
On Basing Auxiliary-Input Cryptography on NP-hardness via

Nonadaptive Black-Box Reductions

Mikito Nanashima∗

Tokyo Institute of Technology

June 24, 2020

Abstract

A black-box (BB) reduction is a central proof technique in theoretical computer science.
However, the limitations on BB reductions have been revealed for several decades, and the series
of previous work gives strong evidence that we should avoid a nonadaptive BB reduction to base
cryptography on NP-hardness (e.g., Akavia et al., 2006). Then should we also give up such a
familiar proof technique even for an intermediate step towards cryptography?

In this paper, we continue to explore the capability of nonadaptive BB reductions and extend
our knowledge on such a central technique out of the current (worst-to-average) framework. In
particular, we investigate the attempt to base weaker cryptographic notions allowed to take
auxiliary-input via nonadaptive BB reductions. As a result, we prove the following theorems:

• if we base an auxiliary-input pseudorandom generator (AIPRG) on NP-hardness via a
nonadaptive BB reduction, then the polynomial hierarchy collapses;

• if we base an auxiliary-input one-way function (AIOWF) or auxiliary-input hitting set
generator (AIHSG) on NP-hardness via a nonadaptive BB reduction, then an (i.o.-)one-
way function also exists based on NP-hardness (via an adaptive BB reduction).

The first result gives new evidence that nonadaptive BB reductions are insufficient to base
AIPRG. The second result also yields a weaker but still surprising consequence of nonadaptive
BB reductions, that is, a one-way function based on NP-hardness. In fact, the second result is
interpreted as the following two opposite ways. Pessimistically, it shows that basing AIOWF or
AIHSG via nonadaptive BB reductions is harder than constructing a one-way function based on
NP-hardness, which can be regarded as a negative result. Note that AIHSG is a weak primitive
implied even by the hardness of learning; thus, this pessimistic view gives conceptually stronger
limitations than the currently known limitations on nonadaptive BB reductions. Optimistically,
our result gives a new hope: a breakthrough construction of auxiliary-input primitives might
also be useful to construct standard cryptographic primitives. This optimistic view enhances
the significance of further investigation on constructing auxiliary-input or other intermediate
cryptographic primitives instead of standard cryptographic primitives.

∗nanashima.m.aa@is.c.titech.ac.jp

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 95 (2020)

1 Introduction

How can we translate computational hardness into useful hardness in cryptography? This question
is a central issue in theoretical computer science. Specifically, one of the most significant and long-
standing challenges is constructing fundamental cryptographic primitives such as a one-way function
based on NP-hardness. At present, several breakthroughs seem to be required for this challenge, as
surveyed by Impagliazzo (1995).

A central ingredient for resolving the above challenge is a reduction; in other words, the way
to translate recognizing a language into breaking a cryptographic primitive. A reduction is a
powerful proof technique even if it is restricted to a quite simple form, and in fact, a nonadaptive
black-box (BB) reduction has played a crucial role to show many brilliant results in theoretical
computer science. Therefore, it is a natural attempt to apply such a familiar proof technique even
for constructing secure cryptographic primitives.

However, Bogdanov and Trevisan (2006a) gave strong evidence that such a simple reduction is
insufficient for cryptography based on NP-hardness. In general, breaking cryptographic primitives is
formulated as an NP problem on an efficiently samplable distribution that is fixed in advance. They
showed that there is no nonadaptive BB reduction from an NP-hard problem to such a distributional
NP problem unless the polynomial hierarchy collapses. Therefore, as a corollary, their work excluded
the attempt to apply nonadaptive BB reductions for basing cryptography under the reasonable
assumption on the polynomial hierarchy. Moreover, subsequent work gave stronger consequences in
more specific cases of basing several cryptographic primitives (Akavia et al., 2006; Gutfreund and
Vadhan, 2008; Applebaum et al., 2008; Haitner et al., 2010; Bogdanov and Lee, 2013; Bogdanov
and Brzuska, 2015; Liu and Vaikuntanathan, 2016; Hirahara and Watanabe, 2020).

Then should we also give up all nonadaptive BB strategies even for an intermediate step towards
cryptography? This question essentially motivates our work. In this spirit, we focus on the capabil-
ity of nonadaptive BB reduction for basing a weaker cryptographic notion, that is, an auxiliary-input
cryptographic primitive, introduced first by Ostrovsky and Wigderson (1993). Informally speak-
ing, an auxiliary-input cryptographic primitive is defined as a family of primitives indexed by the
auxiliary-input and has a relaxed security requirement: at least one primitive in the family is re-
quired to be secure depending on each adversary (instead of one fixed primitive secure against
all adversaries). In other words, adversaries must break all primitives in the worst-case sense on
auxiliary-input, and the task is not directly formulated as a distributional NP-problem because the
distribution is not uniquely determined beforehand due to the auxiliary-input. Thus the previous
work on distributional NP problem cannot be directly applied to auxiliary-input cryptography.

Now let us mention the current status of nonadaptive BB reductions to auxiliary-input cryptog-
raphy. Applebaum et al. (2008) observed that we cannot apply a nonadaptive fixed-auxiliary-input
BB reduction, which is a restricted nonadaptive BB reduction given access to only one auxiliary-
input, unless the polynomial hierarchy collapses. However, the restricted access to auxiliary-input
seems to be too strict and it implicitly yields a reduction from an NP-hard language to some fixed
cryptographic primitive (depending on the instance). In fact, the above result was shown in almost
the same way to the previous result by Akavia et al. (2006) for standard cryptographic primitives.
The same work and later Xiao (2009b) observed that generalizing their result to nonadaptive BB
reductions seems hard by giving the explicit technical issue. To the best of our knowledge, we have
no negative result on general nonadaptive BB reductions to base auxiliary-input cryptography on
NP-hardness at present.

The recent progress on the minimum circuit size problem revealed that an auxiliary-input one-
way function indeed implies a hard-on-average distributional NP problem (Allender and Hirahara,
2019; Hirahara, 2018). However, such an implication uses several non-black-box and adaptive

2

techniques (e.g., H̊astad et al., 1999; Hirahara, 2018). Thus, the property on nonadaptive and
black-box is lost in translating reductions for the auxiliary-input primitive into reductions for the
distributional NP problem.

In this paper, based on the above status, we continue to investigate the capability of (general)
nonadaptive BB reductions on basing auxiliary-input cryptographic primitives. The importance of
our work is to extend our current knowledge on such a central proof technique out of the previous
worst-to-average framework by Bogdanov and Trevisan (2006a) and to identify the inherent difficulty
on constructing cryptographic primitives on NP-hardness more finely.

1.1 Our Contribution

Our main contribution is to give new knowledge about nonadaptive BB reductions from an NP-hard
problem to an auxiliary-input cryptographic primitive. In particular, we handle the auxiliary-
input analogs of the following three fundamental primitives: a one-way function, a pseudorandom
generator, and a hitting set generator. A formal definition of each primitive will be given in Section 2
with the formal description of the main theorem. First, we informally present our main theorem.

Theorem (informal). If there is a nonadaptive BB reduction from an NP-hard language L to
breaking an auxiliary-input cryptographic primitive P , then according to the type of P we have that:

• if P is an auxiliary-input pseudorandom generator, then the polynomial hierarchy collapses;

• if P is an auxiliary-input one-way function or an auxiliary-input hitting set generator, then
there is also an adaptive reduction from L to inverting some (i.o.-)one-way function.

The first result shows reasonable evidence that auxiliary-input pseudorandom generators (AIPRG)
cannot be based on NP-hardness via nonadaptive BB reductions as standard cryptography. The
second result shows that a nonadaptive BB reduction for basing the other auxiliary-input prim-
itives yields another strong consequence: an “infinitely often” analog of one-way function based
on NP-hardness. Remark that an auxiliary-input hitting set generator (AIHSG) is much weaker
primitive than standard cryptographic primitives: for example, the existence is even weaker than
the hardness of PAC learning (Nanashima, 2020). What is surprising is that even a nonadaptive
BB reduction to such a weak primitive yields a solution close to the long-standing challenge.

The second result is not sufficient to exclude nonadaptive BB reductions on basing auxiliary-
input primitives, and it has two opposite interpretations. However, let us stress that both inter-
pretations are quite nontrivial and yield new knowledge about nonadaptive BB reductions. One
interpretation is a pessimistic (or realistic) one. As mentioned in the introduction, no one has not
come up with the construction of a one-way function based on NP-hardness for several decades
despite its importance. Thus, this result is still strong evidence of difficulty finding such a sim-
ple reduction. The other interpretation is an optimistic one as a new approach to constructing a
one-way function. We will further discuss this optimistic perspective and its novelty in Section 3.

A reader who is familiar with cryptography may wonder why the consequences are different
between an auxiliary-input one-way function (AIOWF) and AIPRG. In fact, AIPRG is constructed
from any AIOWF by applying the known BB construction of a pseudorandom generator from a
one-way function. However, if such construction requires an adaptive security proof, then the
property on nonadaptive is lost in translating reductions for AIOWF into reductions for AIPRG via
the adaptive security reduction. To the best of our knowledge, all currently known constructions
of pseudorandom generators (e.g., H̊astad et al., 1999; Holenstein, 2006; Haitner et al., 2013) use
adaptive techniques in the security proof; for example, construction of false entropy generators and
the uniform hardcore lemma (Holenstein, 2005). This technical issue prevents us from applying the

3

first result for AIPRG to AIOWF. For a similar reason, our second result on AIOWF is incomparable
with the previous work on basing hardness of learning by Applebaum et al. (2008)1.

2 Formal Descriptions

Now we present formal descriptions of auxiliary-input primitives and our results. Let us introduce
a few notations. For any n ∈ N, let Un be a random variable selected according to a uniform
distribution over {0, 1}n. For any function f : X → Y and subsets X ⊆ X , Y ⊆ Y, let f(X) =
{f(x) : x ∈ X} and f−1(Y) = {x ∈ X : f(x) ∈ Y }. For a language L, let (L,U) be a distributional
problem of recognizing L(x) on an instance x selected uniformly at random (for the detail, see
Section 5.2). An auxiliary-input cryptographic primitive is defined as an auxiliary-input function
with some additional security conditions.

Definition 1 (Auxiliary-input function). A (polynomial-time computable) auxiliary-input function
is a family f = {fz : {0, 1}n(|z|) → {0, 1}`(|z|)}z∈{0,1}∗, where n(|z|) and `(|z|) are polynomially-
related2 to |z|, which satisfies that there exists a polynomial-time evaluation algorithm F such that
for any z ∈ {0, 1}∗ and x ∈ {0, 1}n(|z|), F (z, x) outputs fz(x).

In this paper, we use the term “an auxiliary-input function (AIF)” to refer to polynomial-time
computable one as in the above definition unless otherwise stated. For simplicity, we assume that
n(·) and `(·) are increasing functions. Note that the length of auxiliary-input is possibly longer than
the length of input and output, that is, |z| > n(|z|) and |z| > `(|z|). We may write n(|z|) (resp.
`(|z|)) as n (resp. `) when the dependence of |z| is obvious.

2.1 Auxiliary-Input Pseudorandom Generator

A pseudorandom generator is a primitive stretching a short random seed to a long binary string
random-looking from all efficiently computable adversaries. The auxiliary-input analog is formally
defined as follows:

Definition 2 (Auxiliary-input pseudorandom generator). Let G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗
be an auxiliary-input function. For a function γ : N → (0, 1), we say that a randomized algorithm
A γ-distinguishes G if for any auxiliary-input z ∈ {0, 1}∗,∣∣∣∣ Pr

A,Un
[A(z,Gz(Un)) = 1]− Pr

A,U`(n)
[A(z, U`(n)) = 1]

∣∣∣∣ ≥ γ(n).

We say that G is an auxiliary-input pseudorandom generator (AIPRG) if `(n) > n and for any
polynomial p, there exists no polynomial-time randomized algorithm (1/p)-distinguishing G.

A BB reduction for AIPRG is defined as follows. It is easily checked that the following BB
reduction from a language L to distinguishing an AIF G shows that G is an AIPRG if L /∈ BPP.

Definition 3 (Black-box reduction to distinguishing AIF). Let L be a language and G := {Gz :
{0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an auxiliary-input function with `(n) > n. We say that there
exists a black-box (BB) reduction from L to distinguishing G if for any polynomial p, there exists a

1Although the hardness of learning is conceptually weaker than AIOWF, their work used the property of black-box
in the formulation of a reduction to learning and indeed yielded a reduction to inverting AIOWF in the end.

2In the case of n(|z|), it means that there exist c, c′ ∈ N such that |z| ≤ c · n(|z|)c and n(|z|) ≤ c′ · |z|c
′
.

4

randomized polynomial-time oracle machine R? such that for any oracle O that (1/p)-distinguishes
G and x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that there exists a nonadaptive BB reduction from L to distinguishing G if all R
make its queries independently of any answer by oracle for previous queries.

Now we present the first main result on AIPRG.

Theorem 1. For any auxiliary-input function G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ with `(n) >
n, there exists no nonadaptive BB reduction from an NP-hard language L to distinguishing G unless
the polynomial hierarchy collapses.

2.2 Auxiliary-Input One-Way Function

A one-way function is a function which evaluating is easy, but inverting is hard, and it is a fun-
damental primitive in the sense that most cryptographic tools do not exist without a one-way
function (Impagliazzo and Luby, 1989; Rompel, 1990). The formal definition is the following:

Definition 4 (One-way function). Let s, ` be polynomials. We say that a family of function f =
{fn}n∈N where fn : {0, 1}s(n) → {0, 1}`(n) is an (i.o.-)one-way function (OWF) if f is polynomial-
time computable, and there exists a polynomial p such that for any polynomial-time randomized
algorithm A, there exists infinitely many n ∈ N such that

Pr
A,Us(n)

[A(1n, fn(Us(n))) /∈ f−1
n (fn(Us(n)))] ≥ 1/p(n).

For simplicity, we may omit to write the input 1n to A.
The auxiliary-input analog of OWF is the following, which is first introduced by Ostrovsky and

Wigderson (1993).

Definition 5 (Auxiliary-input one-way function). Let f = {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ be an
auxiliary-input function and γ : N → (0, 1) be a function. We say that a randomized algorithm A
γ-inverts f if for any z ∈ {0, 1}∗,

Pr
A,Un

[A(z, fz(Un)) ∈ f−1
z (fz(Un))] ≥ γ(n).

We say that f is an auxiliary-input one-way function (AIOWF) if there exists a polynomial p such
that no polynomial-time randomized algorithm (1− 1/p)-inverts f .

In fact, the existence of AIOWF and AIPRG is equivalent (H̊astad et al., 1999). However, we
cannot directly apply Theorem 1 to AIOWF due to the adaptive security reduction, as we mentioned
in Section 1.1.

A BB reduction for AIOWF is defined as follows. It is easily checked that for any polynomial
p, the following BB reduction from a language L to (1 − 1/p)-inverting an AIF f shows that f is
an AIOWF if L /∈ BPP.

Definition 6 (Black-box reduction to inverting AIF). Let L be a language, p be a polynomial, and
f := {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ be an auxiliary-input function. We say that a randomized

5

polynomial-time oracle machine R? is a black-box (BB) reduction from L to (1 − 1/p)-inverting f
if for any oracle O that (1− 1/p)-inverts f and x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that R is nonadaptive if all R’s queries are made independently of any answer by
oracle for previous queries.

Now we present the second main result on AIOWF.

Theorem 2. For any auxiliary-input function f = {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ and polynomial
p, if there exists a nonadaptive BB reduction from an NP-hard language L to (1− 1/p)-inverting f ,
then NP * BPP also implies that a one-way function exists (via an adaptive BB reduction).

