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Abstract

In a STOC 1976 paper, Schaefer proved that it is PSPACE-complete to determine the winner
of the so-called Maker-Breaker game on a given set system, even when every set has size at most
11. Since then, there has been no improvement on this result. We prove that the game remains
PSPACE-complete even when every set has size 6.

1 Introduction

The Maker-Breaker game is a perfect-information game played on a set system—a collection of
subsets of some finite universe. The two players, called Maker and Breaker, alternate turns. In
each turn, the current player claims a previously-unclaimed element of the universe as his own.
Maker wins if he claims every element in at least one subset. Breaker wins if he claims at least one
element in every subset. There are no draws, and for every set system, one of the players has a
strategy that guarantees that he wins. The popular game of Hex can be viewed as a Maker-Breaker
game.

Maker-Breaker games were introduced in the influential paper [ES73], which provided a sufficient
condition for Breaker to win (and is often considered the forerunner to the method of conditional
probabilities). There is a very substantial literature on determining which player has a winning
strategy, for various kinds of set systems (and for many generalizations and variants of Maker-
Breaker games). We refer to [HKSS14] for a survey. Some cornerstones of this literature are:

r When the universe is the set of edges of an undirected graph with distinguished nodes s and
t, and the subsets are s-t paths (this special case is called the “Shannon switching game”),
Lehman [Leh64] characterized which player can win, in terms of combinatorial properties of
the graph.

r When the universe is the set of edges of a sufficiently large complete undirected graph, and
the subsets are Hamiltonian cycles, Chvátal and Erdös [CE78] proved that Maker can win.

Given the effort that has gone into determining the winner for various set systems, it is natu-
ral to consider the possibility of automating this process. In other words, let us view this as a
computational problem and investigate how efficiently it can be solved.

What is the computational complexity of determining which player has a winning strategy
in the Maker-Breaker game on a given set system?
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In a seminal paper, Schaefer [Sch76, Sch78] proved that the problem is PSPACE-complete, even when
the set system has width 11, which means each subset in the system has size at most 11. (A simplified
proof of PSPACE-completeness for unbounded width was given in [Bys04].) Reductions from this
theorem have been used for many other PSPACE-completeness results [FG87, Sla00, Sla02, AS03,
Bys04, DH08, Hea09, TDU11, vV13, FGM`15, BDK`16, DGPR18, GHIK19, CPSS19, RW20a].

Since Schaefer’s PSPACE-completeness result first appeared in 1976, there has been no im-
provement on the width 11. We make the first progress in 44 years: Determining the winner of
the Maker-Breaker game remains PSPACE-complete even for set systems of width 6. As we note
later, this also implies PSPACE-completeness of Maker-Breaker for set systems that are 6-uniform,
meaning that every subset has size exactly 6.

1.1 CNF games

In this section, we introduce “CNF games,” a broader sense of games that includes Maker-Breaker
as a special case.

r In the ordered game, the input consists of a conjunctive normal form (CNF) formula ϕ and
an ordered list of variables tx2n, x2n´1, . . . , x2, x1u that contains all variables of ϕ. Player
1 is called T because his goal is to make ϕ true, and player 2 is called F because his goal
is to make ϕ false. In the first round, T assigns a bit value for x2n, then F assigns a bit
value for x2n´1. In the next round, T assigns x2n´2, then F assigns x2n´3, and so on for n
rounds. The winner depends on whether ϕ is satisfied by the resulting assignment. In other
words, which player has a winning strategy is determined by whether the following quantified
boolean formula is true:

pDx2nqp@x2n´1q ¨ ¨ ¨ pDx2qp@x1q : ϕpx1, . . . , x2nq

The problem w-TQBF is to determine which player has a winning strategy, under the restric-
tion that ϕ has width w (every clause has at most w literals). It is known that 2-TQBF is
NL-complete [APT79] and 3-TQBF is PSPACE-complete [SM73].

r In the unordered game, the input consists of a CNF ϕ, a set X of variables that contains
all variables of ϕ (and possibly more), and an indication of which player (T or F) gets the
first move. Again, T and F alternate turns assigning bit values to variables, and the winner
depends on whether ϕ is satisfied by the resulting assignment. But now, each turn consists of
picking which remaining variable to assign, as well as which bit to assign it. The unordered
game more closely resembles real-world games in which the same moves are available to both
players. The problem Gw is to determine which player has a winning strategy, under the
restriction that ϕ has width w. The paper [RW20a] originated the Gw notation and showed
that G2 is in L and G5 is PSPACE-complete.

r The unordered positive game is just the unordered game under the restriction that ϕ must
be a positive (a.k.a. monotone) CNF—it only has unnegated literals. In this game, it would
never be advantageous for T to assign 0 to a variable, or for F to assign 1 to a variable. Thus
we can assume each move consists of T picking a remaining variable and assigning it 1, or F
picking a remaining variable and assigning it 0. If we view each clause of ϕ as a subset of X
(the set of variables), then the unordered positive game is equivalent to the Maker-Breaker
game on the set system corresponding to pϕ,Xq, where F is Maker (he wants to assign every
variable in at least one clause) and T is Breaker (he wants to assign at least one variable in
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every clause). The problem G`
w is the restriction of Gw to positive w-CNFs, i.e., determining

whether Maker or Breaker has a winning strategy on a given set system of width w. Thus,
Schaefer’s theorem [Sch76, Sch78] can be stated as: G`

11
is PSPACE-complete.

Previously, the authors conjectured that G`
3
, and perhaps even G3, might actually be tractable.

