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Abstract

The Forrelation problem, first introduced by Aaronson [A10] and Aaronson and Ambai-
nis [AA15], is a well studied computational problem in the context of separating quantum and
classical computational models. Variants of this problem were used to give tight separations
between quantum and classical query complexity [AA15]; the first separation between poly-
logarithmic quantum query complexity and bounded-depth circuits of super-polynomial size, a
result that also implied an oracle separation of the classes BQP and PH [RT19]; and improved
separations between quantum and classical communication complexity [GRT19]. In all these
separations, the lower bound for the classical model only holds when the advantage of the pro-
tocol (over a random guess) is more than ≈ 1/

√
N , that is, the success probability is larger than

≈ 1/2 + 1/
√
N . This is unavoidable as ≈ 1/

√
N is the correlation between two coordinates of

an input that is sampled from the Forrelation distribution, and hence there are simple classical
protocols that achieve advantage ≈ 1/

√
N , in all these models.

To achieve separations when the classical protocol has smaller advantage, we study in this
work the xor of k independent copies of (a variant of) the Forrelation function (where k � N).
We prove a very general result that shows that any family of Boolean functions that is closed
under restrictions, whose Fourier mass at level 2k is bounded by αk (that is, the sum of the
absolute values of all Fourier coefficients at level 2k is bounded by αk), cannot compute the

xor of k independent copies of the Forrelation function with advantage better than O
(

αk

Nk/2

)
.

This is a strengthening of a result of [CHLT19], that gave a similar statement for k = 1, using
the technique of [RT19]. We give several applications of our result. In particular, we obtain the
following separations:

Quantum versus Classical Communication Complexity: We give the first example
of a partial Boolean function that can be computed by a simultaneous-message quantum pro-
tocol with communication complexity polylog(N) (where Alice and Bob also share polylog(N)
EPR pairs), and such that, any classical randomized protocol of communication complexity
at most õ(N1/4), with any number of rounds, has quasipolynomially small advantage over a
random guess. Previously, only separations where the classical protocol has polynomially small
advantage were known between these models [G16, GRT19].

Quantum Query Complexity versus Bounded Depth Circuits: We give the first ex-
ample of a partial Boolean function that has a quantum query algorithm with query complexity
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polylog(N), and such that, any constant-depth circuit of quasipolynomial size has quasipolyno-
mially small advantage over a random guess. Previously, only separations where the constant-
depth circuit has polynomially small advantage were known [RT19].

1 Introduction

Several recent works used Fourier analysis to prove lower bounds for computing (variants of) the
Forrelation (partial) function of [A10, AA15], in various models of computation and communi-
cation [RT19, CHLT19, GRT19]. These works show that for many computational models, when
analyzing the success probability of computing the Forrelation function, it’s sufficient to bound the
contribution of Fourier coefficients at level 2, ignoring all other Fourier coefficients [RT19, CHLT19].
This holds for any computational model that is closed under restrictions and is proved by analyz-
ing the Forrelation distribution as a distribution resulting from a certain random walk, rather than
analyzing it directly.

While this is a powerful technique, it could only be used to bound computations of the Forre-
lation function with advantage (over a random guess) larger than ≈ 1/

√
N , that is, computations

with success probability larger than ≈ 1/2 + 1/
√
N . Roughly speaking, this is because the bound

on the Fourier coefficients at level 2 of the Forrelation function is ≈ O
(
1/
√
N
)
.

In this work, we study the xor of k independent copies of the Forrelation function of [RT19]
(where k < o(N1/50)). We show that for many computational models, when analyzing the success
probability of computing the xor of k independent copies of the Forrelation function, it’s sufficient
to bound the contribution of Fourier coefficients at level 2k, ignoring all other Fourier coefficients.
Our proof builds on the techniques of [RT19], and followup works [CHLT19, GRT19], by analyzing
a “product” of k random walks, one for each of the independent copies of the Forrelation function.
This can be viewed as a random walk with a k-dimensional time variable.

Consequently, we obtain a very general lower bound that shows that any family of Boolean
functions that is closed under restrictions, whose Fourier mass at level 2k is bounded by αk (that
is, for every function in the family, the sum of the absolute values of all Fourier coefficients at level
2k is bounded by αk), cannot compute the xor of k independent copies of the Forrelation function

with advantage better than O
(

αk

Nk/2

)
, that is, with success probability larger than 1

2 +O
(

αk

Nk/2

)
.

This is a strengthening of a result of [CHLT19], that gave a similar statement for k = 1, using the
technique of [RT19].

We note that the requirement that the family of Boolean functions is closed under restrictions
is satisfied by essentially all non-uniform computational models. The requirement of having a
good bound on the Fourier mass at level 2k is satisfied by several central and well-studied com-
putational models (see for example [CHHL18] for a recent discussion). In particular, we focus in
this work on three such models: communication complexity, query complexity (decision trees) and
bounded-depth circuits. We note that our result is valid for any k < N c, for some constant c > 0,
and hence it can be used to prove lower bounds for circuits/protocols with exponentially small
advantage, in all these models. However, for the applications of separating quantum and classical
computational models, we take k to be poly-logarithmic in N , so that we have quantum protocols
of poly-logarithmic cost. We use our main theorem to give several separations between quantum
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and classical computational models.

1.1 Communication Complexity

Quantum versus classical separations in communication complexity have been studied for more
than two decades in numerous works. We briefly summarize the history of quantum advantage
in communication complexity of partial functions, that is most relevant for us: First, Buhrman,
Cleve and Wigderson proved an exponential separation between zero-error simultaneous-message
quantum communication complexity (without entanglement) and classical deterministic communi-
cation complexity [BCW98]. For the bounded-error model, Raz showed an exponential separation
between two-way quantum communication complexity and two-way randomized communication
complexity [R99]. Gavinsky et al (building on Bar-Yossef et al [BJK04]) gave an exponential
separation between one-way quantum communication complexity and one-way randomized com-
munication complexity [GKK+08]. Klartag and Regev gave an exponential separation between
one-way quantum communication complexity and two-way randomized communication complex-
ity [KR11]. The state of the art separation, by Gavinsky, gave an exponential separation between
simultaneous-message quantum communication complexity (with entanglement) and two-way ran-
domized communication complexity [G16]. An alternative proof for Gavinsky’s result was recently
given by [GRT19], as a followup to [RT19, CHLT19], and had the additional desired property that
in the quantum protocol, the time complexity of all the players is poly-logarithmic.

Our Result:

In all these works, the lower bounds for classical communication complexity only hold when the
advantage of the protocol (over a random guess) is more than ≈ 1/

√
N , that is, the success

probability is larger than ≈ 1/2 + 1/
√
N .

In this work, we give a partial Boolean function that can be computed by a simultaneous-
message quantum protocol with communication complexity polylog(N) (where Alice and Bob also
share polylog(N) EPR pairs), and such that, any classical randomized protocol of communication
complexity at most õ(N1/4), with any number of rounds, has quasipolynomially small advantage
over a random guess. This qualitatively matches the results of [G16, GRT19] and has the additional
desired property that the lower bound for the classical communication protocol holds for quasipoly-
nomially small advantage, rather than polynomially small advantage. Moreover, as in [GRT19],
the quantum protocol in our upper bound has the additional property of being efficiently imple-
mentable, in the sense that it can be described by quantum circuits of size polylog(N), with oracle
access to the inputs.

To prove this result we use the xor of k independent copies of the Forrelation function, lifted
to communication complexity using xor as the gadget [R95], as in [GRT19]. The quantum upper
bound is simple. For the classical lower bound, we use ideas from [GRT19] to bound the level-2k
Fourier mass. This, along with our main theorem implies the desired separation. Our bounds for
the level-2k Fourier mass may be interesting in their own right and are proved in Section 7.
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Related Work:

We note that an exponential separation between two-way quantum communication complexity
and two-way randomized communication complexity, with quasipolynomially small advantage, can
be proved by a combination of several previous results, as follows:

Start with an existing separation between quantum and classical query complexity, such as the
one of [AA15]. Use Drucker’s xor lemma for randomized decision tree [D12] to get a separation
between quantum and classical query complexity, where the classical protocol has quasipolyno-
mially small advantage. Finally, use the recent lifting theorem of [CFK+19] to lift the result
to communication complexity. To the best of our knowledge, this separation was not previously
observed.

It follows from these works that there exists a function computable in the quantum two-way
model in communication complexity polylog(N), for which randomized protocols of cost õ(

√
N)

have at most quasipolynomially small advantage. While the lower bound is for cost õ(
√
N) proto-

cols, which is quantitatively stronger than our lower bound for cost õ(N1/4) protocols, the quantum
upper bound in this result seems to require two rounds of communication, while our function is
computable in the simultaneous model when Alice and Bob share entanglement.

1.2 Bounded Depth Circuits

Separations of quantum query complexity and bounded-depth classical circuit complexity have
been studied in the context of oracle separations of the classes BQP and PH. An example of a
partial Boolean function (Forrelation) that has a quantum query algorithm with query complexity
polylog(N), and such that, any constant-depth circuit of quasipolynomial size has polynomially
small advantage over a random guess, was given in [RT19]. This result implied an oracle separation
of the classes BQP and PH.

Here, we give the first example of a partial Boolean function (xor of k copies of Forrelation) that
has a quantum query algorithm with query complexity polylog(N), and such that, any constant-
depth circuit of quasipolynomial size has quasipolynomially small advantage over a random
guess.

For the proof, we use our main theorem, together with Tal’s bounds on the level-2k Fourier
mass of bounded-depth circuits [Tal17].

1.3 Decision Trees

The query complexity model (also known as black box model or decision-tree complexity) has played
a central role in the study of quantum computational complexity. Quantum advantages in query
complexity (decision trees) have been demonstrated for partial functions in various settings and
numerous works. For example, Aaronson and Ambainis [AA15] showed that the Forrelation problem
can be solved by one quantum query, while its randomized query complexity is Ω(

√
N/ logN).

For classical randomized query complexity, there is a known xor lemma, proved by Drucker [D12].
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In particular, Theorem 1.3 of [D12], along with the result of [AA15] gives a partial function (xor
of polylog(N) copies of Forrelation) that can be computed by a quantum query algorithm with
polylog(N) queries, while every classical randomized algorithm that makes õ(N1/2) queries, has
quasipolynomially small advantage.

Our main theorem implies a different proof for this result, using Tal’s recent bounds on the
level-2k Fourier mass of decision trees [Tal19].

1.4 The Main Theorem

Our functions are obtained by taking an xor of several copies of a variant of the Forrelation
problem, as defined in [RT19].

Let N = 2n for sufficiently large n ∈ N. Let k ∈ N be a parameter. We assume that k =
o(N1/50). Let ε = 1

60k2 lnN
be a parameter.

Let HN denote the N ×N normalized Hadamard matrix whose entries are either − 1√
N

or 1√
N

.

Let

forr(z) :=
1

N
〈z2, HNz1〉

denote the Forrelation of a vector z = (z1, z2), where z1, z2 ∈ RN . The Forrelation Decision
Problem is the partial Boolean function F : {−1, 1}2N → {−1, 1} defined at z ∈ {−1, 1}2N by

F (z) :=


−1 if forr(z) ≥ ε/2
1 if forr(z) ≤ ε/4
undefined otherwise

The ⊕k Forrelation Decision Problem F (k) : {−1, 1}2kN → {−1, 1} is defined as the xor of k
independent copies of F . More precisely, for every z1, . . . , zk ∈ {−1, 1}2N , let

F (k)(z1, . . . , zk) :=
k∏
j=1

F (zj).

For our separation results, we take the function F (k), where k = dlog2Ne. For our communi-
cation complexity separation we take the lift of F (k) with xor as the gadget. The quantum upper
bounds in all these separation results are quite simple. Moreover, all the quantum algorithms in
our upper bounds have the additional advantage of being efficiently implementable, in the sense
that they can be described by quantum circuits of size polylog(N), with oracle access to the inputs.

Our main contribution is the classical lower bound. Towards this, our main theorem provides
an upper bound on the maximum correlation of F (k) with any family of Boolean functions, in terms
of the maximum level-2k Fourier mass of a function in the family.

Main Theorem (Informal) There exist two distributions, σ
(k)
0 and σ

(k)
1 , on the no and yes

instances of F (k), respectively, with the following property. Let H be a family of Boolean functions,
each of which maps {−1, 1}2kN into [−1, 1]. Assume that H is closed under restrictions. For
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H ∈ H, let L2k(H) :=
∑
|S|=2k |Ĥ(S)|. Let α ∈ R be such that αk := sup

H∈H
(L2k(H), 1). Then, for

every H ∈ H, ∣∣∣∣∣ E
z∼σ(k)

0

[H(z)]− E
z∼σ(k)

1

[H(z)]

∣∣∣∣∣ ≤ O
(

αk

Nk/2

)

Our main theorem implies that functions in H cannot correlate with F (k) by more than 1
2 +

O
(

αk

Nk/2

)
. For the applications, we instantiate H with the class of functions computed by classical

protocols of small cost.

