊆ Sp, we have that

νL(r) = 1 and so in such case

Pr[(gνL)(r) 6= 0] = Pr[g(r) 6= 0] ≤ τ 2, (4.7)

where the last inequality follows by Lemma 4.9 and since dist(r, p) = 2 per our assumption

r 6∈ Sp and since r 6= p. If, on the other hand, r ∈ Sp then, by the definition of L,

g(r) 6= 0 =⇒ r ∈ L =⇒ νL(r) = 0,

and so in this case (gνL)(r) = 0.

Let L = {r1, . . . , r|L|}. Consider a fixed i ∈ [|L|] and denote (ri) = {wi,1, . . . , wi,b},
where b ≤ c. Fix j ∈ [b]. We turn to bound Pr

[
(hri,wi,jνwi,j)(r) 6= 0

]
. First note that

Pr
[
(hri,wi,jνwi,j)(r) 6= 0 | (ri) ∩ Sr = ∅

]
≤ τ 2. (4.8)

Indeed, conditioned on the event (ri) ∩ Sr = ∅, either wi,j = r or dist(wi,j, r) = 2. In the

first case,

(hri,wi,jνwi,j)(r) = hri,r(r)νr(r) = 0.

In the second case, the bound follows by Lemma 4.9. Second, note that

Pr
[
(hri,wi,jνwi,j)(r) 6= 0 | (ri) ∩ Sr 6= ∅

]
≤ τ. (4.9)

Indeed, as before, we may only consider the case r 6= wi,j and then observe that dist(r, wi,j) =

1 and invoke Lemma 4.9. Now, let B = {v ∈ Sp | (v) ∩ Sr 6= ∅}. By Claim 4.13, and
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since R is (c, s)-axis evasive, |B| ≤ 4s. Recall that Pr[ri = v] ≤ τ for every fixed v ∈ Sp,
and so

Pr [(ri) ∩ Sr 6= ∅] = Pr[ri ∈ B] ≤ 4sτ. (4.10)

By Equations (4.8), (4.9), (4.10) we get

Pr
[
(hri,wi,jνwi,j)(r) 6= 0

]
≤ τ 2 + 4sτ 2 ≤ 5sτ 2.

The proof then follows by the union bound over all i ∈ [|L|] and j ∈ [|(wi)|].

Definition 4.21. Let P be a set, F a field, and let (DP ,LP ) be a (q, τ, ε, ρ)-dual SLR.

Let LP 2
be as in Definition 4.6. Let R be a (c, s)-axis evasive partition of P 2 and let DP 2

R

be as in Definition 4.16. We denote by (DP ,LP )2
R the pair (DP 2

R ,LP 2
+ LR).

Proposition 4.22. Let P be a set, F a field, and let (DP ,LP ) be a (q, τ, ε, ρ)-dual SLR.

Let R be a (c, s)-axis evasive partition of P 2 that consists of t parts. Then, (DP ,LP )2
R is

a (qR, τR, εR, ρR)-dual SLR with

qR ≤ 2cq3

τR ≤ 10csqτ 2

εR ≤ 18csqτ 2 + 2cqε

ρR ≥ 1− (1− ρ)2 − t

|P |2
.

Proof. Claim 4.17 implies that for every p ∈ P 2, supp((DP 2

R )p) ⊆ Fp∪{⊥}. To bound qR,

note that by Equation (4.3),

|u| ≤ |gνL|+
∑
r∈L

∑
w∈(r)

|hr,wνw|

Now, |gνL| ≤ |g| ≤ q2 and |hr,wνw| ≤ |hr,w| ≤ q2. Hence, |u| ≤ q2 + |L|cq2 ≤ 2cq3. The

stated bounds on τR and εR readily follows by Claim 4.20 and Claim 4.19, respectively.

As for the rate, we have that

dim(LP 2

+ LR) ≤ dim(LP 2

) + dim(LR)

≤ (1− ρ)2|P |2 + t,

where the second inequality follows by Proposition 4.11 and since R consists of t parts,

implying |LR| = t.

55



4.4 Proofs of Theorem 1.7 and Corollary 1.8

With the machinery developed in the previous section, and using in a black-box manner,

the construction of axis-evasive partitions we obtain in Section 5, we are finally ready to

prove Theorem 1.7 and Corollary 1.8. We start by giving a more formal statement of

Corollary 1.8.

Theorem 4.23. There exist universal constants m0, c
′ ≥ 1 such that the following holds.

Let P be a set of size m ≥ m0. Let F be a field, and let (DPin,LPin) be a (qin, τin, εin, ρin)-dual

SLR over FP . Let 0 < α < 1 be such that

ρin ≥
c′√

α · logm
log

(
1

α

)
. (4.11)

Then, there exists a (qout, τout, εout, ρout)-dual SLR (DPout,LPout) over FPout, with m`/2 ≤
|Pout| ≤ m`, where

` = Θ

(
1

ρin

log
1

α

)
, (4.12)

having the following parameters:

qout ≤ q
poly(`)
in ,

τout ≤ q
poly(`)
in τ `in,

εout ≤ q
poly(`)
in (τin + εin),

ρout ≥ 1− α.

