
Neural Networks with Small Weights and
Depth-Separation Barriers

Gal Vardi Ohad Shamir
Weizmann Institute of Science

{gal.vardi,ohad.shamir}@weizmann.ac.il

Abstract

In studying the expressiveness of neural networks, an important question is whether there are func-
tions which can only be approximated by sufficiently deep networks, assuming their size is bounded.
However, for constant depths, existing results are limited to depths 2 and 3, and achieving results for
higher depths has been an important open question. In this paper, we focus on feedforward ReLU net-
works, and prove fundamental barriers to proving such results beyond depth 4, by reduction to open
problems and natural-proof barriers in circuit complexity. To show this, we study a seemingly unrelated
problem of independent interest: Namely, whether there are polynomially-bounded functions which
require super-polynomial weights in order to approximate with constant-depth neural networks. We
provide a negative and constructive answer to that question, by showing that if a function can be approx-
imated by a polynomially-sized, constant depth k network with arbitrarily large weights, it can also be
approximated by a polynomially-sized, depth 3k+3 network, whose weights are polynomially bounded.

1 Introduction

The expressive power of feedforward neural networks has been extensively studied in recent years. It is well-
known that sufficiently large depth-2 neural networks, using reasonable activation functions, can approxi-
mate any continuous function on a bounded domain (Cybenko [1989], Funahashi [1989], Hornik [1991],
Barron [1994]). However, the required size of such networks can be exponential in the input dimension,
which renders them impractical. From a learning perspective, both theoretically and in practice, the main
interest is in neural networks whose size is at most polynomial in the input dimension.

When considering the expressive power of neural networks of bounded size, a key question is what
are the tradeoffs between the width and the depth. Overwhelming empirical evidence indicates that deeper
networks tend to perform better than shallow ones, a phenomenon supported by the intuition that depth,
providing compositional expressibility, is necessary for efficiently representing some functions. From the
theoretical viewpoint, quite a few works in the past few years have explored the beneficial effect of depth
on increasing the expressiveness of neural networks. A main focus is on depth separation, namely, showing
that there is a function f : Rd → R that can be approximated by a poly(d)-sized network of a given depth,
with respect to some input distribution, but cannot be approximated by poly(d)-sized networks of a smaller
depth. Depth separation between depth 2 and 3 was shown by Eldan and Shamir [2016] and Daniely [2017].
However, despite much effort, no such separation result is known for any constant greater than 2. Thus, it
is an open problem whether there is separation between depth 3 and some constant depth greater than 3.
Separation between networks of a constant depth and networks with poly(d) depth was shown by Telgarsky
[2016] (see related work section below for more details).

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 85 (2020)



In fact, a similar question has been extensively studied by the theoretical computer science community
over the past decades, in the context of Boolean and threshold circuits of bounded size. Showing limitations
for the expressiveness of such circuits (i.e. circuit lower bounds) can contribute to our understanding of
the P 6= NP question, and can have other significant theoretical implications (Arora and Barak [2009]).
Despite many attempts, the results on circuit lower bounds were limited. In a seminal work, Razborov
and Rudich [1997] described a main technical limitation of current approaches for proving circuit lower
bounds: They defined a notion of “natural proofs” for a circuit lower bound (which include current proof
techniques), and showed that obtaining lower bounds with such proof techniques would violate a widely
accepted conjecture, namely, that pseudorandom functions exist. This natural-proof barrier explains the
lack of progress on circuit lower bounds. More formally, they show that if a class C of circuits contains a
family of pseudorandom functions, then showing for some function f that f 6∈ C cannot be done with a
natural proof. As a result, if we consider the class C of poly(d)-sized circuits of some bounded depth k,
where k is large enough so that C contains a pseudorandom function family, then it will be difficult to show
that some functions are not in C, and hence that these functions require depth larger than k to express.

An object closer to actual neural networks are threshold circuits. These are essentially neural networks
with a threshold activation function in all neurons (including the output neuron), and where the inputs are
in {0, 1}d. The problem of depth separation in threshold circuits was widely studied (Razborov [1992]).
This problem requires, for some integer k, a function that cannot be computed by a threshold circuit of
width poly(d) and depth k, but can be computed1 by a threshold circuit of width poly(d) and depth k′ > k.
Naor and Reingold [2004] and Krause and Lucks [2001] showed a candidate pseudorandom function family
computable by threshold circuits of depth 4, width poly(d), and poly(d)-bounded weights. By Razborov
and Rudich [1997], it implies that for every k′ > k ≥ 4, there is a natural-proof barrier for showing depth
separation between threshold circuits of depth k and depth k′. As for smaller depths, a separation between
threshold circuits of depth 3 and some k > 3 is a longstanding open problem (although there is no known
natural-proof barrier in this case), and separation between threshold circuits of depth 2 and 3 is known under
the assumption that the weight magnitudes are poly(d) bounded (Hajnal et al. [1987]).

Since a threshold circuit is a special case of a neural network with threshold activation and where the
inputs and output are Boolean, it is natural to ask whether the barriers to depth separation in threshold
circuits have implications on the problem of depth separation in neural networks. Such implications are not
obvious, since neural networks have real-valued inputs and outputs (not necessarily just Boolean ones), and
a continuous activation function. Thus, it might be possible to come up with a depth-separation result, which
crucially utilizes some function and inputs in Euclidean space. In fact, this can already be seen in existing
results: For example, separation between threshold circuits of constant depth (TC0) and threshold circuits of
poly(d) depth (which equals the complexity class P/poly) is not known, but Telgarsky [2016] showed such
a result for neural networks. His construction is based on the observation that for one dimensional data, a
network of depth k is able to express a sawtooth function on the interval [0, 1] which oscillatesO(2k) times.
Clearly, this utilizes the continuous structure of the domain, in a way that is not possible with Boolean inputs.
Also, the depth-2 vs. 3 separation results of Eldan and Shamir [2016] and Daniely [2017] rely on harmonic
analysis of real functions. Finally, the result of Eldan and Shamir [2016] does not make any assumption
on the weight magnitudes, whereas relaxing this assumption for the parallel result on threshold circuits is a
longstanding open problem (Razborov [1992]).

1Note that in this literature it is customary to require exact representation of the function, rather than merely approximating it.

2



Main Result 1: Barriers to Depth Separation

In this work, we focus on real-valued neural networks with the ReLU activation function, and show (un-
der some mild assumptions on the input distribution and on the function) that any depth-separation result
between neural networks of depth k ≥ 4 and some constant k′ > k would imply a depth separation result
between threshold circuits of depth k − 2 and some constant greater than k − 2. Hence, showing depth
separation with k = 5 would solve the longstanding open problem of separating between threshold circuits
of depth 3 and some constant greater than 3. Showing depth separation with k ≥ 6 would solve the open
problem of separating between threshold circuits of depth k−2 and some constant depth greater than k−2,
which is especially challenging due to the natural-proof barrier for threshold circuits of depth at least 4.
Finally, showing depth separation with k = 4 would solve the longstanding open problem of separating
between threshold circuits of depth 2 (with arbitrarily large weights) and some constant greater than 2 (we
note that separation between threshold circuits of depth 2 and 3 is known only under the assumption that the
weight magnitudes are poly(d) bounded). The result applies to both continuous and discrete input distribu-
tions. Thus, we show a barrier to depth separation, that explains the lack of progress on depth separation for
constant-depth neural networks of depth at least 4.

While this is a strong barrier to depth separation in neural networks, it should not discourage researchers
from continuing to investigate the problem. First, our results focus on plain feedforward ReLU networks,
and do not necessarily apply to other architectures. Second, we do make some assumptions on the input
distribution and the function, which are mild but perhaps can be circumvented (or alternatively, relaxed).
Third, our barrier does not apply to separation between depth 3 and some larger constant. That being said,
we do show that in order to achieve separation between depth k ≥ 3 and some constant k′ > k, some
different approach than these used in current results would be required. As far as we know, in all existing
depth-separation results for continuous input distributions (e.g., Eldan and Shamir [2016], Daniely [2017],
Telgarsky [2016], Safran and Shamir [2017], Liang and Srikant [2016], Yarotsky [2017], Safran et al. [2019])
the functions are either of the form f(x) = g(‖x‖) or of the form f(x) = g(x1) for some g : R → R.
Namely, f is either a radial function, or a function that depends only on one component2. We show that for
functions of these forms, networks of a constant depth greater than 3 do not have more power than networks
of depth 3.

Main Result 2: Effect of Weight Magnitude on Expressiveness

To establish our depth-separation results, we actually go through a seemingly unrelated problem of inde-
pendent interest: Namely, what is the impact on expressiveness if we force the network weights to have
reasonably bounded weights (say, poly(d)). This is a natural restriction: Exponentially-large weights are
unwieldy, and moreover, most neural networks used in practice have small weights, due to several reasons
related to the training process, such as regularization, standard initialization of the weights to small values,
normalization heuristics, and techniques to avoid the exploding gradient problem (Goodfellow et al. [2016]).
Therefore, it is natural to ask how bounding the size of the weights affects the expressive power of neural
networks. As far as we know, there are surprisingly few works on this, and current works on the expressive-
ness of neural networks often assume that the weights may be arbitrarily large, although this is not the case
in practice.

If we allow arbitrary functions, there are trivial cases where limiting the weight magnitudes hurts ex-
pressiveness. For example, consider the function f : [0, 1]d → R, where for every x = (x1, . . . , xd) we
have f(x) = x1 · 2d. Clearly, f can be expressed by a neural network of depth 1 with exponential (in

2In Daniely [2017] the function is not radial, but, as shown in Safran et al. [2019], it can be reduced to a radial one.

3



d) weights. This function cannot be approximated with respect to the uniform distribution on [0, 1]d by a
network of constant depth with poly(d) width and poly(d)-bounded weights, since such a network cannot
compute exponentially-large values. However, functions of practical interest only have constant or poly(d)-
sized values (or at least can be well-approximated by such functions). Thus, a more interesting question
is whether for approximating such bounded functions, we may ever need weights whose size is more than
poly(d).

In our paper, we provide a negative answer to this question, in the following sense: Under some mild as-
sumptions on the input distribution, if the function can be approximated by a network with ReLU activation,
width poly(d), constant depth k and arbitrarily large weights, then we show how it can be approximated
by a network with ReLU activation, width poly(d), depth 3k + 3, and with weights whose absolute values
are bounded by some poly(d) or by a constant. The result applies to both continuous and discrete input
distributions.

The two problems that we consider, namely depth-separation and the power of small weights, may seem
unrelated. Indeed, each problem considers a different aspect of expressiveness in neural networks. However,
perhaps surprisingly, the proofs for our results on barriers to depth separation follow from our construction
of networks with small weights. In a nutshell, the idea is that our deeper small-weight network is such that
most layers implement a threshold circuit. Thus, if we came up with a “hard” function f that provably
requires much depth to express with a neural network, then the threshold circuit used in expressing it (via
our small-weight construction) also provably requires much depth – since otherwise, we could make our
small-weight network shallower, violating the assumption on f . This would lead to threshold-circuit lower
bounds. See Section 4 for more details on the proof ideas.

Related Work

Depth separation in neural networks. As we already mentioned, depth separation between depth 2 and
3 was shown by Eldan and Shamir [2016] and Daniely [2017]. In Eldan and Shamir [2016] there is no
restriction on the weight magnitudes of the depth-2 network, while Daniely [2017] assumes that the weights
are bounded by 2d. The input distributions there are continuous. A separation result between depth 2 and 3
for discrete inputs is implied by Martens et al. [2013], for the function that computes inner-product mod 2
on binary vectors (see also a discussion in Eldan and Shamir [2016]).

In Telgarsky [2016], it is shown that there exists a family of univariate functions {ϕk}∞k=1 on the interval
[0, 1], such that for every k we have:

• The function ϕk can be expressed by a network of depth k and width O(1).

• The function ϕk cannot be approximated by any o(k/ log(k))-depth, poly(k)-width network with
respect to the uniform distribution on [0, 1].

To rewrite this as a depth separation result in terms of a dimension d, consider the functions {fd}∞d=1 where
fd : [0, 1]d → R is such that fd(x) = ϕd(x1). The result of Telgarsky [2016] implies that the function fd
can be expressed by a network of widthO(1) and depth d, but cannot be approximated by a network of width
poly(d) and constant depth. Hence, there is separation between constant and polynomial depths. However,
this result does not have implications for the problem of depth separation between constant depths.

In Safran and Shamir [2017], Liang and Srikant [2016], Yarotsky [2017] another notion of depth sep-
aration is considered. They show that there are functions that can be ε-approximated by a network of
polylog(1/ε) width and depth, but cannot be ε-approximated by a network ofO(1) depth unless its width is
poly(1/ε). Their results are based on a univariate construction similar to the one in Telgarsky [2016].

4



Expressive power of neural networks with small weights. Maass [1997] considered a neural network
N with a piecewise linear activation function in all hidden neurons, and threshold activation in the output
neuron. Namely, N computes a Boolean function. He showed that if every hidden neuron in N has fan-out
1, and the d-dimensional input is from a certain discrete set, then there is a network N ′ of the same size and
same activation functions, that computes the same function, and its weights and biases can be represented
by poly(d) bits. Thus, the weights in N ′ are bounded by 2poly(d). From his result, it is not hard to show the
following corollary: LetN be a network with ReLU activation in all hidden neurons and threshold activation
in the output neuron, and assume that the input to N is from {0, 1}d, and that N has width poly(d) and
constant depth. Then, there is a threshold circuit of poly(d) width, constant depth, and poly(d)-bounded
weights, that computes the same function. Note that this result considers exact computation of functions
with binary inputs and output, while we consider approximation of functions with real inputs and output.

Expressiveness with small weights was also studied in the context of threshold circuits. In particular,
it is known that every function computed by a polynomial-size threshold circuit of a constant depth k can
be computed by a polynomial-size threshold circuit of depth k + 1 with weights whose absolute values are
bounded by a polynomial or a constant (Goldmann et al. [1992], Siu and Bruck [1992]). This result relies on
the fact that threshold circuits compute Boolean functions and does not apply to real-valued neural networks.

In the weight normalization method (Salimans and Kingma [2016]), the weights are kept normalized
during the training of the network. That is, all weight vectors of neurons in the network have the same
Euclidean norm. Some approximation properties of such networks were studied in Xu and Wang [2018].
The dependence of the sample complexity of neural networks on the norms of its weight matrices was
studied in several recent works, e.g., Bartlett et al. [2017], Golowich et al. [2017], Neyshabur et al. [2017].

Our paper is structured as follows: In Section 2 we provide necessary notations and definitions, followed
by our main results in Section 3. We informally sketch our proof ideas in Section 4, with all formal proofs
deferred to Section 5.

2 Preliminaries

Notations. We use bold-faced letters to denote vectors, e.g., x = (x1, . . . , xd). For x ∈ Rd we denote
by ‖x‖ the Euclidean norm. For a function f : Rd → R and a distribution D on Rd, either continuous or
discrete, we denote by ‖f‖L2(D) the L2 norm weighted by D, namely ‖f‖2L2(D) = Ex∼D(f(x))2. Given
two functions f, g and real numbers α, β, we let αf +βg be shorthand for x 7→ αf(x)+βg(x). For a set A
we let 1A denote the indicator function. For an integer d ≥ 1 we denote [d] = {1, . . . , d}. We use poly(d)
as a shorthand for “some polynomial in d”.

