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Abstract

Yao’s XOR lemma states that for every function f : {0, 1}k → {0, 1}, if f has hardness 2/3 for
P/poly (meaning that for every circuit C in P/poly, Pr[C(X) = f(X)] ≤ 2/3 on a uniform input X),
then the task of computing f(X1)⊕ . . .⊕ f(Xt) for sufficiently large t has hardness 1

2 + ε for P/poly.
Known proofs of this lemma cannot achieve ε = 1

kω(1) , and even for ε = 1
k , we do not know how to re-

place P/poly by AC0[PARITY] (the class of constant depth circuits with the gates {AND,OR,NOT,PARITY}
of unbounded fan-in).

Recently, Grinberg, Shaltiel and Viola (FOCS 2018) (building on a sequence of earlier works) showed
that these limitations cannot be circumvented by black-box reductions. Namely, by reductions Red(·) that
given oracle access to a function D that violates the conclusion of Yao’s XOR lemma, implement a circuit
that violates the assumption of Yao’s XOR lemma.

There are a few known reductions in the related literature on worst-case to average case reductions
that are non-black box. Specifically, the reductions of Gutfreund, Shaltiel and Ta Shma (Computational
Complexity 2007) and Hirahara (FOCS 2018)) are “class reductions” that are only guaranteed to succeed
when given oracle access to an oracle D from some efficient class of algorithms. These works seem to
circumvent some black-box impossibility results.

In this paper we extend the previous limitations of Grinberg, Shaltiel and Viola to class reductions,
giving evidence that class reductions cannot yield the desired improvements in Yao’s XOR lemma. To the
best of our knowledge, this is the first limitation on reductions for hardness amplification that applies to
class reductions.

Our technique imitates the previous lower bounds for black-box reductions, replacing the inefficient
oracle used in that proof, with an efficient one that is based on limited independence, and developing tools
to deal with the technical difficulties that arise following this replacement.
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ISF grant 1628/17.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 94 (2020)



1 Introduction

Yao’s XOR Lemma is a fundamental and celebrated result in complexity theory, that is extensively studied
(from various aspects) and has found many applications. See [GNW11] for a survey article.

Definition 1.1 (The XOR function). Given a f : {0, 1}k → {0, 1}, and a number t, we define f⊕t :
{0, 1}t·k → {0, 1}, as follows: Given y ∈ {0, 1}t·k, we view y as (y1, . . . , yt) ∈ ({0, 1}k)t, and define:

f⊕t(y) = f(y1)⊕ . . .⊕ f(yt)

Let Uk denote the uniform distribution on k bit strings. Loosely speaking, Yao’s XOR lemma says that
if a function f is “mildly hard one average” on input X ← Uk, then as t increases, computing f⊕t on input
Y ← Utk, becomes “very hard on average”.

Lemma 1.2 (Yao’s XOR lemma, for poly-size circuits). For every f : {0, 1}k → {0, 1}, and t ≤ poly(k)
such that t = ω(log k):

If, for every poly(k) size circuit C, PrX←Uk [C(X) = f(X)] < 2
3 ,

Then, for every constant c, and every poly(k) size circuit D, PrY←Utk [D(Y ) = f⊕t(Y )] < 1
2 + 1

kc .1

One weakness of Yao’s XOR lemma, is that it cannot be used to conclude a statement in which the
“hardness on average” 1

2 + 1
kc is replaced by 1

2 + 1
kω(1) . This holds, even if the number of repetitions t is

increased from slightly larger than log k (as is the case in Lemma 1.2) to the maximal choice of t = poly(k).
Specifically, the following question is wide open:

Open problem 1.3 (Yao’s XOR lemma for subpolynomial error?). Is it true that for every f : {0, 1}k →
{0, 1}, taking t = ω(log k) (or even the maximal choice of t = poly(k)) it holds that:

If, for every poly(k) size circuit C, PrX←Uk [C(X) = f(X)] < 2
3 ,

Then, for every poly(k) size circuit D, PrY←Utk [D(Y ) = f⊕t(Y )] < 1
2 + 1

kω(1) ,

Another weakness of Yao’s XOR Lemma is that known proofs fail to prove Yao’s XOR lemma when
replacing P/poly with many interesting constant depth circuit classes. An especially frustrating case is the
class AC0[PARITY] of poly-size constant depth circuits over the gates {AND,OR,NOT,PARITY} of unbounded
fan-in. There are known lower bounds showing explicit functions that have hardness 2

3 for AC0[PARITY]

(or even 1
2 − o(1) hardness for circuits of depth d and size 2k

Ω(1/d)
[Raz87, Smo87]) but lower bounds with

hardness 1
2 −

1
k are unknown. This is a twenty five year old barrier that prevents us from “using the hybrid

argument” when constructing pseudorandom generators for AC0[PARITY] (and related classes). This barrier
limits the best known pseudorandom generators for AC0[PARITY] (and related classes) [FSUV13] to very poor
seeds (See [FSUV13] for a discussion of this limitation). Specifically, the following question is wide open:

Open problem 1.4 (Yao’s XOR lemma for constant depth circuits?). LetG be the set of gates {AND,OR,NOT,PARITY}
of unbounded fan-in. Is it true that for every f : {0, 1}k → {0, 1}, taking t = ω(log k) (or even the maximal
choice of t = poly(k)) it holds that:

If, for every poly(k) size, constant-depth circuit C with gates in G, PrX←Uk [C(X) = f(X)] < 2
3 ,

Then, for every poly(k) size, constant-depth circuitD, with gates inG, PrY←Utk [D(Y ) = f⊕t(Y )] < 1
2 + 1

k ,
1Naturally, in order to make this asymptotic statement precise, one needs to consider an infinite sequence of functions {fk} with

growing input length (so that terms like “poly-size”, “ω(log k)”, and “constant” are well defined). We allow ourselves to be imprecise,
as a more general, and quantitatively precise statement of Yao’s XOR lemma is given below in Lemma 1.5.
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1.1 Proofs of Yao’s Lemma as (nonuniform) black-box reductions

Before discussing the best known proofs of Yao’s XOR Lemma, let us state the lemma more precisely, in
a more general and quantitative form. The next formulation is achieved using Impagliazzo’s proof of Yao’s
XOR lemma [Imp95, GNW11] together with the quantitative improvement of Klivans and Servedio [KS03]
of Impagliazzo’s hard-core lemma [Imp95].

Lemma 1.5 (Yao’s XOR lemma, General version). There exist a constant c, and a polynomial p, such that
for every f : {0, 1}k → {0, 1}, every ε, δ > 0, and every t ≥ c · log(1/ε)

δ , setting q = c · log(1/δ)
ε2

, we have that:

If, for every circuit C of size s ≥ p(t, k, q), PrX←Uk [C(X) = f(X)] < 1− δ,

Then, for every circuit D of size s′ = s
q , PrY←Utk [D(Y ) = f⊕t(Y )] < 1

2 + ε.

The special case of Lemma 1.2 is obtained by taking s to be a polynomial in k, and δ = 1
3 . In order

to reduce the number of live parameters, we recommend that the reader focuses on these choices on a first
reading. We point out that s′ (which is the size of D) is smaller by a factor of q = Ω( 1

ε2
), than s (which is the

size of C). This implies that s′ ≤ O(ε2 · s), implying that ε ≥ Ω( 1√
s
), and it is impossible to get ε < 1

s with
current proofs. (This is a more quantitative way to state the phenomenon in open problem 1.3).