2.3 Auxiliary-Input Hitting Set Generator

A hitting set generator is a weak variant of a pseudorandom generator, introduced in the context
of derandomization by Andreev et al. (1998). For the original purpose, we consider (possibly)
exponential-time computable generators. In this paper, however, we focus on polynomial-time
computable generators as in cryptography. Now we define the auxiliary-input analog.

Definition 7 (Auxiliary-input hitting set generator). Let G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗
be an auxiliary-input function. For a function γ : N → (0, 1), we say that a randomized adversary
A γ-avoids G if for any (public) auxiliary-input z ∈ {0, 1}∗ and (private) input x ∈ {0, 1}n(|z|),

Pr
A

[A(z,Gz(x)) = 0] ≥ 2/3 and Pr
y∼{0,1}`(n(|z|))

[
Pr
A

[A(z, y) = 1] ≥ 2/3

]
≥ min(γ(n), τz),

where τz be a trivial limitation3 defined as τz = 1− |Gz({0,1}n)|
2`(n)

.
We say that G is a γ-secure auxiliary-input hitting set generator (AIHSG) if `(n) > n and there

exists no polynomial-time randomized algorithm (1− γ)-avoiding G.

Although it is easily checked that AIPRG is also AIHSG (with any security γ(n) = 1/poly(n)),
the opposite direction is open at present. In fact, the hardness of learning implies the existence of
AIHSG (Nanashima, 2020); on the other hand, we must overcome the barrier by oracle separation to
show the existence of AIPRG (equivalently, AIOWF) from the hardness of learning (Xiao, 2009a).
Thus, AIHSG seems to be a much weaker notion than AIOWF and AIPRG under current knowledge.

A BB reduction for AIHSG is defined as follows. It is easily checked that the following BB
reduction from a language L to (1 − γ)-avoiding an AIF G shows that G is a γ-secure AIHSG if
L /∈ BPP.

Definition 8 (Black-box reduction to avoiding AIF). Let L be a language, γ be a function, and
G := {Gz : {0, 1}n → {0, 1}`}z∈{0,1}∗ be an auxiliary-input function. We say that a randomized

polynomial-time oracle machine R? is a black-box (BB) reduction from L to (1 − γ)-avoiding G if
for any oracle O that (1− γ)-avoids G and x ∈ {0, 1}∗, R satisfies that

Pr
R

[RO(x) = L(x)] ≥ 2/3.

Moreover, we say that R is nonadaptive if all R’s queries are made independently of any answer by
oracle for previous queries.

3In this paper, we consider general settings of γ and `. Thus, we adopted the trivial limitation in the definition to
avoid arguing about invalid settings where γ-avoiding the generator is impossible by definition.

6

Now we present the third main result on AIHSG.

Theorem 3. Let p be a polynomial and G := {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an auxiliary-
input function where `(n) > (1 + ε) · n for some constant ε > 0. If there exists a nonadaptive BB
reduction from an NP-hard language L to (1− 1/p)-avoiding G, then NP * BPP also implies that a
one-way function exists (via an adaptive BB reduction).

3 Discussion and Future Directions

As mentioned in Section 1.1, Theorems 2 and 3 are also regarded as approaches to construct one-way
functions based on NP-hardness. In this section, we discuss the novelty of this optimistic perspective
and give future directions, including the investigation of the validity.

Our results are rephrased as follows: Assume that we could connect NP-hardness to some
auxiliary-input primitives (i.e., AIOWF or AIHSG) with a novel (nonadaptive BB) reduction, then
we can automatically extend the connection to standard cryptographic primitives, that is, OWF.
At present, the latter task of removing auxiliary-input from primitives seems to be quite non-trivial.
To see this, we give a simple oracle separation between AIOWF and OWF as the fourth result.

Theorem 4. There exists an oracle O such that relative to O an auxiliary-input one-way function
exists, but a one-way function does not exist.

Thus, we cannot expect any relativized technique to remove auxiliary-input from cryptographic
primitives. Additionally, there are several barriers by other oracle separations at the intermediate
levels to base OWF on NP-hardness (e.g., Xiao, 2009a; Impagliazzo, 2011). Although such barriers
on relativization are common throughout theoretical computer science (e.g., the P vs. NP problem
by Baker et al., 1975), there are only a few success stories of overcoming such barriers at present.
Unfortunately, Theorems 2 and 3 do not give any solution to break these barriers, and a new
non-relativized technique is still required. Specifically, if a nonadaptive BB reduction to AIOWF
or AIHSG is also relativized4, then our proof also yields relativized reductions that contradict
Theorem 4 or the oracle separation by Impagliazzo (2011).

However, our result gives one hope. Although there seems to be several barriers towards cryptog-
raphy based on NP-hardness, the essential barrier we must overcome might be few. Theorems 2 to 4
certainly show that if we could find a non-relativized breakthrough at an intermediate level toward
cryptography (that is, auxiliary-input primitives), then it will be lifted and break the other barriers
at the higher level. From this perspective, we conjecture that the hardness of basing OWF might
heavily rely on a much smaller part at an intermediate level. This conjecture seems to be some-
what controversial but enhances the significance of further investigation on basing auxiliary-input
or other intermediate cryptographic primitives instead of standard ones.

The above discussion leads to the following two possible directions. The first direction is to find
other scenarios where a breakthrough at an intermediate level also brings benefits at the higher
level. This direction might reduce constructing standard cryptographic primitives to the task at
the low level and give new insights into complexity-based cryptography. The second direction is to
refute such an attempt on intermediate primitives with convincing evidence if it gives the wrong
direction. Particularly, in our case, there is a possibility that nonadaptive BB reductions to base
AIOWF and AIHSG indeed yield the collapse of the polynomial-hierarchy as in the case of AIPRG.

For the second direction, we list two concrete ways: (1) finding a new construction of AIPRG
from AIOWF with nonadaptive security proof; (2) generalizing the previous results for OWF (Akavia

4Note that oracle separations do not necessarily rule out BB reductions form particular languages, not as fully BB
reductions defined by Reingold et al. (2004).

7

et al., 2006) or HSG (Hirahara and Watanabe, 2020) to each auxiliary-input analog for the stronger
consequence. At least the latter approach seems to require some new technique to simulate non-
adaptive BB reductions, as observed by Applebaum et al. (2008) and Xiao (2009b).

4 Proof Sketches

In this section, we give proof ideas of Theorems 1 to 4, and each formal proof will be given in
Sections 6 to 9, respectively. Note that Theorem 3 heavily relies on Theorem 2, and Theorem 2
heavily relies on Theorem 1. Therefore, although each proof idea may look pretty simple and
intuitive, our construction of OWF for Theorem 3 becomes complicated and quite non-trivial as a
whole.

4.1 On Basing AIPRG: Proof Idea of Theorem 1

First, we formally introduce a hitting set generator, which takes a crucial role in our proof.

Definition 9 (Hitting set generator). Let γ(n) be a function. A function G : {0, 1}n → {0, 1}`(n)

with `(n) > n is a (polynomial-time computable) γ-secure hitting set generator (HSG) if G is
polynomially computable and there is no polynomial-time randomized adversary A γ-avoiding G,
that is, satisfying that for any sufficiently large n ∈ N,

∀x ∈ {0, 1}n Pr
A

[A(G(x)) = 0] ≥ 2/3 and Pr
y∼{0,1}`(n)

[
Pr
A

[A(y) = 1] ≥ 2/3

]
≥ min(γ(n), τn),

where τn be a trivial limitation defined as τn := 1− |G({0,1}n)|
2`(n)

.

The essential part of the proof is to give a construction of HSG from AIPRG with a nonadaptive
BB security reduction from distinguishing AIPRG to avoiding HSG. Note that such an implication
has been already known if we allow the non-black-box technique by Hirahara (2018). For our
purpose, however, the conditions on nonadaptive and black-box are crucial, as seen below. Thus we
will give a much simpler construction to show the same implication. Although the reader may think
that our construction is too fundamental and looks somewhat trivial, to the best of our knowledge,
no one has mentioned such a clear relationship between AIPRG and HSG.

To see why the conditions on nonadaptive and black-box are crucial, first assume a nonadaptive
BB security reduction from distinguishing AIPRG to avoiding HSG. Avoiding HSG is directly
formulated as the following distributional NP problem (with zero-error): for uniformly chosen y,
determine whether y is contained in the image of HSG. Therefore, the reduction also yields a
nonadaptive BB reduction from distinguishing AIPRG to the distributional NP problem (formally,
Lemma 4). Thus, any nonadaptive BB reduction from an NP-hard problem to distinguishing AIPRG
indeed yields a nonadaptive BB reduction from the same NP-hard problem to the distributional NP
problem. By the previous result by Bogdanov and Trevisan (2006a) (formally, Fact 2), such a
reduction implies the collapse of the polynomial-hierarchy.

Our construction of HSG from AIPRG is the following (formally, Lemma 3): just considering
the both of auxiliary-input and input to AIPRG as usual input to HSG. More specifically, let
G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an AIPRG. Then the construction of HSG G′ is given as
G′(z ◦ x) = Gz(x). Note that, when z + n(|z|) < `(n(|z|)) holds, G′ does not satisfy the syntax on
stretching input. In the formal proof, therefore, we first stretch the output of G by the standard
technique in cryptography. We can easily check that the security reduction for this stretching
(shown by the famous hybrid argument) is nonadaptive.

8

Let γ(n) be a reciprocal of polynomial. The security reduction from γ-avoiding G′ to distin-
guishing G is also simple: just considering an adversary A for G′ as an adversary for G. Obviously,
this reduction is nonadaptive. To see the correctness, assume that A γ-avoids G′. For simplicity,
we also assume that A is deterministic and γ(n) < τn. Whenever the input y is pseudorandom
string contained in the image of G′, A(y) does not output 1. On the other hand, when y is a truly
random string, then A(y) outputs 1 with probability at least γ(n). Thus, A can distinguish the
uniform distribution from all distributions on the image of G′ with an advantage at least γ(n). For
any auxiliary-input z, Gz(Un(|z|)) is distributed on the image of G′. Thus, A also γ-distinguishes G.

4.2 On Basing AIOWF: Proof Idea of Theorem 2

To focus on the idea, we omit all arguments about the success probabilities of adversaries in this
section. First, let us prepare several reductions. Let RL→f be the nonadaptive BB reduction from L
to inverting f in the assumption. By the construction of PRG from OWF (e.g., H̊astad et al., 1999),
there exist an auxiliary-input generator G and an adaptive BB reduction Rf→G from inverting f to
distinguishing G. By the result in Section 4.1, there exist an NP-language L′ and a nonadaptive BB
reduction RG→L′ from distinguishing G to a distributional NP problem (L′, U) (with zero-error).
Since L′ ∈ NP and L is NP-hard, there exists a Karp reduction RL′→L from L′ to L.

Now we consider the following procedure:

1. select an instance x′ of L′ at random;

2. translate x′ into an instance x of L as x = RL′→L(x′);

3. plug x into RL→f with a random tape r;

At this stage, RL→f makes polynomially many queries (z1, y1), . . . , (zq, yq).

4. answer the queries by some inverting oracle O;

5. output the same decision b ∈ {0, 1} to RL→f .

Note that if the oracle O correctly inverts f , then the resulting decision b is L(x) with high proba-
bility, and L(x) is equal to L′(x′).

The crucial observation is that there is no worst-case sense at all in the above procedure because
both x′ and r are selected at random. Therefore, all queries at the stage 3 are indeed efficiently
samplable, and the inverting oracle no longer needs to invert f for every auxiliary-input at the
stage 4. This observation leads to our construction of a standard OWF g.

The function g takes three inputs x′, r, and xf , which intuitively represents a random instance
of L′, randomness for RL→f , and input for f , respectively. Then g(x′, r, xf) imitates the above
procedure as follows: (2’) translate x′ into an instance x of L as x = RL′→L(x′), (3’) plug x into
RL→f with randomness r, then randomly pick one of auxiliary-input z in queries by RL→f and
output fz(x

f).
We will show that the above g is one-way if NP * BPP. For contradiction, assume that there

exists an adversary A inverting g. Remember that g simulates a distribution on auxiliary-input in
the above procedure. Thus, intuitively, we can replace the inverting oracle O with the adversary A
at the stage 4 with high probability in the execution of RL→f . In fact, this is a little technical part,
and we will give further detail in Section 7. Then the above procedure no longer needs any oracle
and yields a randomized algorithm solving (L′, U) on average. By applying reductions RG→L′ ,
Rf→G, and RL→f in this order, this also yields a randomized polynoimal-time algorithm for L.
Since L is NP-hard, we conclude that NP ⊆ BPP.

9

Remark that RG→L′ is a nonadaptive BB reduction thanks to our simple construction in Sec-
tion 4.1. Therefore, if we also have a construction of AIPRG G from AIOWF f with a nonadaptive
BB reduction from inverting f to distinguishing G, then the above proof leads to a nonadaptive BB
reduction from L to (L′, U), which implies the collapse of the polynomial hierarchy as in Theorem 1.
Thus, finding such a simple construction of AIPRG is one direction for excluding a nonadaptive BB
reduction to base AIOWF, as mentioned in Section 3.

4.3 On Basing AIHSG: Proof Idea of Theorem 3

The key idea for the proof is to classify each query generated by the nonadaptive BB reduction (in
the theorem) into a “light” query and a “heavy” query. A similar technique was also used in the
previous work for HSG by Gutfreund and Vadhan (2008); Hirahara and Watanabe (2020). We first
see the previous case of HSG and then explain the difference to our case of AIHSG.

The Case of Hitting Set Generator (Previous work)

Let G : {0, 1}n → {0, 1}`(n) be a generator with `(n) ≥ (1 + Ω(1)) · n and R? be a nonadaptive
BB reduction from an NP-language L to avoiding G. W.l.o.g., we can assume that all (marginal)
distributions on queries by R are identical regardless of each query position by applying a random
permutation on queries before asking them to oracle. Thus, for each input x ∈ {0, 1}n, one distri-
bution Qx on queries is determined. We choose a threshold (roughly) τ = 1/Θ̃(2n) and define a
light (resp. heavy) query y ∈ {0, 1}`(n) as a query generated according to Qx with probability less
(resp. greater) than the threshold τ .

The essential part of the proof is to simulate the avoiding oracle for G by using the classification
of queries. First, assume that we could (somehow) distinguish the heavy case and the light case
for a given query. Then we can also simulate one of avoiding oracles simply as follows: for each
query y generated by R(x), (1) determine whether y is heavy or light; (2) answer 0 (resp. 1) if
y is heavy (resp. light) query. Let O′ be the induced oracle by the above simulation. Note that
the probability that O′(y) outputs 0 is exponentially small because the fraction of light query is
Θ̃(2n)/2`(n) ≤ 2−Ω(1)n for the length `(n) of query. Thus, O′ satisfies the condition on the probability
of outputting 1. However, O′ is not avoiding oracle for G, because possibly there is a query y such
that y is heavy but contained in ImG. In this case, O′(y) outputs 1 for y ∈ ImG.

The key observation to overcome this issue is the following:

(?) For each length `(n) of query (where the input size is n), the size of ImG is at most
2n; thus the probability that R asks some light query contained in ImG (that is, “bad”
query) is bounded above by 2n/Θ̃(2n) ≤ 1/poly(n).

Therefore, O′ is consistent with some avoiding oracle, and RO
′
(x) correctly recognizes x with high

probability over the execution of R.
By the above argument, we can reduce avoiding a generator to distinguishing heavy and light

queries. For the latter task, Gutfreund and Vadhan (2008) gave a BPPNP algorithm by approximation
of counting by Jerrum et al. (1986), and Hirahara and Watanabe (2020) gave an AM∩coAM algorithm
by the generalized version of the protocol by Feigenbaum and Fortnow (1991).