A remark regarding the error. Note that there is another implicit constraint on ρin

and α that originates from the error. Indeed, to make the result non-trivial, one must

have εout < 1 which, in turn, implies some bound on ` and then, through Equation (4.12),

a constraint on ρin and α. However, if that turns out to be a problem for the regime of

parameters one is interested in, the probability to output ⊥ can be reduced by repetition.

Thus, by performing an alternating sequence of such error (or failure) reductions and rate

amplifications, one can resolve this issue. Note that unlike for LDC, the error reduction

has no cost in query complexity, and it certainly has no effect on the smoothness nor on

the rate. It does, however, effects the running-time.

As mentioned above, our proof relies on an explicit axis-evasive partition that we

construct in Section 5. Formally,

Theorem 4.24. Let P be a set of size q, where q is an odd prime power. Let c be an even

integer such that c + 1 | q + 1, and c ≤ √q/10. Then, there exists a (c, 4c2)-axis evasive

partition of P 2 with at most 2q2/(c+ 1) parts.
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Our proof of Theorem 4.23 is done by applying Proposition 4.22 several times, itera-

tively, where in each iteration we square the size of the set P obtained by the previous

iterative step. Note, however, that Theorem 4.24 requires the set size |P | to be an odd

prime power q with the property that c + 1 | q + 1. It is best to choose c the same in

all applications of Proposition 4.22. However, note that if we start an iteration with a

set of size q and so end the iteration with a set of size q2 then the condition will fail to

hold at the beginning of the following iteration. Indeed if c + 1 | q + 1 then q ≡ −1

(mod c + 1) and so q2 ≡ 1 (mod c + 1). To overcome this technicality, we do not work

with the set obtained by the previous iteration as is. Instead, we find a prime–not much

smaller than q2–that has the desired residue −1 modulo c + 1. To this end we rely on

the Siegel–Walfisz Theorem [Sie35, Wal36] which refines Dirichlet’s theorem on primes in

arithmetic progressions. The state the Siegel–Walfisz Theorem we set some notation. For

an integer m ≥ 1, we denote Euler’s totient function, that counts the positive integers

up to m that are relatively prime to m, by φ(m). For integers n,m, r, we denote the

number of (positive) primes less than or equal to n which are congruent to r modulo m

by π(n;m, r). The Eulerian logarithmic integral is given by

Li(x) =

∫ x

2

dt

ln t
.

Theorem 4.25 ([Sie35, Wal36]). For every constant e ≥ 1 there exists a constant c = c(e)

such that the following holds. Let n,m, r be positive integers such that m ≤ (log n)e, and

m, r coprimes. Then, ∣∣∣π(n;m, r)− Li(n)

φ(m)

∣∣∣ = O
(
n · 2−c

√
logn
)
.

We have the following straightforward corollary.

Corollary 4.26. For every constant e ≥ 1 there exist constants c = c(e), n0 = n0(e) such

that the following holds. Let m, r be coprime integers, m > 0. Let n ≥ n0 be an integer

such that m ≤ (log n)e. Then, there exists a prime p ∈ [n −∆, n], where ∆ = cn/ log n,

such that p ≡ r (mod m).

Proof. To prove the corollary, it suffices to show that π(n;m, r) > π(n − ∆;m, r). By

Theorem 4.25, there exist constants n0, c
′ such that for every n ≥ n0,∣∣∣π(n;m, r)− Li(n)

φ(m)

∣∣∣ ≤ c′n · 2−c
√

logn.

Thus, it suffices to show that

Li(n)

φ(m)
− c′n · 2−c

√
logn >

Li(n−∆)

φ(m)
+ c′(n−∆) · 2−c

√
log (n−∆).
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As we may assume that ∆ ≤ n/2, it suffices to prove that

Li(n)− Li(n−∆) ≥ 2c′φ(m)n · 2−c
√

log(n/2). (4.13)

It is well-known that

Li(x) = c1 +
x

lnx
+O

(
x

ln2 x

)
,

where c1 =
∫ 2

t=0
dt
ln t

is some constant. Therefore,

Li(n)− Li(n−∆) ≥ ∆

ln(n/2)
− c′′n

ln2 n
.

for some constant c′′. By our assumption on ∆ we can choose the parameter c in the

definition of ∆ such that the right hand side is bounded below by n/ ln2 n. The proof then

follows by Equation (4.13) and noting that φ(m) ≤ m ≤ (log n)e = o(2−c
√

log (n/2)).

We turn to formally define and analyze the operation of projecting a dual SLR over

FP on a (large) subset of P .

Definition 4.27. Let P a set and P ′ ⊆ P . Let p′ ∈ P ′ and D be a distribution with

supp(D) ⊆ Fp′ ∪ {⊥}. We define the D|P ′ as follows: To sample from D|P ′, sample

f ∼ D. If f =⊥, output ⊥; if f ∈ Fp′, output f |P ′. We refer to D|P ′ as the distribution

D projected to P ′.

Definition 4.28. Let P be a set, F a field. Let D = {Dp | p ∈ P} be a collection of

distributions, where for each p ∈ P , supp(Dp) ⊆ Fp ∪ {⊥}. Let P ′ ⊆ P . We define D|P ′
to be the collection D projected to P ′, that is, D|P ′ = {Dp′ |P ′ | p′ ∈ P ′}.

Definition 4.29. Let P be a set, F a field and let L be a linear subspace of FP . Let P ′ ⊆ P .