1.5 Overview of Proof of the Main Theorem for k = 2

Our proof builds on the techniques of [RT19], and followup works [CHLT19, GRT19], which, in
turn, used a key idea from [CHHL18]. We will now give an overview of the proof of the Main
Theorem for the special case k = 2, where one can already see most of the key ideas.

We start by recalling the hard distributions for k = 1, as in [RT19]. The distribution U on
no instances of F is the uniform distribution U2N on {−1, 1}2N . It can be shown that a bit
string drawn uniformly at random almost always has low Forrelation. The distribution G on yes

instances of F is the Gaussian distribution with mean 0 and covariance matrix ε

[
IN HN

HN IN

]
. It

can be shown that a vector drawn from this distribution almost always has high Forrelation (at
least ε/2). Although G is not a distribution over {−1, 1}2N , this can be fixed (by probabilistically
rounding the values) and we ignore this issue in the proof overview.

Our hard distributions for k ≥ 2 are obtained by naturally lifting these distributions. The
distribution µ0 on no instances of F (2) is 1

2 (U × U + G × G). The distribution µ1 on yes
instances is 1

2 (U × G + G × U). It can be shown that these distributions indeed have almost all

their mass on the yes and no instances of F (2), respectively.

Throughout this proof, we identify functions in H with their unique multilinear extensions.
Using this identification, it follows that for all H ∈ H and z0 ∈ R4N , we have Ez∼U [H(z0 +(z, 0))] =
Ez∼U [H(z0 + (0, z))] = Ez∼U2 [H(z0 + z)] = H(z0).

Bounding the Advantage of H in Distinguishing p · µ0 and p · µ1, for Small p:

As in [RT19, CHLT19], in order to show that functions in H can’t distinguish between µ0 and µ1,
we first show that they can’t distinguish between p · µ0 and p · µ1, for small p. We show that for
every H ∈ H, and p ≤ 1

2N ,

∣∣∣∣ E
z∼p·µ0

[H(z)]− E
z∼p·µ1

[H(z)]

∣∣∣∣ , 1

2

∣∣∣∣∣∣ E
z1∼p·G
z2∼p·G

[H(z1, z2)−H(z1, 0)−H(0, z2) +H(0, 0)]

∣∣∣∣∣∣
≤ p4 ·O

(
L4(H)

N

)
+O(p6N1.5)
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This claim is analogous to Claim 20 from [CHLT19]. For sufficiently small p, the second term in
the R.H.S. of the inequality is negligible, compared to the first term. To prove this inequality, we
use the Fourier expansion of H in the L.H.S. and bound the difference between the moments of
p · µ0 and p · µ1. We show that p · µ0 and p · µ1 agree on moments of degree less than 4, so these
moments don’t contribute to the difference. We then show that the contribution of the moments
of degree 4 is L4(H) ·O

(
p4

N

)
and the contribution of moments of higher degrees is O(p6N1.5).

Bounding the Advantage of H(z0 + z) in Distinguishing p · µ0 and p · µ1, for Small p:

Next, as in [RT19, CHLT19], we show a similar statement for the function H(z0 + z) of z, where
z0 is not too large. We show that for every H ∈ H, and every z0 ∈ [−1/2, 1/2]2kN and p ≤ 1

2N ,

1

2

∣∣∣∣∣∣ E
z1∼p·G
z2∼p·G

[H(z0 + (z1, z2))−H(z0 + (z1, 0))−H(z0 + (0, z2)) +H(z0)]

∣∣∣∣∣∣
≤ p4 ·O

(
L4(H)

N

)
+O(p6N1.5)

(1)

The proof of this inequality is similar to the proof of Claim 19 of [CHLT19], using key ideas
from [CHHL18], and relies on the multilinearity of functions in H and the closure of H under
restrictions.

A Random Walk with Two-Dimensional Time Variable:

This is the main place where our proof differs from the one of [RT19] and followup works [CHLT19,
GRT19]. In all these works the Forrelation distribution was ultimately analyzed as the distribution
obtained by a certain random walk. Here, we consider a product of two random walks, which can
also be viewed as a random walk with two-dimensional time variable.

Let T = 16N4 and p = 1√
T

. Let z
(1)
1 , z

(1)
2 , . . . , z

(T )
1 , z

(T )
2 ∼ p · G be independent samples. Let

t = (t1, t2) for t1, t2 ∈ {0, . . . , T}. Let z≤(t) :=
(∑t1

i=1 z
(i)
1 ,
∑t2

i=1 z
(i)
2

)
. Note that z≤(t) is distributed

according to (p
√
t1 · G)× (p

√
t2 · G). In particular, z≤(T,T ) is distributed according to G × G. This

implies that

(∗) := E
z∼µ0

[H(z)]− E
z∼µ1

[H(z)] ,
1

2
E
[
H(z≤(T,T ))−H(z≤(T,0))−H(z≤(0,T )) +H(0, 0)

]
We now rewrite (∗) as follows.

(∗) =
1

2

∑
t1∈[T ]
t2∈[T ]

E
[
H(z≤(t1,t2))−H(z≤(t1−1,t2))−H(z≤(t1,t2−1)) +H(z≤(t1−1,t2−1))

]
(2)

The last equation follows by a two-dimensional telescopic cancellation, as depicted in Figure 1.
This turns out to be a powerful observation. Note that for every fixed t = (t1, t2), the random

variable z≤(t)− z≤(t−(1,1)) , (z
(t1)
1 , z

(t2)
2 ) is distributed according to p · G2, by construction. We can
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thus apply Inequality(1), setting z0 = z≤(t−(1,1)). This, along with the Triangle-Inequality implies
that

|(∗)| ≤ 1

2

∑
t1∈[T ]
t2∈[T ]

∣∣∣E [H(z≤(t1,t2))−H(z≤(t1−1,t2))−H(z≤(t1,t2−1)) +H(z≤(t1−1,t2−1))
]∣∣∣

≤ 1

2

∑
t1∈[T ]
t2∈[T ]

(
p4 ·O

(
L4(H)

N

)
+O

(
p6N1.5

))
by Inequality (1)

= O

(
L4(H)

N

)
+ o

(
1

N

)
since T = 16N4 =

1

p2

This completes the proof overview for k = 2, albeit with many details left out.
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Figure 1: Consider the (T + 1)× (T + 1) grid whose vertices are indexed by v ∈ ({0} ∪ [T ])2. Each
vertex v is labelled by H(z≤(v)). Each rectangle has a sign on its vertices as defined in Figure 1
and the label of a rectangle is the sum of signed labels of its vertices. The sum of labels of all 1× 1
rectangles equals the label of the larger T × T rectangle. This is exactly the content of Eq. (2).

1.6 Organization of the Paper

We present the preliminaries regarding Forrelation in Section 2 and state our main theorems in
Section 3. In Section 4, we show how to bound the advantage of H in distinguishing between
p · µ0 and p · µ1, for Small p. In Section 5, we show how to bound the advantage of H(z0 + z)
in distinguishing between p · µ0 and p · µ1, for Small p. In Section 6, we give the analysis of our
random walk with k-dimensional time variable. Section 7 contains the proofs of the quantum-
classical separations.

2 Preliminaries

For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We typically use N to refer to 2n. For a set
S ⊆ [n], let S̄ := [n] \ S denote the complement of S. For sets S ⊆ [n], T ⊆ [m], we typically use

8



S × T := {(s, t) : s ∈ S, t ∈ T} denote the set product of S and T . Sometimes, we use the notation
(S, T ). Note that the map (i, j) → m(i − 1) + j is a bijection between [n] × [m] and [nm]. Using
this identification, S×T is a subset of [nm]. We identify subsets S ⊆ [n] with their {0, 1} indicator
vector, that is, the vector S ∈ {0, 1}n such that for each j ∈ [n], Sj = 1 if and only if j ∈ S.

Let v ∈ Rn. For i ∈ [n], we refer to the i-th coordinate of v by vi or v(i). For x, y ∈ Rn, let
x · y ∈ Rn be the pointwise product between x and y. This is the vector whose i-th coordinate is
xiyi, for every i ∈ [n]. Let 〈x, y〉 denote the real inner product between x and y. For x, y ∈ {0, 1}n,
let 〈x, y〉2 :=

∑n
i=1 xiyi mod 2 denote the mod 2 inner product between x and y. We use In to

denote the n× n identity matrix. We use 0 to denote the zero vector in arbitrary dimensions.

Distributions For a probability distribution D, let x ∼ D denote a random variable x sampled
according to D. For distributions D1 and D2, we use D1 ×D2 to denote the product distribution
defined by sampling (x, y) where x ∼ D1 and y ∼ D2 are sampled independently. For n ∈ N and
a distribution D, let Dn denote the product of n distributions, each of which is D. Let µ ∈ Rn
be a vector and Σ ∈ Rn×n be a positive semi-definite matrix. We use N (µ,Σ) to refer to the
n-dimensional Gaussian distribution with mean µ and covariance matrix Σ. Let Un denote the
uniform distribution on {−1, 1}n. For a distribution D over Rn and a ∈ Rn, let a+D refer to the
distribution obtained by sampling z ∼ D and returning z + a. For P ∈ Rn and a distribution D
over Rn, let P · D denote the distribution obtained by sampling x ∼ D and returning P · x. For
p ∈ R, we use p ·D to denote the distribution obtained by sampling x ∼ D and returning px. For
I ⊆ [n], let D̂(I) := E

z∼D

[∏
i∈I zi

]
refer to the I-th moment of D.

Concentration Inequalities We make use of the following concentration inequalities. The first
is the Gaussian Concentration Inequality [UCB] which states that P

z∼N (0,1)
[z ≥ t] ≤ e−t2/2. We also

use the following concentration inequality for the Chi-Squared distribution. [UCB]

P
z1,...,zn∼N (0,1)

[∣∣∣∣∣ 1n
n∑
i=1

z2
i − 1

∣∣∣∣∣ ≥ t
]
≤ 2e−nt

2/8 for all t ∈ (0, 1)

Fourier Analysis We refer to {−1, 1}n as the Boolean hypercube in n dimensions. Let F :=
{f : {−1, 1}n → R} denote the real vector space of all Boolean functions on n variables. There
is an inner product on this space as follows. For f, g ∈ F , let 〈f, g〉 := Ex∼Un [f(x)g(x)]. For
every S ⊆ [n], there is a character function χS : {−1, 1}n → {−1, 1} defined at x ∈ {−1, 1}n by
χS(x) :=

∏
i∈S xi. The set of character functions {χS}S⊆[n] forms an orthonormal basis for F . For

f ∈ F and S ⊆ [n], let f̂(S) := 〈f, χS〉 denote the S-th Fourier coefficient of f . Note that for
all f ∈ F , we have f =

∑
S⊆[n] f̂(S)χS . For f ∈ F , the multilinear extension of f is the unique

multilinear polynomial f̃ : Rn → R which agrees with f on {−1, 1}n. For every S ⊆ [n], the
multilinear extension of χS is the monomial

∏
i∈S xi. This implies that the multilinear extension

of f ∈ F is
∑

S⊆[n] f̂(S)
∏
i∈S xi. Henceforth, we identify Boolean functions with their multilinear

extensions. With this identification, it can be shown that functions in F which map {−1, 1}n into
[−1, 1] also map [−1, 1]n into [−1, 1]. For f, g ∈ F , let f ∗ g ∈ F be defined at z ∈ {−1, 1}n by

(f ∗g)(z) := Ex∼Un [f(x)g(x ·z)]. It can be shown that for all S ⊆ [n], we have f̂ ∗ g(S) = f̂(S)ĝ(S).
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Level-k Fourier Mass For f ∈ F and k ∈ {0, . . . , n}, let Lk(f) :=
∑
|S|=k |f̂(S)| denote the

level-k Fourier mass of f . For a family H ⊆ F of Boolean functions, let Lk(H) := supH∈H Lk(H).

2.1 The Forrelation Problem

Let k,N ∈ N be parameters, where N = 2n for some n ∈ N. We assume that k = o(N1/50). Fix a
parameter ε = 1

60k2 lnN
. Let U refer to U2N .

