
On the asymptotic complexity of sorting

Igor S. Sergeev∗

Abstract

We investigate the number of pairwise comparisons sufficient to sort
n elements chosen from a linearly ordered set. This number is shown
to be log2(n!) + o(n) thus improving over the previously known upper
bounds of the form log2(n!) + Θ(n). The new bound is achieved by the
proposed group insertion sorting algorithm.

1 Introduction

To start, we remind that the problem of sorting is thoroughly discussed e.g.
in [1, Ch. 3], [9, §5.3], [11, Ch. 2].

The sorting algorithm may be represented as a binary rooted tree with the
edges oriented from the root. Such a tree is usually called a comparison tree,
as well as a decision tree or a binary decision diagram. An inner vertex of the
tree corresponds to the operation of comparing some two elements. Depending
on the comparison result, the algorithm moves along one of the edges to the
next vertex. A terminal vertex (leaf) of the tree corresponds to the final linear
ordering of the input set as a result of comparisons. The complexity of the
algorithm is the depth of the tree, that is, the maximal distance in edges
between the root and a leaf.

We restrict ourselves with algorithms not containing redundant compar-
isons (which do not add anything about the order of elements). In trees corre-
sponding to such algorithms, any possible ordering of inputs is associated with
exactly one leaf. In particular, trees for sorting n-element set have exactly n!
leaves.

Let S(n) denote the minimal complexity of an algorithm sorting n inputs.
Since the number of all possible permutations of n elements is n!, and the
depth of a binary tree with m leaves is at least log m, then

S(n) ≥ log(n!) ∼ n log n. (1)

∗Research Institute “Kvant” (Moscow); e-mail: isserg@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 96 (2020)

(Here and below, we skip the base of binary logarithms.) Moreover, this bound
holds for the average complexity of sorting over all permutations of inputs as
well, see also [1, 9, 11]. Such lower bounds are called information-theoretic.

The well-known Ford–Johnson algorithm [5] (the method of binary inser-
tions) proposed 60 years ago provides a rather tight upper bound for the com-
plexity of sorting

S(n) ≤ log(n!) + cn + O(log n), (2)

where the constant c varies from log(3e/8) ≈ 0.028 (in the favourable case
n ∼ 2k/3) to log(3/(4 ln 2)) ≈ 0.114 (in the unfavourable case n ∼ ln 2 · 2k/3)
depending on the value of n. The method of binary insertions is provably
optimal for n ≤ 15 and some larger values of n, see [12].

One can deduce a slightly improved constant for the unfavourable case
from [14]. The authors of [10] made a considerable attempt to reduce a dis-
balance in values of c. As a result of their work, the value of c for the un-
favourable case may be specified as c ≈ 0.07 (it’s hard to be more precise since
the strongest form of the result in [10] is expressed graphically). The same
constant for average sorting complexity was recently reduced to c ≈ 0.032,
see [4, 8]. Apparently, in the favourable case (involving infinite series of com-
paratively short intervals around numbers 2k/3) the initial method [5] was
never beaten even in average.

Essentially, the Ford–Johnson algorithm is a sequence of insertions of an
element into a linearly ordered (sub)set. Any insertion is performed via the
binary method: first, compare an inserted element with the median element
of the target set, then compare it with the median element of the subset
determined as a result of the first comparison, etc. Efficiency of the algorithm
is secured by the choice of target sets with optimal values of cardinality 2k−1.

It is known, however, that a joint insertion of several elements may be
implemented faster than independent insertions. For instance, if the cardinal-
ity m of a target set satisfies 2k < m < 17

14
· 2k − 1, then we can save one

comparison against the binary method via processing ordered pairs [6, 7], see
also [9]. Pair insertion also helps in average sorting, see [8]. As shown in [14],
even more profitable is to split the elements into groups of size 4 or 5 and to
sort them prior to insertion.

As a further development of the mentioned idea, we propose an algorithm
for the group insertion of a large number of elements organized in a sense as a
mass service system. This approach resembles the concept of mass production
(of partially ordered sets), which is followed by the best known algorithms for
selecting an element of a given order [13, 3].

The algorithm processes ordered pairs of elements in turn. At some point
after a series of comparisons, a pair can be broken if, for example, it turns

2

out that its elements fall into disjoint subsets (intervals) of the target set.
Then the elements of the pair are processed separately. When it is beneficial,
a single element is inserted into the target interval via the binary method.
Otherwise, it is placed into a temporary storage, a container. As soon as two
elements appear in the container, the algorithm groups them into the ordered
pair and processes it further. The algorithm exploits a collection of containers
attributed to different intervals. At the very end, the single elements remaining
in the containers are inserted into the target set via the binary method. This
is the general outline of the method.

Following the strategy above, we can insert p elements into a target set of
size m � p with the complexity almost matching the information-theoretic
lower bound, that is, p(log2 m + o(1)) comparisons. As a result, a sort-
ing algorithm by group insertions witnesses the complexity bound S(n) ≤
log2(n!) + o(n). Indeed, the same bound holds for the complexity of sorting in
average.

The paper is organized as follows. First, we remind the basic method of
binary insertions in §2. Then we mention some simple initial considerations
behind the proposed method in §3. The general concept of the method and the
tools to bound its complexity are developed in §4. In §5, we provide a rather
simple though not optimal version of a sorting algorithm. The core of the
proposed method, the strategy of comparisons, is given in §6. Finally, in §7,
we present the group insertion method together with its complexity analysis.

2 The method of binary insertions

Let e1?e2 denote the operation of comparison of elements e1 and e2, and e1 < e2

denote the relation of order. W.l.o.g. we can assume that all inputs are
different. For brevity, we refer to a linearly ordered set of elements as to a
chain. By the length of a chain we mean the number of elements in it. The
rank of an element in a chain is its number according to the numeration from 1
in ascending order.

We recall the essence of the binary insertion method [5], see also [9]. All
elements are splitted into pairs, comparisons are made inside pairs, larger
elements of pairs are sorted. As a result, we have a partial order shown1 in
Fig. 1. Elements in pairs are denoted by αi, βi, where βi > αi, and indexing
follows the ascending order of βi. In the odd case n = 2k + 1, we denote by
αk+1 an element not receiving a pair.

1The order is shown with the use of Hasse diagram, where edges connect elements with
a known relation, see more details e.g. in [9].

3

r r rr r r r
r rp p p

�������

�

α1

β1

βk

α2

α3

αk

αk+1

Figure 1: A partial order in the binary insertion method

By construction, the elements α1, β1, β2, . . . , βk form a chain. The algo-
rithm inserts the remaining elements αi into this chain in turn. First, we use
two comparisons to insert α3, then also two comparisons for the element α2.
Next, all elements are inserted for which three comparisons are sufficient (these
are α5 and α4 in this order), etc. Note that each element is inserted into a sub-
chain of length 2j − 1, where j = 2, 3, . . . Only in the final series of insertions
a subchain of incomplete length is used as a target.

It can be verified that j comparisons are sufficient to insert any element αi

satisfying uj−1 < i ≤ uj, where uj = 2j+1+(−1)j

3
. Hence, for b2k+1/3c ≤ n <

b2k+2/3c the complexity f(n) of the sorting of an n-input set by the Ford–
Johnson method is

f(n) = kn−
⌊
2k+2/3

⌋
+ bk/2c+ 1.

This expression may be rewritten in the asymptotic form. Let n = τ · 2k+1/3,
where τ ∈ [1, 2). Then

f(n) = n log n− (2/τ + log(2τ/3)) n + log n/2 + O(1). (3)

The coefficient in the linear term takes the maximum value log(8/3) ≈ 1.415
when τ = 1, and the minimum value log(4e ln 2/3) ≈ 1.329 when τ = 2 ln 2. A
more rigorous analysis of the method see in [5, 9].

Let us introduce a standard notation M(m, n) for the complexity of merging
of two chains of length m and n.

In [14], the bound M(5, n) ≤ 5k − 8 was proved for n ≤ 319
448

· 2k − O(1).
It provides the opportunity to insert five elements into a chain of length n by
5k − 8 + S(5) = 5k − 1 comparisons, i.e. with the average complexity k − 1/5
per element. Thus, in the final stage of the Ford–Johnson method, it would be
advantageous to insert elements with indices over uk−1 into a shorter subchain
with the average complexity k − 1/5 instead of k. This observation leads to a
refinement of the bound (3) for all n, except for those very close to the points
of the sequence {2i/3}. So, the maximal value of the constant in (2) decreases

4

to c ≈ 0.105. A similar result was obtained in [10] by a very complicated way.
In [10], merges of long chains via the method [2] are used instead of insertions
for the final stage of the binary insertions algorithm. However, the bound for
the infavourable case is improved significantly.

3 Preliminary observations

In the context of merging or insertion we will refer to a longer chain as to the
principal chain. Let us call interval (α, β) the set of elements of the principal
chain located between some elements α and β, that is, (α, β) = {z ∈ Z | α <
z < β}, where Z is the principal chain. We also allow imaginary elements
±∞ to designate the ends of an interval. By definition, −∞ < α < +∞ holds
for all α. We denote the length of an interval as |(α, β)| and define it as the
number of possibilities to insert a new element in it, that is the incremented
number of elements in the interval.