We denote by L|P ′ the linear subspace L projected to P ′, namely, L|P ′ = {f |P ′ | f ∈ L}.

Claim 4.30. Let P be a set, F a field, (D,L) a (q, τ, ε, ρ)-dual SLR over FP , and let

P ′ ⊆ P . Then, (D|P ′ ,LP ′) is a (q, τ, ε, ρ′)-dual SLR over FP ′, where ρ′ = 1− |P |
|P ′|(1− ρ).

Proof. That the smoothness τ , as well as q and ε, all stay the same after projecting the

dual SLR to P ′, follows immediately from the definitions. The assertion regarding the

rate of the induced SLR, ρ′, readily follows as we have that

dim(L|P ′) ≤ dim(L) ≤ (1− ρ)|P | =
(

1− (1− |P |
|P ′|

(1− ρ))

)
|P ′|.
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Claim 4.31. There exists a universal constant m0 such that the following holds. Let P

be a set of size m ≥ m0. Let F be a field, and let (DP ,LP ) be a (qin, τin, εin, ρin)-dual SLR

over FP . Let c ≤ logm be an integer. Then, there exists a set P ′ of size

|P ′| ≥
(

1−O
(

1

logm

))
m2,

and a (qout, τout, εout, ρout)-dual SLR (DP ′ ,LP ′) over FP ′, where

qout ≤ 2cq3
in,

τout ≤ 40c3qinτ
2
in,

εout ≤ 80c3qin(τ 2
in + εin),

ρout ≥ 1− (1− ρin)2 −O (1/c) .

Proof. By Corollary 4.26 applied with n,m, r in the notation of Corollary 4.26 set to

m, c + 1,−1 in the notation of this claim, respectively, there exists some prime p ≤ m

such that m− p = O( m
logm

), and c + 1 | p + 1. Take P ′ to be an arbitrary subset of P of

size p. By Claim 4.30, (D|P ′ ,L|P ′) is a (qin, τin, εin, ρ
′)-dual SLR on P ′, where

ρ′ = 1− m

p
(1− ρin) ≥ ρin −O

(
1

logm

)
.

By Theorem 4.24 applied to P ′, which observe is indeed applicable as c+ 1 | p+ 1, there

exists an explicit (c, 4c2)-axis evasive partition R of (P ′)2 with at most t = 2p2/(c + 1)

parts. With that partition, we can now apply Proposition 4.22 to (D|P ′ ,L|P ′) and get

that (D|P ′ ,L|P ′)2
R is a (qout, τout, εout, ρout)-dual SLR with the stated parameters. Note

that the assertion regarding the rate follows as c ≤ logm,

The following proposition is a more formal and accurate restatement of Theorem 1.7.

Proposition 4.32. There exist universal constants 0 < c′ < 1 and c′′,m′, `′ ≥ 1 such that

the following holds. Let P be a set of size m ≥ m′. Let F be a field, and let (DP ,LP ) be

a (qin, τin, εin, ρin)-dual SLR over FP . Let ` = 2r for an integer r ≥ 1, and assume that

` ≥ `′. Let c be an integer such that c′′`2 ≤ c ≤ c′ logm. Then, there exists a set P` of

size m`/2 ≤ |P`| ≤ m`, and a (q`, τ`, ε`, ρ`)-dual SLR (DP` ,LP`) over FP`, where

q` ≤ (2cqin)`
log 3

,

τ` = O((c3qin)`
log 3

) · τ `in,
ε` ≤ O((c4qin)`

log 3

) · (τin + εin),

ρ` ≥ 1− (1− ρin)` −O
(
`2

c

)
,

where, recall, the log function is taken base 2.
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Proof. We construct a sequence of (qt, τt, εt, ρt)-dual SLR (DPt ,LPt) for t = 0, 1, . . . , r =

log `, and show that the last dual-SLR in the sequence has the stated parameters. The

first dual-SLR, (DP0 ,LP0), is taken to be the (qin, τin, εin, ρin)-dual SLR (DP ,LP ) that

is given by the hypothesis of the proposition. After constructing (DPt ,LPt), we obtain

(DPt+1 ,LPt+1) by applying Claim 4.31 to (DPt ,LPt) with the parameter c taken to be c

from the statement of this proposition. Note that, as required by the claim, c ≤ logm.

Note that, by taking m′ to be a large enough constant, all other dual SLR in the sequence

will have |Pt| ≥ m as well, and so we can apply Claim 4.31 to them. Denote mt = |Pt|.
We begin by bounding mt from below. Indeed, by Claim 4.31, and using that 1−x ≥ e−2x

for x ≤ 1/2, we can pick the constant c′′ such that

mt ≥ e
− c′′

logmt−1m2
t−1 ≥ e

− c′′
logm0m2

t−1,

where the last inequality follows as, for a large enough constant m′, the sequence (mt)t is

monotone increasing. We invoke Claim 3.19 with a = e
c′′

2 logm0 and b = 2 to conclude that

mt ≥ m2t

0 e
− c′′2t

logm0 ≥ 1

2
m2t

0 ,

where the last inequality follows as t ≤ r = log ` and, recall, we take ` ≤ c′ logm for a

sufficiently small constant c′ > 0. In particular, mr ≥ m`/2 as stated.

