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Abstract

The Isolation Lemma states that when random weights are assigned to the elements of a

�nite set E, then in any given family of subsets of E, exactly one set has the minimum weight,

with high probability. In this note, we present two proofs for the fact that it is impossible to

e�ciently derandomize the Isolation Lemma for arbitrary families.

The �rst proof is from Chari, Rohatgi and Srinivasan and uses the potential method. An

alternate proof is due to the �rst author of this note. It uses the polynomial method. However,

it is not written anywhere. The main purpose of this note is to present that proof. Additionally

we show that the above lower bounds are almost tight with respect to various parameters.

1 Introduction

The Isolation Lemma by Mulmuley, Vazirani, and Vazirani [MVV87] is a powerful lemma that

states that for any family of subsets of a set, one can isolate a subset in the family by assigning

small random weights to the elements. Formally, let E be a �nite set. For any weight function

w : E → Z, consider its natural extension to all subsets of E as w(M) =
∑
e2Mw(e). A weight

function w is said to be isolating for a family F � 2E of subsets of E, if there is a unique minimum

weight set in F .

Lemma 1.1 (Isolation Lemma [MVV87]). Let E be a �nite set, jEj = m, and F � 2E be a family

of subsets of E. Let w : E → [W] be a random weight function, where for each e 2 E, the

weight w(e) is chosen uniformly and independently at random. Then

Pr[w is isolating for F ] � 1−
m

W
.
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A proof of the lemma can be found in the original paper, or nowadays, in many text books on

computational complexity (e.g., [MR95]). One can also see Joel Spencer's rewording of this proof

on Wikipedia. An improved probability bound was given by Ta-Shma [Ta-15].

To appreciate the lemma, note that the size of the family F could be exponentially larger than

the size of the weight range W. Hence, there can be exponentially many collisions among the

weights of the sets in F . But still, with a good probability, the minimum weight set in F will be

unique. Moreover, the lemma does not assume any property about the family F .

It is also interesting to note that the Isolation Lemma is in some sense a black-box method for

isolation: to obtain an isolating weight function w, the family F is ignored, w is simply chosen at

random, independently of F . But implicitly, F plays a role. A weight function w that is isolating

for F might not be isolating for another family F 0, or vice versa. The Isolation Lemma just states

that for both families, a large fraction of all possible weight functions is isolating. However, the

two fractions might greatly di�er.

The original motivation of Mulmuley, Vazirani, and Vazirani to come up with the Isolation

Lemma was to design a randomized parallel algorithm for the matching problem. The ground

set E is the set of edges of a given graph G, and family F is the set of all perfect matchings in G.

The Isolation Lemma yields a unique perfect matching of minimum weight. This can be found

e�ciently by a parallel algorithm. Since then, the lemma has found numerous applications in

design of randomized algorithms, for example,

• parallel algorithms for the minimum cost 
ow problem [OS93, LP12] and linear matroid

intersection [NSV94],

• algebraic algorithms for problems on disjoint paths in a graph [BH14, HN18],

• belief propagation [GSW12] and interior point methods [DS08] for 
ow problems,

• randomness e�cient polynomial identity testing [KS01],

• an exponential time algorithm for lattice isomorphism [HR14].

Also see [BV04, Tra08, EW10, KBB+11, LP12]) for more algorithmic applications. Likewise, many

results in complexity theory have also used this lemma, for example,

• detecting unique solutions is as hard as NP [MVV87],

• results on unambiguous and parity complexity classes involving nondeterministic small space

computation or small depth circuits [Wig94, GW96, ARZ99, RA00],

• results in dynamic complexity [DHK14, DKM+18].

The basic intuition behind many of these applications is that the Isolation Lemma brings down

the number of solutions to one, and it so happens in many settings that �nding the solution is

easier when there is only one solution. In many of the algorithmic applications, the only use of

randomization is the Isolation Lemma, and thus, these algorithms can be made deterministic if the

Isolation Lemma can be derandomized.
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The derandomization of the Isolation Lemma is a challenging open problem. It means to

deterministically construct an isolating weight function for a given family. In the white-box version

of the problem, the isolating weight function may depend on the family F . However, as the Isolation

Lemma has a black-box character as described above, the standard meaning of derandomization

asks for a black-box solution. That is, we are asking for a deterministic construction of an isolating

weight function w without actually knowing the family F , but with the promise that F belongs to

a certain class C of interest. As we will see in Section 2, coming up with a single weight function

for every family in class C might not be possible. Thus, one is allowed to construct a collection W

of weight functions such that for every family in C, some weight function in W is isolating. The

only input parameter to compute W is m, the size of the ground set E. The construction is called

e�cient if it runs in time poly(m) and also W, the size of the range of the weight functions in W,

is bounded by poly(m).