All known proofs of Yao’s XOR lemma work by reduction. That is, the proof shows a reduction that trans-
forms a circuit D such that PrY←Utk [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε, into a circuit C such that PrX←Uk [C(X) =
f(X)] ≥ 1 − δ. All known proofs are “nonuniform black-box reductions”, meaning that they provide a re-
duction (namely an oracle circuit Red(·)(x, α) where x is an input, and α is an “advice string”) and the circuit
C is obtained by C(x) = RedD(x, α) where α is an “nonuniform advice string” that may depend on f and
D.2 This is made precise in the next definition.

Definition 1.6 (Nonuniform black-box reduction for Yao’s XOR lemma). Let ε, δ > 0, and let k, t, a be
integers. A (1

2 + ε)→ (1−δ) black-box reduction for Yao’s XOR lemma (with input length k, t repetitions
and advice length a) is an oracle circuit Red(·)(x, α), where x ∈ {0, 1}k and α ∈ {0, 1}a, such that for every
f : {0, 1}k → {0, 1}, the following holds:

For every function D : {0, 1}tk → {0, 1}, such that PrY←Utk [D(Y ) = f⊕t(Y )] ≥ 1
2 + ε,

there exists α ∈ {0, 1}a, such that PrX←Uk [RedD(X,α) = f(X)] ≥ 1− δ.

The version of Yao’s XOR lemma stated in Lemma 1.5, follows by showing the following reduction:

Lemma 1.7 (Known black-box reductions for Yao’s XOR lemma). There exist a constant c, and a polynomial
p, such that for every integer k, every ε, δ > 0 such that 1 − δ > 1

2 + ε, and every t ≥ c · log(1/ε)
δ , there is a

(1
2 + ε)→ (1− δ) black-box reduction Red(·)(x, α) for Yao’s XOR lemma with input length k, t repetitions,

and advice length a such that:

• R makes at most q = c · log(1/δ)
ε2

queries to its oracle.

• R is an oracle circuit of size r = p(t, k, q), (and in particular, a ≤ r).

• R is an oracle circuit of constant depth d over the gates {AND,OR,NOT} of unbounded fan-in and also
uses one majority gate with fan-in q.

2There is a formal connection between “black box hardness amplification” and list-decodable error correcting code [STV01], see
for example the discussion in [SV10, GSV18]. Using this connection, it is known that black-box reductions for Yao’s XOR lemma,
must be nonuniform and use an advice string if 1− δ > 1

2
+ ε and ε < 1

4
.
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In order to understand the limitations that prevent known proofs from solving the aforementioned open
problems, it is instructive to see how Lemma 1.5 follows from Lemma 1.7. Specifically, assume (for contra-
diction) that Lemma 1.5 does not hold and let D be a circuit of size s′ that is violating the conclusion. By
Lemma 1.7, there exists α ∈ {0, 1}a, such that the circuit C(x) = RedD(x, α) computes f(X) with success
1 − δ on X ← Uk. The size of C is bounded by s = r + a + q · s′ ≥ q · s′, and the obtained circuit C has
depth at least d, and needs to compute majority on q bits. Summing up:

• The number of queries q made by the reduction is a lower bound on s
s′ , meaning that s′ ≤ s

q and as the
known reductions have q ≥ 1

ε2
we cannot expect ε < 1√

s
, and cannot solve open problem 1.3.

• The fact that the best known reductions requires a majority gate on q ≥ 1
ε inputs, means that we need

to assume hardness against a class that can perform this computation. For ε = 1/k, Razborov’s lower
bound [Raz87] (see also [OSS19]) shows that for every depth d′, majority on k bits, cannot be computed
by circuits of depth d′ and size 2k

Ω(1/d′)
over the gates {AND,OR,NOT,PARITY}, explaining why current

reductions cannot solve open problem 1.4.

Limitations on black-box reductions. A sequence of works [Vio06, SV10, GR08, AS14, AASY16] culmi-
nating in [GSV18], shows that known black-box reductions for Yao’s XOR lemma must suffer from the limi-
tations above: They require q = Ω( log(1/δ)

ε2
) queries, and require computing majority on input length Ω(1

ε ).3

1.2 Class reductions

On a closer examination, black-box reductions seem to be an overkill for the task of proving Yao’s XOR
lemma. For proving Yao’s XOR lemma, we don’t need Red(·) to succeed given oracle access to every function
D such that PrY←Utk [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε. It is sufficient that Red succeeds only given oracle access
to functions D that are efficiently computable and belong to the class D of circuits with size s′ (if we’re in the
setup of open problem 1.3) and size s′ with constant depth (if we’re in the setup of open problem 1.4).

This motivates a notion of class reduction (suggested for example in [GT07]) in which reductions are
only required to succeed if given oracle access to a function D that belongs to some class D of “efficient
circuits”, and do not need to succeed when given oracle access to a function D that does not belong toD. The
definition of classD reduction below is identical to definition 1.6 with the single exception (that is underlined
for emphasis) being that we only require the reduction to succeed when given oracle access to a function D
from the class D.

Definition 1.8 (Nonuniform class reduction for Yao’s XOR lemma). Let ε, δ > 0 and let k, t, a be integers,
and let D be some class of functions D : {0, 1}tk → {0, 1}. A (1

2 + ε) → (1 − δ) class D reduction for
Yao’s XOR lemma (with input length k, t repetitions and advice length a) is an oracle circuit Red(·)(x, α),
where x ∈ {0, 1}k and α ∈ {0, 1}a, such that for every f : {0, 1}k → {0, 1}, the following holds:

For every function D : {0, 1}tk → {0, 1} in the class D, such that PrY←Utk [D(Y ) = f⊕t(Y )] ≥ 1
2 + ε,

there exists α ∈ {0, 1}a, such that PrX←Uk [RedD(X,α) = f(X)] ≥ 1− δ.

Note that a black-box reduction is a special case of a class reduction where D is the class of all boolean
functions on tk bits. This raises the following questions:

1. Are there reductions in the literature that are class reductions but not black-box reductions?
3More formally, saying that Red(·) “requires computing majority on input length Ω(1/ε)” means that every such reduction Red(·)

can be transformed into a circuit (with no oracle) of roughly the same size and depth as Red(·) for computing the majority function
on inputs of length Ω( 1

ε
).

3



2. Can class reductions circumvent the limitations on black-box reductions and solve open problem 1.3 or
open problem 1.4?

The answer to the first question is affirmative in the sense that there are at least two examples that we
are aware of, where a worst-case to average case amplification is proven by a reduction that is not black-box.
Furthermore, in both cases, the reduction is a class reduction, and there is strong evidence that it cannot be
made black-box.

The first example is a worst-case hardness to average case hardness tradeoff for SAT (with respect to
a distribution sampled in quasipolynomial time) by Shaltiel, Gutfreund and Ta-Shma [GST07] (see also a
related work [Ats06, Gut06, GT07]). The correctness of the reduction of [GST07] relies on the efficiency of
the oracle and the term “class reduction” was suggested by Gutfreund and Ta-Shma [GT07]. It was also argued
in [GT07] that limitations on black-box reductions proven by Bogdanov and Trevisan [BT06] can be extended
to the scenario studied in [GST07], and show that if the class reduction of [GST07] (which is non-adaptive)
could be made also black-box, then co-NP has nondeterministic circuits of quasipolynomial size.

Another example is Hirahara’s recent worst-case to average case reductions for variants of MCSP and
MINKT [Hir18]. These reductions are non-black-box, in the sense that their correctness relies on the ef-
ficiency of their oracle. The aforementioned work of Bogdanov and Trevisan [BT06] shows that if these
reductions can be made black-box, then these problems are in co-NP/poly, which is not known, and is false,
if these problems are NP-complete. See [Hir18] for an elaborate discussion of consequences of the existence
of such black-box reductions.

