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Abstract

We study time/memory tradeoffs of function inversion: an algorithm, i.e., an inverter,
equipped with an s-bit advice for a randomly chosen function f : [n] 7→ [n] and using q or-
acle queries to f , tries to invert a randomly chosen output y of f (i.e., to find x such that
f(x) = y). Much progress was done regarding adaptive function inversion—the inverter is al-
lowed to make adaptive oracle queries. Hellman [IEEE transactions on Information Theory ’80]
presented an adaptive inverter that inverts with high probability a random f . Fiat and Naor
[SICOMP ’00] proved that for any s, q with s2q = n2 (ignoring low-order terms), an s-advice,
q-query variant of Hellman’s algorithm inverts a constant fraction of the image points of any
function. Yao [STOC ’90] proved a lower bound of sq ≥ n for this problem. Closing the gap
between the above lower and upper bounds is a long-standing open question.

Very little is known for the non-adaptive variant of the question—the inverter chooses its
queries in advance. The only known upper bounds, i.e., inverters, are the trivial ones (with
s + q = n), and the only lower bound is the above bound of Yao. In a recent work, Corrigan-
Gibbs and Kogan [TCC ’19] partially justified the difficulty of finding lower bounds on non-
adaptive inverters, showing that a lower bound on the time/memory tradeoff of non-adaptive
inverters implies a lower bound on low-depth Boolean circuits. Bounds that for a strong enough
choice of parameters, are notoriously hard to prove.

We make progress on the above intriguing question, both for the adaptive and the non-
adaptive case, proving the following lower bounds on restricted families of inverters:
Linear-advice (adaptive inverter). If the advice string is a linear function of f (e.g., A×f ,

viewing f as a vector in [n]n), then s+ q ∈ Ω(n).
Affine non-adaptive decoders. If the non-adaptive inverter has an affine decoder— it out-

puts a linear function, determined by the advice string and the element to invert, of the
query answers—then s ∈ Ω(n) (regardless of q).

Affine non-adaptive decision trees. If the non-adaptive inversion algorithm is a d-depth
affine decision tree—it outputs the evaluation of a decision tree whose nodes compute a
linear function of the answers to the queries—and q < cn for some universal c > 0, then
s ∈ Ω(n/d log n).
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1 Introduction
In the function-inversion problem, an algorithm, inverter, attempts to find a preimage for a

randomly chosen y ∈ [n] of a random function f : [n]→ [n]. The inverter is equipped with an s-bit
advice on f , and may make q oracle queries to f . Since s lowerbounds the inverter space complexity
and q lowerbounds the inverter time complexity, it is common to refer to the relation between s
and q as the inverter’s time/memory tradeoff. The function-inversion problem is central to both
theoretical and practical cryptography. On the practical end, algorithms for function inversion are
used to expose weaknesses in existing cryptosystems. On the theoretical side, the security of many
systems relies on the existence of one-way functions. While the task of inverting one-way functions
is very different from that of inverting random functions, understanding the latter task is critical
towards developing lower bounds on the possible (black-box) implications of one-way functions,
e.g., Impagliazzo and Rudich [16], Gennaro et al. [12].

Much progress was done regarding adaptive function inversion—the inverter may choose its
queries adaptively (i.e., based on answers for previous queries). Hellman [15] presented an adaptive
inverter that inverts with high probability a random f . Fiat and Naor [10] proved that for any
s, q with s2q = n2 (ignoring low-order terms), an s-advice q-query variant of Hellman’s algorithm
inverts a constant fraction of the image points of any function. Yao [23] proved a lower bound
of sq ≥ n for this problem. Closing the gap between the above lower and upper bounds is a
long-standing open question.

Very little is known about the non-adaptive variant of this problem—the inverter performs all
queries at once. The only known upper bounds, i.e., inverters, are the trivial ones (i.e., s+ q = n),
and the only known lower bound is the above bound of Yao [23]. In a recent work, Corrigan-Gibbs
and Kogan [7] have partially justified the difficulty of finding lower bounds on this seemingly easier
to tackle problem, showing that lower bounds on non-adaptive inversion imply circuit lower bounds
that, for strong enough parameters, are notoriously hard (see further details in Section 1.1.3).

1.1 Our Results
We make progress on this intriguing question, proving lower bounds on restricted families of

inverters. We use the following formalization to capture inverters with a preprocessing phase: such
inverters have two parts, the preprocessing algorithm that gets as input the function to invert f and
outputs an advice string a, and the decoding algorithm that takes as input the element to invert y,
the advice string a, and using restricted query access to f tries to find a preimage of y. We start
with describing our bound for the time/memory tradeoff of linear-advice (adaptive) inverters, and
then present our lower bounds for non-adaptive inverters. In the following, fix n ∈ N and let F be
the set of all functions from [n] to [n].

1.1.1 Linear-advice Inverters

We start with a more formal description of adaptive function inverters.

Definition 1.1 (Adaptive inverters, informal). An s-advice, q-query adaptive inverter is a deter-
ministic algorithm pair C := (Cpre,Cdec), where Cpre : F → {0, 1}s, and C

(·)
dec : [n]× {0, 1}

s → [n] is
a q-query algorithm. We say that C inverts F with high probability if
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Pr
f←F

a:=Cpre(f)

 Pr
x←[n]

y:=f(x)

[
Cf
dec(y, a) ∈ f−1(y)

]
≥ 1/2

 ≥ 1/2.

It is common to refer to a (:= Cpre(f)) as the advice string.
In linear-advice inverters, the preprocessing algorithm Cpre is restricted to output a linear func-

tion of f . That is, Cpre(f1)+Cpre(f2) = Cpre(f1 + f2), where the addition f1 + f2 is coordinate-wise
with respect to an arbitrary group over [n], and the addition Cpre(f1) + Cpre(f2) is over an ar-
bitrary group that contains the image of Cpre. An example of such a preprocessing algorithm is
Cpre(f) := A × f , for A ∈ {0, 1}s×n, viewing f ∈ F as a vector in [n]n. For such inverters, we
present the following bound.
Theorem 1.2 (Bound on linear-advice inverters). Assume there exists an s-advice q-query inverter
with linear preprocessing that inverts F with high probability. Then s+ q · log n ∈ Ω(n).

We prove the above theorem via a reduction from set-disjointness, a classical problem in the
study of two-party communication complexity.

1.1.2 Non-adaptive Inverters

In the non-adaptive setting, the decoding algorithm has two phases: the query selection algo-
rithm that chooses the queries as a function of the advice and the element to invert y, and the
actual decoder that receives the answers to these queries along with the advice string and y.
Definition 1.3 (Non-adaptive inverters, informal). An s-advice q-query non-adaptive inverter is
a deterministic algorithm triplet of the form C := (Cpre,Cqry,Cdec), where Cpre : F → {0, 1}s,
Cqry : [n] × {0, 1}s → [n]q and Cdec : [n] × {0, 1}s × [n]q → [n]. We say that C inverts F with high
probability if

Pr
f←F

a=Cpre(f)

 Pr
x←[n]

y=f(x)

v=Cqry(y,a)

[
Cdec(y, a, f(v)) ∈ f−1(y)

]
≥ 1/2

 ≥ 1/2.

Note that the query vector v is of length q, so the answer vector f(v) contains q answers.
Assuming there exists a field F of size n, we provide two lower bounds for such inverters.1

Affine decoders. The first bound regards inverters with affine decoders. A decoder algorithm
Cdec is affine if it computes an affine function of f ’s answers. That is, for every image y ∈ [n] and
advice a ∈ {0, 1}s, there exists a q-sparse vector αa

y ∈ Fn and a field element βa
y ∈ F such that

Cdec(y, a, f(Cqry(y, a))) = ⟨αa
y, f⟩ + βa

y for every f ∈ F . For this type of inverters, we present the
following lower bound.
Theorem 1.4 (Bound on non-adaptive inverters with affine decoders). Assume there exists an
s-advice non-adaptive function inverter with an affine decoder, that inverts F with high probability.
Then s ∈ Ω(n).

Note that the above bound on s holds even if the inverter queries f on all inputs.
1Since the inverters we deal with always output a field element, the field cannot be much smaller than n. Yet,

the question of giving a lower bound for affine inverters over field of size larger than n, or slightly smaller than n,
remains an interesting open question.
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Affine decision trees. The second bound regards inverters whose decoders are affine decision
trees. An affine decision tree is a decision tree whose nodes compute an affine function, over F, of
the input vector. A decoder algorithm Cdec is an affine decision tree, if for every image y ∈ [n],
advice a ∈ {0, 1}s and queries v = Cqry(y, a), there exists an affine decision tree T y,a such that
Cdec(y, a, f(v)) = T y,a(f) (i.e., the output of T y,a on input f) for every f ∈ F . For such inverters,
we present the following bound.

Theorem 1.5 (Bounds on non-adaptive inverters with affine decision-tree decoders). Assume there
exists an s-advice q-query non-adaptive function inverter with a d-depth affine decision-tree decoder,
that inverts F with high probability. Then the following hold:

• q < cn, for some universal constant c, =⇒ s ∈ Ω(n/d log n).

• q ∈ n1−Θ(1) =⇒ s ∈ Ω(n/d).

That is, we pay a factor of 1/d comparing to the affine decoder bound, and the bound on s only
holds for not too large q. Affine decision trees are much stronger than affine decoders, since the
choice of the affine operations it computes can be adaptively dependent on the results of previous
affine operations. For example, a depth d affine decision tree can compute any function on d linear
combinations of the inputs. In particular, multiplication of function values, e.g., f(1) · f(2), which
cannot be computed by an affine decoder, can be computed by a depth two decision tree. We
note that an affine decision tree of depth q can compute any function of its (q-length) inputs.
Unfortunately, for d = q, our bound only reproduces (up to log factors) the lower bound of Yao
[23].