Hadamard Matrix The Hadamard matrix HN of size N is an N × N matrix. The rows and
columns are indexed by strings a and b respectively where a, b ∈ {0, 1}n and the (a, b)-th entry of
HN is defined to be 1√

N
(−1)〈a,b〉2 . Equivalently,

HN (a, b) :=

{ −1√
N

if
∑n

i=1 aibi ≡ 1 mod 2
+1√
N

if
∑n

i=1 aibi ≡ 0 mod 2

The Forrelation Function The Forrelation Function forr : R2N → R is defined as follows. Let
z ∈ R2N and x, y ∈ RN be such that z = (x, y). Then,

forr(z) :=
1

N
〈x,HNy〉

The ⊕k Forrelation Decision Problem

Definition 2.1 (The ⊕k Forrelation Decision Problem). The Forrelation Decision Problem is the
partial Boolean function F : {−1, 1}2N → {−1, 1} defined as follows. For z ∈ {−1, 1}2N , let

F (z) :=


−1 if forr(z) ≥ ε/2
1 if forr(z) ≤ ε/4
undefined otherwise

The ⊕k Forrelation Decision Problem F (k) : {−1, 1}2kN → {−1, 1} is defined as the xor of k
independent copies of F . To be precise, for every z1, . . . , zk ∈ {−1, 1}2N , let

F (k)(z1, . . . , zk) :=

k∏
j=1

F (zj)

The Gaussian Forrelation Distribution G

Definition 2.2. Let G denote the Gaussian distribution over R2N defined by the following process.

1. Sample x1, . . . , xN ∼ N (0, ε) independently.

2. Let x = (x1, . . . , xN ) and y = HNx.

10



3. Output (x, y).

The distribution G can be equivalently expressed as N
(

0, ε

[
IN HN

HN IN

])
.

Moments of G We state some useful facts about the moments of G. We use the following notation

to refer to the moments of G. For subsets S, T ⊆ [N ], let Ĝ(S, T ) := E
(x,y)∼G

[∏
i∈S xi

∏
j∈T yj

]
. The

following claim and its proof appear as Claim 4.1 in [RT19]. We omit the proof.

Claim 2.3. Let S, T ⊆ [N ] and i, j ∈ [N ]. Let i1 = |S|, i2 = |T |. Then,

1. Ĝ({i}, {j}) = εN−1/2(−1)〈i,j〉2.

2. Ĝ(S, T ) = 0 if i1 6= i2.

3.
∣∣∣Ĝ(S, T )

∣∣∣ ≤ εii!N−i/2 if i = i1 = i2.

2.2 Hard Distributions over R2kN

Let P,Q be two probability distributions on the domain D := R2N . Let S ⊆ [k]. We define PSQS̄
to be the distribution on Dk defined by sampling x = (x1, . . . , xk) where x1, . . . , xk ∈ D are sampled
as follows.

For each j ∈ [k], independently sample

{
xj ∼ P if j ∈ S
xj ∼ Q if j ∈ S̄

Note that for every I = (I1, . . . , Ik) ⊆ [2kN ], where I1, . . . , Ik ⊆ [2N ], we have the following.

P̂SQS̄(I) =
∏
j∈S
P̂(Ij) ·

∏
j /∈S

Q̂(Ij)

Definition 2.4. Let G be the distribution in Definition 2.2 and U = U2N . Define a pair of distri-

butions µ
(k)
0 , µ

(k)
1 on R2kN as follows.

µ
(k)
0 :=

1

2k−1

∑
S⊆[k]

|S| is even

GSU S̄ and µ
(k)
1 :=

1

2k−1

∑
S⊆[k]
|S| is odd

GSU S̄

Lemma 2.5. Let I = (I1, . . . , Ik) ⊆ [2kN ], where each Ij ⊆ [2N ].

1. If |I| < 2k or if Ij = ∅ for some j ∈ [k], then µ̂
(k)
0 (I) = µ̂

(k)
1 (I).

2. If |Ij | is odd for some j ∈ [k], then µ̂
(k)
0 (I) = µ̂

(k)
1 (I).

3. Let |I| = 2i for some i ∈ N. Then,

∣∣∣∣µ̂(k)
0 (I)− µ̂(k)

1 (I)

∣∣∣∣ ≤ 2−k+1εiN−i/2i!.
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Proof of Lemma 2.5. Note that we have the following equality

µ̂
(k)
0 (I)− µ̂(k)

1 (I) ,
1

2k−1

 ∑
S⊆[k]

|S| is even

ĜSU S̄(I)−
∑
S⊆[k]
|S| is odd

ĜSU S̄(I)


=

1

2k−1

∑
S⊆[k]

(−1)|S|ĜSU S̄(I)


=

1

2k−1

∑
S⊆[k]

(−1)|S|
∏
j∈S
Ĝ(Ij)

∏
j /∈S

Û(Ij)


=

1

2k−1

k∏
j=1

(
Û(Ij)− Ĝ(Ij)

)

(3)

(1.) If |I| < 2k then there exists some j ∈ [k] such that |Ij | < 2. If |Ij | = 0, then Ĝ(Ij) = Û(Ij) = 1.

If |Ij | = 1, Claim 2.3 implies that Ĝ(Ij) = Û(Ij) = 0. This along with Eq. (3) implies that

µ̂
(k)
0 (I) = µ̂

(k)
1 (I).

(2.) Suppose |Ij | is odd for some j ∈ [k]. Claim 2.3 implies that Ĝ(Ij) = Û(Ij) = 0. This, along

with Eq. (3) implies that µ̂
(k)
0 (I) = µ̂

(k)
1 (I).

(3.) Due to item (1.) and (2.) of this lemma, we may assume that Ij 6= ∅ and |Ij | is even for every

j ∈ [k], otherwise µ̂
(k)
0 (I) − µ̂(k)

1 (I) = 0 and the inequality is trivially true. For each j ∈ [k],

let |Ij | = 2ij for some ij ∈ N. Claim 2.3 states that if |Ij | = 2ij , then |Ĝ(Ij)| ≤ εij ij !N
−ij/2.

Since Ij 6= ∅, we have Û(Ij) = 0. This, along with Eq. (3) implies that∣∣∣∣µ̂(k)
0 (I1, . . . , Ik)− µ̂

(k)
1 (I1, . . . , Ik)

∣∣∣∣ =
1

2k−1

∣∣∣∣∣∣
k∏
j=1

(
Ĝ(Ij)− Û(Ij)

)∣∣∣∣∣∣
≤ 1

2k−1

k∏
j=1

εij ij !N
−ij/2

=
1

2k−1
εiN−i/2

k∏
j=1

ij ! ≤ 2−k+1εiN−i/2i!

This completes the proof of Lemma 2.5.

2.3 Rounding Distributions to the Boolean Hypercube

Let trnc : R→ [−1, 1] denote the truncation function, whose action on a ∈ R is given by

trnc(a) =

{
sign(a) if a /∈ [−1, 1]

a otherwise
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For l ∈ R, we also use trnc : Rl → [−1, 1]l to refer to the function that applies the above truncation
function coordinate-wise.

Definition 2.6. Let µ be any distribution on RM . We define the rounded distribution µ̃ on
{−1, 1}M as follows.

1. Sample z ∼ µ.

2. For each coordinate i ∈ [M ], independently, let z′i = 1 with probability 1+trnc(zi)
2 and z′i = −1

with probability 1−trnc(zi)
2 .

3. Output z′ = (z′1, . . . , z
′
M ).

Let z0 ∈ RM and µ be the distribution whose support is {z0}. We use z̃0 to refer to µ̃.

We show some useful facts about expectations of multilinear functions over these distributions.

Claim 2.7. Let H : RM → R be any multilinear polynomial and a ∈ RM . Let µ be a distribution
on RM where each coordinate is sampled independently of the rest so that Ez∼µ[z] = a. Then,

Ez∼µ[H(z)] = H(a)

Corollary 2.8. Let H : RM → R be any multilinear polynomial. Let µ be any distribution on RM
and µ̃ be the distribution on {−1, 1}M obtained by rounding µ as in Definition 2.6. Then,

E
z∼µ̃

[H(z)] = E
z∼µ

[H(trnc(z))]

Claim 2.9. Let H : R2kN → R be any multilinear polynomial mapping {−1, 1}2kN into [−1, 1]. Let
z0 and P be in [−1/2, 1/2]2kN . Then,

Ez∼G(k) [|H(trnc(z0 + P · z))−H(z0 + P · z)|] ≤ O
(

1

N5k2

)

Proof of Claim 2.7. Let T ⊆ [M ] and z ∼ µ. The given assumption on µ is that each zj for j ∈ [M ]

is sampled independently so that Ez∼µ[zj ] = aj . This implies that Ez∼µ[χT (z)] , Ez∼µ
[∏

j∈T zj

]
=∏

j∈T aj , χT (a). Note that the quantities Ez∼µ[H(z)] and H(a) are both linear with respect to
H. Since we have shown that Ez∼µ[H(z)] = H(a) for all character functions H, this observation
implies that Ez∼µ[H(z)] = H(a) for all multilinear functions H.

Proof of Corollary 2.8 from Claim 2.7. Observe that for every z ∈ RM , the distribution z̃ as in
Definition 2.6 satisfies the hypothesis in Claim 2.7 with a = trnc(z). Claim 2.7 implies that
E
z′∼z̃

[H(z′)] = H(trnc(z)). Therefore, E
z∼µ̃

[H(z)] , E
z∼µ

E
z′∼z̃

[H(z′) | z] = E
z∼µ

[H(trnc(z))].

Corollary 2.8 is similar to Equation (2) from [RT19] and Claim 2.2 from [GRT19]. Claim 2.9
is similar to Claim 5.3 from [RT19]. The proof of this is also identical, so we omit it. We remark

that the bound in [RT19] is 8 · N−2 as opposed to our bound of O
(
N−5k2

)
. This difference in

parameters arises from our choice of ε = 1
60k2 lnN

as opposed to their choice of ε = 1
24 lnN . We

also remark that the claim as stated in [RT19] is for scalars P ∈ [−1/2, 1/2] as opposed to our
assumption of P ∈ [−1/2, 1/2]2kN . However, their proof works under this assumption as well.
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2.4 The Forrelation Distribution

Let k ∈ N. Let µ̃
(k)
0 and µ̃

(k)
1 (respectively G̃) be distributions over {−1, 1}2kN (respectively

{−1, 1}2N ) generated from rounding µ
(k)
1 and µ

(k)
0 (respectively G) according to Definition 2.6.

Observe that we may alternatively define µ̃
(k)
0 and µ̃

(k)
1 as follows.

Definition 2.10. Let G be as in Definition 2.2 and U = U2N . Let

µ̃
(k)
0 :=

1

2k−1

∑
S⊆[k]

|S| is even

G̃SU S̄ and µ̃
(k)
1 :=

1

2k−1

∑
S⊆[k]
|S| is odd

G̃SU S̄

We refer to µ̃
(1)
1 , G̃ as the Forrelation Distribution.

We show that the distributions µ̃
(k)
1 and µ̃

(k)
0 put considerable mass on the yes and no instances

of F (k), respectively, where F (k) is the ⊕k Forrelation Decision Problem as in Definition 2.1.

Lemma 2.11. Let µ̃
(k)
0 and µ̃

(k)
1 be distributions as in Definition 2.10 and F (k) be the ⊕k Forrelation

Decision Problem as in Definition 2.1. Then,

P
z∼µ̃(k)

0

[F (k)(z) = 1] ≥ 1−O
(

k

N6k2

)
and P

z∼µ̃(k)
1

[F (k)(z) = −1] ≥ 1−O
(

k

N6k2

)

The proofs of these use hypercontractivity to show concentration inequalities for low degree
polynomials under product distributions on the Boolean hypercube. These proofs are technical
and are deferred to the appendix.

2.5 Closure under Restrictions

Definition 2.12. Let a ∈ {−1, 1, 0}M . Let ρa : RM → RM be a restriction defined as follows. For
v ∈ RM , let ρa(v) ∈ RM be such that for all j ∈ [M ],

(ρa(v))(j) :=

{
v(j) if a(j) = 0

a(j) otherwise

For a function F : {−1, 1}M → R, the restricted function F ◦ ρv : {−1, 1}M → R is defined at
z ∈ {−1, 1}M by (F ◦ ρv)(z) := F (ρv(z)).

We say that a family H of Boolean functions in M variables is closed under restrictions if for
all restrictions v ∈ {−1, 1, 0}M and H ∈ H, the restricted function H ◦ ρv is in H.

3 The Main Result

Let N ∈ N be a parameter describing the input size. We will assume that N is a sufficiently large
power of 2. Let k ∈ N. We assume that k = o(N1/50). Let ε = 1

60k2 lnN
be the parameter defining

G as before.
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Theorem 3.1. Let H be a family of Boolean functions on 2kN variables, each of which maps

{−1, 1}2kN into [−1, 1]. Assume that H is closed under restrictions. Let µ̃
(k)
0 , µ̃

(k)
1 be the distribu-

tions over {−1, 1}2kN as in Definition 2.10. Then, for every H ∈ H,∣∣∣∣∣ E
z∼µ̃(k)

0

[H(z)]− E
z∼µ̃(k)

1

[H(z)]

∣∣∣∣∣ ≤ O
(
L2k(H)

Nk/2

)
+ o

(
1

Nk/2

)

Definition 3.2. Let µ̃
(k)
0 , µ̃

(k)
1 be as in Definition 2.10. Let σ

(k)
0 (respectively σ

(k)
1 ) be obtained by

conditioning µ̃
(k)
0 on being a no (respectively yes) instance of F (k).

