
Notes on Hazard-Free Circuits

Stasys Jukna1

Faculty of Mathematics and Computer Science, Vilnius University, Lithuania.

Abstract

The problem of constructing hazard-free Boolean circuits (those avoiding electronic glitches) dates

back to the 1940s and is an important problem in circuit design. Recently, Ikenmeyer et al. [J. ACM,

66:4 (2019), Article 25] have shown that the hazard-free circuit complexity of any Boolean function

fpxq is lower-bounded by the monotone circuit complexity of the monotone Boolean function which

accepts an input x iff fpzq “ 1 for some vector z ď x. We give a short and amazingly simple proof

of this interesting result. We also show that a circuit is hazard-free if and only if the circuit and its

dual produce (purely syntactically) all prime implicants of the functions they compute. This extends

a classical result of Eichelberger [IBM J. Res. Develop., 9 (1965)] showing this property for depth-two

circuits producing no terms containing a variable together with its negation. Finally, we give a very

simple non-monotone Boolean function whose hazard-free circuit complexity is super-polynomially

larger than its unrestricted circuit complexity.

1. Introduction

The problem of designing hazard-free circuits naturally occurs when implementation cir-
cuits in hardware ([3, 9], but is also closely related to questions in logic ([11, 12, 14]) and
even in cybersecurity ([8]). The importance of hazard-free circuits is already highlighted in
the classical textbook [3].

If not stated otherwise, by a circuit we will understand a DeMorgan circuit, that is, a
Boolean circuit over t^,_, u, where negations are applied only to input variables. Thus,
such a circuit uses AND and OR operations at gates. Inputs are constants 0 and 1, variables
x1, . . . , xn and their negations x1, . . . , xn. A monotone circuit is a DeMorgan circuit without
negated inputs.

Hazards are spurious pulses or electronic glitches occurring on the output of circuits
during an input transition, stipulated by physical delays at wires or gates: circuits are usually
asynchronous. Having designed a hazard-free circuit for a given Boolean function f , one is
sure that no glitches will occur regardless of delays in any hardware implementation of this
circuit.

To be a bit more specific, associate with every pair of vectors a, b P t0, 1un the subcube
ra, bs Ď t0, 1un consisting of all 0-1 vectors c such that ai “ bi implies ci “ ai. Hence, if a

and b differ in d positions, then ra, bs contains 2d vectors. A Boolean circuit F computing a
Boolean function f has a 0-hazard if there are two vectors a ‰ b such that fpcq “ 0 for all
c P ra, bs but after the input a is replaced by b, some hardware implementation of this circuit
may have a spurious 0-1-0 glitch (due to different delays at wires), that is, for a short moment,

Email address: stjukna@gmail.com (Stasys Jukna)
1Research supported by the DFG grant JU 3105/1-2 (German Research Foundation).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 102 (2020)

the circuit may output the (wrong) value 1 on the new input b. If fpcq “ 1 for all c P ra, bs but
after the input a is replaced by b, the circuit may have a spurious 1-0-1 glitch, then we have
a 1-hazard. A circuit is hazard-free if it has no hazards; see Section 3 for a precise definition
(without using the vague notion of “possible glitches”).

For example, if the output of the AND gate xz of the circuit F “ xz _ yz reaches the
output OR gate later than that of the AND gate yz (due to different delays at wires or gates),
and if we (suddenly) replace input a “ p1, 1, 0q by b “ p1, 1, 1q, then the circuit will shortly
output 0 before it outputs the correct value 1 fired by the AND gate xz on the new input:
for a short moment, the OR gate will see the value 0 of yz on the new input b, and the value
0 of xz on the old input a. Thus, some hardware implementations of the circuit F may have
spurious 1-0-1 glitches (the circuit F has a 1-hazards). However, the circuit F 1 “ xy_xz_yz

for the same Boolean function is already hazard-free. That is, there will be no glitches in any

hardware implementation of the circuit F 1, regardless of the delays along the wires.
That every Boolean function f can be computed by a hazard-free DeMorgan circuit was

shown by Huffman [9] already in 1957: the OR of all prime implicants of f is hazard-free. In
1965, Eichelberger [5, Theorem 2] extended this result: any DNF without zero terms (those
containing a variable together with its negation) for f is hazard-free if and only if it contains
all prime implicants of f as terms. In particular, Eichelberger’s theorem implies that every
monotone circuit is hazard-free (see also Corollary 3).

In this paper, we (1) extend Eichelberger’s theorem to arbitrary DeMorgan circuits, (2)
present a very simple non-monotone Boolean function whose hazard-free circuit complexity
is super-polynomially larger than its unrestricted circuit complexity, and (3) show that the
monotone circuit obtained from any hazard-free circuit F by just replacing negated input
literals by constant 1 computes the monotone “downwards closure” f▽ of the Boolean function
f computed by F , where f▽pxq “ 1 iff fpzq “ 1 for some z ď x. In particular, (3) implies
that the hazard-free circuit complexity of any Boolean function f is lower-bounded by the
monotone circuit complexity of f▽. This latter lower bound itself is not new: it was proved
in a recent paper by Ikenmeyer et al. [10] using different arguments—our contribution to this
bound is the amazing simplicity of the proof.