The Isolation Lemma has been completely or partially derandomized for many speci�c classes

of families, for example, perfect matchings in special classes of graphs [GK87, DK98, AHT07,

DKR10, AGGT16] and (s, t)-paths in various classes of graphs [BTV09, KT16, vMP19]. Black-box

(partial) derandomizations are also known for perfect matchings in general graphs [FGT16, ST17]

and vertices of box-totally dual integral polytopes [GTV18]. On the other hand, Chari, Rohatgi

and Srinivasan [CRS95] have ruled out a derandomization for arbitrary families:

An e�cient derandomization of the Isolation Lemma

for the class of all families is impossible.

Their proof uses a potential function argument. The �rst author [Agr07], at that time unaware

of the earlier result, made the same statement but without a proof. The main purpose of this note

is to present an alternate proof of this statement using the polynomial method.

The result is similar in spirit to the fact that it is not possible to fool all possible Boolean

functions on {0, 1}n with a pseudorandom generator of seed length less than n.

2 Defining the problem

In this section, we formally de�ne what we mean by an e�cient derandomization of the Isolation

Lemma.

Derandomization via large weights. First, observe that it is trivial to derandomize the

Isolation Lemma with exponential weights. For E = {e1, e2, . . . , em}, let W � 2m−1 and for

i = 1, 2, . . . ,m, de�ne

w(ei) = 2
i−1.

Then any subset A � E has a unique weight. So in particular, w is isolating for any family F � 2E.

In the applications, one usually wants the weights to polynomially bounded however. As we

will see next, this is not possible in general.
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Derandomization via large weights is optimal. A simple counting argument rules out the

existence of a substantially smaller isolating weight function for all possible families. Observe that

for any weight function w : E → [W], the weight of any set A � E is bounded by w(A) � w(E) �

mW. Since E has 2m subsets, when mW < 2m, there will be two sets A1, A2 with the same weight.

Therefore, w is not isolating for the family F = {A1, A2}. Hence, for W < 2m/m, there is no

isolating function for all families F .

Collections of weight functions. Since a single weight function cannot work, a more reasonable

goal would be to construct a small collection W of weight functions with a small range such that

for each family F � 2E, one of the weight functions in W is isolating. This can be seen as a seeded

isolating weight function. That is, to construct a random weight function using a small number of

random bits such that for each family, it is isolating with a nonzero probability.

Definition 2.1 (Isolating collection of weight functions). Let W be a collection of weight func-

tions on a set E.

1. W is isolating for a family F � 2E, if there exists a function w 2 W that is isolating

for F .

2. W is isolating if it is isolating for every family F � 2E.

3. W is isolating for a class C � 22
E
of families of subsets of E, if it is isolating for every

family F 2 C.

Derandomization via large collections. It is again trivial to derandomize the Isolation Lemma

with exponentially many weight functions. For any subset A � E, de�ne the weight function wA
as the characteristic function of A. For e 2 E,

wA(e) =

{
1, if e 2 A,

0, otherwise.

Then the collection W = {wA | A � E } of size 2m is isolating. Let F � 2E be any family of sets.

Let A 2 F be a set of minimum cardinality in F . Then the complementary weight function wA
isolates A: We have wA(A) = 0 and wA(B) > 0, for all other sets B 2 F , because any such B

contains an e 62 A.

Efficient derandomization task. In an e�cient derandomization, all paramaters involved

should be polynomially bounded in m, the size of the ground set E.

An e�cient derandomization of the Isolation Lemma would mean to come up with

a deterministic polynomial-time algorithm that computes a polynomial size collection

of weight functions with polynomial range that isolates every family.

This is a considerably stronger requirement compared to the Isolation lemma. Clearly, the

randomized procedure is replaced by a deterministic one, this is our main intention. But also
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note that logically, there is a swap of quanti�ers because we are asking for a black-box solution.

First one has to compute the set of weight functions that then should work for all families. In the

Isolation Lemma, it is the other way round. First the family is �xed, and then one chooses the

weight function. This way gives more freedom, even if the choice of the weight function does not

really involve the given family as explained above.

It turns out that we are actually asking for too much. Such a general derandomization is

impossible.