1.1.3 Applications to Valiant Common-bit Model

Corrigan-Gibbs and Kogan [7] showed that a lower bound on the time/memory tradeoff of
strongly non-adaptive function inverters—the queries may not depend on the advice—implies a
lower bound on circuit size in Valiant’s common-bit model [21, 22]. Applying the reduction of [7]
with Theorem 1.5 yields the following bound: for every n ∈ N for which there exits an n-size field
F, there is an explicit function f : Fn 7→ Fn that cannot be computed by a three-layer circuit of the
following structure:

1. It has o(n/d logn) middle layer gates.

2. Each output gate is connected to n1−Θ(1) inputs gates (and to an arbitrary number of middle-
layer gates).

3. Each output gate computes a function which is computable by a d-depth linear decision tree
in the inputs (and depends arbitrarily on the middle layer).

Actually, our bound yields that such circuits cannot even approximate f so that every output gate
outputs the right value with probability larger than 1/2, over the inputs.

1.2 Additional Related Work
1.2.1 Adaptive Inverters

Upper bounds. The main result in this setting is the s-advice, q-query inverter of Hellman
[15], Fiat and Naor [10] that inverts a constant fraction of the image of any function, for any s, q
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such that s2q = n2 (ignoring low-order terms). When used for random permutations, a variant on
the same idea implies an optimum inverter with s · q = n. The inverter of Hellman, Fiat and Naor
has found application to practical cryptanalysis, e.g., Biryukov and Shamir [4], Biryukov et al.
[5], Oechslin [18].

Lower bounds. A long line of research (Gennaro et al. [12], Dodis et al. [9], Abusalah et al.
[1], Unruh [20], Coretti et al. [6], De et al. [8]) provides lower bounds for various variations on the
classical setting, such as that of randomized inversion algorithms that succeed on a sub-constant
fraction of functions. None of these lower bounds, however, manage to improve on Yao’s lower
bound of s · q = n, leaving a large gap between this lower bound and Hellman, Fiat and Naor’s
inverter.

1.2.2 Non-adaptive Inverters

Upper bounds. In contrast with the adaptive case, it is not clear how to exploit non-adaptive
queries in a non trivial way. Indeed, the only known inverters are the trivial ones (roughly, the
advice is the function description, or the inverter queries the function on all inputs).

Lower bounds. Somewhat surprisingly, the only known lower bound for non-adaptive inverters
is Yao’s, mentioned above. This defies the basic intuition that this task should be easier than the
adaptive case, due to the extreme limitations under which non-adaptive inverters operate. This
failure was partially justified by the recent reduction of Corrigan-Gibbs and Kogan [7] (see Sec-
tion 1.1.3) that implies that a strong enough lower bound on even strongly non-adaptive inverters,
would yield a lower bound on low-depth Boolean circuits that is notoriously hard to prove.

1.2.3 Index Coding and Black-box Function Computation

A syntactically related problem to function inversion is the so-called black-box function compu-
tation: an algorithm tries to compute f(x), for a randomly chosen x, using an advice of length s
on f , and by querying f on q inputs other than x. A much-researched special case of this problem
is known as the index coding problem [3], originally inspired by information distribution over net-
works. In this setting, a single party is in possession of a vector f , and broadcasts a short message
a such that n different recipients may each recover a particular value of f , using the broadcast mes-
sage and knowledge of certain other values of f , as determined by a knowledge graph. The analogy
to non-adaptive black-box function computation is obvious when considering a as the advice string,
and the access to various values of f as queries.

A long line of works studied time/memory tradeoff for the index coding problem. While Yao’s
bound on the time/memory tradeoff also holds for the index coding problem (actually, this bound
was first stated for black-box function computation), other lower bounds, some of which consider
“linear” algorithms [3, 14, 17, 13, 2], do not seem to be relevant for the function inversion problem.

Open Questions
The main challenge is to gain a better understanding on the power of adaptive and non-adaptive

function inverters. A more specific challenge is to generalize our bound on affine decoders and
decision trees to affine operations over an arbitrary field.
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Paper Organization
A rather detailed description of our proof technique is given in Section 2. Basic notations,

definitions and facts are given in Section 3, where we also prove several basic claims regarding
random functions inversion. The bound on linear-advice inverters is given in Section 4, and the
bounds on non-adaptive inverters are given in Section 5.

2 Our Technique
In this section we provide a rather elaborate description of our proof technique. We start with

the bound on linear-advice inverters in Section 2.1, and then in Section 2.2 describe the bounds for
non-adaptive inverters.

2.1 Linear-advice Inverters
Our lower bound for inverters with linear advice is proved via a reduction from set disjointness,

a classical problem in the study of two-party communication complexity. In the set disjointness
problem, two parties, Alice and Bob, receive two subsets, X and Y ⊆ [n], respectively, and by
communicating with each other try to determine whether X ∩ Y = ∅. The question is how many
bits the parties have to exchange in order to output the right answer with high probability. Given
an inverter with linear advice, we use it to construct a protocol that solves the set-disjointness
problem on all inputs in Q := {X ,Y ⊆ [n] : |X ∩ Y| ≤ 1} by exchanging s+ q · log n bits. Razborov
[19] proved that to answer with constant success probability on all input pairs in Q, the parties
have to exchange Ω(n) bits. Hence, the above reduction implies the desired lower bound on the
time/memory tradeoff of such inverters.

Fix a q-query s-advice inverter C := (Cpre,Cdec) with linear advice, and assume for simplicity
that C’s success probability is one. The following observation immediately follows by definition: let
af := Cpre(f) and ag := Cpre(g) be the advice strings for some functions f and g ∈ F , respectively.
The linearity of Cpre yields that a := af +ag = Cpre(f + g). That is, a is the advice for the function
f + g (all additions are over the appropriate groups). Given this observation, we use C to solve
set disjointness as follows: Alice and Bob (locally) convert their input sets X and Y to functions
fA and fB respectively, such that for any x ∈ X ∩ Y it holds that f := (fA + fB)(x) = 0, and
f(x) is uniform for x /∈ X ∩ Y. Alice then sends aA := Cpre(fA) to Bob who uses it to compute
a := Cpre(f) = aA+Cpre(fB). Equipped with the advice a and the help of Alice, Bob then emulates
Cdec(0, a) and finds x ∈ f−1(0), if such exists. Since f is unlikely to map many elements outside of
X ∩Y to 0, finding such x is highly correlated with X ∩Y ̸= ∅. In more details, the set-disjointness
protocol is defined as follows.

Protocol 2.1 (Set disjointness protocol Π = (A(X ),B(Y))).

1. A samples fA ∈ F by letting fA(i) :=

{
0 i ∈ X
∼ [n] otherwise.

2. B samples fB ∈ F analogously, with respect to Y.

− Let f := fA + fB.

3. A sends aA := Cpre(fA) to B, and B sets a := aA + Cpre(fB).

5



4. B emulates Cf
dec(0, a) while answering each query r that Cdec makes to f as follows:

(a) B sends r to A.
(b) A sends wA := fA(r) back to B.
(c) B replies w := wA + fB(r) to Cdec (as the value of f(r)).

− Let x be Cdec’s answer at the end of the above emulation.

5. The parties reject if x ∈ X ∩ Y (using an additional Θ(log n) bits to find it out), and accept
otherwise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The communication complexity of Π is essentially s+ q · log n. It is also clear that the parties
accept if X ∩Y = ∅. For the complementary case, by construction, the intersection point of X ∩Y
is in f−1(0). Furthermore, since f(i) is a random value for all i /∈ X ∩Y, with constant probability
only the intersection point is in f−1(0). Therefore, the protocol is likely to answer correctly also in
the case that |X ∩ Y| = 1.

2.2 Non-adaptive Inverters
We focus on inverters with an affine decoder, and discuss the extension to affine decision tree

decoders in Section 2.2.1. The proof follows by bounding the success probability of zero-advice
inverters—the preprocessing algorithm outputs an empty string. In particular, we prove that the
success probability of such inverters is at most 2−Ω(n). Thus, by a union bound over all advice
strings, in order to invert F with high probability, the advice string of a general (non-zero-advice)
inverter has to be of length Ω(n).