Let Q(a) denote the maximal number n such that the insertion of an el-
ement into an interval of length n has complexity at most a, in other words,
M(1, n− 1) ≤ a. Trivially,

Q(a) = 2blog ac. (4)

By analogy, let P (a) denote the maximal n such that M(2, n− 1) ≤ 2a. It is
known [6, 7] that

P (a) =

{⌊
17
14
· 2a
⌋
, a ∈ N⌊

12
7
· 2a−1/2

⌋
, (a− 1/2) ∈ N

. (5)

Let M(m× k, n) stand for the complexity of merging of m length-k chains
with a chain of length n. We define Qm(a) and Pm(a) as the maximal number
n such that M(m× 1, n− 1) ≤ am and respectively M(m× 2, n− 1) ≤ 2am.
By definition, Q1(a) = Q(a) and P1(a) = P (a). The bounds Qm(a) ≥ Q(a)−
(m− 1) and Pm(a) ≥ P (a)− 2(m− 1) are quite straightforward.

A less obvious bound follows from (5). Since

Q2m(a) ≥ Pm(a− 1/2), (6)

then

Q2(a) ≥

{
2a − 1, a ∈ N⌊

17
14
· 2a−1/2

⌋
, (a− 1/2) ∈ N

. (7)

Therefore, Q2(a) may be sufficiently larger than Q(a).

5

For m = 1, only half-integer arguments of functions Pm(a) and Q2m(a)
make sense. Say, P1(r− 1/4) = P1(r− 1/2) ≈ 6

7
· 2r, r ∈ N. However, matters

change when m grows.
Simple example. For warm-up let us prove the bound

Pm

(
r − 1

4
+

1

4m

)
≥ 51

56
· 2r − 4m (8)

illustrating the idea behind the general method.
Let α be the element of rank

⌈
17
56
· 2r
⌉
− 2m + 1 in a principal chain of

length
⌈

51
56
· 2r
⌉
− 4m. Then |(−∞, α)| ≤ Q2(r − 3/2)− 2(m− 1) by (7), and

|(α, +∞)| ≤ P (r − 1)− 2(m− 1) by (5).
The algorithm processes any pair β0 < β1 in the following way. Compare

β0 with α. If β0 > α, then insert the pair into the interval (α, +∞) by 2(r−1)
comparisons via the method [6, 7]. Otherwise, split the pair. Insert β1 into
the principal chain by r comparisons via the binary method, and put β0 into a
container. If the container is empty, turn to processing of the next pair. Else,
if the container got two elements, insert them into the interval (−∞, α) by
2r − 3 comparisons (the complexity bound is provided by (5)).

While the algorithm proceeds, the principal chain and its subintervals be-
come longer. Thus, we provide a reserve of 2(m−1) in both intervals to ensure
the same complexity bounds for all m pairs: 2(r − 3/2) comparisons to insert
two elements into (−∞, α), and 2(r − 1) comparisons to insert a pair into
(α, +∞).

After the main process is finished, the container may still keep a single
element. We can trivially insert it into the interval (−∞, α) by r− 1 compar-
isons. So, the total number of comparisons performed by the algorithm does
not exceed m + (m− 1)(r + r − 3/2) + (r + r − 1) = 2m(r − 1/4) + 1/2, and
the required bound (8) follows.

4 General method

In any method of merging or insertion, we can consider a comparison opera-
tion as a step of dividing of the principal chain into shorter intervals where
the inserted elements should be located. So, the algorithm may be built re-
cursively: after a sequence of comparisons, insertion into a long chain reduces
to insertions into shorter chains.

As in the simple example above, the general algorithm processes pairs and
calls procedures providing bounds (4), (5), (7) to insert elements in some
intervals. Certain intervals receive containers having the storage space of 2

6

elements each. As soon as the container is full, its two elements are extracted
and processed further.

Let us define conditional complexity (of a pair’s insertion algorithm) as the
number of comparisons applied to the elements of a pair in the worst case
assuming that none of the two remained in a container (for the purpose of
calculating, we may assume that all containers on the way were non-empty).
Let us stress that, while processing two elements jointly, we account any com-
parison as 1/2 comparisons attributed to each of the two.

For example, the conditional complexity of the insertion algorithm in the
simple example above is 2(r − 1/4).

Now we can upper bound the complexity of the pair insertion algorithm by

ρm + C log2(n + 2m), (9)

where ρ is the conditional complexity, m is the number of pairs to insert, n
is the initial length of the principal chain, and C is the number of containers.
We bounded the additional number of comparisons required to insert an ele-
ment remaining in a container very roughly as log2(n + 2m) (a more accurate
argument leads to the bound O(1)).

We now introduce the concept of comparison strategy. Let numbers
y1, . . . , yd ∈ R satisfy 0 ≤ y1 < y2 < . . . < yd < 1. Let pr,i characterize
the length of some interval (further denoted as Jr,i) in a sense that the condi-
tional complexity of the pair insertion into this interval is at most 2(r + yi).
In addition, let xr,j = pr,j · 2−r.

For any i = 1, . . . , d and r ≥ r0, we introduce a reduced comparison tree
Tr,i for the insertion of a pair into the interval Jr,i. Under a reduced tree we
understand a subtree of a comparison tree. Leaves of Tr,i correspond to (re-
cursive) calls of procedures of insertion into shorter intervals named terminal.
Pair splitting along the reduced tree is not allowed, except at terminal vertices.

We assign to any leaf of Tr,i some restrictions on the lengths of terminal
intervals ensuring the bound on the conditional complexity of insertion into
Jr,i to hold. If a leaf on the distance s from the root corresponds to a terminal
interval (α′, α′′), then the restriction has the form |(α′, α′′)| ≤ pl,j, where l+yj+
s/2 ≤ r+yi. For a single element β to insert into (α′, α′′), the restriction looks
like |(α′, α′′)| ≤ pl,j or |(α′, α′′)| ≤ 2l. In the first case, β adds l+yj +s/2+1/2
to the conditional complexity, while in the second case it adds l + s/2. The
sum for two elements of a pair should not exceed 2(r + yi).

Assume that the ranks of α′, α′′ are expressed as linear combinations of
pl,j. Then, some restrictions may hold trivially (say, in the case of identical left
and right sides of some inequality). Others constitute a system of restrictions
of the strategy.

7

Now we define comparison strategy as a family of reduced trees (that is,
algorithms) Tr,i and a system of restrictions providing conditional complexity
bounds 2(r+yi) to insert a pair into an interval Jr,i. The depth of the strategy
is the maximal depth of Tr,i.

If the minimal conditional complexity of insertion of a pair into a terminal
interval corresponding to a leaf of Tr,i is 2(r′+yj), then define wr,i = r−r′+1.

From now on, we consider only uniform strategies, where ranks of target
elements in Jr,i do not depend on r (up to a rounding). Then all trees Tr,i are
similar to some tree Ti. We may assume that any inner vertex of Ti is associated
with a pair (y, ∆), y ∈ {0, 1}, ∆ ∈ R, encoding the comparison βy?α, where
(β0, β1) is the pair to insert, and α is the element of rank ∆ · |Jr,i| in the
interval Jr,i. In particular, wr,i = wi for any r. We call maxi wi the width
of a uniform strategy. The width of a strategy characterizes the maximum
difference in the complexity of insertion between the initial interval and its
terminal subintervals.

Below, we allow non-integer values for lengths of intervals and ranks of
elements assuming that rounding to the nearest integer in some direction is
required. In the case of a statement about the complexity of insertion into an
interval of non-integer length x, we will require the fulfillment of this statement
for an interval of length dxe.

Our next step is to describe a transition from a strategy to an actual algo-
rithm. Assuming the existence of limits zi = limr→∞ xr,i, we rewrite strategy
restrictions in terms of zi and therefore obtain a linear programming problem.

Consider a system σ of normalized linear inequalities

d∑
i=1

w−1∑
j=0

ai,j,k · xt+j,i ≤ bk, where
d∑

i=1

w−1∑
j=0

|ai,j,k| = 1, k = 1, . . . , K (10)

defined on the sequence of d-dimensional real vectors x0, x1, . . . ∈ Rd, xj =
(xj,1, xj,2, . . . , xj,d) for all t ≥ 0. Here w is the width of the system, and
ai,j,k, bk are real constants.

By the formal substitution xj,i = zi for all i, j, we transform (10) to a
reduced system

d∑
i=1

ai,k · zi ≤ bk, ai,k =
w−1∑
j=0

ai,j,k, k = 1, . . . , K, (11)

over variables zi. The system (11) determines a simplex T (σ) ⊂ Rd. For any
ε ≥ 0 define an embedded simplex T ε(σ) ⊂ T (σ) by

d∑
i=1

ai,k · zi ≤ bk − ε, k = 1, . . . , K. (12)

8

We say that the subsequence xl, xl+1, . . . , xl′ satisfies (10), if restrictions
(10) hold for all t = l, . . . , l′+w−1, and for some extension of the subsequence
by vectors xl′+1, . . . , xl′+w−1.

Let || · || denote the l∞-norm in a vector space (maximal absolute value of
the vector coordinate), and 〈·, ·〉 denote the Euclidean inner product of vectors.
We rely upon the following simple fact about the rate of convergence to a given
solution of (10).

