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Abstract. The problem of constructing hazard-free Boolean circuits (those avoiding elec-
tronic glitches) dates back to the 1940s and is an important problem in circuit design and
even in cybersecurity. We show that a DeMorgan circuit is hazard-free if and only if the
circuit produces (purely syntactically) all prime implicants as well as all prime implicates of
the Boolean function it computes. This extends to arbitrary DeMorgan circuits a classical
result of Eichelberger [IBM J. Res. Develop., 9 (1965)] showing this property for special
depth-two circuits. Via an amazingly simple proof, we also strengthen a recent result Iken-
meyer et al. [J. ACM, 66:4 (2019)]: not only the complexities of hazard-free and monotone
circuits for monotone Boolean functions do coincide, but every optimal hazard-free circuit
for a monotone Boolean function must be monotone. Then we show that hazard-free circuit
complexity of a very simple (non-monotone) Boolean function is super-polynomially larger
than its unrestricted circuit complexity. This function accepts a Boolean n ˆ n matrix iff
every row and every column has exactly one 1-entry. Finally, we show that every Boolean
function of n variables can be computed by a hazard-free circuit of size Op2n{nq.

1. Introduction

The problem of designing hazard-free circuits naturally occurs when implementing circuits
in hardware ([6, 13], but is also closely related to questions in logic ([15, 17, 19]) and even in
cybersecurity ([12, 28]). The importance of hazard-free circuits is already highlighted in the
classical textbook [6].

In this paper, under a circuit we will understand a DeMorgan circuit, that is, a Boolean
circuit with AND, OR and NOT operations as gates, where negations are applied only to input
variables. Inputs are constants 0 and 1, variables x1, . . . , xn and their negations x1, . . . , xn.
A monotone circuit is a DeMorgan circuit without negated inputs. The size of a circuit is the
number of non-input gates, and the depth is the maximum, over all input-to-output paths, of
the number of wires in these paths.

Roughly speaking, hazards are spurious pulses or electronic glitches that may occur at
the output of a circuit during an input transition, stipulated by physical delays at wires or
gates in a specific hardware implementation of the circuit. Having designed a hazard-free
circuit for a given Boolean function, one is sure that no glitches will occur in any hardware
implementation of this circuit, regardless of the physical delays.

A mathematical definition of hazards not relating on a vague notion of “possible glitches” is
given in Section 2. But to give an illuminating example right now, let us consider an optimal
circuit F “ xz _ yz for the Boolean function which outputs x if z “ 1 and outputs y if z “ 0
(this function is known as multiplexer). If due to different delays at wires or gates, the output
of the AND gate xz of the circuit F reaches the output OR gate later than that of the AND
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gate yz, and if we replace input a “ p1, 1, 0q by b “ p1, 1, 1q, then the circuit will output 0
before it outputs the correct value 1: for a short moment, the output OR gate will see the new

value 0 of yz on the input b, and the old value 0 of xz on the input a. Thus, some hardware
implementations of the circuit F may have a spurious 1-0-1 glitch during the input transition
a Ñ b.

That every Boolean function f can be computed by a hazard-free DeMorgan circuit was
shown by Huffman [13] already in 1957: the DNF whose terms are prime implicants of
f is hazard-free. In 1965, Eichelberger [8, Theorem 2] extended this result: if a DNF D

representing f contains no zero-terms, that is, terms with a variable together with its negation,
then D is hazard-free if and only if D contains all prime implicants of f as terms. After
these structural results, research mainly concentrated on developing algorithms for detecting
hazards, and many important results were obtained [5, 8, 20, 30], just to mention some of
them.

But somewhat surprisingly, the following natural question remained open: by how much
must the size of a circuit be increased to ensure hazard-freeness? Only recently, an important
progress towards this question was made by Ikenmeyer et al. [14]: the hazard-free circuit
complexity of monotone Boolean functions coincides with their monotone circuit complexity.
Together with known lower bounds on the later complexity, this shows that achieving hazard-
freeness can require a super-polynomial blow up in circuit size. Moreover, Ikenmeyer et
al. [14], and Komarath and Saurabh [16] have shown that detecting the presence of hazards
is computationally hard.

Our results are the following.

(1) A DeMorgan circuit computing a Boolean function f is hazard-free if and only if
it produces (purely syntactically) all prime implicants and all prime implicates of f

(Corollary 3 proved in Section 6.3). This removes the “no zero-terms” requirement in
Eichelberger’s theorem [8, Theorem 2].

(2) Every minimal hazard-free circuit computing a monotone Boolean function is mono-
tone; this is a direct consequence of Theorem 1 proved in Section 3. It strengthens
the aforementioned result of Ikenmeyer et al. [14], and the proof is surprisingly simple.

(3) Already very simple Boolean functions require a supper-polynomial blow up in the
circuit size and depth to be computed by hazard-free circuits (Theorems 3 and 4
proved in Section 5).

(4) Every Boolean function of n variables can be computed by a hazard-free circuit of
size Op2n{nq (Section 7).

The paper is organized as follows. In the next section, we recall standard concepts concerning
Boolean functions and circuit, as well as of hazards. Sections 3 to 5 concern the complexity
of hazard-free circuits (results 2 and 3); the proofs here are very simple. In Section 6, we give
four necessary and sufficient conditions for a DeMorgan circuit to be hazard-free (implying
result 1). Along the way, we show the duality between 0-hazards and 1-hazards (Section 6.3).
In the last Section 7, we show that every Boolean function of n variables can be computed
by a hazard-free circuit of size Op2n{nq (result 4), and state open problems.

2. Preliminaries

We will use standard concepts concerning Boolean functions and circuits as, for example,
in the standard references [7, 29], but let us recall them for completeness.
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A literal is either a variable xi “ x1
i or its negation xi “ x0

i . A term is an AND of literals,
and a clause is an OR of literals. A term is a zero-term if it contains a variable xi together
with its negation xi. Terms 0 and 1 are constant terms (note that 0 is not a zero-term, it
is a constant term). By analogy with the usual convention for products, we often omit the
operator ^ and denote conjunction by mere juxtaposition. For example, we will write xyz

instead of x ^ y ^ z. Similarly, a clause is an OR of literals. A clause containing a variable
together with its negation is a one-clause. A non-zero term is a term which is not a zero-term,
and a non-one clause is a clause which is not a one-clause. A DNF (disjunctive normal form)
is an OR of terms, and a CNF (conjunctive normal form) is an AND of clauses.

An implicant of a Boolean function f : t0, 1un Ñ t0, 1u is a non-zero term t such that t ď f

holds, that is, for every a P t0, 1un, tpaq “ 1 implies fpaq “ 1. In other words, a non-zero term
t is an implicant of f if every evaluation of the literals of t to 1 already forces the function f

to take value 1, regardless of the 0{1 values given to the remaining variables. An implicant t

of f is a prime implicant of f if no proper subterm t1 of t has this property, that is, if t ď t1
and t1 ď f , then t1 “ t. For example, if fpx, y, zq “ xy _ xyz, then xy, xyz and xz are
implicants of f , but xyz is not a prime implicant. Dually, an implicate of a Boolean function
f : t0, 1un Ñ t0, 1u is a non-one clause c such that f ď c holds, that is, for every a P t0, 1un,
cpaq “ 0 implies fpaq “ 0. An implicate c of f is a prime implicate of f if no proper subclause
of c has this property. For example, if fpx, y, zq “ xz_yz, then c “ x_y is a prime implicate
of f . Implicants and implicates of f describe subcubes of the binary cube t0, 1un on which f

is constant.