Let C := (Cqry,Cdec) be a zero-advice q-query non-adaptive inverter with an affine decoder. Let
F be a random element of F , and for i ∈ [n], let Yi be a randomly and independently selected
element of [n]. Let Xi := Cdec(Yi, F (Cqry(Yi))), i.e., C’s answer on challenge Yi, and let Zi be
the indicator for {F (Xj) = Yj} for all j ∈ [i], i.e., the event that C answers the first i challenges
correctly. We prove the bound by showing that for some m ∈ Θ(n) it holds that

Pr [Zm] ∈ 2−Ω(m) (1)

Note that Equation (1) bounds the probability that C inverts m random elements drawn from [n]
(where some of them might have no preimage at all), whereas we are interested in bounding the
probability that C inverts a random output of F . Yet, since F is a random function, its image
covers with very high probability a constant fraction of [n], and thus Equation (1) can be easily
manipulated to derive that

Pr
f←F

 Pr
x←[n]

y=f(x)

v=Cqry(f,y)

[
Cdec(y, f(v)) ∈ f−1(y)

]
≥ 1/2

 < 2−Ω(m) = 2−Ω(n) (2)

Hence, in order to invert a random function with high probability, a non-zero-advice inverter has
to use advice of length Ω(n).
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We prove Equation (1) by showing that for every i ∈ [m] it holds that

Pr [Zi | Zi−1] < 3/5 (3)

That is, for small enough i, the algorithm C is likely to fail on inverting the ith challenge, even
when conditioned on the successful inversion of the first i− 1 challenges. We note that it is easy to
bound Pr [Zi | Zi−1] for zero-query inverters. The conditioning on Zi−1 roughly gives Θ(i) bits of
information about F . Thus, this conditioning gives at most one bit of information about F−1(Yi),
and the inverter does not have enough information to invert Yi. When moving to non-zero-queries
inverters, however, the situation gets much more complicated. By making the right queries, that
may depend on Yi, the inverter can exploit this “small” amount of information to find the preimage
of Yi. This is what happens, for instance, in the adaptive inverter of Hellman [15]. Hence for
bounding Pr [Zi | Zi−1], we critically exploit the assumption that C is non-adaptive and has an
affine decoder. In particular, we bound Pr [Zi | Zi−1] by translating the event Zi into an affine
system of equations and then use a few observations about the structure of the above system to
derive the desired bound. These equations will have the form M ×F = V , viewing F as a random

vector in [n]n, for M :=

(
Mi−1

Mi

)
and V :=

(
V i−1

V i

)
, such that:

1. Mi−1 is a deterministic function of (X<i, Y<i) and Mi is a deterministic function of Yi, letting
X<i stand for (X1, . . . , Xi−1) and likewise for Y<i.

2. The event M i−1×F ′ = V i−1 is the event
∧

j<i {(F ′(Xj) = Yj) ∧ (Cdec(Yj , F
′(Cqry(Yj))) = Xj)},

for F ′ being a uniform, and independent, element of F .
(In particular, M i−1 × F = V i−1 implies that Zi−1 holds, and binds the value of (X<i, Y<i)
to V i−1.)

3. The event M i × F ′ = V i is the event {Cdec(Yi, F
′(Cqry(Yi))) = Xi}.

(In particular, M i × F = V i binds the value of Xi to V i.)

The above M and V are defined as follows: assume for ease of notation that C has a linear, and
not affine, decoder. That is, for every y ∈ [n] there exists a (q-sparse) vector αy ∈ Fn such that
⟨αy, F ⟩ = Xy. By definition, for every j < i:

1. ⟨αYj , F ⟩ = Xj .

Conditioning on Zi−1 further implies that for every j < i:

2. F (Xj) = Yj .

Let ℓ := 2i − 2, and let Mi−1 ∈ Fℓ×n be the (random) matrix defined by Mi−1
2k−1 := αYk

and
Mi−1

2k := eXk
, letting ej being the unit vector (0j−1, 1, 0n−j). Let V i−1 ∈ Fℓ be the (random) vector

defined by V i−1
2k−1 := Xk and V i−1

2k = Yk. By definition, the event Zi−1 is equivalent to the event
Mi−1 × F = V i−1. The computation C makes on input Yi can also be described by the linear

equation ⟨αYi , F ⟩ = Xi. Let M :=

(
Mi−1

αYi

)
and V :=

(
V i−1

Xi

)
. We make use of the following

claims (see proofs in Section 3.2).
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Definition 2.2 (Spanned unit vectors). For a matrix A ∈ Fa×n, let E(A) :=
{j ∈ [n] : ej ∈ Span(A)}, for Span(A) being the (linear) span of A’s rows.

That is, E(A) is the set of indices of all unit vectors spanned by A. It is clear that |E(A)| ≤
rank(A) ≤ min {a, n}. The following claim states that for j /∈ E(A), knowing the value of A × F
gives no information about Fj .

Claim 2.3. Let A ∈ Fa×n and v ∈ Im(A). Then for every j ∈ [n] \ E(A) and y ∈ [n], it holds that
Prf←[n]n [fj = y | A× f = v] = 1/n.

The second claim roughly states that by concatenating a c-row matrix to a given matrix A, one
does not increase the spanned unit set of A by more than c elements.

Claim 2.4. For every A ∈ Fℓ×n there exists an ℓ-size set SA ⊆ [n] such that the following holds:

for every B ∈ Fc×n there exists a c-size set SB ⊆ [n] such that E
(

A
B

)
⊆ SA ∪ SB.

For bounding Pr [Zi | Zi−1] using the above observations, we write

Pr [Zi | Zi−1] = Pr [Zi ∧Xi ∈ E(M) | Zi−1] + Pr [Zi ∧Xi /∈ E(M) | Zi−1] (4)

and finish the proof by separately bounding the two terms of the above equation. Let H :=
(Xi, Y≤i,M, V ). We first note that

Pr [Zi ∧Xi /∈ E(M) | Zi−1] ≤ Pr [Zi | Xi /∈ E(M), Zi−1] (5)
= E

(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | m× F = v, Y≤i = y≤i]]

= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | m× F = v]]

= 1/n.

The first equality holds by definition of Zi−1, the second equality since F is independent of Y ,
and the last one follows by Claim 2.3. For bounding the left-hand term of Equation (4), let S and
T be the ℓ-size set and the index guaranteed by Claim 2.4 for the matrices Mi−1 and vector αYi ,
respectively. Compute,

Pr [Zi ∧Xi ∈ E(M) | Zi−1] ≤ Pr [Yi ∈ F (E(M)) | Zi−1] (6)
≤ Pr [Yi ∈ F (S ∪ {T}) | Zi−1]

≤ Pr [Yi ∈ F (S) | Zi−1] + Pr [Yi = F (T ) | Zi−1] .

The second inequality is by Claim 2.4. Since F (S) is independent of Yi, it holds that

Pr [Yi ∈ F (S) | Zi−1] ≤ |S| /n = ℓ/n (7)

Bounding Pr [Yi = F (T ) | Zi−1] is more involved since T might depend on Yi.2 Yet since f is a
random function, a simple counting argument yields that for any (fixed and independent of f)
function g:

Pr
f←F

[
Pr

y←[n]
[y = f(g(y))] ≥ 1/2

]
≤ n−n/3 (8)

2Indeed, this dependency between the queries to f and the value to invert is exactly what makes (efficient) inversion
by adaptive inverters possible.
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Let H := (X<i, Y<i), and for h = (x<i, y<i) ∈ Supp(H) compute

Pr
f←F |Zi−1,H=h

[Pr [Yi = f(T ) | H = h] ≥ 1/2] (9)

≤ 1

Pr [H = h,Zi−1 | Y<i = y<i]
· Pr
f←F |Y<i=y<i

[Pr [Yi = F (T ) | H = h] ≥ 1/2]

=
1

Pr [H = h,Zi−1 | Y<i = y<i]
· Pr
f←F

[Pr [Yi = F (T ) | H = h] ≥ 1/2]

≤ 1

Pr [H = h,Zi−1 | Y<i = y<i]
· n−n/3

≤ nn/4 · n−n/3 ∈ o(1).

The first equality holds since F is independent of Y . The second inequality holds by Equa-
tion (8), noting that under the conditioning on H = h, the value of T is a deterministic function of
Yi. The third inequality holds since for not too big i, Pr [H = h,Zi−1 | Y<i = y<i] ≥ n−n/4, since
this probabilistic event is essentially a system of linear equations over a randomly selected vector.
Since the above holds for any h, we conclude that Pr [Yi = F (T ) | Zi−1] ≤ 1/2 + o(1). Putting it
all together, yields that Pr [Zi | Zi−1] < 1/n+ ℓ/n+ 1/2 + o(1) < 3/5, for not too large i.

2.2.1 Affine Decision Trees

Similarly to the affine decoder case, we prove the theorem by bounding Pr [Zi | Zi−1] for all
“not too large i”. Also in this case, we bound this probability by translating the conditioning on
Zi−1 into a system of affine equations. In particular, we would like to find proper definitions for

the matrix M =

(
Mi−1

Mi

)
and vector V =

(
V i−1

V i

)
, functions of (X≤i, Y≤i), such that conditions

1–3 mentioned in the affine decoder case hold.
We achieve these conditions by adding for each j < i an equation for each of the linear compu-

tations done in the decision tree that computes Xj from Yj . The price is that rather than having
Θ(i) equations, we now have Θ(d · i), for d being the depth of the decision tree. In order to have Mi

a deterministic function of Yi alone, we cannot simply make Mi reflect the d linear computations
performed by the decoder, since each of these may depend on the results of previous computations,
and thus depend on F . So rather, we have to add a row (i.e., an equation) for each of the q queries
the decoder might use (queries that span all possible computations), which by definition also imply
the dependency on q. Taking these additional rows into account yields the desired bound.

3 Preliminaries
3.1 Notation

All logarithms considered here are in base two. We use calligraphic letters to denote sets,
uppercase for random variables and probabilistic events, lowercase for functions and fixed values,
and bold uppercase for matrices. Let [n] := {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its ith
entry, let v<i := v1,...,i−1 and let v≤i := v1,...,i. Let

([n]
k

)
denote the set of all subsets of [n] of size k.

The vector v is q-sparse if it has no more than q non-zero entries.
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Functions. We naturally view a functions from [n] to [m] as vectors in [m]n, by letting fi = f(i).
For a finite ordered set S := {s1, . . . , sk}, let f(S) := {f(s1), f(s2), . . . , f(sk)}. Let f−1(y) :=
{x ∈ [n] : f(x) = y} and let Im(f) = {f(x) : x ∈ [n]}. A function f : Fn → F , for a field F and
n ∈ N, is affine if there exist a vector v ∈ Fn and a constant β ∈ F such that f(x) = ⟨v, x⟩+ β for
every x ∈ Fn, letting ⟨v, x⟩ :=

∑
vi · xi (all operations are over F).