The Case of Auxiliary-input Hitting Set Generator (Our work)

Now we move on to our case of AIHSG. Let G = {Gz : {0, 1}n(|z|) → {0, 1}`(n(|z|))}z∈{0,1}∗ be an

auxiliary-input generator with `(n) ≥ (1 + Ω(1)) ·n and R? be a nonadaptive BB reduction from an

10

NP-language L to avoiding G. We can also assume that all query distributions of R?(x) are identical
to Qx regardless of query position.

On applying the above argument to our case of AIHSG, the problematic part is the key ob-
servation (?). Remember that an adversary for AIHSG must avoid Gz for all z ∈ {0, 1}∗, and
auxiliary-input is possibly longer than output. Therefore, we cannot bound the size of the image
of the generator in general because the image may span the whole range (for example, consider the
following generator Gz(x) = z ⊕ (x ◦ 0|z|−|x|) for |z| > n(|z|)).

To resolve this, we need to consider each case of auxiliary-input z separately. Therefore, we
change the definitions of “light” and “heavy” and let them adapt to auxiliary-input. Let px(z) be
a probability that Qx generates a query of auxiliary-input z. If we can bound the probability that
R makes light query (z, y) with y ∈ ImGz by 1/(poly(n) · px(z)) for any z, then R makes such a
“bad” query (z, y) with probability at most

∑
z px(z) · 1/(poly(n) · px(z)) = 1/poly(n). Then we can

use the same argument in the case of HSG and reduce avoiding G to distinguishing heavy and light
cases. This idea naturally leads to the following new definition of “light” and “heavy”: separating
each query (z, y) by the conditional probability px(y|z) that y is asked conditioned on the event
that z is asked. In fact, as shown in Section 8, this modification will work well even for AIHSG.

However, one issue remains: how can we distinguish heavy and light queries? To this end, we
must verify the largeness of the conditional probability of the given query. This part essentially
prevents us from applying the previous results. Since we consider a polynomial-time computable
generator, the simulation with NP oracle does not give any nontrivial result, not as the work by Gut-
freund and Vadhan (2008)5. Even for the simulation in AM ∩ coAM by Hirahara and Watanabe
(2020), there seem to be several technical issues. We cannot trivially verify the size of conditional
probability by such protocols due to the restricted use of the upper bound protocol (Aiello and
H̊astad, 1987). Moreover, we cannot possibly even sample the conditional distribution efficiently
for fixed auxiliary-input (for example, consider the query distribution on ((z, vk), y) where y is a
secure signature to z verified with a public-key vk).

Our idea is to adopt universal extrapolation by Impagliazzo and Levin (1990). Intuitively speak-
ing, the universal extrapolation is a tool to reduce approximating the probability py = PrUn [y =
f(Un)] to inverting f for any polynomial-time computable f under the situation where y = f(x) and
x ∈ {0, 1}n is selected at random. In fact, the universal extrapolation holds even for auxiliary-input
function, and a similar technique was also used by Ostrovsky and Wigderson (1993). By using the
universal extrapolation for each circuit sampling query and auxiliary-input, we have a good approx-
imation of px(y|z) for query (z, y) generated by R?(x). Thus, the universal extrapolation enables
us to classify the given (z, y) correctly. Note that the auxiliary-input in the universal extrapolation
essentially corresponds to the input x for each circuit sampling query and auxiliary-input.

To show Theorem 3, we need further observations. Since R makes its queries nonadaptively, we
can also invoke the universal extrapolation nonadaptively. Moreover, the universal extrapolation
algorithm indeed uses an inverting adversary for a certain AIOWF as black-box and nonadaptively
(we see this formally in Appendix A). As a result, a nonadaptive BB reduction from an NP-hard
language L to avoiding AIHSG yields a nonadaptive BB reduction from L to inverting AIOWF.
Thus, by Theorem 2, R also yields a one-way function under the assumption that NP * BPP.

5Their work concerned the original aim of HSG, that is, derandomization (e.g., Impagliazzo and Wigderson, 2001).
For this purpose, we consider (possibly) exponential-time computable HSG G, and avoiding G in BPPNP is quite
nontrivial. However, in our case where G is polynomial-time computable, avoiding G is in NP trivially.

11

4.4 Oracle Separation between OWF and AIOWF: Proof Idea of Theorem 4

To show Theorem 4, we use a random function F = {Fn : {0, 1}n → {0, 1}n}n∈N, where each Fn is
selected uniformly from length-preserving functions of input size n. As shown by Impagliazzo and
Rudich (1989), any polynomial-time oracle machine cannot invert F with non-negligible probability
(with probability 1 over the choice of F). In other words, if a primitive given access to F directly
outputs the value of F , such a primitive must be one-way. Therefore, all we have to do is to let a
random function F available for auxiliary-input primitives but unavailable for standard primitives.

To this end, we simply add n-bit auxiliary-input to a random function of the input size n. Then
we choose one auxiliary-input zn from 2n possibilities of {0, 1}n as a target auxiliary-input and
embed the random function to the position indexed by zn. Let F = {Fz : {0, 1}|z| → {0, 1}|z|}z∈{0,1}∗
be such an embedded random function. Note that the similar random embedding technique was
also used in the previous work for other oracle separations (e.g., Xiao, 2009a). If an auxiliary-input
primitive f given access to F identifies the auxiliary-input of F with own auxiliary-input, then f
must be AIOWF because an adversary for f must invert fz for any auxiliary-input z, including
the random function. On the other hand, any polynomial-time computable primitive (without
auxiliary-input) cannot find the target auxiliary-input of F with non-negligible probability because
they were selected at random. Thus, any (usual) primitive does not take nontrivial advantage of F .

For the oracle separation, we combine the above embedded random function F with the PSPACE

oracle (w.l.o.g., the oracle TQBF determining satisfiability of quantified Boolean formulae). Let
OF be this new oracle. Since the random function in F is selected independently of TQBF, the
additional access to TQBF does not help to invert the random function at all (formally, Lemma 7).
Thus, AIOWF still exists relative to OF .

On the other hand, consider a function f which is polynomial-time computable with access to
OF arbitrarily. Since the target auxiliary-input is selected independently of TQBF, the additional
access to TQBF does not help to find the target auxiliary-input at all. Thus, f cannot still take
nontrivial advantage of F and is regarded as a function given only access to TQBF. We can easily
check that any polynomial-time computable function with access to TQBF is efficiently invertible
by TQBF. Since the above argument holds for any f , OWF does not exist relative to OF (formally,
Lemma 8). Thus, we have the oracle separation between AIOWF and OWF.

In the subsequent sections, we will give full arguments based on the above sketches.

5 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. For two strings x, y ∈ {0, 1}∗, let 〈x, y〉 ∈ {0, 1}∗ be a (proper)
binary encoding of the tuple (x, y). For n, k ∈ N, x ∈ {0, 1}n, and n1, . . . , nk ∈ [n] with

∑
i ni = n,

we use the notation x →n1,...,nk (x(1), . . . , x(k)) to refer to the separation of x into k substrings
satisfying that x = x(1) ◦ · · · ◦ x(k) and |x(i)| = ni for each i ∈ [k]. For any x ∈ {0, 1}n and k ∈ [n],
let x[k] = x1 ◦ · · · ◦ xk. For x ∈ {0, 1}n, we use xN to refer to the integer given by regarding x as its
binary representation (that is, 0 ≤ xN ≤ 2n − 1).

We fix a proper encoding for Boolean circuits. For any circuit C, we use 〈C〉 to explicitly
denote the binary encoding of C. Otherwise, we may abuse the same notation C for the encoding.
For convenience, we assume the followings: (1) the output length of S-size circuit is at most S;
(2) every u ∈ {0, 1}∗ represents some circuit (by assigning invalid encodings to the trivial circuit
C(x) ≡ 0); (3) zero-padding is available. These assumptions allow us to assure that there exists a
function e(·) such that any n-input circuit of size S(n) has a binary representation of the length
e(S(n))(= Õ(S(n))).

12

For a randomized algorithm A using r(n) random bits on n-bit input, we use A(x; s) to refer to
the execution of A(x) with random tape s for x ∈ {0, 1}n and s ∈ {0, 1}r(n).

For a set S, we write x←u S for a random sampling of x according to the uniform distribution
over S. We assume the basic facts about probability theory, including the union bound, Markov’s
inequality, and the Borel-Cantelli lemma. We will make extensive use of the following tail bound
by Hoeffding (1963).

Fact 1 (Hoeffding inequality). For real values a, b ∈ R, let X1, . . . , Xm be independent and iden-
tically distributed random variables with Xi ∈ [a, b] and E[Xi] = µ for each i ∈ [m]. Then for any
ε > 0, the following inequalities hold:

Pr
X1,...,Xm

[
1

m

m∑
i=1

Xi − µ ≥ ε

]
≤ e−

2mε2

(b−a)2 and Pr
X1,...,Xm

[
1

m

m∑
i=1

Xi − µ ≤ −ε

]
≤ e−

2mε2

(b−a)2 .

We introduce the following useful lemma, given as a corollary of Markov’s inequality.

Lemma 1. Let X and Y be (possibly correlated) random variables on X and Y, respectively. Let
E be a (bad) event determined only by X and Y . For any p ∈ (0, 1], we define a bad set BXp ⊆ X by

BXp =

{
x ∈ X : Pr

Y
[E|X = x] ≥ p

}
.

For any ε ∈ [0, 1], if PrX,Y [E] ≤ εp, then Prx∼X [x ∈ BXp] ≤ ε.

Proof. By applying Markov’s inequality for the nonnegative random variable Px = PrY [E|X = x]
over the choice of x according to X, we have the lemma as follows:

Pr
x∼X

[x ∈ BXp] = Pr
x∼X

[Px ≥ p] ≤
EX [Px]

p
=

PrX,Y [E]

p
≤ εp

p
= ε.

5.1 Universal Extrapolation

We formally introduce the key ingredient for our proof, that is, the universal extrapolation.

Lemma 2 (Impagliazzo and Levin 1990: universal extrapolation). Let ε ∈ (0, 1] and δ : N→ (0, 1]
be a reciprocal of polynomial. If there exists no auxiliary-input one-way function, then for any
polynomial s(n), there exists a polynomial-time randomized algorithm Exts(n) such that for any
n-input circuit C of size s(n),

Pr
Exts(n),x∼{0,1}n

[
Exts(n)(C,C(x)) ∈ [1/2 · pC(x), 2(1+ε)pC(x)]

]
≥ 1− δ(n),

where pC(x) := Prx′∼{0,1}n [C(x′) = C(x)].
Moreover, there exists an auxiliary-input function f = {fz}z∈{0,1}∗ such that Exts(n) accesses

an inverting algorithm for f nonadaptively as oracle.

Note that we adopted a slightly modified statement for our purpose. Although the proof sketch
for the original statement was given in the original paper, the author could not unfortunately find
the full version of the proof. To show the correctness and nonadaptiveness explicitly, we will also
give the full proof of Lemma 2 based on the original sketch in Appendix A.

13

5.2 Average-case Complexity

We introduce the basics of average-case complexity. For further details, see the survey by Bogdanov
and Trevisan (2006b).

A distributional problem (L,D) is a pair of a language L and a family of distributions D =
{Dn}n∈N, where Dn is a polynomial-time samplable distribution on instances of length n. Moreover,
if L ∈ NP, we call (L,D) a distributional NP problem. We use the notation U = {Un}n∈N to denote
the family of uniform distributions. The notion of “average-case tractable” by a deterministic or
randomized algorithm is defined as follows:

Definition 10 (Errorless heuristic scheme). Let (L,D) be a distributional problem and δ : N→ (0, 1]
be a function. We say that a deterministic algorithm A is an errorless heuristic scheme for (L,D)
of failure probability δ if A satisfies that for any n ∈ N,

1. A(x) ∈ {L(x),⊥} for any x ∈ {0, 1}n in the support of Dn;

2. Prx←Dn [A(x) = ⊥] ≤ δ(n).

Definition 11 (Randomized errorless heuristic scheme). Let (L,D) be a distributional problem and
δ : N → (0, 1] be a function. We say that a randomized algorithm A is a randomized errorless
heuristic scheme for (L,D) of failure probability δ if A satisfies that for any n ∈ N,

1. A(x) ∈ {0, 1,⊥} and PrA[A(x) = ¬L(x)] ≤ 1/4 for any x ∈ {0, 1}n in the support of Dn;

2. Prx←Dn [Pr[A(x) = ⊥] ≥ 1/4] ≤ δ(n).

Bogdanov and Trevisan (2006a) ruled out nonadaptive BB reductions from an NP-hard problem
to a distributional NP problem, usually called worst-case to average-case reduction, unless the
polynomial hierarchy collapses at the third level.

Fact 2 (Bogdanov and Trevisan 2006a). For any polynomial p, a language L, and a distributional
NP language (L′, D), if there exists a nonadaptive BB reduction from L to an errorless heuristic for
(L′, D) of failure probability 1/p, then L ∈ coNP/poly. Moreover, if L is NP-hard, then PH = Σp

3.

6 On Basing Auxiliary-Input Pseudorandom Generator

In this section, we formally rule out nonadaptive BB reductions from an NP-hard problem to dis-
tinguishing AIPRG based on Section 4.1. Let us state the main theorem again.

Theorem 1. For any auxiliary-input function G = {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ with `(n) >
n, there exists no nonadaptive BB reduction from an NP-hard language L to distinguishing G unless
the polynomial hierarchy collapses.

First, we give the nonadaptive BB reduction from distinguishing AIPRG to avoiding HSG.

Lemma 3. Let G be an auxiliary-input function stretching its input and m : N→ N be a polynomial.
There exists a polynomial-time computable function G′ : {0, 1}n → {0, 1}m(n) and a randomized
polynomial-time oracle machine R? satisfying the following: for any polynomial γ′, there exists a
polynomial γ such that for any oracle O which 1/γ′-avoids G′, RO 1/γ-distinguishes G. Moreover,
R? is nonadaptive.

14

Proof. W.l.o.g, we can assume that G has the stretch `(n) = n+1 by discarding the suffix of output.
We define the generator G′ : {0, 1}n′ → {0, 1}m(n′) in the lemma by

G′(x) =

{
b1 ◦ · · · ◦ bm(n) if (n′ =)|x| = a+ n(a) for some a ∈ N
0m(n) otherwise,

where each bi ∈ {0, 1} is a bit determined by the following procedure: (1) x →a,n(a) (z, x(0)); (2)

Gz(x
(i−1)) →n(a),1 (x(i), bi) for each i ∈ [m(n)]. It is easily checked that G′ is polynomial-time

computable.
Now we define the nonadaptive reduction R? in the lemma as Algorithm 1.

Algorithm 1: R (a nonadaptive BB reduction from distinguishing G to avoiding G′)

Input : an auxiliary-input z ∈ {0, 1}a and y ∈ {0, 1}n(a)+1

Oracle : O (1/γ′-avoiding G′)

1 let m := m(a+ n(a)) and select k ←u [m];

2 let x(k) := y[n(a)];

3 for i = 1 to m do
4 if i < k then select σi ←u {0, 1};
5 else if i = k then σk = yn(a)+1;

6 else execute Gz(x
(i−1))→n(a),1 (x(i), σi);

7 end
8 query b← O(σ1 ◦ · · · ◦ σm);
9 return b;

We define another auxiliary-input generator {G′′z : {0, 1}n(|z|) → {0, 1}m(|z|+n(|z|))}z∈{0,1}∗ by
G′′z(x) := G′(z ◦ x). If the given oracle O 1/γ′-avoids G′, then for any z ∈ {0, 1}a,∣∣Pr

[
O(G′′z(Un(a)) = 1

]
− Pr

[
O(Um(a+n(a))) = 1

]∣∣
=
∣∣Pr
[
O(G′(z ◦ Un(a))) = 1

]
− Pr

[
O(Um(a+n(a))) = 1]

]∣∣ ≥ 1

γ′(a+ n(a))
.