These problems have been shown to be tractable—indeed, in L—under various restrictions on the
3-CNF [Kut05, RW20b]. The unordered CNF game seems qualitatively very different from its
ordered counterpart. Width 6 might not be optimal for PSPACE-completeness of Maker-Breaker
(though it appears to be a barrier for our proof technique), but it is unclear what the optimal width
ought to be.

In this paper, we prove the following three results:

Theorem 1. G`
6

is PSPACE-complete.

Theorem 2. G`
5

is NL-hard.

Theorem 3. G4 is NL-hard.

In Table 1 we summarize the state-of-the-art for the ordered, unordered, and unordered positive
CNF games.

w Ñ 2 3 4 5 6

w-TQBF
NL-complete PSPACE-complete

[APT79] [SM73]

Gw

L
NL-hard PSPACE-complete

under restrictions
[Theorem 3] [RW20a]

L [RW20b]

G`
w

[RW20a] L

Unknown
NL-hard PSPACE-complete

under restrictions
[Theorem 2] [Theorem 1]

[Kut05]

Table 1: Results

Each game has four different patterns for “who has the first move” and “who has the last move.”
For a, b P tT,Fu we use the subscript a ¨ ¨ ¨ b to indicate that player a goes first and b goes last.
For example, G`

6,T¨¨¨F is G`
6

restricted to instances where T has the first move and F has the last

move (which necessitates |X| being even). With no such subscript, an instance of G`
6
must specify

which player goes first (and then the parity of |X| determines who goes last). We prove that G`
6
is

PSPACE-complete for each of the four possible patterns, and similarly for G`
5

being NL-hard, but
we are only able to show NL-hardness of G4 for the patterns T ¨ ¨ ¨F and F ¨ ¨ ¨F.

Our proof of Theorem 1 follows a similar high-level outline as the proof that G`
11

is PSPACE-
complete from [Sch76, Sch78], using a reduction from 3-TQBF. The key is to trade size for width—
we develop a gadget for simulating a round of the ordered game, using more variables and clauses
but lower width than the gadget from [Sch76, Sch78]. Our correctness analysis also uses a new
perspective on the case where T is supposed to win (which is much trickier than the case where F
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is supposed to win, since T must satisfy every clause whereas F only needs to falsify one clause).
To frame T’s winning strategy in the event that F “misbehaves,” we make use of ideas from the
recent paper [RW20b].

The proof of Theorem 1 also yields Theorem 2. Theorem 3 holds by an elementary but new
reduction from 2-SAT.

2 Proof of Theorem 1 (and Theorem 2)

We prove Theorem 1 in Section 2.1. In Section 2.2 we provide a streamlined proof of a special case
of a lemma from [RW20b], which is needed for the proof of Theorem 1. Then we prove a series of
corollaries in Section 2.3, which cover all the patterns for both Theorem 1 and Theorem 2.

2.1 Proof of Theorem 1

We show 3-TQBF ď G`
6,T¨¨¨F. Suppose an instance of 3-TQBF is given by

pDx2nqp@x2n´1q ¨ ¨ ¨ pDx2qp@x1q : F1 ^ F2 ^ ¨ ¨ ¨ ^ Fm

where each Fk is a clause with width ď 3. We construct an instance of G`
6,T¨¨¨F as pϕ`,Xq where

ϕ` is a positive 6-CNF and X is the set of variables in it, such that T has a winning strategy in
the 3-TQBF game iff T has a winning strategy in the G`

6,T¨¨¨F game on pϕ`,Xq.
A 3-TQBF round pDxiqp@xi´1q, where i P t2, 4, 6, . . . , 2nu, will correspond to 16 variables in X

and 14 clauses in ϕ`. Four of the 16 variables are txi, xi, xi´1, xi´1u. Here, xi is the name of an
unnegated variable, distinct from the variable xi. The variables xi and xi do not necessarily get
assigned opposite values. Similarly for xi´1 and xi´1. The other 12 variables associated with a
3-TQBF round pDxiqp@xi´1q are tu6i, u6i´1, . . . , u6i´11u. (This variable naming scheme is borrowed
from [Sch76, Sch78].) In the G`

6,T¨¨¨F game, we define “legitimate” gameplay corresponding to a
3-TQBF round pDxiqp@xi´1q as follows:

1. T plays one of xi, xi
2. F plays the remaining variable in the pair xi, xi
3. T plays u6i
4. F plays u6i´1

5. T plays u6i´2

6. F plays u6i´3

7. T plays u6i´4

8. F plays one of xi´1, xi´1

9. T plays the remaining variable in the pair xi´1, xi´1

10. F plays u6i´5

11. T plays u6i´6

12. F plays u6i´7

13. T plays u6i´8

14. F plays u6i´9

15. T plays u6i´10

16. F plays u6i´11
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In the G`
6,T¨¨¨F game, T always assigns 1 and F always assigns 0 to variables. In a legitimate

gameplay, T choosing xi or xi to assign 1 is like T choosing to assign xi “ 1 or xi “ 0 (respectively)
in the 3-TQBF game. Similarly, F choosing xi´1 or xi´1 to assign 0 is like F choosing to assign
xi´1 “ 0 or xi´1 “ 1 (respectively) in the 3-TQBF game.

We say the gameplay for the entire G`
6,T¨¨¨F game is legitimate when it consists of legitimate

gameplay for the pDx2nqp@x2n´1q round, followed by legitimate gameplay for the pDx2n´2qp@x2n´3q
round, followed by legitimate gameplay for the pDx2n´4qp@x2n´5q round, and so on. Legitimate
gameplay mimics the 3-TQBF gameplay in a natural way. We will design the clauses so that any
player who plays illegitimately either outright loses, or at least gains no advantage by deviating
from legitimate gameplay.