We now describe the results in more details, and put them in the context of the previous
work on hazard-free circuits.

2. Results

To analyze hazards in DeMorgan circuits, we will use a natural notion of the “formal
DNF” of a circuit. The point is that every DeMorgan circuit F not only computes a unique
Boolean function, but also produces (purely syntactically) a unique set T pF q of terms (ANDs
of literals) in a natural way. Namely, each input gate holding a literal xi or xi produces this
literal as a single term; constants produce the corresponding constant terms. The set of terms
produced at an OR gate is a union of sets of terms produced at its two inputs, and the set
of terms produced at an AND gate is obtained by taking the AND of every term produced
at one of the inputs with every term produced at the second input. The set T pF q of terms
produced by the entire circuit is the set produced at its output gate. The formal DNF of a
circuit F is the OR of all terms in T pF q.

Let us stress that, when forming the set of produced terms, the idempotence laws x^x “ x

and x _ x “ x as well the absorbtion laws x _ xy “ x can be used, but the annihilation
laws x ^ x “ 0 and x _ x “ 1 are not used. In particular, some produced terms may be

2

zero terms, i.e., may contain a variable and its negation2. For example, the formal DNF
D “ xy _ xz _ yz _ zz of the circuit F “ px_ zqpy _ zq computing f “ xz _ yz has a zero
term zz.

If a DeMorgan circuit F computes a Boolean function f , then every nonzero term t of
the formal DNF D of F must be an implicant of f . But, in general, a prime implicant of f

does not need to be even a subterm of some term of D. For example, no term of the formal
DNFD “ xy_xy_xz of the circuit F “ xpy_zq_xy computing the function f “ xy_xy_xz

contains the prime implicant yz of f as a subterm.
Our first result shows that the formal DNF D of F contains all prime implicants of f as

terms precisely when the circuit F has no 1-hazards.

Theorem 1. A DeMorgan circuit has no 1-hazards if and only if it produces all prime impli-

cants of the computed Boolean function.

In particular, every hazard-free DeMorgan circuit must produce all prime implicants of
the Boolean function it computes.

The following lemma formalizes a (not very surprising) intuition that the notions of
0-hazards and 1-hazards are, in fact, dual. Recall that the dual of a boolean function
fpx1, . . . , xnq is the boolean function f˚px1, . . . , xnq “ fpx1, . . . , xnq. The dual F ˚ of a
DeMorgan circuit F is obtained from F by exchanging the operators AND and OR, as well
as the constants 0 and 1. It is well known and easy to show (see, e.g., [4, Theorem 1.3]) that
F computes f iff F ˚ computes f˚.

Lemma 1. A circuit has a 0-hazard if and only if its dual circuit has a 1-hazard.

Theorem 1 and Lemma 1 directly yield the following exact characterization of hazard-
freeness in terms of prime implicants.

Corollary 1. A DeMorgan circuit computing a Boolean function f is hazard-free if and

only if the circuit produces all prime implicants of f and the dual circuit produces all prime

implicants of f˚.

Example 1. Consider the circuit F “ px_zqpy_zq computing the Boolean function f “ xz_yz.
The formal DNF D “ xy _ xz _ yz _ zz of F contains all three prime implicants xy, xz and
yz of f . But the formal DNF of the dual circuit F ˚ “ xz _ yz does not contain the prime
implicant xy of the dual function f˚ “ xz _ yz. Hence, the circuit F is not hazard-free.
To give an even simpler (albeit more artificial) example, consider the circuit F “ x _ yy

computing fpx, yq “ x. The unique prime implicant x of f is a term of the formal DNF
x_ yy of F . But the formal DNF xy_ xy of the dual circuit F ˚ “ xpy_ yq does not contain
the (also unique) prime implicant x of the dual function f˚ “ x. Hence, the circuit F is not
hazard-free.

A DeMorgan circuit is zero-term free if it produces no zero terms. Since such circuits can-
not have any 0-hazards (see Lemma 4), Theorem 1 yields the classical result of Eichelberger [5,
Theorem 2].

2This is different from DNFs of Boolean functions f , where zero terms are not present: these terms contribute
nothing to the values of f . But presence or absence of zero terms in formal DNFs of circuits is important when
dealing with hazards, so we keep them.

3

Corollary 2 (Eichelberger [5]). A zero-term free DeMorgan circuit F computing a Boolean

function f is hazard-free if and only if F produces all prime implicants of f .

Since monotone circuits cannot produce any zero terms (they have no negated inputs at
all), and since they must produce all prime implicants of the computed (monotone) Boolean
function, Corollary 2 directly yields the following fact; [10, Lemma 4.2] gives an alternative
proof of this fact by induction on the circuit size.

Corollary 3. Monotone circuits are hazard-free.