Corollary 3.3. Under the same hypothesis as Theorem 3.1, for every H ∈ H∣∣∣∣∣ E
z∼σ(k)

0

[H(z)]− E
z∼σ(k)

1

[H(z)]

∣∣∣∣∣ ≤ O
(
L2k(H)

Nk/2

)
+ o

(
1

Nk/2

)

3.1 Applications to Quantum versus Classical Separations

Query Complexity Separations

Lemma 3.4. Let D : {−1, 1}2kN → {−1, 1} be a deterministic decision tree of depth d ≥ 1. Then,∣∣∣∣∣ E
z∼σ(k)

0

[D(z)]− E
z∼σ(k)

1

[D(z)]

∣∣∣∣∣ ≤
(
O (d log(kN))

N1/2

)k
Theorem 3.5. F (k) can be computed in the bounded-error quantum query model with O(k5 log2N log k)
queries. However, every randomized decision tree of depth õ(

√
N) has a worst-case success proba-

bility of at most 1
2 + exp(−Ω(k)).

Setting k = dlogcNe for c ∈ N in Theorem 3.5 gives us an explicit family of partial functions
that are computable by quantum query algorithms of cost Õ(log5c+2N), however every randomized

query algorithm of cost õ(N
1
2 ) has at most 1

2Ω(logc N) advantage over random guessing.

Communication Complexity Separations

Definition 3.6 (The ⊕k Forrelation Communication Problem F (k) ◦ xor). Alice is given x and
Bob is given y where x, y ∈ {−1, 1}2kN . Let F (k) be as in Definition 2.1. Their goal is to compute
the partial function F (k)(x · y).

Lemma 3.7. Let C : {−1, 1}2kN ×{−1, 1}2kN → {−1, 1} be any deterministic protocol of commu-
nication complexity c. Then,∣∣∣∣∣∣∣ E

x∼U2kN

z∼σ(k)
0

[C(x, x · z)]− E
x∼U2kN

z∼σ(k)
1

[C(x, x · z)]

∣∣∣∣∣∣∣ ≤ O
(

(c+ 8k)2k

Nk/2

)
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Theorem 3.8. F (k) ◦ xor can be solved in the quantum simultaneous with entanglement model
with O(k5 log3N log k) bits of communication, when Alice and Bob share O(k5 log3N log k) EPR
pairs. However, any randomized protocol of cost õ(N1/4) has a worst-case success probability of at
most 1

2 + exp(−Ω(k)).

Setting k = dlogcNe for c ∈ N in Theorem 3.8 gives us an explicit family of partial functions
that are computable by quantum simultaneous protocols of cost Õ(log5c+3N) when Alice and Bob

share Õ(log5c+3N) EPR pairs, however every interactive randomized protocol of cost õ(N
1
4 ) has

at most 1
2Ω(logc N) advantage over random guessing.

Circuit Complexity Separations

Lemma 3.9. Let C : {−1, 1}2kN → {−1, 1} be an AC0 circuit of depth d ≥ 1 and size s. Then,∣∣∣∣∣ E
z∼σ(k)

0

[C(z)]− E
z∼σ(k)

1

[C(z)]

∣∣∣∣∣ ≤
(
O
(
log2d−2(s)

)
N1/2

)k

Theorem 3.10. The distributions σ
(k)
1 and σ

(k)
0 can be distinguished by a bounded-error quan-

tum query protocol with O(k5 log2N log k) queries with 2/3 advantage. However, every constant

depth circuit of size o
(

exp
(
N

1
4(d−1)

))
can distinguish these distributions with at most exp(−Ω(k))

advantage.

Setting k = dlogcNe for c ∈ N in Theorem 3.10 gives us an explicit family of distributions that
are distinguishable by cost Õ(log5c+2N) quantum query algorithms, however every constant depth
circuit of quasipolynomial size can distinguish them with at most 1

2Ω(logc N) advantage.

4 Single Step Analysis Around the Origin

Lemma 4.1. Let H be a Boolean function on 2kN variables that maps {−1, 1}2kN into [−1, 1].
Let p ≤ 1

2N and P ∈ [−p, p]2kN . Then,

∆ :=

∣∣∣∣∣ E
z∼P ·µ(k)

0

[H(z)]− E
z∼P ·µ(k)

1

[H(z)]

∣∣∣∣∣ ≤ O
(

2−2k · L2k(H)p2k

Nk/2
+ p2(k+1)N (k+1)/2

)
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Proof of Lemma 4.1. For all z ∈ R2kN , we have H(z) =
∑

S⊆[2kN ] Ĥ(S)
∏
i∈S
zi. This implies that

∆ =

∣∣∣∣∣∣
∑

S⊆[2kN ]

Ĥ(S)

(
E

z∼P ·µ(k)
0

[∏
i∈S

zi

]
− E
z∼P ·µ(k)

1

[∏
i∈S

zi

])∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

S⊆[2kN ]

Ĥ(S) ·
∏
i∈S

Pi ·

(
E

z∼µ(k)
0

[∏
i∈S

zi

]
− E
z∼µ(k)

1

[∏
i∈S

zi

])∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

S⊆[2kN ]

Ĥ(S) ·
∏
i∈S

Pi ·
(
µ̂

(k)
0 (S)− µ̂(k)

1 (S)

)∣∣∣∣∣∣
≤

∑
S⊆[2kN ]

|Ĥ(S)| · p|S| ·
∣∣∣∣µ̂(k)

0 (S)− µ̂(k)
1 (S)

∣∣∣∣ . . . since P ∈ [−p, p]2kN

We now apply Lemma 2.5 to bound the difference in moments between the distributions µ
(k)
1

and µ
(k)
0 . Lemma 2.5 implies that if |S| < 2k or |S| is odd, then µ̂

(k)
0 (S) = µ̂

(k)
1 (S). Furthermore,

if |S| = 2i for some i ∈ N, then

∣∣∣∣µ̂(k)
0 (S)− µ̂(k)

1 (S)

∣∣∣∣ ≤ 2−k+1εiN−i/2i!. This implies that

∆ ≤
kN∑
i=k

 ∑
|S|=2i

|Ĥ(S)|

 · 2−k+1εiN−i/2i!p2i

Since H maps {−1, 1}2kN to [−1, 1], we can bound
∑
|S|=2i |Ĥ(S)| by

√(
2kN
2i

)
. 1 We also bound

2−k+1 by 1. This, along with the previous inequality implies that

∆ ≤ L2k(H) · (2−k+1k!εk) ·N−k/2p2k +
kN∑

i=k+1

(√(
2kN

2i

)
· i!εi

)
·N−i/2p2i

Note that
√(

2kN
2i

)
·i! ≤ (2k)iN i√

(2i)!
i! = O

(
(2k)iei

(2i)i
· ii
ei
·N i

)
= O

(
kiN i

)
. Furthermore, since ε = 1

60k2 lnN
,

for all i ≥ k, we have εiki = O
(

1
60kk2k · kk

)
= O

(
1
2k

)
. This implies that 2−k+1k!εk = O

(
2−2k

)
and√(

2kN
2i

)
· i!εi = O(N i). Substituting these bounds in the previous inequality for ∆, we have

∆ ≤ O

(
2−2k · L2k(H)N−k/2p2k +

kN∑
i=k+1

N i/2p2i

)

In the summation
∑

i≥k+1N
i/2p2i, every successive term is smaller than the previous by a factor

of at least 1/4. This is because the assumption p ≤ 1
2N implies that N1/2p2 ≤ 1

4 . Thus, we can

bound this summation by twice the first term, which is O(N (k+1)/2p2(k+1)). This implies that

∆ ≤ O
(

2−2k · L2k(H)N−k/2p2k +N (k+1)/2p2(k+1)
)

This completes the proof of Lemma 4.1.

1This is because
∑
|S|=2i |Ĥ(S)| ≤

√∑
|S|=2i 1

√∑
|S|=2i Ĥ(S)2 ≤

√(
2kN
2i

)
.
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5 Single Step Analysis Away from the Origin

Lemma 5.1. Let H be a family of Boolean functions on 2kN variables, each of which maps
{−1, 1}2kN into [−1, 1]. Assume that H is closed under restrictions. Let p ≤ 1

4N and z0 ∈
[−1/2, 1/2]2kN . Then, for all H ∈ H,

∆ :=

∣∣∣∣∣ E
z∼p·µ(k)

0

[H(z0 + z)]− E
z∼p·µ(k)

1

[H(z0 + z)]

∣∣∣∣∣ ≤ O
(

2−2k · L2k(H)(2p)2k

Nk/2
+ (2p)2(k+1)N (k+1)/2

)

Let O denote the distribution on R2N whose support is {0} (i.e, the distribution that puts all
its mass on the zero vector in R2N ).

Corollary 5.2. Under the same hypothesis as Lemma 5.1, for all H ∈ H,

∆ :=
1

2k−1

∣∣∣∣∣∣∣
∑
S⊆[k]

(−1)|S| E
z∼z0+

p·GSOS̄

[H(z)]

∣∣∣∣∣∣∣ ≤ O
(

2−2k · L2k(H)(2p)2k

Nk/2
+ (2p)2(k+1)N (k+1)/2

)

Proof of Corollary 5.2 from Lemma 5.1. We show that the expressions for ∆ in Corollary 5.2 and

Lemma 5.1 are identical. Let Γ :=

∣∣∣∣∣ E
z∼p·µ(k)

0

[H(z0 + z)]− E
z∼p·µ(k)

1

[H(z0 + z)]

∣∣∣∣∣ be the expression for

∆ in Lemma 5.1. By the definition of µ
(k)
0 , µ

(k)
1 as in Definition 2.4, we have

Γ =
1

2k−1

∣∣∣∣∣∣
∑
S⊆[k]

(−1)|S| E
z∼p·GSU S̄

[H(z0 + z)]

∣∣∣∣∣∣ =
1

2k−1

∣∣∣∣∣∣
∑
S⊆[k]

(−1)|S| E
z∼GSU S̄

[H(z0 + pz)]

∣∣∣∣∣∣ (4)

Let S ⊆ [k]. We now show that Ez∼GSU S̄ [H(z0 + pz)] = Ez∼GSOS̄ [H(z0 + pz)]. Substituting this

in the above equation would complete the proof. Let z1 ∼ GSOS̄ and z2 ∼ OSU S̄ . Note that
z1 + z2 ∼ GSU S̄ . Fix z1 ∈ R2kN . Note that the multilinear polynomial H(z0 + pz1 + pz2) over z2

and the distribution OSU S̄ satisfies the hypothesis in Claim 2.7 for a = 0. Claim 2.7 implies that
for all z1 ∈ R2kN , we have Ez2∼OSU S̄ [H(z0 + pz1 + pz2) | z1] = H(z0 + pz1). It then follows that

E
z∼GSU S̄

[H(z0 + pz)] = E
z1∼GSOS̄

z2∼OSU S̄

[H(z0 + pz1 + pz2)] = E
z1∼GSOS̄

[H(z0 + pz1)] = E
z∼z0+

p·GSOS̄

[H(z)]

Substituting the above in Eq. (4) implies that ∆ = Γ. This, along with Lemma 5.1 completes the
proof of Corollary 5.2.

Proof of Lemma 5.1. Let v ∈ {−1, 1, 0}2kN be obtained by the following process, which we denote
by v ∼ z0. For every i ∈ [2kN ], independently, set

v(i) :=

{
sign(z0(i)) with probability |z0(i)|
0 with probability 1− |z0(i)|
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Let ρv be a restriction as in Definition 2.12. For i ∈ [2kN ] define Pi by 1
1−|z0(i)| . Since z0 ∈

[−1/2, 1/2]2kN , we have P ∈ [1, 2]2kN . Note that for every i ∈ [2kN ] and z ∈ {−1, 1}2kN ,

E
v∼z0

[(ρv(z))(i)] = |z0(i)|sign(z0(i)) + (1− |z0(i)|)z(i) = z0(i) + P−1
i z(i)

This implies that E
v∼z0

[ρv(z)] = z0+P−1·z for all z ∈ {−1, 1}2kN . Note that for every z ∈ {−1, 1}2kN ,

the multilinear polynomial H and the random variable ρv(z) satisfy the hypothesis of Claim 2.7
with a = z0 + P−1 · z. Claim 2.7 implies that for all z ∈ {−1, 1}2kN ,

E
v∼z0

[H(ρv(z))] = H(z0 + P−1 · z)

Consider the restricted function H ◦ ρv. For every z ∈ {−1, 1}2kN and v ∈ {−1, 1, 0}2kN , by
definition, (H ◦ ρv)(z) = H(ρv(z)). This, along with the previous equality implies that for all
z ∈ {−1, 1}2kN ,

E
v∼z0

[(H ◦ ρv)(z)] = H(z0 + P−1 · z)

Note that both the L.H.S. and the R.H.S. of the above equation are multilinear polynomials in z
(since we identify H ◦ ρv with its multilinear extension). Thus, the above equation holds for all
z ∈ R2kN . In particular, for all distributions D over R2kN , it holds that

E
z∼D

E
v∼z0

[(H ◦ ρv)(z)] = E
z∼D

[H(z0 + P−1 · z)] (5)

This implies that ∆ can be expressed as follows.