Neural networks. We consider feedforward neural networks, computing functions from Rd to R. The
network is composed of layers of neurons, where each neuron computes a function of the form x 7→
σ(w>x + b), where w is a weight vector, b is a bias term and σ : R 7→ R is a non-linear activation
function. In this work we focus on the ReLU activation function, namely, σ(z) = [z]+ = max{0, z}. For
a matrix W = (w1, . . . ,wn), we let σ(W>x + b) be a shorthand for

(
σ(w>1 x + b1), . . . , σ(w>n x + bn)

)
,

and define a layer of n neurons as x 7→ σ(W>x + b). By denoting the output of the i-th layer as Oi, we
can define a network of arbitrary depth recursively by Oi+1 = σ(W>i+1Oi + bi+1), where Wi,bi represent
the matrix of weights and bias of the i-th layer, respectively. The weights vector of the j-th neuron in the
i-th layer is the j-th column of Wi, and its outgoing-weights vector is the j-th row of Wi+1. The fan-in of
a neuron is the number of non-zero entries in its weights vector, and the fan-out is the number of non-zero
entries in its outgoing-weights vector. Following a standard convention for multi-layer networks, the final
layer h is a purely linear function with no bias, i.e. Oh = W>h · Oh−1. We define the depth of the network

5



as the number of layers l, and denote the number of neurons ni in the i-th layer as the size of the layer. We
define the width of a network as maxi∈[l] ni. We sometimes consider neural networks with multiple outputs.
We say that a neural network has poly(d)-bounded weights if for all individual weights w and biases b, the
absolute values |w| and |b| are bounded by some poly(d).

Threshold circuits. A threshold circuit is a neural network with the following restrictions:

• The activation function in all neurons is σ(z) = sign(z). We define sign(z) = 0 for z ≤ 0, and
sign(z) = 1 for z > 0. A neuron in a threshold circuit is called a threshold gate.

• All weights are integers.

• We always assume that the input to a threshold circuit is a binary vector x ∈ {0, 1}d.

• The output gates also have a sign activation function. Hence, the output is binary.

Probability densities. Let µ be the density function of a continuous distribution on Rd. For i ∈ [d]
we denote by µi and µ[d]\i the marginal densities for xi and {x1, . . . , xi−1, xi+1, . . . , xd} respectively. We
denote by µi|[d]\i the conditional density of xi given {x1, . . . , xi−1, xi+1, . . . , xd}. Thus, for every i and
xi = (x1, . . . , xi−1, xi+1, . . . , xd) we have µ(x) = µ[d]\i(x

i)µi|[d]\i(xi|xi).
We say that µ has an almost-bounded support if for every δ = 1

poly(d) there is R = poly(d) such that
Prx∼µ(x 6∈ [−R,R]d) ≤ δ.

We say that µ has an almost-bounded conditional density if for every ε = 1
poly(d) there is M = poly(d)

such that for every i ∈ [d] we have

Prx∼µ
(
∃t ∈ R s.t. µi|[d]\i(t|x1, . . . , xi−1, xi+1, . . . , xd) > M

)
≤ ε .

Remark 2.1. In our results on continuous distributions we assume that the density µ has an almost-bounded
support and an almost-bounded conditional density. While the first assumption is intuitive, the second is
less standard. However, it is mild and intended to exclude distributions which are both continuous and
with significant mass on extremely small domains. In Appendix A we show that it holds, for example, for
Gaussians (as long as the variance is at least 1/ poly(d) in all directions), mixtures of Gaussians, any
distribution after a Gaussian smoothing, the uniform distribution on a ball, as well as distributions from
existing depth-separation results. In addition, with a slightly different proof, we also provide similar results
for discrete distributions.

Functions approximation. For y ∈ R and B > 0 we denote [y][−B,B] = max(−B,min(y,B)),
namely, clipping y to the interval [−B,B]. We say that f is approximately poly(d)-bounded if for every
ε = 1

poly(d) there is B = poly(d) such that

E
x∼D

(
f(x)− [f(x)][−B,B]

)2 ≤ ε .
Note that if f is bounded by some B = poly(d) then it is also approximately poly(d)-bounded.

We say that f can be approximated by a neural network of depth k (with respect to a distribution D) if
for every ε = 1

poly(d) we have Ex∼D(f(x)−N(x))2 ≤ ε for some depth-k network N of width poly(d).
Depth separation. We say that there is depth-separation between networks of depth k and depth k′ for

some integers k′ > k, if there is a distributionD on Rd and a function f : Rd → R that can be approximated
(with respect to D) by a neural network of depth k′ but cannot be approximated by a network of depth k.

6



We note that our definition of depth-separation is a bit weaker than most existing depth-separation re-
sults, which actually show difficulty of approximation even up to constant accuracy (and not just 1/poly(d)
accuracy). However, depth separation in that sense implies depth separation in our sense. Hence, the barriers
we show here for depth separation imply similar barriers under this other (or any stronger) notion of depth
separation.

3 Results

We start by presenting our results on small-weight networks, implying that extremely large weights do
not significantly help neural networks to express approximately poly(d)-bounded functions. We show this
via a positive result: If an approximately poly(d)-bounded function can be approximated by a network of
constant depth k and arbitrary weights, then it can also be approximated by a depth-(3k + 3) network with
poly(d)-bounded weights. The proof is constructive and explicitly shows how to convert one network to
the other. We then proceed to use the proof construction, in order to establish depth-separation barriers for
neural networks.

3.1 Neural networks with small weights

We start with the case where the input distribution is continuous:

Theorem 3.1. Let µ be a density function on Rd with an almost-bounded support and almost-bounded
conditional density. Let f : Rd → R be an approximately poly(d)-bounded function, and let k be a
constant, namely, independent of d. If f can be approximated by a neural network of depth k and width
poly(d), then it can also be approximated by a neural network of depth 3k+3, width poly(d), and poly(d)-
bounded weights.

We now show a similar result for the case where the input distribution is discrete:

Theorem 3.2. LetR and p(d) be any polynomials in d, and let I = { j
p(d) : −R·p(d) ≤ j ≤ R·p(d), j ∈ Z}.

Let D be a distribution on Id. Let f : Rd → R be an approximately poly(d)-bounded function, and let
k be a constant, namely, independent of d. If f can be approximated by a neural network of depth k and
width poly(d), then it can also be approximated by a neural network of depth 3k + 3, width poly(d), and
poly(d)-bounded weights.

Remark 3.1 (Constant weights). Since we require poly(d) width, then Theorems 3.1 and 3.2 imply that f
can also be approximated by a network of depth 3k + 3 with constant weights (at the expense of a poly(d)
blowup in the width, simply by recursively substituting every neuron with poly(d)-many constant-weight
neurons).

Remark 3.2 (Approximation by poly(d)-Lipschitz networks). Note that from Theorems 3.1 and 3.2, it
follows that under the assumptions stated there, any poly(d)-bounded function that can be approximated by
a constant-depth network can also be approximated by a constant-depth network that is poly(d)-Lipschitz.

Remark 3.3 (Dependence on k). In Theorems 3.1 and 3.2, we obtain a network of depth 3k + 3, width
poly(d), and poly(d)-bounded weights. Since k is a constant, we hide the dependence of the width and of
the weights on k inside the poly() notation. We note though that this dependence is exponential in k.

7



3.2 Barriers to depth separation

The proof of Theorem 3.1 involves a construction where a networkN of depth k is transformed to a network
N̂ of depth 3k+ 3. The network N̂ is such that layers 2, . . . , 3k+ 2 can be expressed by a threshold circuit.
This property enables us to leverage known barriers to depth separation for threshold circuits in order to
obtain barriers to depth separation for neural networks.

Theorem 3.3. Let µ be a density function on Rd with an almost-bounded support and almost-bounded
conditional density. Let f : Rd → R be an approximately poly(d)-bounded function, and let k′ > k ≥ 4
be constants, namely, independent of d. If f cannot be approximated by a neural network of depth k and
width poly(d), but can be approximated by a neural network of depth k′ and width poly(d), then there is a
function g : {0, 1}d′ → {0, 1} that cannot be computed by a poly(d′)-sized threshold circuit of depth k− 2,
but can be computed by a poly(d′)-sized threshold circuit of depth 3k′ + 1.

The main focus in the existing works on depth-separation in neural networks is on continuous input
distributions. However, it is also important to study the case where the input distribution is discrete. In the
following theorem we show that the barriers to depth separation also hold in this case.

Theorem 3.4. Let R and p(d) be any polynomials in d, and let I = { j
p(d) : −Rp(d) ≤ j ≤ Rp(d), j ∈ Z}.

Let D be a distribution on Id. Let f : Rd → R be an approximately poly(d)-bounded function, and let
k′ > k ≥ 4 be constants, namely, independent of d. If f cannot be approximated by a neural network of
width poly(d) and depth k, but can be approximated by a neural network of width poly(d) and depth k′,
then there is a function g : {0, 1}d′ → {0, 1} that cannot be computed by a poly(d′)-sized threshold circuit
of depth k − 2, but can be computed by a poly(d′)-sized threshold circuit of depth 3k′ + 1.

Remark 3.4 (Barriers to depth separation). From Theorems 3.3 and 3.4, it follows that depth-separation
between neural networks of depth k ≥ 4 and some constant k′ > k, would imply depth separation between
threshold circuits of depth k − 2 and some constant greater than k − 2. Hence, showing depth separation
with k = 5 would solve the longstanding open problem of separating between threshold circuits of depth 3
and some constant greater than 3. Showing depth separation with k ≥ 6 would solve the open problem of
separating between threshold circuits of depth k − 2 and some constant depth greater than k − 2, which
is especially challenging due to the natural-proof barrier for threshold circuits. Finally, showing depth
separation with k = 4 would solve the longstanding open problem of separating between threshold circuits
of depth 2 (with arbitrarily large weights) and some constant greater than 2. Recall that separation between
threshold circuits of depth 2 and 3 is known only under the assumption that the weight magnitudes are
poly(d) bounded.

Remark 3.5 (Barriers to depth separation with bounded weights). Sometimes when considering depth sepa-
ration in neural networks, it is useful to restrict the magnitude of the weights. For example, Daniely [2017]
gave a function that can be approximated by a depth-3 network of poly(d) width and poly(d)-bounded
weights, but cannot be approximated by a depth-2 network of poly(d) width and weights bounded by 2d. We
note that our barrier applies also to this type of separation. Namely, depth-separation for neural networks
of poly(d)-bounded weights between depth k and some constant k′ > k, would imply depth-separation for
threshold circuits of poly(d)-bounded weights between depth k − 2 and some constant greater than k − 2.
Such separation for threshold circuits is an open problem for circuits of depth at least 3 (Razborov [1992]),
and has a natural-proof barrier for circuits of depth at least 4 (Krause and Lucks [2001]).

While Theorems 3.3 and 3.4 give a strong barrier to depth separation, it should not discourage re-
searchers from continuing to investigate the problem, as discussed in the introduction. Moreover, our barrier

8



does not apply to separation between depth 3 and some larger constant. However, we now show that even
for this case, a depth-separation result would require some different approach than these used in existing
results. As we discussed in Section 1, in the existing depth-separation results for continuous input distri-
butions, f is either a radial function or a function that depends only on one component. In the following
theorems we formally show that for such functions, a network of a constant depth greater than 3 does not
have more power than a network of depth 3 (we note that similar results appeared in e.g., Eldan and Shamir
[2016], Daniely [2017] in the context of specific radial functions, and we actually rely on a technical lemma
presented by the former reference).

Theorem 3.5. Let µ be a distribution on Rd with an almost-bounded support and almost-bounded condi-
tional density. Let f : Rd → R be an approximately poly(d)-bounded function, that can be approximated
by a neural network of poly(d) width and constant depth. If f and µ are radial, then f can be approximated
by a network of width poly(d), depth 3, and poly(d)-bounded weights.

Theorem 3.6. Let µ be a distribution on Rd such that the d components are drawn independently. Let
f : Rd → R be a function that can be approximated by a neural network of poly(d) width and constant
depth. If f(x) =

∑
i∈[d] fi(xi) for functions fi : R→ R, then f can be approximated by a network of width

poly(d) and depth 2.

4 Proof ideas

In this section we describe the main ideas of the proofs of Theorems 3.1, 3.2, 3.3 and 3.4. For simplicity, in
all theorems, instead of assuming that f is approximately poly(d)-bounded, we assume that f is bounded
by some B = poly(d), namely |f(x)| ≤ B for every x ∈ Rd. Also, instead of assuming that µ has an
almost-bounded support, we assume that its support is contained in [−R,R]d for some R = poly(d).

4.1 Neural networks with small weights

We start with the case where the input distribution is discrete (Theorem 3.2) since it is simpler. Then, we
describe how to extend it to the continuous case (Theorem 3.1).

4.1.1 Discrete input distributions

Let ε = 1
poly(d) . Let N be a neural network of depth k and width poly(d) such that ‖N − f‖L2(D) ≤ ε

2 . Let
N ′ be a network of depth k + 1 such that for every x ∈ Rd we have N ′(x) = [N(x)][−B,B]. Such N ′ can
be obtained from N by adding to it one layer, since

N ′(x) = [N(x) +B]+ − [N(x)−B]+ −B .

Note that since f is bounded byB, then for every x we have |N ′(x)−f(x)| ≤ |N(x)−f(x)|, and therefore
‖N ′ − f‖L2(D) ≤ ‖N − f‖L2(D) ≤ ε

2 . We construct a network N̂ of constant depth, poly(d)-width and
poly(d)-bounded weights, such that ‖N̂ −N ′‖L2(D) ≤ ε

2 . Then, we have

‖N̂ − f‖L2(D) ≤ ‖N̂ −N ′‖L2(D) + ‖N ′ − f‖L2(D) ≤ 2 · ε
2

= ε .

Recall that D is supported on Id, where I = { j
p(d) : −Rp(d) ≤ j ≤ Rp(d), j ∈ Z} for some

polynomials p(d), R. In order to construct the network N̂ , we first show the following useful property of

9



N ′: For every polynomial p′(d), we can construct a network N ′′ of depth k + 1 and width poly(d), such
that for every x ∈ Id we have N ′′(x) ∈ [−B,B] and |N ′′(x)−N ′(x)| ≤ 1

p′(d) , and there exists a positive

integer t ≤ 2poly(d) such that all weights and biases in N ′′ are in Qt = { st : |s| ≤ 2poly(d), s ∈ Z}. Thus,
for a sufficiently large polynomial p′(d), we have ‖N ′′ −N ′‖L2(D) ≤ ε

2 , and all weights and biases in N ′′

can be represented by poly(d) bits.
The idea of the construction of N ′′ is as follows. First, we transform N ′ into a networkN with a special

structure (and arbitrary weights) that computes the same function. Then, we define a (very large) system
of linear inequalities such that for every x ∈ Id we have inequalities that correspond to the computation
N (x). The variables in the linear system correspond to the weights and biases in N . Finally, we show that
the system has a solution such that all values are in Qt for some positive integer t ≤ 2poly(d), and that this
solution induces a network N ′′ where |N ′′(x) − N ′(x)| ≤ 1

p′(d) for every x ∈ Id. We note that a similar
idea was used in Maass [1997]. However, we use a different construction, since we consider approximation
of a real-valued function, while that paper considered exact computation of Boolean functions.

Since the input x ∈ Id is such that for every i ∈ [d] the component xi is of the form j
p(d) for some integer

−Rp(d) ≤ j ≤ Rp(d), then x can be represented by poly(d) bits. Hence, the computation of N ′′(x) can be
simulated by representing all values, namely, input to neurons, by binary vectors, representing all weights
and biases of N ′′ by binary vectors, and computing each layer by applying arithmetic operations, such as
multiplication and addition, on the binary vectors. Thus, given an input x, the network N̂ will compute
N ′′(x) by simulating N ′′ using arithmetic operations on binary vectors.