The downwards closure of a Boolean function fpxq is the monotone Boolean function
f▽pxq :“

Ž

zďx fpzq. That is, f▽pxq “ 1 iff fpzq “ 1 for some vector z ď x. For example,
if fpxq “ 1 precisely when the graph encoded by vector x consists of a clique on k vertices
and n´ k isolated vertices, then f▽pxq is the well-known k-clique function. Note that f▽ “ f

holds for all monotone Boolean functions f .
We can view every DeMorgan circuit F pxq computing a Boolean function fpxq of n vari-

ables as a monotone circuit Hpx, yq on 2n variables with the property that F pxq “ Hpx, xq
holds for all x P t0, 1un. The positive version of the circuit F pxq is the monotone circuit
F`pxq “ Hpx,~1q obtained by replacing every negated input literal xi with constant 1.

Remark 1. Since the circuit Hpx, yq is monotone, and since the circuit F`pxq “ Hpx,~1q is
obtained from H by replacing with constant 1 all y-inputs, we have F`pxq ě fpxq, and since
the circuit F`pxq is monotone, we also have F`pxq ě F`pzq for every z ď x. So, F`pxq ě f▽pxq
holds for all x P t0, 1un.

But F` ‰ f▽, in general. Take, for example, the circuit F “ xy_ xxy computing f “ xy.
Then F` “ xy_x, and F`p1, 0q “ 1 but f▽p1, 0q “ fp1, 0q_fp0, 0q “ 0. The following lemma
gives us a general condition for F` “ f▽ to hold. The positive factor of a term is obtained
by replacing every its negated literal with constant 1.

Lemma 2. Let F be a DeMorgan circuit computing a Boolean function f such that fp~0q “ 0.

Then the circuit F` computes f▽ if and only if the positive factor of every zero term produced

by F is an implicant of f▽.

In particular, F` “ f▽ holds for every zero-term free circuit F . We show that F` “ f▽

holds for hazard-free circuits as well.

Theorem 2. Let F be a DeMorgan circuit computing a Boolean function f such that fp~0q “ 0.

If the circuit F has no 0-hazards, then F` computes f▽.

Remark 2. Together with Lemma 2, Theorem 2 gives the following necessary condition for
a circuit F to have no 0-hazards: it is necessary that the positive factor of every zero term
produced by F is an implicant of f▽.

Remark 3. The converse of Theorem 2 does not hold: there are circuits F such that F`

computes the downwards closure f▽ of the Boolean function f computed by F even though
F has 0-hazards. Also, Theorem 2 does not hold for 1-hazards: even if a circuit F has no
1-hazards, F` does not need compute f▽. Counterexamples are given in Remarks 7 and 8.
Still, Theorem 2 implies that F` “ f▽ holds for every hazard-free circuit F : such circuits
have neither 0-hazards not 1-hazards.

4

For a Boolean function f , let Lpfq denote the minimum number of gates in a (unrestricted)
DeMorgan circuit computing f . Let also Lupfq, Lmpfq and L˚pfq denote the versions of this
measure when restricted, respectively, to hazard-free circuits, to monotone circuits, and to
zero-term free circuits producing all prime implicants of f . For every Boolean function f , we
have

Lmpf
▽q ď Lupfq ď L˚pfq , (1)

where the first inequality follows from Theorem 2 and the second from Corollary 2. If the
function f is monotone, then Eq. (1) and Corollary 3 give the equality Lupfq “ Lmpfq.

Let us note that the first inequality in Eq. (1) was already proved in a recent paper by
Ikenmeyer et al. [10] using different arguments. Namely, the proof in [10] first introduces
an interesting concept of “hazard derivatives”, shows a chain rule for these derivatives, and
uses this rule to transform a given hazard-free circuit into a monotone circuit. The argument
is reminiscent of that used by Baur and Strassen [1] to compute all partial derivatives of a
multivariate polynomial by an arithmetic circuit.

In contrast, our proof of Theorem 2 (in Section 6) is short and amazingly simple. Actually,
for monotone Boolean functions f , Theorem 2 tells us a bit more than just the equality
Lupfq “ Lmpfq: it shows that not only hazard-free and monotone circuit complexities for
monotone Boolean function f do coincide but, in fact, that every minimal hazard-free circuit
for f is a monotone circuit itself, that is, does not use negated input gates to compute its
values.

Together with already known lover bounds on the monotone circuit complexity, the in-
equality Lupfq ě Lmpf

▽q, implies that the gap Lupfq{Lpfq can be super-polynomial and even
exponential. This consequence was shown in [10], when f is either the logical permanent [17]
or the logical determinant, or the Tardos function [18]. However, the known circuits for these
functions (demonstrating that Lpfq is polynomial) are far from being trivial. Actually, we
even do not have explicit constructions of these circuits—we only have general algorithms:
[13, 7] for logical permanent and [6] for the Tardos function. In Section 7, we observe that the
super-polynomial gap Lupfnq{Lpfnq “ nΩplog nq is already achieved on a very simple Boolean
function fn in n2 variables (Lemma 5): view the input x as an nˆn matrix, and let fnpxq “ 1
iff x is a permutation matrix, that is, if every row and every column has exactly one 1. A
trivial DeMorgan circuit (actually, a formula) shows Lpfnq “ Opn3q.