2.1. Formal DNFs and CNFs. Every DeMorgan circuit F not only computes a unique
Boolean function, but also produces (purely syntactically) a unique set of terms as well as a
unique set of clauses in a natural way.

Namely, at an input gate holding a literal or a constant, the unique produced term and
clause is this literal or constant. The set of terms produced at an OR gate is the union of the
sets of terms produced at two gates entering this OR gate. The set of terms produced at an
AND gate consists of all terms of the form t “ t1 ^ t2, where t1 is a term produced at one of
the two gates entering this AND gate, and t2 is a term produced at the other entering gate.
The OR of all terms produced at the output gate of F is the formal DNF of F

The set of clauses produced at the gates of a given circuit is defined dually by interchanging
the roles of OR and AND gates. Namely, the set of clauses produced at an AND gate is the
union of the sets of clauses produced at the two gates entering this AND gate. The set of
clauses produced at an OR gate consists of all clauses of the form c “ c1 _ c2, where c1 is a
clause produced at one of the two gates entering this OR gate, and c2 is a clause produced
at the other entering gate. The AND of all clauses produced at the output gate of F is the
formal CNF of F .

Let us stress and important point: when forming the formal DNFs or formal CNFs, all
Boolean laws, except two, can be used to simplify the resulting formulas. The two exceptions
are the annihilation laws x^ x “ 0 and x_ x “ 1: they are not used! Thus, some produced
terms may be zero-terms, and some produced clauses may be one-clauses, that is, may contain
a variable together with its negation. For example, the formal DNF xy_xz_yz_zz produced
by the circuit F “ px_zqpy_zq contains a zero-term zz. These “redundant” terms and clauses
have no influence on the Boolean function computed by the circuit, but are decisive in the
context of hazards.
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2.2. Ternary logic. In this paper, we ignore the electronic aspect of hazards, and stick on
their idealized, mathematical model as, for example, in [5, 8, 30, 14, 16]. The classical Kleene’s
three-valued “strong logic of indeterminacy” [15] extends the Boolean operations AND, OR
and NOT from the Boolean domain t0, 1u to the ternary domain t0, u, 1u, where the bits 0
and 1 are interpreted as stable, and the bit u as unstable:

(1)

and 0 u 1

0 0 0 0
u 0 u u

1 0 u 1

or 0 u 1

0 0 u 1
u u u 1
1 1 1 1

not 0 u 1

1 u 0

Note that, if we define the unstable bit as u “ 1
2
, then these ternary operations turn into

tropical operations: x^ y “ minpx, yq, x_ y “ maxpx, yq and x “ 1´ x. It is easy to verify
that the system pt0, u, 1u,_,^q forms a distributive lattice with zero element 0 and universal
element 1; see, for example, Yoeli and Rinon [30]. In particular, the operations _ and ^
are associative, commutative and each distributes over the other. Moreover, the elements 0
and 1 satisfy for every x P t0, u, 1u: x ^ 0 “ 0, x ^ 1 “ x, x _ 0 “ x and x _ 1 “ 1. The
absorbtion laws x_ xy “ x and xpx_ yq “ x as well as the rules of de Morgan x_ y “ x^ y

and x^ y “ x_ y also hold. The only difference from the Boolean algebra is that, over the
ternary domain t0, u, 1u, the annihilation laws x^x “ 0 and x_x “ 1 do not hold: 0^u “ 0
but u^ u “ u ‰ 0, and 1_ u “ 1 but u_ u “ u ‰ 1.

Remark 1. Since the annihilation laws x^x “ 0 and x_x “ 1 are not used when constructing
the formal DNF D or the formal CNF C produced by a given circuit F , the ternary functions
computed by D and C coincide with that computed by the circuit F , that is, Dpαq “ Cpαq “
F pαq holds for every ternary vector α P t0, u, 1un. This is a simple but important observation
which allows us to analyze the properties of ternary functions F : t0, u, 1un Ñ t0, u, 1u defined
by DeMorgan circuits F by analyzing the properties of the formal DNFs and formal CNFs of
these circuits.

Remark 2. One can equip the set t0, u, 1un of ternary vectors with a partial order ď, where
α ď β means that the vector β is obtained from α by replacing some unstable bits u by stable
bits 0 or 1. Since the extensions Eq. (1) of gates AND, OR and NOT to the ternary domain
t0, u, 1u are monotone with respect to ď, the function F : t0, u, 1un Ñ t0, u, 1u computed by
a DeMorgan circuit F is monotone with respect to ď. In particular, if α ď β and F pβq “ u,
then also F pαq “ u, and if F pαq “ ǫ for a stable bit ǫ P t0, 1u, then also F pβq “ ǫ.

2.3. Hazards. After the functions AND, OR, NOT computed at individual gates are ex-
tended from the binary domain t0, 1u to the ternary domain t0, u, 1u using the truth-tables
Eq. (1), every DeMorgan circuit F computing a given Boolean function f : t0, 1un Ñ t0, 1u
turns into a circuit computing some ternary function F : t0, u, 1un Ñ t0, u, 1u, a “ternary
extension” of f , which coincides with f on t0, 1un. Even if two circuits compute the same
Boolean function, their ternary extensions may be different. Whether a circuit F is hazard-
free or not depends entirely on the properties of its ternary extension which, in turn, depends
on the specific form of the circuit F . Namely, the circuit F has a hazard at some vector
α P t0, u, 1un if the Boolean function f computed by F does not depend on the unstable bits
of α, but still F outputs the unstable bit u on the input α. To be more specific, let us fix our
notation.
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A resolution of a ternary vector α P t0, u, 1un is a vector in t0, 1un obtained from α by
replacing every occurrence of the unstable bit u by a stable bit 0 or 1. The subcube defined
by α is the set

Aα “  
a P t0, 1un : a is a resolution of α

(
of all resolutions of α; hence, |Aα| “ 2m, where m is the number of unstable bits u in α. If
α P t0, 1un (there are no unstable bits at all), then we let Aα “ tαu. For a Boolean function
f and a set A Ď t0, 1un, let fpAq “ tfpaq : a P Au Ď t0, 1u denote the set of values taken by f

on A. Hence, fpAq “ t0u iff fpaq “ 0 for all a P A, and fpAq “ t1u iff fpaq “ 1 for all a P A.
In particular, |fpAq| “ 1 means that the function f is constant on A.

Remark 3. If F is a DeMorgan circuit, and α P t0, u, 1un, then F pAαq “ tǫu for ǫ P t0, 1u
implies F pαq ‰ ǫ, that is, F pαq P tǫ, uu. This follows from Remark 2, but can be also shown
directly. Suppose that F pAαq “ t0u but F pαq “ 1. Then tpαq “ 1 must hold for at least one
term t produced by F . Since 1 ^ u “ u ‰ 1, this means that the vector α evaluates to 1 all
literals of t. But then also every resolution of a P Aα of α evaluates these literals to 1, and we
obtain F paq “ tpaq “ 1, a contradiction with F paq “ 0. If F pAαq “ t1u, then F pαq P t1, uu
follows by considering the clauses produced by F .