By the standard hybrid argument (see e.g., Goldreich, 2006), we have that for any z ∈ {0, 1}a,∣∣Pr
[
RO(z,Gz(Un(a))) = 1

]
− Pr

[
RO(z, Un(a)+1) = 1

]∣∣ ≥ 1

m(a+ n(a)) · γ′(a+ n(a))
.

By taking a polynomial γ satisfying m(a+n(a)) ·γ′(a+n(a)) ≤ γ(n(a)), the above inequality shows
that RO 1/γ-distinguishes G for any O 1/γ′-avoiding G′.

Lemma 3 also implies a nonadaptive BB reduction from distinguishing AIPRG to a distributional
NP problem.

Lemma 4. For any auxiliary-input function G stretching its input and polynomial δ, there exist a
language L ∈ NP, a polynomial γ, and a randomized polynomial-time oracle machine R? such that
for any errorless heuristic oracle O for (L,U) of failure probability 1/δ, RO 1/γ-distinguishes G.
Moreover, R? is nonadaptive.

15

Proof. Define polynomials γ′(n) = δ(2n)
δ(2n)−2 and m(n) = 2n. By Lemma 3 for G and m, there exist

a polynomial γ and a nonadaptive BB reduction R1 from 1/γ-distinguishing G to 1/γ′-avoiding G′.
We define the language L in the lemma by L := ImG′ = {G′(x) : x ∈ {0, 1}∗}. Since G′ is

polynomial-time computable, L ∈ NP.
Since δ is polynomial, there exists n0 ∈ N such that 2n/2 ≥ 1/δ(n) for any n ≥ n0. Now we

construct a nonadaptive BB reduction R2 from 1/γ′-avoiding G′ to an errorless heuristic scheme for
(L,U) of failure probability 1/δ as Algorithm 2.

Algorithm 2: R2 (a nonadaptive BB reduction from avoiding G′ to (L,U))

Input : y ∈ {0, 1}2n
Oracle : O (an errorless heuristic scheme for (L,U) of failure probability 1/δ)

1 if 2n < n0 then
2 check whether y ∈ Im(G) by the brute-force search, if so, return 0, otherwise, return 1
3 end
4 query b← O(y);
5 if b ∈ {1,⊥} then return 0;
6 else return 1;

We show that R2 is a reduction from 1/γ′-avoiding G′ to an errorless heuristic scheme for (L,U)
of failure probability 1/δ. Then by combining R1 and R2, we have a nonadaptive BB reduction R
from 1/γ-distinguishing G′ to an errorless heuristic scheme for (L,U) of failure probability 1/δ.

Let y ∈ {0, 1}2n be the input for R2. When 2n < n0 holds, R2 can perfectly determine whether
y ∈ ImG′ and achieve the trivial threshold τn in the definition. Therefore, we consider only the case
where 2n ≥ n0.

Assume that the given oracle O is an errorless heuristic scheme of failure probability at most
1/δ, then we have that

y ∈ L (= ImG) =⇒ O(y) ∈ {1,⊥} and Pr
y∼{0,1}2n

[O(y) = ⊥] ≤ δ(2n).

By the first implication and line 5, when y is generated by G, RO2 (y) always outputs 0. The
upper bound on the probability that RO2 outputs 0 is given as follows:

Pr
y∼{0,1}2n

[RO(y) = 0] = Pr
y∼{0,1}2n

[O(y) = ⊥ or 1]

≤ Pr
y∼{0,1}2n

[O(y) = ⊥] + Pr
y∼{0,1}2n

[O(y) = 1]

≤ Pr
y∼{0,1}2n

[O(y) = ⊥] + Pr
y

[y ∈ G({0, 1}n)] (∵ O(y) = 1⇒ y ∈ G({0, 1}n))

≤ 1

δ(2n)
+ 2−n ≤ 2

δ(2n)
= 1− 1

γ′(n)
. (∵ 2n ≥ n0)

Lemma 4 and Fact 2 immediately imply Theorem 1 as follows.

Proof of Theorem 1. By Lemma 4, there exist an NP-language L′, a polynomial γ, and a nonadaptive
BB reduction R? from 1/γ-distinguishing G to an errorless heuristic scheme for (L′, U) of failure
probability 1/n. By combining R with the nonadaptive BB reduction in the assumption from L to
1/γ-distinguishing G, we can construct a nonadaptive BB reduction from L to an errorless heuristic

16

scheme for (L′, U) of failure probability 1/n. Thus, by Fact 2, the polynomial hierarchy collapses
at the third 6 level.

7 On Basing Auxiliary-Input One-Way Function

In this section, we formally show Theorem 2 based on the idea in Section 4.2.

Theorem 2. For any auxiliary-input function f = {fz : {0, 1}n → {0, 1}`}z∈{0,1}∗ and polynomial
p, if there exists a nonadaptive BB reduction from an NP-hard language L to (1− 1/p)-inverting f ,
then NP * BPP also implies that a one-way function exists (via an adaptive BB reduction).

First, we introduce the following reduction from inverting AIOWF to a distributional NP prob-
lem, which immediately follows from Lemma 4 in Section 6.

Lemma 5. For any auxiliary-input function f and reciprocals δ, δ′ of polynomial, there exist an
NP-language L and a randomized polynomial-time oracle machine R? such that for any errorless
heuristic oracle O for (L,U) of failure probability δ′, RO (1− δ)-inverting f .

Proof. The lemma follows from Lemma 4 and the construction of auxiliary-input pseudorandom
generator based on an auxiliary-input (weak) one-way function (e.g., H̊astad et al., 1999).

Now we give the full proof of Theorem 2.

Proof of Theorem 2. Let RL→f be the nonadaptive BB reduction from L to (1 − δ)-inverting f .
W.l.o.g, we can assume that the failure probability is at most 1/16 instead of 1/3 (by taking
majority vote of parallel executions) and the distributions on query are identical regardless of the
query position (by adapting random permutation before asking them). We can also assume that
the running time tRL→f (m), query complexity qRL→f (m), and the length of random bits rRL→f (m)
are increasing for the input size m.

By Lemma 5, there exist an NP-language L′ and a BB reduction Rf→L′ from (1 − δ)-inverting
f to an errorless heuristic scheme for (L′, U) of failure probability δ. Since L′ is in NP and L is
NP-hard, there exists a Karp reduction RL′→L from L′ to L. W.l.o.g., |RL′→L(x)| ≤ p(|x|) for some
(increasing) polynomial p.

We define polynomials q(·), r(·), and a(·) as follows:

q(m) := qRL→f (p(m)), r(m) := rRL→f (p(m)), a(m) := tRL→f (p(m))

On the execution of RL→f (RL′→L(x)) where x ∈ {0, 1}m, the number of queries, the number of
random bits, and the length of queries are bounded above by q(m), r(m), and a(m), respectively.

We also define a Turing machine Qm : {0, 1}m × {0, 1}r(m) → {0, 1}≤a(m) as Qm(x, s) outputs
an auxiliary-input of the first query generated by RL→f (RL′→L(x); s).

Now we construct a family of functions g = {gm : {0, 1}m+r(m)+n(a(m)) → {0, 1}∗}m∈N by

gm(x) =
〈
z, fz(x

f
[n(|z|)])

〉
,

where x→m,r(m),n(a(m)) x
L′ ◦ s ◦ xf and z = Qm(xL

′
, s).

Since f and Qm are polynomial-time computable, g is also polynomial-time computable. We
will show that if g is not one-way, then NP ⊆ BPP. This immediately yields Theorem 2.

6In fact, by more careful simulation technique for HSG by Hirahara and Watanabe (2020), we can improve the
consequence on the collapse of polynomial hierarchy at the second level.

17

For simplicity, we consider that gm takes as input a triple of length m, r(m), and N(m) :=
n(a(m)), respectively. Assume that g is not one-way. Then there exists a randomized polynomial-
time algorithm A such that for any m ∈ N,

Pr
A,Um,Ur(m),UN(m)

[
A(gm(Um, Ur(m), UN(m))) /∈ g−1

m (gm(Um, Ur(m), UN(m)))
]
≤ δ(m) · δ(N(m))

512 · q(m)
.

We also define a randomized polynomial-time algorithm Af by

Af (z, y; sA) =

{
x

(3)
[n(|z|)] (if (x(1), x(2), x(3))← A(z, y; sA) and z = Qm(x(1), x(2)))

⊥ (otherwise).

For any m ∈ N, xL
′ ∈ {0, 1}m, s ∈ {0, 1}r(m), xf ∈ {0, 1}N(m), random bits sA ∈ {0, 1}∗ for A and

Af , and z := Qm(xL
′
, s), we have that

A(gm(xL
′
, s, xf); sA) ∈ g−1

m (gm(xL
′
, s, xf))

⇐⇒ gm(A(gm(xL
′
, s, xf); sA)) = gm(xL

′
, s, xf)

(
=
〈
z, fz(x

f
[n(|z|)])

〉)
⇐⇒ z = Qm(x(1), x(2)) and fz(x

(3)
[n(|z|)]) = fz(x

f
[n(|z|)]) where (x(1), x(2), x(3))← A(gm(xL

′
, s, xf); sA)

⇐⇒ fz(A
f (gm(xL

′
, s, xf); sA)) = fz(x

f
[n(|z|)])

⇐⇒ Af (z, fz(x
f
[n(|z|)]); sA) ∈ f−1

z (fz(x
f
[n(|z|)])). (1)

Fix m ∈ N arbitrarily. Let r := r(m), N := N(m) and q := q(m). We divide instances on L′

into three sets BL′
m , G

L′
m , and NL′

m (which stand for bad, good, and neutral, respectively) as

BL′
m :=

{
x ∈ {0, 1}m : Pr

A,Ur,UN

[
A(gm(x, Ur, UN)) /∈ g−1

m (gm(x, Ur, UN))
]
>

δ(N)

216 · q

}
,

GL
′

m :=

{
x ∈ {0, 1}m : Pr

A,Ur,UN

[
A(gm(x, Ur, UN)) /∈ g−1

m (gm(x, Ur, UN))
]
≤ δ(N)

512 · q

}
,

NL′
m := {0, 1}m \ (BL′

m ∪GL
′

m).

Now fix any (not-bad) instance x ∈ GL
′

m ∪ NL′
m . We also define good and bad sets on the

randomness for A. Let rA be a polynomial such that rA(m) is the number of random bits used by
A for inverting gm. Then we define the bad and good sets of randomness of A by

BA
m,x :=

{
sA ∈ {0, 1}rA(m) : Pr

Ur,UN

[
A(gm(x, Ur, UN ; sA)) /∈ g−1

m (gm(x, Ur, UN))
]
>
δ(N)

16 · q

}
,

GAm,x := {0, 1}rA(m) \BA
m,x.

For any good random bits sA ∈ GAm,x, we define a bad set Bf
m,x,sA on auxiliary-input of f as

Bf
m,x,sA

:=

{
z ∈ {0, 1}≤a(m) : Pr

Un(|z|)

[
Af (z, fz(Un(|z|)); sA) /∈ f−1

z (fz(Un(|z|)))
]
> δ(n(|z|))

}
.

Consider a function Om,x,sA : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ by

Om,x,sA(z, y) =

{
Af (z, y; sA) z ∈ {0, 1}≤a(m) \Bf

m,x,sA

xz,y z ∈ Bf
m,x,sA or z ∈ {0, 1}>a(m),

where xz,y is the lexicographically first element of f−1
z (y) if any, otherwise xz,y = 0.

First we show that the above Om,x,sA(z, y) is indeed a (1− δ)-inverting oracle for f .

18

Claim 1. For any m ∈ N, x ∈ GL′m ∪NL′
m , and sA ∈ GAm,x, Om,x,sA (1− δ)-inverts f .

Proof of Claim 1. Fix m ∈ N, x ∈ GL′m , and sA ∈ GAm,x arbitrarily. If z ∈ Bf
m,x,sA ∪ {0, 1}>a(m), by

the definition of Om,x,sA , Om,x,sA(z, y) must output the first inverse element of y if any.

If z ∈ {0, 1}≤a(m) \Bf
m,x,sA , then we have that

Pr
x∼{0,1}n(|z|)

[Om,x,sA(z, fz(x)) /∈ f−1
z (fz(x))] = Pr

x
[Af (z, fz(x); sA) /∈ f−1

z (fz(x))] ≤ δ(n(|z|)),

where the last inequality holds because z is not contained in Bf
m,x,sA .

Note that, by Claim 1, we have that for any x′ ∈ {0, 1}∗,

Pr
RL→f

[R
Om,x,sA
L→f (x′) 6= L(x′)] ≤ 1/16. (2)

If we can construct a randomized errorless heuristic scheme B for (L′, U) of failure probability
at most δ, then B and Rf→L′ yield a randomized polynomial-time algorithm (1−δ)-inverting f . By
using RL→f , we have also a randomized polynomial-time algorithm for L. Since L is NP-hard, this
implies NP ⊆ BPP. Therefore, the remaining part is to construct the randomized errorless heuristic
scheme B.

Now we construct B by using A, RL′→L, and RL→f as Algorithm 3.

Algorithm 3: B (a randomized errorless heuristic scheme for (L′, U))

Input : x ∈ {0, 1}m

1 estimate the failure probability of A

2 let c := 0, M := 221·q2(m)
δ2(N(m))

;

3 repeat M times do

4 select s← {0, 1}r(m), xf ←u {0, 1}N(m) and compute y = gm(x, s, xf);

5 execute (x̄(1), x̄(2), x̄(3))← A(y);

6 if gm(x̄(1), x̄(2), x̄(3))) 6= y (fail in inverting) then c := c+ 1;

7 if c > M · 3·δ(N(m))
1024·q(m) then return ⊥;

8 select random bits for Af as sA ←u {0, 1}rA(m);
9 execute x′ ← RL′→L(x);

10 execute RL→f (x′) where for each query (z, y), answer Af (z, y; sA);
11 if RL→f (x′) halts and outputs a value b, then return b;

We show that B is a randomized errorless heuristics for (L′, U). In the subsequent argument, we
use x to denote the input for B. Let m = |x|. By Hoeffding inequality, we can show the following
claim on lines 1-7.

Claim 2. 1. If x ∈ BL′
m , then PrB[B(x) = ⊥] ≥ 15/16

2. If x ∈ GL′m , then PrB[B(x) = ⊥] ≤ 1/16.

Proof of Claim 2. (1) For each i-th trial in line 3, consider a Bernoulli random variable Xi which
takes 1 if A fails in inverting gm, otherwise 0. By the definition of x ∈ BL′

m ,

µ := E[Xi] >
δ(N(m))

216 · q
.

19

Therefore, we have that

Pr
B

[B(x) 6= ⊥] = Pr

[
M∑
i=1

Xi ≤M ·
3 · δ(N(m))

1024 · q(m)

]

≤ Pr

[
1

M

M∑
i=1

Xi − µ ≤ −
δ(N(m))

1024 · q(m)

]

≤ exp

(
−2 · δ

2(N(m))

220 · q2(m)
·M
)

= e−4 <
1

16
,

where the second inequality follows from the Hoeffding inequality.
(2) We use the same notation about Xi and µ. In the case where x ∈ GL′m , we have that

µ := E[Xi] ≤
δ(N(m))

512 · q
.

