
Notes on Hazard-Free Circuits

Stasys Jukna1

Faculty of Mathematics and Computer Science, Vilnius University, Lithuania.

Abstract

The problem of constructing hazard-free Boolean circuits (those avoiding electronic glitches) dates back to the
1940s and is an important problem in circuit design. We show that a DeMorgan circuit is hazard-free if and
only if the circuit produces (purely syntactically) all prime implicants as well as all prime implicates of the
Boolean function it computes. This extends to arbitrary DeMorgan circuits a classical result of Eichelberger
[IBM J. Res. Develop., 9 (1965)] showing this property for special depth-two circuits. Also, Ikenmeyer et al.
[J. ACM, 66:4 (2019), Article 25] have recently shown that the hazard-free circuit complexity of any Boolean
function fpxq is lower-bounded by the monotone circuit complexity of the monotone Boolean function which
accepts an input x i� fpzq “ 1 for some vector z ď x. We give a short and amazingly simple proof of this
interesting result. Finally, we give a very simple (non-monotone) Boolean function whose hazard-free circuit
complexity is super-polynomially larger than its unrestricted circuit complexity.

Keywords: hazard-free circuits, monotone circuit, lower bounds

1. Introduction

The problem of designing hazard-free circuits naturally occurs when implementation circuits in
hardware ([4, 10], but is also closely related to questions in logic ([12, 14, 17]) and even in cybersecurity
([9]). The importance of hazard-free circuits is already highlighted in the classical textbook [4].

If not stated otherwise, by a circuit we will understand a DeMorgan circuit, that is, a Boolean
circuit over t^,_,´u, where negations are applied only to input variables. Thus, such a circuit
uses AND and OR operations at gates. Inputs are constants 0 and 1, variables x1, . . . , xn and their
negations x1, . . . , xn. A monotone circuit is a DeMorgan circuit without negated inputs.

Hazards are spurious pulses or electronic glitches that may occur on the output of circuits
during an input transition, stipulated by physical delays at wires or gates in a speci�c hardware
implementation of the circuit: circuits are usually asynchronous. Having designed a hazard-free
circuit for a given Boolean function f , one is sure that no glitches will occur in any hardware
implementation of this circuit, regardless of the physical delays.

To be a bit more speci�c, associate with every pair of vectors a, b P t0, 1un the subcube ra, bs Ď
t0, 1un consisting of all 0-1 vectors c such that ai “ bi implies ci “ ai. Hence, if a and b di�er in d
positions, then ra, bs contains 2d vectors. A Boolean circuit F computing a Boolean function f has a
0-hazard if there are two vectors a ‰ b such that fpcq “ 0 for all c P ra, bs but after the input a is
replaced by b, some hardware implementation of this circuit may have a spurious 0-1-0 glitch, that is,
for a short moment, the circuit may output the (wrong) value 1 on the new input b. If fpcq “ 1 for
all c P ra, bs but after the input a is replaced by b, the circuit may have a spurious 1-0-1 glitch, then

Email address: stjukna@gmail.com (Stasys Jukna)
1Research supported by the DFG grant JU 3105/1-2 (German Research Foundation).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 102 (2020)

we have a 1-hazard. A circuit is hazard-free if it has no hazards; see Section 3 for a precise de�nition
(without using the vague notion of “possible glitches”).

For example, if the output of the AND gate xz of the circuit F “ xz _ yz reaches the output OR
gate later than that of the AND gate yz (due to di�erent delays at wires or gates), and if we (suddenly)
replace input a “ p1, 1, 0q by b “ p1, 1, 1q, then the circuit will shortly output 0 before it outputs the
correct value 1 �red by the AND gate xz on the new input: for a short moment, the OR gate will see
the value 0 of yz on the new input b, and the value 0 of xz on the old input a. Thus, some hardware
implementations of the circuit F may have spurious 1-0-1 glitches (the circuit F has a 1-hazards).
However, the circuit F 1 “ xy _ xz _ yz for the same Boolean function is already hazard-free.

That every Boolean function f can be computed by a hazard-free DeMorgan circuit was shown
by Hu�man [10] already in 1957: the OR of all prime implicants of f is hazard-free. In 1965,
Eichelberger [6, Theorem 2] extended this result: any DNF without zero terms (those containing a
variable together with its negation) for f is hazard-free if and only if it contains all prime implicants
of f as terms. In particular, Eichelberger’s theorem implies that every monotone circuit is hazard-
free (see also Corollary 2). Let us also mention that detecting the presence of hazards is a di�cult
computational task. In particular, as recently shown by Komarath and Saurabh [13], if the strong
exponential time hypothesis (a statement stronger that P‰NP) is true, then for any ε ą 0 there is
no algorithm that runs in time 3p1´εqnpolypsq and detects a presence of hazards already in depth-4
DeMorgan formulas of size s and with n variables.

In this paper, we (1) extend Eichelberger’s theorem to arbitrary DeMorgan circuits, (2) present
a very simple non-monotone Boolean function whose hazard-free circuit complexity is super-
polynomially larger than its unrestricted circuit complexity, and (3) show that the monotone circuit
obtained from any hazard-free circuitF by just replacing negated input literals by constant 1 computes
the monotone “downwards closure” fO of the Boolean function f computed by F , where fOpxq “ 1
i� fpzq “ 1 for some z ď x. In particular, (3) implies that the hazard-free circuit complexity of any
Boolean function f is lower-bounded by the monotone circuit complexity of fO. This latter lower
bound itself is not new: it was proved in a recent paper by Ikenmeyer et al. [11] using di�erent
arguments—our contribution to this bound is the amazing simplicity of the proof.

We now describe the results in more details, and put them in the context of the previous work on
hazard-free circuits.

2. Results

Every DeMorgan circuit F not only computes a unique Boolean function, but also produces
(purely syntactically) a unique set of terms (ANDs of literals) as well as a unique set of clauses (ORs of
literals) in a natural way. The formal DNF of F is the OR of all terms produced by F , and the formal
CNF of F is the AND of all clauses produced by F . Roughly, these DNFs and CNFs are obtained by
just applying the distributive laws to reduce the circuit F to a depth-2 formula. The blow up in size
is here irrelevant: important only is that the circuit F has a hazard i� the resulting depth-2 formula
contains a hazard; see Section 3 for a precise de�nition of these natural concepts, as well as for a
reminder of what “prime implicants” and “prime implicates” of a Boolean function are.

At this point, we only note that when forming the sets of produced terms and clauses, the
annihilation laws x^ x “ 0 and x_ x “ 1 are not used. In particular, some produced terms may be
zero terms (or trivial terms), and some produced clauses may be trivial clauses, that is, may contain a
variable together with its negation.

If a DeMorgan circuit F computes a Boolean function f , then every nonzero term t of the formal
DNF D of F must be an implicant of f . But, in general, a prime implicant of f does not need to be

2

even a subterm of some term of D. For example, no term of the formal DNFD “ xy_ xy_ xz of the
circuit F “ xpy _ zq _ xy computing the function f “ xy _ xy _ xz contains the prime implicant
yz of f as a subterm, and the circuit

Theorem 1. Let F be a DeMorgan circuit computing a Boolean function f .
1. F has no 1-hazards if and only if F produces all prime implicants of f .
2. F has no 0-hazards if and only if F produces all prime implicates of f .