The 14 clauses associated with the 3-TQBF round pDxiqp@xi´1q are:

Ai “ xi _ xi _ u6i`1 _ u6i`3 _ u6i`5

C6i “ u6i _ u6i`1 _ u6i`3 _ u6i`5 _ pxi ^ xiq

C6i´2 “ u6i´2 _ u6i´1 _ u6i`1 _ u6i`3 _ pxi ^ xiq

C6i´4 “ u6i´4 _ u6i´3 _ u6i´1 _ u6i`1 _ pxi ^ xiq

Bi “ xi´1 _ xi´1 _ u6i´3 _ u6i´1

C6i´6 “ u6i´6 _ u6i´5 _ u6i´3 _ u6i´1 _ pxi´1 ^ xi´1q

C6i´8 “ u6i´8 _ u6i´7 _ u6i´5 _ u6i´3 _ pxi´1 ^ xi´1q

C6i´10 “ u6i´10 _ u6i´9 _ u6i´7 _ u6i´5 _ pxi´1 ^ xi´1q

As we note later, each Cj is not really a clause, since it contains a conjunction, but it is equivalent
to a pair of clauses. Thus the six Cj ’s correspond to 12 clauses, but we often refer to Cj as “a
clause” anyway. Note that each Cj contains one even-index u variable and the three previous odd-
index u variables. For any clause that appears to contain some uj variable where j ą 12n, that
non-existent variable is actually not present in the clause. Intuitively, the variables xi and xi in Ai,
and xi´1 and xi´1 in Bi, and uj in Cj (which we wrote first in the clauses) enable F to threaten T
with defeat if T plays illegitimately, and the other variables in the clauses enable T to threaten F
with defeat if F plays illegitimately.

For each clause Fk in the 3-TQBF game we introduce a clause

Dk “ F 1
k _ u1 _ u3 _ u5

where F 1
k is the clause which results from replacing each negated variable  xi by the unnegated

variable xi throughout the clause Fk. For example, if Fk “ px1_ x2_ x3q then F
1
k “ px1_x2_x3q,

where x2, x2, x3, x3 are separate variables.
In summary, the formal construction is as follows:

X “ tx1, x1, x2, x2, . . . , x2n, x2nu Y tu1, u2, . . . , u12nu

“
ď

i“2,4,6,...,2n

txi, xi, xi´1, xi´1, u6i, u6i´1, . . . , u6i´11u

ϕ` “
ľ

i“2,4,6,...,2n

pAi ^Biq ^
ľ

j“2,4,6,...,12n

pCjq ^
ľ

k“1,2,3,...,m

pDkq

where
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Ai “ xi _ xi _ u6i`1 _ u6i`3 _ u6i`5

Bi “ xi´1 _ xi´1 _ u6i´3 _ u6i´1

Cj “ uj _ uj`1 _ uj`3 _ uj`5 _ pxrj{6s ^ xrj{6sq

Dk “ F 1
k _ u1 _ u3 _ u5

Any occurrence of a non-existent variable uj (where j ą 12n) is omitted from the clauses. For
example, A2n is simply the clause x2n _ x2n. Now:

Cj “ puj _ uj`1 _ uj`3 _ uj`5 _ xrj{6sq ^ puj _ uj`1 _ uj`3 _ uj`5 _ xrj{6sq

So Cj contains two clauses with width ď 5, and Ai, Bi, and Dk are individual clauses with widths
ď 5, ď 4, and ď 6 respectively. Therefore, ϕ` is a positive 6-CNF with 16n variables and 14n`m
clauses. Though Cj contains two clauses we often treat Cj as a clause in the proof. The construction
is now complete. Furthermore, pϕ`,Xq can be constructed in logarithmic space.

Now we claim T has a winning strategy in the 3-TQBF game iff T has a winning strategy in
the G`

6,T¨¨¨F game pϕ`,Xq.
First we prove in Lemma 1 that the claim holds if the gameplay is restricted to be legitimate.

Then we prove that the claim still holds even if the gameplay is not legitimate. In Lemma 2 we
show if T plays illegitimately then either the game will be restored to a legitimate situation with
no advantage to T, or F will win immediately. In Lemma 3 we show if F plays illegitimately then
either the game will be restored to a legitimate situation with no advantage to F, or a chain reaction
will be started that enables T to win eventually.

Lemma 1. T has a winning strategy in the 3-TQBF game iff T has a winning strategy in the
G`

6,T¨¨¨F game pϕ`,Xq when gameplay is restricted to be legitimate.

Proof. A legitimate gameplay satisfies all Ai, Bi, Cj since Ai is satisfied by one of xi or xi, Bi

is satisfied by one of xi´1 or xi´1, and Cj is satisfied by uj where j is even because they have
been played by T. Since F plays all u1, u3, u5 we know that Dk gets satisfied iff F 1

k gets satisfied.
Furthermore, F 1

k gets satisfied iff Fk gets satisfied by the assignment to the xi variables (ignoring
the xi variables), because of the definition of F 1

k and the fact that xi and xi get opposite values. In
summary, a legitimate gameplay satisfies ϕ` iff F1^F2^ ¨ ¨ ¨ ^Fm gets satisfied by the assignment
to the xi variables.

Suppose F has a winning strategy in the 3-TQBF game. We describe F’s winning strategy in
pϕ`,Xq. F can use the same strategy to pick one from xi´1, xi´1 where F picking xi´1 or xi´1

is equivalent to assigning xi´1 “ 0 or xi´1 “ 1 respectively in the 3-TQBF game. F wins since
this strategy makes the assignment to all the xi variables match F’s strategy in the 3-TQBF game,
which ensures F1 ^ ¨ ¨ ¨ ^ Fm is unsatisfied and hence ϕ` is unsatisfied.