Thus, by using the Hoeffding inequality again,

Pr
B

[B(x) = ⊥] = Pr

[
M∑
i=1

Xi > M · 3 · δ(N(m))

1024 · q(m)

]

≤ Pr

[
1

M

M∑
i=1

Xi − µ ≤
δ(N(m))

1024 · q(m)

]
≤ exp

(
−2 · δ

2(N(m))

220 · q2(m)
·M
)
<

1

16
.

By Claim 2, we can show the following claims:

Claim 3. Prx∼{0,1}m [x ∈ BL′
m ∪NL′

m] ≤ δ(m).

Claim 4. If x ∈ GL′m , then PrB[B(x) = L′(x)] ≥ 3/4.

Claim 5. If x ∈ NL′
m , then PrB[B(x) ∈ {L′(x),⊥}] ≥ 3/4.

Assume that the above three claims hold. Then we can show that B is a randomized errorless
heuristic scheme as follows: For the condition on errorless, by Claims 2-(1), 4, and 5, for any
instance x ∈ {0, 1}m, B(x) ∈ {L′(x),⊥} with probability at least 3/4. For the condition on the
failure probability, Claims 2-(1), 4, and 5 imply that B(x) outputs ⊥ with probability at least 3/4
only if x ∈ BL′

m ∪NL′
m . By Claim 3, the latter event occurs with probability at most δ(m) over the

uniform choice of x ∈ {0, 1}m.
Therefore, the remaining part is only to show Claims 3, 4, and 5.

Proof of Claim 3. By the definitions of BL′
m and NL′

m ,

BL′
m ∪NL′

m =

{
x ∈ {0, 1}m : Pr

A,Ur,UN

[
A(gm(x, Ur, UN)) /∈ g−1

m (gm(x, Ur, UN))
]
>

δ(N)

512 · q

}
.

Remember that A satisfies

Pr
A,Um,Ur,UN

[
A(gm(x, Ur, UN)) /∈ g−1

m (gm(x, Ur, UN))
]
≤ δ(m) · δ(N)

512 · q
.

By Lemma 1, we have that Prx∼{0,1}m [x ∈ BL′
m ∪NL′

m] ≤ δ(m).

20

Claims 4 and 5 are immediately implied by the following Claim 6. Therefore, first we show
Claims 4 and 5 by assuming Claim 6 then we show Claim 6.

Claim 6. If x ∈ GL′m ∪NL′
m , then PrB[B(x) = ¬L′(x)|B(x) 6= ⊥] ≤ 3/16.

Proof of Claim 4. If x ∈ GL′m , then

Pr
B

[B(x) 6= L′(x)] = Pr
B

[B(x) = ¬L′(x) or B(x) = ⊥]

= Pr
B

[B(x) = ⊥] + Pr
B

[B(x) = ¬L′(x)|B(x) 6= ⊥]

≤ 1/16 + 3/16 = 1/4,

where the last inequality follows from Claims 2-(2) and 6.

Proof of Claim 5. If x ∈ NL′
m , then

Pr
B

[B(x) ∈ {L′(x),⊥}] = Pr
B

[B(x) = ⊥] + Pr
B

[B(x) = L′(x)|A(x) 6= ⊥]

≥ Pr
B

[B(x) = L′(x)|B(x) 6= ⊥] ≥ 13/16 > 3/4,

where the last inequality follows from Claim 6.

Proof of Claim 6. By the assumption that x ∈ GL′m ∪NL′
m , we have that

Pr
A,Ur,UN

[
A(gm(x, Ur, UN)) /∈ g−1

m (gm(x, Ur, UN))
]
≤ δ(N)

216 · q
.

By Lemma 1,

Pr
sA∼{0,1}rA

[sA ∈ BA
m,x] ≤ 1

16
. (3)

Therefore, we assume that B succeeds in selecting a good sA ∈ GAm,x. By Claim 1, if B could simulate

Om,x,sA in line 10 instead of Af (· ; sA), then RL→f can recognize L′(x) with high probability.
As shown below, however, answer by Af (· ; sA) is consistent with answer by Om,x,sA with high
probability over the choice of random bits for RL→f .

Let (z, y) be a query generated by RL→f . By the definition ofOm,x,sA , Af (z, y; sA) is inconsistent

with Om,x,sA(z, y) only if (a) z ∈ Bf
m,x,sa or (b) |z| > a(m). Since a(m) is the upper bound on the

length of queries by RL→f (RL′→L(x)), the latter case (b) never occurs.
Thus, we bound above on the probability that the event (a) occurs. For the choice of the

randomness s ∈ {0, 1}r(m) to execute RL→f , define a bad set B
RL→f
m,x,sA by

B
RL→f
m,x,sA :=

{
s ∈ {0, 1}r(m) : Pr

UN(m)

[
A(gm(x, s, UN(m); sA)) /∈ g−1

m (gm(x, s, UN(m)))
]
> δ(N(m))

}
.

Since sA ∈ GAm,x, we have that

Pr
Ur(m),UN(m)

[
A(gm(x, Ur(m), UN(m); sA)) /∈ g−1

m (gm(x, Ur(m), UN(m)))
]
≤ δ(N(m))

16 · q(m)

By Lemma 1,

Pr
s∼{0,1}r(m)

[
s ∈ BRL→f

m,x,sA

]
≤ 1

16 · q(m)
.

21

We define the event Ex over the choice of random bits for RL→f by

Ex :=
(
RL→f (RL′→L(x)) makes the first query (z, y) such that z ∈ Bf

m,x,sa

)
.

Then by the definitions of Qm and gm,

Pr
RL→f

[Ex] = Pr
s∼{0,1}r(m)

[Qm(x, s) ∈ Bf
m,x,sA

]

≤ Pr
s∼{0,1}r(m)

[
z ← Qm(x, s); Pr

Un(|z|)

[
Af (z, fz(Un(|z|)); sA) /∈ f−1

z (fz(Un(|z|)))
]
> δ(n(|z|))

]
≤ Pr

s∼{0,1}r(m)

[
Pr

UN(m)

[
A(gm(x, s, UN(m)); sA) /∈ g−1

m (gm(Un(m)))
]
> δ(N(m))

]
(∵ (1))

= Pr
s∼{0,1}r(m)

[
s ∈ BRL→f

m,x,sA

]
≤ 1

16 · q(m)
.

Since each query distribution by RL→f is identical to the first query distribution, by the union
bound, we have that

Pr
RL→f

[the event (a) occurs]

= Pr
RL→f

[RL→f (RL′→L(x)) makes at least one query (z, y) such that z ∈ Bf
m,x,sa]

≤ q(m) · Pr
RL→f

[Ex] ≤ q(m) · 1

16 · q(m)
=

1

16
.

Therefore, we have that

Pr
RL→f

[R
Om,x,sA
L→f (RL′→L(x)) 6= R

Af (·;sA)
L→f (RL′→L(x))] ≤ Pr

RL→f
[the event (a) occurs] ≤ 1/16. (4)

Since RL′→L is a Karp reduction from L′ to L, L′(x) = L(RL′→L(x)) holds. By the inequality (2),

Pr
RL→f

[R
Om,x,sA
L→f (RL′→L(x)) 6= L′(x)] ≤ 1/16. (5)

By the union bound, we conclude that (under the condition that B does not output ⊥ in line 7)

Pr
B

[B(x) 6= L′(x)] ≤ Pr
sA

[sA ∈ BA
m,x] + Pr

sA,RL→f
[R

Af (·;sA)
L→f (RL′→L(x)) 6= L′(x)|sA /∈ BA

m,x]

≤ Pr
sA

[sA ∈ BA
m,x] + Pr

sA,RL→f
[R
Om,x,sA
L→f (RL′→L(x)) 6= L′(x)|sA /∈ BA

m,x]

+ Pr
sA,RL→f

[R
Af (·;sA)
L→f (RL′→L(x)) 6= R

Om,x,sA
L→f (RL′→L(x))|sA /∈ BA

m,x]

≤ 1

16
+

1

16
+

1

16
=

3

16
.

where the last inequality follows from inequalities (3), (4), and (5).

22

8 On Basing Auxiliary-Input Hitting Set Generator

In this section, we formally show Theorem 3 based on the idea in Section 4.3.

Theorem 3. Let p be a polynomial and G := {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an auxiliary-
input function where `(n) > (1 + ε) · n for some constant ε > 0. If there exists a nonadaptive BB
reduction from an NP-hard language L to (1− 1/p)-avoiding G, then NP * BPP also implies that a
one-way function exists (via an adaptive BB reduction).

Theorem 3 obviously follows from Lemma 6 and Theorem 2.

Lemma 6. Let δ be a reciprocal of polynomial and G := {Gz : {0, 1}n → {0, 1}`(n)}z∈{0,1}∗ be an
auxiliary-input function where `(n) > (1+ε)·n for some constant ε > 0. If there exists a nonadaptive
BB reduction from an NP-hard language L to (1− δ)-avoiding G, then there exist another auxiliary-
input function f and a reciprocal δ′ of polynomial such that there exists a nonadaptive BB reduction
from L to (1− δ′)-inverting f .

Proof of Lemma 6. Let ε′ = ε/2 and R? be the nonadaptive BB reduction from L to (1−δ)-avoiding
G. W.l.o.g, we can assume that R? makes q(m) queries on input x ∈ {0, 1}m where q is polynomial
and all q(m) distributions on query generated by R are identical regardless of query position by
applying a random permutation before asking them.

Fix input x ∈ {0, 1}m arbitrarily. Let Qx be the distribution on the first query by R(x) (which is

identical to query distributions in other query positions). Let Q
(1)
x be the distribution on auxiliary-

input of Qx.
Fix a length a ∈ N of auxiliary-input arbitrarily. Let n := n(a) and ` := `(n). We divide possible

queries into three sets Hx, Lx and Mx (which stand for heavy, light, and medium, respectively) as
follows:

Hx :=

{
(z, y) ∈ {0, 1}n × {0, 1}` : px(y|z) > 64

2(1+ε′)n

}
,

Lx :=

{
(z, y) ∈ {0, 1}n × {0, 1}` : px(y|z) ≤ 1

2(1+ε′)n

}
,

Mx :=
(
{0, 1}n × {0, 1}`

)
\ (Hx ∪ Lx) ,

where px(y|z) = Pr[(z, y)← Qx|z ← Q
(1)
x].

Now we define a set Tx,a composed of all statistical tests T : {0, 1}a×{0, 1}` → {0, 1} satisfying
following conditions: for any z ∈ {0, 1}a,

1. y ∈ Im(Gz) =⇒ T (z, y) = 0

2. (y /∈ Im(Gz) ∧ (z, y) ∈ Hx) =⇒ T (z, y) = 0

3. (y /∈ Im(Gz) ∧ (z, y) ∈ Lx) =⇒ T (z, y) = 1

Since δ(n) is a reciprocal of polynomial, − log δ(n) = O(log n). Therefore, there exists n0 ∈ N such
that for any n ≥ n0, n ≥ 1

ε′ (1− log δ(n)) holds. In the following claim, we show that each element
in Tx,a avoids Gz for large enough a.

Claim 7. For any x ∈ {0, 1}m and a ∈ N, if n(a) ≥ n0, then any T ∈ Tx,a (1 − δ)-avoids Gz for
any z ∈ {0, 1}a

23

Proof. Fix T ∈ Tx,a arbitrarily. Since T satisfies the condition 1, we have that T (z, y) = 0 for any
z ∈ {0, 1}a and y ∈ Im(Gz). Thus, it is enough to show that

Pr
y∼{0,1}`(n(a))

[T (z, y) = 0] ≤ δ(n(a)).

Since T also satisfies the condition 3,

Pr
y∼{0,1}`

[T (z, y) = 0] ≤ Pr
y∼{0,1}`

[y ∈ Im(Gz) ∨ (y, z) /∈ Lx]

≤ Pr
y∼{0,1}`

[y ∈ Im(Gz)] + Pr
y∼{0,1}`

[(y, z) ∈ Hx ∪Mx]

≤ 2n

2`
+ Pr
y∼{0,1}`

[(y, z) ∈ Hx ∪Mx].

Notice that if ∣∣∣{y ∈ {0, 1}` : px(y|z) > 2−(1+ε′)n
}∣∣∣ > 2(1+ε′)n,

then,

1 =
∑

y∈{0,1}`
px(y|z) ≥

∑
y∈{0,1}`:

(y,z)∈Hx∪Mx

px(y|z) > 2−(1+ε′)n · 2(1+ε′)n = 1.

Hence, we have that∣∣∣{y ∈ {0, 1}` : (y, z) ∈ Hx ∪Mx

}∣∣∣ =
∣∣∣{y ∈ {0, 1}` : px(y|z) > 2−(1+ε′)n

}∣∣∣ ≤ 2(1+ε′)n.

Therefore,

Pr
y∼{0,1}`

[T (z, y) = 0] ≤ 2n

2`
+ Pr
y∼{0,1}`

[(y, z) ∈ Hx ∪Mx]

≤ 2n

2`
+

2(1+ε′)n

2`

≤ 2n(1 + 2ε
′n)

2(1+2ε′)n
≤ 2ε

′n+1

22ε′n
=

2

2ε′n
≤ δ(n(a)). (∵ n(a) ≥ n0)

For x ∈ {0, 1}m and a family of statistical tests {Ta}a∈N where Ta ∈ Tx,a, we define a function
O{Ta} : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ by

O{Ta}(z, y) =


1 if |y| 6= `(n(|z|))
1l{y ∈ Im(Gz)} if |y| = `(n(|z|)) ∧ (2ε

′n(|z|) ≤ 210 · q(m) ∨ n(|z|) < n0)

T|z|(z, y) otherwise.

We define sets Tx and T of functions by Tx :=
{
O{Ta}a∈N : Ta ∈ Tx,a

}
and T =

⋃
x∈{0,1}∗ Tx. Then

Claim 7 implies that any O ∈ T (1− δ)-inverts G and thus, for any x ∈ {0, 1}∗,

Pr
R

[RO(x) 6= L(x)] ≤ 1/3. (6)

We can assume that R?(m) uses at most r(m) random bits for any m ∈ N to create its q(m)
queries, where r(·) is a polynomial. Let s(·) be a polynomial satisfying that for any m ∈ N and

24

x ∈ {0, 1}m, the first query by R?(x) is generated by an s(r(m))-size circuit which takes r(m)
random bits as input.

We construct a randomized polynomial-time algorithm A for L as Algorithm 4 by using the
universal extrapolation algorithm Exts(n) with ε = 1 and δ(r(m)) = 1

32·q(m) in Lemma 2. Remark

that A uses Exts(n) nonadaptively (in line 3). Since Exts(n) uses an inverting oracle for a certain
auxiliary-input function f , this yields a nonadaptive BB reduction from L to inverting f .

Algorithm 4: A (a randomized algorithm for L)

Input : x ∈ {0, 1}m

1 execute R?(x) and make q(m) queries (z1, y1), . . . , (zq(m), yq(m));

2 embed x to R? and create s(r(m))-size circuits Cx(r) and C
(1)
x (r) generating the first query

and the auxiliary-input in the first query of R?(x; r), respectively;

3 execute p̃i ← Exts(n)(Cx, (zi, yi)) and p̃′i ← Exts(n)(C
(1)
x , zi) for each i ∈ [q(m)];

4 for i := 1 to q(m) do
5 let ni := n(|zi|);
6 answer the i-th query (zi, yi) as follows:
7 if ∃j < i such that (zj , yj) = (zi, yi) then return the same answer as the j-th query;

8 else if ni < n0 or 2ε
′ni ≤ 210 · q(m) then find the answer by brute-force search and

return it (note that the latter condition implies 2ni ≤ (210 · q(m))1/ε′ ≤ poly(m));

9 else if p̃i
p̃′i
≤ 8

2(1+ε
′)ni

then return 1;

10 else return 0;

11 if R?(x) halts and outputs b ∈ {0, 1} then return the same value b;

We will show that A indeed solves L. It is not hard to see that A is polynomial-time computable
and executes Exts(n) 2q(m) times for the input of size m. Since the failure probability of each

execution is at most 1
32·q(m) , the probability that at least one of the executions fails is at most 1/16.