1.3 Our results: limitations on class reductions for Yao’s XOR lemma

In this paper we give evidence that the answer to the second question above is negative. We extend the afore-
mentioned limitations of [GSV18] on black-box reductions for Yao’s XOR lemma to class reductions for any
D of that contains circuits that have polynomial size and constant depth over the gates {AND,OR,NOT,PARITY}
with unbounded fan-in. To the best of our knowledge, this is the first example of proving limitations on class
reductions in this setup. Our results are stated formally in the next theorem.4

Theorem 1.9 (Limitations on class reductions for Yao’s XOR lemma). There exist constants δ0 > 0, ν > 0,
d0 > 1 and a polynomial p such that: Let Red(·)(x, α) be a (1

2 + ε) → (1 − δ) class D reduction for Yao’s
XOR lemma, with input length k, t repetitions and advice length a. Assume that:

• Red(·) is a size r oracle circuit, that makes at most q queries.

• The class D contains circuits of size p(r) and depth d0 over the gates {AND,OR,NOT,PARITY} of un-
bounded fan-in.

• t, a, 1
ε ,

1
δ ≤ r ≤ 2ν·k and δ ≤ δ0.

Then the following holds:

• Red(·) requires many queries, specifically: q = Ω( log(1/δ)
ε2

).

• Red(·) requires majority, specifically: if in addition to the size restriction on Red, we also have that
Red(·) is an oracle circuit of depth d over a set of gatesG that contains the gates {AND,OR,NOT,PARITY}
of unbounded fan-in, then the majority function over Ω(1

ε ) bits can be computed by a circuit of size
poly(r) and depth O(d) over the set of gates G.

4We remark that any circuit of size r over the gates {AND,OR,NOT,PARITY} with unbounded fan-in, cannot use fan-in larger than
r, and therefore can be simulated by a circuit of size O(r2) over the standard gates {AND,OR,NOT} with bounded fan-in. This allows
us to state our results in a way that captures both circuits of small depth (using gates with unbounded fan-in) and circuits that use the
standard gates with bounded fan-in.
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What kind of reductions are ruled out by this result? Theorem 1.9 achieves exactly the same limitations
on class reductions for Yao’s XOR lemma as the limitations of [GSV18] for black-box reductions. This is
achieved for any classD that contains small circuits with constant depth over the gates {AND,OR,NOT,PARITY}
of unbounded fan-in, which is exactly the classes that come up if one wants to use class reductions to solve
open problems 1.3 and 1.4. This shows that a class reduction cannot circumvent the known limitations on
black-box reductions, and additional ideas are needed for solving open problems 1.3 and 1.4.

More specifically, for the purpose of solving open problem 1.3 one wants a (1
2 + 1

kω(1) ) → 2
3 class D

reduction Red(·) for Yao’s XOR lemma, of size poly(k), for the class D of all circuits of size poly(k). This
is ruled out by our lower bound on the number of queries. For the purpose of solving open problem 1.4 one
wants a (1

2 + 1
k ) → 2

3 class D reduction for Yao’s XOR lemma, of size poly(k) and constant depth over
the gates G = {AND,OR,NOT,PARITY}, for the class D of all circuits of size poly(k) and constant depth
over the gates G. This is ruled out by our results that Red(·) requires majority on inputs of length Ω(k), and
Razborov’s lower bound [Raz87] showing that this cannot be done by circuits of depth d′ and size 2k

Ω(1/d)
.

A potential weakness of our impossibility results, is that they require that the class D has circuits of
size larger than the reduction (although it is allowed that D contains only circuits of smaller depth than the
reduction). This allows a scenario in which for every polynomial p1, there exists a larger polynomial p2 such
that there is a (1

2 + 1
kω(1) ) → 2

3 class Dp1 reduction Redp1 of size p2(k) for the class Dp1 of circuits of size
p1(k) (but not for the class of circuits of size p(p2(k)) where p is the polynomial in Theorem 1.9). This is
sufficient for solving open problem 1.3 and is not ruled out by our impossibility results.

An optimistic view is that this may point us to the kind of reductions we need to design, in order to
solve the aforementioned open problems. We remark however that the aforementioned reduction by Hirahara
[Hir18] does not need to assume that the oracle is weaker than the reduction. (The reduction of [GST07]
involves a more complicated scenario where there is also a third entity which is the samplable distribution,
and so, it is arguable whether the reduction is more powerful than the oracle).

Theorem 1.9 is weaker than the results of [GSV18] in the sense that the limitations of [GSV18] apply
not only to Yao’s XOR lemma, but to any hardness amplification technique. More precisely, in the results of
[GSV18] one can replace f⊕t by any other function f ′ over n = 2o(k) bits, with the same limitations. Our
approach cannot give such a general result, but can be extended as follows:

Extension to any efficient hardness amplification construction. Our results immediately extend to any
function f ′ over n = 2o(k) bits such that f ′ can be efficiently computed given access to f . More precisely,
in Theorem 1.9 one can replace occurrences of the parameter t by n, and the theorem extends to any func-
tion f ′ such that there exists an oracle circuit Con(·) of size poly(r), and constant depth over the gates
{AND,OR,NOT,PARITY} of unbounded fan-in, such that f ′ = Conf . Moreover, if we omit the restriction
that Con(·) has constant depth, then the theorem holds with respect to any class D that contains circuits of
size p(r).

Extension to hardness amplification based on sufficiently explicit linear codes. Using ideas from [Vio06],
our results also extend to the case of δ = 2−2k (which captures worst-case to average case hardness amplifi-
cation) for functions f ′ over n = 2o(k) bits, such that:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y),

where the sum is taken in the field F2, and g : {0, 1}k×{0, 1}n → {0, 1} can be computed by circuits of size
poly(r) and depth d over the set G of gates.

This definition of f ′ corresponds to “hardness amplification by a linear map”. More specifically, we can
view g as a matrix A of order 2k × 2n over F2 by Ax,y = g(x, y), and view the truth tables of the functions
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f, f ′ as vectors over F2 of dimension 2k, 2n, respectively. In this interpretation, the definition of f ′ above,
says that f ′ = f ·A, for a matrix A in which the entry Ax,y can be efficiently computed given x, y.

Many worst-case to average-case hardness amplification results in the literature choose f ′ so that the truth
table f ′ is obtained by applying an error correcting code on the truth table of f . (It was observed in [STV01]
that there is a formal connection between black-box reductions for hardness amplification, and list-decodable
error correcting codes, see for example [GSV18] for a discussion). Typical choices of this error correcting
code are linear codes (most commonly Reed-Muller concatenated with Hadamard) and our results apply to
this scenario, with the weaker conclusion that q = Ω( log r

ε2
), and the same conclusion for the case of majority.

Perspective. Limitations for black-box reductions are extensively studied in various settings in complexity
theory and cryptography. In order to prove impossibility results on black-box reduction, it is sufficient to
show the existence of an oracle D (that does not need to be efficient) on which the reduction cannot succeed.

Many impossibility results and limitations in the literature strongly utilize the ability to choose an oracle
D that is not efficient. One notable example is the aforementioned results of Bogdanov and Trevisan [BT06]
(that build on earlier work of Feigenbaum and Fortnow [FF93]). Indeed, this is why these limitations do not
apply to class reductions like the aforementioned results [GST07, Hir18].

This work puts an emphasis on whether or not the oracle D that one designs when showing a black-box
impossibility result, can be made efficient, and demonstrates that achieving this, has the additional benefit of
also ruling out class reductions.