Suppose T has a winning strategy in the 3-TQBF game. We describe T’s winning strategy in
pϕ`,Xq. T can use the same strategy to pick one from xi, xi where T picking xi or xi is equivalent
to assigning xi “ 1 or xi “ 0 in the 3-TQBF game respectively. T wins since this strategy makes
the assignment to all the xi variables match T’s strategy in the 3-TQBF game, which ensures
F1 ^ ¨ ¨ ¨ ^ Fm is satisfied and hence ϕ` is satisfied.

Lemma 2. If F has a winning strategy in the 3-TQBF game then F has a winning strategy in the
G`

6,T¨¨¨F game pϕ`,Xq even if the gameplay does not progress legitimately.
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Proof. Suppose F has a winning strategy in the 3-TQBF game. In the game pϕ`,Xq, F can follow
his strategy from Lemma 1 until T plays illegitimately on move p (p is odd and 1 ď p ď 16) at
round pDxiqp@xi´1q. We consider all the different cases of p:

r p “ 1: F already played u6i`1, u6i`3, u6i`5 (or these variables do not exist if i “ 2n) due to
legitimate gameplay before this move. T was supposed to play xi or xi but T did not do so.
There are two possibilities:

– If T also did not play u6i, then F plays u6i. Then whatever T plays, F plays one of xi,
xi. F wins since C6i is unsatisfied.

– If T played u6i, then F plays one of xi or xi (it does not matter which one). Now it is
T’s move. If T plays the other from xi, xi then the game comes back to a legitimate
situation at move 4, where F has no disadvantage since T effectively let F make the
choice of xi or xi for him. If T does not play the other from xi, xi then F plays it and
wins since Ai is unsatisfied.

r p “ 9: F already played u6i´3, u6i´1 and one of xi´1, xi´1 due to legitimate gameplay before
this move. T was supposed to play the other one from xi´1, xi´1 but T did not do so. F
plays it and wins since Bi is unsatisfied.

r Other p: T was supposed to play uj where j is even, but T did not do so. F already played
uj`1, uj`3, uj`5 and one of xrj{6s, xrj{6s due to legitimate gameplay before this move. Then
F plays uj and wins since Cj is unsatisfied.

Lemma 3. If T has a winning strategy in the 3-TQBF game then T has a winning strategy in the
G`

6,T¨¨¨F game pϕ`,Xq even if the gameplay does not progress legitimately.

Definition 1. We define an order on all the clauses: Ai, C6i, C6i´2, C6i´4, Bi, C6i´6, C6i´8,
C6i´10 for i “ 2n then the same for i “ 2n ´ 2, and so on. Finally all Dk at the end ordered by k
increasing. To represent an interval of clauses from this order, we use analogous mathematical
notations “p”, “q”, “r”, “s”. For example, rA2n, Ctq means all the clauses from A2n (inclusive) to Ct

(exclusive). Let Vt be all the variables that occur at least once in pCt, C2s along with tu1, u3, u5u.
For example, V2 “ tu1, u3, u5u and V4 “ tu1, u2, u3, u5, u7u.

Lemma 4. If rA2n, Cts are already satisfied where t ď 12n ´ 4 and F has already played at most
one variable in Vt, then T has a strategy to satisfy pCt,Dms even if it is F’s turn.

Before proving Lemma 4, we use it to prove Lemma 3.

Proof of Lemma 3. Suppose T has a winning strategy in the 3-TQBF game. In the game pϕ`,Xq,
T can follow his strategy from Lemma 1 until F plays illegitimately on move p (p is even and
1 ď p ď 16) at round pDxiqp@xi´1q. The outline of the argument is: The legitimate gameplay so
far will have satisfied an interval of clauses, from A2n through some clause associated with round
pDxiqp@xi´1q. After the illegitimate move by F, there might be another opportunity for F to restore
the gameplay to a legitimate situation with no disadvantage to T. If that opportunity does not
exist, or if F fails to get the gameplay “back on track,” then T will have a move that satisfies
the next few clauses. Then for some t (t stands for “threshold”), rA2n, Cts will be satisfied, and
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it will be F’s turn and T will satisfy the rest of the clauses (and hence win) by Lemma 4. The
illegitimate move by F could have happened in Vt or somewhere else, and none of the other prior
moves happened in Vt.

We consider all the different cases of p:

r p “ 2: rA2n,C6iq are already satisfied due to legitimate gameplay before this move. F was
supposed to play the other one from xi, xi but F did not do so. Then T plays that and that
satisfies rC6i,C6i´4s. Now it is F’s turn and T wins by Lemma 4 with t “ 6i´ 4.

r p “ 8: rA2n,Biq are already satisfied due to legitimate gameplay before this move. F was
supposed to play one from xi´1, xi´1 but F did not do so. There are two possibilities:

– If F played u6i´5, then T plays one of xi´1 or xi´1 (it does not matter which one). Now
it is F’s move. If F plays the other from xi´1, xi´1 then the game comes back to a
legitimate situation at move 11, where T has no disadvantage since F effectively let T
make the choice of xi´1 or xi´1 for him. If F does not play the other from xi´1, xi´1 then
T plays it and that satisfies rBi, C6i´10s, so now it is F’s turn and T wins by Lemma 4
with t “ 6i´ 10.