Theorem 1 is a special case of two general Theorems 4 and 5 proved in Section 5. These two
theorems also give the following su�cient conditions for hazard-freeness.

Theorem 2. Let F be a DeMorgan circuit.
1. F has no 1-hazards if F produces no trivial clauses.
2. F has no 0-hazards if F produces no zero terms.

A DeMorgan circuit is zero-term free if it produces no zero terms. By Theorem 2, such circuit
cannot have any 0-hazards. So, Theorem 1 yields the following classical result of Eichelberger [6,
Theorem 2]. This result is stated and proved in [6] only for zero-term free DNFs, but the argument
works also for zero-term free DeMorgan circuits: formal DNFs of such circuits do not have zero terms.

Corollary 1 (Eichelberger [6]). A zero-term free DeMorgan circuit F computing a Boolean function f
is hazard-free if and only if F produces all prime implicants of f .

Since monotone circuits cannot produce any zero terms (they have no negated inputs at all),
and since they must produce all prime implicants of the computed monotone Boolean function
(see Theorem 4.2 in [24, Chapter 2] if not sure), Corollary 1 directly yields the following fact; [11,
Lemma 4.2] gives an alternative proof of this fact by induction on the circuit size.

Corollary 2. Monotone circuits are hazard-free.

After these structural results, we turn to the relation of the hazard-free circuit complexity with
the monotone circuit complexity. The downwards closure of a Boolean function fpxq is the monotone
Boolean function fOpxq :“

Ž

zďx fpzq. That is, fOpxq “ 1 i� fpzq “ 1 for some vector z ď x, that
is, if zi ď xi for all positions i. For example, if fpxq “ 1 precisely when the graph encoded by vector
x consists of a clique on k vertices and n´ k isolated vertices, then fOpxq is the well-known k-clique
function. Note that fO “ f holds for all monotone Boolean functions f . Recall that a Boolean
function f is monotone if z ď x implies fpzq ď fpxq.

We can view every DeMorgan circuit F pxq computing a Boolean function fpxq of n variables
as a monotone circuit Hpx, yq on 2n variables with the property that F pxq “ Hpx, xq holds for
all x P t0, 1un. The positive version of the circuit F pxq is the monotone circuit F`pxq “ Hpx,~1q
obtained by replacing every negated input literal xi with constant 1.

Remark 1. Since the circuit Hpx, yq is monotone, and since the circuit F`pxq “ Hpx,~1q is obtained
from H by replacing with constant 1 all y-inputs, we have F`pxq ě fpxq, and since the circuit
F`pxq is monotone, we also have F`pxq ě F`pzq for every z ď x. So, F`pxq ě fOpxq holds for all
x P t0, 1un.

But F` ‰ fO, in general. Take, for example, the circuit F “ xy _ xxy computing f “ xy. Then
F` “ xy _ x, and F`p1, 0q “ 1 but fOp1, 0q “ fp1, 0q _ fp0, 0q “ 0. The following theorem gives
us a general condition for F` “ fO to hold, and shows that 0-hazard free circuits ful�ll this condition.
The positive factor of a term is obtained by replacing every its negated literal with constant 1.

3

Theorem 3. Let F be a DeMorgan circuit computing a Boolean function f such that fp~0q “ 0. Then
the circuit F` computes fO if and only if the positive factor of every zero term produced by F is an
implicant of fO. If the circuit F has no 0-hazards, then F` computes fO.

In particular,F` “ fO also holds for every zero-term free circuitF , as well as for every hazard-free
circuit F .

For a Boolean function f , let Lpfq denote the minimum number of gates in a (unrestricted)
DeMorgan circuit computing f . Let also Lupfq, Lmpfq and Lpzpfq denote the versions of this
measure when restricted, respectively, to hazard-free circuits, to monotone circuits, and to zero-term
free circuits producing all prime implicants of f . For every Boolean function f , we have

Lmpf
Oq ď Lupfq ď Lpzpfq , (1)

where the �rst inequality follows from Theorem 3 and the second from Corollary 1. If the function f
is monotone, then Eq. (1) and Corollary 2 give the equality Lupfq “ Lmpfq.

Let us note that the �rst inequality in Eq. (1) was already proved in a recent paper by Ikenmeyer
et al. [11] using di�erent arguments. Namely, the proof in [11] �rst introduces an interesting concept
of “hazard derivatives”, shows a chain rule for these derivatives, and uses this rule to transform a
given hazard-free circuit into a monotone circuit. The argument is reminiscent of that used by Baur
and Strassen [2] to compute all partial derivatives of a multivariate polynomial by an arithmetic
circuit.

In contrast, our proof of Theorem 3 (in Section 4) is direct and amazingly simple. Actually, for
monotone Boolean functions f , Theorem 3 tells us a bit more than just the equality Lupfq “ Lmpfq:
it shows that not only hazard-free and monotone circuit complexities for monotone Boolean function
f do coincide but, in fact, that every minimal hazard-free circuit for f is a monotone circuit itself,
that is, does not use negated input gates to compute its values.

Together with already known lover bounds on the monotone circuit complexity, the inequality
Lupfq ě Lmpf

Oq, implies that the gap Lupfq{Lpfq can be super-polynomial and even exponential.
This consequence was shown in [11], when f is either the logical permanent [20] or the logical deter-
minant, or the Tardos function [23]. However, the known circuits for these functions (demonstrating
that Lpfq is polynomial) are far from being trivial. Actually, we even do not have explicit construc-
tions of these circuits—we only have general algorithms: [15, 8] for logical permanent and [7] for the
Tardos function. In Section 6, we observe that the super-polynomial gap Lupfnq{Lpfnq “ nΩplognq is
already achieved on a very simple Boolean function fn in n2 variables (Lemma 1): view the input x
as an nˆ n matrix, and let fnpxq “ 1 i� x is a permutation matrix, that is, if every row and every
column has exactly one 1.

3. Preliminaries

Here we give de�nitions of hazards, formal DNFs and formal CNFs of DeMorgan circuits.