We assume that all executions of Exts(n) will not fail. For x ∈ {0, 1}∗ and a ∈ N, we define a

set T ′x,a composed of all statistical tests T ′ : {0, 1}a×{0, 1}`(n(a)) → {0, 1} satisfying the followings:
for any z ∈ {0, 1}a,

i. (z, y) ∈ Hx =⇒ T ′(z, y) = 0;

ii. (z, y) ∈ Lx =⇒ T ′(z, y) = 1;

For a family of statistical tests {T ′a}a∈N where T ′a ∈ T ′x,a, we define a function O{T ′a} : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ in the same way as Tx,a. We also define the sets T ′x and T ′ of functions by
T ′x :=

{
O{T ′a}a∈N : T ′a ∈ T ′x,a

}
and T ′ =

⋃
x∈{0,1}∗ T ′x.

By the correctness of Exts(n), we have that for each i ∈ [q(m)],

1

8
· px(yi|zi) ≤

1
2 · Pr[(zi, yi)← Qx]

4 · Pr[zi ← Q
(1)
x]

≤ p̃i
p̃′i
≤ 4 · Pr[(zi, yi)← Qx]

1
2 · Pr[zi ← Q

(1)
x]

≤ 8 · px(yi|zi).

Therefore,

(yi, zi) ∈ Lx =⇒ p̃i
p̃′i
≤ 8 · px(yi|zi) ≤

8

2(1+ε′)n
,

25

and

(yi, zi) ∈ Hx =⇒ p̃i
p̃′i
≥ 1

8
· px(yi|zi) >

8

2(1+ε′)n
.

Hence, for any x ∈ {0, 1}∗, A(x) answers each query of R?(x) by some oracle O′ in T ′x unless
Exts(n) will not fail. Thus, if the values of O′ is consistent with some O ∈ T , then A(x) can
correctly simulate (1− δ)-inverting oracle for G. This motivates us to show the following claim.

Claim 8. For any m ∈ N, x ∈ {0, 1}m, and O′ ∈ T ′x, there exists O ∈ Tx such that

Pr
R

[
RO

′
(x) 6= RO(x)

]
≤ 1

16
.

First, we assume that Claim 8 holds. Notice that if the following three events occur on the
execution of A(x), then A(x) outputs L(x) correctly:

1. Exts(n) does not fail, that is, A simulates some oracle O′ ∈ T ′x;

2. RO
′
(x) = RO(x) where O ∈ Tx is the oracle in Claim 8;

3. RO(x) = L(x);

By Claim 8 and inequality (6), the probability that each of events 1–3 does not occur is at most
1/16, 1/16, and 1/3, respectively. Therefore, for any x ∈ {0, 1}∗,

Pr
A

[A(x) 6= L(x)] ≤ 1

16
+

1

16
+

1

3
=

11

24
<

1

2
.

Thus, the remaining part is to show Claim 8.

Proof of Claim 8. Fix x ∈ {0, 1}m and O′ ∈ T ′x arbitrarily. By the definition of T ′x, there exists a
family of statistical tests {T ′a}a∈N where T ′a ∈ T ′x,a such that O′ ≡ O′{T ′a}.

For each a ∈ N, we define a statistical test Ta : {0, 1}a × {0, 1}`(n(a)) → {0, 1} by

Ta(z, y) =

{
0 if y ∈ Im(Gz)

T ′a(z, y) otherwise.

We also define O := O{Ta}. It is easily checked that Ta ∈ Tx,a. Thus, O ∈ Tx.
We have that

Pr
R

[
RO

′
(x) 6= RO(x)

]
≤ Pr

R

[
R?(x) queries (z, y) such that O(z, y) 6= O′(z, y)

]
.

Thus, we will bound the latter probability above by 1/16.

O(z, y) 6= O′(z, y)

=⇒ 2ε
′n(|z|) > 210 · q(m) and T|z|(z, y) 6= T ′|z|(z, y) (∵ definitions of O and O′)

⇐⇒ 2ε
′n(|z|) > 210 · q(m) and y ∈ Im(Gz) and T ′|z|(z, y) = 1 (∵ definitions of Ta and T ′a)

=⇒ 2ε
′n(|z|) > 210 · q(m) and y ∈ Im(Gz) and (z, y) /∈ Hx (∵ definition of T ′x).

26

For each position j ∈ [q(m)],

Pr
R

[
R?(x) queries (z, y) such that O(z, y) 6= O′(z, y) at the j-th query

]
= Pr

(z,y)←Qx

[
O(z, y) 6= O′(z, y)

]
≤ Pr

(z,y)←Qx

[
2ε
′n(|z|) > 210 · q(m) and y ∈ Im(Gz) and (z, y) /∈ Hx

]
=

∑
z∈{0,1}∗:

2ε
′n(|z|)>210·q(m)

Pr
(z′,y)←Qx

[
y ∈ Im(Gz′) and (z′, y) ∈ Lx ∪Mx|z′ = z

]
· Pr
z′←Q(1)

x

[z′ = z]

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>210·q(m)

∑
y∈Im(Gz):

(z,y)∈Lx∪Mx

Pr
(z′,y′)←Qx

[
y′ = y|z′ = z

]
· Pr
z′←Q(1)

x

[z′ = z]

=
∑

z∈{0,1}∗:
2ε
′n(|z|)>210·q(m)

∑
y∈Im(Gz):

(z,y)∈Lx∪Mx

px(y|z) · Pr
Q

(1)
x

[z ← Q(1)
x]

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>210·q(m)

∑
y∈Im(Gz):

(z,y)∈Lx∪Mx

64

2(1+ε′)n(|z|) · Pr
Q

(1)
x

[z ← Q(1)
x] (∵ (z, y) ∈ Lx ∪Mx)

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>210·q(m)

|Im(Gz)| ·
64

2(1+ε′)n(|z|) · Pr
Q

(1)
x

[z ← Q(1)
x]

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>210·q(m)

64

2ε′n(|z|) · Pr
Q

(1)
x

[z ← Q(1)
x] (∵ |Im(Gz)| ≤ 2n(|z|))

≤
∑

z∈{0,1}∗:
2ε
′n(|z|)>210·q(m)

1

16 · q(m)
· Pr
Q

(1)
x

[z ← Q(1)
x] (∵ 2ε

′n(|z|) > 210 · q(m))

≤ 1

16 · q(m)
·
∑

z∈{0,1}∗
Pr
Q

(1)
x

[z ← Q(1)
x] =

1

16 · q(m)
.

By union bound, we conclude that

Pr
R

[
R?(x) queries (z, y) such that O(z, y) 6= O′(z, y)

]
≤ q(m)

16 · q(m)
=

1

16
.

9 Oracle Separation between AIOWF and OWF

To show Theorem 4, we introduce the auxiliary-input analog of the random function oracle.

Definition 12 (Auxiliary-input embedded random function). Let r, r′ be random values indepen-
dently selected according to the uniform distribution over [0, 1]. For each n ∈ N, we define a target

27

auxiliary-input zn ∈ {0, 1}n by letting i-th bit of zn be (n(n−1)
2 + i)-th bit of the binary representation

of r. We define an auxiliary-input embedded random function F = {Fz : {0, 1}|z| → {0, 1}|z|}z∈N by

Fz(x)i =

{(
(2 · (2n − 2 + xN) + 1) · 2i

)
-th bit of the binary representation of r′ if z = zn

0 if z 6= zn.

Note that the position (2 · (2n − 2 + xN) + 1) · 2i is uniquely determined by n ∈ N, x ∈ {0, 1}n,
and i ∈ [n] because any integer is uniquely expressed as (2m1 + 1) · 2m2 for m1,m2 ∈ N ∪ {0}.

On access to F as an oracle, we assume that F(x) returns a default value 0 for invalid input x
which does not take the form of 〈z, x′〉 with |z| = |x′|. Note that we express a random choice of
(r, r′) over [0, 1]2 as a random choice of an auxiliary-input embedded random function F .

For each choice of auxiliary-input embedded random function F , we define an oracle OF :
{0, 1}∗ → {0, 1}∗ by

OF (x) =


0 if |x| = 1

F(x′) if x = 0 ◦ x′

TQBF(x′) if x = 1 ◦ x′.
For AIOWF, we can show the following lemma, which shows the intractability of inverting an

auxiliary-input embedded random function.

Lemma 7. With probability 1 over the choice of an auxiliary-input embedded random function F ,
all randomized polynomial-time oracle machines A? and c ∈ N satisfy that for any sufficiently large
n ∈ N,

Pr
A,Un

[AOF (zn,Fzn(Un)) ∈ F−1
zn (Fzn(Un))] < n−c,

where zn ∈ {0, 1}n is a target auxiliary-input of F .

The above lemma is shown essentially by the same argument by Rudich (1988:Section 6). For
completeness, we will give the full proof of Lemma 7 later.

On the other hand, we can show the following lemma for OWF.

Lemma 8. With probability 1 over the choice of an auxiliary-input embedded random function F ,
for any polynomial-time oracle machine F ?, there exists a polynomial-time oracle machine A? such
that for sufficiently large n ∈ N,

Pr
Un

[
AOF (FOF (Un)) ∈ FOF−1

(FOF (Un))
]
≥ 1− 2

n
.

First we give the proof of Theorem 4 by assuming Lemmas 7 and 8.

Proof of Theorem 4. With probability 1 over the choice of an auxiliary-input random embedded
function F , OF satisfies both of conditions in Lemmas 7 and 8. Now we fix such an oracle OF .

First we define an auxiliary-input function fOF = {fOFz : {0, 1}|z| → {0, 1}|z|}z∈{0,1}∗ by

fOFz (x) = OF (0 ◦ 〈z, x〉) (= Fz(x)) .

Lemma 8 shows that any polynomial-time oracle machine AOF cannot invert {fOFzn }n∈N with non-
negligible probability. Thus, fOF is indeed an auxiliary-input one-way function relative to OF .

On the other hand, we show that there is no one-way function relative to OF . For contradiction,
assume that there exists a one-way function f ′OF and let FOF be an oracle machine which computes
f ′OF in polynomial-time. By Lemma 8, even for this F , there exists a polynomial-time adversary
AOF which (1 − 2/n)-inverts f ′OF . This contradicts the assumption that f ′OF is one-way. Thus,
there is no one-way function relative to OF .

28

Now we give the proof of Lemma 7.

Proof of Lemma 7. In this proof, we use the notation poly to denote a certain polynomial. For
simplicity, we regard the oracle access to OF as oracle access to two oracles F and TQBF.

Fix a polynomial-time oracle machine A? arbitrarily. For any n ∈ N, y ∈ {0, 1}n, and random
tape s ∈ {0, 1}poly(n) for A?(z, y), define a bad event By that there are at least n + 1 elements
x ∈ {0, 1}n satisfying Fzn(x) = y over the choice of F . Then by simple calculation, PrF [By] ≤ C ·2−n
for some constant C (as shown in the last of the proof).

Let q(n) be a polynomial of query complexity of A?. Now we consider the random choice of
F under the condition of ¬By. Since {Fzn}n∈N is a random function selected independently of
TQBF, the access to TQBF will not reveal any information about F . Thus, for any i-th query where
i ∈ [q(n)], ATQBF,F queries unknown inverse element x satisfying Fzn(x) = y to Fzn with probability
at most

|{x : Fzn(x) = y}|
2n − (i− 1)

≤ n

2n − q(n) + 1
.

By union bound, the probability that ATQBF,F queries at least one (zn, x) satisfying Fzn(x) = y is

at most n·q(n)
2n−q(n)+1 . In this case, the probability that ATQBF,F (zn, y) outputs x satisfying Fzn(x) = y

is at most n
2n−q(n) . Therefore, for any y ∈ {0, 1}n and s ∈ {0, 1}poly(n),

Pr
F

[Fzn(AOF (zn, y; s)) = y|¬By] ≤
n · q(n)

2n − q(n) + 1
+

n

2n − q(n)
≤ poly(n)

2n
.

Therefore, we have that

Pr
F ,Un,A

[AOF (zn,Fzn(Un)) ∈ F−1
zn (Fzn(Un))]

≤ Pr
F ,y←Fzn (Un)

[By] + Pr
F ,A,y←Fzn (Un)

[AOF (zn, y) ∈ F−1
zn (y)|¬By] ≤

C

2n
+

poly(n)

2n
≤ poly(n)

2n
.

For any sufficiently large n ∈ N, the above probability is less than n−2 · 2−n/2. By Lemma 1,

Pr
F

[
Pr
Un,A

[AOF (zn,Fzn(Un)) ∈ F−1
zn (Fzn(Un))] ≥ 2−

n
2

]
≤ 1

n2
,

for any sufficiently large n.
For each n, let En be the above event that PrUn,A[AOF (zn,Fzn(Un)) ∈ F−1

zn (Fzn(Un))] ≥ 2−
n
2 .

Since the above inequality implies
∑

n∈N PrF [En] <∞, by the Borel-Cantelli lemma, the events En
occur for infinitely many n with probability 0 over the choice of F .

Recall that the above argument holds for any polynomial-time randomized oracle machine A.
For each A, we ignore the measure zero of oracles where the the events En occur for infinitely many
n. Since polynomial-time oracle machines are countable, we have ignored measure zero of oracles
in total. Thus, the remaining measure one of oracles satisfies that for all polynomial-time oracle
machines A, the events En occur only finitely often. In other words, with probability 1 over the
choice of F , all randomized polynomial-time oracle machines A? satisfy that for any sufficiently
large n ∈ N,

Pr
A,Un

[AOF (zn,Fzn(Un)) ∈ F−1
zn (Fzn(Un))] < 2−

n
2 .

This directly implies Lemma 7.

29

Therefore, the remaining part is to show that PrF [By] ≤ C · 2−n. This bound holds by the
following simple calculation (the reader may skip this part because it is not so essential):

Pr
F

[By] =
2n∑

i=n+1

(
2n

i

)
(2−n)i(1− 2−n)2n−i

≤ 2n ·
(

2n

n+ 1

)
(2−n)n+1(1− 2−n)2n−n−1

≤ 2n · 2n · (2n − 1) · · · · · (2n − n)

(n+ 1)!
(2−n)n+1 ≤ 2n

(n+ 1)!
≤ 4

2n
.

To prove Lemma 8, we first show the following key lemma.

Lemma 9. With probability 1 over the choice of an auxiliary-input embedded random function F ,
all (possibly inefficient) oracle machines A? and c ∈ N satisfy that for any sufficiently large n ∈ N,

Pr
Un

[
AF (Un) accesses Fzm for m ≥ mc within c · nc queries to Fz with |z| ≥ mc

]
<

1

n
,

where mc = dlog c · n3+ce and zm ∈ {0, 1}m is a target auxiliary-input of F for each m ∈ N.

Proof. Fix an oracle machine A and c ∈ N arbitrarily. Since any value of Fz with |z| < mc has no
information about the target auxiliary-inputs zm where m ≥ mc, we ignore the query access to Fz
with |z| < mc by A in the following argument.

For any m ∈ N and z ∈ {0, 1}m, the target auxiliary-input zm corresponds to z with probability
exactly 2−m over the choice of F . For any x ∈ {0, 1}n, under the condition that A does not access
to the target auxiliary-input, the queries generated by AF (x) are determined independent of the
choice of F . We call such queries “typical” queries. Then we have that for any x ∈ {0, 1}n,

Pr
F

[
AF (x) accesses Fzm for m ≥ mc within cnc queries

]
= Pr
F

[∃zm where m ≥ mc such that zm corresponds to one of the first cnc typical queries]

≤ cnc

2mc
=

cnc

cn3+c
=

1

n3
.