3 A lower bound on the size of a collection and its range

Let W be an isolating collection weight functions. The following theorem gives a lower bound on

the number of functions in W and their ranges in terms of the size of the ground set.

Theorem 3.1 ([CRS95, Agr07]). Let E be a �nite set, |E| = m, and W be an isolating collection

of N weight functions E→ [W]. Then

N(mW + 1) � 2m .

It follows that when the number of weight functions N is polynomially bounded, then the

range W has to be exponential, or vice versa.

Remark. Like we ruled out the existence of a single isolating weight function, there seems to be

no straightforward counting argument to rule out a small collection of isolating weight functions.

Just the fact that the number of possible families is doubly-exponential is not enough to argue

the impossibility of e�cient isolation. Indeed, if w is the weight function assigning all elements

weight 1, then w is isolating for any family that contains the empty set. That means a single

weight assignment w is isolating for half of all possible families.

To show the impossibility of e�cient isolation, Chari et al. [CRS95] used a potential function

argument, while we present a proof via the polynomial method. In essence our argument is that,

if we have a small isolating collection of weight functions, then we will have a small set of points

such that any nonzero polynomial has a nonzero evaluation on at least one of the points. One can

get a contradiction by constructing a multilinear polynomial that vanishes on a given small set of

points.

We will actually show a slightly more general bound from which Theorem 3.1 follows. For a

collection of subsets S � 2E of E, we consider the class C = 2S of all families that take sets only

from S. Now we give the bound on the parameters N andW for weight functions that are isolating

for C, in terms of the size of S. Theorem 3.1 is the special case when S = 2E.

Theorem 3.2 ([CRS95, Agr07]). Let E be a �nite set, where |E| = m. Let S � 2E and C = 2S .

Let W be a collection of N weight functions E→ [W] that is isolating for C. Then

N(mW + 1) � jSj . (1)

First Proof, via polynomial method. For simplicity, let E = [m] and let S � 2E. Let p(z) be

a multilinear polynomial in m variables z = (z1, z2, . . . , zm). That is, p is a sum of multilinear
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monomials, where each monomial is a product αM
∏
i2M zi of some variables, each of degree one,

for some M � [m], and nonzero coe�cient αM. We associate M with the monomial. Let Fp � 2
E

be the family of monomials of p with nonzero coe�cients. Then we can write

p(z) =
∑
M2Fp

αM
∏
i2M

zi .

We consider only multilinear polynomials where Fp � S, i.e., polynomials with support in S.

By our assumption, there is a weight function w 2 W that is isolating for Fp. Let M
� 2 Fp be

the unique minimum weight set in Fp w.r.t. w. Consider the following substitution of variables:

for a new variable t,

zj 7→ tw(j).

Note that the substitution replaces a monomial M by∏
j2M

zj 7→ tw(M).

Let q(t) be the polynomial obtained from p(z) after this substitution. We claim that q(t) is a

nonzero polynomial. This is because the term tw(M
�) in q(t) is coming from a unique monomial

of p(z) and cannot be canceled with any other term.

Note that the degree of q(t) is at most mW. Thus, q(t) is nonzero for at least one of the points

in [mW + 1]. We conclude that any multilinear polynomial p(z) supported on a subset of S gives

a nonzero evaluation on at least one of the points in

T =
{
(tw(1), tw(2), . . . , tw(m)) | w 2 W, t 2 [mW + 1]

}
.

Now, we argue that the size of T must be large.

Claim 3.3. Let H � R
m be a set of points with jHj < jSj. Then there exists a nonzero

multilinear polynomial p(z) supported on some subset of S which is zero at all points in H.

Proof. We �nd p(z) by setting up a system of linear equations. The jSj coe�cients of p(z), say

{αM}M2S , are the unknowns. Each point h 2 H gives us a homogeneous linear equation,∑
M2S

αM
∏
j2M

hj = 0.

When the number of constraints jHj is smaller than the number of unknowns jSj, there exists a

non-trivial solution. This proves the claim.

Claim 3.3 implies that jT j = N(mW + 1) � jSj.

We also present the proof of Chari, Rohatgi and Srinivasan [CRS95] that uses a very di�erent

technique. It actually gives a slighty stronger bound than (1), namely

NmW + 1 � jSj . (2)
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Second Proof, via potential method [CRS95]. Consider the following algorithm. It successively

takes out a set A from S that is isolated by some w 2 W. This de�nes an order on the sets in S.

We will argue via this order.