∆ ,

∣∣∣∣∣ E
z∼p·µ(k)

0

[H(z0 + z)]− E
z∼p·µ(k)

1

[H(z0 + z)]

∣∣∣∣∣
=

∣∣∣∣∣ E
z∼pP ·µ(k)

0

[
H(z0 + P−1 · z)

]
− E
z∼pP ·µ(k)

1

[
H(z0 + P−1 · z)

]∣∣∣∣∣
=

∣∣∣∣∣ E
v∼z0

[
E

z∼pP ·µ(k)
0

[(H ◦ ρv)(z)]− E
z∼pP ·µ(k)

1

[(H ◦ ρv)(z)]

]∣∣∣∣∣ . . . due to Eq. (5)

≤ max
v∼z0

∣∣∣∣∣ E
z∼pP ·µ(k)

0

[(H ◦ ρv)(z)]− E
z∼pP ·µ(k)

1

[(H ◦ ρv)(z)]

∣∣∣∣∣ . . . Triangle-Inequality

Fix any v ∈ {−1, 1, 0}2kN . We now apply Lemma 4.1 on the function H ◦ ρv with the parameters
2p and pP . Since H is closed under restrictions, H ◦ρv ∈ H. Note that the assumption p ≤ 1

4N and
P ∈ [1, 2]2kN implies that 2p ≤ 1

2N and pP ∈ [−2p, 2p]2kN and thus, the hypothesis of Lemma 4.1 is
satisfied. Furthermore, we can bound L2k(H ◦ρv) by L2k(H), by definition of the latter. Lemma 4.1
implies that

∆ ≤ O
(

2−2k · L2k(H)(2p)2k

Nk/2
+ (2p)2(k+1)N (k+1)/2

)
This completes the proof of Lemma 5.1.

6 Proof of Main Theorem

For u, v ∈ Nk, let 1u=v ∈ {0, 1} be the indicator function that is 1 if and only if u = v. As
mentioned in the preliminaries, we identify sets S ⊆ [k] with their indicator vectors in {0, 1}k.
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6.1 Proof of Theorem 3.1

Let ∆ := E
z∼µ̃(k)

0

[H(z)] − E
z∼µ̃(k)

1

[H(z)] be the quantity that we wish to bound in Theorem 3.1. By

the definition of µ̃
(k)
0 , µ̃

(k)
1 as in Definition 2.10, we have

∆ =
1

2k−1

∑
S⊆[k]

(−1)|S| E
z∼G̃SU S̄

[H(z)]

Let S ⊆ [k]. Note the distribution G̃SU S̄ is obtained by rounding the distribution GSOS̄ as in Defi-
nition 2.6. We can thus apply Corollary 2.8 to the multilinear polynomial H(z) for the distribution
GSOS̄ to obtain that E

z∼G̃SU S̄
[H(z)] = E

z∼GSOS̄
[H(trnc(z))] . This along with the above expression

for ∆ implies that

∆ =
1

2k−1

∑
S⊆[k]

(−1)|S| E
z∼GSOS̄

[H(trnc(z))] (6)

Let T = 16N2k, p = 1√
T

= 1
4Nk . For each t ∈ [T ] and j ∈ [k], let z

(t)
j ∼ p · G be an independent

sample. By convention, z
(0)
j := 0 for all j ∈ [k]. Let Z refer to the collection {z(t)

j }t∈{0,...,T},j∈[k] of

random variables. For t ∈ {0, . . . , T} and j ∈ [k], define z
≤(t)
j := z

(0)
j + . . . + z

(t)
j . Note that the

random variable z
≤(t)
j has a Gaussian distribution with mean 0 and covariance matrix as p2t times

that of G for all j ∈ [k]. In particular, z
≤(T )
j is distributed according to G for all j ∈ [k].

Let a = (a1, . . . , ak) for a1, . . . , ak ∈ {0, . . . , T}. Let a− 1 denote the vector (a1− 1, . . . , ak− 1).

Let z(a) := (z
(a1)
1 , . . . , z

(ak)
k ) and define z≤(a) := (z

≤(a1)
1 , . . . , z

≤(ak)
k ). Note that z(a) is distributed

according to p · Gk for all a ∈ [T ]k. Also note that z≤(a) is distributed according to (p
√
a1 · G) ×

. . .× (p
√
ak · G) for all a ∈ {0, . . . , T}k. In particular, for every S ⊆ [k], the random variable z≤(T ·S)

is distributed according to GSOS̄ . Using this observation in Eq. (6), we have

∆ =
1

2k−1

∑
S⊆[k]

(−1)|S|E
Z

[
H(trnc(z≤(T ·S)))

]
(7)

Claim 6.1. For a ∈ [T ]k, let ∆a be as follows.

∆a :=
1

2k−1

∑
S⊆[k]

(−1)|S|E
Z

[
H(trnc(z≤(a−1+S)))

]
Then,

∑
a∈[T ]k

∆a = ∆.

Proof of Claim 6.1. By definition of ∆a, we have

2k−1
∑
a∈[T ]k

∆a =
∑
a∈[T ]k

∑
S⊆[k]

(−1)|S|E
Z

[
H(trnc(z≤(a−1+S)))

]
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For every a ∈ [T ]k and S ⊆ [k], note that a− 1 + S ∈ {0, . . . , T}k. Thus, the R.H.S. of the above
equation is a linear combination of terms E

Z
[H(trnc(z≤(b)))] for b ∈ {0, . . . , T}k. That is,

2k−1
∑
a∈[T ]k

∆a =
∑

b∈{0,...,T}k

 ∑
a∈[T ]k

∑
S⊆[k]

1a−1+S=b · (−1)|S|

E
Z

[H(trnc(z≤(b)))] (8)

We now study the coefficient of E
Z

[H(trnc(z≤(b)))] in the R.H.S. of the above expression. Note that

(−1)|S| is exactly
∏k
j=1(1− 2Sj). For a ∈ [T ]k, let a = (a1, . . . , ak) for a1, . . . , ak ∈ [T ]. Using this

notation, the coefficient of E
Z

[H(trnc(z≤(b)))] in Eq. (8) is∑
a∈[T ]k

∑
S⊆[k]

1a−1+S=b · (−1)|S|

=
∑
a∈[T ]k

∑
S⊆[k]

∏
j∈[k]

(
Sj · 1aj=bj + (1− Sj) · 1aj−1=bj

)
· (−1)|S|

=
∑
a∈[T ]k

∑
S⊆[k]

∏
j∈[k]

(
Sj · 1aj=bj + (1− Sj) · 1aj−1=bj

)
·
∏
j∈[k]

(1− 2Sj)

=
∑
a∈[T ]k

∑
S⊆[k]

∏
j∈[k]

(
Sj(1− 2Sj) · 1aj=bj + (1− Sj)(1− 2Sj) · 1aj−1=bj

)
=
∑
a∈[T ]k

∑
S⊆[k]

∏
j∈[k]

(
−Sj · 1aj=bj + (1− Sj) · 1aj−1=bj

)
. . . since S2

j = Sj for all j ∈ [k]

=
∑
a∈[T ]k

∏
j∈[k]

∑
Sj∈{0,1}

(
−Sj · 1aj=bj + (1− Sj) · 1aj−1=bj

)
=
∑
a∈[T ]k

∏
j∈[k]

(
−1aj=bj + 1aj−1=bj

)
=
∏
j∈[k]

∑
aj∈[T ]

(
−1aj=bj + 1aj−1=bj

)
=
∏
j∈[k]

(
10=bj − 1T=bj

)
Note that

∏
j∈[k]

(
10=bj − 1T=bj

)
is non zero if and only if each coordinate of b is in {0, T}. For

b ∈ {0, T}k, let B := {j ∈ [k] : bj = T}. Note that
∏
j∈[k]

(
10=bj − 1T=bj

)
= (−1)|B|. This, along

with the above calculation implies that the coefficient of E
Z

[H(trnc(z≤(b)))] in the R.H.S. of Eq. (8)

is precisely (−1)|B|. Furthermore, note that z≤(b) = z≤(T ·B). We substitute this in Eq. (8) to obtain

2k−1
∑
a∈[T ]k

∆a = E
Z

 ∑
B⊆[k]

(−1)|B|H(trnc(z≤(T ·B)))


This, along with Eq. (7) completes the proof of Claim 6.1.

Let a ∈ [T ]k. We now show how to bound ∆a. Let Ea denote the event that z≤(a−1) /∈
[−1/2, 1/2]2kN . We show that Ea is a low probability event. Recall that for j ∈ [k], i ∈ [2N ], the
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(j, i)-th coordinate of z≤(a−1) is distributed according to N (0, p2(aj − 1)ε), where p2aj ≤ 1 and
ε = 1/(60k2 lnN). This implies that for every i ∈ [2kN ],

P[z≤(a−1)(i) /∈ [−1/2, 1/2]] ≤ P[|N (0, ε)| ≥ 1/2] ≤ exp(−1/(8ε)) ≤ exp(−7k2 lnN) ≤ 1

N7k2

Applying a Union bound over coordinates i ∈ [2kN ], we have that for each a ∈ [T ]k,

P[Ea] , P[z≤(a−1) /∈ [−1/2, 1/2]2kN ] ≤ 2kN · 1

N7k2 ≤
2k

N6k2 (9)

Definition 6.2. For a ∈ [T ]k, let

∆¬Ea :=
1

2k−1

∑
S⊆[k]

(−1)|S|EZ
[
H(trnc(z≤(a−1+S))) | ¬Ea

]

∆Ea :=
1

2k−1

∑
S⊆[k]

(−1)|S|EZ
[
H(trnc(z≤(a−1+S))) | Ea

]

We bound ∆¬Ea as follows. Fix any z0 := z≤(a−1) such that Ea does not occur. Let S ⊆ [k].
Note that by definition, for every fixed z0, the random variable z≤(a−1+S) is distributed according to
z0+p·GSOS̄ . We now apply Corollary 5.2 to the polynomial H with parameters p and z0 = z≤(a−1).
The conditions of Corollary 5.2 are satisfied, since z0 ∈ [−1/2, 1/2]2kN , p ≤ 1

4Nk ≤ 1
4N , and for

every S ⊆ [k], the random variable z≤(a−1+S) is distributed according to z0+p·GSOS̄ . Corollary 5.2
implies that

1

2k−1

∣∣∣∣∣∣
∑
S⊆[k]

(−1)|S|EZ
[
H(z≤(a−1+S)) | ¬Ea

]∣∣∣∣∣∣ ≤ O
(

2−2k · L2k(H)(2p)2k

Nk/2
+ (2p)2(k+1)N (k+1)/2

)
(10)

Fix any S ⊆ [k]. Let P ∈ {0, p}2kN be such that for all i ∈ [2N ] and j ∈ [k], we have Pj,i = p
if and only if j ∈ S. Using this notation, observe that for every fixed z0, the random variable
z≤(a−1+S) is distributed according to z0 + P · Gk. We now apply Claim 2.9 to the multilinear
polynomial H with z0 = z≤(a−1) and P as defined above. The conditions of this claim are satisfied

since z0 ∈ [−1/2, 1/2]2kN (since Ea does not occur), p ≤ 1
4Nk ≤ 1

2 and P ∈ [−p, p]2kN ⊆
[
−1

2 ,
1
2

]2kN
and H maps {−1, 1}2kN into [−1, 1]. Since z≤(a−1+S) is distributed according to z0 + P · Gk,
Claim 2.9 implies that for all S ⊆ [k],

EZ
[
H(z≤(a−1+S))−H(trnc(z≤(a−1+S))) | ¬Ea

]
≤ O

(
1

N5k2

)
This inequality, along with Triangle-Inequality implies that

1

2k−1

∣∣∣∣∣∣
∑
S⊆[k]

(−1)|S|EZ
[(
H(z≤(a−1+S))−H(trnc(z≤(a−1+S)))

)
| ¬Ea

]∣∣∣∣∣∣ ≤ O
(

1

N5k2

)
(11)
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Combining Eq. (10) and Eq. (11) and applying Triangle-Inequality, we have

|∆¬Ea | ,
1

2k−1

∣∣∣∣∣∣EZ
∑
S⊆[k]

(−1)|S|H(trnc(z≤(a−1+S))) | ¬Ea

∣∣∣∣∣∣
≤ O

(
2−2k · L2k(H)(2p)2k

Nk/2
+ (2p)2(k+1)N (k+1)/2 +

1

N5k2

) (12)

We now bound ∆Ea . For all a ∈ [T ]k and S ⊆ [k], since trnc(z≤(a−1+S)) ∈ [−1, 1]2kN , and H maps
[−1, 1]2kN to [−1, 1], we have H(trnc(z≤(a−1+S))) ∈ [−1, 1]. This, along with the definition of ∆Ea

as in Definition 6.2 implies that |∆Ea | ≤ 2. By the definition of ∆a and Definition 6.2, we have

|∆a| ≤ P[Ea] · |∆Ea |+ P[¬Ea] · |∆¬Ea | ≤ P[Ea] · |∆Ea |+ |∆¬Ea |

Using Eq. (9), Eq. (12), along with the inequality |∆Ea | ≤ 2, we have

|∆a| ≤ O
(

2k

N6k2 + 2−2k · L2k(H)(2p)2k

Nk/2
+ (2p)2(k+1)N (k+1)/2 +

1

N5k2

)
= O

(
L2k(H)p2k

Nk/2
+ (2p)2(k+1)N (k+1)/2 +

k

N5k2

) (13)

This establishes a bound on ∆a. Using Claim 6.1 and Triangle-Inequality, we have |∆| ≤
∑

a∈[T ]k
|∆a|.