Distributions and random variables. The support of a distribution P over a finite set S is
defined by Supp(P ) := {x ∈ S : P (x) > 0}. For a set S, let s← S denote that s is uniformly drawn
from S. For δ ∈ [0, 1], let h(δ) := −δ log δ − (1− δ) log(1− δ), i.e., the binary entropy function.

3.2 Matrices and Linear Spaces
We identify the elements of a finite field of size n with the elements of the set [n], using some

arbitrary, fixed, mapping. Let ei denote the ith unit vector ej = (0j−1, 1, 0n−j).
For a matrix A ∈ Fa×b, let Ai denote the ith row of A. The span of A’s

rows is defined by Span(A) :=
{
v ∈ Fb : ∃δ1, . . . , δa ∈ F : v =

∑a
i=1 δiAi

}
. Let Im(A) ={

v ∈ Fa : ∃w ∈ Fb : A× w = v
}

, or equivalently, the image set of the function fA(w) := A × w.
We use the following well-known fact:

Fact 3.1. Let F be a finite field of size n, let A ∈ Fa×b, let v ∈ Im(A), and let F ⊆ Fb be the
solution set of the system of equations A× F = v. Then |F| = nb−rank(A).

We also make use of the following less standard notion.

Definition 3.2 (Spanned unit vectors). For a matrix A ∈ Fa×b, let E(A) :=
{j ∈ [b] : ej ∈ Span(A)}.

That is, E(A) is the indices of all unit vectors spanned by A. It is clear that |E(A)| ≤ rank(A) ≤
min {a, b}. It is also easy to see that for any v ∈ Im(A), the value of E(A) are those entries that
are common to all solutions w of the system A × w = v. 3 The following claim states that for
i /∈ E(A), the number of solutions w of the system A×w = v with wi = y, is the same for every y.

Claim 3.3. Let F be a finite field of size n, let A ∈ Fa×b and v ∈ Im(A). Then for every
i ∈ [n] \ E(A) and y ∈ [n], it holds that Prf←[n]b [fi = y | A× f = v] = 1/n.

Proof. Let FA,v :=
{
f ∈ [n]b : A× f = v

}
be the set of solutions for the equation A×F = v. Since,

by assumption, A× F = v has a solution, by Fact 3.1 it holds that |FA,v| = nb−rank(A). Next, let

A′ :=
(

A
ei

)
, v′ :=

(
v
y

)
, and FA,v,i,y :=

{
f ∈ [n]b : A′ × f = v′

}
(i.e., FA,v,i,y is the set of solutions

for A′ × F = v′). Since, by assumption, ei /∈ Span(A), it holds that A′ × F = v′ has a solution
and

∣∣FA,v,i,y

∣∣ = nb−rank(A′) = nb−rank(A)−1. We conclude that Prf←[n]b [fi = y | A× f = v] =
|FA,v,i,y |
|FA,v | = 1/n. □

The following claim states that adding a small number of rows to a given matrix A does not
increase the set E(A) by much.

3That is, for every i ∈ E(A), wi can be described as a linear combination of the entries of v, and thus wi is fixed
by v.

10



Claim 3.4. For every A ∈ Fℓ×n there exists an ℓ-size set SA ⊆ [n] such that the following holds:

for any B ∈ Fc×n there exists a c-size set SB ⊆ [n] for which E
(

A
B

)
⊆ SA ∪ SB.

Proof. Standard row operations performed on a matrix M do not affect Span(M), and thus do not
affect E(M). Therefore, we may assume that both A and B are in row canonical form.4 For a
matrix M in row canonical form, let L(M) := {i ∈ [n] : the ith column of M contains a leading 1}.

Let SA := L(A) and note that |SA| = rank(A) ≤ ℓ. Perform Gaussian elimination on
(

A
B

)
to

yield a matrix E in row canonical form, and let SE := L(E). Note that SA ⊆ SE, since adding rows
to a matrix may only expand the set of leading ones. Furthermore, |SE| = rank(E) ≤ rank(A) + c.
Clearly, E(E) ⊆ SE, and we can write SE = SA ∪ SB, for SB := (SE \ SA). Finally, |SB| =
|SE| − |SA| ≤ rank(A) + c− rank(A) = c, and the proof follows. □

3.3 Random Functions
Let Fn be the set of all functions from [n] to [n]. We make the following observations.

Claim 3.5. Let S1, . . . ,Sn ⊆ [n] be c-size sets, and for f ∈ Fn let Kf := {y ∈ [n] : y ∈ f(Sy)}.
Then for any µ ∈ [0, 12 ]:

Pr
f←Fn

[|Kf | ≥ µn] ≤ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(c/n).

Proof. For T :=
{
t1, . . . , t⌈µn⌉

}
⊆ [n], let FT := {f ∈ Fn : T ⊆ Kf}. We make a rough over-

counting for the size of FT : one can describe f ∈ FT by choosing xi ∈ [n] for each set Sti , and
require that f(xi) = ti (to ensure ti ∈ f(Sti)). There are at most c⌈µn⌉ ways to perform these choices.
There are no constraints on the remaining n− ⌈µn⌉ values of f . Therefore |FT | ≤ c⌈µn⌉ · nn−⌈µn⌉.
This immediately implies that Pr

f←Fn,T ←( [n]
⌈µn⌉)

[T ⊆ Kf ] ≤
(
c
n

)⌈µn⌉. We conclude that

Pr
f←Fn

[|Kf | ≥ µn] = Pr [∃T ⊆ Kf : |T | = ⌈µn⌉]

≤
∑

T ∈( [n]
⌈µn⌉)

Pr
f←Fn

[T ⊆ Kf ] ≤
(

n

⌈µn⌉

)
·
( c
n

)⌈µn⌉
≤ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(c/n).

The last inequality follows Facts 3.10 and 3.11, and the fact that log(1/µ) ≥ log(n/⌈µn⌉). □

Claim 3.6. Let n ∈ N, let F ← Fn and let W be an event (jointly distributed with F ) of probability
at least p. Let Y ← [n] be independent of F and W . Then for every c-size sets S1, . . . ,Sn ⊆ [n]
and γ ∈ [0, 12 ], it holds that

Pr [Y ∈ F (SY ) |W ] ≤ γ + 22⌈γn⌉ log(1/γ)+⌈γn⌉ log(c/n)+log(1/p).

4(1) all zero rows are at the bottom (2) the first non-zero entry in each row is equal to 1 (known as the “leading
1”) (3) the leading 1 in each row appears strictly to the right of the leading 1 in all the rows above it (4) a column
that contains a leading 1 is zero in all other entries. It is a well-known that a matrix can be reduced to row canonical
form using Gaussian elimination, and the set of columns containing a leading 1 is unique.
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Proof. Let Kf := {y ∈ [n] : y ∈ f(Sy)}. For γ ∈ [0, 1], compute:

Pr [Y ∈ F (SY ) |W ] = Pr [Y ∈ KF |W ] (10)
≤ Pr [|KF | ≥ γn |W ] · Pr [Y ∈ KF |W, |KF | ≥ γn] + Pr [|KF | < γn |W ] · Pr [Y ∈ KF |W, |KF | < γn]

≤ Pr [|KF | ≥ γn |W ] + γ.

The last inequality holds since Y is independent of W and F . Since Pr [W ] ≥ p, it holds that:

Pr [|KF | ≥ γn |W ] ≤ Pr [|KF | ≥ γn]

Pr [W ]
≤ 22⌈γn⌉ log(1/γ)+⌈γn⌉ log(c/n)+log(1/p) (11)

The second inequality is by Claim 3.5. We conclude that:

Pr [Y ∈ F (SY ) |W ] ≤ γ + 22⌈γn⌉ log(1/γ)+⌈γn⌉ log(c/n)+log(1/p).

□

The next claim bounds the probability that a random function compresses an image set.

Claim 3.7. For any n ∈ N and τ, δ ∈ [0, 12 ], it holds that
ατ,δ := Prf←Fn [∃X ⊆ [n] : |X | ≥ τn ∧ |f(X )| ≤ δn] ≤ 2n(h(τ)+h(δ))+⌊τn⌋ log δ.

Proof. Compute:

ατ,δ = Pr
f←Fn

[∃X ,Y ⊆ [n] : |X | ≥ τn ∧ |Y| ≤ δn ∧ f(X ) ⊆ Y]

≤ Pr
f←Fn

[∃X ,Y ⊆ [n] : |X | = ⌊τn⌋ ∧ |Y| = ⌊δn⌋ ∧ f(X ) ⊆ Y]

≤
∑

Y∈( [n]
⌊δn⌋)

∑
X∈( [n]

⌊τn⌋)

Pr [f(X ) ⊆ Y] ≤
(

n

⌊δn⌋

)(
n

⌊τn⌋

)
· δ⌊τn⌋ ≤ 2n(h(τ)+h(δ))+⌊τn⌋ log δ.

The last inequality follows from Fact 3.11, and since h is monotone in [0, 12 ]. □

The last claim states that an algorithm that inverts f(x) with good probability, is likely to
return x itself.

Claim 3.8. Let C be a function from Fn×[n] to [n] such that Prf←Fn
x←[n]

[
C(f, f(x)) ∈ f−1(f(x))

]
≥ α.