By Claim 4.31, for every t ≥ 1 we have qt ≤ 2cq3
t−1. It is straightforward to prove by

that

qt ≤ (2cqin)3t , (4.14)

which readily implies the assertion regarding the query complexity. We turn to analyze

the rate. Denote βt = 1− ρt. Claim 4.31 implies that βt ≤ β2
t−1 + c′′′/c, for some constant

c′′′ > 0. By induction on t, we get that βt ≤ β2t

0 + c′′′4t/c. Indeed, the base case t = 0 is

obvious. Now, by the induction hypothesis,

βt ≤ β2
t−1 +

c′′′

c
≤
(
β2t−1

0 + 4t−1 c
′′′

c

)2

+
c′′′

c
.

One can easily verify that the right hand side is bounded above by the desired bound

β2t

0 + c′′′4t/c provided that 2tc′′′/c ≤ 1. As t ≤ r and 2r = `, the latter inequality follows

assuming c′′′` ≤ c. As we assume c ≥ c′′`2, it suffices to choose `′ from the statement of

the proposition to be a constant larger than the constant c′′′/c′′. We conclude that,

βr ≤ β`0 +O

(
4r

c

)
= β`0 +O

(
`2

c

)
,

which implies the assertion regarding the rate.
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As for the smoothness, by Claim 4.31, and using Equation (4.14), we have that

τt ≤ 40c3qt−1τ
2
t−1 ≤ 40c3 (2cqin)3t−1

τ 2
t−1,

from which it is easy to verify that

τt ≤ (40c3)2t(2cqin)3tτ 2t

0 ,

and the assertion regarding the smoothness readily follows. Last is the error which we

leave to the reader to verify.

We can now easily deduce Theorem 4.23

Proof of Theorem 4.23. The proof readily follows from Proposition 4.32 by taking ` as

defined in Equation (4.12), and with c in the notation of Proposition 4.32 taken to be c =

Θ(`2/α). Note that this choice of parameters satisfies the hypothesis of Proposition 4.32

as indeed implied by Equation (4.11) and by taking c′ to be a sufficiently large constant. It

is easy to verify that the rate is 1−α with our choice of c, `, and the remaining assertions

readily follow by Proposition 4.32.

5 Axis-evasive partitions

The distance-efficient rate amplification procedure that was developed in the previous

section is built on axis-evasive partitions. Note that, by Proposition 4.22, the number of

parts t effects the rate, c effects the query complexity and both c, s the deterioration of

the distance and error. It is perhaps best to consider the following goal: for a given c we

wish to obtain a (c, s)-axis evasive partition with both s, t as small as possible.

We start this section by proving the existence of axis-evasive partitions with great

parameters. However, our probabilistic proof does not work for every c but rather, it

requires c = Ω(logm), where m = |P |. Unfortunately, for our distance-efficient rate

amplification procedure, we are interested in c < logm (see Proposition 4.32). Luckily,

and perhaps somewhat surprisingly, our explicit construction, described in Section 5.2,

does work for every c albeit it requires c+ 1 | m+ 1 to hold.

5.1 Existential proof

As mentioned above, while we do not use the following non-constructive proof for the

existence of axis-evasive sets, as given by the following lemma, we believe the reader

might benefit from reading it still, as it gives an intuition on what is it about axis-evasive

partitions which is random and what requires structure.
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Lemma 5.1. Let P be a set of size m, and let c be an integer such that 50 logm ≤ c ≤
√
m.

Then, there exists a (c, s = c)-axis evasive partition of P 2 with t ≤ 5m2/c parts.

Proof. Let k = 2m2/c. The proof is by a probabilistic argument. We form a partition

by assigning to each point p ∈ P 2 a “color” or, more formally, a number in [k]. The k

parts are then formed by grouping together points with the same color. To this end, for

every p ∈ P 2 define a random variable Cp that is uniformly distributed over [k], where

{Cp | p ∈ P 2} are independent. For i ∈ [k] let Ri be the number of random variables Cp

for which Cp = i. Note that Ri is the size of part i, and that E[Ri] = c/2. For every fixed

i ∈ [k], by the Chernoff bound,

Pr [Ri 6∈ [c/4, c]] ≤ 2e−c/16.

Thus, by the union bound over i ∈ [k] and per our assumption c ≥ 50 logm, we have that

except for probability 1/4, for every i ∈ [k], Ri ∈ [c/4, c].

Now, we would want to claim that this partition satisfies the third condition, meaning

that for every p ∈ P 2 and ` ∈ X , |[p] ∩ `| ≤ 1. However, with high probability, this

property in fact does not hold. To fix this, we make a slight modification to the random

partition above so that it does satisfy the requirement. The change, is simply, given a

partition - whenever there is a “collision” on a line ` ∈ X , meaning that for some distinct

p, r ∈ `, Cp = Cr, assign new and distinct parts to both p and r. To analyze the number

of additional parts we need, we introduce the following notation. For ` ∈ X let

ν(`) = {{p, r} | p, r ∈ ` and p 6= r}.

For v = {p, r} ∈ ν(`) define I`v to be an indicator for the event that Cp = Cr. With this

notation, the number of collisions is bounded by
∑

`∈X
∑

v∈ν(`) I`v. It holds that

E

∑
`∈X

∑
v∈ν(`)

I`v

 = 2m

(
m

2

)
1

k
<
mc

2
.