3.1. Hazard-free circuits

In this paper, we ignore the electronic aspect of hazards, and stick on their idealized, mathe-
matical model as, for example, in [3, 6, 18, 25]. The classical Kleene’s three-valued “strong logic of
indeterminacy” [12] extends the Boolean operations AND, OR and NOT from the Boolean domain
B “ t0, 1u to the ternary domain T “ t0, u, 1u (where the bits 0 and 1 are interpreted as stable, and
the bit u as unstable):

4

and 0 u 1

0 0 0 0
u 0 u u

1 0 u 1

or 0 u 1

0 0 u 1
u u u 1
1 1 1 1

not 0 u 1

1 u 0

Note that, if we de�ne the unstable bit as u “ 1
2 , then these ternary operations turn into tropical

operations: x ^ y “ minpx, yq, x _ y “ maxpx, yq and x “ 1 ´ x . It is easy to verify that the
system pT,_,^q forms a distributive lattice with zero element 0 and universal element 1; see, for
example, Yoeli and Rinon [25]. In particular, the operations_ and^ are associative, and commutative.
Moreover, the elements 0 and 1 satisfy for every x P T: x ^ 0 “ 0, x ^ 1 “ x, x _ 0 “ x and
x _ 1 “ 1. The absorbtion law x _ xy “ x as well as the rules of de Morgan x_ y “ x ^ y and
x^ y “ x _ y also hold. The only di�erence from the Boolean algebra is that the annihilation
laws x ^ x “ 0 and x _ x “ 1 do not hold over the ternary domain T “ t0, u, 1u: 0 ^ u “ 0 but
u^ u “ u ‰ 0, and 1_ u “ 1 but u_ u “ u ‰ 1.

A re�nement of a ternary vector α P Tn is a vector in Bn obtained from α by replacing every
occurrence of the unstable bit u by constant 0 or 1. The subcube de�ned by α is the set

Aα “ ta P t0, 1u
n : a is a re�nement of αu

of all re�nements of α. After an appropriate permutation of the set t1, . . . , nu of positions, the
subcubeAα has the formAα “ tbuˆt0, 1u

m for some vector b P t0, 1un´m, wherem is the number
of unstable bits u in α. To match the notation ra, bs for subcubes of t0, 1un we used in the introduction,
just note that any pair of vectors a, b P t0, 1un de�nes the ternary vector α P t0, u, 1un with αi “ u

when ai ‰ bi, and αi “ ai when ai “ bi. Then ra, bs “ Aα.
For a Boolean function f and a set A Ď t0, 1un, let fpAαq “ tfpaq : a P Au Ď t0, 1u denote the

set of values taken by f on A. Hence, we always have |fpAq| “ 1 or |fpAq| “ 2, and |fpAq| “ 1 i�
f is constant on A.
De�nition 1 (Hazards). A circuit F has a 0-hazard at α P Tn if F pAαq “ t0u but still F pαq “ u
holds. If F pAαq “ t1u but F pαq “ u, then F has a 1-hazard at α. The circuit is hazard-free if it has
a hazard at none of the inputs α P Tn.

That is, after the functions AND, OR, NOT computed at individual gates are extended from the
binary domain B “ t0, 1u to the ternary domain T “ t0, u, 1u, every DeMorgan t^,_, u circuit F
computing a given Boolean function f : Bn Ñ B turns into a circuit computing a (unique) ternary
function F : Tn Ñ T, a “ternary extension” of F , which coincides with f on Bn. Even if two circuits
compute the same Boolean function, their ternary extensions may be di�erent. Whether a circuit F is
hazard-free or not depends entirely on the properties of its ternary extension which, in turn, depends
on the speci�c form of the circuit F . Namely, the circuit F has a hazard at some vector α P Tn if the
Boolean function f computed by F does not depend on the unstable bits of α, but still F outputs
the unstable bit u on the input α. There are several types of hazards—that given in De�nition 1 is of
so-called static logical hazards [3, 6, 25].
Example 1. Consider the function fpx, y, zq “ xz _ yz. The trivial circuit F “ xz _ yz for
this function has a 1-hazard at α “ p1, 1, uq: although fp1, 1, 0q “ fp1, 1, 1q “ 1, we still have
F p1, 1, uq “ p1^ uq _ p1^ uq “ u. The circuit F 2 “ px_ zqpy _ zq for the same function f has a
0-hazard at α “ p0, 0, uq: although fp0, 0, 0q “ fp0, 0, 1q “ 0, we still have F p0, 0, uq “ u ^ u “ u.
But, for example, the circuit F 2 “ xy _ xz _ yz for the same function is already hazard-free: it has
no 0-hazards because the formal DNF D “ xy_ xz_ yz has no zero terms (see Theorem 5), and has
no 1-hazards because D contains all three prime implicant of f (see Theorem 1).

5

3.2. Prime implicants and implicates of functions

We use a standard notation concerning Boolean functions and circuits [5, 24]. In particular, a
literal is either a variable xi “ x1

i or its negation xi “ x0
i . A term is an AND of literals or a constant

0 or 1, and a clause if an OR of literals. A term is a zero term if it contains a variable xi together with
its negation xi (note that 0 is not a zero term, it is a constant term). Similarly, a clause is an OR of
literals. A clause containing a variable together with its negation is a trivial clause (we do not use the
term “one clause” just to avoid misinterpretation).

An implicant of a Boolean function f : t0, 1un Ñ t0, 1u is a nonzero term t such that t ď f
holds, that is, for every a P t0, 1un, tpaq “ 1 implies fpaq “ 1. An implicant t is a prime implicant of
f if no proper subterm of t is an implicant of f . Dually, an implicate of f is a nontrivial clause q such
that f ď q holds, that is, for every a P t0, 1un, qpaq “ 0 implies fpaq “ 0. An implicate q is a prime
implicate of f if no proper subclause of q is an implicate of f .

3.3. Formal DNFs and CNFs of circuits

As we already mentioned in Section 2, every DeMorgan circuit F not only computes a unique
Boolean function, but also produces (purely syntactically) a unique set of terms as well as a unique
set of clauses in a natural way.

Namely, each input gate holding a literal xi or xi produces this literal as a single term; constants
produce the corresponding constant terms. The set of terms produced at an OR gate is a union of
sets of terms produced at its two inputs, while the set of terms produced at an AND gate is obtained
by taking the AND of every term produced at one of the inputs with every term produced at the
second input. The set of terms produced by the entire circuit is the set produced at its output gate.
The formal DNF DF of a circuit F is the OR of all terms produced by F .

Dually, every DeMorgan circuit F produces (purely syntactically) a unique set of clauses. Namely,
each input gate holding a literal xi or xi produces this literal as a single clause (consisting of this
literal); constants produce the corresponding constant clauses. The set of clauses produced at an AND
gate is a union of sets of clauses produced at its two inputs, while the set of terms produced at an OR
gate is obtained by taking the OR of every clause produced at one of the inputs with every clause
produced at the second input. The set of clauses produced by the entire circuit is the set produced at
its output gate. The formal CNF CF of a circuit F is the AND of all clauses produced by F .

Remark 2. Note the duality: the DNF DF is obtained by multiplying out all clauses of the CNF CF ,
that is, each term t of DF is obtained by picking one literal from each of the causes of CF . Dually,
each clause q of CF is obtained by picking one literal from each of the terms of DF . Note also that if
f is the Boolean function computed by the circuit F , then every nonzero term of DF is an implicant
of f , and every nontrivial clause of CF is an implicate of f .

Let us stress an important point: when forming the sets of produced terms and clauses, the
annihilation laws x^ x “ 0 and x_ x “ 1 are not used (these two laws do not hold over t0, u, 1u).
In particular, some produced terms may be zero terms and some produced clauses may be trivial
clauses, that is, may contain a variable together with its negation. For example, the formal DNF
D “ xy _ xz _ yz _ zz of the circuit F “ px_ zqpy _ zq computing f “ xz _ yz has a zero term
zz. Dually, the formal CNF C “ px_ yqpx_ zqpy_ zqpz_ zq of the circuit F “ xz_ yz computing
the same function f has a trivial clause z _ z.