– If F did not play u6i´5, then T plays u6i´5 and that satisfies rC6i´6,C6i´10s. Let us
pretend, for a moment, that one of xi´1 or xi´1 has already been played by T and the
other has already been played by F (though in reality, neither has been played yet).
Then Bi and hence all of rA2n, C6i´10s are satisfied, and F’s illegitimate move was the
only variable that may have been played so far among V6i´10, and it is F’s turn, so
T would win by Lemma 4 with t “ 6i ´ 10. In reality, T can use that strategy from
Lemma 4, and whenever F plays one of xi´1 or xi´1, T responds by playing the other,
then resumes the strategy from Lemma 4. (Or, if F never plays xi´1 or xi´1, then T will
play one of them after concluding his strategy from Lemma 4, and F will have to play
the other as the final move.) Then Bi gets satisfied along with pC6i´10,Dms, so T wins.

r p “ 16: rA2n,C6i´10s are already satisfied due to legitimate gameplay before this move. F was
supposed to play u6i´11 but F did not do so. Here i ą 2 since if i “ 2 then u6i´11 “ u1, which
will be the only leftover variable to play and F must play it. So we only consider i ą 2. Then
T plays u6i´11 (which is u6pi´2q`1) and that satisfies rAi´2,C6pi´2q´4s. Now it is F’s turn and
T wins by Lemma 4 with t “ 6pi ´ 2q ´ 4.

r Other p: F was supposed to play uj`1 (2nd variable in Cj and j is even) but F did not do
so. rA2n,Cjq are already satisfied due to legitimate gameplay before this move. Then T plays
uj`1. There are two possibilities of j:

– j ď 4: T’s move uj`1 satisfies rCj,Dms since all Dk are satisfied by uj`1 (which is either
u3 or u5). Therefore T wins.

– j ą 4: T’s move uj`1 satisfies rCj,Cj´4s. Now it is F’s turn and T wins by Lemma 4
with t “ j ´ 4.

To prove Lemma 4, we need Lemma 5, which concerns “tree-like” positive 3-CNFs. Lemma 5
follows from [RW20b], but for completeness we provide a streamlined, self-contained proof in
Section 2.2.

8



Definition 2. A positive 3-CNF is a tree if each of the following holds:
(1) Each clause has width exactly 3, so the formula can be viewed as a 3-uniform hypergraph

where variables are nodes and clauses are hyperedges.
(2) Each clause has at least one “spare variable” that occurs in no other clauses.
(3) Any two clauses share at most one variable.
(4) If we delete a spare variable from every clause, the resulting graph (2-uniform hypergraph)

would be a tree (i.e., connected and no cycles).

When we say F can use pass moves, this means F has the option of forgoing any turn, thus forcing
T to play multiple variables in a row.

Lemma 5. For every tree, T has a winning strategy even if F gets to play the first two moves and
F can use pass moves.

Proof of Lemma 4. Shrink the clauses pCt,Dms by removing some variables from them as follows:

A1
i “ xi _ xi _ u6i`3

B1
i “ xi´1 _ xi´1 _ u6i´3

C 1
j “ uj _ uj`3 _ uj`5 (previously two clauses, now only one)

D1 “ u1 _ u3 _ u5 (all D1
k are the same, we call it just D1)

All these clauses form a positive 3-CNF ψ. The hypergraph for ψ has been illustrated in Figure 1.
We argue that ψ is a tree. We show it satisfies each of the four properties of a tree as described in
Definition 2.

r Tree property p1q holds since each of A1
i, B

1
i, C

1
j, D

1 has exactly 3 variables. The variables
u6i`3 in A1

i, and uj`3 and uj`5 in C 1
j, are guaranteed to exist since t ď 12n ´ 4.

r Tree property p2q holds since xi, xi´1, uj , u1 only occur in A1
i, B

1
i, C

1
j, D

1 respectively.
r Tree property p3q holds since:

– C 1
j and A1

i share only u6i`3 if j “ 6i or j “ 6i´ 2.

– C 1
j and B1

i share only u6i´3 if j “ 6i´ 6 or j “ 6i´ 8.

– C 1
j and C 1

j´2
share only uj`3.

– C 1
2
and D1 share only u5.

– Other pairs do not share a variable.

r Tree property p4q holds since deleting xi, xi´1, uj , u1 (which are spare variables) from A1
i,

B1
i, C

1
j , D

1 respectively creates a 2-uniform hypergraph as shown in Figure 2 which is clearly
a tree.

Therefore ψ is a tree.
By Lemma 5, T has a winning strategy on the tree ψ even if F has the first two moves (and

subsequently T and F play alternately) and F can use pass moves. Now we claim that T has a
strategy to satisfy pCt,Dms in ϕ

` assuming F has already played at most one variable in Vt and it
is F’s turn (and F cannot use pass moves). Because every variable in ψ is also in Vt, we can say F
has already played at most one variable of ψ. Because it is F’s turn in ϕ`, that’s like allowing F
to have the second move in ψ as well. After that, T’s strategy for ϕ` is the same as T’s winning
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u17 u15

u12

C 1
12

u13

u10

C 1
10

u11

u8

C 1
8

u9

u6

C 1
6

u7

u4

C 1
4

u5

u2

C 1
2

u3

u1

D1

...ut`1ut`3

ut´2

C 1
t´2

x2 x2

A1
2

x1 x1

B1
2

Figure 1: Hypergraph for ψ

u17 u15 u13 u11 u9 u7 u5 u3...ut`1ut`3

x2 x1

Figure 2: Hypergraph after deleting a spare variable from each clause in ψ

strategy for ψ, except that whenever F plays a variable of ϕ` that’s not in ψ, T interprets it as
a pass move by F and continues with his strategy for ψ. Since this strategy ensures that ψ gets
satisfied, it also ensures that pCt,Dms and hence all of ϕ` gets satisfied.

2.2 Trees

In order to prove Lemma 5, we need Lemma 6 and Lemma 7. First we outline some definitions.