Notation. We use a standard notation concerning Boolean functions and circuits [4, 19]. In
particular, a literal is either a variable xi “ x1

i or its negation xi “ x0
i . A term is an AND of

literals or a constant 0 or 1. A term is a zero term if it contains a variable together with its
negation. A DNF (disjunctive normal form) is an OR of terms. An implicant of a Boolean
function f : t0, 1un Ñ t0, 1u is a nonzero term t such that t ď f holds, that is, tpaq ď fpaq
holds for all a P t0, 1un. An implicant t is a prime implicant of f if no proper subterm of t

is a implicant of f . A Boolean function f is monotone if x ď y implies fpxq ď fpyq, where
x ď y means xi ď yi for all positions i.

3. Hazard-free circuits

In this paper, we ignore the electronic aspect of hazards, and stick on their idealized,
mathematical model as, for example, in [2, 5, 15, 20]. The classical Kleene’s three-valued
“strong logic of indeterminacy” [11] extends the Boolean operations AND, OR and NOT from

5

the Boolean domain B “ t0, 1u to the ternary domain T “ t0, u, 1u (where the bits 0 and 1
are interpreted as stable, and the bit u as unstable):

and 0 u 1

0 0 0 0
u 0 u u

1 0 u 1

or 0 u 1

0 0 u 1
u u u 1
1 1 1 1

not 0 u 1

1 u 0

Note that, if we define the unstable bit as u “ 1
2
, then these ternary operations turn into:

x^ y “ minpx, yq, x_ y “ maxpx, yq and x “ 1´ x .

It is easy to verify that the system pT,_,^q forms a distributive lattice with zero element 0
and universal element 1; see, for example, Yoeli and Rinon [20]. In particular, the operations
_ and ^ are associative, and commutative. Moreover, the elements 0 and 1 satisfy for every
x P T: x^ 0 “ 0, x^ 1 “ x, x_ 0 “ x and x_ 1 “ 1. The absorbtion law x_ xy “ x as well
as the rules of de Morgan x_ y “ x^y and x^ y “ x_y also hold. The only difference from
the Boolean algebra is that the annihilation lows x ^ x “ 0 and x_ x “ 1 do not hold over
the ternary domain T “ t0, u, 1u: 0^ u “ 0 but u^ u “ u ‰ 0, and 1_ u “ 1 but u_ u “ u ‰ 1.

For us, it will be important that AND distributes over OR also in the ternary domain T:
for all x, y, z P T, we have xpy_zq “ xy_xz. So, since the annihilation lows are not used when
constructing the formal DNF D of a given circuit F , the ternary function computed by D is
the same as that computed by the circuit F , that is, Dpαq “ F pαq holds for every ternary
vector α P T

n. This allows us to analyze the properties of ternary functions F : Tn Ñ T

defined by DeMorgan circuits F by analyzing the properties of their formal DNFs.
A refinement of a ternary vector α P T

n is a vector in B
n obtained from α by replacing

every occurrence of the unstable bit u by constant 0 or 1. The subcube defined by α is the set

Aα “ ta P t0, 1un : a is a refinement of αu

of all refinements of α. Hence, |Aα| “ 2d, where d is the numbers of unstable bits u in α. For
a Boolean function f and a set A Ď t0, 1un, let fpAαq “ tfpaq : a P Au Ď t0, 1u denote the set
of values taken by f on A. Hence, we always have |fpAq| “ 1 or |fpAq| “ 2, and |fpAq| “ 1
iff f is constant on A.

Definition 1 (Hazards). Let b P t0, 1u. A circuit F has an b-hazard at α P Tn if F pAαq “ tbu
but still F pαq “ u holds. The circuit is hazard-free if it has a hazard at none of the inputs
α P Tn.

That is, after the functions computed at individual gates values are extended from the
binary domain B “ t0, 1u to the ternary domain T “ t0, u, 1u, every DeMorgan t^,_, u
circuit F computing a given Boolean function f : B

n Ñ B computes a (unique) ternary
function F : Tn Ñ T, the “ternary extension” of f . Even if two circuits compute the same
Boolean function, their ternary extensions may be different. Whether a circuit F is hazard-
free or not depends entirely on the properties of its ternary extension which, in turn, depends
on the specific form of the circuit F . Namely, the circuit F has a hazard at some vector α P T

if the Boolean function f computed by F does not depend on the unstable bits of α, but still
F outputs the unstable bit u on the input α. There are several types of hazards—that given
in Definition 1 is of so-called static logical hazards [2, 5, 20].

6

Example 2. Consider the function fpx, y, zq “ xz _ yz. The trivial circuit F “ xz _ yz

for this function has a 1-hazard at α “ p1, 1, uq: although fp1, 1, 0q “ fp1, 1, 1q “ 1, we
still have F p1, 1, uq “ p1 ^ uq _ p1 ^ uq “ u. The circuit F 2 “ px _ zqpy _ zq for the same
function f has a 0-hazard at α “ p0, 0, uq: although fp0, 0, 0q “ fp0, 0, 1q “ 0, we still have
F p0, 0, uq “ u^ u “ u. But, for example, the circuit F 2 “ xy _ xz _ yz for the same function
is already hazard-free: it has no 0-hazards because the formal DNF D “ xy _ xz _ yz has
no zero terms (see Lemma 4(a)), and has no 1-hazards because D contains all three prime
implicant of f (see Theorem 1).