Lemma 1. Let u ∈ T ε(σ), v ∈ T (σ), and 0 < ε < ||v − u||. Then there exists
a sequence {xi} ⊂ [u, v] satisfying the system σ (10) of width w, which begins
at x0 = x1 = . . . = xw−1 = u and converges to v with the rate

||v − xi|| ≤ (1− ε∆)i/w−1 · ||v − u||, ∆ = ||v − u||−1. (13)

Proof. Define εi = ε(1− ε∆)i, and

xiw+j = x(i−1)w+j + εi−1∆ · (v − u). (14)

for all i ≥ 1, and j = 0, . . . , w − 1. By definition,

v − xiw+j = (1− (ε0 + . . . + εi−1)∆) (v − u) = (1− ε∆)i · (v − u). (15)

Therefore, the bound (13) holds. We are left to check that {xi} satisfies σ.
Since xlw = xlw+1 = . . . = xlw+w−1 ∈ [u, v] ⊂ T (σ), the inequalities (10)

hold for any t = lw, where l ∈ N.
Let us show that xlw ∈ T εl(σ). When l = 0, this is provided by the

condition x0 = u ∈ T ε(σ). Denote ak = (a1,k, . . . , ad,k). Then it follows from
(15) that for l > 1 and any k = 1, . . . , K,

〈ak, xlw〉 = 〈ak, (1− εl/ε)v + (εl/ε)u〉 ≤ (1− εl/ε)bk + (εl/ε)(bk − ε) = bk − εl

due to linearity of inner product.
Now consider lw < t < (l + 1)w. The left sides of inequalities (10) involve

only coordinates of vectors xlw, x(l+1)w. With the use of (14), and taking into
account xlw ∈ T εl(σ), we obtain for any k = 1, . . . , K that

d∑
i=1

w−1∑
j=0

ai,j,k · xt+j,i ≤
d∑

i=1

w−1∑
j=0

ai,j,k · xlw,i + εl ·
d∑

i=1

w−1∑
j=0

|ai,j,k| ≤ (bk − εl) + εl.

Hence, the sequence {xi} satisfies σ.
The next lemma is our main technical ingredient for proving upper bounds.

Denote
π(a) = lim

r→∞
P (r + a) · 2−r.

9

It is easy to see from (5) that

π(a) =

{
17
14

, 0 ≤ a < 1
2

12
7
, 1

2
≤ a < 1

. (16)

Lemma 2. Let y1, . . . , yd ∈ R, where 0 ≤ y1 < y2 < . . . < yd < 1. Suppose
we have a comparison strategy of depth h and width w specifying a system
of restrictions (10) on xr,i, where xr,i · 2r is a lower bound on the length of
an interval for the insertion of an ordered pair with conditional complexity
2(r + yi). Let v = (v1, . . . , vd) ∈ T (σ), u = (u1, . . . , ud) ∈ T ε(σ), where
0 < ε < ||v − u||. Suppose that ui < vi, ui ≤ π(yi) holds for all i = 1, . . . , d.
Denote umin = min{ui}. Then for any r ∈ N and m ∈ N, ϕ > 0 satisfying

m ≤ min{umin, ε/2} · 2r−ϕ−1, (17)

the following bound holds:

Pm

(
r + yi +

(r + 2)ϕ · 2ϕ

m

)
≥

≥ vi · 2r − R

ε
·m · 2ϕ+2 −R · 2r · e−

ε
2R(ϕ

w(d+1)(h+1)
−2), (18)

where i = 1, . . . , d, and R = ||v − u||.

Proof. Take some r and appropriate parameters m and ϕ. Set L =
⌊

ϕ
(h+1)(d+1)

⌋
and q = r−L. It follows from (17) and (16) that m ≤ 6

7
·2r−ϕ, hence r > ϕ ≥ L.

Therefore, q > 0.
Let δ ∈ (0, ε) be a parameter to be chosen later. Consider the point

v′ = (1 − δ/ε)v + (δ/ε)u ∈ [u, v]. Applying the argument from Lemma 1 we
deduce that v′ ∈ T δ(σ). Indeed, for any k = 1, . . . , K,

〈ak, v′〉 = 〈ak, (1− δ/ε)v + (δ/ε)u〉 ≤ (1− δ/ε)bk + (δ/ε)(bk − ε) = bk − δ.

By definition, the width of the system of restrictions does not exceed the
width of its corresponding strategy. We may assume that both widths are equal
to w. Consider σ′, a system obtained from σ by subtracting δ from the right-
hand sides of the inequalities (10). Then, v′ ∈ T (σ′) and u ∈ T ε−δ(σ′). Apply-
ing Lemma 1 to the system σ′, we construct a sequence {xl = (xl,1, . . . , xl,d)}
converging to v′, and starting from xq = . . . = xq+w−1 = u.

Let Xl,i = xq+l,i ·2q+l. By the condition of the lemma, the given comparison
strategy provides the conditional complexity 2(q + l + yi) for a pair insertion

10

into an interval of length Xl,i. We show by induction on dl + i that to insert
m pairs into an interval of length

X ′
l,i = Xl,i − 2(dl+i)h · 2m, (19)

there is an algorithm of the same conditional complexity 2(q + l + yi) with
cdl+i ≤ (dl + i) · 2(dl+i)(h+1) containers. (Recall that an interval of length X ′

l,i

means an interval of length dX ′
l,ie.)

First, check that X ′
l,i > 0. Indeed, by (17),

Xl,i ≥ ui · 2q+l ≥ m · 2ϕ+1−r+q+l ≥ 2m · 2(h+1)(d+1)L+l−L > 2m · 2(d+1)Lh.

Now we show that the reserve of length and the number of containers are
sufficient for insertion, then we will ensure that the restrictions (10) for the
subsequence of vectors x′q+l, 0 ≤ l ≤ L, with components x′q+l,i = X ′

l,i · 2−(q+l)

are satisfied.
For 0 ≤ l ≤ w − 1 (the base of induction), the required properties are

guaranteed by the conditions of the lemma on ui: the lengths of the intervals
allow to apply bounds (5). There is no need in containers. To insert m pairs
a reserve of length 2m− 2 is required with possible additional correction by 1
due to the length rounding, and by 1 to compensate a potential rounding error
in (16) with respect to (5). Thus, a reserve of length at least 2m provided by
(19) is sufficient.

For l ≥ w, starting from the partition of an interval of length Xl,i by
subintervals in accordance to the strategy, we will build the partition of an
interval of length X ′

l,i. Essentially, the task is to distribute the reserve of

length 2(dl+i)h · 2m between subintervals.
We move along the comparison tree from the root to a leaf. Assume that at

some vertex a comparison with the element2 α of the principal chain should be
done. Let (α′, α′′) be the minimal interval including α, and with the ends being
either elements of preceding comparisons or the ends of the initial interval.
Then we divide the reserve of length for the interval (α′, α′′) equally between
the intervals (α′, α) and (α, α′′). Since the depth of the comparison tree is h,
any subinterval produced by the points of comparisons receives the reserve at
least 2(dl+i−1)h · 2m. By the induction hypothesis, this reserve is sufficient to
insert a pair with conditional complexity 2(q + l′ + yj), or to insert a single
element with conditional complexity3 q+ l′+yj +1/2, where l′ < l or j < i. Of

2Since the strategy operates with real values of lengths, by an element here we mean
some conventional point to partition the interval.

3By the conditional complexity of insertion of a single element we mean its contribution
to the pair’s insertion conditional complexity.

11

course, the chosen reserve is limited from above by the length of the interval
to keep it positive.

Also notice, that the conditional complexity of insertion into a terminal
interval of the strategy is at least 2(q + l − w) ≥ 2q, hence the recursive call
of the algorithm (for insertion into the terminal interval) is legal. In the (not
improbable) case when the strategy assumes insertion of a single element into
an inner interval with the conditional complexity over q + l + yi + 1/2, we just
call an algorithm of insertion into the initial interval of length X ′

l,i.
To construct the partition of an interval of length dX ′

l,ie, we take the par-
tition of the interval of length X ′

l,i and round ranks of all partition elements to
the nearest integers from above. So, the length of any inner interval (including
terminal) changes at most by 1, that is, turns into its rounding in some direc-
tion. Therefore, our estimate of the conditional complexity of the algorithm
does not change after taking roundings into account.

Let us estimate the sufficient number of containers. The comparison tree
has at most 2h leaves. Each leaf corresponds to at most two terminal in-
tervals. By the induction hypothesis, insertion into any terminal interval is
implemented by an algorithm involving at most 2cdl+i−1 containers. Addition-
ally, 2h+1 + 1 containers may be required to associate with terminal intervals
and the initial interval. Thus, we obtain

cdl+i ≤ 2h+1
(
(dl + i− 1) · 2(dl+i−1)(h+1)

)
+ 2h+1 + 1 ≤ (dl + i) · 2(dl+i)(h+1).