1.4 Some more related work

It is beyond the scope of this paper to survey the vast literature on Yao’s XOR lemma and hardness amplifi-
cation. The reader is referred to [GNW11] for a survey on Yao’s XOR lemma, and to [Vio06, SV10, GSV18]
for detailed discussions on the more general problem hardness amplification.

A significant advantage of Yao’s XOR lemma (over some other suggested methods of hardness ampli-
fication) is that the “construction” f ′ = f⊕t can be computed very efficiently, when given oracle access to
f . A line of work (that is orthogonal to studying the complexity of reductions for hardness amplification)
is interested in the complexity of constructions yielding hardness amplification. This line of work is mostly
interested in starting from worst-case hard functions (which correspond to δ < 2−k) and aims to design (or
prove impossibility results for) efficient constructions Con(·) for which one can prove that if f has hardness
1− δ, then f ′ = Conf has hardness 1

2 + ε. (See e.g., [TV07, Vio03, LTW08, GV08] for further discussion).
In this orthogonal line of work, there are examples of constructions which are non-black-box, and utilize

specific properties of the function f (for example that f ∈ NP or that f is a low degree polynomial). This is a
different form of “non-black-box” than the one studied in this paper, and it is interesting to combine the two
orthogonal directions.

There is a large body of work on proving black-box impossibility results in cryptography. This study was
initiated by Impagliazzo and Rufich [IR89] and is concerned both with issues that are related to black-box
constructions and to black-box reductions. See for example the discussion in Reingold, Trevisan and Vadhan
[RTV04] for a taxonomy of various notions.

2 Technique and a road map for proof

Our results are obtained by carefully examining the argument of the black-box impossibility result of [GSV18],
replacing the inefficient oracle with an efficient one, and handling the technical difficulties arising from this
modification.

In this section we survey our technique, and give a roadmap of the proof of Theorem 1.9. We assume the
setup of Theorem 1.9. Specifically, let Red(·)(x, α) be a (1

2 + ε)→ (1− δ) class D reduction for Yao’s XOR
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lemma, with input length k, t repetitions and advice length a, which satisfies the requirements of the theorem.
Let r be the size of Red and let d (which is not necessarily a constant) be the depth of Red. Our goal is to
show that Red(·) requires many queries, and that Red(·) requires majority.

Let f : {0, 1}k → {0, 1} be some function that we choose later, and let n = tk be the input length of f⊕t.
We start by surveying the approach of of the previous papers (which only handle black-box reductions rather
than class reductions).

2.1 The approach of [Vio06, SV10]

We first introduce the following notation.

Definition 2.1 (Random sequences/functions). For a number 0 ≤ p ≤ 1, and an integer q, we define a
distribution Noiseqp over {0, 1}q which consists of q i.i.d. bit variables Noiseqp(1), . . . ,Noisepq(q) where
each of them has probability p to be one. This notation also allows us to view Noiseqp as a distribution over
functions from [q] to {0, 1}.

Following [Vio06, SV10] (and as done in later works [GR08, GSV18]) our plan is to show that a (1
2 +ε)→

(1 − δ) reduction Red(·)(x, α) that makes q queries, can be transformed into a (distribution) over circuits
T : {0, 1}q → {0, 1} with no oracle (that have roughly the same size and depth as Red) that distinguishes
Noiseq1/2−2ε from Noiseq1/2. We will prove the following lemma (which we call the “zoom lemma”).

Lemma 2.2 (Zoom lemma). Under the assumption of Theorem 1.9, for every x ∈ {0, 1}k, there exists a
circuit Tx over q bits, with size poly(r) and depth O(d) over the set of gates G, such that:

• PrX←Uk [TX(Noiseq1/2−2ε) = 1] ≥ 1− 2δ.

• PrX←Uk [TX(Noiseq1/2) = 1] ≤ 1
2 + 1

200 .

Shaltiel and Viola [SV10] (see also [LSS+19]) showed that Theorem 1.9 follows from Lemma 2.2. This
is formally stated and explained in Section 5.5

In the remainder of this section, we prove Lemma 2.2 modulo some other lemmas and claims, that are
stated in this section, and proven in later sections of the paper.

2.2 The oracle used for black-box reductions

Lemmas that are similar to the zoom lemma are at the heart of earlier results [SV10, GR08, GSV18] on
black-box reductions, and we would like to imitate the argument working with class reductions. Let us start
by explaining the oracle used in previous works.

Specifically, let us set N = 2n and identify the set [N ] with the set {0, 1}n (so that we can think of
NoiseNp as a function NoiseNp : {0, 1}n → {0, 1}). We consider the following two (distributions over)
oracles D : {0, 1}n → {0, 1}.

• D1/2−2ε(y) = f⊕t(y)⊕ NoiseN1/2−2ε(y)

• D1/2(y) = f⊕t(y)⊕ NoiseN1/2(y).
5On an intuitive level, the connection between the consequence of the zoom lemma and the consequence of Theorem 1.9 is that

the “best way” to distinguish Noiseq1/2−2ε from Noiseq1/2 is to check whether the fraction of ones is below or above 1
2
− ε. This is

similar in spirit to majority over inputs of length Ω(1/ε), and it can be shown that majority on length Ω(1/ε) can be reduced to this
task. A Chernoff bound shows that q = O( log(1/δ)

ε2
) is sufficient to distinguish between the two distributions with confidence 1− δ,

and it can be shown that such a confidence requires q = Ω( log(1/δ)

ε2
).
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Definition 2.3. We say that a function D : {0, 1}n → {0, 1} is useful, if there exists an α ∈ {0, 1}a such
that PrX←Uk [RedD(X,α) = f⊕t(X)] ≥ 1− δ.

In the oracleD1/2, the noise NoiseN1/2(y) is uniform and completely masks out the information in f⊕t(y).
Intuitively, this means that the oracle D1/2 isn’t useful for the reduction. On the other hand, a Chernoff bound
shows that w.h.p. over choosing h← NoiseN1/2−2ε, we have that | {y ∈ {0, 1}n : h(y) = 1} | ≤ (1

2 − ε) ·N .
This gives that w.h.p. over choosing D ← D1/2−2ε, we have that PrY←Un [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε.
If Red is a (1

2 + ε)→ (1− δ) black-box reduction, then by definition, this implies that every such good D
is useful. The proof of [Vio06, SV10] then proceeds to transform a black-box reduction Red into the circuits
Tx required from Lemma 2.2. We will elaborate on this argument shortly.

Our plan is to imitate this argument when Red is not necessarily a black-box reduction, and is only
guaranteed to be a class reduction. Using this weaker assumption, we are not guaranteed that w.h.p. D ←
D1/2−2ε is useful. This is because we are not guaranteed that w.h.p. D ← D1/2−2ε belongs to the class D,
and the reduction does not need to succeed if D 6∈ D.

2.3 Using limited independence to obtain efficient oracles

We would like to make the oracle D1/2−2ε efficiently computable by small circuits, so that it belongs to D.
This presents two difficulties:

1. f⊕t is harder to compute than f (and f is assumed to be hard).

2. NoiseN1/2−2ε is a random function, and w.h.p. requires circuits of exponential size.

In order to circumvent the first problem we use an idea from [Vio06] and will choose the function f :
{0, 1}k → {0, 1} in the following way:

Lemma 2.4. There exist constants c1 such that for every constant c2, there exists a function f : {0, 1}k →
{0, 1} such that:

• For every circuit B : {0, 1}k → {0, 1} of size rc2 , PrX←Uk [B(X) = f(X)] ≤ 1
2 + 1

200 .

• f can be computed by a DNF of size rc1·c2 .