As we already mentioned above, the system pt0, u, 1u,_,^q forms a distributive lattice with zero
element 0 and universal element 1. In particular, AND distributes over OR, and vice versa. So, since
the annihilation laws x^ x “ 0 and x_ x “ 1 are not used when constructing the formal DNF D of
the formal CNF C of a given circuit F (only these laws holding over the binary domain t0, 1u do not

6

extend to the ternary domain t0, u, 1u), the ternary functions computed by D and C are the same
as that computed by the circuit F , that is, Dpαq “ Cpαq “ F pαq holds for every ternary vector
α P Tn. This is a simple but important observation which allows us to analyze the properties of
ternary functions F : Tn Ñ T de�ned by DeMorgan circuits F by analyzing the properties of their
formal DNFs and formal CNFs.

We now turn to the proofs of Theorems 1 and 3. We start with that of Theorem 3 since our
argument here is direct and requires no additional concepts.

4. Proof of Theorem 3

Let F be a DeMorgan circuit computing a Boolean function f such that fp~0q “ 0, D be the
formal DNF of F , and F` be the monotone version of F . Recall that the positive factor t` of a term t
is obtained from t by replacing every negated literal with constant 1, and F` is obtained from the
circuit F by replacing with constant 1 all negated input variables. The downwards closure of a Boolean
function fpxq is the monotone Boolean function fOpxq :“

Ž

zďx fpzq. Consider the following three
assertions.

(A) The circuit F has no 0-hazards.

(B) The circuit F` computes fO.

(C) The positive factor t` of every zero term t of D is an implicant of fO.

Our goal is to prove that pAq ñ pBq, and pBq ô pCq. The implication pBq ñ pCq is immediate.
Indeed, if the DNF D contains a zero term t such that t` is not an implicant of fO, then there must
be a vector a P t0, 1un such that F`paq ě t`paq “ 1 but fOpaq “ 0, that is, then F` does not
compute fO.

To show pAq ñ pBq and pCq ñ pBq, assume pBq, i.e., that F`pxq does not compute fOpxq “
Ž

zďx fpzq. Since F` ě fO (see Remark 1), there must be a vector a P t0, 1un such that F`paq “ 1
but fOpaq “ 0. The formal DNF of the circuit F` is obtained by replacing with constant 1 every
negated literal in the formal DNF D, that is, terms produced by the circuit F` are positive factors of
the terms of D. So, since F`paq “ 1, there must be a term

t “
ľ

iPS

xi ^
ľ

iPT

xi

in D such that t`paq “ 1 holds for the positive factor t` “
Ź

iPS xi of t. Since fp~0q “ 0, we have
tp~0q “ 0 and, hence, S ‰ H. The set T 1 “ ti P T : ai “ 1umust be also nonempty because fpaq “ 0
and, hence, also tpaq “ 0. Moreover, since t`paq “ 1 but fOpaq “ 0, the term t must be a zero term,
that is, S X T ‰ H must hold: otherwise tpbq “ 1 and, hence, also fOpaq ě fpbq “ 1 would hold on
the input b ď a with bi “ 0 for all i P T and bi “ ai for i R T . Thus, t is a zero term and t` is not an
implicant of fO. This shows the equivalence pBq ô pCq.

To show the remaining implication pAq ñ pBq (the second claim of Theorem 3), we have only to
show that the circuit F contains a 0-hazard at some vector α P t0, u, 1un. For this, write the term t
as the product t “ t1 ^ t2 ^ t3 of three its subterms terms, where

t` “
ľ

iPS

xi , t1 “
ľ

jPT 1

xj and t2 “
ľ

jPT zT 1

xj ,

7

and consider the vector α P t0, u, 1un obtained from the binary vector a by replacing with u all bits
ai for i P T 1 (and leaving other bits of a unchanged). On this vector, we clearly have t1pαq “ u “ u
and t2pαq “ t2paq “ 1. Moreover, since t`paq “ 1, we also have t`pαq P tu, 1u, namely, t`pαq “ 1
if S X T “ H (t is a nonzero term), and t`pαq “ u if S X T ‰ H (t is a zero term). Since, in our case,
t is a zero term, we actually have t`pαq “ u. Thus, tpαq “ u. Since fpaq ď fOpaq “ 0, we also know
that t1paq “ 0 and, hence, also t1pαq P t0, uu holds for every remaining term t1 of D. Thus F pαq “ u.

On the other hand, since the ternary vector α has unstable bits u only in positions where the
binary vector a has 1s, every re�nement b P Aα of α satis�es b ď a. Since

Ž

bďa fpbq “ fOpaq “ 0,
we have that fpbq “ 0 holds for every re�nement b P Aα of α, meaning that fpAαq “ t0u. Thus,
the circuit F has a 0-hazard at α.

Remark 3. The implication pBq ñ pAq does not hold: there are circuits F such that F` computes
the downwards closure fO of the Boolean function f computed by F even though F has 0-hazards.
Consider the circuit F “ xxyz _ yz computing the Boolean function f “ yz. The circuit has a
0-hazard at α “ pu, 1, 1q: fp0, 1, 1q “ fp1, 1, 1q “ 0 but F pu, 1, 1q “ u. However, the positive part
t` “ xyz of the (unique) zero term t “ xxyz is an implicant of the downwards closure fO of the
function f : t`paq “ 1 can only hold for the input a “ p1, 1, 1q, and on this input we also have
fOp1, 1, 1q ě fp1, 1, 0q “ 1. So, by Theorem 3, the circuit F` “ xyz _ y computes fO.

Remark 4. In the case of 1-hazards (instead of 0-hazards), neither of the implications pAq ñ pBq
and pBq ñ pAq holds. To show pAq œ pBq, consider the circuit F “ px _ zqpy _ zq computing
f “ xz _ yz. Since the circuit F produces all three prime implicants of f (see Remark 8), Theorem 1
implies that F has no 1-hazards. But on the input p0, 0, 1q, the monotone version F` “ y _ z of
F outputs F`p0, 0, 1q “ 1 whereas fOp0, 0, 1q “ fp0, 0, 0q _ fp0, 0, 1q “ 0. To show pBq œ pAq,
consider the circuit F “ xz _ yz for the same function f “ xz _ yz. Since this circuit produces no
zero terms at all, the assertion (C) and, hence, also (B) holds for this circuit. That is, F` “ fO holds.
But the circuit F has a 1-hazard at α “ p1, 1, uq: fp1, 1, 1q “ fp1, 1, 0q “ 1 but F p1, 1, uq “ u_ u “ u.

5. Proof of Theorem 1

Theorem 1 is a special case of two more general theorems Theorems 4 and 5 we prove in this
section.