Therefore, by Markov’s inequality, with probability at least 1/2, the number of collisions

is less than mc. In such case, we can add at most mc parts to the partition and be

guaranteed that for every p ∈ P 2 and ` ∈ X , |[p] ∩ `| ≤ 1. Recall that since, prior to

the procedure above, every part has size at least c/4 the total number of parts is now

bounded by

t ≤ mc+
m2

c/4
≤ 5m2

c
,

where the last inequality follows as we assume c ≤
√
m.
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To conclude the proof, it suffices to show that, with probability larger than 7/8, it

holds that for every `, `′ ∈ X , |`′∩ (`)| ≤ c. Note that it suffices to prove this with respect

to the partition obtained prior to the procedure above since, by introducing new parts of

size one each, one only decrease the intersection size we aim to bound from above. Denote

by C` = {Cp | p ∈ `} ⊆ [k]. We have that

|` ∩ (`′)| =
∣∣` ∩ ⋃

p∈`′
(p)
∣∣ ≤ 1 +

∣∣{p ∈ `′ \ ` | Cp ∈ C`}∣∣.
Now, by the union bound,

Pr [Cp ∈ C`] ≤
m

k
=

c

2m
.

As {Cp | p ∈ `′} are chosen independently, by the Chernoff bound,

Pr [|{p ∈ `′ \ ` | Cp ∈ C`}| ≥ c] ≤ e−c/6 ≤ 1

m3
,

where for the last inequality was used our assumption c ≥ 50 logm. The proof then

follows by taking the union bound over all `, `′ ∈ X .

5.2 Explicit constructions

In this section we give explicit constructions of axis-evasive partitions (see Definition 4.12).

Our constructions are based on quadratic field extensions. We identify a set P of size q–a

prime power–with the finite field Fq in an arbitrary manner, namely, by using an arbitrary

bijection which, for ease of readability, we do not make explicit in the notation. We start

by giving some basic background on finite fields.

Let h(x) ∈ Fq[x] be a degree 2 irreducible monic polynomial. It is a well-known fact

that Fq[x]/〈h(x)〉 is a field of size q2 which we denote, somewhat less informatively, by

Fq2 . Note that there exists α ∈ Fq2 such that h(α) = 0 (indeed, take α = x + 〈h(x)〉).
Since h is irreducible over Fq and has degree 2, we can write every element of Fq2 in

the form a + αb, where a, b ∈ Fq, in a unique manner. That is, we can identify in the

set-theoretic level, Fq2 with Fq + αFq. Using this identification, we identify P 2 with Fq2
in the natural way, namely, a point (a, b) ∈ P 2 is identified with a+αb in Fq2 . Note that,

with this identification, the horizontal lines in P 2 are of the form bα + Fq where b ∈ Fq
can be thought of as the fixed height of the line. Similarly, the vertical lines are given by

b + αFq. Given δ ∈ Fq2 \ {0}, we say that `δ = δFq ⊆ Fq2 is the line through the origin

with slope δ.

Our construction of exis-evasive partitions is based on an equivalence relation that

we are about to define. The partition is then obtained by considering the respective
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equivalence classes. We begin the construction by ignoring the “origin” 0 ∈ Fq2 and work

only with Fq2 \{0}. Note that this is the set of invertible elements of Fq2 which has a group

structure under the field multiplication. When referring to this multiplicative group we

write (Fq2)×.

Let β ∈ (Fq2)×. Denote by o(β) the order of β in the multiplicative group (Fq2)×. It

will be convenient to denote c = o(β) − 1. We define an equivalence relation on (Fq2)×,

parameterized by β, as follows: For γ, δ ∈ (Fq2)×

γ ∼ δ ⇐⇒ γδ−1 ∈ 〈β〉, (5.1)

where 〈β〉 is the subgroup of (Fq2)× that is generated by β. Observe that this is an

equivalence relation. Indeed, the classes are the different cosets, that is, the elements

of the quotient group (Fq2)×/〈β〉. For completeness, we quickly prove that this is an

equivalence relation: as 1 ∈ 〈β〉, we have that γ ∼ γ. Secondly, if γδ−1 ∈ 〈β〉 then

δγ−1 ∈ 〈β−1〉 = 〈β〉 which establishes symmetry. As for transitivity, if γ ∼ δ and δ ∼ ε

then

γε−1 = γ(δ−1δ)ε−1 = (γδ−1)(δε−1) ∈ 〈β〉.

One can easily see that the equivalence class of an element γ ∈ (Fq2)× is [γ] = γ〈β〉 =

{γ, βγ, . . . , βcγ}. Note further that |[γ]| = c + 1. Indeed, if there are 0 ≤ j < i ≤ c such

that βiγ = βjγ then 0 = (βi − βj)γ = (βi−j − 1)βjγ, which is a contradiction as none of

the factors in the product is zero.

In the following claim we show that, under some conditions on α, β, the second prop-

erty of axis-evasiveness is met by the construction above. We mention already here that

the third condition in Definition 4.12 is not met by the construction as is (regardless of

the choice of α, β), and we will alter it afterwards to meet that property as well.

Claim 5.2. Assume that 〈β〉 ∩ `α = 〈β〉 ∩ `α−1 = ∅ and that 〈β〉 ∩ Fq = {1}. Then, for

every `, `′ ∈ X (not necessarily distinct) it holds that
∣∣`′ ∩ (`)

∣∣ ≤ c.