Proof. By a standard counting argument, there exists a constant c1 such that for every constant c2, setting
m = c1 · c2 · log r, there exists a function g : {0, 1}m → {0, 1} such that for every circuit B of size
2m/c1 = rc2 , PrX←Um [B(X) = g(X)] ≤ 1

2 + 1
200 . By choosing ν > 0 to be sufficiently small as a function

of c2, we can get thatm ≤ k. The function f : {0, 1}k → {0, 1} is the function that given x ∈ {0, 1}k applies
g on the first m bits of x.

We choose f by the lemma, where c2 is a constant that we choose later. With this choice we have that:

Corollary 2.5. The function f⊕t can be computed by circuits of size poly(r) and constant depth over the
gates {AND,OR,NOT,PARITY} of unbounded fan-in.

Remark 2.6 (Replacing f⊕t by a different target function f ′). Corollary 2.5 is the only place in the proof
where we use specific properties of f⊕t. The corollary holds for every function f ′ : {0, 1}n → {0, 1} for which
there exists an oracle circuit Con(·) of size poly(r) and constant depth over the gates {AND,OR,NOT,PARITY}
of unbounded fan-in, such that f ′ = Conf . This means that our results hold for every such function f ′.
Furthermore, if Con does not have constant depth, then Corollary 2.5 gives a size bound on f ′, and this is
sufficient to show the lower bound on number of queries with respect to the class D of circuits of size p(r).
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Corollary 2.5 takes care of the first difficulty above. It says that f⊕t can be computed by circuits in the
classD. We would like to replace NoiseN1/2−2ε by a (distribution) over efficient circuits inD. Our approach is
to replace NoiseN1/2−2ε (which consists of N independent bits) by a distribution which is `-wise independent,
for ` = poly(r).

Definition 2.7 (`-wise independence with bias p). A sequence R1, . . . , RN of bit random variables is `-wise
independent with bias p, if R1, . . . , RN are `-wise independent, and for every i ∈ [N ], Pr[Ri = 1] = p.

We will rely on the following theorem by Gutfreund and Viola [GV04] (which is usually stated for p = 1
2 but

immediately extends to every rational p = a
b as stated below:)

Theorem 2.8. [GV04] Let N = 2n. For every integers ` ≤ N and a ≤ b, setting p = a
b , there exists

a distribution H`
p over circuits h : {0, 1}n → {0, 1} of size poly(n, `, b) and depth O(1) (over the gates

{AND,OR,NOT,PARITY} of unbounded fan-in) such that the distribution obtained by choosing h ← H`
p and

considering (h(1), . . . , h(N)), is `-wise independent with bias p.6

We will assume w.l.o.g. that 1
ε is an integer, and set ` = p0(r) for a polynomial p0 that we will specify

later. We define the following two (distributions over) oracles D : {0, 1}n → {0, 1}, in which we replace the
independent bits of NoiseN by `-wise independent bits:7

• D`
1/2−2ε(y) = f⊕t(y)⊕H`

1/2−2ε(y)

• D`
1/2(y) = f⊕t(y)⊕H`

1/2(y).

We now have that every D in the support of D`
1/2−2ε has size rc1·c2 + poly(n, `, 1/ε) which can be

bounded by p(r) for some polynomial p. Furthermore, each such D has constant depth over the set of gates
{AND,OR,NOT,PARITY}. This gives that every such D is sufficiently efficient, and belongs to the class D.

This will allow us to imitate the argument for black box reductions. Specifically, by Chebyshev’s inequal-
ity, with probability at least 1− 1

ε22n
≥ 1

2 over choosing h← H`
1/2−2ε, we have that | {y ∈ {0, 1}n : h(y) = 1} | ≤

(1
2 − ε) · N . This means that with probability at least half over choosing D ← D`

1/2−2ε, we have that
PrY←Un [D(Y ) = f⊕t(Y )] ≥ 1

2 + ε. As Red is a (1
2 + ε)→ (1− δ) class D reduction, and every such good

D belongs to D, we get that:

Claim 2.9. Prh←H`
1/2−2ε

[(f⊕t ⊕ h) is useful] ≥ 1
2 .

2.4 A more general fixed set lemma

We will now proceed in a similar manner to [SV10, GSV18]. Specifically, let Advice be a function that given
a useful D, produces an advice string α such that PrX←Uk [RedD(x, α) = f⊕t(y)] ≥ 1− δ (such an α exists
by definition). For every α ∈ {0, 1}a, let Aα be the event

Aα =
{
h : {0, 1}n → {0, 1} : (f⊕t ⊕ h) is useful, and Advice(f⊕t ⊕ h) = α

}
.

By averaging over the 2a advice strings we obtain that:
6We remark that the result of Gutfreund and Viola [GV04] is significantly stronger. More specifically, for our purposes it suffices

that there is a family H of `-wise independent hash functions h : {0, 1}n → {0, 1}b, such that every h can be computed by the type
of circuits claimed above. The result of Gutfreund and Viola gives a stronger bound on the size of H , and also shows that there is a
uniform circuit that given the “index of h” and an input x, computes h(x).

7Replacing fully independent oracles by limited independence oracles, and arguing that black-box procedures with few queries
cannot tell the difference, is a common approach in proving black-box impossibility results, originating from the work of Goldreich
and Krawczyk [GK96]. It should be noted that even when ignoring the issue of class reductions, and focusing on black-box reductions,
we are considering reductions which are nonuniform. Nonuniform reductions get an advice string α that depends on the choice of the
oracle. Loosely speaking, this may give them information about the “seed” used to generate the limited independence oracle. This
creates technical difficulties that do not occur when reductions are uniform.
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Claim 2.10. There exists α′ ∈ {0, 1}a s.t. Prh←H`
1/2−2ε

[h ∈ Aα′ ] ≥ 1
2 · 2

−a = 2−(a+1).

Let R = H`
1/2−2ε and Z = (R|R ∈ Aα′), following [SV10, GSV18] we would like to argue that (in

some sense to be explained below) for every x ∈ {0, 1}k, Red(·)(x, α′) does not distinguish between the
oracle f⊕t ⊕ Z (in which bits can be correlated in complicated ways) and the oracle f⊕t ⊕ R (in which
bits are `-wise independent). Note that for every x ∈ {0, 1}k, and h : {0, 1}n → {0, 1}, we can think of
Redf

⊕t⊕h(x, α′) as a decision tree (that depends on x) that makes q queries to (the truth table of) h.
With this intuition in mind, we will prove the following lemma (which generalizes a “fixed set lemma”

proven in [GSV18] for the special case where the random variables R1, . . . , RN are independent).

Lemma 2.11 (A more general fixed set lemma). Let N, a and q be integers, and let R = (R1, . . . , RN ) be
some distribution, let A ⊆ {0, 1}N be an event such that Pr[R ∈ A] ≥ 2−a, and let Z = (R|R ∈ A). For
every η > 0, there exists a set B ⊆ [N ] of size b ≤ O(a · q/η), and v ∈ {0, 1}B in the support of ZB , such
that for R′ = (R|RB = v) and Z ′ = (Z|ZB = v) = (R|RB = v,R ∈ A), and every q-query decision tree
P , P (R′) and P (Z ′) are η-close.8

Loosely speaking, the proof works by showing that if there exists a q-query decision tree that distinguishes
R from Z, then by fixing the variables on some path of that tree, one obtains a distribution R′ such that
Pr[R′ ∈ A] ≥ Pr[R ∈ A] · (1 + η). We apply this argument iteratively (using R′ as R) until there does not
exist a q query decision tree that distinguishesR from Z. In each iteration, Pr[R ∈ A] increases by a factor of
1 + η, and as this probability cannot be larger than one, this process has to stop after O(a/η) steps. By then,
we have fixed no more than O(qa/η) of the variables. The full proof of Lemma 2.11 appears in Section 4.9

We now continue with the proof of Lemma 2.2. We apply Lemma 2.11 onR = H`
1/2−2ε and the eventA′α,

using η = δ, and let Z,R′, Z ′, B, v and b be as in the lemma. It follows that for every x ∈ {0, 1}k, the random
variables Redf

⊕t⊕R′(x, α′) and Redf
⊕t⊕Z′(x, α′) are δ-close. As this holds for every fixed x ∈ {0, 1}k, this

also holds for an independently chosen X ← Uk, and we obtain that:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ Pr[Redf

⊕t⊕Z′(X,α′) = f(X)]− δ.