Then, Prf←Fn
x←[n]

[C(f, f(x)) = x] ≥ α2

8 .

Proof. For f ∈ Fn let Pf (x) := f−1(f(x)) \ {x}. We would like to provide a bound on the size of
this set to ensure that x is output with high probability. Compute

Pr
f←Fn

x←[n]

[C(f, f(x)) = x] = Pr
[
C(f, f(x)) = x ∧ C(f, f(x)) ∈ f−1(f(x))

]
(12)

≥ Pr
[
C(f, f(x)) = x | C(f, f(x)) ∈ f−1(f(x))

]
· α.
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We now provide a lower bound for the left-hand term. For d ≥ 1 compute

Pr
f←Fn

x←[n]

[
C(f, f(x)) = x | C(f, f(x)) ∈ f−1(f(x))

]
(13)

≥ Pr
[
C(f, f(x)) = x ∧ |Pf (x)| ≤ d | C(f, f(x)) ∈ f−1(f(x))

]
= Pr

[
C(f, f(x)) = x | |Pf (x)| ≤ d,C(f, f(x)) ∈ f−1(f(x))

]
· Pr

[
|Pf (x)| ≤ d | C(f, f(x)) ∈ f−1(f(x))

]
≥ 1

d+ 1
· Pr

[
|Pf (x)| ≤ d | C(f, f(x)) ∈ f−1(f(x))

]
=

1

d+ 1

(
1− Pr

[
|Pf (x)| > d | C(f, f(x)) ∈ f−1(f(x))

])
.

By linearity of expectation, Ef←Fn [|Pf (x)|] = n−1
n < 1. Hence by Markov’s inequality,

Prf←Fn

x←[n]

[|Pf (x)| > d] < 1/d. It follows that

Pr
f←Fn

x←[n]

[
|Pf (x)| > d | C(f, f(x)) ∈ f−1(f(x))

]
≤

Pr [|Pf (x)| > d]

Pr [C(f, f(x)) ∈ f−1(f(x))]
≤ 1

dα
(14)

Combining Equations (13) and (14) yields that

Pr
f←Fn

x←[n]

[
C(f, f(x)) = x | C(f, f(x)) ∈ f−1(f(x))

]
≥ 1

d+ 1

(
1− 1

dα

)
(15)

Finally, by Equations (12) and (15) we conclude that

Pr
f←Fn

x←[n]

[C(f, f(x)) = x] ≥ α

d+ 1

(
1− 1

dα

)
≥ α

2d

(
1− 1

dα

)
=

α

2d
− 1

2d2
.

Setting d = 2
α yields that Prf←Fn

x←[n]

[C(f, f(x)) = x] ≥ a2

4 −
α2

8 = α2

8 .

□

3.4 Additional Inequalities
We use the following easily-verifiable facts:

Fact 3.9. For x ≥ 1: log x ≥ 1− 1/x.

Fact 3.10. For δ ≤ 1/2: h(δ) ≤ −2δ log δ.

We also use the following bound:

Fact 3.11 ([11]).
(
n
k

)
≤ 2nh(

k
n
).
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4 Linear-advice Inverters
In this section we present lower bounds on the time/memory tradeoff of adaptive function

inverters with linear advice. To simplify notation, the following definitions and results are stated
with respect to some fixed n ∈ N. Let F be the set of all functions from [n] to [n]. All asymptotic
notations (e.g., Θ) hide constant terms that are independent of n. We start by formally defining
adaptive function inverters.

Definition 4.1 (Adaptive inverters). An s-advice, q-query adaptive inverter is a deterministic al-
gorithm pair C := (Cpre,Cdec), where Cpre : F → {0, 1}s, and C

(·)
dec : [n]× {0, 1}

s → [n] makes up to
q oracle queries. For f ∈ F and y ∈ [n], let

C(y; f) := Cf
dec(y,Cpre(f)).

That is, Cpre is the pre-processing algorithm that takes as input the function description and
outputs a string of length s that we refer to as the advice string. The oracle-aided Cdec is the
decoder algorithm that performs the actual inversion action. It receives the element to invert y and
the advice string, and using q (possibly adaptive) queries to f , attempts to output a preimage of
y. Finally, C(y; f) is the candidate preimage the algorithms of C produce for the element to invert
y given the (restricted) access to f . We define adaptive inverters with linear advice as follows,
recalling that we may view f ∈ F as a vector ∈ [n]n.

Definition 4.2 (Linear preprocessing). A deterministic algorithm Cpre : F → {0, 1}s is linear if
there exist an additive group G ⊆ {0, 1}s that contains Cpre(F), and an additive group K of size
n such that for every f1, f2 ∈ F it holds that Cpre(f

1 +K f2) = Cpre(f
1) +G Cpre(f

2), letting
f1 +K f2 := (f1

1 +K f2
1 , . . . , f

1
n +K f2

n).

Below we omit the subscripts from +G and +K when clear from the context.
We prove the bound for inverters with linear preprocessing by presenting a reduction from the

well-known set-disjointness problem.

Definition 4.3 (Set-disjointness). A protocol Π = (A,B) solves set-disjointness with error ε over all
inputs in Q ⊆ {(X ,Y) : X ,Y ⊆ [N]}, if for every (X ,Y) ∈ Q

Pr
rA←{0,1}∗,rB←{0,1}∗

rp←{0,1}∗

[(A(X ; rA),B(Y; rB))(rp) = (δX ,Y, δX ,Y)] ≥ 1− ε

for δX ,Y being the indicator for X ∩ Y = ∅.

Namely, except with probability ε over their private and public randomness, the two parties find
out whether their input sets intersect. Set-disjointness is known to require large communication
over the following set of inputs.

Definition 4.4 (Communication complexity). The communication complexity of protocol Π =
(A,B), denoted, CC(Π), is the maximal number of bits the parties exchange in an execution (over
all possible inputs and randomness).
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Theorem 4.5 (Hardness set-disjointness, Razborov [19]). Exists ε > 0 such that for every protocol
Π that solves set-disjointness over all inputs in Q := {X ,Y ⊆ [n] : |X ∩ Y| ≤ 1} with error ε, it
holds that CC(Π) ≥ Ω(n). 5

Our main result is the following reduction from set-disjointness to function inversion.

Theorem 4.6 (From set-disjointness to function inversion). Assume exists an s-advice, q-
query linear-advice inversion algorithm with Pr f←F

x←[n]

[
C(f(x); f) ∈ f−1(f(x))

]
≥ α, and let Q :=

{X ,Y ⊆ [n] : |X ∩ Y| ≤ 1}. Then for every ε > 0 there exists a protocol that solves set-disjointness
with (one-sided) error ε and communication O

(
log(ε)

log(1−α2/8)
· (s+ q log n)

)
, on all inputs in Q.

Combining Theorems 4.5 and 4.6 yields the following bound on linear-advice inverters.

Corollary 4.7 (Theorem 1.2, restated). Let C = (Cpre,Cdec) be an s-advice q-query inversion
algorithm with linear preprocessing such that Pr f←F

x←[n]

[
C(f(x); f) ∈ f−1(f(x))

]
≥ α. Then s +

q log n ∈ Ω(α2 · n).

Proof of Corollary 4.7. By Theorem 4.6, the existence of an s-advice, q-query linear-advice inverter
C with success probability ≥ α implies that set-disjointness can be solved over Q, with error
ε > 0 and communication complexity O

(
log(ε)

log(1−α2/8)
· (s+ q log n)

)
. Thus, Theorem 4.5 yields that

log(ε)
log(1−α2/8)

· (s+ q log n) ∈ Ω(n). Since log(ε)
log(1−α2/8)

= log(1/ε) · 1
log(1/(1−α2/8))

, and since, by Fact 3.9,
it holds that log(1/(1− α2/8)) ≥ α2/8, it follows that s+ q log n ∈ Ω(α2 · n). □

The rest of this section is devoted to proving Theorem 4.6. Fix an s-advice, q-query inverter
C = (Cpre,Cdec) with linear preprocessing. We use C in Protocol 4.8 to solve set-disjointness. In
the protocol below we identify a vector v ∈ {0, 1}n with the set {i : vi = 1}.

Protocol 4.8 (Π = (A,B)).
A’s input: a ∈ {0, 1}n.
B’s input: b ∈ {0, 1}n.
Public randomness: d ∈ [n].
Operation:

1. B chooses y ← [n].

2. A constructs a function fA : [n]→ [n] as follows:

• for i such that ai = 0, it samples fA(i+ d mod n) uniformly at random.
• for i such that ai = 1, it sets fA(i+ d mod n) = 0.

3. B constructs a function fB : [n]→ [n] as follows:

• for i such that bi = 0, it samples fB(i+ d mod n) uniformly at random.
5[19] proved a stronger result: there exists a distribution that fails all low communication protocols. For the sake

of our argument, however, it is easier to work with the weaker statement of Theorem 4.5.
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• for i such that bi = 1, it sets fB(i+ d mod n) = y.

− Let f := fA + fB.

4. A sends Cpre(fA) to B.

5. B sets c := Cpre(fA) +G Cpre(fB) = Cpre(f).

6. B emulates Cf
dec(y, c): whenever Cdec sends a query r to f , algorithm B forwards it to A, and

feeds fA(r) + fB(r) back into Cdec.

− Let x be Cdec’s output in the above emulation, and let i = x− d mod n.

7. B sends (i, bi) to A. If ai = bi = 1, algorithm A outputs False and informs B.

8. Otherwise, both parties output True.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following we analyze the communication complexity and success probability of Π.