Proof. Recall that (γ) = {βγ, . . . , βcγ}. Thus,

⋃
γ∈`

(γ) =
⋃
γ∈`

c⋃
i=1

{βiγ} =
c⋃
i=1

βi`.

Therefore,

`′ ∩ (`) = `′ ∩
⋃
γ∈`

(γ) =
c⋃
i=1

(
`′ ∩ βi`

)
. (5.2)

Fix i ∈ [c] and consider two cases. First, if ` is vertical, namely, ` = b + αFq for some

b ∈ Fq, then βi` = βib + αβiFq. Since, by assumption, 〈β〉 ∩ Fq = {1} we have that
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αβiFq 6= αFq and so the line βi` is not vertical. As, by assumption, 〈β〉 ∩ `α−1 = ∅, we

have that αβi 6∈ Fq and so the line βi` is not horizontal either.

Second, consider the case that ` is horizontal ` = bα + Fq for some b ∈ Fq. Then,

βi` = bαβi+βiFq. Per our assumption that 〈β〉∩ `α = ∅, we have that βiFq 6= αFq and so

the line βi` is not vertical. As we assume 〈β〉 ∩Fq = {1}, we have that βiFq 6= Fq, and so

the line βi` cannot be horizontal either. To summarize, we have that βi` 6∈ X . However,

`′ ∈ X and so βi` and `′ are two distinct lines. As such, the two lines intersect in at most

one point. Equation (5.2) then yield |`′ ∩ (`)| ≤ c.

Informal discussion regarding the third property. As mentioned above, the par-

tition of (Fq2)× as defined above does not have the third property required for axis-

evasiveness. Namely, there are γ ∈ (Fq2)× such that [γ] intersects some axis-parallel line

at more than one point. To get some idea on which equivalence classes [γ] are prob-

lematic, let us first ask when do γ, βγ are on some common axis-parallel line. We first

observe that two points δ, ε ∈ (Fq2)× are on a common axis-parallel line if and only

if δ − ε ∈ {1, α}Fq. Thus, γ and βγ are on the same axis-parallel line if and only if

γ − βγ = (1 − β)γ ∈ {1, α}Fq. This is equivalent to saying that γ is on one of the two

lines through the origin with slopes 1
1−β , α

1−β .

More generally, [γ] intersects with some axis-parallel line in more than one point if

and only if βiγ − βjγ ∈ {1, α}Fq for some 0 ≤ j < i ≤ c. Equivalently, γ is on a line `δ

with

δ ∈
{

1

βi − βj
,

α

βi − βj
∣∣∣ 0 ≤ j < i ≤ c

}
. (5.3)

The key observation is that although there are a fair amount of “bad” points γ, they are

all contained in a small number of lines. By “small” here we mean that the number is

polynomial in c and is independent of q. Thus, the hope is that by redefining the partition

on these few problematic lines we will not harm the previous analysis by much. Indeed,

no matter how we alter the partition restricted to these lines, if we make sure none of

them is axis-parallel (by requiring more properties from α, β) then each of these lines

intersect an axis-parallel line at one point. As a result, the bound obtained in Claim 5.2

will deteriorate proportionally to the number of lines above.

The only small technical issue is that even if γ ∈ `δ for some slope δ as above, it is not

the case that [γ] ⊆ ∪ε`ε where ε is taken from the set of slopes given by Equation (5.3).

As we wish to alter the partition defined above, it would be cleaner to have all of the

points in [γ] of a problematic point γ contained in the set of points on which we redefine

the partition. Thus, we “close” the set of slopes given by Equation (5.3) to multiplication
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by β.

Ending the informal discussion and returning to the formal analysis, we consider the

set of slopes.

∆ =

{
βk

βi − βj
,
αβk

βi − βj
∣∣∣ 0 ≤ j < i ≤ c and 0 ≤ k ≤ c

}
(5.4)

Further define the set of all points in (Fq2)× covered by the lines with slopes from ∆ by

U =
⋃
δ∈∆

`δ.

This definition of ∆ indeed fixes the technical caveat discussed above, as the following

claim states.

Claim 5.3. For every γ ∈ (Fq2)× either [γ] ⊆ U or [γ] ∩ U = ∅.

Proof. If an element ε ∈ U then ε ∈ `δ for some δ ∈ ∆. Note that βε ∈ `βδ and

that βδ ∈ ∆. Hence, βε ∈ U . Therefore, ε ∈ U =⇒ ε〈β〉 ⊆ U . Assume now that

[γ] ∩ U 6= ∅, and take γβi ∈ U . By the above, γβi〈β〉 ⊆ U . The proof then follows as

γβi〈β〉 = γ〈β〉 = [γ].

Define a new partition of Fq2 (including 0) which agrees with the one that is given by

Equation (5.1) on F×q2 \U . By Claim 5.3, this is well-defined. The new partition, restricted

to U , is done as follows. Let δ0 ∈ ∆ be an arbitrary element. Note that

U = `δ0 ∪
⋃

δ∈∆\{δ0}

(`δ \ {0})

is a disjoint union. To partition U , we partition `δ0 as well as each of `δ \ {0} where

δ ∈ ∆ \ {δ0} in an arbitrary way provided it has the least number of parts under the

conditions that each part has size at most c+ 1. For ease of readability, we denote by [γ]

the class with respect to the new partition.