The support of Z ′ is contained in Aα′ , and so, for every h in the support of Z ′, (f⊕t ⊕ h) is useful (with the
advice string α′) and we get that:

Pr
X←Uk

[Redf
⊕t⊕Z′(X,α′) = f(X)] ≥ 1− δ. (1)

Combining this with the previous inequality, gives that:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ 1− 2δ. (2)

The advantage of (2) over (1) is that we have replaced Z ′ (in which the bits of Z ′([N ] \B) can be correlated
in complicated ways) with R′, where R′([N ] \ B) is (` − b)-wise independent. This will allow us to relate
this oracle to Noiseq1/2−2ε and prove the zoom lemma.

8Two distributions X,Y over the same domain S are η-close if for every A ⊂ S, |Pr[X ∈ A]− Pr[Y ∈ A]| ≤ η.
9The proof of the fixed set lemma given in [GSV18] also uses an iterative argument: It shows that the existence of a q-query

decision tree gives rise to a new distribution Z where the entropy of Z is increased. It is then argued that the iterative process has to
stop before (as the entropy of Z is upper bounded by N ). This limits the earlier proofs to distributions R where Z = (R|R ∈ A) has
very high entropy, which isn’t the case for our choice of oracle.
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2.5 Constructing the circuits for the zoom lemma

In order to construct the circuits required for the zoom lemma, we define the following oracle circuit.

Definition 2.12. We define an oracle circuit E(·)(x) as follows: On input x and oracle h, Eh(x) simulates
Red(·)(x, α′). Whenever Red makes a query y to its oracle, R acts as follows: if y 6∈ B, then R makes the
query y to h, and returns f⊕t(y)⊕ h(y) to Red. If y ∈ B, then R returns f⊕t(y)⊕ v(y) to Red. The output
of R is the output of Red at the end of this simulation.

With this definition, it is possible to show that:

Lemma 2.13. By choosing the constant c2 and the polynomial p0 to be sufficiently large, we get that:

• Pr[E
Hq

1/2−2ε(X) = f(X)] ≥ 1− 2δ.

• Pr[E
Hq

1/2(X) = f(X)] ≤ 1
2 + 1

200 .

• For every x ∈ {0, 1}k, there exists a circuit Tx : {0, 1}q → {0, 1} of size poly(r) and depth O(d) over
the gates G, such that for every 0 ≤ p ≤ 1, Tx(Noiseqp) = EH

q
p (x).

We note that this lemma immediately implies Lemma 2.2. The proof of Lemma 2.13 appears in Section 3, and
is similar in spirit to earlier work [SV10, GR08, GSV18]. It is in fact significantly simpler, as in this paper,
we have the additional advantage that f⊕t has circuits of size poly(r) and constant depth.

Organization of the paper

We prove Lemma 2.13 in Section 3. In Section 4 we prove the more general fixed set lemma (that is Lemma
2.11). In Section 5 we state and survey the results of [SV10] showing that the zoom lemma implies the main
theorem. In Section 6 we explain how to extend the argument to sufficiently explicit linear codes.

3 Proof of Lemma 2.13

In this section we prove Lemma 2.13. We start by proving the first item. Note that b = O(qa/δ) is bounded by
some polynomial in r. We are allowed to choose the polynomial p0 to be sufficiently large so that ` = p0(r)
satisfies (` − b) ≥ q. This gives that the N − b coordinates of R′([N ] \ B) are (` − b)-wise independent
(becauseR′ was obtained by fixing b indices ofR which is `-wise independent). The fact thatR′([N ]\B) are
q-wise independent, and that E answers queries in B using v, gives that for every x ∈ {0, 1}k, the q queries
made by EH

q
1/2−2ε(x) are distributed exactly like the queries of Redf

⊕t⊕R′(x, α′), meaning that:

Pr[E
Hq

1/2−2ε(x) = f(x)] = Pr[Redf
⊕t⊕R′(x, α′) = f(x)].

This immediately means that for an independent X ← Uk:

Pr[E
Hq

1/2−2ε(X) = f(X)] = Pr[Redf
⊕t⊕R′(X,α′) = f(X)].

We have already seen in (2) that:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ 1− 2δ,

and this gives the first item.
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For the second item, we note that if EH
q
1/2 makes a query y 6∈ B, then it obtains a uniform coin, and the

coins obtained on different queries are independent. Recall that on queries y ∈ B, E answers the queries
without consulting the oracle. This means that we can simulate EH

q
1/2(x) by a randomized circuit C̄ that on

input x, simulates E and answers queries y 6∈ B by random coins. It follows that for every x ∈ {0, 1}k:

Pr[E
Hq

1/2(x) = f(x)] = Pr[C̄(x) = f(x)].

This immediately means that for an independent X ← Uk:

Pr[E
Hq

1/2(X) = f(X)] = Pr[C̄(X) = f(X)].

There exists some fixing for the random coins of C̄ such that the obtained (deterministic) circuit C satisfies
Pr[C(X) = f(X)] ≥ Pr[C̄(X) = f(X)]. The circuit C is hardwired with this choice of random coins,
and with α′, B, v, and f⊕t(B). (A crucial observations is that C does not need to compute f⊕t for y 6∈ B).
Overall, this is a circuit of size rc for some constant c, and by choosing the constant c2 from to be a larger
constant, and using Lemma 2.4, we have that:

Pr[E
Hq

1/2(X) = f(X)] ≤ Pr[C(X) = f(X)] ≤ 1

2
+

1

200
.

This proves the second item.
For the third item, we note (once again) that for every p, and for every x ∈ {0, 1}k, the distribution of

the q answers that EH
q
p obtains from its oracle is distributed like Noiseqp. This means that for every x, we

can construct a circuit Tx that on input Noiseqp simulates EH
q
p (x), using its i’th input to answer the i’th query

of E. The circuit Tx is hardwired with α′, B and v. Unlike the circuit C from the second item, Tx needs to
compute f⊕t on each of the q queries. This can be done using Corollary 2.5. Overall, Tx is a circuit of size
poly(r) (this time the polynomial is larger than rc2) and depth O(d) (because on every oracle call of Red, Tx
may have to compute f⊕t (which takes constant depth according to Corollary 2.5).10

4 The fixed set lemma for `-wise independence

In this section we prove Lemma 2.11. The proof will iteratively applying the following lemma.

Lemma 4.1. Let R = (R1, . . . , RN ) be a distribution, let A ⊆ {0, 1}N be an event, and let Z = (R|R ∈ A).
If there exists a q-query decision tree P such that |Pr[P (R) = 1] − Pr[P (Z) = 1]| > η then there exists
Q ⊂ [N ] of size q and v ∈ {0, 1}Q in the support of ZQ, such that

Pr[R ∈ A|R(Q) = v] > (1 + η) · Pr[R ∈ A].