Following Mukaidono [18], let us equip t0, u, 1u with a partial order ď such that u is the least
element and 0 and 1 are incomparable elements greater than u. This order obviously extends to the
vectors in t0, u, 1un by letting α ď β i� αi ď βi for all positions i. Thus, α ď β means that the
vector β is obtained from α by replacing some unstable bits u by stable bits 0 or 1. In particular, the
subcube Aα de�ned by a vector α P t0, u, 1un is Aα “ ta P t0, 1u

n : α ď au.
Since the gates AND, OR and NOT are monotone with respect to ď, the function F : t0, u, 1un Ñ

t0, u, 1u computed by a DeMorgan circuit F must be monotone with respect to ď. In particular, if
α ď β and F pβq “ u, then also F pαq “ u. That is, replacing stable bits 0{1 by the unstable bit u in
the input vector cannot change the unstable output u of the circuit to a stable output 0 or 1.

We say that a ternary vector α P t0, u, 1un is a 1-witness of a Boolean function f if fpAαq “ t1u.
Such a vector is a prime 1-witness of f if fpAβq ‰ t1u for every vector β ď α, β ‰ α. Dually, a
vector α P t0, u, 1un is a 0-witness of a Boolean function f if fpAαq “ t0u. Such a vector is a prime
0-witness of f if fpAβq ‰ t0u for every vector β ď α, β ‰ α.

In other words, a vector α is a 1 witness (0-witness) of f if already the assignment of the stable
bits of α to the variables forces f “ 1 (resp. f “ 0) regardless of the 0{1 values given to the remaining
variables (where vector α has u’s). Prime witnesses are minimal under ď vectors with these properties,

8

i.e. witnesses that are no longer witnesses if any one stable 0{1 entry is replaced by the unstable
entry u. For example, p1, 1, uq is a prime 1-witness, and p0, 0, uq a prime 0-witness of the function
fpx, y, zq “ xz _ yz.

Remark 5. There is an obvious correspondence between witness-vectors and implicants (implicates).
Namely, a vector α P t0, u, 1un is a (prime) 1-witness of f i� the term p “

Ź

i : αi‰u
xαi
i is a (prime)

implicant of f ; note that ppαq “ 1 and, hence, also ppAαq “ t1u. Dually, α is a (prime) 0-witness
of f i� the clause q “

Ž

i : αi‰u
xαi
i is a (prime) implicate of f ; note that qpαq “ 0 and, hence, also

qpAαq “ t0u.

Recall that a term t (and AND of literals) is a zero term if it contains at least one complementary
literal, that is, a literal z whose negation z also occurs in t. Similarly, clauses q (ORs of literals)
containing at least one complementary literal are trivial clauses. Note that, over the binary domain,
such terms and clauses can take only one value: tpaq “ 0 and qpaq “ 1 for all a P t0, 1un. This is no
longer the case over the ternary domain t0, u, 1un.

Remark 6. If t is a zero term and q is a trivial clause, then for every α P t0, u, 1un, we have tpαq P t0, uu
and qpαq P tu, 1u. Namely, tpαq “ 0 if zpαq “ 0 for some literal z of t, and tpαq “ u otherwise: in
this later case, all complementary literals of t must be set to u by α. Similarly, qpαq “ 1 if zpαq “ 1
for some literal z of q, and tpαq “ u otherwise: in this later case, all complementary literals of q must
be set to u by α.

Theorem 4 (1-hazards). Let F be a DeMorgan circuit computing a Boolean function f ,D be the formal
DNF and C the formal CNF of F . The following assertions are equivalent.

(a) F has a 1-hazard.
(b) There is a prime 1-witness α of f such that F pαq “ u.
(c) There is a prime 1-witness α of f such that qpαq “ u holds for some trivial clause q of C .
(d) There is a prime 1-witness α of f such that tpαq ‰ 1 holds for every term t of D.
(e) Some prime implicant of f is not a term of D.

In particular, by (c), 1-hazards can only occur in circuits producing trivial clauses.

Proof. (a)ô (b): The implication (b)ñ (a) holds just because F pAαq “ t1u holds for every 1-witness
α for f . So, F pαq “ u means that there is a 1-hazard at α. To show the converse implication (a)ñ
(b), suppose that F has a 1-hazard at some vector β P t0, u, 1un; hence, F pAβq “ t1u and F pβq “ u.
Since fpAβq “ F pAβq “ t1u, vector β is a 1-witness of f . So, α ď β holds for some prime 1-witness
α of f . From F pβq “ u and α ď β, we have F pαq “ u.

(b) ô (c): Let α P t0, u, 1un be a prime 1-witness of f ; hence, F pAαq “ t1u, implying that
qpAαq “ t1u and, hence, also qpαq “ 1 must hold for every nontrivial clause q ofC : held qpαq P t0, uu,
then qpaq “ 0 would hold for a particular re�nement a P Aα. So, if F pαq “ u, then qpαq “ u must
hold for some trivial clause q of C . This shows the implication (b) ñ (c). To show the converse
implication (c) ñ (b), suppose that qpαq “ u holds for some trivial clause q of C . For every other
clause q1 of C , we have q1pαq “ 1 if the clause q1 is nontrivial, or q1pαq P tu, 1u if the clause q1 is
trivial (see Remark 6). So, since qpαq “ u holds for our (trivial) clause q, and since 1^ u “ u, we have
F pαq “ Cpαq “ u.

(b)ô (d): Let α P t0, u, 1un be a (prime) 1-witness of f ; hence, F pAαq “ t1u. If F pαq “ u, then
tpαq ‰ 1 must hold for every term t of D just because 1_ u “ 1 ‰ u. This shows the implication (b)
ñ (d). To show the converse implication (d)ñ (b), suppose that tpαq ‰ 1, that is, tpαq P t0, uu holds
for every term t of D. Held tpαq “ 0, that is, tpAαq “ t0u for all terms t of D, then we would have

9

F pAαq “ t0u, a contradiction with F pAαq “ t1u. Thus, tpαq “ u must hold for at least one term t
of D and, hence, F pαq “ u.

(d)ô (e): To show the implication (d)ñ (e), suppose that there is a prime 1-witness α P t0, u, 1un
of f such that tpαq ‰ 1 holds for every term t of D. Since α is a prime 1-witness of f , the term
p “

Ź

i : αi‰u
xαi
i is a prime implicant of f . But since ppαq “ 1, this prime implicant is not among

the terms of D.
To show the converse implication (e)ñ (d), suppose that some prime implicant p “

Ź

iPS x
ci
i of

f is not a term of D. Since p if a prime implicant of f , the ternary vector α P t0, u, 1un with αi “ ci
for i P S and αi “ u for i R S is a prime 1-witness of f . Take now an arbitrary term t of D. If t is
a zero term, then we clearly have tpαq ‰ 1 (see Remark 6). So let t be a nonzero term of D, and
suppose contrariwise that tpαq “ 1, that is, tpAαq “ t1u holds. Since Aα “ p´1p1q, we then have
p´1p1q “ Aα Ď t´1p1q which can only hold if t is a subterm of p. Since t is an implicant of f and p
is a prime implicant of f , this is only possible if t “ p, a contradiction with p not being a term of D.