• Initialize F ← S

• while jFj > 1 do

– �nd some w 2 W that is isolating for F . Let A 2 F be the isolated set w.r.t. w

– Update F ← F −A

The while loop does exactly jSj − 1 iterations. At any iteration, we de�ne the potential

function Φ(F) with respect to the current family F , that sums up the weight w(A) of a minimum

weight set A 2 F , for every w 2 W,

Φ(F) =
∑
w2W

min
A2F

w(A).

The potential Φ increases in every iteration by at least 1, because with respect to some w 2 W,

we remove the unique minimizing set from F . Hence, the potential values at the start of the loop

and at the end of the loop must di�er by at least jSj− 1.

The potential at the start of the loop is Φ0 = Φ(S) � 0. Let A0 be the remaining set in F when

the algorithm halts. Then the potential at the end of the loop is Φ1 =
∑
w2W w(A0) � NmW.

Thus, we have

jSj− 1 � Φ1 −Φ0 � Φ1 � NmW.

This shows (2).

Minimizing the number of random bits

Any derandomization question can also be interpreted as that of minimizing the number of random

bits used. Chari et al. [CRS95] had presented their lower bound in these terms. Suppose we want

to construct a weight function w : E→ [W] using a randomized procedure such that for each family

F in a given class C, w is isolating for F with a nonzero probability. Theorem 3.2 also implies a

lower bound on the number of random bits needed in any such randomized construction. Observe

that if we use r random bits in the procedure, then essentially, w will be sampled from a collection

W of weight functions with N = jWj � 2r. The requirement of nonzero probability just means

that the collection W should be isolating for C. From Theorem 3.2 we get that 2r(nW + 1) � jSj,

and therefore r � logjSj− log(mW + 1).

Corollary 3.4. Let E be a �nite set, where |E| = m. Let S � 2E and C = 2S . Let w be a

weight function E → [W] constructed via a randomized procedure such that for every family

F in C, w is isolating for F with nonzero probability. Then the procedure needs to use at

least logjSj− log(mW + 1) many random bits.
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Generalization to multisets

Klivans and Spielman [KS01] gave a generalized version of the Isolation Lemma that works on

a family of multisets, where the weight of a multiset is de�ned analogously, i.e., by taking the

multiplicity of the elements into account.

Lemma 3.5 (Generalized Isolation Lemma [KS01]). Let E be a �nite set, jEj = m, and F

be a family of multisets over E, where the multiplicity of every element is at most d. Let

w : E → [W] be a random weight function, where for each e 2 E, the weight w(e) is chosen

uniformly and independently at random. Then

Pr[w is isolating for F ] � 1−
dm

W
.

We can generalize our lower bound in Theorem 3.1 to the setting of multisets, with an appro-

priate dependence on parameter d. Both the above proofs can be extended to work in this setting.

In the polynomial method proof, we need to replace multilinear monomials with monomials of

individual degree d.

Corollary 3.6. Let E be a �nite set, |E| = m, and W be a collection of N weight functions

E→ [W] that is isolating for all families of multisets over E with multiplicities bounded by d.

Then

N(mdW + 1) � (d+ 1)m .

Haviv and Regev [HR14] generalized Lemma 3.5 even further to a setting where they want

multiple sets/multisets to be isolated, instead of just one. One of the versions of their lemma

requires that for some parameter `, the ` smallest weight multisets should be unique, i.e., have

pairwise di�erent weights. For randomly chosen weights, they show that this is achieved with

probability at least

1−
d(2d+ 1)`2m

W
.

Clearly, the lower bound given in Corollary 3.6 applies here too (by discarding the parameter `).

Lower bounds for circuit families

The classes we consider in Theorem 3.2 can capture other interesting classes that have been studied

in the context of derandomizing the Isolation Lemma. Arvind and Mukhopadhyay [AM08] showed

that the derandomization of the Isolation Lemma implies certain circuit lower bounds. They con-

sidered classes of families based on circuits and showed a connection to black-box derandomization

of polynomial identity testing (PIT).

Let C be a Boolean circuit with m inputs and A � [m] be a set. Let χA 2 {0, 1}m be the

characteristic string of A. With circuit C, we associate the following family FC � 2
[m] of sets,

FC = {A | C(χA) = 1 } .

For a parameter s, the class Cm,s consists of all families that correspond to circuits of size at most s,

Cm,s = {FC | circuit C has m inputs and size � s } .
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Note that Cm,s contains exponentially many families in m and s. Theorem 3.2 also gives a lower

bound for Cm,s.