Next, check the fulfillment of restrictions σ for x′l,i. Put formally x′j,i = xj,i

when j > r. Choose δ = 2ϕ−r+1 · m. By the condition (17), the inequality
δ < ε/2 holds. Furthermore, x′j,i − xj,i ∈ (−δ, 0] holds for all j ≥ q due to
(19) and the choice of parameters ϕ and δ. Hence, for all t ≥ q and any
k = 1, . . . , K, we obtain

d∑
i=1

w−1∑
j=0

ai,j,k · x′t+j,i ≤
d∑

i=1

w−1∑
j=0

ai,j,k · xt+j,i + δ ·
d∑

i=1

w−1∑
j=0

|ai,j,k| ≤ (bk − δ) + δ.

So, the sequence {x′l = (x′l,1, . . . , x
′
l,d)} satisfies the system of restrictions σ for

t ≥ q. This completes the induction step. We proved that the pair’s insertion
into an interval of length X ′

L,i is performed with the conditional complexity
2(r + yi).

We are left to verify the bound (18). The choice of L provides

cdl+i ≤ (d + 1)L · 2(d+1)(h+1)L ≤ ϕ · 2ϕ. (20)

12

The Lemma 1 implies that

|x′r,i − vi| ≤ |x′r,i − xr,i|+ |xr,i − v′i|+ |v′i − vi| ≤
≤ δ + (1− (ε− δ)/R)L/w−1 ·R + (δ/ε) · |vi − ui| ≤

≤ δ + e−(ε−δ)(L/w−1)/R ·R + (δ/ε) ·R ≤

≤ δ + e−
ε

2R(ϕ
w(d+1)(h+1)

−2) ·R + (δ/ε) ·R <

<
2R

ε
·m · 2ϕ−r+1 + e−

ε
2R(ϕ

w(d+1)(h+1)
−2) ·R, (21)

where we also used the well-known inequality (1− x)1/x ≤ e−1 for x ∈ (0, 1).
Now the bound (18) is obtained via the substitution of (20) and (21) into (9),
where we may assume n + 2m ≤ XL,i = xr,i · 2r < 2r+2, since xr,i ≤ 2yi+1/2 < 4
by the simple information-theoretic reasoning.

Note, the bounds in both lemmas are very rough. We sacrifice precision in
favour of simplicity and generality. In particular, the strategies in the examples
below need substantially smaller number of containers.

5 Advanced example

Before we turn to the asymptotically optimal insertion algorithm, consider a
simpler example extending bounds (5) and improving over (8).

Lemma 3. Let 4 m � 2r/2, v0 = 80
63

, v1 = 286
189

, v2 = 338
189

, v3 = 58
27

. Then

Pm(r + i/4 + 2−γr) ≥ vi · 2r −O
(
2(1−γ)r

)
(22)

for i = 0, . . . , 3 and γ small enough, say, for γ = 1
100000

.

Proof. Let pk,i be a bound on the length of an interval with pair’s insertion
conditional complexity 2(k + i/4), i = 0, . . . , 3. We are going to describe an
appropriate strategy. For any i, the sequence of comparisons is fixed: pair’s
elements are compared with elements α1, α2, . . . of the principal chain in turn
as shown in Fig. 2. After the comparison with αj is performed, we move either
to a terminal vertex or to the comparison with αj+1.

We summarize the sequence of comparisons performed depending on their
results in Table 1. Its rows correspond to all possible terminal vertices. In the
left column, the path to a leaf is shown. In the right column, we write intervals
where elements of the pair fall, and the conditional complexity of insertion.

4The symbol � denotes equal orders of growing.

13

q qq qq
α2 α1α3

q qβ0 β1

?

C
C
C
CW

S
S

S
Sw

i = 3

q qq qq q q
q q
?

�
�

�
�/

S
S

S
Sw

�
�

�
��

A
A
A
AU

β0 β1

α2 α4 α1 α5 α3

i = 0

q qq q q q
qqβ0 β1

?

�
�

�
��

�
�

�
��

A
A
A
AU

α3 α4 α1 α2

i = 1, 2

Figure 2: The sequence of comparisons

Let us list restrictions of the strategy securing the claimed complexity
bounds. In the simplest case i = 3, we choose elements of ranks pk,1, 2k,
3 · 2k−1 as α1, α2, α3, respectively. Then, we require the following conditions:

|(α1, +∞)| = pk,3 − pk,1 ≤ pk−1,0,

|(α3, +∞)| = pk,3 − 3 · 2k−1 ≤ pk−1,1.

In the case i = 0, we choose elements of ranks pk−1,2, pk−2,3, pk,0 − pk−4,3,
pk−2,3 + 2k−2, pk−2,3 + 3 · 2k−3 as α1, . . . , α5. Also, the following restrictions
should hold:

|(α1, +∞)| = pk,0 − pk−1,2 ≤ pk−2,1,

|(α2, +∞)| = pk,0 − pk−2,3 ≤ pk−1,1,

|(α1, α3)| = pk,0 − pk−1,2 − pk−4,3 ≤ 2k−2,

|(α5, α3)| = pk,0 − pk−2,3 − pk−4,3 − 3 · 2k−3 ≤ pk−3,2.

In the case i = 1, the elements of ranks pk−1,3, pk,1− pk−3,1, pk−1,0, pk−1,0 +
pk−2,0 are chosen as α1, . . . , α4. The restrictions are

|(α1, α2)| = pk,1 − pk−1,3 − pk−3,1 ≤ 2k−2,

|(α4, α2)| = pk,1 − pk−1,0 − pk−2,0 − pk−3,1 ≤ pk−2,1.

In the last case i = 2, we choose elements of ranks pk,0, pk,2 − 2k−2, pk−1,1,
pk−1,1 + pk−2,1 as α1, . . . , α4. The additional restrictions:

|(α1, α2)| = pk,2 − pk,0 − 2k−2 ≤ pk−3,3,

|(α4, α2)| = pk,2 − pk−1,1 − pk−2,1 − 2k−2 ≤ pk−2,2.

After rewriting in terms of xk,i = pk,i · 2−k and normalization, we obtain

14

conditional complexity 2(k + 3/4)

β1 < α1 β0, β1 ∈ (−∞, α1): 2(k + 1/4)

. . . , β0 < α2 β0 ∈ (−∞, α2): k, β1 ∈ (α1, +∞): k − 1/2

. . . , β0 < α3 β0 ∈ (α2, α3): k − 1, β1 ∈ (α1, +∞): k − 1/2

. . . , β0 > α3 β0, β1 ∈ (α3, +∞): 2(k − 3/4)

conditional complexity 2k

β1 < α1 β0, β1 ∈ (−∞, α1): 2(k − 1/2)

. . . , β0 < α2 β0 ∈ (−∞, α2): k − 3/4, β1 ∈ (α1, +∞): k − 5/4

. . . , β1 > α3 β0 ∈ (α2, +∞): k − 1/4, β1 ∈ (α3, +∞): k − 11/4

. . . , β0 < α4 β0 ∈ (α2, α4): k − 2, β1 ∈ (α1, α3): k − 2

. . . , β0 < α5 β0 ∈ (α4, α5): k − 3, β1 ∈ (α1, α3): k − 2

. . . , β0 > α5 β0, β1 ∈ (α5, α3): 2(k − 5/2)

conditional complexity 2(k + i/4), i = 1, 2

β1 < α1 β0, β1 ∈ (−∞, α1): 2(k + (i− 2)/4)

. . . , β1 > α2 β0 ∈ (−∞, +∞): k + (i + 2)/4, β1 ∈ (α2, +∞): k + (i− 10)/4

. . . , β0 < α3 β0 ∈ (−∞, α3): k + (i− 3)/4, β1 ∈ (α1, α2): k + (i− 9)/4

. . . , β0 < α4 β0 ∈ (α3, α4): k + (i− 7)/4, β1 ∈ (α1, α2): k + (i− 9)/4

. . . , β0 > α4 β0, β1 ∈ (α4, α2): 2(k + i/4− 2)

Table 1: The strategy description

the following system σ of width 5:

(2xk,3 − 2xk,1 − xk−1,0)/5 ≤ 0,

(2xk,3 − xk−1,1)/3 ≤ 1,

(4xk,0 − 2xk−1,2 − xk−2,1)/7 ≤ 0,

(4xk,0 − 2xk−1,1 − xk−2,3)/7 ≤ 0,

(16xk,0 − 8xk−1,2 − xk−4,3)/25 ≤ 4/25,

(16xk,0 − 4xk−2,3 − 2xk−3,2 − xk−4,3)/23 ≤ 6/23,

(8xk,1 − 4xk−1,3 − xk−3,1)/13 ≤ 2/13,

(8xk,1 − 4xk−1,0 − 2xk−2,1 − 2xk−2,0 − xk−3,1)/17 ≤ 0,

(8xk,2 − 8xk,0 − xk−3,3)/17 ≤ 2/17,

(4xk,2 − 2xk−1,1 − xk−2,2 − xk−2,1)/8 ≤ 1/8.

15

The reduced system then looks like

(2z3 − 2z1 − z0)/5 ≤ 0,

(2z3 − z1)/3 ≤ 1,

(4z0 − 2z2 − z1)/7 ≤ 0,

(4z0 − 2z1 − z3)/7 ≤ 0,

(16z0 − 8z2 − z3)/25 ≤ 4/25, (23)

(16z0 − 5z3 − 2z2)/23 ≤ 6/23,

(7z1 − 4z3)/13 ≤ 2/13,

(5z1 − 6z0)/17 ≤ 0,

(8z2 − 8z0 − z3)/17 ≤ 2/17,

(3z2 − 3z1)/8 ≤ 1/8.