There are several types of hazards—we will only consider the so-called static logical hazards

[5, 8, 30].

Definition 1 (Hazards). A circuit F of n variables has a hazard at α P t0, u, 1un if F is
constant on the subcube Aα but F pαq “ u holds. This is a 0-hazard if F pAαq “ t0u, and is
a 1-hazard if F pAαq “ t1u. A circuit is hazard-free if it has a hazard at none of the inputs
α P t0, u, 1un.

Example 1. Trivial examples of circuits with hazards are the two circuits x ^ x and x _ x

computing the two constant functions 0 and 1. A less trivial example of such a circuit is
F “ xz _ yz computing the multiplexer function fpx, y, zq “ xz _ yz; we already considered
this circuit in the introduction to give an intuition behind the hazards. This circuit has a
1-hazard at α “ p1, 1, uq: F pαq “ u_u “ u even though fp1, 1, 0q “ fp1, 1, 1q “ 1. The circuit
H “ px_ zqpy _ zq for the same function has a 0-hazard at α “ p0, 0, uq: Hpαq “ u^ u “ u

even though fp0, 0, 0q “ fp0, 0, 1q “ 0.

Remark 4. Let us stress that the mere fact that a circuit F outputs u on some α P t0, u, 1un
does not mean that F has a hazard at α: for the latter to happen, the circuit must take
the same value on the entire Boolean subcube Aα, that is, |F pAαq| “ 1 must also hold. In
particular, if every two vectors in f´1pǫq differ in at least two positions, then every DeMorgan
circuit computing f is free from ǫ-hazards per se: if α contains at least one u, then F pAαq ‰ tǫu.
So, for example, every circuit F computing the parity function x1 ‘ ¨ ¨ ¨ ‘ xn is hazard-free.

A “folklore” observation is that 0-hazards can only be introduced by zero-terms, and 1-
hazards can only be introduced by one-clauses. Recall that a circuit is monotone if it has
no negated variables as inputs; note that such circuits cannot produce any zero-terms or
one-clauses.

Proposition 1. If a circuit F produces no zero-terms, then F has no 0-hazards, and if

F produces no one-clauses, then F has no 1-hazards. In particular, monotone circuits are

hazard-free.
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Proof. Let D be the formal DNF of the circuit F , and suppose that all terms of D are non-zero
terms. Assume to the contrary that the circuit F has a 0-hazard at some vector α P t0, u, 1un;
hence, F pAαq “ t0u but F pαq “ u. Since Dpαq “ F pαq “ u and 1 _ u “ 1 ‰ u, there must
be a term t in D with tpαq “ u. Since 0 ^ u “ 0 ‰ u, the vector α evaluates every literal
of t either to 1 or to u. Since t has no variable together with its negation, we can evaluate
every literal of t to 1. On every such resolution a P Aα of α, we have tpaq “ 1 and, hence,
also F paq “ Dpaq “ 1, a contradiction with F pAαq “ t0u. The proof of the second claim (for
1-hazards) is dual by considering the formal CNF of F .

Example 2. Consider the circuit F “ xpy _ zq _ yz computing the multiplexer function
fpx, y, zq “ xz _ yz from Example 1. Since the circuit F produces no zero-terms, it has
no 0-hazards, by Proposition 1. On the other hand, the function f can take value 1 only if
x “ z “ 1 or y “ z “ 1 or x “ y “ 1. But F p1, u, 1q “ 1_u “ 1 ‰ u, F pu, 1, 0q “ u_1 “ 1 ‰ u

and F p1, 1, uq “ 1_ u “ 1 ‰ u. So, F has no 1-hazards as well.

3. Hazard-free and monotone circuits

Recall that a Boolean function f : t0, 1un Ñ t0, 1u is monotone if fpxq “ 1 and x ď y

imply fpyq “ 1, where x ď y means that xi ď yi holds for all positions i. The upwards closure

of a not necessarily monotone Boolean function fpxq is the monotone Boolean function

f▽pxq :“ł
zďx

fpzq .

That is, f▽pxq “ 1 iff fpzq “ 1 holds for some vector z ď x; we use the term “upwards”
because if f accepts a vector z, then f▽ accepts all “larger” vectors x ě z. For example, if
fpxq “ x1 ‘ ¨ ¨ ¨ ‘ xn is the parity function, then f▽pxq “ x1 _ ¨ ¨ ¨ _ xn: if xi “ 1 holds for at
least one i, then fpzq “ 1 for the vector z ď x with exactly one 1 in the ith position. Note that
f▽ “ f holds for all monotone Boolean functions f . Let us also note that monotone Boolean
functions corresponding to many NP-hard problems are upwards closures of relatively simple
non-monotone Boolean functions. Consider, for example, a Boolean function fpxq of n “ `

m
2

˘
variables such that fpxq “ 1 iff the m-vertex graph Gx encoded by a 0-1 vector x consists of a
complete graph on some m{2 vertices and m{2 isolated vertices. Then f▽pxq “ CLIQUEpxq
is the well known NP-complete clique function: CLIQUEpxq “ 1 iff Gx contains a complete
subgraph on m{2 vertices.

We can view every DeMorgan circuit F pxq computing a Boolean function fpxq of n variables
as a monotone circuit Hpx, yq on 2n variables with the property that F pxq “ Hpx, xq holds for
all x P t0, 1un, where x “ px1, . . . , xnq is the complement of x “ px1, . . . , xnq. The monotone

version of the circuit F pxq is the monotone circuit F`pxq “ Hpx,~1q obtained by replacing
every negated input literal xi with constant 1. For example, the monotone version of the
circuit F “ yz _ xpy _ xyq is F` “ y ¨ 1_ xp1_ 1 ¨ yq “ x_ y.

Remark 5. Since the circuit Hpx, yq is monotone, and since the circuit F`pxq “ Hpx,~1q
is obtained from H by replacing with constant 1 some of its inputs (namely, all negated
input literals), we have F`pxq ě fpxq. Since the circuit F`pxq is monotone, we also have
F`pxq ě F`pzq for every z ď x. Thus, F`pxq ě f▽pxq holds for all x P t0, 1un.

Theorem 1. Let F be a DeMorgan circuit computing a Boolean function f . If the circuit F

has no 0-hazards, then F` computes f▽.
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Proof. Assume that the circuit F` does not compute f▽. Then, by Remark 5, there must be
a vector a P t0, 1un such that F`paq “ 1 but f▽paq “ 0. The formal DNF D` of the circuit
F` is obtained by replacing with constant 1 every negated literal in the formal DNF D of
the circuit F . Since D`paq “ F`paq “ 1, there must be a term t “Ź

iPA xi ^Ź
iPB xi in the

DNF D such that t`paq “ 1 holds for its subterm t` “ Ź
iPA xi. From Dpaq “ fpaq “ 0, we

have tpaq “ 0; hence, the set B1 “ ti P B : ai “ 1u is nonempty. Take the ternary vector
α P t0, u, 1un with αi “ u for all i P B1, and αi “ ai otherwise.