Remark 4. To match the notation ra, bs for subcubes of t0, 1un we used in the introduction,
just note that any pair of vectors a, b P t0, 1un defines the ternary vector α P t0, u, 1un with
αi “ u when ai ‰ bi, and αi “ ai when ai “ bi. Then ra, bs “ Aα.

4. Proof of Lemma 1

The complement of a vector α P t0, u, 1un is the vector α “ pα1, . . . ,αnq in t0, u, 1un. Recall
that the dual of a boolean function fpx1, . . . , xnq is the boolean function f˚px1, . . . , xnq “
 fpx1, . . . , xnq . For example, the dual of a term t “

Ź

iPS x
ci

i is the clause t˚ “
Ž

iPS x
ci

i . The
dual F ˚ of a DeMorgan circuit F is obtained from F by exchanging the operators AND and
OR, as well as the constants 0 and 1. For example, the dual of F “ xz_yz is F ˚ “ px_zqpy_zq.
It is well known and easy to verify that a circuit F computes a Boolean function f iff the dual
circuit F ˚ computes f˚ (see, e.g., [4, Theorem 1.3]). Since the proof only uses de Morgan laws,
and since these laws hold also over the ternary domain t0, u, 1u, we also have F ˚pαq “ F pαq
for every ternary vector α P t0, u, 1un.

Lemma 1 is a direct consequence of the following lemma.

Lemma 3. A circuit has a 0-hazard at α P t0, u, 1un if and only if the dual circuit has a

1-hazard at α.

Proof. Let F be a DeMorgan circuit computing a Boolean function f . The circuit F has a
0-hazard at α P t0, u, 1un iff fpAαq “ t0u and F pαq “ u. Since F ˚pαq “ F pαq and u “ u,
F pαq “ u holds iff F ˚pαq “ u. On the other hand, after an appropriate permutation of the
set t1, . . . , nu of positions, the subcube Aα has the form Aα “ tau ˆ t0, 1uk for some vector
a P t0, 1un´k, where k is the number of unstable bits u in α. Then A

α
“ tau ˆ t0, 1uk . For

every vector pa, bq P A
α

, the vector pa, bq belongs to Aα, and we have f˚pa, bq “ fpa, bq. So,
fpAαq “ t0u holds iff f˚pAαq “ t1u.

Corollary 4. A DeMorgan circuit is hazard-free if and only if its dual circuit is also hazard-

free.

5. Proof of Theorem 1

To prove Theorem 1, we first prove a technical Lemma 4 showing how hazards expose
themselves in the formal DNFs of circuits. Recall that a zero term is a term containing a
variable together with its negation. Note that for every such term and for every ternary
vector α P t0, u, 1un, we always have either tpαq “ 0 or tpαq “ u, but never tpαq “ 1. For every
nonzero term t, tpαq “ 1 holds precisely when tpAαq “ t1u, and tpαq “ 0 holds precisely when
tpAαq “ t0u: in the former case, α sets to 1 all literals of t, whereas in the latter case, α sets
to 0 at least one literal of t.

7

Lemma 4. Let F be a DeMorgan circuit, D be its formal DNF and α P t0, u, 1un.

(a) F has a 0-hazard at α iff F pAαq “ t0u but tpαq “ u for some zero term t of D.

(b) F has a 1-hazard at α iff F pAαq “ t1u but tpαq ‰ 1 for all nonzero terms t of D.

In particular, circuits producing no zero terms cannot have any 0-hazards. Note, however,
that even if no zero terms are produced, the circuit may have 1-hazards (see, e.g., Example 2).

Proof. (a) Let F pAαq “ t0u. Then tpAαq “ t0u for every term t of D. Hence, tpαq “ 0 for
every nonzero term t, and tpαq P t0, uu for every zero term t. To show the direction pðq of
(a), suppose that tpαq “ u for some zero term t of D. Since the values of all other terms on
input α lie in t0, uu, we have F pαq “ u. Thus, F has a 0-hazard at α. To show the converse
direction pñq of (a), suppose that the circuit F has a 0-hazard at α, that is, F pαq “ u holds.
Since tpαq “ 0 for every nonzero term t, tpαq “ u ‰ 0 must hold for at least one zero term.

(b) Let F pAαq “ t1u. To show the direction pðq of (b), suppose that tpαq ‰ 1, i.e.
tpαq P t0, uu holds for all nonzero terms t of D. If tpαq “ 0 for all these terms, then F pAαq “
t0u ‰ t1u: on binary vectors, zero terms always output 0. So, tpαq “ u must hold for at least
one nonzero term t. Hence, F pαq “ u, meaning that F has a 1-hazard at α. To show the
converse direction pñq of (b), suppose that F has a 1-hazard at α. Hence, F pαq “ u. Since
x_ 1 “ 1 holds for all x P t0, u, 1u, Dpαq “ u implies that tpαq ‰ 1 must hold for every term
t of D.