Substituting the bound from Eq. (13) for ∆a in this, we have

|∆| ≤
∑
a∈[T ]k

O

(
L2k(H)p2k

Nk/2
+ (2p)2(k+1)N (k+1)/2 +

k

N5k2

)

≤ O
(
T k · L2k(H)p2k

Nk/2
+ T k · (2p)2(k+1)N (k+1)/2 + T k · k

N5k2

)
By our choice of T = 16N2k and p = 1√

T
= 1

4Nk , we have the following inequality.

|∆| ≤ O
(
L2k(H)

Nk/2
+ 16kN2k2 · 1

22(k+1)N2k(k+1)
·N (k+1)/2 + 16kN2k2 · k

N5k2

)
≤ O

(
L2k(H)

Nk/2
+

4k

N2k
·N (k+1)/2 +

k · 16k

N3k2

)
≤ O

(
L2k(H)

Nk/2
+

4k

N
3k−1

2

+
k

N3k2−k

)
A small calculation then shows that

|∆| ≤ O
(
L2k(H)

Nk/2

)
+ o

(
1

Nk/2

)
This completes the proof of Theorem 3.1.
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6.2 Proof of Corollary 3.3

Corollary 3.3 essentially follows from the fact that functions in H are bounded over {−1, 1}N and

the fact that for i ∈ {0, 1} the distributions σ
(k)
i and µ̃

(k)
i are nearly identical. Let H ∈ H. Define

distributions π
(k)
0 (respectively π

(k)
1 ) obtained by conditioning µ̃

(k)
0 on F (k)(z) = −1 (respectively

conditioning µ̃
(k)
1 on F (k)(z) = +1). Lemma 2.11 implies for δ0, δ1 = O

(
k

N6k2

)
, we have µ̃

(k)
0 =

(1− δ0)σ
(k)
0 + δ0π

(k)
0 and µ̃

(k)
1 = (1− δ1)σ

(k)
1 + δ1π

(k)
1 . Thus, for i ∈ {0, 1}, we have

E
z∼µ̃(k)

i

[H(z)] = (1− δi) E
z∼σ(k)

i

[H(z)] + δi E
z∼π(k)

i

[H(z)]

Let δ = max(δ0, δ1) = O
(

k

N6k2

)
. SinceH maps {−1, 1}2kN to [−1, 1], we may bound |E

z∼σ(k)
i

[H(z)]|
and |E

z∼π(k)
i

[H(z)]| by 1. We subtract the equation for i = 1 from that for i = 0 and apply Triangle-

inequality to obtain∣∣∣∣∣ E
z∼µ̃(k)

0

[H(z)]− E
z∼µ̃(k)

1

[H(z)]

∣∣∣∣∣ ≥
∣∣∣∣∣ E
z∼σ(k)

0

[H(z)]− E
z∼σ(k)

1

[H(z)]

∣∣∣∣∣− 3δ

Rearranging this, we have

(∗) :=

∣∣∣∣∣ E
z∼σ(k)

0

[H(z)]− E
z∼σ(k)

1

[H(z)]

∣∣∣∣∣ ≤ O
(∣∣∣∣∣ E

z∼µ̃(k)
0

[H(z)]− E
z∼µ̃(k)

1

[H(z)]

∣∣∣∣∣+ δ

)
We use Theorem 3.1 to bound the first term in the R.H.S. Furthermore, we use the fact that

δ = O
(

k

N6k2

)
= o

(
1

Nk/2

)
to obtain that (∗) ≤ O

(
L2k(H)

Nk/2

)
+ o

(
1

Nk/2

)
. This completes the proof

of Corollary 3.3.

7 Applications

Quantum Upper Bound The quantum query algorithm for F (k) is derived from [A10, AA15].
These papers provide a quantum query algorithmQ(z) which makes one quantum query to the input

z ∈ {−1, 1}2N and returns a (probabilistic) b ∈ {0, 1}, with the property that P[b = 1] = 1+forr(z)
2 .

Given input z = (z1, . . . , zk) where z1, . . . , zk ∈ {−1, 1}2N , we are promised that for each j ∈ [k],
either forr(zj) ≥ ε/2 or forr(zj) ≤ ε/4. This implies that for all j ∈ [k], the probability that Q(zj)

returns 1 is either at least 1+ε/2
2 or at most 1+ε/4

2 . By repeating the algorithm O
(

log k
ε2

)
times and

taking the threshold, we can produce an algorithm that for each j ∈ [k], distinguishes between
F (zj) = 1 and F (zj) = −1 with probability at least 1 − 1

10k . By a Union-bound over j ∈ [k],
with probability at least 9/10, this algorithm computes F (zj) for all j ∈ [k]. In particular, it can

compute F (k)(z) =
∏k
j=1 F (zj) with probability at least 9/10. Observe that the number of queries

made by this algorithm is k × log k/ε2 = O
(
k5 log k log2N

)
.

It follows that the above algorithm can distinguish the distributions σ
(k)
0 and σ

(k)
1 with at least

9/10 advantage. A variant of this algorithm can be used to establish the quantum communication
protocol in Theorem 3.5. This step is identical to Theorem 3.3 from [GRT19], so we omit it. We
now prove the classical lower bounds.
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7.1 Query Complexity Separations

Proof of Theorem 3.5. Let d = o
( √

N
logN

)
. Note that d log(kN)√

N
= o(1). Lemma 3.4 implies that

every decision tree of depth at most d can distinguish σ
(k)
0 and σ

(k)
1 with advantage at most(

O(d log(kN))

N1/2

)k
≤ exp(−Ω(k)). Note that σ

(k)
1 and σ

(k)
0 are distributions on the yes and no in-

stances of F (k), respectively. This implies that every randomized decision tree of depth d = õ(
√
N)

can solve F (k) with at most exp(−Ω(k)) advantage.

Proof of Lemma 3.4. LetH denote the set of Boolean functions on 2kN variables that are computed
by deterministic decision trees of depth at most d. H is clearly closed under restrictions. We use
the following lemma due to [Tal19] which bounds the level 2k mass of H.

Lemma 7.1 ([Tal19]). For all k ∈ N, we have L2k(H) ≤
(
O
(√

d log(kN)
))2k

.

The above bound, along with Corollary 3.3 implies that for all H ∈ H,∣∣∣∣∣ E
z∼σ(k)

0

[H(z)]− E
z∼σ(k)

1

[H(z)]

∣∣∣∣∣ ≤
(
O(d log(kN))

N1/2

)k
+ o

(
1

Nk/2

)
=

(
O(d log(kN))

N1/2

)k
This completes the proof of Lemma 3.4.

7.2 Circuit Complexity Separations

Proof of Theorem 3.10. Let C be an AC0 circuit of depth d and size s = o
(

exp
(
N

1
4(d−1)

))
. Note

that O
(
log2d−2(s)

)
= o(
√
N). This, along with Lemma 3.9 implies that∣∣∣∣∣ E

z∼σ(k)
0

[C(z)]− E
z∼σ(k)

1

[C(z)]

∣∣∣∣∣ ≤
(
O
(
log2d−2(s)

)
N1/2

)k
≤ exp(−Ω(k))

Thus, we have produced distributions on yes and no instances of F (k) such that every depth d

AC0 circuit of size o
(

exp
(
N

1
4(d−1)

))
can distinguish them with at most exp(−Ω(k)) advantage.

This completes the proof of Theorem 3.10.

Proof of Lemma 3.9. Let H denote the set of Boolean functions that are computed by AC0 circuits
of depth at most d and size at most s. Note that H is clearly closed under restrictions. We use the
following lemma due to [Tal19] which bounds the level 2k mass of H.

Lemma 7.2 ([Tal19]). For all k ∈ N, we have L2k(H) ≤
(
O
(
logd−1(s)

))2k
.

The above bound, along with Theorem 3.1 implies that for all H ∈ H,∣∣∣∣∣ E
z∼µ̃(k)

0

[H(z)]− E
z∼µ̃(k)

0

[H(z)]

∣∣∣∣∣ ≤
(
O
(
log2d−2(s)

))k
Nk/2

+ o

(
1

Nk/2

)
=

(
O
(
log2d−2(s)

)
N1/2

)k
This completes the proof of Lemma 3.9.
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7.3 Applications to Communication Complexity Separations

Proof of Theorem 3.8. Let c = õ(N1/4). Note that for k = õ(N1/4), we have (c+8k)2
√
N

= o(1). For

i ∈ {0, 1}, let π
(k)
i denote the distribution of (x, x · z) where x ∼ U2kN and z ∼ σ

(k)
i . Note that

π
(k)
0 and π

(k)
1 are distributions on the yes and no instances of F (k) ◦xor, respectively. Lemma 3.7

implies that every deterministic protocol of cost at most c for F (k) ◦ xor can distinguish π
(k)
0 and

π
(k)
1 with at most O

(
(c+8k)2k

Nk/2

)
≤ exp(−Ω(k)) advantage. This implies that no randomized protocol

of cost o(N1/4) solves F (k)(⊕) with more than exp(−Ω(k)) advantage. This completes the proof of
Theorem 3.8.

To prove Lemma 3.7, the idea is to apply Corollary 3.3 on the function family defined by
Ex∼U2kN

C(x, x · z), where C is a small cost protocol. However, to prove a suitable upper bound on
the level 2k mass, we require that each rectangle in the protocol is small. To handle this, we define
an extended protocol extl(C), in which the players reveal l additional junk bits and then proceed
with the original protocol C. This modification is only a technicality and the rest of the arguments
are similar to the ones in [GRT19].

Definition 7.3. Let C : {−1, 1}M × {−1, 1}M → {−1, 1} be any deterministic protocol and l ∈ N.
An extension extl(C) : {−1, 1}M+l × {−1, 1}M+l → {−1, 1} is a protocol in which Alice and Bob
declare the last l bits of their inputs and then follow C on the first M bits of their inputs.

Definition 7.4. For any protocol C : {−1, 1}M × {−1, 1}M → {−1, 1}, let HC : {−1, 1}M → R
be defined at every z ∈ {−1, 1}M by HC(z) := E

x∼UM

[C(x, x · z)]. For any distribution C over

protocols C : {−1, 1}M ×{−1, 1}M → {−1, 1}, let HC be defined at every z ∈ {−1, 1}M by HC(z) :=
E
C∼C

[HC(z)].

Lemma 7.5. Let l,M ∈ N. Let H be the family of functions H obtained as follows. Let C be an
arbitrary distribution over deterministic protocols C : {−1, 1}M × {−1, 1}M → {−1, 1} of cost at
most c. Let Hextl(C) be as in Definition 7.4, and Definition 7.3 and let H : {−1, 1}M → R be defined

at every z ∈ {−1, 1}M by H(z) := E
z′∼Ul

[Hextl(C)(z, z
′)]. Then, H is closed under restrictions.

The proof of this is a simple unravelling of definitions and is deferred to the appendix.

Lemma 7.6. Let l = d2k log ee. Let H be the family as in Lemma 7.5. Then, L2k(H) ≤
O
((

e
k

)2k · (c+ 2l)2k
)

.

The proof of this is similar to that of Claim 1 in [GRT19] and is deferred to the appendix.