On this vector, we have tpαq “ 1 ^ u “ u. Since the Boolean vector a evaluates every
term of D to 0, the ternary vector α evaluates every other term of D to either 0 or u. Hence,
F pαq “ Dpαq “ u. On the other hand, since the ternary vector α has unstable bits u only in
positions where the binary vector a has 1s, every resolution b P Aα of α satisfies b ď a. SinceŽ

bďa fpbq “ f▽paq “ 0, we have fpbq “ 0 for every resolution b P Aα of α, meaning that
fpAαq “ t0u. Thus, the circuit F has a 0-hazard at α.

The following example shows that the converse of Theorem 1 does not hold: the monotone
version F` of a circuit F may compute f▽ even though the circuit F has 0-hazards as well as
1-hazards.

Example 3. Consider the circuit F “ yz_xpy_xyq computing the Boolean function fpx, y, zq “
xy_yz. The upwards closure of f is f▽ “ x_y. The monotone version F` “ y¨1_xp1_1¨yq “
x _ y of the circuit F computes f▽. But on the input vector α “ pu, 1, 1q, we have
F pαq “ 0 _ up0 _ uq “ u u “ u even though fp0, 1, 1q “ fp1, 1, 1q “ 0, while on the vector
β “ p1, u, 0q, we have F pβq “ u_ pu_ 0q “ u_ u “ u even though fp1, 0, 0q “ fp1, 1, 0q “ 1.

By Theorem 1, hazard-freeness of a circuit F computing a Boolean function f is a sufficient
condition for F` “ f▽ to hold, but Example 3 shows that this condition is not necessary.
The following theorem shows what is actually necessary. The positive factor t` of a term t is
obtained by replacing every its negated literal with constant 1.

Theorem 2. Let F be a DeMorgan circuit computing a Boolean function f . Then the circuit

F` computes f▽ if and only if the positive factor of every zero-term produced by F is an

implicant of f▽.

In particular, F` “ f▽ if F produces no zero-terms.

Proof. Let D “ Ž
tPT t be the formal DNF of F . Then the formal DNF of the monotone

version F` of F is the OR D` “ Ž
tPT t` of positive factors of terms of D. Now take an

arbitrary term t “Ź
iPA xi^Ź

jPB xj of D. If t is a zero-term (AXB ‰ H), then it contains

a subterm xixi for some i. Since xixipbq “ 0 holds for all vectors b P t0, 1un, t▽paq “ 0 holds
for all a as well. Now suppose that t is a non-zero term (AXB “ H), and take an arbitrary
vector a P t0, 1un. If t▽paq “ 1, then tpbq “ 1 for some b ď a. From tpbq “ 1 we have bi “ 1
for all i P A, and from b ď a, we also have ai “ 1 for all i P A, that is, t`paq “ 1. If t`paq “ 1,
then tpbq “ 1 holds for the vector b ď a with bi “ ai for all i P A and bi “ 0 for all i R A, and
t▽paq “ tpbq “ 1 follows.

Thus, for every term t we have t▽ “ 0 if t is a zero-term, and t▽ “ t` if t is a non-zero
term. Since pg _ hq▽ “ g▽ _ h▽ holds for any Boolean functions g, h : t0, 1un Ñ t0, 1u, we
obtain

(2) f▽ “ł
tPT

t▽ “ ł
tPT 1

t` ď
ł
tPT

t` “ F` ,
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where T 1 Ď T is the set of all non-zero terms of D. By Eq. (2), the equality f▽ “ F` holds
if and only if t` ď f▽ holds for every term t P T zT 1, that is, if and only if the positive factor
t` of every zero-term t of D is an implicant of f▽.

By Proposition 1, if a circuit F has a 0-hazard, then F must produce at least one zero-term.
Theorems 1 and 2 yield a partial converse: if F produces a zero-term whose positive factor is
not an implicant of the upwards closure of the Boolean function computed by F , then F has
a 0-hazard.

Corollary 1. Let F be a DeMorgan circuit computing a Boolean function f . If F produces

a zero-term t such that t` ę f▽, then F has a 0-hazard.

Example 3 shows that the converse of Corollary 1 does not hold.

4. Complexity bounds

For a Boolean function f , let Lpfq denote the minimum number of gates in a DeMorgan
circuit computing f . By Lupfq and L`pfq we denote the versions of this measure when
restricted, respectively, to hazard-free circuits and to monotone circuits. Finally, let Lzpfq
denote the minimum number of gates in a DeMorgan circuit that computes f and produces
no zero-terms. In the measure Lpzpfq, we additionally require that the circuit must produce
all prime implicants of f ; hence, Lzpfq ď Lpzpfq. We only state the following corollary for
the circuit size measures, but it also holds for the circuit depth measures.

Corollary 2. For every Boolean function f , we have

L`pf▽q ď Lupfq ď Lpzpfq and L`pf▽q ď Lzpfq .

If f is monotone, then

L`pfq “ Lupfq “ Lzpfq “ Lpzpfq .

Proof. The inequality L`pf▽q ď Lupfq follows from Theorem 1, and the inequality L`pf▽q ď
Lzpfq follows from Theorem 2. The inequality Lupfq ď Lpzpfq follows from a classical result
of Eichelberger [8, Theorem 2]: if a DeMorgan circuit F computing a Boolean function f

produces no zero-terms, then F is hazard-free if and only if the circuit F produces all prime
implicants of f . Now let f be a monotone Boolean function; hence, f▽ “ f . To show that
then L`pfq “ Lupfq “ Lzpfq “ Lpzpfq holds, it is enough to show that Lpzpfq ď L`pfq
holds. So, let F be a monotone circuit of size L`pfq computing f . Since the circuit F has no
negated inputs, it cannot produce any zero-terms, and it is enough to show that every prime
implicant of f must be produced by F . This a well known and easy to verify fact.

Assume for a contradiction that some prime implicant p “Ź
iPS xi of f is not produced by

F , and consider the vector a P t0, 1un with ai “ 1 for all i P S and ai “ 0 for all i P S. On
this vector, we have fpaq “ ppaq “ 1. But since every term t ‰ p produced by F must be an
implicant of f , and since p is a prime implicant, t must have a variable xi with i R S. Thus,
tpaq “ 0 holds for all terms t produced by F . But then F paq “ 0 ‰ fpaq, a contradiction.

The lower bound Lupfq ě L`pf▽q was already shown by Ikenmeyer et al. [14] as a special
case of a more general result proved using different arguments. Associate with every Boolean
vector x P t0, 1un the ternary vector a ‘ ux whose ith position is ai if xi “ 0, and is u if
xi “ 1. That is, vector x tells us which bits of a are changed from stable to unstable. The
hazard derivative dF pa; xq of a ternary function F : t0, u, 1un Ñ t0, u, 1u computable by a
DeMorgan circuit at a point a P t0, 1un is defined by letting dF pa; xq “ 0 if F pa‘uxq “ F paq,
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and dF pa; xq “ 1 if F pa‘ uxq “ u; by Remark 2, there are only these two possibilities. This
concept is extended to Boolean functions f by letting dfpa; xq “ 0 iff fpa ‘ zq “ fpaq for
all z ď x; here, x ‘ z is the componentwise xor of Boolean vectors x and z. The function
dpxq “ dfpa; xq is clearly monotone: if x ď y, and if something holds for all z ď y, then this
also holds for all z ď x.