Claim 4.9 (Π’s communication complexity). It holds that CC(Π) ≤ (s+2q(log n+1)+ log n+3).

Proof.

1. In Step 4, party A sends Cpre(fA) to B.

2. In Step 6, the parties exchange at most 2 log n+ 2 bits for every query Cdec makes.

3. In Step 7, the parties exchange at most log n+ 3 bits.

Thus, the total communication is bounded by s+ 2q(log n+ 1) + log n+ 3. □

Claim 4.10 (Π’s success probability).
1. Pr [(A(a),B(b)) = (True,True)] = 1 for every (a, b) ∈ Q0 := {X ,Y ⊆ [n] : |X ∩ Y| = 0}.

2. Pr [(A(a),B(b)) = (False,False)] ≥ α2

8 for every (a, b) ∈ Q1 := {X ,Y ⊆ [n] : |X ∩ Y| = 1}.

Proof. By construction, it is clear that Π always accepts (the parties output True) on inputs
(a, b) ∈ Q0. Fix (a, b) ∈ Q1, and let Y,D, F, FA, FB and I be the values of y, d, f, fA, fB and i
respectively, in a random execution of (A(a),B(b)). By construction, F (j) = FA(j) + FB(j) for all
j ∈ [n]. For j not in the intersection, either FA(j) or FB(j) is chosen uniformly at random by one
of the parties, and therefore F (j) is uniformly distributed and independent of all other outputs.
For the intersection element w, it holds that F (w) = y, which is uniform, and since there is exactly
one intersection, is independent from all other outputs.

Let W := w + D mod n. Note that W is uniformly distributed over [n] and is independent
of F . Also note that, by construction, Y = F (W ). Therefore, (F,W, Y ) is distributed exactly as
(F,X, F (X)) for X ← [n]. Hence, the assumption on C yields that

Pr
[
C(Y ;F ) ∈ F−1(Y )

]
≥ α

and by Claim 3.8,

Pr [C(Y ;F ) = W ] ≥ α2/8.

Therefore, both parties output False with probability at least α2/8. □
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Proving Theorem 4.6 We now use Claims 4.9 and 4.10 to prove Theorem 4.6.

Proof of Theorem 4.6. Let t =
⌈

log(ε)
log(1−α2/8)

⌉
, and consider the protocol Πt that on input (a, b)

the parties interact in protocol Π for t times, and accept only if they do so in all iterations. By
Claims 4.9 and 4.10, the communication complexity and success probability of Πt in solving set-
disjointness over Q match the theorem statement. □

5 Non-adaptive Inverters
In this section we present lower bounds on the time/memory tradeoff of non-adaptive function

inverters. In Section 5.1, we present a bound for non-adaptive affine decoders, and in Section 5.2
we extend this bound to non-adaptive affine decision trees. To simplify notation, the following
definitions and results are stated with respect to some fixed n ∈ N, for which there exists a finite
field of size n which we denote by F. Let F be the set of all functions from [n] to [n]. All asymptotic
notations (e.g., Θ) hide constant terms that are independent of n. We start by formally defining
non-adaptive function inverters.
Definition 5.1 (Non-adaptive inverters). An s-advice q-query non-adaptive inverter is a determinis-
tic algorithm triplet of the form C := (Cpre,Cqry,Cdec), where Cpre : F → {0, 1}s, Cqry : [n]×{0, 1}s →
[n]q, and Cdec : [n]× {0, 1}s × [n]q → [n]. For f ∈ F and y ∈ [n], let

C(y; f) := Cdec (y,Cpre(f), f (Cqry(y,Cpre(f)))) .

That is, Cpre is the pre-processing algorithm. It takes the function description as input and
outputs a string of length s, to which we refer as the advice string. In the case that s = 0, we
say that C has zero-advice, and omit Cpre from the notation. Algorithm Cqry is the query selection
algorithm. It chooses the queries according to the element to invert y and the advice string, and
outputs q indices, to which we refer as the queries. Algorithm Cdec is the decoder algorithm that
performs the actual inversion. It receives the element y, the advice string and the function’s answers
to the (non-adaptive) queries selected by Cqry (the query indices themselves may be deduced from y
and the advice), and attempts to output a preimage of y. Finally, C(y; f) is the candidate preimage
of y produced by the algorithms of C given the (restricted) access to f .

5.1 Affine Decoders
In this section we present our bound for non-adaptive affine decoders, defined as follows:

Definition 5.2 (Affine decoder). A non-adaptive inverter C := (Cpre,Cqry,Cdec) has an affine
decoder, if for every y ∈ [n] and a ∈ {0, 1}s there exists a q-sparse vector αa

y ∈ Fn and a field
element βa

y ∈ F, such that for every f ∈ F : Cdec(y, a, f(Cqry(y, a))) = ⟨αa
y, f⟩+ βa

y .
The following theorem bounds the probability, over a random function f , that a non-adaptive

inverter with an affine decoder inverts a random output of f with probability τ .
Theorem 5.3. Let C = (Cpre,Cqry,Cdec) be an s-advice non-adaptive inverter with an affine decoder
and let τ ∈ [0, 1]. Then for every δ ∈ [0, 1] and m ≤ n/16, it holds that

Pr
f←F

 Pr
x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

 ≤ ατ,δ + 2s · δ−m ·
m∏
j=1

(
2j

n
+max

{
4
√

1/n,
4j

n

})
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for ατ,δ := Prf←F [∃τn-size set X ⊂ [n] : |f(X )| ≤ δn].

While it is not easy to see what is the best choice, per τ , of the parameters δ and m above, the
following corollary (proven in Section 5.1.2) exemplifies the usability of Theorem 5.3 by considering
the consequences of such a choice.

Corollary 5.4 (Theorem 1.4, restated). Let C be as in Theorem 5.3, let τ ≥ 2 · n−1/8 and assume

Prf←F

[
Pr x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

]
≥ 1/2, then s ∈ Ω(τ2 · n). 6

Our key step towards proving Theorem 5.3 is showing that even when conditioned on the
(unlikely) event that a zero-advice inverter successfully inverts the first i − 1 elements of Y , the
probability the inverter successfully inverts Yi is still low. To formulate the above statement, we
define the following jointly distributed random variables: let F be uniformly distributed over F
and let Y = (Y1, ..., Yn) be a uniform vector over [n]n. For a zero-advice inverter, we define the
following random variables (jointly distributed with F and Y ).

Notation 5.5. For a zero-advice inverter D, let XD
i := D(Yi;F ), let ZD

i be the event∧
j∈[i]

{
F (XD

j ) = Yj

}
, and let XD = (XD

1 , . . . , X
D
n ).

That is, XD
i is D’s answers to the challenges Yi, and ZD

i indicates whether D successfully
answered each of the first i challenges. Given the above notation, our main lemma is stated as
follows:

Lemma 5.6. Let D be a zero-advice, non-adaptive inverter with affine decoder and let ZD be as in
Notation 5.5. Then for every i ∈ [n] and µ ∈ [0, 12 ]:

Pr
[
ZD
i | ZD

i−1

]
≤ 2i− 1

n
+ µ+ 22⌈µn⌉ log(1/µ)−⌈µn⌉ log(n)+(2i−2) logn.

We prove Lemma 5.6 below, but first use it to prove Theorem 5.3.

Proving Theorem 5.3. Lemma 5.6 immediately yields a bound on the probability that D,
a zero-advice inverter, successfully inverts the first i elements of Y . For proving Theorem 5.3,
however, we need to bound the probability that D, and later on, an inverter with non-zero advice,
finds a preimage of a random output of f . Yet, the conversion between these two measurements is
rather straightforward. Hereafter we assume n ≥ 16, as otherwise Theorem 5.3 is trivial, as m = 0.

Proof of Theorem 5.3. Let C = (Cpre,Cqry,Cdec), τ ∈ [0, 1], δ ∈ [0, 1] and m be as in the theorem
statement. Fix an advice string a ∈ {0, 1}s, and let Ca = (Ca

qry,C
a
dec) denote the zero-advice inverter

obtained by hardcoding a as the advice of C (i.e., Ca
pre(f) = a for every f). For j ∈ [n], let Zj = ZCa

j

and let µj := max
{

4
√

1/n, 4jn

}
. We start by showing that for every j ≤ n/16 it holds that

Pr [Zj | Zj−1] ≤
2j

n
+ µj (16)

6The constant 1/2 lower bounding the probability is arbitrary.
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Indeed, by Lemma 5.6

Pr [Zj | Zj−1] ≤
2j − 1

n
+ µj + 2

2⌈µjn⌉ log(1/µj)− ⌈µjn⌉ log n+ (2j − 2) log n︸ ︷︷ ︸
β (17)

We write,

β = 2⌈µjn⌉ log(1/µj)−
⌈µjn⌉
2

log n︸ ︷︷ ︸
β1

+

(
−⌈µjn⌉

2

)
log n+ (2j − 2) log n︸ ︷︷ ︸

β2

(18)

Since

β1 ≤ ⌈µjn⌉

(
log

1

µ2
j

− log
√
n

)
= ⌈µjn⌉

(
log

1

µ2
j

√
n

)
≤ 0

and

β2 =
−⌈µjn⌉

2
log n+ 2j log n− 2 log n ≤ −2j

n
n log n+ 2j log n− 2 log n ≤ −2 log n,

we conclude that Pr [Zj | Zj−1] ≤ 2j−1
n + µj + 2−2 logn ≤ 2j

n + µj , proving Equation (16).
Equation (16) immediately yields that

Pr [Zm] =
m∏
j=1

Pr [Zj | Zj−1] ≤
m∏
j=1

(
2j

n
+ µj

)
(19)

We use the above to produce a bound on the number of elements that Ca successfully inverts. Let
GaY(f) :=

{
y ∈ [n] : Ca(y; f) ∈ f−1(y)

}
, and compute:

Pr [Zm] = Pr
f←F

[
∀j ∈ [m] : Yj ∈ GaY(f)

]
(20)

≥ Pr
f←F

[
∀j ∈ [m] : Yj ∈ GaY(f)

∧
|GaY(f)| ≥ δn

]
= Pr

f←F

[
∀j ∈ [m] : Yj ∈ GaY(f) | |GaY(f)| ≥ δn

]
· Pr
f←F

[
|GaY(f)| ≥ δn

]
≥ δm · Pr

f←F

[
|GaY(f)| ≥ δn

]
.