Proof of Lemma 3.7. Let l = d2k log ee. Let H be the family of functions as in Lemma 7.5.
Lemma 7.5 implies that the family H is closed under restrictions. We now apply Corollary 3.3
to H to obtain that for all H ∈ H,∣∣∣∣∣ E

z∼σ(k)
0

[H(z)]− E
z∼σ(k)

1

[H(z)]

∣∣∣∣∣ ≤ O
(
L2k(H)

Nk/2

)
+ o

(
1

Nk/2

)
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We use Lemma 7.6 which upper bounds L2k(H). This, along with the previous inequality and the
fact that l = d2k log ee implies that∣∣∣∣∣ E
z∼σ(k)

0

[H(z)]− E
z∼σ(k)

1

[H(z)]

∣∣∣∣∣ ≤ O
(
e2k(c+ 2l)2k

k2kNk/2

)
+ o

(
1

Nk/2

)
= O

(
(c+ 8k)2k

Nk/2

)
+ o

(
1

Nk/2

)
(14)

Let C refer to the given protocol of cost at most c. Let H : {−1, 1}2kN → [−1, 1] be defined at
z ∈ {−1, 1}2kN byH(z) = Ez′∼Ul

[Hextl(C)(z, z
′)]. By Definition 7.3, for all x, z ∈ {−1, 1}2kN , x′, z′ ∈

{−1, 1}l, we have that C(x, x · z) = extl(C)((x, x′), (x · z, x′ · z′)). This implies that for all z ∈
{−1, 1}2kN , we have

H(z) , E
z′∼Ul

[Hextl(C)(z, z
′)] , E

x∼U2kN
x′,z′∼Ul

[extl(C)((x, x′), (x · z, x′ · z′))] . . . due to Definition 7.4

= E
x∼U2kN

[C(x, x · z)] . . . due to Definition 7.3

This, along with Eq. (14) implies that∣∣∣∣∣∣∣ E
x∼U2kN

z∼σ(k)
0

[C(x, x · z)]− E
x∼U2kN

z∼σ(k)
1

[C(x, x · z)]

∣∣∣∣∣∣∣ ≤ O
(

(c+ 8k)2k

Nk/2

)
+ o

(
1

Nk/2

)
= O

(
(c+ 8k)2k

Nk/2

)

This completes the proof of Lemma 3.7.
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A Output of F (k) on Distributions µ̃
(k)
0 and µ̃

(k)
1

We use the following claims to prove Lemma 2.11.

Claim A.1. Let z ∼ G, where G is the distribution in Definition 2.2. Then, P
z∼G

[forr(z) ≤ 3ε/4] ≤

e−Ω(N).

28

https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf


Claim A.2. Let z0 ∈ [−1/2, 1/2]2N and z ∼ z̃0 be the random variable obtained by rounding z0 as

in Definition 2.6. Then, P[|forr(z)− forr(z0)| ≥ ε/4] ≤ e−Ω(N1/4).

Corollary A.3. Let U be the uniform distribution on {−1, 1}2N and G̃ be the distribution on
{−1, 1}2N as in Definition 2.10. Then,

P
z∼U

[forr(z) ≤ ε/4] ≥ 1− e−Ω(N1/4) and P
z∼G̃

[forr(z) ≥ ε/2] ≥ 1−O
(

1

N6k2

)

Proof of Lemma 2.11 from Corollary A.3. This follows from a simple Union-bound. Let S ⊆ [k].
Let z ∼ G̃SU S̄ and z = (z1, . . . , zk) for z1, . . . , zk ∈ {−1, 1}2N . For j ∈ S, we have zj ∼ G and

consequently, Corollary A.3 implies that with at least 1 − O
(

1

N6k2

)
probability, F (zj) = −1. For

j /∈ S, we have zj ∼ U and consequently, Corollary A.3 implies that with at least 1− e−Ω(N1/4) ≥
1 − O

(
1

N6k2

)
probability2, F (zj) = 1. A Union-bound over j ∈ [k] implies that with probability

at least 1−O
(

k

N6k2

)
, we have that all these events occur, that is, z is in the support of F (k) and

F (k)(z) ,
∏k
j=1 F (zj) = (−1)|S|. Since µ

(k)
0 (respectively µ

(k)
1 ) is a mixture of distributions G̃SU S̄

where |S| is even (respectively |S| is odd), it follows that with probability at least 1 − O
(

k

N6k2

)
,

F (k)(z) = 1 (respectively F (k)(z) = −1).

Proof of Corollary A.3 from Claim A.1 and Claim A.2. We set z0 to be the zero vector in R2N and
apply Claim A.2. Since the distribution obtained by rounding z0 is U2N and forr(z0) = 0, we have

P
z∼U2N

[
forr(z) ≥ ε

4

]
, P

z∼z̃0

[
forr(z) ≥ ε

4

]
≤ e−Ω(N1/4)

This proves the first part of Corollary A.3. To prove the second part, let z0 ∼ G. Let E denote the
event that z0 /∈ [−1/2, 1/2]2N . We first show that E is a low probability event. Recall that each
coordinate of z0 is distributed as N (0, ε) where ε = 1/(60k2 lnN). This, along with a Union bound
over coordinates i ∈ [2N ] implies that

P[E] ≤ 2N · P[z0(i) /∈ [−1/2, 1/2]] ≤ 2N · P[|N (0, ε)| ≥ 1/2]

≤ 2N exp(−1/(8ε)) ≤ 2N · exp(−7k2 lnN) =
2N

N7k2

(15)

Let z ∼ z̃0 be obtained by rounding z0 as in Definition 2.6. If forr(z) ≤ ε/2, then we must either
have forr(z0) ≤ 3ε/4 or |forr(z) − forr(z0)| ≥ ε/4. For the latter event, we split it into cases
conditioned on whether E occurs or not. A Union bound implies that

P
z0∼G
z∼z̃0

[forr(z) ≤ ε/2] ≤ P
z0∼G

[forr(z0) ≤ 3ε/4] + P
z0∼G
z∼z̃0

[|forr(z)− forr(z0)| ≥ ε/4]

≤ P
z0∼G

[forr(z0) ≤ 3ε/4] + P[E] + P
z0∼G
z∼z̃0

[|forr(z)− forr(z0)| ≥ ε/4 | ¬E]
(16)

Claim A.1 implies that with all but e−Ω(N) probability, for z0 ∼ G, we have forr(z0) > 3ε/4. Thus,
the first term in the R.H.S. of Eq. (16) can be upper bounded by e−Ω(N). The second term can be

2Here we use the fact that k = o(N1/50).
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bounded by 2N

N7k2 due to Eq. (15). For the third term, note that whenever E does not occur, we
can apply Claim A.2 to obtain that

P
z∼z̃0

[|forr(z)− forr(z0)| ≥ ε/4 | ¬E, z0] ≤ e−Ω(N1/4)

These observations along with Eq. (16) imply that

P
z∼G̃

[forr(z) ≤ ε/2] , P
z0∼G
z∼z̃0

[forr(z) ≤ ε/2] ≤ e−Ω(N) +
2N

N7k2 + e−Ω(N1/4) = O

(
1

N6k2

)

Proof of Claim A.1. This follows from a simple concentration inequality for Chi-Squared random
variables. Note that a random sample z ∼ G is equivalent to a sample z = (x, y), where x ∼
N (0, εIN ) and y = HNx. This implies that forr(z) = 1

N 〈x,HNy〉 = 1
N 〈x,H

2
Nx〉 = 1

N · ‖x‖
2. The

random variable ‖x‖2 has a Chi-Squared distribution, defined by the sum of squares of N random
variables, each of which is distributed according to N (0, ε). Using the concentration inequality for
the Chi-Squared distribution from the preliminaries, we have that for all t ∈ (0, 1),

P

[∣∣∣∣∣ 1

N

N∑
i=1

x2
i − ε

∣∣∣∣∣ ≥ tε
]
≤ exp(−Ω(Nt2))

Substituting t = 1/4, we obtain P[|forr(z) − ε| ≥ ε/4] = P
[∣∣∣ 1
N

∑N
i=1 x

2
i − ε

∣∣∣ ≥ ε
4

]
≤ e−Ω(N). This

implies the desired conclusion in Claim A.1.

Proof of Claim A.2. We make use of the following concentration inequality. It appears as Theorem
10.24 in Ryan Odonnell’s book on Boolean functions [O’D14] as an application of the general hyper-
contractivity theorem on product spaces. We state it in the context of biased product distributions
on the Boolean hypercube.

Lemma A.4. Let π1, . . . , πM be probability distributions on {−1, 1} such that for every i ∈ [M ],
every outcome in πi has probability at least λ. Let Ω = {−1, 1}M and π = π1 × . . . × πM . Let
f : Ω → R be a Boolean function of total degree at most d and let ‖f‖2 :=

√
Ex∼π[f(x)2] denote

the l2 norm of f . Then, for any t ≥
√

2e/λ
d
, we have P

x∼π
[|f(x)| ≥ t‖f‖2] ≤ λd exp

(
− d

2e · λt
2/d
)
.

Note that the distribution z̃0 on {−1, 1}2N satisfies the hypothesis in Lemma A.4 with λ = 1
4

because of the assumption that z0 ∈ [1/2, 1/2]2N . Claim A.2 essentially follows by considering
the degree-2 Boolean function forr(z)− forr(z0), bounding its l2 norm and applying Lemma A.4.
However, to simplify the calculation we instead consider f : R2N → R defined by f(z) := forr(z −
z0) , N−1 · 〈x− x0, HN (y − y0)〉 where z = (x, y) for x, y ∈ RN and z0 = (x0, y0) for x0, y0 ∈
[−1/2, 1/2]N . Note that we have the identity f(z) , forr(z − z0) = forr(z) − forr(x0, y) −
forr(x, y0) + forr(z0). We now show that when z ∼ z̃0, the random variables f(z), forr(x, y0)
and forr(x0, y) are concentrated around their mean. From the above identity, it will follow that
forr(z) is also concentrated around its mean. We first show a concentration inequality for f . Since
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each coordinate of (x, y) is sampled independently so that E[(x, y)] = (x0, y0), we have

E[f2] , N−3 · E

 ∑
i,j∈[N ]

(x(i)− x0(i))(y(j)− y0(j))(−1)〈i,j〉2

2
= N−3 ·

∑
i,j∈[N ]

E
[
(x(i)− x0(i))2(y(j)− y0(j))2

]
. . . since the cross terms are 0.

≤ N−3 · 16N2 . . . since x, x0, y, y0 ∈ [−1, 1]2N .

Thus, ‖f‖2 ≤ 4√
N

. Note that f is of degree 2. We now apply Lemma A.4 to the function f for

the distribution z̃0. Let t be a parameter. Since λ = 1
4 and d = 2, we have

√
2e/λ

d
= O(1) and

λd exp
(
− d

2e · λt
2/d
)

= exp(−Ω(t)). Lemma A.4, along with the above calculation implies that for

all t ≥ O(1), we have Pz∼z̃0
[
|f(z)| ≥ t

N1/2

]
≤ Pz∼z̃0 [|f(z)| ≥ Ω(t) · ‖f‖2] ≤ exp(−Ω(t)). We now

set t = N1/2ε
12 = N1/2

720k2 lnN
. This is larger than N1/4 for sufficiently large N and k = o(N1/50). This

implies that

Pz∼z̃0
[
|forr(z − z0)| ≥ ε

12

]
, Pz∼z̃0

[
|f(z)| ≥ ε

12

]
≤ exp(−Ω(N1/4)) (17)

We now show a similar concentration inequality for forr(x, y0). Let g : RN → R be defined at
x ∈ RN by g(x) := forr(x, y0) − forr(z0) , N−1 · 〈x− x0, HNy0〉. Since each coordinate of x is
sampled independently so that E[x] = x0, we have

N2 · E[g2] , E

∑
i∈[N ]

(x(i)− x0(i))(HNy0)(i)

2
=
∑
i∈[N ]

E
[
(x(i)− x0(i))2(HNy0)(i)2

]
. . . since the cross terms are 0.

≤
∑
i∈[N ]

4 · (HNy0)(i)2 . . . since x, x0 ∈ [−1, 1]N .

= 4‖HNy0‖22 = 4‖y0‖22 ≤ 4N

Thus, ‖g‖2 ≤ 2√
N

. We now apply Lemma A.4 to the degree-1 polynomial g for the distribution

x̃0 on {−1, 1}N . Let t be a parameter. Since λ = 1
4 and d = 1, we have λd exp

(
− d

2e · λt
2/d
)

=

exp(−Ω(t2)) and
√

2e/λ
d

= O(1). Lemma A.4, along with the above calculation implies that for

all t ≥ O(1), we have Px∼x̃0

[
|g(x)| ≥ t

N1/2

]
≤ Px∼x̃0 [|g(x)| ≥ Ω(t) · ‖g‖2] ≤ exp(−Ω(t2)). We now

set t = N1/2ε
12 = N1/2

720k2 lnN
. This is larger than N1/4 for sufficiently large N and k = o(N1/50). This

implies that

Px∼x̃0 [|forr(x, y0)− forr(z0)| ≥ ε/12] , Px∼x̃0

[
|g(x)| ≥ ε

12

]
≤ exp(−Ω(N1/2)) (18)

An identical calculation implies that

Py∼ỹ0 [|forr(x0, y)− forr(z0)| ≥ ε/12] ≤ exp(−Ω(N1/2)) (19)

Recall that we have the identity forr(z) = forr(z − z0) + forr(x0, y) + forr(x, y0) − forr(z0).
Suppose |forr(z) − forr(z0)| ≥ ε/4, then either |forr(x, y0) − forr(z0)| ≥ ε/12, or |forr(x0, y) −
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forr(z0)| ≥ ε/12 or |forr(z − z0)| ≥ ε/12. This, along with Eq. (17), Eq. (18), Eq. (19) and a
Union-Bound implies that

P [|forr(z)− forr(z0)| ≥ ε/4] ≤ 2 · e−Ω(N1/2) + e−Ω(N1/4) ≤ e−Ω(N1/4)

B Closure Under Restrictions

Proof of Lemma 7.5. Let L = M + l. Let H ∈ H be defined by a distribution C over deterministic
protocols C : {−1, 1}M × {−1, 1}M → {−1, 1} of cost at most c. Let v ∈ {−1, 1, 0}M and ρv be
a restriction as in Definition 2.12. Let V := {j : v(j) ∈ {−1, 1}}. Define a distribution Cv over
protocols Cv : {−1, 1}M × {−1, 1}M → {−1, 1} as follows.