It is known that binary multiplication, namely multiplying two d-bits binary vectors, and binary iterated
addition, namely adding poly(d) many d-bits binary vectors, can be implemented by threshold circuits of
poly(d)-width and poly(d)-bounded weights. The depth of the threshold circuit for multiplication is 3, and
the depth of the circuit for iterated addition is 2 (Siu and Roychowdhury [1994]). Simulating a ReLU of
N ′′ can be done by a single layer of threshold gates with small weights. Hence, simulating N ′′(x) can be
done by a threshold circuit T of constant depth, poly(d) width and poly(d)-bounded weights. Note that the
binary representations of the weights and biases ofN ′′ are “hardwired” into T , namely, for each such weight
or bias there are gates in T with fan-in 0 and biases in {0, 1} that correspond to its binary representation.

Thus, the network N̂ consists of three parts:

1. It transforms the input x to a binary representation. Since for every i ∈ [d] the component xi is of the
form j

p(d) for some integer −Rp(d) ≤ j ≤ Rp(d), and since R, p(d) are polynomials, then a binary
representation of xi can be computed by two layers of width poly(d) with poly(d)-bounded weights.

2. It is not hard to show that every threshold circuits of poly(d) width, poly(d)-bounded weights and
depth m can be transformed to a neural network of poly(d) width, poly(d)-bounded weights and
depth m + 1. By implementing the threshold circuit T , the network N̂ simulates the computation
N ′′(x), and obtains a binary representation of N ′′(x).

3. Finally, since N ′′(x) ∈ [−B,B] and B = poly(d), then N ′′(x) can be transformed from a binary
representation to its real value while using poly(d)-bounded weights.

4.1.2 Continuous input distributions

In Section 4.1.1, we described how to approximate a network N ′ with arbitrary weights by a network N̂
with small weights, where the inputs are discrete. In order to handle continuous input distributions, we will
first “round” the input, namely, transform an input x to the nearest point x̃ in some discrete set. Then, we

10



will use the construction from Section 4.1.1 in order to approximate N ′(x̃). Note that we do not have any
guarantees regarding the Lipschitzness ofN ′, and therefore it is possible that |N ′(x)−N ′(x̃)| is large. Thus,
it is not obvious that such a construction approximates N ′. However, we will show that even though N ′ is
not Lipschitz, |N ′(x) − N ′(x̃)| is small with high probability over x. Intuitively, the reason is that N ′(x)
is a bounded function, and has a piecewise-linear structure with a bounded number of pieces along a path.
Thus, the measure of the linear segments with a huge Lipschitz constant cannot be too large. Therefore, if
we sample x and then move from x to x̃, the probability that we cross an interval with a huge Lipschitz
constant is small.

We now turn to describe the proof ideas in slightly more technical detail. Let p(d) be a polynomial
and let I = { j

p(d) : −Rp(d) ≤ j ≤ Rp(d), j ∈ Z}. Let x ∈ [−R,R]d. For i ∈ [d], let x̃i ∈ I be
such that |x̃i − xi| is minimal. That is, x̃i is obtained by rounding xi to the nearest multiple of 1

p(d) . Let
x̃ = (x̃1, . . . , x̃d). Let ε = 1

poly(d) , and let N be a neural network of depth k and width poly(d) such that
‖N−f‖L2(µ) ≤ ε

3 . LetN ′ be a network of depth k+1 and width poly(d) such that for every x ∈ Rd we have
N ′(x) = [N(x)][−B,B]. Since f is bounded byB, then for every x we have |N ′(x)−f(x)| ≤ |N(x)−f(x)|,
and therefore ‖N ′ − f‖L2(µ) ≤ ‖N − f‖L2(µ) ≤ ε

3 . Let Ñ : Rd → [−B,B] be a function such that for
every x ∈ [−R,R]d we have Ñ(x) = N ′(x̃). We will show that ‖Ñ −N ′‖L2(µ) ≤ ε

3 , and then construct a
network N̂ of constant depth, poly(d)-width and poly(d)-bounded weights, such that ‖N̂ − Ñ‖L2(µ) ≤ ε

3 .
Thus, we have

‖N̂ − f‖L2(µ) ≤ ‖N̂ − Ñ‖L2(µ) + ‖Ñ −N ′‖L2(µ) + ‖N ′ − f‖L2(µ) ≤ 3 · ε
3

= ε .

We start with ‖Ñ − N ′‖L2(µ) ≤ ε
3 . Since N ′ is bounded by B, then for every x ∈ [−R,R]d we have

|Ñ(x) − N ′(x)| ≤ 2B. In order to bound ‖Ñ − N ′‖L2(µ) we need to show that w.h.p. |Ñ(x) − N ′(x)|
is small. Namely, that w.h.p. the value of N ′ does not change too much by moving from x to x̃. Since
the Lipschitzness of N ′ is not bounded, then for every choice of a polynomial p(d), we are not guaranteed
that |N ′(x̃) − N ′(x)| is small. Hence, it is surprising that we can bound ‖Ñ − N ′‖L2(µ) by ε

3 . We show
that while it is possible that |N ′(x̃) − N ′(x)| is not small, if p(d) is a sufficiently large polynomial then
the probability of such an event, when x is drawn according to µ, is small. Intuitively, it follows from the
following argument. We move from x to x̃ in d steps. In the i-th step we change the i-th component from xi
to x̃i. Namely, we move from (x̃1, . . . , x̃i−1, xi, xi+1, . . . , xd) to (x̃1, . . . , x̃i−1, x̃i, xi+1, . . . , xd). We will
show that for each step, w.h.p., the change in N ′ is small. Since in the i-th step the components [d] \ {i}
are fixed, then the dependence of N ′ on the value of the i-th component, which is the component that we
change, can be expressed by a network with input dimension 1, width poly(d), and constant depth. Such a
network computes a function gi : R→ R that is piecewise linear with poly(d) pieces. Since N ′ is bounded
by B then gi is also bounded by B, and therefore a linear piece in gi whose derivative has a large absolute
value is supported on a small interval. Now, we are able to show that w.h.p. the interval between xi and x̃i
has an empty intersection with intervals of gi whose derivatives have large absolute values. Hence, w.h.p.
the change in the value of N ′ in the i-th step is small.

We now describe the network N̂ such that ‖N̂ − Ñ‖L2(µ) ≤ ε
3 . First, the network N̂ transforms w.h.p.

the input x to x̃. Note that the mapping x 7→ x̃ is not continuous and hence cannot be computed by a
neural network for all x ∈ [−R,R]d, but it is not hard to construct a network N1 of depth 2, width poly(d)
and poly(d)-bounded weights that computes it w.h.p., where x is drawn according to µ. Now, by the same
arguments described in Section 4.1.1 for the case of a discrete input distributions, for every polynomial p′(d)
there is a network N2 of constant depth, poly(d) width and poly(d)-bounded weights, such that for every
x̃ ∈ Id we have |N2(x̃) −N ′(x̃)| ≤ 1

p′(d) . Let N̂ be the composition of N1 and N2. Now, we have w.h.p.

11



that |N̂(x) − Ñ(x)| = |N̂(x) −N ′(x̃)| ≤ 1
p′(d) . Also, both N̂ and Ñ are bounded by B and therefore for

every x ∈ [−R,R]d we have |N̂(x) − Ñ(x)| ≤ 2B. Hence, for a sufficiently large polynomial p′(d) we
have ‖N̂ − Ñ‖L2(µ) ≤ ε

3 .

4.2 Barriers to depth separation

We now describe the idea behind the proofs of Theorems 3.3 and 3.4. We consider here only continuous
input distributions, but the case of discrete input distributions is similar.

Let ε = 1
poly(d) , and letN be a neural network of depth k′ such that ‖N−f‖L2(µ) ≤ ε

3 . In Section 4.1 we

described a construction of a network N̂ of a constant depth and poly(d) width, such that ‖N̂−f‖L2(µ) ≤ ε.
The network N̂ is such that in the first layers it transforms the input x to a binary representation of x̃, then
it computes T (x̃) for an appropriate threshold circuit T , and finally it transforms the output from a binary
representation to its real value. In the proof of Theorem 3.1 we describe this construction in more detail and
show that N̂ is of depth 3k′ + 3, and T is of depth 3k′ + 1.

Let g : {0, 1}d′ → {0, 1} be the function that T computes. Note that d′ = poly(d). Assume that g can
be computed by a threshold circuit T ′ of depth k − 2 and width poly(d). Now, as we show, we can replace
the layers in N̂ that simulate T by layers that simulate T ′, and obtain a network N̂ of depth k. Also, since T
and T ′ compute the same function, then ‖N̂ − f‖L2(µ) ≤ ε. Hence, f can be approximated by a network of
depth k, in contradiction to the assumption. This implies that g cannot be computed by a threshold circuits
of depth k − 2, hence establishing a depth separation property for threshold circuits.

5 Proofs

5.1 Proof of Theorem 3.1

Let ε = 1
poly(d) . Let N be a neural network of depth k and width poly(d), such that ‖N − f‖L2(µ) ≤ ε

5 .

We will construct a network N̂ of depth 3k + 3, width poly(d) and poly(d)-bounded weights, such that
‖N̂ − f‖L2(µ) ≤ ε.

Since f is approximately poly(d)-bounded, there is B = poly(d) be such that

E
x∼µ

(
f(x)− [f(x)][−B,B]

)2 ≤ ( ε
5

)2
.

Let f ′ : Rd → R be such that f ′(x) = [f(x)][−B,B]. Thus,

‖f ′ − f‖L2(µ) ≤
ε

5
. (1)

Let N ′ be a network of depth k + 1 such that for every x ∈ Rd we have N ′(x) = [N(x)][−B,B]. Such
N ′ can be obtained from N by adding to it one layer, since N ′(x) = [N(x) + B]+ − [N(x) − B]+ − B.
Although we do not allow bias in the output neuron, the additive term −B can be implemented by adding a
hidden neuron with fan-in 0 and bias 1, that is connected to the output neuron with weight −B. Note that
Ex∼µ(N ′(x)− f ′(x))2 ≤ Ex∼µ(N(x)− f ′(x))2, and therefore

‖N ′ − f ′‖L2(µ) ≤ ‖N − f ′‖L2(µ) ≤ ‖N − f‖L2(µ) + ‖f − f ′‖L2(µ) ≤
2ε

5
. (2)

12



Let δ = ε2

400B2 . Since µ has an almost-bounded support, there is R = poly(d) such that Prx∼µ(x 6∈
[−R,R]d) ≤ δ. Let p(d) be a polynomial. Let I = { j

p(d) : −Rp(d) ≤ j ≤ Rp(d), j ∈ Z}. Let x ∈ Rd. For
every i such that xi ∈ [−R − 1

2p(d) , R + 1
2p(d) ], let x̃i ∈ I be such that |x̃i − xi| is minimal. That is, x̃i is

obtained by rounding xi to the nearest multiple of 1
p(d) . For every i such that xi 6∈ [−R− 1

2p(d) , R+ 1
2p(d) ],

let x̃i = 0. Then, let x̃ = (x̃1, . . . , x̃d). Let Ñ : Rd → [−B,B] be a function such that for every x ∈ Rd
we have Ñ(x) = N ′(x̃). We will prove the following two lemmas:

Lemma 5.1. There exists a polynomial p(d) such that

‖Ñ −N ′‖L2(µ) ≤
ε

5
.

Lemma 5.2. There exists a neural network N̂ of depth 3k+3, width poly(d) and poly(d)-bounded weights,
such that

‖N̂ − Ñ‖L2(µ) ≤
ε

5
.

Then, combining Lemmas 5.1 and 5.2 with Eq. 1 and 2, we have

‖N̂ − f‖L2(µ) ≤ ‖N̂ − Ñ‖L2(µ) + ‖Ñ −N ′‖L2(µ) + ‖N ′ − f ′‖L2(µ) + ‖f ′ − f‖L2(µ)

≤ ε

5
+
ε

5
+

2ε

5
+
ε

5
= ε ,

and hence the theorem follows.

5.1.1 Proof of Lemma 5.1

We start with an intuitive explanation, and then turn to the formal proof. Since we have Ñ(x) = N ′(x̃) and
|N ′(x)| ≤ B for every x, then we have |Ñ(x)−N ′(x)| ≤ 2B. In order to bound ‖Ñ −N ′‖L2(µ) we show
that w.h.p. |Ñ(x) − N ′(x)| is small. Namely, that w.h.p. the value of N ′ does not change too much by
moving from x to x̃. Since the Lipschitzness of N ′ is not bounded, then for every choice of a polynomial
p(d), we are not guaranteed that |N ′(x̃) − N ′(x)| is small. However, we show that for a sufficiently large
polynomial p(d), the probability that we encounter a region where N ′ has large derivative while moving
from x to x̃, is small.

We move from x to x̃ in d steps. In the i-th step we change the i-th component from xi to x̃i. Namely,
we move from (x̃1, . . . , x̃i−1, xi, xi+1, . . . , xd) to (x̃1, . . . , x̃i−1, x̃i, xi+1, . . . , xd). We show that for each
step, w.h.p., the change in N ′ is small. Since in the i-th step the components [d] \ {i} are fixed, then
the dependence of N ′ on the value of the i-th component, which is the component that we change, can
be expressed by a network with input dimension 1, width poly(d), and constant depth. Such a network
computes a function gi : R → R that is piecewise linear with poly(d) pieces. Since N ′ is bounded by B
then gi is also bounded by B, and therefore a linear piece in gi whose derivative has a large absolute value
is supported on a small interval. Now, we need to show that the interval between xi and x̃i has an empty
intersection with intervals of gi with large derivatives. Since there are only poly(d) intervals and intervals
with large derivatives are small, then by using the fact that µ has an almost-bounded conditional density,
we are able to show that w.h.p. the interval between xi and x̃i does not have a non-empty intersection with
such intervals. Intuitively, we can think about the choice of x ∼ µ as choosing the components [d] \ {i}
according to µ[d]\i and then choosing xi according to µi|[d]\i. Now, the choice of the components [d] \ {i}
induces the function gi, and the choice of xi is good with respect to gi if the interval between xi and x̃i does

13



not have a non-empty intersection with the intervals of gi which have large derivatives. We show that w.h.p.
we obtain gi and xi, such that xi is good with respect to gi.

We now turn to the formal proof. Let

A =

{
x ∈ Rd : (N ′(x)− Ñ(x))2 >

ε2

50

}
.

Let x ∈ Rd, let yi = (x̃1, . . . , x̃i−1, xi+1, . . . , xd) ∈ Rd−1, and let N ′i,yi : R→ [−B,B] be such that

N ′i,yi(t) = N ′(x̃1, . . . , x̃i−1, t, . . . , xd) .

Note that for every x ∈ Rd, we have

|N ′(x)− Ñ(x)| = |N ′(x)−N ′(x̃)|

=

∣∣∣∣∣∣
∑
i∈[d]

N ′(x̃1, . . . , x̃i−1, xi, . . . , xd)−N ′(x̃1, . . . , x̃i, xi+1, . . . , xd)

∣∣∣∣∣∣
≤
∑
i∈[d]

|N ′(x̃1, . . . , x̃i−1, xi, . . . , xd)−N ′(x̃1, . . . , x̃i, xi+1, . . . , xd)|

=
∑
i∈[d]

|N ′i,yi(xi)−N
′
i,yi(x̃i)| .

Thus, using the shorthand Pr(· | [−R,R]d) for Pr(· | x ∈ [−R,R]d), we have

Pr(A | x ∈ [−R,R]d) = Pr

(
(N ′(x)− Ñ(x))2 >

ε2

50

∣∣∣∣[−R,R]d
)

= Pr

(
|N ′(x)− Ñ(x)| > ε

5
√

2

∣∣∣∣[−R,R]d
)

≤ Pr

∑
i∈[d]

|N ′i,yi(xi)−N
′
i,yi(x̃i)| >

ε

5
√

2

∣∣∣∣∣∣[−R,R]d


≤ Pr

(
∃i ∈ [d] s.t. |N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

∣∣∣∣[−R,R]d
)

≤
∑
i∈[d]

Pr

(
|N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

∣∣∣∣[−R,R]d
)
.