Remark 5. Let D be the formal DNF of a DeMorgan circuit F , and α P t0, u, 1un. If F pAαq “
t1u, that is, if F accepts all vectors of the subcube Aα, then we only know that every vector
of Aα must be accepted by some t term of D, but for different vectors, these terms may
be different. If, however, the circuit F has no 1-hazards, then Lemma 4(b) gives us a much
stronger property: tpAαq “ t1u must hold for at least one term t, that is, a single term of D

must accept all vectors of the subcube.

Proof of Theorem 1. Let F be a DeMorgan circuit computing a Boolean function f , and let
D be the formal DNF of F . Our goal is to show that F has no 1-hazards if and only if D

contains all prime implicants of f as terms.
pñq Suppose that some prime implicant p “

Ź

iPS xci

i of f is not a term of D, and
consider the ternary vector α P t0, u, 1un with αi “ ci for i P S and αi “ u for i R S. Then
Aα “ p´1p1q :“ ta P t0, 1un : ppaq “ 1u. Since p is an implicant of f , we have fpAαq “ t1u.
Suppose contrariwise that the circuit F has no 1-hazard at α. Then, by Lemma 4(b), tpαq “ 1
and, hence, also tpAαq “ t1u must hold for some nonzero term t of D. Thus, p´1p1q “ Aα Ď
t´1p1q which can only hold is t is a subterm of p. Since t is an implicant of f and p is a prime

implicant of f , this is only possible if t “ p, a contradiction with p not being a term of D.
pðq Suppose that the circuit F has a 1-hazard at some α P t0, u, 1un. Our goal is to show

that then the DNF D must miss some prime implicant of f . Since F has a 1-hazard at α,
we have fpAαq “ t1u and F puq “ u. By Lemma 4(b), tpαq ‰ 1 holds for every nonzero term
t of D. The term tα “

Ź

i : αi‰u x
αi

i defined by the vector α accepts a vector a P t0, 1un if
and only if a P Aα. Hence, tαpAαq “ t1u. Since also fpAαq “ t1u, tα is an implicant of f

and, hence, contains some prime implicant p of f as a subterm. From tαpAαq “ t1u, we have
ppAαq “ t1u and, hence ppαq “ 1. Since tpαq ‰ 1 holds for every nonzero term t of D, the
prime implicant p of f cannot be a term of D.

8

Remark 6. Note that, in the case of 0-hazards, Theorem 1 holds in neither of the two di-
rections. To show pœq, consider the circuit F “ xy _ y for the function f “ x _ y. Since
the circuit produces no zero terms, it has no 0-hazards (one can check directly or just use
Lemma 4). But the prime implicant p “ x of f is not produced by F . To show pöq, consider
the circuit F “ px_zqpy_zq computing f “ xz_yz. The formal DNF D “ xy_xz_yz_zz

of the circuit F contains all three prime implicants xy, xz and yz of f , but F still has a
0-hazard at iput α “ p0, 0, uq: fpAαq “ t0u but F pαq “ zzpαq “ u^ u “ u.

6. Proof of Theorem 2 and Lemma 2

We will prove Lemma 2 and Theorem 2 with one simple argument. Let F be a DeMorgan
circuit computing a Boolean function f such that fp~0q “ 0, D be the formal DNF of F , and
F` be the monotone version of F . Recall that the positive factor t` of a term t is obtained
from t by replacing every negated literal with constant 1, and F` is obtained from the circuit
F by replacing with constant 1 all negated input variables. Consider the following three
assertions.
(A) The circuit F has no 0-hazards.
(B) The circuit F` computes f▽.
(C) The positive factor t` of every zero term t of D is an implicant of f▽

Our goal is to prove that pAq ñ pBq (Theorem 2), and pBq ô pCq (Lemma 2). The implication
pBq ñ pCq is immediate. Indeed, if the DNF D contains a zero term t such that t` is not
an implicant of f▽, then there must be a vector a P t0, 1un such that F`paq ě t`paq “ 1 but
f▽paq “ 0, that is, then F` does not compute f▽.

To show pAq ñ pBq and pCq ñ pBq, suppose that F`pxq does not compute f▽pxq “
Ž

zďx fpzq. Since F` ě f▽ (see Remark 1), there must be a vector a P t0, 1un such that
F`paq “ 1 but f▽paq “ 0. The formal DNF of the circuit F` is obtained by replacing with
constant 1 every negated literal in the formal DNF D, that is, terms produced by the circuit
F` are positive factors of the terms of D. Since F`paq “ 1, there must be a term

t “
ľ

iPS

xi ^
ľ

iPT

xi

in D such that t`paq “ 1 holds for the positive factor t` “
Ź

iPS xi of t. Since fp~0q “ 0, we
have tp~0q “ 0 and, hence, S ‰ H. The set T 1 “ ti P T : ai “ 1u must be also nonempty
because tpaq “ 0. Also, since t`paq “ 1 but f▽paq “ 0, S X T ‰ H must hold, that is, the
term t must be a zero term. Indeed, otherwise tpbq “ 1 and, hence, also f▽paq “ 1 would
hold on the input b ď a with bi “ 0 for all i P T and bi “ ai for i R T . Thus, t is a zero term
and t` is not an implicant of f▽. This shows the implication pCq ñ pBq.