One can check that the vector v = (v0, . . . , v3) from the statement is a
solution of the linear programming problem for the system (23) maximizing
all variables zi. In particular, v ∈ T (σ). It can be also verified by direct
calculation that u = (1.02, 17/14, 1.47, 12/7) ∈ T ε(σ) for ε = 1/350.

We are left to apply Lemma 2 to our strategy with parameters d = 4,
{yi} = {0, 1/4, 1/2, 3/4}, w = 5, h = 5. Recall that Lemma 2 requires
u ≤ (17/14, 17/14, 12/7, 12/7), see (16), and this indeed holds true. Note that
R = ||v−u|| = 58/27−12/7 ≈ 0.434. Set ϕ = log m−γr−2 log(r +2), where
γ is to be chosen soon. Then the condition (17) is satisfied for growing r.
Finally, by Lemma 2, we obtain

Pm

(
r +

i

4
+ 2−γr

)
≥ Pm

(
r +

i

4
+

(r + 2)ϕ · 2ϕ

m

)
≥

≥ vi · 2r −O
(
m2 · 2−γr

)
−O

(
2r · e−

ε(1/2−γ)r−O(log r)
2Rw(d+1)(h+1)

)
.

The last two terms fall into O
(
2(1−γ)r

)
for any small enough γ, say, for γ =

1
100000

.
We can try to apply already proven bounds to constructing of the theoret-

ically fast sorting algorithm.

Corollary 1. For r ∈ N, m � 2r/2, and γ = 1
100000

, the following holds:

Qm

(
r − 1/4 + 2−γr

)
≥ 143

189
· 2r −O

(
2(1−γ)r

)
.

Proof. Easily follows from Lemma 3 by (6).

Theorem 1. S(n) ≤ log(n!) + 0.09n + o(n).

16

Proof. We will follow the analysis from §2. Let n = τ2k+1/3, where τ ∈ [1, 2).
If τ /∈

[
143
126

, 235
126

]
, then we apply the estimate (3) and use direct calculation to

verify that the stated bound is valid. Otherwise, we modify the procedure of
the final stage of the Ford–Johnson method.

Take m �
√

n. First, we insert elements αi (shown in Fig. 1) with indices i
satisfying

uk−1 < i ≤ Qm

(
k − 1/4 + 2−γk

)
− uk−1

by grouping them into portions of size m in the order opposite to the numer-
ation via the method of Lemma 3. In such a way, 17

189
· 2k −O(n1−γ) elements

may be inserted with the average complexity k − 1/4 + O(n−γ) per element
by Corollary 1. After this insertion is performed, the length of the principal
chain is still below 2k. So, each of the remaining elements may be inserted by
the standard binary algorithm via k comparisons.

Thus, we save
(

1
4
−O(n−γ)

)
·
(

17
189

· 2k −O(n1−γ)
)

comparisons against the
bound (3). As a consequence,

S(n) ≤ n log n− (θ/τ + log(2τ/3)) n + O(n1−γ),

where θ = 2+ 17
504

. The coefficient in the linear term takes the maximum value
log(2θe ln 2/3) > log e− 0.09 in the case τ = θ ln 2.

The presented sorting algorithm does not improve over [10]. The problem
lies in the large step of discretization of values for the conditional complexity
in Lemma 3. Instead, the step should be chosen as o(1), and the dimension d
should be growing function of n. But then it would be hard to describe separate
optimal strategies for different target values of conditional complexity. So we
need a universal strategy which is good enough for any value.

6 Universal strategy

Here, we construct a comparison strategy to prove a more precise asymptotic
complexity bound for sorting. It is rather obvious, that to sort a partially or-
dered set optimally any performed comparison should divide the set of possible
total orderings approximately equally. This observation leads to the gradient
method. First, perform a sequence of comparisons each dividing the set of pos-
sible orderings as equal as possible. Then process the obtained partial order
via some simple algorithm.

The information-theoretic lower bound for insertion of a pair into an in-
terval of length n − 1 is log(n(n − 1)/2) < 2(log n − 1/2). Let us imagine
an idealistic situation. Assume that a pair may be inserted into an interval of
length Y (a) = (1−λ)·2a+1/2 with conditional complexity 2a for any sufficiently
large a, where λ ≥ 0 is independent of a parameter to be chosen later.

17

We are going to describe some gradient strategy to insert a pair β0 < β1

into an interval of length Y (a). The strategy is parameterized by s ∈ N. Note
once more that we operate with real lengths of intervals. Rounding issues are
covered by Lemma 2 converting strategy into algorithm.

First, consider the problem of the optimal choice for the next element to
compare with. Suppose that in the current partial order, the element β1 falls
into the interval I1, and the element β0 falls into the interval I0 ∪ I1, where
I0∩I1 = ∅ and |I0| = b · |I1|. Easy to check that the optimal choice to compare
with β0 is the element5 α of rank (b/2 + 1/4) · |I1| in I0 ∪ I1. (If b > 1/2,
then α ∈ I0.) The optimal choice to compare with β1 is the element α′ of
rank

√
b2 + b + 1/2 · |I1|, see Fig. 3. Generally, if we want to divide the set of

outcomes as x : (1 − x), then to compare with β0 and β1 we should choose
elements of ranks x(b + 1/2) · |I1| and

√
b2 + x(2b + 1) · |I1|, respectively.

q qq q qα α′

q qβ0 β1
�

�
�
�

�
�

�
�

B
B
B
BN

()()I0 I1

-�
-� -� -�

√
b2+b+1/2

b
2
+ 1

4
b
2
− 1

4
1

Figure 3: Optimal choices for the next comparison

6.1 Initial partition

W.l.o.g. assume that the first comparison is β1?α1. Choose an element of
rank Y (a − 1/2) = (1 − λ) · 2a as α1. If β1 < α1, call the algorithm to insert
the pair into the interval (−∞, α1) of length Y (a− 1/2). Otherwise, perform
the comparison β0?α2, where α2 is the element with optimal value of rank
(1− λ) ·

√
2+1
4

· 2a. The reason to perform the second comparison with β0 will
be explained later.

If β0 < α2, then the element β0 is inserted into the interval (−∞, α2)
with the conditional complexity a−2+log(

√
2+1), and β1 is inserted into the

interval (α1, +∞) of length (1−λ)(
√

2−1) ·2a with the conditional complexity
a + log(

√
2 − 1). Hence, in this case, we perform 2a conditional comparisons

to insert the pair.
If β0 > α2, then β1 ∈ I1 and β0 ∈ I0 ∪ I1, where I1 = (α1, +∞) and

I0 = (α2, α1). Denote b = |I0|/|I1| = 2
√

2+1
4

. With the use of s equally-dividing

5As before, here and below, by an element we mean some point to partition an interval.

18

comparisons we can locate β1 in one of 2s subintervals of the interval I1. By
the aforementioned formulas, the ends of these subintervals are the elements
α′

k of ranks bk · |I1|, bk =
√

b2 + k(2b + 1) · 2−s, k = 0, . . . , 2s−1, and the point
α′

2s = +∞. Denote Jk = (α′
k−1, α

′
k). The general partition scheme is shown in

Fig. 4.

q qp p p
α1 α′

1 α′
k−1 α′

k α′
2s−1

.J1 Jk J2s

Hk,1

. . .

()()I0 I1

Hk,s+1

α2 α′′
k,1 α′′

k,s α′′
k,s+1

−∞ +∞

Figure 4: The universal partition

Assume that β1 falls into Jk. The next stage is the insertion of β0. We
sequentially compare β0 with elements α′′

k,1, . . . , α
′′
k,s+1, which are defined as

follows. Set α′′
k,0 = α2. Denote by Hk,j the interval (α′′

k,j−1, α
′′
k,j). The length

of Hk,j is chosen as

|Hk,j| = (1− λ) · 22a−s−2−j−log(|Jk|/(1−λ)). (24)

If β0 > α′′
k,1, perform the comparison β0?α

′′
k,2; then, if β0 > α′′

k,2, compare
β0 and α′′

k,3, etc. As soon as β0 < α′′
k,j, the elements β0 and β1 are inserted

separately into the intervals Hk,j and Jk with the cumulative conditional com-
plexity 2a− s− 2− j. Therefore, overall conditional complexity of the pair’s
insertion is 2a.

Finally, if β0 > α′′
k,s+1, then both elements β0, β1 fall into (α′′

k,s+1, α
′
k). We

would like to insert the pair into this interval by 2a−2s−3 comparisons. This
would be possible, for example, in the case α′′

k,s+1 = αk−1. Unfortunately, the
latter equality does not generally hold, and the resulting interval appears to
be longer than required. Let us estimate the excess of length. The length of
the interval Jk is

|Jk| = (bk−bk−1) · |I1| =
2b + 1

2s(bk + bk−1)
· |I1| = (1−λ) ·

√
2 + 1

2s+1(bk + bk−1)
·2a. (25)

Then, (24) implies that

|Hk,j| = (1− λ) · 2a−1−j−log(
√

2+1)+log(bk+bk−1) =
bk + bk−1

2j+1
· |I1|. (26)

19

Hence, the sum of lengths of intervals Hk,j for a fixed k is

s+1∑
j=1

|Hk,j| = (1− 2−s−1) · bk + bk−1

2
· |I1|. (27)

Therefore,

|(α′′
k,s+1, α

′
k)| = bk · |I1| −

s+1∑
j=1

|Hk,j| =
(
bk − (1− 2−s−1)(bk + bk−1)/2

)
|I1| =

=

(
bk − bk−1

2
+

bk + bk−1

2s+2

)
|I1| <

(
2b + 1

2s+1 · 2b
+

b + 1

2s+1

)
|I1| <

7

2s+2
· |I1|.