(c)ô (d): This follows from the already proven equivalences (b)ô (c) and (b)ô (d). But for a
“sanity check” and to see how the DNF D and the CNF C are related in the case of 1-hazards, let us
show the equivalence (c)ô (d) directly. So, let α P t0, u, 1un be a prime 1-witness of f . In particular,
then fpAαq “ t1u holds. To show (c)ñ (d), suppose that qpαq “ u holds for some (not necessarily
trivial) clause q of C . The clause q picks one literal from each term of D. Held tpαq “ 1 for at least
one term t of D, then we would have qpαq “ 1 ‰ u. So, tpαq P t0, uu must hold for every term t of D.

To show the converse implication (d)ñ (c), suppose that tpαq P t0, uu holds for every term t of
D. Thus, for every term t there are only two possibilities: either (1) zpαq “ 0 for some literal z P t,
or (2) zpαq “ u for some literal z P t and z1pαq P tu, 1u for all literals z1 P t. Case (1) cannot hold
for all clauses, since then we could form a clause q by picking from each term one literal evaluated
to 0 by α. Then qpαq “ 0 and, hence, fpAαq “ t0u ‰ t1u. So, case (2) must happen for at least
one term t0, and we can form a clause q of the CNF C as follows: pick a literal z P t0 with zpαq “ u
from the term t0, and pick from each other term t1 any literal z1 with z1pαq P t0, uu. Then qpαq “ u,
and it remains to show that q must be a trivial clause. Suppose the opposite. Then, by replacing the
instable bits u of α with appropriate constants 0 or 1, we can obtain a re�nement a P Aα of α for
which qpaq “ 0 holds. But then also fpaq “ 0, a contradiction with fpAαq “ t1u.

Remark 7. Let D be the formal DNF of a DeMorgan circuit F , and α P t0, u, 1un. If F pAαq “ t1u,
that is, if F accepts all vectors of the subcube Aα, then we only know that every vector of Aα must
be accepted by some t term of D, but for di�erent vectors, these terms may be di�erent. If, however,
the circuit F has no 1-hazards, then Theorem 4(d) gives us a much stronger property: tpAαq “ t1u
must hold for at least one term t, that is, a single term of D must accept all vectors of the subcube Aα.

Remark 8. The equivalence (a)ô (e) of Theorem 4 gives the �rst claim of Theorem 1: a DeMorgan
circuit has no 1-hazards if and only if it produces all prime implicants of the computed Boolean
function. Note, however, that in the case of 0-hazards, this claim of Theorem 1 holds in neither of
the two directions. To show pœq, consider the circuit F “ xy _ y for the function f “ x _ y.
Since the circuit produces no zero terms, it has no 0-hazards (Theorem 5). But the prime implicant
p “ x of f is not produced by F . To show pöq, consider the circuit F “ px_ zqpy _ zq computing
f “ xz _ yz. The formal DNF D “ xy _ xz _ yz _ zz of the circuit F contains all three prime
implicants xy, xz and yz of f , but F still has a 0-hazard at input α “ p0, 0, uq: fpAαq “ t0u but
F pαq “ zzpαq “ u^ u “ u.

Theorem 5 (0-hazards). Let F be a DeMorgan circuit computing a Boolean function f ,D be the formal
DNF and C the formal CNF of F . The following assertions are equivalent.

10

(a) F has a 0-hazard.
(b) There is a prime 0-witness α of f such that F pαq “ u.
(c) There is a prime 0-witness α of f such that tpαq “ u holds for some zero term t of D.
(d) There is a prime 0-witness α of f such that qpαq ‰ 0 holds for every clause q of C .
(e) Some prime implicate of f is not a clause of C .

In particular, by (c), 0-hazards can only occur in circuits producing zero terms. The proof of
Theorem 5 is just “dual” to the proof of Theorem 4, but we include it only for completeness.

Proof. (a)ô (b): The implication (b)ñ (a) holds just because F pAαq “ t0u holds for every 0-witness
α for f . So, F pαq “ u means that there is a 0-hazard at α. To show the converse implication (a)ñ
(b), suppose that F has a 0-hazard at some vector β P t0, u, 1un; hence, F pAβq “ t0u and F pβq “ u.
Since F pAβq “ t0u, vector β is a 0-witness of f . So, α ď β holds for some prime 0-witness α of f .
Then F pαq “ u because F pβq “ u and α ď β.

(b) ô (c): Let α P t0, u, 1un be a prime 0-witness of f ; hence, F pAαq “ t0u, implying that
tpAαq “ t0u and, hence tpαq “ 0 for every nonzero term t of D: held tpαq P tu, 1u, then tpaq “ 1
would hold for a particular re�nement a P Aα. So, if F pαq “ u, then tpαq “ u must hold for some
zero term t of D. This shows the implication (b) ñ (c). To show the converse implication (c) ñ
(b), suppose that tpαq “ u holds for some zero term t of D. For every other term t1 of D, we have
t1pαq “ 0 if t1 is nonzero, or t1pαq P t0, uu if t1 is a zero term (see Remark 6). So, since tpαq “ u holds
for our (zero) term t, and since 0_ u “ u, we have F pαq “ Dpαq “ u.

(b)ô (d): Let α P t0, u, 1un be a (prime) 0-witness of f ; hence F pAαq “ t0u. If F pαq “ u, then
qpαq ‰ 0 must hold for every clause q of the CNF C just because 0 ^ u “ 0 ‰ u. This shows the
implication (b) ñ (d). To show the converse implication (d) ñ (b), suppose that qpαq ‰ 0, that is,
qpαq P tu, 1u holds for every clause q of C . Held qpαq “ 1, that is, qpAαq “ t1u for all clauses q of
C , then we would have F pAαq “ t1u, a contradiction with F pAαq “ t0u. Thus, qpαq “ u must hold
for at least clause q of C and, hence, F pαq “ u.

(d)ô (e): To show the implication (d)ñ (e), suppose that there is a prime 0-witness α P t0, u, 1un
of f such that qpαq ‰ 0 holds for every clause q of C . Since α is a prime 0-witness of f , the clause
q “

Ž

i : αi‰u
xαi
i is a prime implicate of f . But since qpαq “ 0, this prime implicate is not among

the clauses of D. To show the converse implication (e) ñ (d), suppose that some prime implicate
q “

Ž

iPS x
ci
i of f is not a clause ofC . Since q if a prime implicate of f , the ternary vectorα P t0, u, 1un

with αi “ ci for i P S and αi “ u for i R S is a prime 0-witness of f . Take now an arbitrary clause
r of C . If r is a trivial clause (contains a literal together with its negation), then we clearly have
rpαq P tu, 1u (see Remark 6). So let r be a nontrivial clause of C , and suppose contrariwise that
rpαq “ 0, that is, rpAαq “ t0u holds. Since Aα “ q´1p0q, we then have q´1p0q “ Aα Ď r´1p0q
which can only hold if r is a sub-clause of q. Since r is an implicate of f and q is a prime implicate of
f , this is only possible if r “ q, a contradiction with q not being a clause of C .