To show the implication pAq ñ pBq, we have only to show that the circuit F contains a
0-hazard at some vector α P t0, u, 1un. For this, write the term t as the product t “ t1^ t2^ t3

of three its subterms terms, where

t` “
ľ

iPS

xi , t1 “
ľ

jPT 1

xj and t2 “
ľ

jPT zT 1

xj ,

and consider the vector α P t0, u, 1un obtained from the binary vector a by replacing with u
all bits ai for i P T 1 (and leaving other bits of a unchanged). On this vector, we clearly have
t1pαq “ u “ u and t2pαq “ t2paq “ 1. Moreover, since t`paq “ 1, we also have t`pαq P tu, 1u,

9

namely, t`pαq “ 1 if S X T “ H (t is a nonzero term), and t`pαq “ u if S X T ‰ H (t is a
zero term). Since, in our case, t is a zero term, we actually have t`pαq “ u. Thus, tpαq “ u.
Since fpaq ď f▽paq “ 0, we also know that t1paq “ 0 and, hence, also t1pαq P t0, uu holds for
every remaining term t1 of D. Thus F pαq “ u.

On the other hand, since the ternary vector α has unstable bits u only in positions where
the binary vector a has 1s, every refinement b P Aα of α satisfies b ď a. Since

Ž

bďa fpbq “
f▽paq “ 0, we have that fpbq “ 0 holds for every refinement b P Aα of α, meaning that
fpAαq “ t0u. Thus, the circuit F has a 0-hazard at α, as desired.

Remark 7. The implication pBq ñ pAq does not hold: there are circuits F such that F`

computes the downwards closure f▽ of the Boolean function f computed by F even though
F has 0-hazards. Consider the circuit F “ xxyz_yz computing the Boolean function f “ yz.
The circuit has a 0-hazard at α “ pu, 1, 1q: fp0, 1, 1q “ fp1, 1, 1q “ 0 but F pu, 1, 1q “ u.
However, the positive part t` “ xyz of the (unique) zero term t “ xxyz is an implicant of the
downwards closure f▽ of the function f : t`paq “ 1 can only hold for the input a “ p1, 1, 1q,
and on this input we also have f▽p1, 1, 1q ě fp1, 1, 0q “ 1. So, by Lemma 2, the circuit
F` “ xyz _ y computes f▽.

Remark 8. In the case of 1-hazards (instead of 0-hazards), neither of the implications pAq ñ
pBq and pBq ñ pAq holds. To show pAq œ pBq, consider the circuit F “ px _ zqpy _ zq
computing f “ xz _ yz. Since the circuit F produces all three prime implicants of f (see
Remark 6), Theorem 1 implies that F has no 1-hazards. But on the input p0, 0, 1q, the
monotone version F` “ y _ z of F outputs F`p0, 0, 1q “ 1 whereas f▽p0, 0, 1q “ fp0, 0, 0q _
fp0, 0, 1q “ 0. To show pBq œ pAq, consider the circuit F “ xz _ yz for the same function
f “ xz _ yz. Since this circuit produces no zero terms at all, the assertion (C) and, hence,
also (B) holds for this circuit. That is, F` “ f▽ holds. But the circuit F has a 1-hazard at
α “ p1, 1, uq: fp1, 1, 1q “ fp1, 1, 0q “ 1 but F p1, 1, uq “ u_ u “ u.

7. A gap between hazard-free and general circuits

Let fn be a (non-monotone) Boolean function of n2 variables, whose inputs are n ˆ n

matrices x “ pxi,jq, and fnpxq “ 1 if and only if x is permutation matrix, that is, every row
and every column of x has exactly one 1.

Lemma 5. Lpfnq “ Opn3q but Lupfnq “ nΩplog nq.

Proof. The logical permanent function pern accepts a matrix x iff fnpzq “ 1 holds for at least
one matrix z ď x. Hence, pern “ f▽

n is the downwards closure of fn. A well-known result
of Razborov [17] shows Lmppernq “ nΩplog nq, and Theorem 2 yields Lupfnq ě Lmppernq “
nΩplog nq. To show the upper bound Lpfnq “ Opn3q, just associate with every entry pi, jq the
terms Ri,j and Ci,j, where Ri,j is the AND of xi,j and all xi,k for k “ 1, . . . , j´ 1, j` 1, . . . , n,
and Ci,j is the AND of xi,j and all xl,j for l “ 1, . . . , i´1, i`1, . . . , n. Consider the DeMorgan
circuit F “ F1 ^ F2, where F1 “

Źn
i“1

Žn
j“1 Ri,j and F2 “

Źn
j“1

Žn
i“1 Ci,j. Note that

Ri,jpxq “ 1 iff the ith row of x has exactly one 1 in the jth column, and Ci,jpxq “ 1 iff the
jth column of x has exactly one 1 in the ith row. Hence, F1pxq “ 1 iff every row of x has
exactly one 1, and F2pxq “ 1 iff every column of x has exactly one 1, meaning that the circuit
F (which, actually, is a formula) computes fn.