Consequently,

|(α′′
k,s+1, α

′
k)| − Y (a− s− 3/2) <

7

2s+2
· |I1| − (1− λ) · 2a−s−1 =

=
7− 2(

√
2 + 1)

2s+2
· |I1| <

ln 2

2s
· |I1|. (28)

We will make use of the obtained bound later. Now we are going to mod-
ify the above strategy by allowing a controlled aberration of the ideal, that
is, applying a slightly non-equal partitioning. Namely, we will violate the
distribution of lengths of subintervals Jk inside I1 to decrease the estimated
complexity of insertions into them, and as a consequence, to increase the al-
lowable complexity for insertions into Hk,j, which makes the latter longer. To
do this, we have a reserve, a simple bound (4) on the complexity Q(a) of in-
sertion of single elements, which is better than Y (a− 1/2), when a is close to
an integer from below6. The length of the interval I1 will remain intact.

Observe, that the length of Jk varies from 2b+1
2b
·2−s·|I1| to 2b+1

2b+2
·2−s·|I1| when

k grows, see (25). It follows from b < 1 that
[

2
3
, 4

3

]
⊂
[
1− 1

2b+1
, 1 + 1

2b+1

]
.

Thus, for any (sufficiently large) a some intervals Jk have lengths close to the
powers of 2. Now it is time to explain that the reason behind the second
comparison β0?α2 is precisely to reduce b below 1.

6.2 Correction of the partition

At this stage, we correct the strategy by violating lengths of Jk and Hk,j, and
at the same time discretisize the problem. Let us denote the modified intervals

6One can hardly build a fast insertion algorithm not relying upon efficient binary inser-
tions into intervals of lengths close to 2k. We can see it in the known algorithms [6, 7] and
in both examples from §3 and §5.

20

by J∗
k and H∗

k,j. Let d ∈ 2N be a discretization parameter, and set yi = i/d,

i = 0, . . . , d− 1. We still use the expression Y (r + yi) = (1− λ) · 2r+yi+1/2 to
bound the length of an interval sufficient for insertion of a pair with conditional
complexity 2(r + yi).

After taking some a = r + yi, r ∈ N, we are ready to describe the modified
partition. The parity of d allows us to keep the same choice of α1 as in the
idealistic strategy above. However, now we have to estimate the complexity of
insertion of an element into the interval I1 = (α1, +∞) as

a + dd · log(
√

2− 1)e/d < a + log(
√

2− 1) + 1/d.

As a result, instead of α2 we have to choose the element α∗
2 of rank at most

(1 − λ) · 2a−2−dd·log(
√

2−1)e/d. Actually, to provide conditions for the future
application of Lemma 2, we additionally save 1/d conditional comparisons,
and choose as α∗

2 the element of a slightly lesser rank

(1− λ) · 2a−2−dd·log(
√

2−1)e/d−1/d > (1− λ) ·
√

2 + 1

4
· 2a−2/d. (29)

Hence, with the use of the inequality ex ≥ 1 + x, we obtain

|I∗0 | = |(α∗
2, α1)| ≤ (1− λ) · 2a

(
1−

√
2 + 1

4
· 2−2/d

)
≤

≤ (1− λ) · 2a

(
3−

√
2

4
+

√
2 + 1

2d
· ln 2

)
.

As a consequence,

0 ≤ |I∗0 | − |I0| ≤
(3 + 2

√
2)

2d
· ln 2 · |I1|. (30)

For d large enough, |I∗0 | < |I1|.
Let us redistribute intervals Jk inside I1. Introduce a contraction parameter

µ > 0. We require the conditional complexity of insertion of an element into
the interval J∗

k be smaller than that of insertion into Jk in the idealistic strategy
at least by

(
2− k

2s

)
µ comparisons, k = 1, . . . , 2s. Recall that the complexity of

insertion in the idealistic strategy is estimated as log(|Jk|/(1− λ)). We resort
to the non-uniform contraction because of the effect of migration of the right
ends of intervals Jk. Since |I0| < |I1|, for the uniform contraction by 1 + µ
times, it would be hard to compensate this for small numbers k. The total
length of intervals Hk,j would increase by approximately µ · |I0|, and at the
same time the rank of α′

k+1 (the right end of the interval Jk) would increase
by roughly µ · |I1|. To overcome this obstacle, we choose smaller contraction
coefficients for intervals with larger indices.

21

6.3 Contraction

We are going to shorten almost all intervals Jk, and to compensate the con-
traction by extending a small number of intervals with lengths close to the
powers of 2. First, observe that bk satisfies simple inequalities (which can be
verified by squaring)

b +
k

2s
· b ≤ bk ≤ b +

k

2s
· 2b + 1

2b2
. (31)

Taking the discretization into account, the length of the contracted interval J∗
k

may be chosen within the limits

2−(2− k
2s)µ− 1

d · |Jk| ≤ |J∗
k | ≤ 2−(2− k

2s)µ · |Jk|. (32)

Next, we estimate the overall shortening θp of intervals with indices from
p to 2s. Under the pessimistic assumption that all intervals are contracted,
again exploiting the inequality ex ≥ 1 + x together with (25) and (31), we
obtain

θp ≤
2s∑

k=p

(|Jk| − |J∗
k |) ≤

2s∑
k=p

|Jk|
(
1− 2−(2− k

2s)µ− 1
d

)
≤

≤
2s∑

k=p

|Jk|
((

2− k2−s
)
µ + 1/d

)
ln 2 =

=

(
2µ +

1

d

)
(b + 1− bp−1) ln 2 · |I1| − µ2−s ln 2 ·

2s∑
k=p

k|Jk| =

=

(
2µ +

1

d

)
(b + 1− bp−1) ln 2 · |I1| − µ2−2s(2b + 1) ln 2 ·

2s∑
k=p

k

bk + bk−1

|I1| ≤

≤
(

2µ

(
1− p− 1

2s
· b
)
− µ2−2s · 2b + 1

2(b + 1)
· 22s − p2

2
+

1

d

)
ln 2 · |I1| =

=

((
2− 2b · p− 1

2s
− 2b + 1

4(b + 1)
·
(

1− p2

22s

))
µ +

1

d

)
ln 2 · |I1|.

In particular, the overall shortening of all intervals Jk may be bounded as

θ1 ≤ (2µ + 1/d) ln 2 · |I1|, (33)

and for p ≥ 2, the bound

θp ≤
((

2− 2b + 1

4(b + 1)

)
µ +

1

d

)
ln 2 · |I1|, (34)

holds, since p2/2s ≤ p ≤ 2(p− 1) and 2b+1
4(b+1)

< b = 2
√

2+1
4

.

22

6.4 Extension

Now, we bound from below the size of possible compensation. If

(1− λ) · 2l+2µ ≤ |Jk| < 2l, l ∈ N,

then the idealistic strategy above estimates the complexity of insertion of the
element β1 into the interval Jk at least as l + 2µ. Nevertheless, the length of
the interval may be increased to 2l, and at the same time, the bound on the
complexity decreases at least by 2µ, as desirable.

First, observe that for sufficiently small λ and µ, it holds for some l ∈ N
that

|J2s | ≤ (1− λ) · 2l+2µ < 2l ≤ |J1|. (35)

In the case µ � λ the middle inequality indeed holds true, then (35) follows
from |J1|/|J2s | ≥ 2

1−λ
. Applying (25) and (31) we deduce

|J1|
|J2s |

=
b2s + b2s−1

b1 + b0

≥
2b + 2− b

2s

2b + 2b+1
2b2·2s

≥

≥ b + 1

b

(
1− b

2(b + 1) · 2s

)(
1− 2b + 1

4b3 · 2s

)
>

b + 1

b

(
1− 21−s

)
,

where are also used simple inequalities 1
1+x

≥ 1−x and (1−x)(1−y) ≥ 1−x−y
valid for x, y ≥ 0. It is easy to check by direct numeric calculation, that this
bound prevails over 2

1−λ
, say, for any s ≥ 10 and λ ≤ 1/50.

So, we have that some segment g =
[
(1− λ) · 2l+2µ, 2l

]
lies inside

[|J2s |, |J1|]. Let us bound the size of extension only for those intervals Jk,
whose lengths fall into g. Recall that lengths of intervals monotonically de-
crease while k grows, see (25). The length of the segment g may be bounded
from below as(

1− (1− λ)22µ
)
· 2l ≥ (1− (1− λ)(1 + 2µ)) · |J2s | ≥

≥ L = (λ− 2µ)
2b + 1

2(b + 1) · 2s
· |I1| (36)

due to (25) and the inequality 2x ≤ 1 + x valid for 0 ≤ x ≤ 1.
Now, we may bound the difference of lengths of adjacent intervals as

2s

(2b + 1) · |I1|
· (|Jk| − |Jk+1|) =

1

bk + bk−1

− 1

bk+1 + bk

≤

≤ bk+1 − bk−1

4b2
=

2(2b + 1)

4b2(bk+1 + bk−1) · 2s
≤ 2b + 1

4b3 · 2s
.