Now, since Pr(x 6∈ [−R,R]d) ≤ δ, we have

Pr(A) = Pr(A | [−R,R]d) · Pr([−R,R]d) + Pr(A | Rd \ [−R,R]d) · Pr(Rd \ [−R,R]d)

≤
∑
i∈[d]

Pr

(
|N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

∣∣∣∣[−R,R]d
)

+ δ . (3)

Let

Ai =

{
x ∈ Rd : |N ′i,yi(xi)−N

′
i,yi(x̃i)| >

ε

5
√

2d

}
.

14



Lemma 5.3.
Pr
(
Ai | x ∈ [−R,R]d

)
≤ ε2

400B2d
.

Proof. Let δ′ = ε2

1600B2d
. Since µ has an almost-bounded conditional density, there is M = poly(d) such

that for every i ∈ [d] we have Pr(Gi) ≤ δ′, where

Gi = {x ∈ Rd : ∃t ∈ R s.t. µi|[d]\i(t|x1, . . . , xi−1, xi+1, . . . , xd) > M} .

Now, we have

Pr
(
Ai|[−R,R]d

)
= Pr

(
Ai ∩Gi|[−R,R]d

)
+ Pr

(
Ai ∩ (Rd \Gi)|[−R,R]d

)
≤ Pr

(
Gi|[−R,R]d

)
+ Pr

(
Ai ∩ (Rd \Gi)|[−R,R]d

)
(4)

Note that

Pr
(
Gi|[−R,R]d

)
=
Pr
(
Gi ∩ [−R,R]d

)
Pr ([−R,R]d)

≤ Pr (Gi)

Pr ([−R,R]d)
≤ δ′

1− δ
. (5)

Thus, it remains to bound Pr
(
Ai ∩ (Rd \Gi)|[−R,R]d

)
. Let x ∈ [−R,R]d. Note that the function

N ′i,yi : R → R can be expressed by a neural network of depth k + 1 that is obtained from N ′ by using
the hardwired yi instead of the corresponding input components [d] \ {i}. That is, if a neuron in the
first hidden layer of N ′ has weights w1, . . . , wd and bias b, then in N ′i,yi its weight is wi and its bias is
b + 〈(w1, . . . , wi−1, wi+1, . . . , wd),yi〉. A neural network with input dimension 1, constant depth, and m
neurons in each hidden layer, is piecewise linear with at most poly(m) pieces (Telgarsky [2015]). Therefore,
N ′i,yi consists of l = poly(d) linear pieces. Note that l depends only on the depth and width of N ′, and does
not depend on i and yi.

Since N ′i,yi(t) ∈ [−B,B] for every t ∈ R, then if N ′i,yi has derivative α in a linear interval [a, b] then

|(b− a)α| ≤ 2B. Let xi = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1. Let γ = 6400B3dMl
ε2

. We denote by Ii,xi,γ
the set of intervals [aj , bj ] where the derivative αj in N ′i,yi satisfies |αj | > γ. Note that yi depends on xi

and does not depend on xi. Now,∑
[aj ,bj ]∈Ii,xi,γ

(bj − aj) ≤
∑

[aj ,bj ]∈Ii,xi,γ

2B

|αj |
< l · 2B

γ
. (6)

Let β be the open interval (xi, x̃i) if xi ≤ x̃i or (x̃i, xi) otherwise. If β ∩ [aj , bj ] = ∅ for every [aj , bj ] ∈
Ii,xi,γ , then

|N ′i,yi(xi)−N
′
i,yi(x̃i)| ≤ |x̃i − xi|γ ≤

γ

p(d)
.

Let

I ′i,xi,γ =

{
[a′j , b

′
j ] : a′j = aj −

1

p(d)
, b′j = bj +

1

p(d)
, [aj , bj ] ∈ Ii,xi,γ

}
.

Thus, if |N ′i,yi(xi) − N ′i,yi(x̃i)| >
γ
p(d) then β ∩ [aj , bj ] 6= ∅ for some [aj , bj ] ∈ Ii,xi,γ , and therefore

xi ∈ [a′j , b
′
j ] for some [a′j , b

′
j ] ∈ I ′

i,xi,γ
. Hence, for a sufficiently large polynomial p(d), if x ∈ Ai then

xi ∈ [a′j , b
′
j ] for some [a′j , b

′
j ] ∈ I ′i,xi,γ .

15



We denote `(I ′
i,xi,γ

) =
∑

[a′j ,b
′
j ]∈I′i,xi,γ

(b′j − a′j). Note that

`(I ′i,xi,γ) =
∑

[aj ,bj ]∈Ii,xi,γ

(bj − aj +
2

p(d)
) ≤ 2l

p(d)
+

∑
[aj ,bj ]∈Ii,xi,γ

(bj − aj)
(Eq. 6)
<

2l

p(d)
+

2Bl

γ
. (7)

For z ∈ Rd−1 and t ∈ R we denote zi,t = (z1, . . . , zi−1, t, zi, . . . , zd−1) ∈ Rd. Note that for every
z ∈ Rd−1 and every t, t′ ∈ R, we have zi,t ∈ Gi iff zi,t′ ∈ Gi. LetG′i = {z ∈ Rd−1 : ∃t ∈ R s.t. zi,t ∈ Gi}.
Now, we have

Pr(Ai ∩ (Rd \Gi) ∩ [−R,R]d) =

∫
Ai∩(Rd\Gi)∩[−R,R]d

µ(x)dx

=

∫
Rd−1\G′i

[∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µ(zi,t)dt

]
dz

=

∫
Rd−1\G′i

[∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µ[d]\i(z)µi|[d]\i(t|z)dt

]
dz

=

∫
Rd−1\G′i

µ[d]\i(z)

[∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µi|[d]\i(t|z)dt

]
dz

≤ sup
z∈Rd−1\G′i

∫
{t∈R:zi,t∈Ai∩[−R,R]d}

µi|[d]\i(t|z)dt .

Recall that if z ∈ Rd−1 \G′i then µi|[d]\i(t|z) ≤M for all t ∈ R. Hence the above is at most

sup
z∈Rd−1\G′i

∫
{t∈R:zi,t∈Ai∩[−R,R]d}

Mdt .

Also, recall that if x ∈ Ai ∩ [−R,R]d then xi ∈ [a′j , b
′
j ] for some [a′j , b

′
j ] ∈ I ′i,xi,γ . Therefore the above is

at most

sup
z∈Rd−1\G′i

∫
{t∈[a′j ,b

′
j ]:[a

′
j ,b
′
j ]∈I′i,z,γ}

Mdt ≤ sup
z∈Rd−1\G′i

∑
[a′j ,b

′
j ]∈I′i,z,γ

∫
[a′j ,b

′
j ]
Mdt

= sup
z∈Rd−1\G′i

∑
[a′j ,b

′
j ]∈I′i,z,γ

(b′j − a′j)M

= sup
z∈Rd−1\G′i

M · `(I ′i,z,γ)
(Eq. 7)
< M

(
2l

p(d)
+

2Bl

γ

)
.

Now, we have

Pr
(
Ai ∩ (Rd \Gi)|[−R,R]d

)
=
Pr
(
Ai ∩ (Rd \Gi) ∩ [−R,R]d

)
Pr([−R,R]d)

≤M
(

2l

p(d)
+

2Bl

γ

)
1

1− δ
.

16



Combining the above with Eq. 4 and 5, and using δ ≤ 1
2 , δ′ = ε2

1600B2d
and γ = 6400B3dMl

ε2
, we have

Pr
(
Ai|[−R,R]d

)
≤ δ′

1− δ
+M

(
2l

p(d)
+

2Bl

γ

)
1

1− δ
≤ 2δ′ + 2M

(
2l

p(d)
+

2Bl

γ

)
=

ε2

800B2d
+

4Ml

p(d)
+

ε2

1600B2d
.

Therefore, for a sufficiently large polynomial p(d) we have Pr
(
Ai|[−R,R]d

)
≤ ε2

400B2d
.

By combining Lemma 5.3 and Eq. 3, and plugging in δ = ε2

400B2 we have

Pr(A) ≤
∑
i∈[d]

ε2

400B2d
+

ε2

400B2
=

ε2

200B2
.

Finally, since for every x we have (N ′(x) − Ñ(x))2 ≤ (2B)2, and since for every x 6∈ A we have
(N ′(x)− Ñ(x))2 ≤ ε2

50 , then

E
x∼µ

(
N ′(x)− Ñ(x)

)2
≤ Pr(A) · (2B)2 + Pr(Rd \A) · ε

2

50
≤ ε2

200B2
· 4B2 +

ε2

50
=
( ε

5

)2
.

5.1.2 Proof of Lemma 5.2

The network N̂ consists of three parts. First, it transforms with high probability the input x to a binary
representation of x̃. Then, it simulates N(x̃) by using arithmetic operations on binary vectors. Finally, it
performs clipping of the output to the interval [−B,B] and transforms it from the binary representation to
its real value.

We start with the first part of N̂ , namely, transforming the input x to a binary representation of x̃.
The following lemma shows a property of almost-bounded conditional densities, that is required for this
transformation.

Lemma 5.4. Let µ be a distribution with an almost-bounded conditional density. Then, for every ε = 1
poly(d)

there is ∆ = 1
poly(d) such that for every i ∈ [d] and s ∈ R we have

Prx∼µ (xi ∈ [s, s+ ∆]) ≤ ε .

Proof. For x ∈ Rd we denote xi = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1. Since µ has an almost-bounded
conditional density, then there is M = poly(d) such that for every i ∈ [d] we have

Prx∼µ
(
∃t ∈ R s.t. µi|[d]\i(t|xi) > M

)
≤ ε

2
.

Let ∆ = 1
poly(d) such that M∆ ≤ ε

2 .

17



Then,

Prx∼µ(xi ∈ [s, s+ ∆]) =

∫
{x:xi∈[s,s+∆]}

µ(x)dx

=

∫
{x:xi∈[s,s+∆]}

µ[d]\i(x
i)µi|[d]\i(xi|xi)dx

=

∫
Rd−1

µ[d]\i(x
i)

[∫
[s,s+∆]

µi|[d]\i(xi|xi)dxi

]
dxi

=

∫
{xi∈Rd−1:∀t∈R . µi|[d]\i(t|xi)≤M}

µ[d]\i(x
i)

[∫
[s,s+∆]

µi|[d]\i(xi|xi)dxi

]
dxi+

∫
{xi∈Rd−1:∃t∈R . µi|[d]\i(t|xi)>M}

µ[d]\i(x
i)

[∫
[s,s+∆]

µi|[d]\i(xi|xi)dxi

]
dxi

≤
∫
{xi∈Rd−1:∀t∈R . µi|[d]\i(t|xi)≤M}

µ[d]\i(x
i)

[∫
[s,s+∆]

Mdxi

]
dxi+∫

{xi∈Rd−1:∃t∈R . µi|[d]\i(t|xi)>M}
µ[d]\i(x

i)

[∫
R
µi|[d]\i(xi|xi)dxi

]
dxi

≤
∫
{xi∈Rd−1:∀t∈R . µi|[d]\i(t|xi)≤M}

µ[d]\i(x
i)M∆dxi+∫

{x∈Rd:∃t∈R . µi|[d]\i(t|xi)>M}
µ(x)dx

≤M∆ + Prx∼µ
(
∃t ∈ R s.t. µi|[d]\i(t|xi) > M

)
≤ ε

2
+
ε

2
= ε .

Let c be an integer greater or equal to log(2Rp(d)+1). For i ∈ [d] we denote by (p(d)x̃i)
bin(c) ∈ {0, 1}c

the c-bits binary representation of the integer p(d)x̃i. Note that since p(d)x̃i ∈ [−Rp(d), Rp(d)] then c
bits are sufficient. We use the standard two’s complement binary representation. In this representation,
the arithmetic operations of addition and multiplication of signed numbers are identical to those for un-
signed numbers. Thus, we do not need to handle negative and positive numbers differently. We denote by
(p(d)x̃)bin(c) ∈ {0, 1}c·d the binary representation of p(d)x̃, obtained by concatenating (p(d)x̃i)

bin(c) for
i = 1, . . . , d.

Lemma 5.5. Let c ≤ poly(d) be an integer greater or equal to log(2Rp(d) + 1) and let δ′ = 1
poly(d) . There

is a neural network N of depth 2, width poly(d), weights bounded by some poly(d), and (c · d) outputs,
such that

Prx∼µ

(
N (x) = (p(d)x̃)bin(c)

)
≥ 1− δ′ .

Proof. In order to construct N , we need to show how to compute (p(d)x̃i)
bin(c) for every i ∈ [d]. We will

show a depth-2 network N ′ such that given xi ∼ µi it outputs (p(d)x̃i)
bin(c) w.p. ≥ 1 − δ′

d . Then, the
network N consists of d copies of N ′, and satisfies

Prx∼µ

(
N (x) 6= (p(d)x̃)bin(c)

)
≤
∑
i∈[d]

Prxi∼µi

(
N ′(xi) 6= (p(d)x̃i)

bin(c)
)
≤ δ′

d
· d = δ′ .

18



For j ∈ [c] let Ij ⊆ {−Rp(d), . . . , Rp(d)} be the integers such that the j-th bit in their binary represen-
tation is 1. Hence, given xi, the network N ′ should output in the j-th output 1Ij (p(d)x̃i).

By Lemma 5.4, there is ∆ = 1
poly(d) such that for every i ∈ [d] and every t ∈ R we have

Prx∼µ

(
xi ∈

[
t− ∆

p(d)
, t+

∆

p(d)

])
≤ δ′

(2Rp(d) + 2)d
. (8)

For an integer −Rp(d) ≤ l ≤ Rp(d), let gl : R→ R be such that

gl(t) =

[
1

∆

(
t− l +

1

2

)]
+

−
[

1

∆

(
t− l +

1

2
−∆

)]
+

.

Note that gl(t) = 0 if t ≤ l − 1
2 , and that gl(t) = 1 if t ≥ l − 1

2 + ∆. Let g′l(t) = gl(t)− gl+1(t). Note that
g′l(t) = 0 if t ≤ l − 1

2 or t ≥ l + 1
2 + ∆, and that g′l(t) = 1 if l − 1

2 + ∆ ≤ t ≤ l + 1
2 .

Let hj(t) =
∑

l∈Ij g
′
l(t). Note that for every l ∈ {−Rp(d), . . . , Rp(d)} and l − 1

2 + ∆ ≤ t ≤ l + 1
2

we have hj(t) = 1 if l ∈ Ij and hj(t) = 0 otherwise. Hence, for p(d)xi ∈ [−Rp(d) − 1
2 , Rp(d) + 1

2 ],
if |p(d)xi − p(d)x̃i| ≤ 1

2 − ∆ then hj(p(d)xi) = 1Ij (p(d)x̃i). For p(d)xi ≤ −Rp(d) − 1
2 − ∆ and for

p(d)xi ≥ Rp(d) + 1
2 + ∆, we have x̃i = 0 and hj(p(d)xi) = 0 = 1Ij (0) = 1Ij (p(d)x̃i). Therefore, if

hj(p(d)xi) 6= 1Ij (p(d)x̃i) then p(d)xi ∈ [l− 1
2 −∆, l− 1

2 +∆] for some integer−Rp(d) ≤ l ≤ Rp(d)+1.
Let N ′ be such that N ′(xi) = (h1(p(d)xi), . . . , hc(p(d)xi)). Note that N ′ can be implemented by a

depth-2 neural network.
Now,

Prxi∼µi

(
N ′(xi) 6= (p(d)x̃i)

bin(c)
)

= Prxi∼µi

(
∃j ∈ [c] s.t. hj(p(d)xi) 6= (p(d)x̃i)

bin(c)
j

)
= Prxi∼µi

(
∃j ∈ [c] s.t. hj(p(d)xi) 6= 1Ij (p(d)x̃i)

)
≤ Prxi∼µi

(
p(d)xi ∈

[
l − 1

2
−∆, l − 1

2
+ ∆

]
,−Rp(d) ≤ l ≤ Rp(d) + 1

)
≤

∑
−Rp(d)≤l≤Rp(d)+1

Prxi∼µi

(
xi ∈

[
l

p(d)
− 1

2p(d)
− ∆

p(d)
,
l

p(d)
− 1

2p(d)
+

∆

p(d)

])
(Eq. 8)

≤ (2Rp(d) + 2) · δ′

(2Rp(d) + 2)d
=
δ′

d
.