Combining Equations (19) and (20) yields the following bound on the number of images Ca

successfully inverts:

Pr
[
|GaY(f)| ≥ δn

]
≤ δ−m ·

m∏
j=1

(
2j

n
+ µj

)
(21)

We now adapt the above bound to (the with advice ) C. Let GY(f) :=
{
y ∈ [n] : C(y; f) ∈ f−1(y)

}
and let GX (f) = f−1(GY(f)). By Equation (21) and a union bound,

Pr
f←F

[|GY(f)| ≥ δn] ≤ 2s · δ−m ·
m∏
j=1

(
2j

n
+ µj

)
(22)
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We conclude that

Pr
f←F

 Pr
x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

 = Pr
f←F

[|GX (f)| ≥ τn]

= Pr
f←F

[
|GX (f)| ≥ τn

∧
|GY(f)| < δn

]
+ Pr

f←F

[
|GX (f)| ≥ τn

∧
|GY(f)| ≥ δn

]
≤ Pr

f←F

[
|GX (f)| ≥ τn

∧
|GY(f)| < δn

]
+ Pr

f←F
[|GY(f)| ≥ δn]

≤ ατ,δ + 2s · δ−m ·
m∏
j=1

(
2j

n
+ µj

)
.

The second inequality follows by the definition of ατ,δ and Equation (22). □

5.1.1 Proving Lemma 5.6

In the rest of this section we prove Lemma 5.6. Fix a zero-advice non-adaptive inverter with
an affine decoder D = (Dqry,Ddec), i ∈ [n] and µ ∈ [0, 12 ]. Let X := XD and, for j ∈ [n] let
Zj := ZD

j . We start by proving the following claim that bounds the probability in hand assuming
Xi, the inverter’s answer, is coming from a small linear space. (Recall, from Definition 3.2, that
E(M) = {j ∈ [m] : ej ∈ Span(M)}, where ej is the jth unit vector in Fn.)

Claim 5.7. Let A ∈ Fℓ×n, let v ∈ Im(A), let B1, . . . ,Bn ∈ Ft×n, and, for y ∈ [n], let Ay :=

(
A
By

)
.

Then

Pr
[
Yi ∈ F (E(AYi)) | A× F = v

]
≤
(
ℓ

n
+ µ

)
+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(t/n)+ℓ logn.

Proof. By Claim 3.4 there exist an ℓ-size set S := SA and t-size sets
{
Sk := SBk

}
k∈[n] such that

E(Ay) ⊆ S ∪ Sy (23)

for every y ∈ [n]. By Fact 3.1,

Pr [A× F = v] =
nn−rank(A)

nn
≥ n−ℓ (24)

Compute,

Pr
[
Yi ∈ F (E(AYi)) | A× F = v

]
≤ Pr [Yi ∈ F (S ∪ SYi) | A× F = v] (25)
≤ Pr [Yi ∈ F (S) | A× F = v] + Pr [Yi ∈ F (SYi) | A× F = v]

≤ ℓ

n
+ Pr [Yi ∈ F (SYi) | A× F = v] .

The first inequality holds since E(AYi) ⊆ S∪SYi , and the last one since |S| ≤ ℓ and Yi is independent
of F . Applying Claim 3.6 with respect to p := n−ℓ, γ := µ, W := {A× F = v}, Y := Yi and the
sets S1, . . .Sn, yields that

Pr [Yi ∈ F (SYi) | A× F = v] ≤ µ+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(t/n)+ℓ logn (26)

We conclude that Pr [Yi ∈ F (E(A(Yi))) | A× F = v] ≤ ℓ
n +µ+22⌈µn⌉ log(1/µ)+⌈µn⌉ log(t/n)+ℓ logn. □

20



Given the above claim, we prove Lemma 5.6 as follows.

Proof of Lemma 5.6. Since D has an affine decoder, for every y ∈ [n] there exist a q-sparse vector
αy ∈ Fn and a field element βy ∈ F such that ⟨αy, F ⟩+ βy = Xy(:= D(y;F )). Therefore, for every
j < i:

1. ⟨αYj , F ⟩ = −βYj +Xj .

Conditioning on Zi−1 further implies that for every j < i:

2. F (Xj) = Yj .

Let ℓ := 2i − 2, and let Mi−1 ∈ Fℓ×n be the (random) matrix defined, for every j ∈ [i − 1], by
Mi−1

2j−1 := αYj and Mi−1
2j := eXj . Let V i−1 ∈ Fℓ be the (random) vector defined by V i−1

2j−1 :=

−βYj + Xj and V i−1
2j = Yj . By definition, conditioned on Zi−1 it holds that Mi−1 × F = V i−1.

This incorporates in a single equation all that is known about F given Zi−1. To take into account
the knowledge gained from the queries made while attempting to invert Yi, we combine the above

with αYi and ⟨αYi , F ⟩, into the matrix M :=

(
Mi−1

αYi

)
and vector V :=

(
V i−1

⟨αYi , F ⟩

)
. By definition,

M× F = V . We write

Pr [Zi | Zi−1] = Pr [Zi ∧Xi ∈ E(M) | Zi−1] + Pr [Zi ∧Xi /∈ E(M) | Zi−1] (27)

and prove the lemma by separately bounding the two terms of the above equation. Let H :=
(Y<i,Mi−1, V i−1), and note that

Pr [Zi ∧Xi ∈ E(M) | Zi−1] ≤ Pr [Yi ∈ F (E(M)) | Zi−1] (28)
= E

h←H|Zi−1

[Pr [Yi ∈ F (E(M)) | H = h,Zi−1]]

= E
h=(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E
(
mi−1

αYi

))
| H = h,mi−1 × F = vi−1

]]
= E

(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E
(
mi−1

αYi

))
| Y<i = y<i,m

i−1 × F = vi−1
]]

= E
(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E
(
mi−1

αYi

))
| mi−1 × F = vi−1

]]
≤
(
2i− 2

n
+ µ

)
+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(1/n)+(2i−2) logn.

The first inequality holds by the definition of Zi. The second equality holds by the defi-
nition of Zi−1. The third equality holds since the event

{
Y<i = y<i,m

i−1 × F = vi−1
}

implies
that

{
Mi−1 = mi−1, V i−1 = vi−1

}
. The last equality holds since F is independent of Y , and the

last inequality follows by Claim 5.7 with respect to A := mi−1, v := vi−1, and (B1, . . . ,Bn) :=
(α1, . . . , αn) (viewing αi as a matrix in F1×n).

For bounding the right-hand term of Equation (27), let H := (Xi, Y≤i,M, V ), and compute
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Pr [Zi ∧Xi /∈ E(M) | Zi−1] ≤ Pr [Zi | Xi /∈ E(M), Zi−1] (29)
= E

h←H|Xi /∈E(M),Zi−1

[Pr [Zi | H = h,Zi−1]]

= E
h=(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | H = h,m× F = v]]

= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | Y≤i = y≤i,m× F = v]]

= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | m× F = v]]

= 1/n.

The second equality holds by the definition of Zi−1. The third equality holds since the event
{Y≤i = y≤i,m× F = v} implies that {M = m,V = v}, and Xi is a function of V . The fourth
equality holds since F is independent from Y . The last inequality follows by Claim 3.3. Combining
Equations (27) to (29), we conclude that

Pr [Zi | Zi−1] ≤
(
2i− 2

n
+ µ

)
+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(1/n)+(2i−2) logn + 1/n

=
2i− 1

n
+ µ+ 22⌈µn⌉ log(1/µ)−⌈µn⌉ log(n)+(2i−2) logn.