Claim 5.4. Assume, on top of the assumptions of Claim 5.2 that for every δ ∈ ∆, `δ 6∈ X .

Then, the new partition defined above is (c, 4c2)-axis evasive.

Proof. First, observe that by construction, every class intersects any axis-parallel line in at

most one point. Indeed, classes that are outside of U have this property by the definition

of U as can be easily verified (and discussed above). Moreover, by the way we redefined

the partition restricted to U , every class that is a subset of U is also a subset of a line

`δ for some δ ∈ ∆. As `δ 6∈ X by hypothesis, we have that the line and, as a result, the

class it contains, intersects any axis-parallel line in at most one point. This establishes
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the third property of axis-evasiveness. The second property follows as, by construction,

every part has size at most c+ 1.

Moving on to the second property, consider `, `′ ∈ X , not necessarily distinct. As

outside of U the partition is defined as before, Claim 5.3 yields∣∣∣`′ ∩ ⋃
γ∈`\U

(γ)
∣∣∣ ≤ c. (5.5)

Take γ ∈ U ∩ `. Since, by construction (γ) ⊆ `δ for some δ ∈ ∆, and since by

hypothesis `δ 6∈ X we have that |`′ ∩ `δ| = 1 and (γ)∩ `′ ⊆ `δ ∩ `′.Therefore, |(γ)∩ `′| ≤ 1.

Together with Equation (5.5) we get that |`′ ∩ (`)| ≤ c + |U ∩ `|. Now, since ` ∈ X and

every line `δ with slope δ ∈ ∆ is not in X we have that |` ∩ `δ| = 1. Thus, |U ∩ `| ≤ |∆|
which implies |`′ ∩ (`)| ≤ c+ |∆|.

To conclude the proof, we turn to bound |∆|. It is straightforward to give a bound

of O(c3) though one can optimize the bound a bit. Indeed, with the notation of Equa-

tion (5.4), by multiplying by β−min(j,k), one can rewrite

∆ =

{
1

βi − βj
,

α

βi − βj
∣∣∣ 0 < j < i ≤ c

}⋃{
βj

βi − 1
,
αβj

βi − 1

∣∣∣ 0 < i ≤ c, 0 ≤ j ≤ c

}
.

(5.6)

Thus, |∆| ≤ 3c2, and the proof follows.

We summarize the discussion so far.

Proposition 5.5. Let Fq be finite field. Let h(x) ∈ Fq[x] be a degree 2 irreducible monic

polynomial, and consider the field Fq[x]/〈h(x)〉 which we denote by Fq2. Let α, β ∈ Fq2 be

two elements satisfying:

1. h(α) = 0,

2. 〈β〉 ∩ Fq = {1},

3. c+ 1 = o(β) ≤ √q/10,

4. 〈β〉 ∩ `α = 〈β〉 ∩ `α−1 = ∅,

5. (〈β〉 − 〈β〉) ∩ Fq = {0},

6. (〈β〉 − 〈β〉) ∩ `α = (〈β〉 − 〈β〉) ∩ `α−1 = {0}.

Then, there exists a partition of (Fq)2 that is (c, 4c2)-axis-evasive, where c = o(β)− 1.

The number of parts in the partition is bounded above by 2q2/(c+ 1).
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To prove Proposition 5.5 we need the following easy claim.

Claim 5.6. Let δ ∈ (Fq2)× be such that δ 6∈ Fq ∪ `α then, `δ 6∈ X .

Proof. Write δ = a + αb with a, b ∈ Fq. Then, `δ = (a + αb)Fq. Observe that if `δ is

vertical then a = 0 and so δ ∈ `α. Similarly, if `δ is horizontal then b = 0 implying

δ ∈ Fq.

Proof of Proposition 5.5. To bound the number of parts, recall that in the original parti-

tion, each part has size c+ 1. Moreover, in the altered partition we partition each line `δ

with slope δ ∈ ∆ (excluding the origin from all but for one of the lines `δ0) to parts of size

c+ 1 each, except for possibly one part. As |∆| ≤ 3c2, the number of parts it bounded by

q2 − 1

c+ 1
+ |∆|

(
1 +

q

c+ 1

)
≤ q2 − 1

c+ 1
+ 6cq ≤ 2q2

c
,

where the last inequality follows by our assumption that o(β) ≤ √q/10.

To conclude the proof of the proposition, it suffices to show that for every δ ∈ ∆ it

holds that `δ 6∈ X . By Claim 5.6, it suffices to prove that δ 6∈ Fq ∪ `α = {1, α}Fq. There

are two types of slopes δ ∈ ∆, according to whether they appear in the first or second set

in Equation (5.6). The first kind is of the form

δ =
αk

βi − βj
,

with 0 < j < i ≤ c and k ∈ {0, 1}. If δ ∈ {1, α}Fq then δ−1 ∈ {1, α−1}Fq and so

βi − βj ∈ {αk, αk−1}Fq in contradiction to our hypothesis. Consider now the other kind

of slope

δ =
αkβj

βi − 1

where 0 < i ≤ c, 0 ≤ j ≤ c and k ∈ {0, 1}. If δ ∈ {1, α}Fq then δ−1 ∈ {1, α−1}Fq and so

(βi − 1)β−j ∈ {αk, αk−1}Fq. Note that (βi − 1)β−j = βi−j − β−j ∈ 〈β〉 − 〈β〉 and so we

again get a contradiction.