Proof. Let P be a q-query decision tree, and assume w.l.o.g. (by complementing P if necessary) that
Pr[P (Z) = 1] − Pr[P (R) = 1] > η. A path in the decision tree corresponds to a subset Q ⊂ [N ]

10Our proof of Lemma 2.13 relies on the fact that f⊕t has small constant depth circuits. This allows us to simplify the argument
used by some of the previous work [SV10, GR08, GSV18] which wasn’t allowed to assume that the target function f ′ = f⊕t can
be computed by a small constant depth circuit. The proofs in [SV10, GR08, GSV18] need to resort to different arguments (and this
creates additional difficulties if Red makes adaptive calls to its oracle, meaning that the queries that Red(·)(x, α′) makes are not a
function of x and α′, and may also depend on previous answers). However, using a clever hybrid argument of [GR08] and additional
ideas explained in [GSV18], it is possible to conclude that Tx has depth O(d) without relying on the fact that f ′ is computable by
constant depth circuits. This argument allows choosing f ′ where f ′ = Conf for an oracle circuit Con that has size poly(r), but
does not necessarily has constant depth, and this gives the aforementioned extension of Theorem 1.9 to this setup, which now holds
for every class D that contains circuits of size poly(r).
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of the q variables queried on the path, and a string v ∈ {0, 1}q of the answers. For every such path, let
pathQ,v : {0, 1}N → {0, 1} be the function that evaluates to 1 on input r = (r1, . . . , rN ) if r(Q) = v (mean-
ing that the tree P takes the path (Q, v) on input r). Let S be the set of all pairs (Q, v) corresponding to
paths of P that answer 1. The path taken by a decision tree is unique, and therefore, for any distribution R on
{0, 1}N , we have that:

Pr[P (R) = 1] =
∑

(Q,v)∈S

Pr[pathQ,v(R) = 1].

Claim 4.2. There exists a path (Q, v) ∈ S such that:

Pr[pathQ,v(Z) = 1] > (1 + η) · Pr[pathQ,v(R) = 1].

Proof. (of claim)
This is because otherwise:

Pr[P (Z) = 1] =
∑

(Q,v)∈S

Pr[pathQ,v(Z) = 1]

≤ (1 + η) ·
∑

(Q,v)∈S

Pr[pathQ,v(R) = 1]

= (1 + η) · Pr[P (R) = 1]

≤ Pr[P (R) = 1] + η.

In particular, the event {R(Q) = v} occurs with positive probability, and it follows that:

Pr[R ∈ A|R(Q) = v] =
Pr[R ∈ A ∩R(Q) = v]

Pr[R(Q) = v]

=
Pr[R ∈ A] · Pr[R(Q) = v|R ∈ A]

Pr[pathQ,v(R) = 1]

=
Pr[R ∈ A] · Pr[Z(Q) = v]

Pr[pathQ,v(R) = 1]

=
Pr[R ∈ A] · Pr[pathQ,v(Z) = 1]

Pr[pathQ,v(R) = 1]

> (1 + η) · Pr[R ∈ A].

We are now ready to prove Lemma 2.11.

Proof. (of Lemma 2.11) We consider the following iterative process: At step i, we have:

• A distribution R(i) over {0, 1}N .

• A set B(i) ⊆ [N ].

• v(i) ∈ {0, 1}B(i)
.

We will assume that the following invariant is satisfied:

• B(i) is of size i · q.
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• Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i.

• R(i)(B(i)) = v(i) (with probability one).

Note that the assumption in the lemma fulfills this invariant for i = 0 with R(0) = R. and B(0) = ∅.
At step i, we define R̄ = R(i)([N ]\B(i)). AsR(i) is fixed onB(i), we can think ofA as an event that only

observes the indices in [N ] \B(i). More formally, there is an event Ā ⊆ {0, 1}[N ]\B(i)
such that R(i) ∈ A iff

R̄ ∈ Ā, and
Pr[R̄ ∈ Ā] = Pr[R(i) ∈ A] ≥ 2−a · (1 + η)i.

Let Z̄ = (R̄|R̄ ∈ Ā). If the conclusion of Lemma 2.11 does not hold with respect to B(i), v(i), then there
exists a q-query decision tree P that distinguishes R(i) from (R(i)|R(i) ∈ A), with advantage η, and as the
two distributions agree on the queries in B(i), we conclude that P distinguishes R̄ from Z̄ with the same
advanatge. We apply Lemma 4.1 on R̄ and Ā, and conclude that there exists Q ⊆ [N ] \B(i) and v ∈ {0, 1}Q
such that

Pr[R̄ ∈ Ā|R̄(Q) = v] > (1 + η) · Pr[R̄ ∈ Ā] ≥ 2−a · (1 + η)i+1.

We set:

• B(i+1) = B(i) ∪Q.

• v(i+1) to be the “concatenation of v(i) and v”. More precisely, for y ∈ B(i), v(i+1)
y = v

(i)
y and for

y ∈ Q, v(i+1)
y = vy.

• R(i+1) = (R(i)|R(i)(Q) = v). (Note that by definition B(i) ∩Q = ∅).

We now observe that the invariant is maintained in step i+ 1. Specifically:

• |B(i+1)| = |B(i)|+ q = i · q + q = (i+ 1) · q.

• Pr[R(i+1) ∈ A] = Pr[R(i) ∈ A|R(i)(Q) = v] = Pr[R̄ ∈ Ā|R̄(Q) = v] ≥ 2−a · (1 + η)i+1.

• By definition, R(i+1)(B(i+1)) = v(i+1) with probability one.

Therefore, if this process fails to deliver the lemma after i steps, then the invariant is maintained at the end of
step i, and in particular, Pr[R(i) ∈ A] ≥ 2−a·(1+η)i. However, this is impossible for i > a

log(1+η) = Θ(a/η),
and so, this process has to deliver the lemma within this number of steps. We obtain that the lemma follows
with b = |B| ≤ O( qaη ).

5 Showing that the main theorem follows from the zoom lemma

In this section we show that Theorem 1.9 follows from Lemma 2.2. This follows by the earlier work of
Shaltiel and Viola [SV10] which we now explain.

5.1 Consequences distinguishing noise 1
2

from (1
2
− 2ε)

The next lemma shows that distinguishing between Noiseq1/2−2ε and Noiseq1/2 requires many queries.

Lemma 5.1 ([Vio06, SV10]). For every ε, δ > 0, such that δ < 0.4, if T : {0, 1}q → {0, 1} satisfies:

• Pr[T (Noiseq1/2−2ε) = 1] ≥ 1− δ.

• Pr[T (Noiseq1/2) = 1] ≤ 0.51.

Then, q = Ω(
log 1

δ
ε ).
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The next lemma essentilly shows that distinguishing between Noiseq1/2−2ε and Noiseq1/2 requires majority
on Ω(1/ε) bits. A technicality is that for this conclusion it is not sufficient to distinguish Noiseq1/2−2ε from
Noiseq1/2, and one needs circuits that distinguish Noiseq

1/2− 2
j

from Noiseq1/2 for every integer j between 1

and log(1/ε). This complication is in some sense necessary (see discussion in [SV10]).

Lemma 5.2 ([Vio06, SV10]). For every ε, δ > 0, such that δ < 0.4, and 1
ε is an integer. If T1, . . . , T 1

ε
are

circuits over q bits, with size s ≥ q and depth d (over some set of gates G that includes the standard set
{AND,OR,NOT} with unbounded fan-in) and for every j ∈ [1

ε ], we have that:

• Pr[Tj(Noiseq
1/2− 2

j

) = 1] ≥ 1− δ.

• Pr[Tj(Noiseq1/2) = 1] ≤ 0.51.