23

Consequently, for any k,

|Jk| − |Jk+1| ≤ ∆ =
(2b + 1)2

4b3 · 22s
· |I1|. (37)

It is easy to verify, that if a set of points partitions a segment of length L
by subsegments with lengths at most ∆, then the sum of distances from these
points to the end of the segment is at least L(L−∆)

2∆
. Applying this formula with

actual values of L and ∆, we deduce that

L(L−∆)

2∆
≥
(

(λ− 2µ)2 · b3

2(b + 1)2
− (λ− 2µ) · 2b + 1

4(b + 1) · 2s

)
|I1| =

= (λ− 2µ)

(
λ− 2µ− (2b + 1)(b + 1)

2b3 · 2s

)
b3

2(b + 1)2
· |I1| >

> (λ− 2µ)
(
λ− 2µ− 22−s

) b3

2(b + 1)2
· |I1|.

So we lower bounded the maximal possible extension of intervals Jk with
lengths from g (to the length 2l).

The compensation for the contraction of the rest intervals Jk is possible
when L(L−∆)

2∆
≥ θ1. By (33), we can state the sufficient condition for this as

(λ− 2µ)
(
λ− 2µ− 22−s

) b3

2(b + 1)2
≥
(

2 +
1

d

)
ln 2 · µ. (38)

For a moment, we are quite satisfied by the following observation: for s large
enough, one can choose parameters as d � 2s, λ � 2−s/2, µ � 2−s so that the
condition (38) is fulfilled.

6.5 Putting things together

Now it is the time to examine whether the undertaken measures eliminate the
deficit of length of intervals Hk,j expressed in (28). Note that the conditions
behind the bound (28) have changed. Though we can still use the old ex-
pression for Y (a − s − 3/2), the interval I0 has been extended, see (30), and
the right end of the interval Jk may have migrated further to the right by a
distance bounded from above as θk+1, see (34).

Thus, for any k, we require the overall growth of intervals Hk,j to be at
least

|I∗0 | − |I0|+ θk+1 +
ln 2

2s
· |I1|+ δ · |I1|, (39)

where δ · |I1| is the extra reserve of length provided for the future application
of Lemma 2.

24

By construction, |H∗
k,j| ≥ |Hk,j| · 2(2− k

2s)µ− 1
d , if we remember about dis-

cretization. Therefore, by (27) and (31), we obtain

s+1∑
j=1

(|H∗
k,j| − |Hk,j|) ≥

(
2(2− k

2s)µ− 1
d − 1

)
·

s+1∑
j=1

|Hk,j| ≥

≥
((

2− k

2s

)
µ− 1

d

)
ln 2 ·

(
1− 1

2s+1

)
· bk + bk−1

2
· |I1| ≥

≥
(

2− k

2s

)(
1− 1

2s+1

)(
1 +

k − 1
2

2s

)
µb · ln 2 · |I1| −

b + 1

d
· ln 2 · |I1| ≥

≥
(

2 +
k − 2

2s
− k2

22s

)
µb · ln 2 · |I1| −

b + 1

d
· ln 2 · |I1| ≥

≥
((

2− 21−s
)
µb− b + 1

d

)
· ln 2 · |I1|.

This bound together with (30) and (34) allows to state the sufficient for (39)
condition as(

2− 21−s
)
µb− b + 1

d
≥ (3 + 2

√
2)

2d
+

(
2− 2b + 1

4(b + 1)

)
µ+

1

d
+

1

2s
+δ ·log e. (40)

Let d = 2s and δ = 2−s. Next, to satisfy (40), we choose µ = 30 · 2−s

(assuming that s ≥ 10). Then, the condition (38) is fulfilled if, for example,
λ = 20 · 2−s/2 + 64 · 2−s. The particular condition λ ≤ 1/50 securing (35) is
satisfied by any s ≥ 20.

6.6 Resulting strategy

By fixing the chosen values of parameters d, δ, µ, λ, we obtain the compari-
son strategy with a system of restrictions denoted by σ[s]. Comparisons are
performed as described above. For insertions into subintervals we require the
complexity provided by the above calculations. Let us describe the system of
restrictions of the given strategy.

Let p(a) be an estimate of the length of an interval with the pair’s insertion
conditional complexity 2a, and pc(J) be an estimate of the length of an interval
with the element’s insertion conditional complexity larger by c than for the
insertion into some interval J of the proposed partition. To estimate the
complexity of insertion into intervals J we choose either bounds of the form
Q(a), or bounds of the form p(a), depending on a.

Due to the choice of α1, the first comparison does not generate restrictions.
To support the second comparison, we introduce a restriction

p(a) ≤ p(a− 1/2) + p1/d(I1). (41)

25

We rely here on the reserve of the complexity provided by the choice of α∗
2,

see (29). It allows insertion into the interval I1 to utilize a bit more complex-
ity. This is merely an artificial trick to formally satisfy the requirements of
Lemma 2.

The following s comparisons locating β1 inside some of the intervals J∗
k

correspond to inner vertices of the comparison tree. To provide the required
complexity for insertion of the element β1 into any of such intervals, we intro-
duce a restriction

p(a) ≤ p(a− 1/2) +
2s∑

k=1

p0(J
∗
k). (42)

The restriction is single, since we can choose the lengths of the intervals J∗
k ,

k > 1, freely by appropriate selection of the boundary elements α′∗
k . Then,

only the length of the interval J∗
1 is expressed through the lengths of other

intervals.
Also, we can freely choose the lengths of the intervals H∗

k,j (just take an
appropriate element for comparison). Only the final insertions after 2s + 3
comparisons generate restrictions

p(a) ≤ p0(I−1) +
s+1∑
j=1

p0(H
∗
k,j) + p(a− s− 3/2) +

2s∑
i=k+1

p0(J
∗
i), (43)

where I−1 = (−∞, α∗
2).

Finally, (41), (42) and (43) for various values a = r + i/d constitute the
system of restrictions σ[s]. To rewrite the system in a canonic form from the
definition of strategy, we should replace p(x) and pc(J) in the said inequalities
by pr,i or by numeric expressions, when the bound Q(a) is implied.

The depth of the described strategy is 2s + 3. Now we will check that the
width (of the strategy, and of the system σ[s] as well) does not exceed s + 4.
Indeed,

|I1|
p(a)

=
√

2− 1 >
1

22
,

|I−1|
p(a)

≥
√

2 + 1

4 · 22/d
>

1

2

by (29). (Recall that p(a) = Y (a).) Further, from (32) and (25) we derive

|J∗
k |

p(a)
≥ |Jk|

p(a) · 22µ+1/d
≥

√
2 + 1

(b + 1) · 2s+2+2µ+1/d
>

1

2s+2
.

At last, it follows from (26) that

|H∗
k,s+1|

p(a)
≥ |Hk,s+1|

p(a)
≥ b

2s+1
· |I1|
p(a)

>
1

2s+3
.

26

Therefore, if we determine r′ from p(a) = pr′,i′ , then after representing (41)–
(43) in terms of pr,i, the obtained restrictions contain only those pr,i with
r ≥ r′ − s− 3.

Lemma 4. Suppose s ≥ 20, d = 2s, µ = 30 · 2−s, λ = 20 · 2−s/2 + 64 · 2−s and
ε = 1

25·2s . Also let yi = i/d and vi = (1− λ) · 2yi+1/2. Then
(i) v = (v0, . . . , vd−1) ∈ T (σ[s]);
(ii) u = v/2 ∈ T ε(σ[s]).

Proof. The statement (i) is already proven, since the strategy itself is built to
satisfy it. We are left to prove (ii).

Recall that to obtain the canonic form (10) of the system of restrictions,
we rewrite all inequalities in terms of xr,i = pr,i · 2−r and normalize them. To
pass on to the reduced system (11), we perform the substitution xr,i = zi.

Let p(a) = pr′,i′ . First, we preliminarily normalize restrictions (41)–(43)
via multiplication by 2−r′ , and rewrite them in terms of xr,i. We refer to the
obtained inequalities as (41’)–(43’). Now we estimate the sum of the absolute
values of the coefficients for xr,i in each of the restrictions to finally determine
normalizing coefficients.

The contribution from the summand p(a) to every sum of coefficients is 1.
Further, each of the summands p(a− 1/2), p1/d(I1), p0(I−1) and p0(Hk,1) con-
tributes at most 1, the contribution from p(a−s−3/2) does not exceed 2−s−1,
and for any j, the contribution from p0(Hk,j+1) is the half of the contribu-
tion from p0(Hk,j). Since |J∗

k | ≤ |J1| ≤ 2a−s by (25), the contribution from
any p0(J

∗
k) is at most 2−s. As a result, the sums of coefficients for xr,i in

the inequalities (41’), (42’) and (43’) are bounded from above by 3, 3 and 5,
respectively.