We are now ready to prove Theorem 4.24. For the sake of readability, we repeat its

statement here.

Theorem 5.7. Let P be a set of size q, where q is an odd prime power. Let c be an even

integer such that c + 1 | q + 1, and c ≤ √q/10. Then, there exists a (c, 4c2)-axis evasive

partition of P 2 with at most 2q2/(c+ 1) parts.
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Proof. As above, we identify P 2 with Fq2 . It is a well-known fact that the multiplicative

group (Fq2)× is cyclic. A basic result in group theory states that a cyclic group has a

(unique) subgroup of every given size which divides the group size. Now, |(Fq2)×| =

q2 − 1 = (q − 1)(q + 1). Thus, as c + 1 | q + 1, there exists a subgroup H of (Fq2)× of

size c + 1. The subgroup H is cyclic, being a subgroup of a cyclic group. Let β be a

generator for H. We first prove that β satisfies those hypothesis of Proposition 5.5 that

do not involve α, namely, conditions (2) and (5).

Claim 5.8. (〈β〉 − 〈β〉) ∩ Fq = {0} and 〈β〉 ∩ Fq = {1}.

Proof. Assume towards a contradiction that βi − βj ∈ Fq for some 0 ≤ j < i ≤ c. Since

xq = x for every x ∈ Fq, we get

βi − βj =
(
βi − βj

)q
= βiq − βjq,

where the last equality follows since q is divisible by the characteristic of the field. Recall

that o(β) = c+ 1 | q + 1 and so βi(q+1) = 1, implying βiq = β−i. Thus,

βi − βj =
1

βi
− 1

βj
=
βj − βi

βi+j
.

As βi 6= βj the above equation implies βi+j = −1, and so −1 ∈ H. Since q is odd, the

characteristic of the field Fq2 is odd and so o(−1) = 2. Lagrange’s Theorem then implies

that 2 | |H| = c+ 1, which stands in contradiction to c being even.

To prove that 〈β〉 ∩ Fq = {1}, take βi with 0 < i ≤ c. If βi ∈ Fq then βiq = βi.

On the other hand, we proved above that βiq = β−i, and so βi = β−i implying β2i = 1.

Therefore, o(β) = c+ 1 | 2i, but this is impossible as 0 < i ≤ c and, recall, c is even.

We proceed with the proof of Theorem 4.24 by finding α ∈ Fq2 that, together with the

already chosen β, satisfies the remaining conditions in the hypothesis of Proposition 5.5.

Since Fq2 is a quadratic field extension of Fq, every element γ ∈ Fq2 \ Fq has degree 2.

That is, the minimal polynomial hγ of every such γ over Fq is of degree 2 (and can be

made monic by dividing by the leading coefficient, if necessary). Indeed, deg (hγ) cannot

equal 1 as this would imply γ ∈ Fq. On the other hand,

2 = [Fq2 : Fq] = [Fq2 : Fq(γ)][Fq(γ) : Fq] = [Fq2 : Fq(γ)] deg(hγ),

which shows that if deg(hγ) 6= 1 then deg(hγ) = 2.

Thus, condition (1) in the hypothesis of Proposition 5.5 holds for every element in Fq2\
Fq. Hence, to prove that all the remaining conditions in the hypothesis of Proposition 5.5

hold, it suffices to prove that there exists α ∈ Fq2 \ Fq which satisfies conditions (4) and
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(6). To this end, pick a set of “slopes” ∆′ = {δ1, . . . , δq+1} ⊆ (Fq2)× such that (Fq2)× is

the disjoint union

(Fq2)× =
⋃
δ∈∆′

(`δ \ {0}).

For example, ∆′ = {a+ α | a ∈ Fq} ∪ {1} will do. For δ ∈ (Fq2)× let

Iδ = |〈β〉 ∩ `δ|+ | (〈β〉 − 〈β〉) ∩ (`δ \ {0})|.

Since the `δ\{0} with δ ∈ ∆′ are disjoint, 0 6∈ 〈β〉, and since |〈β〉| = c+1 and |〈β〉−〈β〉| ≤
(c+ 1)2, we have that

E
δ

[Iδ] ≤
(c+ 1)2 + (c+ 1)

q + 1
≤ 2(c+ 1)2

q + 1
,

where δ is sampled uniformly from ∆′. By Markov’s inequality, for at least 3/4 of the

elements δ ∈ ∆′ it holds that

|Iδ| ≤
8(c+ 1)2

q + 1
.

Note that (Fq2)× is also a disjoint union of {`δ−1 \ {0} | δ ∈ ∆}. Thus, using the

same argument as above, we get that for at least 1/2 the elements δ ∈ ∆′, both |Iδ| and

|Iδ−1| are bounded by 8(c+ 1)2/(q+ 1). But, as c ≤ √q/10, this bound is strictly smaller

than 1, implying that Ii = Iq+1−i = 0. That is, at least half the elements δ ∈ ∆′ satisfy

conditions (4) and (6). Take α to be any of these elements. To conclude, we found α and

β for which all the conditions in the hypothesis of Proposition 5.5 are met, and the proof

follows.
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