Corollary 3.7. Let m, s � 1 and W be a collection of N weight functions [m] → [W] that is

isolating for Cm,s. Then

mN(mW + 1) � s .

Proof. First observe that for any family F � 2[m], one can construct a trivial circuit of size mjFj:

put one OR-gate on top of jFj AND-gates, one for every set A 2 F , each of which is connected to

the m inputs, namely, to input xi if i 2 A, and to xi otherwise.

Let S � 2[m] be an arbitrary collection of subsets with jSj = s/m. By the observation just made,

we have S � Cm,s. Thus,W is also isolating for 2S . Hence, the claim follows from Theorem 3.2.

Corollary 3.7 rules out the possibility to e�ciently derandomize the Isolation Lemma for

exponential-size circuits. But it leaves open that an e�cient derandomization is possible for

polynomial-size circuits.

4 An upper bound on the size of a collection and its range

Theorem 3.1 gives a lower bound on the size of a collection W to be a isolating for all possible

families F � 2E. We now show that the lower bound is tight up to a multiplicative factor of 2m.

Theorem 4.1. Let E = [m] be a �nite set. Given any numbers W,N such that

NW � 2m+1 ,

then there exists a collection W of at most N weight functions E→ [W] that is isolating.

Proof. The construction of W will be a combination of the two strategies we discussed { the one

with large weights and the other with large collections. De�ne k as maximum such that 2k � W.

We partition E into E = E0 [ E1, where E0 = [k] and E1 = [m] − [k]. On E0 we de�ne the weight

function w0. For e 2 E0, let

w0(e) = 2
e−1 .

We combine w0 with a collection of weight functions on E1. For any subset A1 � E1, de�ne the

weight function wA1 as follows. For e 2 E, let

wA1(e) =


w0(e), if e 2 E0,

2k, if e 2 A1,

0, otherwise.

De�ne the collection W = {wA1 | A1 � E1 }. Note that W < 2k+1 and so, by the assumption in

the lemma, we have N � 2m−k = jWj. It remains to show that W is isolating.

Let F � 2E be any family of sets. We exhibit a speci�c set A� 2 F that is isolated by W. For

any set A 2 F , consider its size within E1, i.e. |A\E1|. Fix one set in F , say bA, that has minimum

size within E1. There might be several sets A 2 F that agree with bA on E1. Let

F0 =
{
A 2 F | A \ E1 = bA \ E1 } .
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From F0, select the unique set, say A
�, that has minimum weight on E0, i.e. w(A

�\E0) is minimum.

Let A1 = E1−A
�. We claim that the weight functionwA1 isolates A

�: We havewA1(A
�\E1) = 0

and wA1(A
� \E0) < 2

k. Thus, wA1(A
�) < 2k. On the other hand, for any set A 2 F −F0, we have

wA1(A) � 2
k, because any such A contains an element e 2 A1 which has weight 2k. Moreover, by

construction, all sets in F0 have distinct weights and A
� has the unique minimum weight among

them.

Next, we generalize Theorem 4.1 to the setting of Theorem 3.2, i.e., for class C = 2S , for any

S � 2E. However, we do not come close to the lower bound of Theorem 3.2. Here, we do not have

an explicit construction, but use the probabilistic method.

Lemma 4.2. Let E be a �nite set, where |E| = m. Let S � 2E and C = 2S . Given numbers W,N

such that

N log
W

m
> jSj , (3)

there exists a collection W of N weight functions E→ [W] that is isolating for C.

Proof. Suppose we construct W by choosing N weight functions from [W]m uniformly and inde-

pendently at random. By Lemma 1.1, for a given family F 2 2S and a randomly chosen w, we

have

Pr[w is not isolating for F ] �
m

W
.

Since the weight functions in W are chosen independently, we have

Pr[W is not isolating for F ] �

�
m

W

�N
.

By the union bound, we get

Pr[ 9F 2 2S W is not isolating for F ] � 2jSj
�
m

W

�N
< 1 ,

where the last inequality uses (3). Thus, W is isolating for C with a nonzero probability.

Open Question

We have shown in Theorem 4.1 that the lower bound of Theorem 3.1 with respect to all families

is almost tight. However, for the class C = 2S , we have a gap between the lower bound and the

upper bound in Theorem 3.2 and Lemma 4.2, respectively. Can we improve Lemma 4.2 to show

an isolating collection of weight functions for any parameters W,N with NW � jSj poly(m)?
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