Definition 3. We henceforth refer to a tree as a single tree. A married tree is a formula
consisting of two disjoint single trees (“spouses”) and a width-2 clause with one endpoint in each
spouse (and every width-3 clause has a spare variable even after the inclusion of the width-2 clause).
The endpoints of the width-2 clause in a married tree are considered roots of the spouses. A win-

forest is a formula where each connected component is either a single tree or a married tree.

After any move by T or F, a formula changes to a residual formula where the variable that got
played is removed, and if T played then any clause containing the variable disappears (since it is
satisfied), and if F played then any clause containing the variable shrinks (since a false literal might
as well not be there).

Lemma 6. Any move by F on a single tree results in a win-forest.

Lemma 7. T can ensure that a win-forest remains a win-forest after an F-T round even if F can
use pass moves.

Before proving Lemma 6 and Lemma 7, we use them to prove Lemma 5.
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Before After F’s move After T’s move

x1

x1

Case 1:

Case 2:

Figure 3: F’s move and T’s move on x1 and its effect on formulas

Proof of Lemma 5. The tree ψ is a single tree. By Lemma 6, F’s first move on ψ results in a win-
forest. Then we prove T can win a G`

3,F¨¨¨ game on that win-forest even if F can use pass moves.
We prove this by induction on the number of variables.

Base case: The formula is a win-forest with one or two variables. In case of one variable the
only possibility is an isolated variable with no clauses. T has already won in this case. In case of
two variables there exists either two isolated variables where T has already won or a width-2 clause
which T can satisfy in one move.

Induction step: The formula is a win-forest with at least three variables. Whatever F plays, T
has a response to ensure the residual formula is again a win-forest by Lemma 7. By the induction
hypothesis, T can win the rest of the game.

Any move by T or F can occur in two different ways as illustrated in Figure 3. Specifically,
Case 1 is a move on a non-spare variable, and Case 2 is a move on a spare variable.

Proof of Lemma 6. The formula is a single tree. If F’s move is a pass move then that results in a
win-forest with only one single tree. If F’s move is an actual move then it creates some married
trees in which one spouse is just a single variable (Case 1 with F) or only one married tree (Case
2 with F). Then that results in a win-forest with only married trees.

Proof of Lemma 7. The argument will show that whatever F plays, whether a pass move or an
actual move in a single tree or married tree, T has a response such that each component of the
residual formula is again either a single tree or a married tree; therefore the residual formula is
again a win-forest.

Suppose F played a pass move. T can play any remaining variable in the win-forest. If that
variable is an isolated variable then it just removes the isolated variable. Otherwise it satisfies some
clauses in a component by Case 1 or Case 2 with T. Consequently the component is broken down
into some single trees and possibly one married tree (if the component was a married tree). This
preserves the win-forest property.

Suppose F played in a single tree. Then by Lemma 6 the residual formula is a win-forest. Then
T can pretend F just played a pass move on this win-forest, and T can respond as explained in the
previous paragraph. This preserves the win-forest property.

11



Suppose F played in a married tree. F’s move happened in one of the two single trees that got
married. T can play the root of the other spouse (where F has not played) and satisfy the width-2
clause. This means the two single trees get separated by T’s move and it also breaks T’s single tree
at the root by Case 1 with T. Furthermore, F’s move in his single tree also preserves the win-forest
property by Lemma 6. This preserves the win-forest property.

2.3 Corollaries

In this section, we investigate corollaries for G`
6

in Section 2.3.1, G6 in Section 2.3.2, G`
5

in
Section 2.3.3, and G5 in Section 2.3.4.

2.3.1 G`
6

Our proof of Theorem 1 in Section 2.1 showed that G`
6,T¨¨¨F is PSPACE-complete. Now we show

that G`
6,F¨¨¨F, G

`
6,T¨¨¨T, and G`

6,F¨¨¨T are also PSPACE-complete.

Corollary 1. G`
6,F¨¨¨F is PSPACE-complete.

Proof. The reduction is 3-TQBF ď G`
6,F¨¨¨F. The idea is similar to 3-TQBF ď G`

6,T¨¨¨F from the
proof of Theorem 1 in Section 2.1. We introduce one more variable z to X and add z to the first
four clauses of ϕ`: A2n, C12n, C12n´2, and C12n´4, increasing their widths by one, from 2, 2, 3, 4 to
3, 3, 4, 5 respectively. So ϕ` is a 6-CNF.

Now the claim is that T has a winning strategy in the 3-TQBF game iff T has a winning strategy
in the G`

6,F¨¨¨F game pϕ`,Xq.
Suppose F has a winning strategy in the 3-TQBF game. Then F can play z as the first move.

Then F wins by the same argument as in Section 2.1.
Suppose T has a winning strategy in the 3-TQBF game. If F plays z as the first move then T

wins by the same argument as in Section 2.1. If F does not play z as the first move then T plays
z and satisfies A2n, C12n, C12n´2, and C12n´4. Then T wins by Lemma 4 with t “ 12n ´ 4.

Corollary 2. G`
6,T¨¨¨T is PSPACE-complete.

Proof. The reduction is G`
6,T¨¨¨F ď G`

6,T¨¨¨T. Suppose an instance of G`
6,T¨¨¨F is (ϕ`,X). We simply

introduce a dummy variable z that does not appear in ϕ` and use Y “ X Y tzu. We claim that
T has a winning strategy in the G`

6,T¨¨¨F game pϕ`,Xq iff T has a winning strategy in the G`
6,T¨¨¨T

game pϕ`, Y q. We repeat an argument from [RW20a] that shows this.
Suppose T has a winning strategy on pϕ`,Xq. We show T’s winning strategy on pϕ`, Y q. T can

start by the same strategy as in pϕ`,Xq and continue as long as F does not play z. If F never plays
z, then T plays z at the end and wins as in pϕ`,Xq. If F plays z then T can respond by playing
any remaining variable xi “ 1, then T resumes his strategy from pϕ`,Xq until that strategy tells
him to play xi. At this time, T again picks any other remaining variable and assigns it 1. Then T
again resumes his strategy from pϕ`,Xq. The game goes on like this in phases. At the end, T has
played all the variables he would have played in the pϕ`,Xq game and possibly one more. Since
ϕ` is positive, it must still be satisfied when one of the variables is 1 instead of 0.