1. Sample C ∼ C.

2. For each j ∈ V , independently sample aj uniformly at random from {−1, 1}.

3. For each j ∈ V , Alice overwrites the j-th bit of her input with aj and Bob overwrites the j-th
bit of his input with aj · vj .

4. Alice and Bob execute the protocol C on their restricted inputs.

Claim B.1. For all z ∈ {−1, 1}M , v ∈ {−1, 1, 0}M , we have E
z′∼Ul

[Hextl(Cv)(z, z
′)] = H(ρv(z)).

Note that Cv is a distribution over deterministic protocols of cost at most c. Thus, by definition
of H, the function that maps z to E

z′∼Ul

[Hextl(Cv)(z, z
′)] is in H. This observation, along with

Claim B.1 establishes that the restricted function H(ρv(z)) of z is also in H. It thus suffices to
prove Claim B.1.

Proof of Claim B.1. This proof is by unravelling definitions. Let z ∈ {−1, 1}M and v ∈ {−1, 1, 0}M .
Note that for all x,′ z′ ∈ {−1, 1}l and x ∈ {−1, 1}M , Definition 7.3 implies that C(x, x · z) =
extl(C)((x, x′), (x · z, x′ · z′). In particular, for all x ∈ {−1, 1}M , we have

C(x, x · z) = E
z′,x′∼Ul

[extl(C)((x, x′), (x · z, x′ · z′)] (20)

Consider

E
z′∼Ul

[Hextl(Cv)(z, z
′)] , E

z′∼Ul

E
C∼Cv

(x,x′)∼UL

[extl(C)((x, x′), (x · z, x′ · z′))] . . . due to Definition 7.4

, E
C∼Cv
x∼UM

[C(x, x · z)] . . . due to Eq. (20)

For each j ∈ V , let aj be a uniformly random sample as in step 2. For the rest of the coordinates
j ∈ [M ] \ V , set aj := 0 and let a = (a1, . . . , aM ) ∈ {−1, 1, 0}M . Let A denote the distribution of a
obtained by this process. This, along with the above equation and the definition of Cv implies that

E
z′∼Ul

[Hextl(Cv)(z, z
′)] = E

C∼Cv
x∼UM

[C(x, x · z)] = E
C∼C

E
a∼A
x∼UM

[C(ρa(x), ρa·v(x · z))]
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Note that ρa·v(x · z) is exactly ρa(x) · ρv(z). This is because for j ∈ V , we have aj , vj 6= 0 and thus,
(ρa·v(x · z))(j) = aj · vj = (ρa(x))(j) · (ρv(z))(j); similarly, for j /∈ V , we have aj = vj = 0 and thus,
(ρa·v(x · z))(j) = x(j) · z(j) = (ρa(x))(j) · (ρv(z))(j). Substituting this in the above equation,

E
z′∼Ul

[Hextl(Cv)(z, z
′)] = E

C∼C
E
a∼A
x∼UM

[C(ρa(x), ρa(x)ρv(z))]

Note that for a ∼ A and x ∼ UM , we have ρa(x) ∼ UM . Substituting this in the above equation,

E
z′∼Ul

[Hextl(Cv)(z, z
′)] = E

C∼C
E

x∼UM

[C(x, x · ρv(z))]

= E
z′∼Ul

E
C∼C

(x,x′)∼UL

[extl(C)((x, x′), (x · ρv(z), x′ · z′))] . . . due to Eq. (20)

= E
z′∼Ul

[Hextl(C)(ρv(z), z
′)] . . . due to Definition 7.4

= H(ρv(z)) . . . due to the definition in Lemma 7.5.

This completes the proof of Claim B.1.

C Weight Bound

For l ∈ N, we say that a deterministic protocol C : {−1, 1}M × {−1, 1}M → {−1, 1} has minimum
cost at least l, if every rectangle in the partition induced by the protocol has length and width at
most 2M−l.

Lemma C.1. Let C(x, y) : {−1, 1}M × {−1, 1}M → {0, 1} be any deterministic protocol of cost at
most c and of minimum cost at least l := d2k log ee. Let H : {−1, 1}M → R be defined at every

z ∈ {−1, 1}M by H(z) := E
x∼UM

[C(x, x · z)] as in Definition 7.4. Then, L2k(H) ≤ O
((

e
k

)2k · c2k
)

.

Corollary C.2. Let l = d2k log ee. Let C be a distribution over deterministic protocols C :
{−1, 1}M × {−1, 1}M → {−1, 1} of cost at most c. Let Hextl(C) be as in Definition 7.4. Then,

L2k(Hextl(C)) ≤ O
((

e
k

)2k · (c+ 2l)2k
)

.

Proof of Lemma 7.6 using Corollary C.2. Let H(z) := Ez′∼Ul
[Hextl(C)(z, z

′)] be as in Lemma 7.6.

Note that for all S ⊆ [M ], we have Ĥ(S) = Ĥextl(C)(S). This implies that L2k(H) ≤ L2k(Hextl(C)).

Corollary C.2 implies that L2k(Hextl(C)) ≤ O
((

e
k

)2k · (c+ 2l)2k
)

. This completes the proof of

Lemma 7.6.

Proof of Corollary C.2 using Lemma C.1. Note that for all S ⊆ [M + l], we have Ĥextl(C)(S) =

E
C∼C

[Ĥextl(C)(S)]. This, along with Triangle-Inequality implies that L2k(C) ≤ maxC∼C L2k(C). Let

C be any deterministic protocol in the support of C. Note that extl(C) is a deterministic protocol
of cost at most c + 2l and of minimum cost l. Let Hextl(C) be as in Definition 7.4. Lemma C.1

implies that L2k(Hextl(C)) ≤ O
((

e
k

)2k · (c+ 2l)2k
)

. This completes the proof of Corollary C.2.
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Proof of Lemma C.1 . In order to bound L2k(H), we will use the following lemma. Its statement
and proof appear as ‘Level-k Inequalities’ on Page 259 of ‘Analysis of Boolean Functions’ [O’D14].
For S ⊆ {−1, 1}n, let 1S : {−1, 1}n → {0, 1} denote the {0, 1}-indicator function of the set S, that
is, for x ∈ {−1, 1}n, let 1S(x) = 1 if and only if x ∈ S.

Lemma C.3 (Level-k Inequalities). Let A ⊆ {−1, 1}n be a set such that E[1A] = α and let k ∈ N
be at most 2 ln(1/α). Then,

∑
|S|=k

(
1̂A(S)

)2
≤ α2

(
2e

k
ln(1/α)

)k

We now show the desired bound on L2k(H). Since C is a deterministic protocol of cost at
most c, it induces a partition of the input space {−1, 1}M × {−1, 1}M into at most 2c rectangles.
Let P denote the set of rectangles in this partition and let A × B index these rectangles, where
A (respectively B) is the set of Alice’s (respectively Bob’s) inputs compatible with the rectangle.
Let C(A × B) ∈ {−1, 1} denote the output of the protocol when the inputs are in A × B. For all
x, y ∈ {−1, 1}M ,

C(x, y) =
∑

A×B∈P
C(A×B)1A(x)1B(y)

This implies that for all x, z ∈ {−1, 1}M ,

C(x, x · z) =
∑

A×B∈P
C(A×B)1A(x)1B(x · z)

Taking an expectation over x ∼ UM of the above identity implies that

H(z) , E
x∼UM

[C(x, x · z)] =
∑

A×B∈P
C(A×B)

(
1A ∗ 1B

)
(z)

This implies that for any S ⊆ [M ],

Ĥ(S) =
∑

A×B∈P
C(A×B) ̂1A ∗ 1B(S) =

∑
A×B∈P

C(A×B)1̂A(S)1̂B(S)

Note that C(A×B) ∈ {−1, 1}. We thus obtain

L2k(H) =
∑
|S|=2k

∣∣∣Ĥ(S)
∣∣∣

=
∑
|S|=2k

∣∣∣∣∣ ∑
A×B∈P

C(A×B)1̂A(S)1̂B(S)

∣∣∣∣∣
≤

∑
A×B∈P

∑
|S|=2k

|1̂A(S)||1̂B(S)|

We apply Cauchy Schwarz to the term
∑
|S|=2k |1̂A(S)||1̂B(S)| to obtain

L2k(H) ≤
∑

A×B∈P

( ∑
|S|=2k

1̂A(S)2
)1/2( ∑

|S|=2k

1̂B(S)2
)1/2
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For ease of notation, let µ(A) = |A|

2M
denote the measure of a set A ⊆ {−1, 1}M under UM . Because

of the assumption that the minimum cost of C is at least l = d2k log ee, every rectangle A×B ∈ P
satisfies µ(A), µ(B) ≤ e−2k. This ensures that 2k ≤ 2 ln 1

µ(A) and 2k ≤ 2 ln 1
µ(B) . We apply

Lemma C.3 on the indicator functions 1A and 1B at level 2k to obtain∑
|S|=2k

(
1̂A(S)

)2
≤ µ(A)2

( 2e

2k
· ln(1/µ(A))

)2k

∑
|S|=2k

(
1̂B(S)

)2
≤ µ(B)2

( 2e

2k
· ln(1/µ(B))

)2k

Substituting this in the bound for L2k(H), we have

L2k(H) ≤
( e
k

)2k ∑
A×B∈P

µ(A)µ(B)

(
ln

1

µ(A)
ln

1

µ(B)

)k

Let ∆ :=
(
e
k

)2k ∑
A×B∈P

µ(A)µ(B)
(

ln 1
µ(A) ln 1

µ(B)

)k
be the expression in the R.H.S. of the above.

Consider the case when P consists of 2c rectangles A×B, each of which satisfies µ(A) = µ(B) = 1
2c/2 .

In this case, ∆ evaluates to
(
e
k

)2k∑
A×B∈P

1
2c ( c ln 2

2 )2k = O
((

e
k

)2k · c2k
)

. This proves the lemma in

this special case. A similar bound holds for the general case and the proof follows from a concavity
argument that we describe now.

Since µ(A), µ(B) ≤ 1, we have the following inequality.

∆ ,
( e
k

)2k ∑
A×B∈P

µ(A)µ(B)

(
ln

1

µ(A)
ln

1

µ(B)

)k
≤
( e
k

)2k ∑
A×B∈P

µ(A)µ(B)

(
ln

1

µ(A)µ(B)
ln

1

µ(A)µ(B)

)k
=
( e
k

)2k ∑
A×B∈P

µ(A×B)

(
ln

1

µ(A×B)

)2k
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Let f : [0,∞) → R be defined by f(p) := p ln(1/p)2k. A small calculation3 shows that f
is a concave function in the interval [0, 1

e2k−1 ] (see Figure 2). Let αi ∈ [0, 1
e2k−1 ] for i ∈ [d].

Jensen’s inequality applied to f states that for i ∼ [d] drawn uniformly at random, we have
Ei[f(αi)] ≤ f(Ei[αi]). This implies that

d∑
i=1

αi ln(1/αi)
2k ≤

(
d∑
i=1

αi

)
ln

(
d∑d
i=1 αi

)2k

We apply this inequality to the terms in ∆ by substituting αi with µ(A × B). We may do this
because of the assumption that µ(A), µ(B) ≤ 1

e2k
. This implies that

∆ ≤
( e
k

)2k
( ∑
A×B∈P

µ(A×B)

)
ln

(
2c∑

A×B∈P µ(A×B)

)2k

Note that
∑

A×B∈P µ(A × B) = 1. This, along with the above inequality implies that ∆ ≤
O
((

e
k

)2k · c2k
)

. This completes the proof of Lemma C.1.

3Consider f ′(p) = ln(1/p)2k − 2k ln(1/p)2k−1. This implies that f ′′(p) = 2k ln(1/p)2k−2 · 1
p
· ((2k − 1)− ln(1/p)).

Note that for p ≤ 1
e2k−1 , f

′′(p) ≤ 0.
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