The core of the entire argument in [14] is a chain rule for the hazard derivatives dF pa; xq.
The authors then use this rule to transform a given hazard-free circuit F for fpxq into a
monotone circuit computing the hazard derivatives dfpa; xq of f at all points a. The argument
is reminiscent of that used by Baur and Strassen [2] to compute all partial derivatives of a
multivariate polynomial by an arithmetic circuit. This leads to the lower bound Lpfq ě
L`pdfpa; xqq for every a P t0, 1un. If fp~0q “ 0, then taking a “ ~0 we obtain dfp~0; xq “ 0

iff fpzq “ 0 for all z ď x, which happens precisely when f▽pxq “ 0. Thus dfp~0; xq “Ž
zďx fpxq “ f▽pxq. Note that if fp~0q “ 1, then f▽ “ 1, and the lower bound Lupfq ě L`p1q

trivially holds.
Theorem 1 gives an alternative, short and direct proof of the lower bound Lupfq ě L`pf▽q

using the mere definition of hazards: if F`paq ‰ f▽paq, then the circuit F must produce a
term t such that t`paq “ 1 but tpaq “ 0, and the circuit F has a 0-hazard at the ternary
vector α P t0, u, 1un with αi “ u if ai “ 1 and xi P t, and αi “ ai otherwise. Moreover, in
this theorem, the desired monotone circuit F` computing f▽ is obtained from a hazard-free
circuit F computing f by just replacing all negated inputs of F with constant 1: no further
transformations of the circuit itself are necessary. Thus, for monotone Boolean functions f ,
Theorem 1 tells us a bit more than the mere equality Lupfq “ L`pfq: it shows that not only
hazard-free and monotone circuit complexities for monotone Boolean functions f do coincide
but, in fact, that every minimal hazard-free circuit for f is a monotone circuit itself, that is,
does not use negated input variables to compute its values.

5. Complexity gaps

Together with already known lover bounds on the monotone circuit complexity, the lower
bound Lupfq ě L`pf▽q implies that the gap Lupfq{Lpfq can be super-polynomial and even
exponential. Such gaps were shown in [14], when f is either the logical permanent [24] or
the logical determinant, or the Tardos function [27]. However, the known circuits for these
functions demonstrating that Lpfq is polynomial are far from being trivial. Actually, except
for determinant [3], we even do not have explicit constructions of these circuits—we only have
general algorithms: [18, 11] for logical permanent and [10] for the Tardos function.

We now show that a super-polynomial gap Lupfq{Lpfq is actually achieved on a very simple
exact perfect matching function fn of n “ m2 variables. Inputs are Boolean mˆm matrices
x “ pxi,jq, and fnpxq “ 1 if and only if x is permutation matrix, that is, if every row and
every column of x has exactly one 1. By viewing x as the adjacency matrix of a bipartite
nˆ n graph Gx, we have fnpxq “ 1 if and only if Gx is a perfect matching.

Theorem 3. The exact perfect matching function fn can be computed by circuit of size Opnq
and depth Oplog nq, but any hazard-free circuit computing fn must have size nΩplog nq and

depth Ωpnq.
Proof. The logical permanent function pern accepts a Boolean m ˆm matrix x iff fnpzq “
1 holds for at least one matrix z ď x. Hence, pern “ f▽

n is the upwards closure of fn.
Razborov [24] has shown that any monotone circuit computing pern must have size nΩplog nq,
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and Raz and Wigderson [23, Theorem 4.2] have shown that any monotone circuit computing
pern has depth Ωpnq. Together with Corollary 2, this implies that any hazard-free circuit

computing fn must have size nΩplog nq and depth Ωpnq. On the other hand, every exact-k

function
Ekpx1, . . . , xmq “ 1 if and only if x1 ` ¨ ¨ ¨ ` xm “ k,

which accepts an input vector iff it has exactly a given number k of 1s, is symmetric, and it is
known (see, e.g. [29, Chapter 3.4]) that every symmetric Boolean function of m variables can
be computed by a DeMorgan circuit of size Opmq and depth Oplog mq. So, the exact perfect
matching function fn can be computed by a circuit of size Opm2q “ Opnq and depth Oplog nq.

Remark 6. By allowing slightly larger than linear number of gates, the exact permutation
function fn can be directly computed by a trivial circuit without using circuits for symmetric
functions. Consider the circuit F “ F1 ^ F2, where

F1 “
mľ

i“1

mł
j“1

xi,j ^
ľ
k‰j

xi,k and F2 “
mľ

j“1

mł
i“1

xi,j ^
ľ
l‰i

xl,j .

Note that F1pxq “ 1 iff every row of x has exactly one 1, and F2pxq “ 1 iff every column of
x has exactly one 1, meaning that the circuit F (which, actually, is a formula) computes fn.

The size of this circuit is Opm3q “ Opn3{2q and the depth is Oplog nq. If unbounded fanin
gates are allowed, when the size of F is Opm2q “ Opnq and the depth is 3.

By using less trivial circuits, one can increase the gap from super-polynomial to exponential.
The exact k-clique function fn,k has n “ `

m
2

˘
variables corresponding to the edges of the

complete graph Km on m vertices. Every assignment x of 0{1 values to these variables
specifies a subgraph Gx of Km, and fn,kpxq “ 1 iff Gx is an exact k-clique, that is, consists
of a complete graph on some k vertices and m´ k isolated vertices.

Theorem 4. For every 1 ď k ď m, the exact k-clique function fn,k can be computed by

a DeMorgan circuit of size Opnq and depth Oplog nq, but for k “ t1
4
pm{ log mq1{3u, any

hazard-free circuit computing fn,k must have size exponential in Ω
`pn{ log nq1{6˘ and depth

Ω
`pn{ log nq1{6˘.

Proof. The upwards closure f▽

n,k of fn,k is the well-known k-clique function: CLIQUEn,kpxq “
1 iff Gx contains a k-clique, that is, a complete subgraph on k vertices. Alon and Boppana [1,

Theorem 3.9] have show that, for k “ t1
4
pm{ log mq1{3u, every monotone circuit computing

CLIQUEn,k must have at least exp
`pn{ log nq1{6˘ gates. For this choice of k, the lower bound

proved by Goldmann and H̊astad [9, Theorem 3] implies that every monotone circuit for

CLIQUEn,k must have depth at least a constant times pn{ log nq1{6. By Corollary 2, every
hazard-free circuit computing fn,k must have at least so large size and depth.

To show the upper bounds, observe that a subgraph of Km on t1, . . . , mu is an exact k-
clique iff it has exactly k vertices of degree k ´ 1 and kpk ´ 1q{2 edges in total. We first
compute the values yi “ Ek´1pxi,1, . . . , xi,i´1, xi,i`1, . . . , xi,mq for all vertices i of Km. Since
yi “ 1 iff the vertex i has degree k ´ 1, the circuit F pxq “ Ekpk´1q{2pxq ^ Ekpy1, . . . , ymq
computes fn,k. The size of the circuit F is Opm2q “ Opnq and the depth is Oplog nq.
Remark 7. An intuitive explanation for large gaps between the sizes of hazard-free and un-
restricted circuits is given by Corollary 1. In an unrestricted circuit F computing the exact
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k-clique function fn,k, we have no restrictions on the form of produced zero-terms. However,
if F is hazard-free, then Corollary 1 implies that every produced zero-term t must have the
following property: the graph encoded by the unnegated variables of t must contain a k-clique.
This is a severe restriction on the usage of negations which makes hazard-free circuits almost
as weak as monotone circuits.