We now show that x̃ 7→ N(x̃) for our network N can be computed approximately by a depth-k network
N ′′ whose weights and biases are at most 2poly(d), and have a binary representation with poly(d) bits. The
networkN ′′ will be useful later in order to simulate such a computation with arithmetic operations on binary
vectors.

Lemma 5.6. (Maass [1997]) Consider a system Ax ≤ b of arbitrary finite number of linear inequalities in
l variables. Assume that all entries in A and b are integers of absolute value at most a. If this system has
a solution in Rl, then it has a solution of the form

(
s1
t , . . . ,

sl
t

)
, where s1, . . . , sl, t are integers of absolute

value at most (2l + 1)!a2l+1.

Lemma 5.7. Let p′(d) = poly(d). There is a poly(d)-sized neural network N ′′ of depth k such that for
every x̃ ∈ Id we have:

19



• If N(x̃) ∈ [−B,B] then |N ′′(x̃)−N(x̃)| ≤ 1
p′(d) .

• If N(x̃) > B then N ′′(x̃) ≥ B.

• If N(x̃) < −B then N ′′(x̃) ≤ −B.

Moreover, N ′′ satisfies the following:

• There is a positive integer t ≤ 2poly(d) such that all weights and biases are in Qt = { st : |s| ≤
2poly(d), s ∈ Z}.

• The weights in layers 2, . . . , k are all in {−1, 1}.

Proof. In Maass [1997] it is shown that a similar property holds for the case where the output neuron has
sign activation, namely, where the output of the network is Boolean. We extend this result to real-valued
functions.

We construct N ′′ in three steps. First, we transform N into a network N1 of depth k where the fan-out
of each hidden neuron is 1, such that for every x ∈ Rd we have N1(x) = N(x). Then, we transform N1

into a network N2 of depth k where the weights in layers 2, . . . , k are all in {−1, 1}, such that for every
x ∈ Rd we have N2(x) = N1(x). Finally, we show that N2 can be transformed to a network N ′′ that
satisfies the requirements (in particular, with exponentially-bounded weights and biases). The last stage is
the most delicate one, and can be roughly described as follows: We create a huge set of linear inequalities,
which encodes the requirement that the weights and biases of each neuron in N2 produce the appropriate
outputs, separately for each and every possible input x̃ from our grid Id (up to polynomially small error).
Moreover, it can be shown that the size of the elements in our linear inequalities is poly(d). Hence, invoking
Lemma 5.6, we get that there is a solution to the linear system (namely, a set of weights and biases) which
approximate N2, yet have only 2poly(d)-sized entries.

We now turn to the formal proof. First, the network N1 is obtained by proceeding inductively from the
output neuron towards the input neurons. Each hidden neuron with fan-out c > 1 is duplicated c times. Let
li, l
′
i be the number of hidden neurons in the i-th layer of N and N1 respectively. Note that l′i ≤ li · l′i+1.

Since k is constant and li = poly(d) then the size of N1 is also poly(d).
In order to construct N2, we, again, proceed inductively from the output neuron nout of N1 towards the

input neurons. Let w1, . . . , wl be the weights of the output neuron and let n1, . . . , nl be the corresponding
hidden neurons. That is, for each i ∈ [l] there is an edge with weight wi 6= 0 between ni and nout. Now,
for each i ∈ [l], we replace the weight wi of the edge (ni, nout) by wi

|wi| , and multiply the weights and bias
of ni by |wi|. Note that now the multiplication by |wi| is done before ni instead of after it, but nout still
receives the same input as in N1. Since the fan-out of every hidden neuron in N1 is 1, we can repeat the
same operation also in the predecessors of n1, . . . , nl, and continue until the first hidden layer. Hence, we
obtain a network N2 where the weights in layers 2, . . . , k are all in {−1, 1}.

We now show that N2 can be transformed to a network N ′′ that satisfies the requirements. Let l1 be the
number of neurons in the first hidden layer of N2, let mw = d · l1 be the number of weights in the first layer
(including 0 weights), and let mb the number of hidden neurons in N2, that is, the number of biases in N2.
Let m = mw + mb. For each i ∈ [l1] we denote by wi ∈ Rd the weights of the i-th neuron in the first
hidden layer in N2, and for each hidden neuron n in N2 we denote by bn the bias of n. We define a linear
system Az ≤ c where the variables z ∈ Rm correspond to the weights of the first layer and the biases in
N2. We denote by zi the d variables in z that correspond to wi, and by zn the variable in z that corresponds
to bn. Note that each assignment to the variables z induces a neural network Nz

2 where the weights in the
first layer and the biases in N2 are replaced by the corresponding variables.

20



For each x̃ ∈ Id we place in the system Az ≤ c an inequality for each hidden neuron in N2, and
either one or two inequalities for the output neuron. These inequalities are defined by induction on the depth
of the neuron. If ni is the i-th neuron in the first hidden layer and its input in the computation of N2(x̃)
satisfies 〈x̃,wi〉 + bni ≥ 0, then we add the inequality 〈x̃, zi〉 + zni ≥ 0 to the system. Otherwise, we
add the inequality 〈x̃, zi〉 + zni ≤ 0. Note that the variables in the inequality are zi, zni , and that x̃ is a
constant. Let S1 ⊆ {ni : i ∈ [l1]} be the neurons in the first hidden layer where 〈x̃,wi〉+ bni ≥ 0, that is,
the neurons where the ReLU is active in the computation N2(x̃). Now, the input for each neuron n′ in the
second hidden layer in the computationN2(x̃), is of the form I(n′) =

∑
ni∈S1

ai(〈x̃,wi〉+bni)+bn′ where
ai ∈ {−1, 0, 1} is the weight of the edge (ni, n

′) in N2. Let I ′(n′) =
∑

ni∈S1
ai(〈x̃, zi〉 + zni) + zn′ . If

I(n′) ≥ 0 then we add the inequality I ′(n′) ≥ 0, and otherwise we add I ′(n′) ≤ 0. Note that the variables in
the inequality are zi, zni , zn′ (for the appropriate indices i) and that x̃, ai are constants. Thus, this inequality
is linear.

We denote by S2 the set of neurons in the second hidden layer where the ReLU is active in the com-
putation N2(x̃), and for each neuron n′′ in the third hidden layer we define I(n′′) and I ′(n′′) and add a
linear inequality analogously. We continue until we reach the output neuron nout. Let I(nout) be the input to
nout in the computation N2(x̃), and let I ′(nout) be the corresponding linear expression, where the variables
are z and the constants are x̃ and the weights in layers 2, . . . , k (which are all in {−1, 0, 1}). Note that
I(nout) = N2(x̃) = N(x̃). If N(x̃) ∈ [−B,B], then let −Bp′(d) ≤ j ≤ Bp′(d) − 1 be an integer such
that j

p′(d) ≤ I(nout) ≤ j+1
p′(d) . Now, we add the two inequalities j

p′(d) ≤ I ′(nout) ≤ j+1
p′(d) , where j, p′(d) are

constants. If N(x̃) > B, then we add the inequality I ′(nout) ≥ B, and if N(x̃) < −B, then we add the
inequality I ′(nout) ≤ −B.

Note that if z satisfies all the inequalities Az ≤ c, then for each neuron n, the expression I ′(n) is
consistent with the set of active ReLUs according to the inequalities of the previous layers. Therefore,
the input to n in the computation Nz

2 (x̃) is I ′(n). Hence, for such z we have for every x̃ ∈ Id that if
N2(x̃) ∈ [−B,B] then |Nz

2 (x̃) − N2(x̃)| ≤ 1
p′(d) , if N2(x̃) > B then Nz

2 (x̃) ≥ B, and if N2(x̃) < −B
then Nz

2 (x̃) ≤ −B. Note that Az ≤ c has a solution in Rm, since the weights and biases in N2 satisfy all
the inequalities. The entries in A, c are either integers with absolute value at most poly(d), or of the form
q ·x̃i = q′

p(d) or q
p′(d) where q, q′ are integers with absolute values at most poly(d). Therefore, by Lemma 5.6,

there is an integer a = poly(d) such that the linear system (p(d)p′(d)A)z ≤ p(d)p′(d)c has a solution
z =

(
s1
t , . . . ,

sm
t

)
, where s1, . . . , sm, t are integers of absolute value at most (2m + 1)!a2m+1 ≤ 2poly(d).

Hence, the network N ′′ = Nz
2 satisfies the requirements.

Let N ′′ be the network from Lemma 5.7 with p′(d) =
√

50
ε . The following lemma follows easily.

Lemma 5.8. For every x̃ ∈ Id we have∣∣[N ′′(x̃)][−B,B] −N ′(x̃)
∣∣ ≤ 1

p′(d)
.

Proof. • If N(x̃) ∈ [−B,B] then |N ′′(x̃)−N(x̃)| ≤ 1
p′(d) and we have

∣∣[N ′′(x̃)][−B,B] −N ′(x̃)
∣∣ ≤ ∣∣N ′′(x̃)−N ′(x̃)

∣∣ =
∣∣N ′′(x̃)−N(x̃)

∣∣ ≤ 1

p′(d)
.

• If N(x̃) > B then N ′′(x̃) ≥ B, and therefore∣∣[N ′′(x̃)][−B,B] −N ′(x̃)
∣∣ = |B −B| = 0 .

21



• If N(x̃) < −B then N ′′(x̃) ≤ −B, and therefore∣∣[N ′′(x̃)][−B,B] −N ′(x̃)
∣∣ = | −B − (−B)| = 0 .

The weights and biases in N ′′ might be exponential, but they have a binary representation with poly(d)
bits. This property enables us to simulate [N ′′(x̃)][−B,B] using arithmetic operations on binary vectors.

We now show how to simulate [N ′′(x̃)][−B,B] using binary operations. Recall that the input x̃ to N ′′ is
such that every component x̃i is of the form qi

p(d) for some integer qi with absolute value at most poly(d).
We will represent each component in the input by the binary representation of the integer p(d)x̃i. It implies
that while simulating N ′′, we should replace each weight w in the first layer of N ′′ with w′ = w

p(d) . Then,
w · x̃i = w′ · (p(d)x̃i). Recall that the network N ′′ is such that all weights in layers 2, . . . , k in N ′′ are in
{−1, 1} and all weights in the first layer and biases are of the form si

t for some positive integer t ≤ 2poly(d),
and integers si with |si| ≤ 2poly(d). We represent each number of the form v

t by the binary representation
of v. Since for all weights and biases si

t in N ′′ we can multiply both t and si by p(d), we can assume
w.l.o.g. that p(d) | si and p(d) | t. Then, for each weight w = si

t in the first layer of N ′′, we represent
w′ = w

p(d) = si
t·p(d) by the binary representation of the integer si

p(d) .
Since the input to a neuron in the first hidden layer of N ′′ is a sum of the form I =

∑
i∈[d]wix̃i + b =∑

i∈[d]w
′
i(p(d)x̃i) + b, then in order to simulate it we need to compute multiplications and additions of

binary vectors. Note that p(d)x̃i are integers, w′i are represented by the binary representation of the integers
qi such that w′i = qi

t , and b is represented by the binary representation of the integer q such that b = q
t .

Then, I is also of the form v
t for an integer v with |v| ≤ 2poly(d), and therefore it can be represented by

the binary representation of v. Since the biases in N ′′ are of the form si
t for integers si, and the weights

in layers 2, . . . , k are in {−1, 1}, then in the computation N ′′(x̃) all values, namely, inputs to neurons in
all layers, are of the form v

t where v is an integer with |v| ≤ 2poly(d). That is, a binary representation of v
requires poly(d) bits. Thus, since all values have t in the denominator, then we ignore it and work only with
the numerator.

Let C ′ = poly(d) be such that for all x̃ ∈ Id, all inputs to neurons in the computation N ′′(x̃) are of the
form v

t where v is an integer with absolute value at most 2C
′
. Namely, all values in the computation can be

represented by C ′ bits. Let C = poly(d) be such that every integer v of absolute value at most 2C
′
+Bt has

a binary representation with C bits. Also, assume that C ≥ log(2Rp(d) + 1). Such C will be sufficiently
large in order to represent all inputs p(d)x̃i and all values in our simulation of [N ′′(x̃)][−B,B].

We now show how to simulate p(d)x̃ 7→ [N ′′(x̃)][−B,B] +B with a threshold circuit.

Lemma 5.9. There is a threshold circuit T of depth 3k + 1, width poly(d), and poly(d)-bounded weights,
whose inputs are the C-bits binary representations of:

• p(d)x̃i for every i ∈ [d].

• si
p(d) and −sip(d) for every weight sit in the first layer of N ′′.

And its outputs are:

• The C-bits binary representation of v such that:

– If N ′′(x̃) ∈ [−B,B] then v
t = N ′′(x̃) +B.

– Otherwise v = 0.

22



• A bit c such that c = 1 iff N ′′(x̃) > B.

Proof. In order to simulate the first layer of N ′′, we first need to compute a sum of the form
∑

i∈[d]wi ·
zi where wi = si

p(d) and zi = p(d)x̃i are the inputs and are given in a binary representation. Hence,
we are required to perform binary multiplications and then binary iterated addition, namely, addition of
multiple numbers that are given by binary vectors. Binary iterated addition can be done by a depth-2
threshold circuit with polynomially-bounded weights and polynomial width, and binary multiplication can
be done by a depth-3 threshold circuit with polynomially-bounded weights and polynomial width (Siu and
Roychowdhury [1994]). The depth-3 circuit for multiplication shown in Siu and Roychowdhury [1994] first
computes the partial products and then uses the depth-2 threshold circuit for iterated addition in order to
compute their sum. They show it for a multiplication of two n-bit numbers that results in a 2n-bit number.
The same method can be used also in our case for a multiplication of two C-bit numbers that results in a
C-bit number, since C was chosen such that we are guaranteed that there is no overflow. Also, in two’s
complement representation, multiplication and addition of signed numbers can be done similarly to the
unsigned case. In our case, we need to compute multiplication and then iterated addition. Hence, instead of
using a depth-5 threshold circuit that computes multiplications and then computes the iterated addition, we
can use a depth-3 threshold circuit that first computes all partial products for all multiplications, and then
computes a single iterated addition.

Since the hidden neurons in N ′′ have biases, we need to simulate sums of the form b +
∑

i∈[d]wi · zi.
Hence, the binary iterated addition should also include b. Therefore, the bias b is hardwired into the circuit
T . That is, for every bias b = v

t , we add C gates to the first hidden layer with fan-in 0 and with biases in
{0, 1} that correspond to the binary representation of v.