Now we estimate a reserve for the vector u to satisfy the reduced inequalities
(41’)–(43’). By construction, for the main solution v the reduced inequality
(41’) would hold even after replacing p1/d(I1) by p0(I1) in (41). Therefore, in
the case pr,i = vi · 2r, the right-hand side of (41) is larger than the left-hand
side at least by

p1/d(I1)− p0(I1) ≥ |I1|(21/d − 1) ≥ ln 2

d
· |I1| =

= (1− λ)(
√

2− 1) ln 2 · 2a−s > 2a−s−2.

After the normalization (that is, division by at most 3 · 2a) and replacing v by
u, the gap between the sides of the reduced inequality (41’) decreases by at
most 6 · 2a times. So, the resulting gap is at least 1

24·2s > ε.
Let us estimate the constant term appearing in (42’) due to the fact that we

use the bound Q(a) for the complexity of insertions into some intervals J∗
k . The

27

number of such intervals is at least bL/∆c, see above, and the applied bound
lies within the limits 2l ≥ |J2s | ≥ 2a−s−2 by (35) and (25). Thus, applying
actual values of L and ∆ from (36), (37), we deduce that the constant in the
right-hand side of (42’) is at least

L−∆

∆ · 2s+2
= (λ− 2µ) · b3

2(b + 1)(2b + 1)
− 1

2s+2
>

1

2s/2
.

After replacing v by u in the reduced inequality (42’), all non-constant terms
are halved. Then, we can safely halve the constant term as well. So, if we take
the normalizing into account, the term can be safely reduced to 1

6·2s/2 > ε.
For pr,i = vi ·2r, in each of the inequalities (43), the right-hand side prevails

over the left-hand side by at least

δ · |I1| = (1− λ)δ(
√

2− 1) · 2a > 2a−s+1/5

due to the reserve provided for the sum of lengths of intervals H∗
k,j, see (39).

After normalizing (that is, division by at most 5 ·2a) and replacing v by u, the
gap decreases by at most 10 · 2a times, and in the reduced inequality (43’) it
appears to be not smaller than ε = 1

25·2s .
Hence, after decreasing of constant terms in the reduced inequalities (41’)–

(43’) by ε, the vector u delivers the solution of the system.

7 Fast sorting

Theorem 2. For any a ≥ 2 and 2a/4 ≤ m ≤ 2a/2,

Pm(a) ≥ 2a+1/2 −O
(
a−γ · 2a

)
, (44)

where γ is small enough, say, γ = 1
5
.

Proof. We will apply Lemma 2 to the result of Lemma 4. The values of all
parameters are borrowed from Lemma 4. We have v ∈ T (σ[s]) and u ∈ T ε(σ[s])
for the system of restrictions σ[s] of depth h = 2s+3 and width w ≤ s+4. Note
that ui < 2yi−1/2 < π(yi), see (16). We also have ε < 1−λ < R = ||v−u|| <

√
2.

For a < 100, the inequality (44) holds with sufficiently large values of the
constant hidden behind the symbol “O”. Thus, we may assume a ≥ 100. Set
ϕ = log

(
mε
4a2

)
and s = d2γ log ae. If γ ≤ 1/4, then mε ≥ 2a/4/(50 · a2γ) ≥ 4a2,

hence, ϕ > 0. The condition (17) in Lemma 2 is automatically satisfied.

28

Let r + yi ≤ a − (a+2)ϕ·2ϕ

m
≤ r + yi + 1

d
, where r ∈ N. By Lemma 2, we

derive the bound

Pm(a) ≥ Pm

(
r + yi +

(r + 2)ϕ · 2ϕ

m

)
≥

≥ vi · 2r −Rm · 2ϕ+2/ε−R · 2r · e−
ε

2R(ϕ
w(d+1)(h+1)

−2) ≥

≥
(
1−O

(
2−s/2

))
· 2a+ 1

2
− (a+2)ϕ·2ϕ

m
− 1

d −O
(
m2/a2

)
−O

(
2a · e−Θ(a·s−2·2−2s)

)
=

=
(
1−O

(
2−s/2

))
· 2a+1/2−O(2−s) −O(2a/a2)− 2a−O(a·s−2·2−2s) =

= 2a+1/2 ·
(
1−O

(
a−γ
))

,

when, for example, γ ≤ 1/5.

Corollary 2. For any a ≥ 2 and 2a/4 ≤ m ≤ 2a/2,

Q2m(a) ≥ 2a −O
(
a−1/5 · 2a

)
.

We note that already a simplified version of the strategy from §6 with
the choice of s = 1 and depth 6 would allow us to improve the upper bound
of the method of binary insertions [5] for all sufficiently large n. However,
to achieve this, we would have to sacrifice universality, and carefully select
optimal partitions for any i instead. To get a better bound, we have to choose s
growing.

Theorem 3. For any n,

S(n) = log(n!) + O
(
n log−1/5 n

)
.

Proof. We start as in the method of binary insertions. Divide n inputs into
pairs, order them, and sort the larger elements. The latter constitute the
principal chain. To do this, we require n/2 + S(n/2) comparisons. We keep
notation αi for the smaller elements in the pairs from Fig. 1.

Next, we proceed with the Ford–Johnson method to insert first n0 =
n/ log n of the elements αi into the principal chain by n + O(n0) compar-
isons. We split the remaining elements into groups of size m ≈

√
n/ log n.

The group number k contains elements αn0+(k−1)m+1, . . . , αn0+km. Groups are
inserted into the principal chain in turn in ascending order of numbers by the
method of Corollary 2. The last group may contain less than m elements, so
we use trivial binary method to insert them.

The group number t should be inserted into an interval of length Lt =
2(n0 + tm) −m. By Corollary 2, it holds for some ρt = log Lt + O(log−1/5 n)

29

that Qm(ρt) ≥ Lt. So, the complexity of insertion of the t-th group does not
exceed ρt ·m.

Imagine idealistic situation, when any element αk may be inserted into the
principal chain through log(2k − 1) comparisons. In this case, to insert all
elements αk we would use

log

dn/2e∏
k=1

(2k − 1) = log(n!)− log((n/2)!)− n/2 + O(log n) (45)

comparisons.
In the group insertion method, in order to insert an element αk, we perform

at most log(2k + m) + O(log−1/5 n) = log(2k − 1) + O(log−1/5 n) comparisons
for n0 < k < n/2−m, and at most log(2k− 1) + O(1) comparisons for k ≤ n0

and k ≥ n/2−m. So, the excess number of comparisons with respect to (45)
may be estimated as

O(n0 + m) + O
(
(n/2− n0) log−1/5 n

)
.

Finally, we obtain a recurrent relation

S(n) ≤ n/2 + S(n/2) + log(n!)− log((n/2)!)− n/2 + O
(
n log−1/5 n

)
,

or, if rewritten in terms of s(n) = S(n)− log(n!),

s(n) ≤ s(n/2) + O
(
n log−1/5 n

)
.

Thus, it trivially follows that s(n) = O
(
n log−1/5 n

)
.

Acknowledgements
The author would like to thank Stasys Jukna for a number of helpful com-

ments.
The research is supported by RFBR grant, project no. 19-01-00294a.

References

[1] Aho A.V., Hopcroft J.E., Ullman J.D. The design and analysis of com-
puter algorithms. Reading, Mass.: Addison-Wesley, 1976.

[2] Christen C. Improving the bounds for optimal merging // in: Proc. 19th
IEEE Conf. on Found. of Comput. Sci. (Ann Arbor, USA, 16–18 October
1978). NY: IEEE, 1978, 259–266.

30

[3] Dor D., Zwick U. Selecting the median // SIAM J. Comput. 1999. 28(5),
1722–1758.

[4] Edelkamp S., Weiß A., Wild S. QuickXsort: a fast sorting scheme in
theory and practice // Algorithmica. 2020. 82, 509–588.

[5] Ford L.R., Johnson S.M. A tournament problem // Amer. Math.
Monthly. 1959. 66(5), 387–389.

[6] Graham R.L. On sorting by comparisons // in: Computers in Number
Theory. London: Academic Press, 1971, 263–269.

[7] Hwang F.K., Lin S. Optimal merging of 2 elements with n elements //
Acta Inf. 1971. 1, 145–158.

[8] Iwama K., Teruyama J. Improved average complexity for comparison-
based sorting // Theor. Comput. Sci. 2020. 807, 201–219.

[9] Knuth D.E. The art of computer programming. Vol. 3. Sorting and search-
ing. Reading, Mass.: Addison-Wesley, 1998.

[10] Manacher G.K., Bui T.D., Mai T. Optimum combinations of sorting and
merging // J. ACM. 1989. 36(2), 290–334.

[11] Mehlhorn K. Data structures and algorithms. Vol. 1. Sorting and search-
ing. Berlin, NY: Springer, 1984.

[12] Peczarski M. The Ford-Johnson algorithm still unbeaten for less than 47
elements // Inf. Process. Lett. 2007. 101(3), 126–128.

[13] Schönhage A., Paterson M., Pippenger N. Finding the median //
J. Comp. Sys. Sci. 1976. 13, 184–199.

[14] Schulte Mönting J. Merging of 4 or 5 elements with n elements // Theor.
Comput. Sci. 1981. 14, 19–37.

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