6. Structure of hazards

A classical result of Eichelberger [8, Theorem 2] states that if a DNF representing a Boolean
function f has no zero-terms, then it is hazard-free if and only if it contains all prime implicants
of f as terms. The goal of this section is to remove the “no zero-terms produced” restriction
from Eichelberger’s theorem, and to establish further structural properties of hazards.

6.1. Ternary vectors as terms and clauses. It will be convenient to identify implicants
and implicates of boolean functions with ternary vectors. Namely, associate with every ternary
vector α P t0, u, 1un the following term and clause:

tα :“ ľ
i:αi‰u

xαi

i and cα :“ ł
i:αi‰u

x1´αi

i .

For example, if α “ p1, u, 0, uq, then tα “ x1x3 and cα “ x1 _ x3. Note that tαpαq “ 1
and cαpαq “ 0. So, the terms and clauses associated with vectors α P t0, u, 1un define the
subcube Aα:

t´1
α p1q “ Aα “ c´1

α p0q ,

where, as customary, f´1pǫq “ ta P t0, 1un : fpaq “ ǫu. We say that a ternary vector α P
t0, u, 1un is a 1-witness of a Boolean function f if the term tα is an implicant of f , that is, if
tα ď f holds, and α is a prime 1-witness of f if the term tα is such. Dually, α P t0, u, 1un
is a 0-witness of f if the clause cα is an implicate of f , that is, if f ď cα holds, and α is a
prime 0-witness of f if the clause cα is such. Since tα ď f iff t´1

α p1q Ď f´1p1q. and f ď cα iff
c´1

α p0q Ď f´1p0q, for every ǫ P t0, 1u, we have

α P t0, u, 1un is an ǫ-witness of f if and only if fpAαq “ tǫu.
Hence, a circuit F computing a Boolean function f has a ǫ-hazard iff F pαq “ u holds for some
ǫ-witness α P t0, u, 1un of f . It is almost immediate that it is enough to only consider prime

witnesses.

Proposition 2. Let F be a DeMorgan circuit computing a Boolean function f , and ǫ P t0, 1u.
If F has a ǫ-hazard, then F has an ǫ-hazard at some prime ǫ-witness of f .

Proof. We only show the case ǫ “ 1; the case ǫ “ 0 is similar by considering the clause cα

instead of the term tα. Suppose that the circuit F has a 1-hazard at some vector α P t0, u, 1un;
hence, fpAαq “ t1u but F pαq “ u. Since tαpaq “ 1 can only hold if a P Aα, we have tα ď f ,
that is, tα is an implicant of f . Then tα must contain some prime implicant t of f as a (not
necessarily proper) subterm. This subterm is of the form t “ tβ for the vector β P t0, u, 1un
obtained from α by switching some stable bits to u. Since tβ is a prime implicant of f , the
vector β is a prime 1-witness of f , and it remains to show that fpAβq “ t1u and F pβq “ u

hold. Since tβ ď f , and since tβpaq “ 1 can only hold if a P Aβ, the equality fpAβq “ t1u
follows. On the other hand, replacing stable bits 0{1 by the unstable bit u in the input vector
α cannot change the unstable output u of DeMorgan circuit to a stable output 0 or 1 (see
Remarks 2 and 3). So, F pαq “ u implies F pβq “ u, as desired.
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6.2. Structure of 1-hazards. The following theorem gives us four necessary and sufficient
conditions for a circuit to have a 1-hazard. For a term t and a clause c we write tX c “ H if
t and c do not intersect, i.e., do not share a literal in common.

Theorem 5 (1-hazards). Let F be a DeMorgan circuit computing a Boolean function f , and

α P t0, u, 1un be a prime 1-witness of f . The following assertions are equivalent.

(1) F has a 1-hazard at α.

(2) cpαq “ u for some one-clause c produced by F .

(3) tα X c “ H for some one-clause c produced by F .

(4) tpαq P t0, uu for every term t produced by F .

(5) The prime implicant tα of f is not produced by F .

Proof. Let D be the formal DNF and C the formal CNF of F . Since α is a 1-witness of f ,
we have fpAαq “ t1u.

(1) ô (2): To show (1) ñ (2), suppose that F has a 1-hazard at α. Hence, CpAαq “ t1u
but Cpαq “ u. Since Cpαq “ u, cpαq “ u must hold for some clause c of C, and it remains
to show that this must be a one-clause. Suppose to the contradiction that cpαq “ u holds for
some non-one clause c of C. This can only happen if the vector α evaluates every literal of
c to 0 or to u. Since c has no variable together with its negation, negations of literals of c

evaluated to u do not appear in c, and we can evaluate every literal of c to 0. On every such
resolution a P Aα of α, we will have cpaq “ 0 and, hence, also Cpaq “ 0, a contradiction with
CpAαq “ t1u.

To show the opposite implication (2) ñ (1), suppose that c0pαq “ u holds for some one-
clause c0 of C. Since α is a 1-witness of f , CpAαq “ t1u holds. So, since 1^u “ u, it remains
to show that cpαq P t1, uu holds for all clauses c of C; then F pαq “ Cpαq “ u, meaning that
F has a 1-hazard at α. Assume to the contrary that cpαq “ 0 holds for some clause c of C.
Since 0 _ u “ u ‰ 0, this means that the vector α evaluates to 0 all literals of c. But then
every resolution of a P Aα of α also evaluates these literals to 0, and we obtain cpaq “ 0, a
contradiction with Cpaq “ 1.

(2) ô (3): Let c be a one-clause of C. If cpαq “ u, then zpαq P t0, uu holds for all literals
z of c. But tαpαq “ 1 implies that the vector α evaluates all literals of tα to 1 R t0, uu; hence,
tα X c “ H. To show the opposite implication (3) ñ (2), note that (by the definition of the
term tα) the vector α evaluates to u all variables not in tα. So, if tαXc “ H, then α evaluates
every literal of c to 0 of to u. Since c is a one-clause, it contains some variable xi together
with its negation xi. Since cpαq ‰ 1, we have xipαq “ u and, hence, also cpαq “ u.

(1) ô (4): If F has a 1-hazard at α, then Dpαq “ F pαq “ u holds. So, since 1_ u “ 1 ‰ u,
tpαq P t0, uu must hold for all terms t of D. To show the opposite implication (4) ñ (1),
suppose that tpαq P t0, uu holds for every term t of D. Our goal is to show that then the
circuit F has a 1-hazard at α. Since fpAαq “ t1u (α is an implicant of f), it is enough to
show that tpαq “ u holds for at least one term t of D. Suppose to the contrary that tpαq “ 0
holds for all terms t of D. Then the vector α evaluates to 0 at least one literal in every term
of D. But then also every resolution a P Aα of α evaluates to 0 at least one literal in every
term of D, and we have DpAαq “ t0u ‰ t1u, a contradiction with fpAαq “ t1u.