Simulating the ReLUs of the first hidden layer in N ′′ can be done as follows. Let v be an integer
and let vbin(C) ∈ {0, 1}C be its binary representation. Recall that in the two’s complement represen-
tation the most significant bit (MSB) is 1 iff the number is negative. Now, we reduce the value of the
MSB, namely v

bin(C)
C , from all other C − 1 bits vbin(C)

1 , . . . , v
bin(C)
C−1 . Thus, we transform vbin(C) to(

sign(v
bin(C)
1 − vbin(C)

C ), . . . , sign(v
bin(C)
C−1 − vbin(C)

C ), 0
)

. Now, if v < 0, that is vbin(C)
C = 1, then we

obtain a binary vector whose bits are all 0. If v ≥ 0 then vbin(C)
C = 0 and therefore vbin(C) is not changed.

Thus, simulating a ReLU of N ′′ requires one additional layer in the threshold circuit. Overall, the output of
the first hidden layer of N ′′ can be computed by a depth-4 threshold circuit.

Now, the weights in layers 2, . . . , k in N ′′ are in {−1, 1}. Note that simulating multiplication by a
threshold circuit, as discussed above, requires 3 layers. However, we need to compute values of the form
b +

∑
i ai · zi where ai ∈ {−1, 1}, and zi, b are given by binary vectors. In order to avoid multiplication,

we keep both the values of the computation N ′′(x̃) in each layer, and their negations. That is, the circuit
T keeps both the binary representation of zi and the binary representation of −zi, and then simulating
each layer can be done by iterated addition, without binary multiplication. Keeping both zi and −zi in
each layer is done as follows. When T simulates the first layer of N ′′, it computes values of the form
z = b +

∑
i∈[d]wi · (p(d)x̃i), and in parallel it should also compute −z = −b +

∑
i∈[d](−wi) · (p(d)x̃i).

Note that both wi and−wi are given as inputs to T , and that the binary representation of v such that−b = v
t

can be hardwired into T , similarly to the case of b. Then, when simulating a ReLU of N ′′, it reduces the
MSB of z also from all bits of the binary representation of −z. Thus, if z < 0 then both z and −z become
0. Now, computing z′ = b′ +

∑
i ai · zi where ai ∈ {−1, 1} and zi, b′ are binary numbers, can be done by

iterated addition, and also computing −z′ = −b′ +
∑

i−ai · zi can be done by iterated addition. Note that
the binary representations of ±v such that b′ = v

t are also hardwired into T . Since iterated addition can be
implemented by a threshold circuit of depth 2, the sum z′ = b′ +

∑
i ai · zi can be implemented by 2 layers

23



in T , and then implementing [z′]+, requires one more layer as discussed above. Thus, each of the layers
2, . . . , k − 1 in N ′′ requires 3 layers in T .

Let N ′′(x̃) = v
t . When simulating the final layer of N ′′, we also add (as a part of the iterated addition)

the hardwired binary representation of Bt. That is, instead of computing the binary representation of v,
we compute the binary representation of v′ = v + Bt. We also compute the binary representation of
v′′ = −v + Bt. Note that v

′

t = N ′′(x̃) + B and v′′

t = −N ′′(x̃) + B. Now, the bit c that T should output
is the MSB of v′′, since v′′ is negative iff N ′′(x̃) > B. The C-bits binary vector that T outputs is obtained
from v′, v′′ by adding one final layer as follows. Let MSB(v′) and MSB(v′′) be the MSBs of v′, v′′. In the
final layer we reduce MSB(v′)+MSB(v′′) from all bits of v′. That is, if either v′ or v′′ are negative, then we
output 0, and otherwise we output v′. Now, if N ′′(x̃) ∈ [−B,B] then v′, v′′ ∈ [0, 2Bt], and we output v′,
which corresponds toN ′′(x̃)+B. IfN ′′(x̃) < −B then v′

t = N ′′(x̃)+B < 0, and therefore MSB(v′) = 1,
and we output 0. If N ′′(x̃) > B then v′′

t = −N ′′(x̃) +B < 0, and therefore MSB(v′′) = 1, and we output
0. Thus, simulating the final layer of N ′′ requires 3 layers in T : 2 layers for the iterated addition, and one
layer for transforming v′, v′′ to the required output.

Finally, the depth of T is 3k + 1 since simulating the first layer of N ′′ requires 4 layers in T , and each
additional layer in N ′′ required 3 layers in T .

The following simple lemma shows that threshold circuits can be transformed to neural networks.

Lemma 5.10. Let T be a threshold circuit with d inputs, q outputs, depth m and width poly(d). There is a
neural network N with q outputs, depth m+ 1 and width poly(d), such that for every x ∈ {0, 1}d we have
N (x) = T (x). If T has poly(d)-bounded weights then N also has poly(d)-bounded weights. Moreover,
for every input x ∈ Rd the outputs of N are in [0, 1].

Proof. Let g be a gate in T , and let w ∈ Zl and b ∈ Z be its weights and bias. Let n1 be a neuron with
weights w and bias b, and let n2 be a neuron with weights w and bias b − 1. Let y ∈ {0, 1}l. Since
(〈w,y〉 + b) ∈ Z, we have [〈w,y〉 + b]+ − [〈w,y〉 + b − 1]+ = sign(〈w,y〉 + b). Hence, the gate g can
be replaced by the neurons n1, n2. We replace all gates in T by neurons and obtain a network N . Since
each output gate of T is also replaced by two neurons,N has m+ 1 layers. Since for every x ∈ Rd, weight
vector w and bias b we have [〈w,x〉 + b]+ − [〈w,x〉 + b − 1]+ ∈ [0, 1] then for every input x ∈ Rd the
outputs of N (x) are in [0, 1].

We are now ready to construct the network N̂ . Let δ′ = ε2

50·36B2 . The network N̂ is such that w.p. at
least 1− δ′ we have N̂(x) = [N ′′(x̃)][−B,B]. It consists of three parts.

First, N̂ transforms w.p. ≥ 1 − δ′ the input x to the (C · d)-bits binary representation of p(d)x̃. By
Lemma 5.5, it can be done with a 2-layers neural network N1.

Second, let T be the threshold circuit from Lemma 5.9. By Lemma 5.10, T can be implemented by a
neural network N2 of depth 3k + 2. Note that the input to N2 has two parts:

1. The (C · d)-bits binary representation of p(d)x̃. This is the output of N1.

2. The binary representations of ±sip(d) for every weight sit in the first layer of N ′′. This is hardwired into

N̂ by hidden neurons with fan-in 0 and appropriate biases in {0, 1}.

Thus, usingN2 the network N̂ transforms the binary representation of p(d)x̃ to the output (vbin(C), c) of T .
Third, N̂ transforms (vbin(C), c) to [N ′′(x̃)][−B,B] as follows. Let v be the integer that corresponds to the

binary vector vbin(C). The properties of v and c from Lemma 5.9, imply that [N ′′(x̃)][−B,B] = v
t +c·2B−B,

since we have:

24



• If N ′′(x̃) ∈ [−B,B] then v
t = N ′′(x̃) +B and c = 0.

• If N ′′(x̃) < −B then v = 0 and c = 0.

• If N ′′(x̃) > B then v = 0 and c = 1.

Hence, we need to transform (vbin(C), c) to the real number vt + c · 2B −B. Note that v ≥ 0, and therefore
we have

v

t
=

∑
i∈[C−1]

v
bin(C)
i · 2i−1

t
.

Also, note that vt ∈ [0, 2B], and therefore for every i ∈ [C − 1] we have vbin(C)
i · 2i−1

t ≤ 2B. Hence, we
can ignore every i > log(2Bt) + 1. Thus,

v

t
=

∑
i∈[log(2Bt)+1]

v
bin(C)
i · 2i−1

t
. (9)

Since for i ∈ [log(2Bt) + 1] we have 2i−1

t ≤ 2B, then in the above computation of v
t the weights are

positive numbers smaller or equal to 2B. Thus, we can transform (vbin(C), c) to v
t + c · 2B − B in one

layer with poly(d)-bounded weights. In order to avoid bias in the output neuron, the additive term −B is
hardwired into N̂ by adding a hidden neuron with fan-in 0 and bias 1 that is connected to the output neuron
with weight −B.

Since the final layers of N1 and N2 do not have activations and can be combined with the next layers,
and since the third part of N̂ is a sum, then the depth of N̂ is 3k + 3.

Thus, we have w.p. at least 1 − δ′ that N̂(x) = [N ′′(x̃)][−B,B]. By Lemma 5.8, it implies that w.p. at
least 1− δ′ we have ∣∣∣N̂(x)− Ñ(x)

∣∣∣ ≤ 1

p′(d)
. (10)

However, it is possible (w.p. at most δ′) that N1 fails to transform x to the binary representation of p(d)x̃,
and therefore the above inequality does not hold. Still, even in this case we can bound the output of N̂ as
follows. If N1 fails to transform x to p(d)x̃, then the input to N2 may contains values other than {0, 1}.
However, by Lemma 5.10, the networkN2 outputs c and vbin(C) such that each component is in [0, 1]. Now,
when transforming (vbin(C), c) to v

t + c · 2B−B in the final layer of N̂ , we compute v
t by the sum in Eq. 9.

Since vbin(C)
i ∈ [0, 1] for every i, this sum is at least 0 and at most

1

t
· 2log(2Bt)+1 = 4B .

Therefore, the output of N̂ is at most 4B + 1 · 2B −B = 5B, and at least 0 + 0 · 2B −B = −B. Thus, for
every x we have N̂(x) ∈ [−B, 5B]. Since for every x we have Ñ(x) ∈ [−B,B], then we have∣∣∣N̂(x)− Ñ(x)

∣∣∣ ≤ 6B .

Combining the above with Eq. 10 and plugging in δ′ = ε2

50·36B2 and p′(d) =
√

50
ε , we have

E
x∼µ

(N̂(x)− Ñ(x))2 ≤ (1− δ′)
(

1

p′(d)

)2

+ δ′ · (6B)2 = (1− δ′) ε
2

50
+

ε2

50 · 36B2
· 36B2 ≤

( ε
5

)2
.

Therefore ‖N̂ − Ñ‖L2(µ) ≤ ε
5 as required.

25



5.2 Proof of Theorem 3.2

The proof follows the same ideas as the proof of Theorem 3.1, but is simpler. Consider the functions f ′

and N ′ that are defined in the proof of Theorem 3.1. For every x ∈ Id we denote x̃ = x, and Ñ(x) =
N ′(x̃) = N ′(x). Now, from the same arguments as in the proof of Theorem 3.1, it follows that we can
bound ‖f ′ − f‖L2(D) and ‖N ′ − f ′‖L2(D). Since ‖Ñ −N ′‖L2(D) = 0, it remains to show that Lemma 5.2
holds also in this case.

The network N̂ will have a similar structure to the one in the proof of Lemma 5.2.
First, it transforms the input x to the binary representation of p(d)x̃ = p(d)x. This transformation

is similar to the one from the proof of Lemma 5.5. However, since D is such that for every i ∈ [d] the
component xi is of the form j

p(d) for some integer j, then for an appropriate ∆, we have for every integer l
that

Prx∼D

(
xi ∈

[
l

p(d)
− 1

2p(d)
− ∆

p(d)
,
l

p(d)
− 1

2p(d)
+

∆

p(d)

])
= 0 .

Hence, there is a depth-2 network with poly(d) width and poly(d)-bounded weights, that transforms x to
the binary representation of p(d)x̃ and succeeds w.p. 1.

Recall that in the proof of Lemma 5.2, the next parts of N̂ transform for every x̃ the binary representation
of p(d)x̃ to [N ′′(x̃)][−B,B]. Since this transformation is already discrete and does not depend on the input
distribution, we can also use it here. Then, by lemma 5.8 we have for every x̃ that∣∣[N ′′(x̃)][−B,B] −N ′(x̃)

∣∣ ≤ 1

p′(d)
.

Thus, for p′(d) = 5
ε , we obtain a network N̂ such that w.p. 1 we have

∣∣∣N̂(x)− Ñ(x)
∣∣∣ ≤ ε

5 , and

therefore ‖N̂ − Ñ‖L2(D) ≤ ε
5 .

5.3 Proof of Theorem 3.3

Let ε = 1
poly(d) , and let N be a neural network of depth k′ such that ‖N − f‖L2(µ) ≤ ε

5 . In the proof of

Theorem 3.1 we constructed a network N̂ of depth 3k′ + 3 such that ‖N̂ − f‖L2(µ) ≤ ε. The network N̂ is
such that in the first two layers the input x is transformed w.h.p. to the binary representation of p(d)x̃. This
transformation requires two layers, denoted byN1. Since the second layer inN1 does not have activation, it
is combined with the next layer in N̂ . The next layers in N̂ , denoted by N2, implement a threshold circuit
T of depth 3k′ + 1 and width poly(d). The depth of N2 is 3k′ + 2. Since the final layer of N2 does not
have activation, it is combined with the next layer in N̂ . Finally, the output of N̂ is obtained by computing
a linear function over the outputs of N2.

Let g : {0, 1}d′ → {0, 1} be the function that T computes. Note that d′ = poly(d). Assume that g can be
computed by a threshold circuit T ′ of depth k−2 and width poly(d′). By Lemma 5.10, the threshold circuite
T ′ can be implemented by a neural network N ′2 of depth k − 1 and width poly(d′). Consider the neural
network N̂ obtained from N̂ by replacing N2 with N ′2. The depth of N̂ is k. The same arguments from the
proof of Theorem 3.1 for showing that ‖N̂ − f‖L2(µ) ≤ ε now apply on N̂ , and hence ‖N̂ − f‖L2(µ) ≤ ε.
Therefore, f can be approximated by a network of depth k, in contradiction to the assumption. Hence the
function g cannot be computed by a poly(d′)-sized threshold circuit of depth k − 2.

26



5.4 Proof of Theorem 3.4

Let ε = 1
poly(d) , and let N be a neural network of depth k′ such that ‖N − f‖L2(D) ≤ ε

5 . In the proof of

Theorem 3.2 we constructed a network N̂ of depth 3k′+3 such that ‖N̂−f‖L2(D) ≤ ε. The structure of the
network N̂ is similar to the corresponding network from the proof of Theorem 3.1. Now, the proof follows
the same lines as the proof of Theorem 3.3.

5.5 Proof of Theorem 3.5

Let f(x) = g(‖x‖) where g : R → R. Let ε = 1
poly(d) . By Theorem 3.1, there is a neural network N of a

constant depth k, width poly(d), and poly(d)-bounded weights, such that Ex∼µ(N(x) − f(x))2 ≤
(
ε
3

)2.
Since N has a constant depth, poly(d) width and poly(d)-bounded weights, then it is poly(d)-Lipschitz.
Also, as we show in the proof of Theorem 3.1, the network N is bounded by some B = poly(d), namely,
for every x ∈ Rd we have |N(x)| ≤ B.

Let r = ‖x‖ and let µr be the distribution of r where x ∼ µ. Let U(Sd−1) be the uniform distribution
on the unit sphere in Rd. Since µ is radial, we have( ε

3

)2
≥ E

x∼µ
(N(x)− f(x))2 = E

z∼U(Sd−1)
E

r∼µr
(N(rz)− f(rz))2 = E

z∼U(Sd−1)
E

r∼µr
(N(rz)− g(r))2 .

Therefore, there is some u ∈ Sd−1 such that Er∼µr(N(ru) − g(r))2 ≤
(
ε
3

)2. Let Nu : R → R be such
that Nu(t) = N(tu). It can be implemented by a network of depth k that is obtained by preceding N with
a layer that computes t 7→ tu (and does not have activation). Thus, Er∼µr(Nu(r) − g(r))2 ≤

(
ε
3

)2. Let
h : Rd → R be such that h(x) = Nu(‖x‖). Note that

E
x∼µ

(h(x)− f(x))2 = E
x∼µ

(Nu(‖x‖)− g(‖x‖))2 = E
r∼µr

(Nu(r)− g(r))2 ≤
( ε

3

)2
. (11)

Since µ has an almost-bounded conditional density, then by Lemma 5.4, there is R1 = 1
poly(d) such that

for every i ∈ [d] we have

Prx∼µ (xi ∈ [−R1, R1]) ≤ ε2

72B2
.