(c)ô (d): This follows from the already proven equivalences (b)ô (c) and (b)ô (d). But for a
“sanity check” and to see how the DNF D and the CNF C are related in the case of 0-hazards, let us
show the equivalence (c)ô (d) directly. So, let α P t0, u, 1un be a prime 0-witness of f . In particular,
then fpAαq “ t0u holds. To show (c)ñ (d), suppose that tpαq “ u holds for some (not necessarily
zero) term t of D. The term t picks one literal from each clause of C . Held qpαq “ 0 for at least one
cause q of C , then we would have tpαq “ 0 ‰ u. So, qpαq P tu, 1u must hold for every clause q of C .

To show the converse implication (d)ñ (c), suppose that qpαq P tu, 1u holds for every clause q of
the CNF C . Thus, for every clause q there are only two possibilities: either (1) zpαq “ 1 for some
literal z P q, or (2) zpαq “ u for some literal z P q and z1pαq P t0, uu for all literals z1 P q. Case (1)

11

cannot hold for all clauses, since then we could form a term t by picking from each clause one literal
evaluated to 1 by α. Then tpαq “ 1 and, hence, fpAαq “ t1u ‰ t0u. So, case (2) must happen for
at least one clause q0, and we can form a term t of the DNF D as follows: pick a literal z P q0 with
zpαq “ u from the clause q0, and pick from each other clause q1 any literal z1 with z1pαq P tu, 1u.
Then tpαq “ u, and it remains to show that t must be a zero term. Suppose the opposite. Then, by
replacing the instable bits u of α with appropriate constants 0 or 1, we can obtain a re�nement a P Aα

of α for which tpaq “ 1 holds. But then also fpaq “ 1, a contradiction with fpAαq “ t0u.

6. Complexity gaps

Let fn be a (non-monotone) Boolean function of n2 variables, whose inputs are nˆ n matrices
x “ pxi,jq, and fnpxq “ 1 if and only if x is permutation matrix, that is, every row and every column
of x has exactly one 1.

Lemma 1. Lpfnq “ Opn3q but Lupfnq “ nΩplognq.

Proof. The logical permanent function pern accepts a matrix x i� fnpzq “ 1 holds for at least
one matrix z ď x. Hence, pern “ fOn is the downwards closure of fn. A well-known result of
Razborov [20] shows Lmppernq “ nΩplognq, and Theorem 3 yields Lupfnq ě Lmppernq “ nΩplognq.
To show the upper bound Lpfnq “ Opn3q, just associate with every entry pi, jq the terms Ri,j and
Ci,j , where Ri,j is the AND of xi,j and all xi,k for k “ 1, . . . , j´ 1, j` 1, . . . , n, and Ci,j is the AND
of xi,j and all xl,j for l “ 1, . . . , i ´ 1, i ` 1, . . . , n. Consider the DeMorgan circuit F “ F1 ^ F2,
where F1 “

Źn
i“1

Žn
j“1Ri,j and F2 “

Źn
j“1

Žn
i“1Ci,j . Note that Ri,jpxq “ 1 i� the ith row of x

has exactly one 1 in the jth column, and Ci,jpxq “ 1 i� the jth column of x has exactly one 1 in the
ith row. Hence, F1pxq “ 1 i� every row of x has exactly one 1, and F2pxq “ 1 i� every column of x
has exactly one 1, meaning that the circuit F (which, actually, is a formula) computes fn.

Remark 9. Actually, the unrestricted circuit complexity of fn is Lpfnq “ Opn2q, i.e., is linear in the
number n2 of variables of fn: every symmetric Boolean function of n variables can be computed by
a DeMorgan circuit using Opnq gates (see, e.g. [24, Chapter 3.4]). The Boolean function detecting
whether an input vector has exactly one 1 is clearly symmetric. Note, however, that the only slightly
worse Opn3q bound is already achieved by a trivial circuit. This (triviality of the upper bound) is the
main message of Lemma 1.
Remark 10. If one is satis�ed with having a bit less trivial circuit than that for fn, then one can
actually increase the gap from super-polynomial to exponential. A k-clique in a complete graph Kn

on n vertices consists of a complete graph on some k vertices and n´ k isolated vertices. The exact
k-clique function gn has m “

`

n
2

˘

variables corresponding the edges of Kn, and gnpxq “ 1 i� the
graph encoded by x is a k-clique. A subgraph of Kn is a k-clique i� it has exactly k vertices of degree
k ´ 1 and kpk ´ 1q{2 edges in total. Every Boolean function, which accepts an input vectors i� it
has exactly a given number of 1s, is clearly symmetric. So, we have Lpgnq “ Opmq “ Opn2q. On
the other hand, the downwards closure gOn of gn is the well-known k-clique function k-CLIQUE. So,
if we take k “ tpn{ log nq1{3u, then Theorem 3 and the monotone circuit lower bound of Alon and
Boppana [1] for k-CLIQUE, yield Lupgnq ě Lmpg

O
n q “ exp

`

pn{ log nq1{3
˘

.
Remark 11. The depth of our (trivial) DeMorgan circuit for fn is only Oplog nq. On the other hand, as
shown by Raz and Wigderson [19, Theorem 4.2], every monotone circuit computing pern has depth
Ωpnq. Since fOn “ pern, Theorem 3 implies that every hazard-free DeMorgan circuit computing fn
must have depth Ωpnq. Thus, the function fn also shows that the tradeo� between the depths of
hazard-free and general DeMorgan circuits can be even exponential.

12

7. Final remarks

Recall that Lpzpfq is the minimum number of gates in a DeMorgan circuit F computing the
Boolean function f such that F produces all prime implicants and produces no zero term. Let Lupnq
be the Shannon function for hazard-free circuits, that is, the maximum of Lupfq over all Boolean
functions f of n variables. We know that Lupfq ě Lmpf

Oq and Lpzpfq ě Lupfq holds for any
Boolean function f (see Eq. (1)). The following natural open problems remain:

1. How large can the gap Lupfq{Lmpf
Oq be?

2. How large can the gap Lpzpfq{Lupfq be?
3. What is the asymptotic value of Lupnq?

To show Lpfq “ Op2n{nq for ay Boolean function f of n variables, Shannon [22] used the decompo-
sition F “ xn ¨ F0 _ xn ¨ F1 with Fb :“ F px1, . . . , xn´1, bq for b P t0, 1u to show that all Boolean
functions of m variables can be simultaneously computed by a circuit Allm with 2 ¨ 22m gates (just
two gates per function). Then he used the decomposition to �x the last n´m variables of f , and
constructs the circuit for f by taking the corresponding outputs of the circuit Allm. Taking m about
logpn´ log nq yields Lpfq ď p4` op1qq ¨ 2n{n (see the exposition [21]).