Then, there exists a circuit A that computes the majority function over Ω(1
ε ) bits, and A has size s · poly(1

ε )
and depth d+O(1) over the same set of gates G.

5.2 Finishing up

We now have have all the tools to prove that Theorem 1.9 follows from Lemma 2.2. We will assume w.l.o.g.
that 1

ε is an integer. We first observe that a (1
2 + ε)→ (1− δ) class D reduction for Yao’s XOR lemma, is in

particular a (1
2 + 1

j )→ (1− δ) class D reduction for Yao’s XOR lemma, for every j ∈ [1
ε ].

This means that for every j ∈ [1
ε ], we can apply Lemma 2.2 choosing the parameter ε to be ε = 1

j , and for

each such j and x ∈ {0, 1}k we obtain a circuit T jx over q bits with size poly(r) and depth O(d) over the set
of gates G such that:

• PrX←Uk [T jX(Noiseq
1/2− 2

j

) = 1] ≥ 1− 2δ.

• PrX←Uk [T jX(Noiseq1/2) = 1] ≤ 1
2 + 1

200 .

Applying Markov’s inequality to the second item of the lemma, we obtain that there exists a constant
β > 0 such that for every j, for a β fraction of x ∈ {0, 1}k,

Pr[T jx(Noiseq1/2) = 1] ≤ 0.51.

Applying Markov’s inequality to the first item of the lemma, we obtain that for every j, for a 1 − β/2
fraction of x ∈ {0, 1}k,

Pr[T jx(Noiseq
1/2− 2

j

) = 1] ≤ 1− 4 · δ
β
≤ 1− 4 · δ0

β
.

Together, this gives that for every j, there exists x ∈ {0, 1}k that satisfies both inequalities. Theorem 1.9
now follows directly from Lemma 5.1 and Lemma 5.2, by choosing the constant δ0 > 0 to be sufficiently
small.11

11The argument above is wasteful, and leads to a rather small constant δ0 > 0. We remark that with a more careful argument, we
could have chosen δ0 to be any constant smaller than 1

2
, and even allow it to approach 1

2
. More specifically, a more careful analysis

can allow δ0 = 1
2
−O(log(1/ε)).
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6 Extending the argument to sufficiently explicit linear codes

We now prove the extension of our results to sufficiently explicit linear codes which is stated in Section 1.3.
More specifically, we will prove a version of Theorem 1.9 that assumes that δ = 2−2k and replace replace
f⊕t by a function f ′ : {0, 1}n → {0, 1} defined by:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y),

where the sum is taken in the field F2, and g : {0, 1}k×{0, 1}n → {0, 1} can be computed by circuits of size
poly(r) and depth d over the set G of gates.

This argument is based on a trick by Viola [Vio06] that we can incorporate into our framework. We will
modify the proof of Lemma 2.2 so that it holds in this setting, the modified version of Theorem 1.9 will follow
from Lemma 2.2 just as before.

We start by replacing the function f of Lemma 2.4 with a sightly different function:

Lemma 6.1. There exist constants c1 such that for every constant c2, there exists a function f : {0, 1}k →
{0, 1} such that there exists m ≤ c1 · c2 · log r such that:

• For every circuitB : {0, 1}k → {0, 1} of size rc2 , PrX←Um [B(X ◦0k−m) = f(X ◦0k−m)] ≤ 1
2 + 1

200 .

• f can be computed by a DNF of size rc1·c2 .

Proof. We repeat the proof of Lemma 2.4, but this time we take f(x) to be the following function: Let x′

denote the first m bits of x and x′′ denote the remaining k−m bits. We define f(x) to be g(x′) if x′′ = 0k−m

and zero otherwise.

On a random X ← Uk, Pr[f(X) = 0] ≥ 1−2k−m = 1−2−Ω(k). Therefore, it is very easy to compute f
with success probability 1− 2−Ω(k) by simply answering zero. However, by Lemma 6.1 it is hard for circuits
of size rc2 to compute f with success probability 1, or equivalently success probability 1 − δ for δ = 2−2k.
This is why this approach can only succeed for very small δ.

With this choice, we can get a corollary that is analogous to Corollary 2.5.

Corollary 6.2. The function f ′ can be computed by circuits of size poly(r) and constant depth over the gates
{AND,OR,NOT,PARITY} of unbounded fan-in.

Proof. The function f ′ is defined by:

f ′(y) =
∑

x∈{0,1}k
f(x) · g(x, y).

The sum ranges over 2k choices of x. However, for our function f , except for poly(r) of these x (the ones
for which the second part of x is k −m zeros) all the remaining x have f(x) = 0. This, together with the
requirement on g, gives the required result.

The proof proceeds as in Section 2, with the following modifications:

• For δ = 2−2k < 2−k, Red is a (1
2 + ε)→ 1 reduction. This means in particular that if D is useful, then

there exists α ∈ {0, 1}a such that PrX←Um [RedD(X ◦ 0k−m, α) = f(X ◦ 0k−m)] = 1.

• We set δ′ = 1
r and will replace some occurrences of δ in the earlier argument by δ′. This is done because

the choice of δ = 2−2k does not satisfy the requirement that 1
δ ≤ r made in Theorem 1.9. Specifically,

the requirement that 1
δ ≤ r was used to argue that when we apply Lemma 2.11 with η = δ, the size of

the set B (which is polynomial in 1
η ) is polynomial in r. In order to obtain a set B of size poly(r) we

will now choose η = δ′.
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• In Section 2.4 we argued that for an independent X ← Uk:

Pr[Redf
⊕t⊕R′(X,α′) = f(X)] ≥ Pr[Redf

⊕t⊕Z′(X,α′) = f(X)]− δ.

With our modifications we get that for an independent X ← Um:

Pr[Redf
′⊕R′(X ◦ 0k−m, α′) = f(X ◦ 0k−m)] ≥ Pr[Redf

⊕t⊕Z′(X,α′) = f(X)]− δ′.

• This allows us to continue the argument, replacing occurrences of X ← Uk by X ◦0k−m for X ← Um,
and occurrences of δ by δ′.

• When we finish the proof and obtain a lower bound of q = Ω( log(1/δ′)
ε2

) = Ω( log r
ε2

) as required. The
result on majority is not affected by replacing δ by δ′.

7 Conclusion and open problems

Class reductions are known to bypass some limitations on black-box reductions (as explained in Section 1.2).
This work demonstrates that it is sometimes possible to extend limitations on black-box reductions to class re-
ductions. Studying the power of class reductions may promote our understanding of how to bypass limitations
on black-box reductions. We now mention some more specific open problems:

• Unlike the results of [GSV18], our results do not hold for any construction of target functions f ′ from
f . Is it possible to extend our results to this general setting?

• In Theorem 1.9, the class D contains circuits that are polynomially larger than the size of the the
reduction. Is it possible to extend our limitations on class reductions with respect to a classes D of
circuits smaller than the circuit size of the reduction?

• Yao’s XOR lemma states that for every function f , if f is somewhat hard, then f⊕t is very hard. It
makes sense to focus on some specific choice for a somewhat hard function f and prove and improved
result for this specific function. If we prove such an assertion by reduction, we can allow the reduction
to be tailored to the specific function f , and do no need to require that the reduction performs on any
function f , but only on the chosen one. This type of reductions was termed “function specific” by
Artemenko and Shaltiel [AS14], who proved limitations on nonuniform black-box functions specific
reductions. It is interesting to understand whether function specific class reductions can circumvent the
limitations proven in this paper. We remark that our proof technique indeed relies on the fact that the
reduction is not function specific, and must work for any function f . This allows us to choose f with
specific properties that are useful for our argument.
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