Hence,

Prx∼µ (‖x‖ ≤ R1) ≤ ε2

72B2
.

Also, since µ has an almost-bounded support, there exists R1 < R2 = poly(d) such that

Prx∼µ (‖x‖ ≥ R2) ≤ ε2

72B2
.

Thus,

Prr∼µr(R1 ≤ r ≤ R2) ≥ 1− ε2

36B2
. (12)

Since the network N is bounded by B then Nu is also bounded by B, namely, for every t ∈ R we have
|Nu(t)| ≤ B. Moreover, sinceN is poly(d)-Lipschitz, thenNu is also poly(d)-Lipschitz. LetN ′u : R→ R

27



be such that

N ′u(t) =



0 t ≤ R1
2

2Nu(R1)
R1

· t−Nu(R1) R1
2 < t ≤ R1

Nu(t) R1 < t ≤ R2

−Nu(R2)
R2

· t+ 2Nu(R2) R2 < t ≤ 2R2

0 t > 2R2

.

Note that N ′u agrees with Nu on [R1, R2], supported on
[
R1
2 , 2R2

]
, bounded by B, and poly(d)-Lipschitz.

Let h′ : Rd → R be such that h′(x) = N ′u(‖x‖). We have

E
x∼µ

(h′(x)− h(x))2 = E
x∼µ

(N ′u(‖x‖)−Nu(‖x‖))2 = E
r∼µr

(N ′u(r)−Nu(r))2 .

By Eq. 12 the functions Nu and N ′u agree w.p. at least 1− ε2

36B2 . Also, since both Nu and N ′u are bounded
by B, we have |Nu(r)−N ′u(r)| ≤ 2B for every r. Hence, the above is at most

ε2

36B2
· (2B)2 + 0 =

( ε
3

)2
. (13)

Now, we need the following Lemma.

Lemma 5.11. Eldan and Shamir [2016] Let f : R→ R be a poly(d)-Lipschitz function supported on [r,R],
where r = 1

poly(d) and R = poly(d). Then, for every δ = 1
poly(d) , there exists a neural network N of depth

3, width poly(d), and poly(d)-bounded weights, such that

sup
x∈Rd

|N (x)− f(‖x‖)| ≤ δ .

Since N ′u is poly(d)-Lipschitz and supported on
[
R1
2 , 2R2

]
, then by Lemma 5.11 there exists a network

N of depth 3, width poly(d), and poly(d)-bounded weights , such that

sup
x∈Rd

|N (x)−N ′u(‖x‖)| ≤ ε

3
.

Therefore, we have

‖N − h′‖L2(µ) ≤ ‖N − h′‖∞ = sup
x∈Rd

|N (x)−N ′u(‖x‖)| ≤ ε

3
.

Combining the above with Eq. 11 and 13, we have

‖N − f‖L2(µ) ≤ ‖N − h′‖L2(µ) + ‖h′ − h‖L2(µ) + ‖h− f‖L2(µ) ≤
ε

3
+
ε

3
+
ε

3
= ε .

5.6 Proof of Theorem 3.6

Lemma 5.12. Let f : R → R be a function that can be implemented by a neural network of width n and
constant depth. Then, f can be implemented by a network of width poly(n) and depth 2.

28



Proof. A neural network with input dimension 1, constant depth, and width n, is piecewise linear with at
most poly(n) pieces (Telgarsky [2015]). Therefore, f consists of m = poly(n) linear pieces.

Let −∞ = a0 < a1 < . . . < am−1 < am =∞ be such that f is linear in every interval (ai, ai+1). For
every i ∈ [m] Let αi be the derivative of f in the linear interval (ai−1, ai). Now, we have

f(t) = f(a1)− α1[a1 − t]+ +
∑

2≤i≤m−1

(αi[t− ai−1]+ − αi[t− ai]+) + αm[t− am−1]+ .

Note that f can be implemented by a network of depth 2 and width poly(n). In order to avoid bias in
the output neuron, we implement the additive constant term f(a1) by adding a hidden neuron with fan-in 0
and bias 1, and connecting it to the output neuron with weight f(a1).

Let ε = 1
poly(d) . Let N : Rd → R be a neural network of a constant depth and poly(d) width, such that

Ex∼µ(N(x)− f(x))2 ≤
(
ε
d

)2. For z ∈ Rd−1 and t ∈ R we denote zi,t = (z1, . . . , zi−1, t, zi, . . . , zd−1) ∈
Rd. Since µ is such that the components are drawn independently, then for every i ∈ [d] we have

E
x∼µ

(N(x)− f(x))2 = E
z∼µ[d]\i

E
t∼µi

(N(zi,t)− f(zi,t))
2 ≤

( ε
d

)2
,

and therefore for every i there exists y ∈ Rd−1 such that

E
t∼µi

(N(yi,t)− f(yi,t))
2 ≤

( ε
d

)2
.

Let f ′i : R→ R such that
f ′i(t) = N(yi,t)−

∑
j∈[d]\{i}

fj((yi,t)j) .

Note that

E
t∼µi

(
f ′i(t)− fi(t)

)2
= E

t∼µi

N(yi,t)−
∑

j∈[d]\{i}

fj((yi,t)j)− fi(t)

2

= E
t∼µi

(N(yi,t)− f(yi,t))
2 ≤

( ε
d

)2
. (14)

Now, the function f ′i can be implemented by a neural network of depth 2 and width poly(d) as follows.
First, note the by Lemma 5.12 it is sufficient to show that f ′i can be implemented by a network N ′i of a
constant depth and poly(d) width. Since N is a network of constant depth, y is a constant, and fj((yi,t)j)
for j ∈ [d] \ {i} are also constants, implementing such N ′i is straightforward.

Let N ′ be the depth-2, width-poly(d) network such that N ′(x) =
∑

i∈[d] f
′
i(xi). This network is

obtained from the networks for f ′i . For every i ∈ [d] let gi : Rd → R be such that gi(x) = fi(xi). Also, let
g′i : Rd → R be such that g′i(x) = f ′i(xi). Note that f(x) =

∑
i∈[d] gi(x) and N ′(x) =

∑
i∈[d] g

′
i(x). Now,

by Eq. 14, for every i ∈ [d] we have

E
x∼µ

(
g′i(x)− gi(x)

)2
= E

t∼µi

(
f ′i(t)− fi(t)

)2 ≤ ( ε
d

)2
.

Therefore, ‖g′i − gi‖L2(µ) ≤ ε
d .

Hence, we have

‖N ′ − f‖L2(µ) =

∥∥∥∥∥∥
∑
i∈[d]

g′i −
∑
i∈[d]

gi

∥∥∥∥∥∥
L2(µ)

≤
∑
i∈[d]

‖g′i − gi‖L2(µ) ≤ d ·
ε

d
= ε .

29



Acknowledgements

This research is supported in part by European Research Council (ERC) grant 754705.

References

S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.

A. R. Barron. Approximation and estimation bounds for artificial neural networks. Machine learning, 14
(1):115–133, 1994.

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural networks.
In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

A. Daniely. Depth separation for neural networks. arXiv preprint arXiv:1702.08489, 2017.

R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference on Learning
Theory, pages 907–940, 2016.

K. W. Fang. Symmetric multivariate and related distributions. Chapman and Hall/CRC, 2018.

K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural net-
works, 2(3):183–192, 1989.

M. Goldmann, J. Håstad, and A. Razborov. Majority gates vs. general weighted threshold gates. Computa-
tional Complexity, 2(4):277–300, 1992.

N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks. arXiv
preprint arXiv:1712.06541, 2017.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of bounded depth. In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science, pages 99–110, 1987.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

M. Krause and S. Lucks. Pseudorandom functions in tc0 and cryptographic limitations to proving lower
bounds. computational complexity, 10(4):297–313, 2001.

S. Liang and R. Srikant. Why deep neural networks for function approximation? arXiv preprint
arXiv:1610.04161, 2016.

W. Maass. Bounds for the computational power and learning complexity of analog neural nets. SIAM
Journal on Computing, 26(3):708–732, 1997.

30



J. Martens, A. Chattopadhya, T. Pitassi, and R. Zemel. On the representational efficiency of restricted
boltzmann machines. In Advances in Neural Information Processing Systems, pages 2877–2885, 2013.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. Journal
of the ACM (JACM), 51(2):231–262, 2004.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring generalization in deep learning. In
Advances in Neural Information Processing Systems, pages 5947–5956, 2017.

A. A. Razborov. On small depth threshold circuits. In Scandinavian Workshop on Algorithm Theory, pages
42–52. Springer, 1992.

A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24–35,
1997.

I. Safran and O. Shamir. Depth-width tradeoffs in approximating natural functions with neural networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2979–2987.
JMLR. org, 2017.

I. Safran, R. Eldan, and O. Shamir. Depth separations in neural networks: What is actually being separated?
arXiv preprint arXiv:1904.06984, 2019.

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate training of
deep neural networks. In Advances in neural information processing systems, pages 901–909, 2016.

K.-Y. Siu and J. Bruck. Neural computing with small weights. In Advances in Neural Information Processing
Systems, pages 944–949, 1992.

K.-Y. Siu and V. P. Roychowdhury. On optimal depth threshold circuits for multiplication and related
problems. SIAM Journal on discrete Mathematics, 7(2):284–292, 1994.

M. Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint arXiv:1509.08101,
2015.

M. Telgarsky. Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485, 2016.

Y. Xu and X. Wang. Understanding weight normalized deep neural networks with rectified linear units. In
Advances in Neural Information Processing Systems, pages 130–139, 2018.

D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114,
2017.

A Almost-bounded conditional density

In this section we show for some common distributions that they indeed have almost-bounded conditional
densities.

31



A.1 Gaussians, mixtures of Gaussians and Gaussian smoothing

We use the following property of conditional normal distributions.

Lemma A.1. (e.g., Bishop [2006]) Let N (µ,Σ) be a multivariate normal distribution on Rd. For x ∈ Rd
we partition x such that x = (xa, xb), where xa ∈ Rq and xb ∈ Rd−q. Accordingly, we also partition
µ = (µa, µb) and

Σ =

[
Σaa Σab

Σba Σbb

]
,

where the dimensions of the mean vectors and the covariance matrix sub-blocks are chosen to match the
sizes of xa, xb. Let Λ = Σ−1. We denote its partition that correspond to the partition of x by

Λ =

[
Λaa Λab
Λba Λbb

]
.

Then, the distribution of xa conditional on xb = c is the normal distribution N (µ̄, Σ̄), where

µ̄ = µa − Λ−1
aa Λab(c− µb) = µa + ΣabΣ

−1
bb (c− µb) ,

and
Σ̄ = Λ−1

aa = Σaa − ΣabΣ
−1
bb Σba .

Proposition A.1. Let δ = 1
poly(d) . Let Σ be a positive definite matrix of size d×d whose minimal eigenvalue

is at least δ. Let µ ∈ Rd. Then, the multivariate normal distribution N (µ,Σ) has an almost-bounded
conditional density.

Proof. Let Λ = Σ−1. Let λ1, . . . , λd be the eigenvalues of Σ. The eigenvalues of Λ are λ−1
1 , . . . , λ−1

d and
are at most M = 1

δ . Thus, trace(Λ) =
∑

i∈[d] λ
−1
i ≤ dM . Since Λ is positive definite then all entries on its

diagonal are positive, and since their sum is bounded by dM , then we have 0 < Λii ≤ dM for every i ∈ [d].
Let x ∼ N (µ,Σ), let c ∈ Rd−1, and let i ∈ [d]. We now consider the conditional distribution

xi | x1, . . . , xi−1, xi+1, . . . , xd = c. This conditional distribution corresponds to Lemma A.1 with q = 1.
Namely, this is a univariate normal distribution with variance Λ−1

aa where Λaa ∈ R. Since all entries
on the diagonal of Λ are bounded by dM , then the variance σ2 of the conditional distribution satisfies
σ2 ≥ (dM)−1. Since the density of a univariate normal distribution with variance σ2 is bounded by 1√

2πσ2
,

then the density of the conditional distribution is at most 1√
2πσ2

≤
√

dM
2π = poly(d).

We now consider Gaussian mixtures.

Proposition A.2. Let Σ1, . . . ,Σk be positive definite matrices with eigenvalues at least δ = 1
poly(d) . Let

µ1, . . . , µk be vectors in Rd. For j ∈ [k] let f j be the density function of the normal distributionN (µj ,Σj).
Let f be a density function such that f(x) =

∑
j∈[k]wjf

j(x) with
∑

j∈[k]wj = 1. Then, f has an almost-
bounded conditional density.

Proof. Let i ∈ [d] and let c ∈ Rd−1. For t ∈ R we denote ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈ Rd. As
we showed in the proof of Proposition A.1, there is M = poly(d) (that depends on δ) such that for every
j ∈ [k] we have

f ji|[d]\i(t|c) =
f j(ci,t)∫

R f
j(ci,t)dt

≤M .

32



Hence, we have

fi|[d]\i(t|c) =

∑
j∈[k]wjf

j(ci,t)∫
R
∑

j∈[k]wjf
j(ci,t)dt

≤
∑

j∈[k]wjM
∫
R f

j(ci,t)dt∑
j∈[k]wj

∫
R f

j(ci,t)dt
= M .

Likewise, we show that the density obtained by applying Gaussian smoothing to a density function, has
an almost-bounded conditional density.

Proposition A.3. Let δ = 1
poly(d) , and let Σ be a positive definite matrix of size d × d whose minimal

eigenvalue is at least δ. Let g be the density function of the multivariate normal distribution N (0,Σ). Let
f be a density function and let f ′ = f ? g be the convolution of f and g. That is, f ′ is the density function
obtained from f by Gaussian smoothing. Then, f ′ has an almost-bounded conditional density.

Proof. Let i ∈ [d] and let c ∈ Rd−1. For t ∈ R we denote ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈ Rd.
For y ∈ Rd, let gy : Rd → R be such that gy(x) = g(x − y). Note that gy is the density of the normal
distribution N (y,Σ). By the proof of Proposition A.1, there is M = poly(d) (that depends on δ) such that
for every y, and every c, t and i, we have

g(ci,t − y)∫
R g(ci,t − y)dt

=
gy(ci,t)∫

R g
y(ci,t)dt

= gyi|[d]\i(t|c) ≤M . (15)

Recall that
f ′(ci,t) = (f ? g)(ci,t) =

∫
Rd
f(y)g(ci,t − y)dy .

Now, we have

f ′i|[d]\i(t|c) =
f ′(ci,t)∫

R f
′(ci,t)dt

=

∫
Rd f(y)g(ci,t − y)dy∫

R
[∫

Rd f(y)g(ci,t − y)dy
]
dt

(Eq. 15)

≤
∫
Rd f(y)M

[∫
R g(ci,t − y)dt

]
dy∫

R
[∫

Rd f(y)g(ci,t − y)dy
]
dt

=
M
∫
Rd
∫
R f(y)g(ci,t − y)dtdy∫

Rd
∫
R f(y)g(ci,t − y)dtdy

= M .

A.2 Uniform distribution on the ball

In the cases of Gaussians, Gaussian mixtures, and Gaussian smoothing, we showed that the conditional
density of xi|x1, . . . , xi−1, xi+1, . . . , xd = c is bounded for every c ∈ Rd−1. Note that the definition of
almost-bounded conditional density allows the conditional density to be greater than M for some set of
c ∈ Rd−1 with a small marginal probability. In the case of the uniform distribution over a ball in Rd, we
show that we cannot bound the conditional density for all c ∈ Rd−1, but we can bound it for a set in Rd−1

with large marginal probability, which is sufficient by the definition of almost-bounded conditional density.