(4) ô (5): If the prime implicant tα of f is a term of D, then tαpαq “ 1 R t0, uu holds for
this term. To show the opposite implication (5) ñ (4), suppose that tpαq “ 1 holds for some
term t of D. Then tpAαq “ t1u, that is, Aα Ď t´1p1q. Since Aα “ t´1

α p1q, this yields the
inclusion t´1

α p1q Ď t´1p1q, which can only hold if t is a subterm of tα. Since t is an implicant of
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f and tα is a prime implicant of f , this is only possible if t “ tα. Hence, the prime implicant
tα is a term of D, as desired.

Example 4. Consider the circuit F “ xpy_zq_xy computing the Boolean function fpx, y, zq “
xy _ xz _ xy. The formal DNF of F is D “ xy _ xz _ xy and the formal CNF is C “
px_xqpx_ y_ zqpx_ yqpy_ y_ zq. According to Theorem 5, the circuit F has a 1-hazard by
either of the following four reasons, where α “ pu, 1, 0q is a prime 1-witness of f , and c “ x_x

is a one-clause produced by F :

˝ cpαq “ u_ u “ u;
˝ yz X px_ xq “ H;
˝ xypαq “ 0 ‰ 1 and xzpαq “ u ‰ 1 and xypαq “ u “ u ‰ 1;
˝ the prime implicant yz of f is not produced by F .

And indeed, on the vector α “ pu, 1, 0q, we have F pαq “ up0_1q_u “ u_u “ u, even though
F p0, 1, 0q “ F p1, 1, 0q “ 1.

6.3. Structure of 0-hazards. There is also an analogue of Theorem 5 for 0-hazards (Theorem 6
below), and it can be proved using “dual” arguments: just interchange the roles of constants
0 and 1 as well as of terms and clauses in the proof of Theorem 5. But to stress the duality
between 0-hazards and 1-hazards as well as between formal DNFs and formal CNFs, we will
show that Theorem 6 itself is the dual version of Theorem 5.

Recall that the dual of a Boolean function fpx1, . . . , xnq is the Boolean function fdpxq :“
 fpxq, where x “ px1, . . . , xnq. That is, we negate each input bit as well as the result. By

the DeMorgan laws  px _ yq “ x ^ y and  px ^ yq “ x _ y, we have pf _ gqd “ fd ^ gd,

pf ^ gqd “ fd _ gd and p fqd “  fd. It is well known and easy to show (see, e.g., [7,
Theorem 4.6]) that (prime) implicates of a Boolean function fpxq are (prime) implicants of
the dual function fdpxq “  fpxq, and vice versa.

The dual F d of a DeMorgan circuit F is obtained by exchanging the gates AND and OR, as
well as the input constants 0 and 1. For example, the dual of the circuit F “ px_yqpy_zq_xyz

is the circuit F d “ pxy _ yzqpx_ y _ zq. In particular, the dual of a clause c “ z1 _ ¨ ¨ ¨ _ zm

is the term cd “ z1 ^ ¨ ¨ ¨ ^ zm, and vice versa. Also, the dual of a DNF D “ t1 _ ¨ ¨ ¨ _ tl is
the CNF C “ td

1^¨ ¨ ¨^ td
l . That is, in the “dual world,” the roles of constants 0 and 1 as well

as of operations AND and OR are interchanged. Using DeMorgan laws, it is easy to show
that a circuit F computes a Boolean function f iff the dual circuit F d computes fd (see, for
example, [7, Theorem 1.3]). Since the DeMorgan laws hold over the ternary domain t0, u, 1u,
we have F dpαq “  F pαq for every ternary vector α P t0, u, 1un. Finally, note that pfdqd “ f

and pF dqd “ F .

Example 5. The dual F d “ xz_yz of the circuit F “ px_zqpy_zq computing the multiplexer
function f “ xz _ yz computes fd “ xz _ yz. The circuit F produces the clause c “ x _ z

while the circuit F d produces the term cd “ xz. The circuit F has a 0-hazard at α “ p0, 0, uq
while the circuit F d has a 1-hazard at α “ p1, 1, uq.

It is not difficult to show that such a duality between the produced clauses and terms as
well as between 0-hazards and 1-hazards also holds in general.

Lemma 1. Let F be a DeMorgan circuit, and α P t0, u, 1un.

(i) A clause c is produced by F if and only if the term cd is produced by F d.

(ii) F has a 0-hazard at α if and only if F d has a 1-hazard at α.
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Proof. (i): Easy induction on the size of the circuit F . The induction basis (when the circuit
is a single literal or a constant) is trivial. For the induction step, suppose that the claim holds
for all circuits of size at most s´ 1, and let F be a circuit of size s. Suppose that a clause c

is produced by F .
If F “ F1 ^ F2, then c is produced by the circuit Fi for some i P t1, 2u. By the induction

hypothesis, the term cd is produced by F d
i . The dual of the circuit F in this case is F d “

F1
d _ F2

d. So, the term cd is produced by F as well.
If F “ F1_F2, then c “ c1_ c2 for some clauses c1 and c2 produced by F1 and F2. By the

induction hypothesis, the terms t1 “ cd
1 and t2 “ cd

2 are produced by the dual circuits F d
1 and

F d
2 . Hence, the term t “ t1 ^ t2 “ cd

1 ^ cd
2 “ pc1 _ c2qd “ cd is produced by the dual circuit

F d “ F1
d ^ F2

d. This shows the pñq direction of claim (i); the opposite pðq direction can
shown be via the same argument by interchanging ANDs and ORs.

(ii): A Boolean vector a is a resolution of α iff its complement a is a resolution of α. That
is, a P Aα iff a P Aα. Since F paq “ 0 iff F dpaq “  F paq “ 1, we have F pAαq “ t0u if and
only if F dpAαq “  F pAαq “ t1u. On the other hand, F pαq “ u holds iff tpαq P t0, uu holds
for all terms and tpαq “ u holds for at least one term t “ z1 ^ ¨ ¨ ¨ ^ zm produced by F . By
claim (i), the clauses produced by F d are the duals td “ z1 _ ¨ ¨ ¨ _ zm of terms t produced by
F . Since tpαq P t0, uu iff tdpαq P t1, uu, and since tpαq “ u iff tdpαq “ u, we have F pαq “ u iff
F dpαq “ u. Thus, F has a 0-hazard at α if and only if F d has a 1-hazard at α.

Theorem 6 (0-hazards). Let F be a DeMorgan circuit computing a Boolean function f , and

α P t0, u, 1un be a prime 0-witness of f . The following assertions are equivalent.

(1) F has a 0-hazard at α.

(2) tpαq “ u for some zero-term t produced by F .

(3) cα X t “ H for some zero-term t produced by F .

(4) cpαq P t1, uu for every clause c produced by F .

(5) The prime implicate cα of f is not produced by F .

Proof. For notational simplicity, assume w.l.o.g. that α is of the form α “ pa1, . . . , am, u, . . . , uq
with all ai P t0, 1u. Then the clause associated with the vector α is cα “ xa1

1 _ ¨ ¨ ¨ _ xam

m ,
and the term associated with complementary vector α “ pa1, . . . , am, u, . . . , uq is the dual

tα “ xa1

1 ^ ¨ ¨ ¨ ^ xam

m “ cα
d of the clause cα. It is well known and easy to show (see, e.g.,

[7, Theorem 4.1]) that for any two Boolean functions g and f , we have f ď g if and only if
gd ď fd. Thus, f ď cα holds iff tα ď fd holds, that is, the vector α is a prime 0-witness of f

if and only if the vector α is a prime 1-witness of fd.
When applied to the dual circuit F d computing the dual function fd, Theorem 5 implies

that following assertions are equivalent.