Suppose F has a winning strategy on pϕ`,Xq. Then F’s winning strategy on pϕ`, Y q is analo-
gous to T’s strategy in the previous paragraph.
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Corollary 3. G`
6,F¨¨¨T is PSPACE-complete.

Proof. G`
6,F¨¨¨F is PSPACE-complete by Corollary 1. The reduction is G`

6,F¨¨¨F ď G`
6,F¨¨¨T. The

technique is identical to Corollary 2.

Therefore we found PSPACE-completeness of all patterns of G`
6
games.

Corollary 4. G`
6,T¨¨¨F,G

`
6,F¨¨¨F,G

`
6,T¨¨¨T,G

`
6,F¨¨¨T remain PSPACE-complete even when every clause

has exactly 6 variables.

Proof. For any pattern a ¨ ¨ ¨ b where a, b P tT,Fu, we reduce from G`
6,a¨¨¨b to the restricted version

where every clause has exactly 6 variables. We argue that any clause C with width ă 6 can be
resized to a set of width-6 clauses without changing the outcome. We introduce two variables x, x1

and clause C is written as pC _ xq ^ pC _ x1q, thus increasing C’s width by 1. Whichever player
has a winning strategy in the original formula, they can follow the same strategy in the modified
formula until the other player plays x or x1 and then respond by playing the other. (Or, if the
other player never plays x or x1, then it does not matter which one the winning player plays as the
2nd-to-last move in the game.) So it is possible to increase any clause’s width without changing the
outcome. We can repeatedly do this process until all clauses have width exactly 6. This increases
the size of the formula by at most a constant factor.

2.3.2 G6

We already know that G5,T¨¨¨F and G5,F¨¨¨F are PSPACE-complete [RW20a]. But any completeness
result for G5,T¨¨¨T and G5,F¨¨¨T is unknown. Not only that, but also the complexities of G6,T¨¨¨T and
G6,F¨¨¨T were unknown. Due to Corollary 2 and Corollary 3 we now know that G6,T¨¨¨T and G6,F¨¨¨T

are also PSPACE-complete.

2.3.3 G`
5

Now we show that G`
5,T¨¨¨F, G

`
5,F¨¨¨F, G

`
5,T¨¨¨T, and G`

5,F¨¨¨T are all NL-hard. Each of these results
implies Theorem 2.

Corollary 5. G`
5,T¨¨¨F is NL-hard.

Proof. It is well-known that 2-SAT is NL-complete, and trivially 2-SAT ď 2-TQBF. The reduction
is 2-TQBF ď G`

5,T¨¨¨F. The technique is identical to 3-TQBF ď G`
6,T¨¨¨F in Theorem 1 where the

widths of Ai, Bi, Cj, Dk were 5, 4, 5, 6 respectively. Since each Fk is now a width-2 clause, Dk

becomes a width-5 clause. Therefore ϕ` becomes a 5-CNF.

Corollary 6. G`
5,F¨¨¨F is NL-hard.

Proof. The reduction is 2-TQBF ď G`
5,F¨¨¨F. The technique is identical to Corollary 1.

Corollary 7. G`
5,T¨¨¨T is NL-hard.

Proof. G`
5,T¨¨¨F is NL-hard by Corollary 5. The reduction is G`

5,T¨¨¨F ď G`
5,T¨¨¨T. The technique is

identical to Corollary 2.
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Corollary 8. G`
5,F¨¨¨T is NL-hard.

Proof. G`
5,F¨¨¨F is NL-hard by Corollary 6. The reduction is G`

5,F¨¨¨F ď G`
5,F¨¨¨T. The technique is

identical to Corollary 2.

Therefore we found NL-hardness of all patterns of G`
5

games. But any completeness result for
any pattern still remains open.

Corollary 9. G`
5,T¨¨¨F,G

`
5,F¨¨¨F,G

`
5,T¨¨¨T,G

`
5,F¨¨¨T remain NL-hard even when every clause has exactly

5 variables.

Proof. The technique is identical to Corollary 4.

2.3.4 G5

We already know that G5,T¨¨¨F and G5,F¨¨¨F are PSPACE-complete [RW20a]. But nothing was known
for G5,T¨¨¨T and G5,F¨¨¨T. Due to Corollary 7 and Corollary 8 we now know that G5,T¨¨¨T and G5,F¨¨¨T

are also NL-hard. But any completeness result for G5,T¨¨¨T and G5,F¨¨¨T still remains open.

3 Proof of Theorem 3

In this section, we show 2-SAT ď G4,T¨¨¨F and 2-SAT ď G4,F¨¨¨F, each of which implies Theorem 3.

Lemma 8. G4,T¨¨¨F is NL-hard.

Proof. 2-SAT is a well-known NL-complete problem. We show 2-SAT ď G4,T¨¨¨F under a logarithmic
space reduction. Suppose an instance of 2-SAT is pϕ,Xq where ϕ is a 2-CNF and X is the set of
boolean variables that occur in ϕ. We construct an instance of G4,T¨¨¨F as pψ,X Y Y q where ψ is
a 4-CNF and X Y Y is the set of boolean variables that occur in ψ. The reduction will show that
ϕ has a satisfying assignment iff T has a winning strategy in the G4,T¨¨¨F game pψ,X Y Y q. The
construction is as follows:

Suppose X “ tx1, x2, . . . , xnu and let Y “ ty1, y2, . . . , ynu. To construct ψ, take ϕ and replace
each occurrence of xi with pxi _ yiq and replace each occurrence of  xi with p xi _ yiq.