33



Let µ be the uniform distribution over the ball of a constant radius R in Rd. Let c ∈ Rd−1 be such that∑
j∈[d−1] c

2
j = R2 − 1

2d
. Let i ∈ [d]. For t ∈ R, let ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈ Rd. Note that

µi|[d]\i(t|c) = 0 for every t such that
∑

j∈[d−1] c
2
j + t2 > R2, namely, for every

|t| >
√
R2 −

∑
j∈[d−1]

c2
j =

√
1

2d
=

1

2d/2
.

Hence, the conditional density µi|[d]\i(t|c) =
µ(ci,t)
µ[d]\i(c) is uniform on the interval

[
− 1

2d/2
, 1

2d/2

]
. Therefore,

we have
µi|[d]\i(t|c) =

1

2 · 1
2d/2

= 2
d
2
−1 .

Thus, for such c we cannot bound µi|[d]\i(t|c) with a polynomial. However, as we show in the following
proposition, the marginal probability to obtain such c is small, and µ has an almost-bounded conditional
density.

Proposition A.4. Let µ be the uniform distribution over the ball of radius R ≥ 1
poly(d) in Rd. Then, µ has

an almost-bounded conditional density.

Proof. Let ε = 1
poly(d) and let M =

√
d

2R
√

2ε
. Let i ∈ [d] and let c ∈ Rd−1. We denote r =

√∑
j∈[d−1] c

2
j .

Note that µi|[d]\i(t|c) is the uniform distribution over the interval
[
−
√
R2 − r2,

√
R2 − r2

]
. Hence, for

every t in this interval we have

µi|[d]\i(t|c) =
1

2
√
R2 − r2

.

Note that if r2 ≤ R2 − 1
4M2 then µi|[d]\i(t|c) ≤M . Therefore, we have

Prc∼µ[d]\i
(
∃t s.t. µi|[d]\i(t|c) > M

)
≤ Prc∼µ[d]\i

 ∑
j∈[d−1]

c2
j > R2 − 1

4M2


≤ Prx∼µ

∑
j∈[d]

x2
j > R2 − 1

4M2

 .

Let Vd(R) be the volume of the ball of radius R in Rd. Recall that Vd(R) = Vd(1) · Rd. Note that the
above equals to

1

Vd(R)
·

(
Vd(R)− Vd

(√
R2 − 1

4M2

))
= 1−

(√
R2 − 1

4M2

)d
Rd

= 1−
(

1− 1

4M2R2

)d/2
.

By Bernoulli’s inequality, for every z ≥ −1 and y ≥ 1 we have (1+z)y ≥ 1+yz. Therefore, the above
is at most

1−
(

1− d

8M2R2

)
=

d

8M2R2
.

34



Plugging in M =
√
d

2R
√

2ε
, we obtain

Prc∼µ[d]\i
(
∃t s.t. µi|[d]\i(t|c) > M

)
≤ ε .

A.3 Distributions from existing depth-separation results

As we described in Section 1, the depth-separation result of Telgarsky [2016], and the results that rely on it
(e.g., Safran and Shamir [2017], Yarotsky [2017], Liang and Srikant [2016]), are with respect to the uniform
distribution on [0, 1]d. Thus, each component is chosen i.i.d. from the uniform distribution on the interval
[0, 1], and therefore its conditional density is bounded by the constant 1.

The depth-separation result of Daniely [2017] is for the function f(x1,x2) = sin(πd3〈x1,x2〉) with
respect to the uniform distribution on Sd−1 × Sd−1, namely, both x1 and x2 are on the unit sphere. In
Safran et al. [2019], it is shown that this result can be easily reduced to a depth-separation result for the
function f(x) = sin(1

2πd
3 ‖x‖) and an L∞-type approximation. Moreover, from their proof it follows that

this reduction applies also to an L2 approximation with respect to an input x = x1+x2
2 where x1 and x2

are drawn i.i.d. from the uniform distribution on Sd−1. We now show that this distribution has an almost-
bounded conditional density. We first find the density function of ‖x‖.

Lemma A.2. Let x = x1+x2
2 where x1 and x2 are drawn i.i.d. from the uniform distribution on Sd−1. Then,

the distribution of ‖x‖ has the density

fr(r) =
1

B
(

1
2 ,

d−1
2

)2d−1rd−2(1− r2)
d−3
2 ,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function, and r ∈ (0, 1).

Proof. Let x = x1+x2
2 where x1 and x2 are drawn i.i.d. from the uniform distribution on Sd−1. Note that

‖x‖2 =
1

4

(
‖x1‖2 + ‖x2‖2 + 2x>1 x2

)
=

1

4

(
2 + 2x>1 x2

)
=

1

2

(
1 + x>1 x2

)
. (16)

Since x1 and x2 are independent and uniformly distributed on the sphere, then the distribution of x>1 x2

equals to the distribution of (1, 0, . . . , 0)x2, which equals to the marginal distribution of the first component
of x2. Let z be the first component of x2. By standard results (cf. Fang [2018]), the distribution of z2 is
Beta(1

2 ,
d−1

2 ), namely, a Beta distribution with parameters 1
2 ,

d−1
2 . Thus, the density of z2 is

fz2(y) =
1

B
(

1
2 ,

d−1
2

)y− 1
2 (1− y)

d−3
2 ,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function, and y ∈ (0, 1).

Performing a variable change, we obtain the density of |z|, which equals to the density of |x>1 x2|.

f|x>1 x2|(y) = f|z|(y) = fz2(y2) · 2y =
1

B
(

1
2 ,

d−1
2

)y−1(1− y2)
d−3
2 · 2y =

2

B
(

1
2 ,

d−1
2

)(1− y2)
d−3
2 ,

35



where y ∈ (0, 1). Let fx>1 x2
be the density of x>1 x2. Note that for every y ∈ (−1, 1) we have fx>1 x2

(y) =

fx>1 x2
(−y). Hence, for every y ∈ (−1, 1),

fx>1 x2
(y) =

1

2
f|x>1 x2|(|y|) =

1

B
(

1
2 ,

d−1
2

)(1− y2)
d−3
2 .

Performing a variable change again, we obtain the density of 1√
2
·
√

1 + x>1 x2.

f 1√
2
·
√

1+x>1 x2
(y) = fx>1 x2

(2y2 − 1) · 4y =
1

B
(

1
2 ,

d−1
2

)(1− (4y4 − 4y2 + 1))
d−3
2 · 4y

=
1

B
(

1
2 ,

d−1
2

)(2y)d−3(1− y2)
d−3
2 · 4y =

1

B
(

1
2 ,

d−1
2

)2d−1yd−2(1− y2)
d−3
2 .

Note that by Eq. 16 we have

‖x‖ =

√
1 + x>1 x2

2
,

and therefore the density of ‖x‖ is

fr(r) = f 1√
2
·
√

1+x>1 x2
(r) =

1

B
(

1
2 ,

d−1
2

)2d−1rd−2(1− r2)
d−3
2 .

Proposition A.5. Let x = x1+x2
2 where x1 and x2 are drawn i.i.d. from the uniform distribution on Sd−1.

Then the distribution of x has an almost-bounded conditional density.

Proof. Let ε = 1
poly(d) . Let fr be the distribution of ‖x‖. By Lemma A.2, we have

fr(r) =
1

B
(

1
2 ,

d−1
2

)2d−1rd−2(1− r2)
d−3
2 . (17)

Let µ : Rd → R be the density function on Rd that is induced by fr. That is, x ∼ µ has the same
distribution as ru where r ∼ fr and u is distributed uniformly on Sd−1. Let i ∈ [d]. For simplicity, we
always assume in this proof that d ≥ 5 (note that the definition of almost-bounded conditional density is not
sensitive to the behavior of the density for small values of d).

We will first find δ1, δ2 ≤ 1
poly(d) such that

Prc∼µ[d]\i (δ1 ≤ ‖c‖ ≤ 1− δ2) ≥ 1− ε . (18)

Then, we will show that there is M = poly(d) such that for every c ∈ Rd−1 with δ1 ≤ ‖c‖ ≤ 1 − δ2 and
every t ∈ (−1, 1) we have

µi|[d]\i(t|c) ≤M . (19)

We start with δ2. Note that

B

(
1

2
,
d− 1

2

)
=

Γ(1
2)Γ(d−1

2 )

Γ(d2)
≥

Γ(1
2)Γ(d2 − 1)

Γ(d2)
=

Γ(1
2)

d
2 − 1

≥
2Γ(1

2)

d
=

2
√
π

d
≥ 1

d
. (20)

36



Let δ2 = 1−
√

1− ε
32d . By the above and Eq. 17, for every r ∈ (1− δ2, 1) we have

fr(r) ≤ d2d−1rd−2(1− r2)
d−3
2 ≤ d2d−1

(
1− (1− δ2)2

) d−3
2 = d2d−1

( ε

32d

) d−3
2

.

Hence,

Prc∼µ[d]\i (‖c‖ ≥ 1− δ2) ≤ Prr∼fr (r ≥ 1− δ2) ≤ d · 2d−1
( ε

32d

) d−3
2 · δ2

≤ d · 4
d−3
2 · 4

( ε

32d

) d−3
2

= 4d
( ε

8d

) d−3
2 ≤ 4d · ε

8d
=
ε

2
. (21)

We now turn to δ1. By Fang [2018], the marginal distribution c ∼ µ[d]\i is such that ‖c‖ = rα, where
r and α are independent, r ∼ fr, and α2 ∼ Beta

(
d−1

2 , 1
2

)
, namely, a Beta distribution with parameters

d−1
2 , 1

2 . Hence, we have

Prc∼µ[d]\i (‖c‖ ≤ δ1) ≤ Prr∼fr
(
r ≤

√
δ1

)
+ Prβ∼Beta( d−1

2
, 1
2)

(√
β ≤

√
δ1

)
. (22)

We now bound the two part of the above right hand side. For δ = ε
16d , we have by Eq. 17 and 20 that

for every r ∈ (0, δ),

fr(r) ≤ d2d−1rd−2(1− r2)
d−3
2 ≤ d2d−1δd−2 = d2d−1

( ε

16d

)d−2
= 2d

( ε

8d

)d−2
≤ 2d · ε

8d
=
ε

4
.

Thus, for δ1 = δ2 we have

Prr∼fr

(
r ≤

√
δ1

)
= Prr∼fr (r ≤ δ) ≤ δ · ε

4
≤ ε

4
. (23)

Moreover, we have

Prβ∼Beta( d−1
2
, 1
2)

(√
β ≤

√
δ1

)
= Prβ∼Beta( d−1

2
, 1
2) (β ≤ δ1)

=

∫ δ1

0

1

B
(
d−1

2 , 1
2

)β d−1
2
−1(1− β)

1
2
−1dβ

≤ δ1 ·
1

B
(
d−1

2 , 1
2

) · δ d−3
2

1 · 1√
1− δ1

Since 0 < δ1 ≤ 1
2 , and by plugging in Eq. 20, the above is at most

d · δ
d−1
2

1 · 1√
1− 1

2

≤ d · δ
1
2
1 ·
√

2 =
√

2d · ε

16d
≤ ε

4
. (24)

Combining Eq. 22, 23 and 24, we have

Prc∼µ[d]\i (‖c‖ ≤ δ1) ≤ ε

2
.

Then, Eq. 18 follows by combining the above with Eq. 21. Thus, it remains to show that there is M =
poly(d) such that for every c ∈ Rd−1 with δ1 ≤ ‖c‖ ≤ 1− δ2 and every t ∈ (−1, 1), Eq. 19 holds.

37



Let Ad be the surface area of the unit sphere in Rd. Note that for every x 6= 0 in the unit ball, we have

µ(x) =
fr(‖x‖)
‖x‖d−1Ad

=
1

B
(

1
2 ,

d−1
2

)2d−1 ‖x‖d−2 (1− ‖x‖2)
d−3
2 · 1

‖x‖d−1Ad

=
1

AdB
(

1
2 ,

d−1
2

)2d−1(1− ‖x‖2)
d−3
2 · 1

‖x‖
.

For t ∈ R, we denote ci,t = (c1, . . . , ci−1, t, ci, . . . , cd−1) ∈ Rd. Now, we have

µ[d]\i(c) =

∫ 1

−1
µ(ci,t)dt =

∫ √1−‖c‖2

−
√

1−‖c‖2

1

AdB
(

1
2 ,

d−1
2

)2d−1(1− (‖c‖2 + t2))
d−3
2 · 1√

‖c‖2 + t2
dt .

Performing the variable change z =
√
‖c‖2 + t2, the above equals

2

∫ 1

‖c‖

1

AdB
(

1
2 ,

d−1
2

)2d−1(1− z2)
d−3
2 · 1

z
· z√

z2 − ‖c‖2
dz

≥ 2

∫ 1

‖c‖

1

AdB
(

1
2 ,

d−1
2

)2d−1(1− z2)
d−3
2 · 1

z
dz

=
2d

AdB
(

1
2 ,

d−1
2

) ∫ 1

‖c‖
(1 + z)

d−3
2 (1− z)

d−3
2 · 1

z
dz

≥ 2d

AdB
(

1
2 ,

d−1
2

)(1 + ‖c‖)
d−3
2

∫ 1

‖c‖
(1− z)

d−3
2 dz .

By plugging in ∫ 1

‖c‖
(1− z)

d−3
2 dz = −(1− z)

d−3
2

+1

d−3
2 + 1

∣∣∣∣∣
1

‖c‖

=
2(1− ‖c‖)

d−1
2

d− 1
,

we get
2d+1(1 + ‖c‖)

d−3
2 (1− ‖c‖)

d−1
2

AdB
(

1
2 ,

d−1
2

)
(d− 1)

.

Hence,

µi|[d]\i(t|c) =
µ(ci,t)

µ[d]\i(c)

≤ 1

AdB
(

1
2 ,

d−1
2

)2d−1(1− ‖ci,t‖2)
d−3
2 · 1

‖ci,t‖
·

AdB
(

1
2 ,

d−1
2

)
(d− 1)

2d+1(1 + ‖c‖)
d−3
2 (1− ‖c‖)

d−1
2

= (1− ‖ci,t‖2)
d−3
2 · 1

‖ci,t‖
· d− 1

22(1 + ‖c‖)
d−3
2 (1− ‖c‖)

d−1
2

≤ (1 + ‖c‖)
d−3
2 (1− ‖c‖)

d−3
2 · 1

‖c‖
· d− 1

4(1 + ‖c‖)
d−3
2 (1− ‖c‖)

d−1
2

=
1

‖c‖
· d− 1

4(1− ‖c‖)
.

38



Now, since δ1 ≤ ‖c‖ ≤ 1− δ2, the above is at most

1

δ1
· d− 1

4δ2
≤ poly(d) .

Eldan and Shamir [2016] showed separation between depth 2 and 3 for a poly(d)-Lipschitz radial func-
tion f : Rd → R with respect to a distribution with density

µ(x) =

(
Rd
‖x‖

)d
J2
d/2(2πRd ‖x‖) ,

whereRd is the radius of the unit-volume Euclidean ball in Rd, and Jd/2 is a Bessel function of the first kind.
An analysis of its conditional density requires some investigation of Bessel functions and is not included
here. However, it is not hard to show that for every polynomial p(d), there is a distribution µ′ (obtained
by applying Gaussian smoothing to µ and has an almost-bounded conditional density by Proposition A.3),
such that the function f can be expressed by a depth-3 network but cannot be approximated by a depth-2
network with a Lipschitz constant bounded by p(d). This follows from the fact that if there was a Lipschitz
approximating network under µ′, it would also be approximating under the slightly different distribution µ.

39

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