□

5.1.2 Proving Corollary 5.4

Proof of Corollary 5.4. We prove for τ ≤ 0.16, which clearly yields the same bound for larger values
of τ . Let δ := τ2, and let ατ,δ be as in Theorem 5.3. By Claim 3.7,

ατ,τ2 ≤ 2n(h(τ)+h(τ2))+⌊τn⌋ log τ2 ≤2n(h(τ)+h(τ2)+τ log τ2)−log τ2 (30)

≤ 2

n (h(τ) + h(τ2) + τ log τ2)︸ ︷︷ ︸
β · τ−2 (31)

Since τ ≤ 0.16, it holds that h(τ) ≤ 3
2 · τ · log(1/τ). We also note that

β ≤3

2
· τ · log 1

τ
+

6

2
· τ2 · log 1

τ
+ 2τ log τ = (3τ − 1/2) · τ · log 1

τ
≤ − log n

200 8
√
n

(32)

The last inequality holds since, by assumption, 0.16 ≥ τ ≥ 2
8√n , noting that τ · log 1/τ is monoton-

ically increasing over [0, 0.16]. Given the above bound on ατ,τ2 and the assumption on C’s success
probability, Theorem 5.3 yields that for every m ≤ n/16:

1/2 ≤ 2−(n
7/8 logn)/200 · τ−2 + 2sδ−m

m∏
j=1

(
2j

n
+max

{
4
√
1/n,

4j

n

})
(33)

Let m := δn/16. Since τ ≥ 2
8√n , for every j ∈ [m] it holds that 2j

n +max
{

4
√
1/n, 4jn

}
≤ δ/2. Thus,

by Equation (33),

1/2 ≤ 2−(n
7/8/200−1) logn + 2s · δ−m · (δ/2)m ≤ 2− logn + 2s−m (34)

We conclude that s ∈ Ω(m) and thus s ∈ Ω(τ2 · n). □
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5.2 Affine Decision Trees
In this section we present lower bounds for non-adaptive affine decision trees. The latter are

formally defined as follows:

Definition 5.8 (Affine decision trees). An n-input affine decision tree over F is a labeled, directed,
degree |F| tree T . Each internal node v of T has label αv ∈ Fn, each leaf ℓ of T has label oℓ ∈ F,
and the |F| outgoing edges of every internal node are labeled by the elements of F. Let ΓT (v, γ)
denote the (direct) child of v connected via the edge labeled by γ. The node path p = (p1, . . . , pd+1)
of T on input w ∈ Fn is defined by:

• p1 is the root of T .

• pi+1 = ΓT (pi, ⟨αpi , w⟩).

The edge path of T on w is defined by (⟨αp1 , w⟩, · · · , ⟨αpd , w⟩). Lastly, the output of T on w, denoted
T (w), is the value of opd+1

.

Note that the edge path determines the computation path and output. Given the above, affine
decision tree decoders are defined as follows.

Definition 5.9 (Affine decision tree decoder). An inversion algorithm C := (Cpre,Cqry,Cdec) has a
d-depth affine decision tree decoder, if for every y ∈ [n], a ∈ {0, 1}s and v = Cqry(y, a), there exists
an n-input, d-depth affine decision tree T y,a such that Cdec(y, a, f(v)) = T y,a(f).

The following theorem bounds the probability, over a random function f , that a non-adaptive
inverter with an affine decision tree decoder inverts a random output of f with probability τ .

Theorem 5.10. Let C be an s-advice, (q ≤ n/16)-query, non-adaptive inverter with a d-depth
affine decision tree decoder, and let τ ∈ [0, 1]. Then for every δ ∈ [0, 1] and m ≤ n log(n/q)

4(d+1) logn it holds
that

Pr
f←F

 Pr
x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

 ≤ ατ,δ + 2s · δ−m
m∏
j=1

(
(d+ 1)j

n
+max

{
4
√

q/n,
2(d+ 1)j log n

n log(n/q)

})

for ατ,δ := Prf←Fn [∃τn-size set X ⊂ [n] : |f(X )| ≤ δn].

Comparing to the bound we derive on affine decoders (Theorem 5.3), we are paying above for
the tree depth d, but also for the number of queries q. In particular, we essentially multiply each
term of the above product by the tree depth d, and by logn

log(n/q) . In addition, the theorem only
holds for smaller values of m. The following corollary exemplifies the usability of Theorem 5.10 by
considering the consequences of two choices of parameters.

Corollary 5.11 (Theorem 1.5, restated). Let C be as in Theorem 5.10 and assume

Prf←F

[
Pr x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

]
≥ 1/2, then the following holds:

• If q ≤ n · (τ/2)8, then s ∈ Ω(n/d · τ2/logn).

• If q ≤ n1−ϵ, then s ∈ Ω(n/d · τ2ϵ).
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Proof. Omitted, follows by Theorem 5.10 using very similar lines to those used to derive Corol-
lary 5.4 from Theorem 5.3. □

In the rest of this section we explain how to modify the proof of Theorem 5.3, in order to derive
the proof of Theorem 5.10. Hereafter we assume n ≥ 16, as otherwise the bound trivially holds.

Let F ← F and let Y = (Y1, ..., Yn) be a uniform vector over [n]n. For a zero-advice affine
decision tree inverter D = (Dqry,Ddec), let XD and ZD, jointly distributed with F and Y , be
according to Notation 5.5. The crux of the proof of Theorem 5.10 lies in the following lemma.

Lemma 5.12. Let D = (Dqry,Ddec) be a zero-advice, (q ≤ n/16)-query, non-adaptive inverter with
a d-depth affine decision trees decoder, and let ZD be as in Notation 5.5. Then for every i ∈ [n]
and µ ∈ [0, 12 ]:

Pr
[
ZD
i | ZD

i−1

]
≤ (d+ 1)i− 1

n
+ µ+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(q/n)+(i−1)(d+1) logn.

Proving Theorem 5.10.

Proof of Theorem 5.10 . Omitted, follows Lemma 5.12 using essentially the same lines we used to
derive Theorem 5.3 from Lemma 5.6. □

5.2.1 Proving Lemma 5.12

Proof of Lemma 5.12. Fix D = (Dqry,Ddec), i ∈ [n] and µ ∈ [0, 12 ]. Let T y be the affine decision
tree associated with the computation of Ddec on input y, let py(f) and gy(f) be the node and edge
paths, receptively, of T y on f , and let αy(f) := (αy

1(f), . . . , α
y
d(f)), o

y(f) be the labels of py(f)
according to T y. For j ∈ [n], let pj = pYj (F ), gj = gYj (F ), αj := αYj (F ) and oj := oYj (F ). Finally,
let X := XD and Zj := ZD

j . By definition, for every j < i:

1. ∀k ∈ [d] : ⟨αj
k, F ⟩ = gkj ,

2. oj = Xj .

Conditioning on Zi−1 further implies that for every j < i:

2. F (Xj) = Yj .

Let ℓ := (d+1)(i−1), and let Mi−1 ∈ Fℓ×n be the (random) matrix defined by Mi−1
(d+1)(j−1)+k := αj

k

for k ∈ [d], and Mi−1
(d+1)j := eXj . Let V i−1 ∈ Fℓ be the (random) vector defined by V i−1

(d+1)(j−1)+k :=

gkj and V i−1
(d+1)j := Yj . By definition, conditioned on Zi−1 it holds that Mi−1 × F = V i−1. That

is, the matrix Mi−1 contains also the internal computations done by the i − 1 trees (and not
only the final outcome of the each computation as in the affine decoder case). For y ∈ [n], let
Qy := Dqry(y) ∈ [n]q be the queries that D makes on input y, and let Ay ∈ [n]q be F ’s answers to
these queries. That is, for every k ∈ [q]:

3. F (Qy
k) = Ay

k.
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Let Ey ∈ Fq×n be the matrix defined by Ey
k := eQy

k
. Let M :=

(
Mi−1

EYi

)
and let V :=

(
V i−1

AYi

)
. That

is, we add to M all queries made by D on input Yi (and not only the output of the computations
made by Ddec). We write

Pr [Zi | Zi−1] = Pr [Zi ∧Xi ∈ E(M) | Zi−1] + Pr [Zi ∧Xi /∈ E(M) | Zi−1] (35)

and, using the above notions, prove the claim by separately bounding the two terms of the
above equation. Let H := (Y<i,Mi−1, V i−1), and note that

Pr [Zi ∧Xi ∈ E(M) | Zi−1] ≤ Pr [Yi ∈ F (E(M)) | Zi−1] (36)
= E

h←H|Zi−1

[Pr [Yi ∈ F (E(M)) | H = h,Zi−1]]

= E
h=(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E
(
mi−1

EYi

))
| H = h,mi−1 × F = vi−1

]]
= E

(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E
(
mi−1

EYi

))
| Y<i = y<i,m

i−1 × F = vi−1
]]

= E
(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E
(
mi−1

EYi

))
| mi−1 × F = vi−1

]]
≤
(
(d+ 1)(i− 1)

n
+ µ

)
+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(q/n)+(d+1)(i−1) logn.

The first inequality holds by the definition of Zi. The second equality holds by the defi-
nition of Zi−1. The third equality holds since the event

{
Y<i = y<i,m

i−1 × F = vi−1
}

implies
that

{
Mi−1 = mi−1, V i−1 = vi−1

}
. The last equality holds since F is independent of Y , and the

last inequality follows by Claim 5.7 with respect to A := mi−1, v := vi−1, and (B1, . . . ,Bn) :=
(E1, . . . ,En).

For bounding the right-hand term of Equation (27), let H := (Xi, Y≤i,M, V ), and compute

Pr [Zi ∧Xi /∈ E(M) | Zi−1] ≤ Pr [Zi | Xi /∈ E(M), Zi−1] (37)
= E

h←H|Xi /∈E(M),Zi−1

[Pr [Zi | H = h,Zi−1]]

= E
h=(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | H = h,m× F = v]]

= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | Y≤i = y≤i,m× F = v]]

= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | m× F = v]]

= 1/n.

The second equality holds by the definition of Zi−1. The third equality holds since the event
{Y≤i = y≤i,m× F = v} implies that {M = m,V = v}, and Xi is a function of V (which contains
all the answers to the queries of the decoder). The fourth equality holds since F is independent
from Y . The last inequality follows by Claim 3.3. Combining Equations (35) to (37), we conclude
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that

Pr [Zi | Zi−1] ≤
(
(d+ 1)(i− 1)

n
+ µ

)
+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(q/n)+(d+1)(i−1) logn + 1/n

≤
(
(d+ 1)i− 1

n
+ µ

)
+ 22⌈µn⌉ log(1/µ)+⌈µn⌉ log(q/n)+(d+1)(i−1) logn.

□
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