Suppose ϕ does not have a satisfying assignment. We show a winning strategy for F in pψ,X Y
Y q. The strategy is whenever T plays in a fresh pair xi, yi then F can immediately play the other
variable from the pair to make xi “ yi. The strategy works since making xi “ yi for all i makes ψ
equivalent to ϕ where T gets to assign all variables. Since ϕ does not have a satisfying assignment,
F wins.

Suppose ϕ has a satisfying assignment and fix one such assignment. We show a winning strategy
for T in pψ,X Y Y q. T starts by picking a fresh pair xi, yi and assigns xi according to xi’s value in
ϕ’s satisfying assignment. If F immediately replies with yi then T picks another fresh pair and so
on. If F does not play yi but in some fresh pair xj , yj then T immediately plays the other variable
from the pair xj, yj according to xj ’s value in ϕ’s satisfying assignment. T keeps chasing F like
this until F plays yi. After F eventually plays yi, T continues by playing xk in any other fresh
pair xk, yk and chasing F until F plays yk. The strategy works since T is able to assign a variable
from each pair xi, yi according to the satisfying assignment in ϕ. Therefore T wins since ψ gets
satisfied.
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Lemma 9. G4,F¨¨¨F is NL-hard.

Proof. We show 2-SAT ď G4,F¨¨¨F. The argument is almost identical to Lemma 8 except some
minor changes that need to be explicitly addressed. We introduce a dummy variable d to have
X YY Ytdu and no changes to ψ in Lemma 8’s construction. The idea is to make F play that d to
ultimately get G4,T¨¨¨F then we will be done with the rest. We claim ϕ has a satisfying assignment
iff T has a winning strategy in the G4,F¨¨¨F game pψ,X Y Y Y tduq.

Suppose ϕ does not have a satisfying assignment. We argue that F has a winning strategy. F
can start by playing d. Then we are left with a G4,T¨¨¨F game where F wins by the same argument
as in Lemma 8.

Suppose ϕ has a satisfying assignment and fix one such assignment. We argue that T has
a winning strategy. If F plays d as the first move then the rest of the strategy is identical to
Lemma 8 and T wins. If F does not play d at the beginning but plays in a fresh pair xi, yi then
T can immediately respond by playing the other variable and assign it according to xi’s value in
ϕ’s satisfying assignment. T can chase F like this until F plays d. This way T can play exactly
one variable from each pair until d is played. After d is played by F, the game remains as G4,T¨¨¨F

where some rounds already happened as if d never existed at all. The same argument works and T
wins.

The reductions in the proofs of Lemma 8 and Lemma 9 produce 4-CNFs where every clause has
exactly 4 literals, so G4,T¨¨¨F and G4,F¨¨¨F remain NL-hard under this restriction. It remains open to
show that G4,T¨¨¨T, G4,F¨¨¨T, and G`

4
are NL-hard.

4 Summary

In Table 2 we summarize the status of the complexity of G`
w for all widths w and all patterns. We

conjecture that G`
3

may be tractable, but the only known general upper bound is PSPACE. For
G`

5
, it would be interesting to improve the NL-hardness to P-hardness. For G`

4
, any nontrivial

result would be interesting (such as NL-hardness, or improving the PSPACE upper bound even
under restrictions on the formula).

In Table 3 we summarize the status of the complexity of Gw for all widths w and all patterns.
We conjecture that even G3 might be tractable, but again the only known general upper bound
is PSPACE. For G4,T¨¨¨F, G4,F¨¨¨F, G5,T¨¨¨T, and G5,F¨¨¨T, it would be interesting to improve the
NL-hardness to P-hardness. For G4,T¨¨¨T and G4,F¨¨¨T, any nontrivial result would be interesting.

It would also be interesting to see if Theorem 1 can be used to improve any parameters in
some of the many PSPACE-completeness results that have been shown by reduction from Schaefer’s
theorem for width 11.
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w Ñ 2 3 4 5 6

T ¨ ¨ ¨F

L L
Unknown

NL-hard PSPACE-complete

[RW20a] under restrictions

[Corollary 5] [Theorem 1]

F ¨ ¨ ¨F

[Kut05]

NL-hard PSPACE-complete

[Corollary 6] [Corollary 1]

T ¨ ¨ ¨T
NL-hard PSPACE-complete

[Corollary 7] [Corollary 2]

F ¨ ¨ ¨T
NL-hard PSPACE-complete

[Corollary 8] [Corollary 3]

Table 2: G`
w results

wÑ 2 3 4 5 6

T ¨ ¨ ¨F

L L

NL-hard

PSPACE-complete

[RW20a]

[Lemma 8]

[RW20a]
F ¨ ¨ ¨F

NL-hard

[Lemma 9]

T ¨ ¨ ¨T
under restrictions

Unknown

NL-hard PSPACE-complete

[RW20b] [Corollary 7] [Corollary 2]

F ¨ ¨ ¨T
NL-hard PSPACE-complete

[Corollary 8] [Corollary 3]

Table 3: Gw results

References

[APT79] Bengt Aspvall, Michael Plass, and Robert Tarjan. A linear-time algorithm for testing the
truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121–
123, 1979.

[AS03] Argimiro Arratia and Iain Stewart. A note on first-order projections and games. The-
oretical Computer Science, 290(3):2085–2093, 2003.
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