Remark 9. Actually, the unrestricted circuit complexity of fn is Lpfnq “ Opn2q, i.e., is linear
in the number n2 of variables of fn: every symmetric Boolean function of n variables can be

10

computed by a DeMorgan circuit using Opnq gates (see, e.g. [19, Chapter 3.4]). The Boolean
function detecting whether an input vector has exactly one 1 is clearly symmetric. Note,
however, that the only slightly worse Opn3q bound is already achieved by a trivial circuit.
This (triviality of the upper bound) is the main message of Lemma 5.

Remark 10. The depth of our (trivial) DeMorgan circuit for fn is only Oplog nq. On the other
hand, as shown by Raz and Wigderson [16, Theorem 4.2], every monotone circuit computing
pern has depth Ωpnq. Since f▽

n “ pern, Theorem 2 implies that every hazard-free DeMorgan
circuit computing fn must have depth Ωpnq. Thus, the function fn also shows that the tradeoff
between the depths of hazard-free and general DeMorgan circuits can be even exponential.

8. Open problems

Recall that L˚pfq is the minimum number of gates in a DeMorgan circuit F computing
the Boolean function f such that F produces all prime implicants and produces no zero term.
Let also Lupnq be the Shannon function for hazard-free circuits, that is, the the maximum
of Lupfq over all Boolean functions f of n variables. We know that Lupfq ě Lmpf

▽q and
L˚pfq ě Lupfq holds for any Boolean function f (see Eq. (1)). So, the following natural open
problems remain.

1. How large the gaps Lupfq{Lmpf
▽q and L˚pfq{Lupfq can be?

2. What is the asymptotic of the Shannon function Lupnq?
Clearly, the Shannon lower bound for general DeMorgan circuits yields Lupnq ě Lpnq ě 2n{n.
On the other hand, we already know that the OR of all prime implicants of any Boolean
function f is a hazard-free DeMorgan circuit computing f . All nonzero terms on a given
set of n{2 variables can be simultaneously computed by a trivial hazard-free circuit using
Op3n{2q “ Op2.8nq gates. We then can combine the corresponding halves of prime implicants
using at most 2n gates. This gives Lupnq ď p1 ` op1qq2n. So, Problem 2 is about closing the
“1{n vs. 1` op1q” gap.

Acknowledgment. I thank Igor Sergeev for interesting discussions and suggestions.

References

[1] W. Baur and V. Strassen. The complexity of partial derivatives. Theor. Comput. Sci., 22:317–330, 1983.
[2] J. G. Bredeson and P. T. Hulona. Elimination of static and dynamic hazards formultiple input changes

in combinational switching circuits. Information and Control, 20:114–124, 1972.
[3] S. H. Cadwell. Switching Circuits and Logical Design. John Willey & Sons, 1958.
[4] Y. Crama and P. L. Hammer, editors. Boolean Functions: Theory, Algorithms, and Applications, volume

142 of Encyclopedia of Mathematics and Its Applications. Cambridge University Pess, 2011.
[5] E. Eichelberger. Hazard detection in combinational and sequential switching circuits. IBM J. Res. De-

velop., 9:90–99, 1965.
[6] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial

optimization. Combinatorica, 1:169–197, 1981.
[7] J.E. Hopcroft and R.M. Karp. An n5{2 algorithm for maximum matching in bipartite graphs. SIAM J.

Comput., 2:225–231, 1973.
[8] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner. On the complexity of

generating gate level information flow tracking logic. IEEE Trans. Info. Forensics Secur., 7(3):1067–1080,
2012.

[9] D. A. Huffman. The design and use of hazard-free switching networks. J. ACM, 4(1):47–62, 1957.
[10] C. Ikenmeyer, K. Balagopal, C. Lenzen, V. Lysikov, A. Mokhov, and K. Sreenivasaiah. On the complexity

of hazard-free circuits. J. ACM, 66(4):Article 25, 2019.

11

[11] S. C. Kleene. Introduction to Metamathematics. North Holland, 1952.
[12] S. Körner. Experience and Theory: An Essay in the Philosophy of Science. Routledge & Kegan Paul,

London, 1966.
[13] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quarterly,

2:83–97, 1955.
[14] G. Malinowski. Kleene logic and inference. Bull. Section Logic, 43(1/2):42–52, 2014.
[15] M. Mukaidono. On the B-ternary logical function–A ternary logic considering ambiguity. Syst. Comput.

Controls, 3(3):27–36, 1972.
[16] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. J. ACM, 39(3):736–744,

1992.
[17] A. A. Razborov. Lower bounds on monotone complexity of the logical permanent. Math. Notes of the

Acad. of Sci. of the USSR, 37(6):485–493, 1985.
[18] É. Tardos. The gap between monotone and non-monotone circuit complexity is exponential. Combina-

torica, 7(4):141–142, 1987.
[19] I. Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.
[20] M. Yoeli and S. Rinon. Application of ternary algebra to the study of static hazards. J. ACM, 11(1):84–97,

1964.

12
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