Nitin Saurabh (personal communication) observed that a slight modi�cation of Shannon’s con-
struction [22] (as exposed in [21]) yields Lupnq ď 8 ¨ 2n{n also for hazard-free circuits. Since the
resulting from Shannon’s decomposition circuit has no zero terms, it has no 0-hazards (Theorem 2),
but (by Theorem 1) it may have 1-hazards: all produced terms by a Shannon circuit for f have length
n, while some prime implicants of f may be shorter. To avoid also 1-hazards, Nitin Saurabh suggested
to use an extended decomposition

F “ xn ¨ F0 _ xn ¨ F1 _ F2 , (2)

where F2 “ F0 ¨ F1. Because of this additional subcircuit F2, the circuit for f constructed using this
recursion will already produce all prime implicants of f as terms. Hence, by Theorem 1, the circuit F
will have no 1-hazards. Let us show that they will have no 0-hazards either.

Note that the latter claim is not obvious: the additional subcircuit F2 “ F0 ¨F1 may produce zero
terms, even if neither of the subcircuits F0 nor F1 does this; and zero terms may lead to 0-hazards
(see Theorem 5). Still, we have the following

Lemma 2. Circuits constructed using the decomposition Eq. (2) have no 0-hazards.

Proof. Argue by induction on the number n of variables. The basis case n “ 1 is trivial: F px1q “

x1 ¨ F p0q _ x1 ¨ F p1q _ F p0q ¨ F p1q clearly has no hazards.

Induction Step. Let F “ xn ¨ F0 _ xn ¨ F1 _ F2, where F2 “ F0 ¨ F1. If the subcircuits F0 and F1

have no 0-hazards, then also the circuit F has no 0-hazards.

To prove this, suppose that F has a 0-hazard at some α P t0, u, 1un. Hence, F pAαq “ t0u but
F pαq “ u; recall that Aα Ď t0, 1u

n is the set of all re�nements of α. Since, 1_ u “ 1, we know that
Fipαq P t0, uu for all i “ 1, 2, 3. Our goal is to show that then at least one of the sucircuits F0 and F1

must have a 0-hazard.

Case 1: xnpαq P t0, 1u, say, xnpαq “ 0. Then F pαq “ F0pαq _ F2pαq “ u and, hence, F0pαq “ u.
Since xn ¨ F0pAαq “ t0u, and since xnpαq “ 0, we also have F0pAαq “ t0u. Hence, the subcircuit
F0 has a 0-hazard at α.

Case 2: xnpαq “ u. From F pAαq “ t0u we then have xn ¨ F0pAαq “ t0u and xn ¨ F1pAαq “ t0u.
Since xnpαq “ u, this must hold when xn “ 1 as well as when xn “ 1. So, F0pAαq “ t0u and
F1pAαq “ t0u must hold.

13

If F2pαq “ u, then F0pαq “ u or F1pαq “ u, that is, at least one of the subcircuits F0 or F1 has a 0-
hazard at α. So, suppose that F2pαq ‰ u. Then F2pαq “ 0, for F2pαq “ 1 would yield F pαq “ 1 ‰ u.
Both F0pαq “ 0 and F1pαq “ 0 cannot hold, because then we would have F pαq “ 0 ‰ u. Hence,
Fipαq “ u must hold for some i P t0, 1u. Since FipAαq “ t0u, the subcircuit Fi has a 0-hazard at α.

So, thank to the re�nement of Eq. (2) by Nitin Saurabh, the order of magnitude is already known:
Lupnq “ Θp2n{nq. It remains, however, open whether Lupnq „ 2n{n holds. One possibility here
could be to try to adopt Lupanov’s construction [16] leading to Lpnq ď p1` op1qq2n{n.

Acknowledgment. I am thankful to Igor Sergeev for very interesting general discussions, and to Nitin
Saurabh for sharing his interestingd observation concerning the Shannon function Lupnq and for
allowing to mention it here.

References

[1] N. Alon and R. Boppana. The monotone circuit complexity of boolean functions. Combinatorica, 7(1):1–22, 1987.
[2] W. Baur and V. Strassen. The complexity of partial derivatives. Theor. Comput. Sci., 22:317–330, 1983.
[3] J. G. Bredeson and P. T. Hulona. Elimination of static and dynamic hazards formultiple input changes in combinational

switching circuits. Information and Control, 20:114–124, 1972.
[4] S. H. Cadwell. Switching Circuits and Logical Design. John Willey & Sons, 1958.
[5] Y. Crama and P. L. Hammer, editors. Boolean Functions: Theory, Algorithms, and Applications, volume 142 of

Encyclopedia of Mathematics and Its Applications. Cambridge University Pess, 2011.
[6] E. Eichelberger. Hazard detection in combinational and sequential switching circuits. IBM J. Res. Develop., 9:90–99,

1965.
[7] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization.

Combinatorica, 1:169–197, 1981.
[8] J.E. Hopcroft and R.M. Karp. An n5{2 algorithm for maximum matching in bipartite graphs. SIAM J. Comput.,

2:225–231, 1973.
[9] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner. On the complexity of generating gate level

information �ow tracking logic. IEEE Trans. Info. Forensics Secur., 7(3):1067–1080, 2012.
[10] D. A. Hu�man. The design and use of hazard-free switching networks. J. ACM, 4(1):47–62, 1957.
[11] C. Ikenmeyer, B. Komarath, C. Lenzen, V. Lysikov, A. Mokhov, and K. Sreenivasaiah. On the complexity of hazard-free

circuits. J. ACM, 66(4):Article 25, 2019.
[12] S. C. Kleene. Introduction to Metamathematics. North Holland, 1952.
[13] N. B. Komarath and N. Saurabh. On the complexity of detecting hazards. Inf. Process. Letters, 2020.
[14] S. Körner. Experience and Theory: An Essay in the Philosophy of Science. Routledge & Kegan Paul, London, 1966.
[15] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2:83–97, 1955.
[16] O. B. Lupanov. A method of circuit synthesis. Izvesitya VUZ, Radio�z, 1:120–140, 1958. (in Russian).
[17] G. Malinowski. Kleene logic and inference. Bull. Section Logic, 43(1/2):42–52, 2014.
[18] M. Mukaidono. On the B-ternary logical function–A ternary logic considering ambiguity. Syst. Comput. Controls,

3(3):27–36, 1972.
[19] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. J. ACM, 39(3):736–744, 1992.
[20] A. A. Razborov. Lower bounds on monotone complexity of the logical permanent. Math. Notes of the Acad. of Sci. of

the USSR, 37(6):485–493, 1985.
[21] N. Saurabh. Lupanov’s upper bound, gate elimination technique, linear lower bounds against circuits, 2019. Lecture

Note.
[22] C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical Journal, 28:59–98, 1949.
[23] É. Tardos. The gap between monotone and non-monotone circuit complexity is exponential. Combinatorica, 7(4):141–

142, 1987.
[24] I. Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.
[25] M. Yoeli and S. Rinon. Application of ternary algebra to the study of static hazards. J. ACM, 11(1):84–97, 1964.

14
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://people.mpi-inf.mpg.de/~nsaurabh/bfc2019/lecture2.pdf
https://people.mpi-inf.mpg.de/~nsaurabh/bfc2019/lecture2.pdf