Therefore,

Pr
F ,Un

[
AF (Un) accesses Fzm for m ≥ mc within cnc queries

]
≤ 1

n3
,

and by Lemma 1,

Pr
F

[
Pr
Un

[
AF (Un) accesses Fzm for m ≥ mc within cnc queries

]
≥ 1

n

]
≤ 1

n2
.

For each n, let En be the above event that

Pr
Un

[
AF (Un) accesses Fzm for m ≥ mc within cnc queries

]
≥ 1

n
.

Since the above inequality implies
∑

n∈N PrF [En] <∞, by the Borel-Cantelli lemma, the events
En occur for infinitely many n with probability 0 over the choice of F .

30

Note that the above argument holds for any tuple (A,n) of an oracle machine and an integer.
Now we ignore the measure 0 of oracles which satisfies the above condition for any (A,n). Since
such tuples (A,n) are countable, by the same argument in the proof of Lemma 7, we have that with
probability 1 over the choice of F , for all oracle machines A? and c ∈ N, the events En do not occur
for sufficiently large n. This is equivalent to the statement in Lemma 9.

Finally, we give the proof of Lemma 8.

Proof of Lemma 8. Fix a polynomial-time oracle machine F ? arbitrarily, and assume that F asks
at most c · nc queries on any input of length n. Let mc := dlog c · n3+ce. We can also assume that
the output length of F ?(x) is exactly p(|x|) by zero-padding, where p is a polynomial. Note that
zero-padding does not change the one-wayness and the query complexity of F ?.

Let r(n) =
∑mc−1

i=1 i · 22i (≤ 2O(mc) = poly(n)). Now we define an auxiliary-input function
f : {0, 1}r(n) × {0, 1}n → {0, 1}p(n) (where we regard the first input as an auxiliary-input, that is,
fz(x) = f(z, x)) by the deterministic procedure in Algorithm 5.

Algorithm 5: Procedure for computing f

Input : z ∈ {0, 1}r(n) and x ∈ {0, 1}n

1 executes F ?(x) where the answer for each query y ∈ {0, 1}∗ is simulated as follows:
2 if |y| = 1 then answer 0;
3 else if y = 1 ◦ x′ then answer TQBF(x′);
4 else if y = 0 ◦ 〈z′, x′〉 and |z′| = |x′| then
5 if |z′| ≥ mc then answer 0;
6 else

7 let m = |z′| and k =
(∑m−1

i=1 i22i
)

+m(2m(z′N − 1) + x′N − 1);

8 answer zk+1 ◦ . . . ◦ zk+m;

9 else answer 0 (in this else case, the query y is invalid for OF);

10 return the same value to F ?(x) in the above simulation;

It is easily checked that f is polynomial-time computable with access to TQBF. Thus, f is
also computable using only polynomial-size space (but not in polynomial-time) without any oracle
access. Therefore, following problem is contained in PSPACE:

Input: z ∈ {0, 1}r(n), y ∈ {0, 1}n, s, t ∈ {0, 1}n.
Goal: determine whether there exists x ∈ {0, 1}n such that fz(x) = y and sN ≤ xN ≤ tN.

Therefore, by applying the binary search, there exists a polynomial-time oracle machine I? such
that ITQBF(z, y) outputs lexicographically first inverse element of fz(y) if any, otherwise 0|y|.

Now we construct the inverter A for F ? as Algorithm 6. For simplicity, we identify access to
OF with access to F and TQBF and may use both of notations interchangeably.

For each choice of F , we use the notation zF to denote the binary string constructed in lines 1–5
of A. Notice that |zF | = r(n) and zF consists of truth tables of Fz for each z ∈ {0, 1}≤mc−1.

Now we show that with probability 1 over the choice of F ,

Pr
Un

[
AOF (FOF (Un)) /∈ FOF−1

(FOF (Un))
]
≤ 2

n
.

31

Algorithm 6: A (an inverting algorithm for F ?)

Input : y ∈ {0, 1}n
Oracle : TQBF, an auxiliary-input embedded random function F (equivalently, OF)

1 set zF to empty string;
2 for i = 1 to mc − 1 do
3 for z = 0i to 1i ∈ {0, 1}i do
4 for x = 0i to 1i ∈ {0, 1}i do
5 zF := zF ◦ Fz(x);

6 execute x← ITQBF(zF , y) and return x;

For any choice of F , n ∈ N, and x ∈ {0, 1}n, the property of I implies that

fzF (AOF (fzF (x))) = fzF (x), (7)

and by the definition of f , we have that

FOF (x) does not access to any Fzm with m ≥ mc =⇒ fzF (x) = FOF (x). (8)

For any y ∈ {0, 1}n, xF ,y := AOF (y) is uniquely determined and in {0, 1}n, thus we also have that

FOF (xF ,y) does not access to any Fzm with m ≥ mc =⇒ fzF (xF ,y) = FOF (xF ,y). (9)

If F and x ∈ {0, 1}n satisfy the following three conditions

a. fzF (x) = FOF (x);

b. FOF (AOF (fzF (x))) = fzF (AOF (fzF (x)));

c. fzF (AOF (fzF (x))) = fzF (x),

then it is easily checked that FOF (AOF (FOF (x))) = FOF (x). Hence, by union bound,

Pr
Un

[
AOF (FOF (Un)) /∈ FOF−1

(FOF (Un))
]

≤ Pr
Un

[
fzF (Un) 6= FOF (Un)

]
+ Pr

Un

[
FOF (AOF (fzF (Un))) 6= fzF (AOF (fzF (Un)))

]
+ Pr

Un

[
fzF (AOF (fzF (Un))) 6= fzF (Un)

]
.

Thus, we bound above the three probabilities in the right-hand side.
For the third probability, by the equation (7), for any choice of F ,

Pr
Un

[
fzF (AOF (fzF (Un))) 6= fzF (Un)

]
= 0.

For the first and second probability, we will apply Lemma 9. By the conditions (8) and (9),

Pr
Un

[
fzF (Un) 6= FOF (Un)

]
≤ Pr

Un

[
FOF (Un) accesses to some Fzm with m ≥ mc

]
,

32

and

Pr
Un

[
FOF (AOF (fzF (Un))) 6= fzF (AOF (fzF (Un)))

]
≤ Pr

Un

[
FOF (AOF (fzF (Un))) accesses to any Fzm with m ≥ mc

]
,

where we use the fact that A does not access to Fz with |z| ≥ mc for the second inequality.
Notice that both executions of FOF (x) and FOF (AOF (fzF (x))) are implemented by exponential-

time oracle Turing machines given access to F which make at most c·nc queries to Fz with |z| > mc.
Therefore, by Lemma 9, with probability 1 over the choice of F , both of probabilities is bounded
above by 1/n, and

Pr
Un

[
AOF (FOF (Un)) /∈ FOF−1

(FOF (Un))
]
≤ 1

n
+

1

n
+ 0 =

2

n
. (10)

The above argument holds for any polynomial-time oracle machine F ?. Since polynomial-time
oracle machines are countable, we have Lemma 8 by ignoring the measure 0 of oracles not satisfying
the condition (10) for each F ? and applying the same argument in the proof of Lemma 7.

Acknowledgments

This work was supported by JST, ACT-X Grant Number JPMJAX190M, Japan.

References

W. Aiello and J. H̊astad. Perfect zero-knowledge languages can be recognized in two rounds. In
28th Annual Symposium on Foundations of Computer Science, pages 439–448, 1987.

A. Akavia, O. Goldreich, S. Goldwasser, and D. Moshkovitz. On Basing One-Way Functions on
NP-Hardness. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
STOC 06, pages 701–710, New York, NY, USA, 2006. ACM.

E. Allender and S. Hirahara. New Insights on the (Non-)Hardness of Circuit Minimization and
Related Problems. TOCT, 11(4):27:1–27:27, 2019.

A. Andreev, A. Clementi, and J. Rolim. A New General Derandomization Method. J. ACM, 45(1):
179–213, January 1998.

B. Applebaum, B. Barak, and D. Xiao. On Basing Lower-Bounds for Learning on Worst-Case
Assumptions. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’08, pages 211–220, 2008.

T. Baker, J. Gill, and R. Solovay. Relativizations of the P =?NP Question. SIAM Journal on
Computing, 4(4):431–442, 1975.

A. Bogdanov and C. Brzuska. On Basing Size-Verifiable One-Way Functions on NP-Hardness. In
Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part I, pages 1–6, 2015.

A. Bogdanov and C. Lee. Limits of Provable Security for Homomorphic Encryption. In Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 111–128, 2013.

33

A. Bogdanov and L. Trevisan. On Worst-Case to Average-Case Reductions for NP Problems. SIAM
J. Comput., 36(4):1119–1159, December 2006a.

A. Bogdanov and L. Trevisan. Average-Case Complexity. Foundations and Trends in Theoretical
Computer Science, 2(1):1–106, 2006b.

J. Feigenbaum and L. Fortnow. On the random-self-reducibility of complete sets. In Proceedings of
the 6th Annual Structure in Complexity Theory Conference, pages 124–132, 1991.

O. Goldreich. Foundations of Cryptography: Volume 1. Cambridge University Press, New York,
NY, USA, 2006. ISBN 0521035368.

D. Gutfreund and S. Vadhan. Limitations of Hardness vs. Randomness under Uniform Reductions.
In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques.
APPROX 2008, RANDOM 2008, volume 5171 of LNCS, pages 469–482, 2008.

I. Haitner, M. Mahmoody, and D. Xiao. A New Sampling Protocol and Applications to Basing Cryp-
tographic Primitives on the Hardness of NP. In IEEE 25th Annual Conference on Computational
Complexity, pages 76–87, 2010.

I. Haitner, O. Reingold, and S. Vadhan. Efficiency Improvements in Constructing Pseudorandom
Generators from One-Way Functions. SIAM Journal on Computing, 42(3):1405–1430, 2013.

J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom Generator from Any
One-way Function. SIAM J. Comput., 28(4):1364–1396, March 1999.

S. Hirahara. Non-Black-Box Worst-Case to Average-Case Reductions within NP. In 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, pages 247–258, 2018.

S. Hirahara and O. Watanabe. On Nonadaptive Reductions to the Set of Random Strings and Its
Dense Subsets. In Complexity and Approximation - In Memory of Ker-I Ko, pages 67–79, 2020.

W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

T. Holenstein. Key Agreement from Weak Bit Agreement. In Proceedings of the Thirty-Seventh
Annual ACM Symposium on Theory of Computing, STOC 05, pages 664–673, New York, NY,
USA, 2005. ACM.

T. Holenstein. Pseudorandom Generators from One-Way Functions: A Simple Construction for
Any Hardness. In Theory of Cryptography, pages 443–461, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

R. Impagliazzo. A personal view of average-case complexity. In Proceedings of Structure in Com-
plexity Theory. Tenth Annual IEEE Conference, pages 134–147, 1995.

R. Impagliazzo. Relativized Separations of Worst-Case and Average-Case Complexities for NP. In
2011 IEEE 26th Annual Conference on Computational Complexity, pages 104–114, 2011.

R. Impagliazzo and L. Levin. No better ways to generate hard NP instances than picking uniformly
at random. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science,
volume 2, pages 812–821, 1990.

34

R. Impagliazzo and M. Luby. One-way Functions Are Essential for Complexity Based Cryptography.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pages 230–
235, 1989.

R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permutations. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC 89,
pages 44–61, New York, NY, USA, 1989. ACM.

R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomization under a Uniform As-
sumption. Journal of Computer and System Sciences, 63(4):672 – 688, 2001.

M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a
uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

T. Liu and V. Vaikuntanathan. On Basing Private Information Retrieval on NP-Hardness. In
Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part I, pages 372–386, 2016.

M. Nanashima. Extending Learnability to Auxiliary-Input Cryptographic Primitives and Meta-PAC
Learning. In Proceedings of the 33rd Annual Conference on Learning Theory (COLT’20), volume
125. PMLR, 09–12 Jul 2020.

R. Ostrovsky and A. Wigderson. One-way functions are essential for non-trivial zero-knowledge. In
The 2nd Israel Symposium on Theory and Computing Systems, pages 3–17, June 1993.

O. Reingold, L. Trevisan, and S. Vadhan. Notions of Reducibility between Cryptographic Primitives.
In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge,
MA, USA, February 19-21, 2004, Proceedings, pages 1–20, 2004.

J. Rompel. One-way Functions Are Necessary and Sufficient for Secure Signatures. In Proceedings
of the Twenty-second Annual ACM Symposium on Theory of Computing, pages 387–394, 1990.

S. Rudich. Limits on the Provable Consequences of One-way Functions. PhD thesis, EECS Depart-
ment, University of California, Berkeley, Dec 1988.

D. Xiao. On basing ZK 6= BPP on the hardness of PAC learning. In In Proc. CCC ’09, pages
304–315, 2009a.

D. Xiao. New Perspectives on the Complexity of Computational Learning, and Other Problems in
Theoretical Computer Science. PhD thesis, Princeton University, 2009b.

A Universal Extrapolation

A.1 Basic Tools

We introduce additional basic tools to show Lemma 2.

Fact 3 (Inclusion-exclusion principle). For every events E1, . . . , En,

Pr

[
n⋃
i=1

Ei

]
≥

n∑
i=1

Pr[Ei]−
1

2

∑
i 6=j

Pr[Ei ∩ Ej].

35

Fact 4 (Universal hash function). For n ∈ N and a, b ∈ F2n, define a function ha,b : {0, 1}≤n →
{0, 1}n by ha,b(x) = a · x+ b where the input x is interpreted as x ◦ 0n−|x| ∈ F2n. Then we have that
for any k ∈ [n], x1, x2 ∈ {0, 1}k with x1 6= x2, and y1, y2 ∈ {0, 1}n,

Pr
a,b

[ha,b(x1) = y1] = 2−n and Pr
a,b

[ha,b(x1) = y1 ∧ ha,b(x2) = y2] = 2−2n.

A.2 Proof of Lemma 2

For a, b ∈ {0, 1}n, let ha,b : {0, 1}n → {0, 1}n be a universal hash function as in Fact 4.
We define an auxiliary-input function f : {0, 1}e(s(n))×{0, 1}3n+dlogne → {0, 1}2n+s(n)+dlogne by

fz(a ◦ b ◦ r ◦ i) := f(z, a ◦ b ◦ r ◦ i) =

{
a ◦ b ◦ y ◦ 0s(n)−|y| ◦ i (if iN ≤ n)

02n+s(n)+dlogne (otherwise),

where a, b, r ∈ {0, 1}n, i ∈ {0, 1}dlogne, Cz is an interpretation of z as a circuit, and y = Cz(ha,b(r[iN])).

Note that the above fz is defined only in the case where |z| = {0, 1}e(s(n)) for some n ∈ N. Even
in the general case where z ∈ {0, 1}a, by truncating z to the length e(s(n)) for maximum n ∈ N
satisfying e(s(n)) ≤ a and compute fz as above, we have a general auxiliary-input function f .

For simplicity, we consider that fz takes four inputs as fz(a, b, r, i) in the above definition and
n is the security parameter instead of 3n+ dlog ne. Obviously, fz is polynomial-time computable.

Let δ′(n) = 1
2n ·(1−2−

ε
4)2· δ(n)

12 . We construct the universal extrapolation algorithm Exts(n) which
accesses (possibly randomized) (1− δ′)-inverting oracle for fz nonadaptively as Algorithm 7. This
immediately implies that if there exists no auxiliary-input function, then Exts(n) is implemented
by a randomized polynomial-time algorithm.

Algorithm 7: Exts(n) (a universal extrapolation algorithm for s(n)-size circuits)

Input : an n-input circuit C ∈ {0, 1}e(s(n)), y ∈ {0, 1}≤s(n)

Oracle : I (which (1− δ′)-inverts {fz}z∈{0,1}∗)

1 prepare queries

2 zero-pad y := y ◦ 0s(n)−|y|, and let ε′ := 1
4(2−ε/2 − 2−ε) and M := d ln 3n−ln δ(n)

2ε′2 e;
3 for i := 1 to n do
4 for j := 1 to M do
5 select ai,j , bi,j ←u {0, 1}n;

6 query (a′i,j , b
′
i,j , ri,j , ki,j)← I(C, ai,j ◦ bi,j ◦ y ◦ i) for each (i, j) ∈ [n]× [M];

7 let c[1], . . . , c[n] := 0;
8 foreach (i, j) ∈ [n]× [M] do
9 if (a′i,j , b

′
i,j , ki,j) = (ai,j , bi,j , i) and y = C(hai,j ,bi,j (ri,j[i])) then c[i] := c[i] + 1;

10 find min ĩ ∈ [n] satisfying that c[̃i] ≥ M
4 (2−ε/2 + 2−ε);

11 return 2−ĩ;

Assume that the given I is (1− δ′)-inverts f , that is, for any n ∈ N and 〈C〉 ∈ {0, 1}e(s(n)),

Pr
a,b,r,i,I

[I(C, fC(a, b, r, i)) /∈ f−1
C (fC(a, b, r, i))] ≤ 1

2n
· (1− 2−

ε
4)2 · δ(n)

12
. (11)

36

For any i ∈ [n], we have that

Pr
a,b,r,I

[I(C, fC(a, b, r, i)) /∈ f−1
C (fC(a, b, r, i))] ≤ (1− 2−

ε
4)2 · δ(n)

12
, (12)

otherwise the equation (11) does not hold because each i ∈ [n] is selected with probability 2−dlogne ≥
1/2n.

Fix input n ∈ N, 〈C〉 ∈ {0, 1}e(s(n)), and y ∈ C({0, 1}n) arbitrarily. Let y := y ◦ 0s(n)−|y|. We
introduce some notations as follows:

py = Pr
Un

[C(Un) = y],

Xy = {x ∈ {0, 1}n : C(x) = y},
t∗y = − log py (information of y),

ty = dt∗ye.

Note that 2n−t
∗
y = py · 2n = |Xy|. For simplicity, we may omit to write the index y in the above

notations when we consider arbitrary y ∈ C({0, 1}n).
First we assume that the following claims on the execution of Exts(n):

Claim 9. For any i < t∗ − (1 + ε),

Pr

[
c[i] ≥ M

4
(2−ε/2 + 2−ε)

]
≤ δ(n)

3n
,

where the probability depends on the choice of y,ai,j,bi,j, and the executions of I.

Claim 10. For any n-input circuit C of size at most s(n), there exists a good set GC such that

Pr
Un

[C(Un) /∈ GC] ≤ δ(n)

3

and

Pr

[
c[t] ≤ M

4
(2−ε/2 + 2−ε)

∣∣∣∣y ∈ GC] ≤ δ(n)

3
,

where the latter probability depends on the choice of y,ai,j,bi,j, and the executions of I.

Then we can show the correctness of Exts(n) as follows: assume that the input y is in GC (which

occurs with probability at least 1 − δ(n)/3). By Claim 9 and union bound, ĩ ≥ t∗ − (1 + ε) with
probability at least 1− n · δ(n)/3n = 1− δ(n)/3. By Claim 10, ĩ ≤ t∗ + 1 with probability at least
1 − δ(n)/3. Thus, with probability at least 1 − δ(n), t∗ − (1 + ε) ≤ ĩ ≤ t∗ + 1 holds. This implies

Lemma 2 because Exts(n) outputs 2−ĩ and

1

2
· p ≤ 2−t

∗−1 ≤ 2−ĩ ≤ 2−t
∗+(1+ε) ≤ 2(1+ε) · p.

Therefore, the remaining part is to show Claims 9 and 10.

Proof of Claim 9. Assume that i < t∗ − (1 + ε). Fix j ∈ [M] arbitrarily. For simplicity, we write
(ai,j , bi,j) as (a, b).

On the choice of (a, b) (in line 5), if there exists no r ∈ {0, 1}i satisfying C(ha,b(r)) = y
(equivalently, ha,b ∈ X), then there exists no inverse element of (C, ai,j ◦ bi,j ◦ y ◦ i) and I must fail
in inverting fC . In this case, c[i] does not increase.

37

Therefore, it is enough to show that

Pr
a,b

[∃ r ∈ {0, 1}i such that ha,b(r) ∈ X] ≤ 1

2
· 1

2ε
. (13)

This is because if we define Bernoulli random variables

Ej := 1l{c[i] is incremented in line 9 for (i, j)},

then for each j ∈ [M],

µ := E[Ej] = Pr
a,b,I

[Ej] ≤ Pr
a,b

[∃ r ∈ {0, 1}i such that ha,b(r) ∈ X] ≤ 1

2
· 1

2ε
,

and by the Hoeffding inequality,

Pr

[
c[i] ≥ M

4
(2−ε/2 + 2−ε)

]
= Pr

 1

M

M∑
j=1

Ej ≥
1

2
· 1

2ε
+ ε′


≤ Pr

 1

M

M∑
j=1

Ej − µ ≥ ε′


≤ exp
(
−2Mε′2

)
≤ exp

(
−2

ln 3n− ln δ(n)

2ε′2
ε′2
)

=
δ(n)

3n
.

For inequality (13), by union bound, we have that

Pr
a,b

[∃ r ∈ {0, 1}i such that ha,b(r) ∈ X] = Pr
a,b

[∃ (r, x) ∈ {0, 1}i ×X such that ha,b(r) = x]

≤
∑
(r,x)

Pr
a,b

[ha,b(r) = x]

= 2i · |X| · 2−n

≤ 2t
∗−(1+ε) · 2n−t∗ · 2−n = 2−(1+ε)

Proof of Claim 10. Assume i = t. We use the same notation Ej and µ as in the proof of Claim 9.
Then it is enough to show that there exists BC ⊆ C({0, 1}n) such that

Pr
Un

[C(Un) ∈ BC] ≤ δ(n)

3
,

and under the condition that y ∈ C({0, 1}n) \BC ,

Pr[Ej] ≥
1

2
· 1

2ε/2
, (14)

38

for each j ∈ [M]. If the above holds, then under the condition that y ∈ C({0, 1}n) \BC ,

Pr

[
c[i] ≤ M

4
(2−ε/2 + 2−ε)

]
= Pr

 1

M

M∑
j=1

Ej ≥
1

2
· 1

2ε/2
− ε′


≤ Pr

 1

M

M∑
j=1

Ej − µ ≤ −ε′


≤ exp
(
−2Mε′2

)
(∵ the Hoeffding inequality)

≤ exp

(
−2

ln 3n− ln δ(n)

2ε′2
ε′2
)

=
δ(n)

3n
≤ δ(n)

3
.

Therefore, by letting GC := C({0, 1}n) \BC , we have Claim 10.
For inequality (14), first we show the following inequality:

Pr
a,b

[∃r ∈ {0, 1}t such that ha,b(r) ∈ X] ≥ 1/2. (15)

Let R = {r ◦ 0n−t|r ∈ {0, 1}r} ⊆ {0, 1}n. For r ∈ R, define an event Er over the choice of (a, b)
by Er := (ha,b(r) ∈ X holds). Then we have that

Pr
a,b

[∃r ∈ {0, 1}t such that ha,b(r) ∈ X] = Pr

[⋃
r∈R

Er

]
.

For any n ∈ N and ε ∈ [0, 1), we define a value (n+ ε)r by

(n+ ε)r =

{
n ε < 1/2

n+ 1 ε ≥ 1/2.

LetR′ be a set of the first (2t
∗
)r elements of {0, 1}n asR′ := {0n, 10n−1, 010n−2, 110n−2, 0010n−3, . . .}.

Since (2t
∗
)r ≤ d2t

∗e ≤ 2dt
∗e = 2t, R′ ⊆ R.

By the inclusion-exclusion principle (Fact 3),

Pr

[⋃
r∈R

Er

]
≥ Pr

[⋃
r∈R′

Er

]
≥
∑
r∈R′

Pr[Er]−
1

2

∑
r 6=r′
r,r′∈R′

Pr[Er ∩ Er′].

Thus, we evaluate each term in the right-hand side.
For each r ∈ R′,

Pr[Er] = Pr
a,b

[ha,b(r) ∈ X] =
∑
x∈X

Pr
a,b

[ha,b(r) = x]

= |X| · 2−n = 2n−t
∗ · 2−n = 2−t

∗
.

For each r, r′ ∈ R′ with r 6= r′,

Pr[Er ∩ Er′] = Pr
a,b

[∃x, x′ ∈ X such that ha,b(r) = x ∧ ha,b(r′) = x′]

≤
∑

x,x′∈X
Pr
a,b

[ha,b(r) = x ∧ ha,b(r′) = x′]

= |X|2 · 2−2n = 22(n−t∗) · 2−2n = 2−2t∗ .

39

Therefore, we have that

Pr

[⋃
r∈R

Er

]
≥
∑
r∈R′

Pr[Er]−
1

2

∑
r 6=r′
r,r′∈R′

Pr[Er ∩ Er′]

≥ |R′| · 2−t∗ − 1

2
· |R′|(|R′| − 1) · 2−2t∗

= (2t
∗
)r · 2−t

∗ − 1

2
· (2t∗)r((2t

∗
)r − 1) · 2−2t∗ ≥ 1/2,

where the last inequality holds by the following inequality: for any x ∈ R with x ≥ 1,

(x)r · x−1 − 1

2
· (x)r((x)r − 1) · x−2 ≥ 1/2. (16)

The above inequality (16) is shown by the following simple calculation: let ε := (xr) − x, then
ε ∈ (−1/2, 1/2] and

(LHS of (16)) = (x+ ε) · x−1 − 1

2
· (x+ ε)(x+ ε− 1) · x−2

= 1 +
ε

x
− 1

2

(
1 +

2ε− 1

x
+
ε(ε− 1)

x2

)
=

1

2
+

1

2
· x− ε(ε− 1)

x2
≥ 1

2
,

where the last inequality holds because ε(ε − 1) < 1 (≤ x) for any ε ∈ (−1/2, 1/2]. Thus, the
inequality (15) holds.

Now we introduce subsets of {0, 1}n × {0, 1}n × {0, 1}≤s(n) as follows:

V = {(a, b, y) : ∃r ∈ {0, 1}ty such that C(ha,b(r)) = y},
Vy = {(a, b, y) ∈ V } for any y ∈ C({0, 1}n),

F =

{
(a, b, y) : Pr

I

[
I(C, a ◦ b ◦ y ◦ 0s(n)−|y| ◦ ty) fails in inverting

]
≥ 1− 2−

ε
4

}
.

We also define the subset BC of C({0, 1}n) by

BC =

{
y ∈ C({0, 1}n) : Pr

a,b,r∼{0,1}n
[(a, b, C(ha,b(r))) ∈ F ∩ Vy] ≥ (1− 2−

ε
4) Pr

a,b,r∼{0,1}n
[(a, b, C(ha,b(r))) ∈ Vy]

}
.

First, we bound the probability that C(x) ∈ BC over the choice of x above by δ(n)/3.
By Lemma 1 and the upper bound (12) on the failure probability of I,

Pr
a,b,r

[(a, b, C(ha,b(r))) ∈ F]

≤
Pra,b,r,I

[
y = C(ha,b(r)); I(C, a ◦ b ◦ y ◦ 0s(n)−|y| ◦ ty) fails in inverting

]
1− 2−

ε
4

≤
Pra,b,r,I

[
I(C, fC(a, b, r, tC(ha,b(r)))) /∈ f

−1
C (fC(a, b, r, tC(ha,b(r))))

]
1− 2−

ε
4

≤
(1− 2−

ε
4)2 · δ(n)

12

1− 2−
ε
4

= (1− 2−
ε
4) · δ(n)

12
(∵ (12))

40

By inequality (15), for any y ∈ C({0, 1}n),

Pr
a,b,r∼{0,1}n

[(a, b, C(ha,b(r))) ∈ Vy] ≥
1

2
· 1

2ty
.

Since t∗y > ty − 1, for any y ∈ C({0, 1}n),

Pr[C(Un) = y] = 2−t
∗
y ≤ 2 · 2−ty = 4 · Pr

a,b,r∼{0,1}n
[(a, b, C(ha,b(r))) ∈ Vy]

Thus, we have that

Pr
Un

[C(Un) ∈ BC] =
∑
y∈BC

Pr
Un

[C(Un) = y]

≤
∑
y∈BC

4 · Pr
a,b,r∼{0,1}n

[(a, b, C(ha,b(r))) ∈ Vy]

≤
∑
y∈BC

4 · (1− 2−
ε
4)−1· Pr

a,b,y∼{0,1}n
[(a, b, C(ha,b(r))) ∈ F ∩ Vy] (∵ y ∈ BC)

= 4 · (1− 2−
ε
4)−1 · Pr

a,b,y∼{0,1}n
[(a, b, C(ha,b(r))) ∈ F ∩ (∪y∈BCVy)]

≤ 4 · (1− 2−
ε
4)−1 · Pr

a,b,y∼{0,1}n
[(a, b, C(ha,b(r))) ∈ F]

≤ 4 · (1− 2−
ε
4)−1 · (1− 2−

ε
4) · δ(n)

12
=
δ(n)

3
.

Hence, the remaining part is to show inequality (14).
Fix y ∈ C({0, 1}n) \BC arbitrarily. Then we have that

Pr
a,b,r

[(a, b, C(ha,b(r))) ∈ Vy \ F]

= Pr
a,b,r

[(a, b, C(ha,b(r))) ∈ Vy]− Pr
a,b,r

[(a, b, C(ha,b(r))) ∈ F ∩ Vy]

≥ Pr
a,b,r

[(a, b, C(ha,b(r))) ∈ Vy]− (1− 2−
ε
4) Pr

a,b,r
[(a, b, C(ha,b(r))) ∈ Vy] (∵ y /∈ BC)

= 2−
ε
4 · Pr

a,b,r
[(a, b, C(ha,b(r))) ∈ Vy]. (17)

Inequality (14) is shown as follows: for each j ∈ [M],

Pr[Ej] = Pr
a,b,I

[I(C, a ◦ b ◦ y ◦ ty) succeeds in inverting]

≥ Pr
a,b,I

[I(C, a ◦ b ◦ y ◦ ty) succeeds in inverting ∧ (a, b, y) ∈ Vy \ F]

= Pr
a,b

[(a, b, y) ∈ Vy] · Pr
a,b

[(a, b, y) ∈ Vy \ F |(a, b, y) ∈ Vy]

· Pr
a,b,I

[I(C, a ◦ b ◦ y ◦ ty) succeeds in inverting|(a, b, y) ∈ Vy \ F]

≥ Pr
a,b

[(a, b, y) ∈ Vy] · Pr
a,b

[(a, b, y) ∈ Vy \ F |(a, b, y) ∈ Vy] ·
1

2ε/4
(∵ (a, b, y) /∈ F)

≥ Pr
a,b

[(a, b, y) ∈ Vy] ·
1

2ε/4
· 1

2ε/4
(∵ (17))

≥ 1

2
· 1

2ε/4
· 1

2ε/4
=

1

2
· 1

2ε/2
(∵ (15))

41
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