(1*) The circuit F d has a 1-hazard at α.
(2*) cpαq “ u for some one-clause c produced by F d.
(3*) tα X c “ H for some one-clause c produced by F d.
(4*) tpαq P t0, uu for every term t produced by F d.
(5*) The prime implicant tα of fd is not produced by F d.

It is therefore enough to show that the corresponding assertions are equivalent. The equiv-
alences (1) ô (1*) and (5) ô (5*) follow directly from Lemma 1. The remaining three
equivalences also follow from Lemma 1(i) and the following simple observations. We have
cpαq “ 0 for a clause c iff the vector α evaluates all literals of c to 0, which happens precisely
when the complementary vector α evaluates all these literals to 1, that is, when tpαq “ 1
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holds for the term t “ cd. So, cpαq P t1, uu iff tpαq P t0, uu, and cpαq “ u iff tpαq “ u.
Since a clause is a one-clause iff its dual is a zero term, the equivalences (2) ô (2*) and
(4) ô (4*) follow. Finally, the dual t “ cd of any one-clause c from claim (3*) is a zero-term
produced by F . Note that both t and c have the same literals. The sets of literals of the term
tα “ xa1

1 ^ ¨ ¨ ¨ ^xam

m and of the clause cα “ xa1

1 _ ¨ ¨ ¨ _ xam

m are also the same. So, tαX c “ H
holds precisely when cα X t “ H holds, and the equivalence (3) ô (3*) follows as well.

As we already mentioned in the introduction, a classical result of Huffman [13] is that
the DNF whose terms are prime implicants of a Boolean function f is a hazard-free circuit
computing f . An also classical result of Eichelberger [8, Theorem 2] extends Huffman’s
theorem.

Eichelberger’s Theorem. Let F be a DeMorgan circuit computing a Boolean function f .

If F produces no zero-terms, then F is hazard-free if and only if the circuit F produces all

prime implicants of f .

This theorem is stated and proved in [8] only for zero-term free DNFs (depth-two circuits),
but it also holds for DeMorgan circuits producing no zero-terms: formal DNFs of such circuits
do not have such terms. Using Lemma 1 and Theorems 5 and 6, we can remove the “no zero-
terms” restriction from Eichelberger’s theorem.

Corollary 3 (Extended Eichelberger’s Theorem). Let F be a DeMorgan circuit computing a

Boolean function f . The following assertions are equivalent.

(1) F is hazard-free.

(2) Neither F nor F d has a 0-hazard.

(3) Neither F nor F d has a 1-hazard.

(4) F produces all prime implicants and all prime implicates of f .

Proof. The equivalences (1) ô (2) and (1) ô (3) are direct consequences of Lemma 1. The
implication (1) ñ (4) follows directly from Theorems 5 and 6. To show the opposite implica-
tion (4) ñ (1), suppose that F produces all prime implicants and all prime implicates of f .
Then, by Theorems 5 and 6, the circuit F has no hazards at prime witnesses α P t0, u, 1un of
f and, by Proposition 2, has no hazards at any ternary vectors either.

7. Final remarks

Recall that Lpfq denotes the minimum number of gates in a DeMorgan circuit computing
a Boolean function f . We also have introduced versions of this complexity measure: Lupfq
(the circuit must be hazard-free), Lpzpfq (the circuit must produce all prime implicants of f

but must produce no zero-terms), and L`pfq (the circuit must be monotone, i.e. must have
no negated variables as inputs). Finally, let Lupnq be the Shannon function for hazard-free
circuits, that is, the maximum of Lupfq over all Boolean functions f of n variables.

By Corollary 2, we know that for every Boolean function f the inequalities L`pf▽q ď
Lupfq ď Lpzpfq hold. So, the following natural questions arise.

(1) How large can the gap Lupfq{L`pf▽q be?
(2) How large can the gap Lpzpfq{Lupfq be?
(3) What is the asymptotic value of Lupnq? Is it Lupnq „ 2n{n?

Let us show that we already know the order of growth of the function Lupnq: it is 2n{n.
This can be shown by extending the construction of Shannon [26] and Muller [21] to show



16

that Lpnq “ Op2n{nq holds for unrestricted circuits. They used the recursion F px1, . . . , xnq “
xn ¨ F0 _ xn ¨ F1, where F0 and F1 are DeMorgan circuits computing the subfunctions f0 “
fpx1, . . . , xn´1, 0q and f1 “ fpx1, . . . , xn´1, 1q of a given Boolean function fpx1, . . . , xnq.

The circuit F constructed using this decomposition will produce no zero-terms and, by
Proposition 1, will have no 0-hazards. But it can have 1-hazards even if both subcircuits F0

and F1 are hazard-free. For this to happen, it is enough that some prime implicant t of f

contains neither xn nor xn; then t is not produced by F and, by Theorem 5, F has a 1-hazard.
And indeed, we can take any ternary vector α “ pa, uq with a P t0, 1un´1 and tpaq “ 1. Since
then also F0paq “ 1 and F1paq “ 1, we have F pAαq “ t1u. But F pαq “ u ¨ 1_ u ¨ 1 “ u.

A classical idea to generate prime implicants, rediscovered by several independent researchers—
Blacke [4], Samson and Mills [25], Quine [22]—is to use the consensus recursion F “ xn ¨F0_
xn ¨ F1 _ F0 ¨ F1: if a term t is an implicant of f , and if t contains neither xn nor xn, then t

is an implicant of both subfunctions f0 and f1 of f .
It is, however, not a priori clear that this extended recursion will not introduce 0-hazards:

even if neither of the subcircuits F0 and F1 produces zero-terms, the additional subcircuit
F0 ¨ F1 could, in general, produce zero-terms and such terms may lead to 0-hazards (see
Theorem 5). Fortunately, these zero-terms are “innocent,” as long as both circuits F0 and F1

are hazard-free.

Proposition 3. Let F0px1, . . . , xn´1q and F1px1, . . . , xn´1q be arbitrary hazard-free circuits,

and xn be a new variable. Then the circuit

(3) F px1, . . . , xnq “ xn ¨ F0 _ xn ¨ F1 _ F0 ¨ F1

is hazard-free.

Proof. Assume that the circuit F has a hazard at some vector α P t0, u, 1un; hence, F pAαq “
tǫu for some ǫ P t0, 1u but F pαq “ u. Our goal is to show that then at least one of the circuits
F0 and F1 must have an ǫ-hazard at α.

Case 1: αn P t0, 1u, say, αn “ 0. Then for every resolution a P Aα of α, we have F paq “
F0paq _ F0paq ¨ F1paq “ F0paq; hence, F0pAαq “ F pAαq “ tǫu. Since αn “ 0, we have
xn ¨ F1pαq “ 0 and, since the absorbtion law x _ xy “ x holds also over t0, u, 1u, we obtain
F pαq “ F0pαq _ F0pαq ¨ F1pαq “ F0pαq. Thus, F0pαq “ F pαq “ u, meaning that the circuit
F0 has a ǫ-hazard at α.

Case 2: αn “ u. Since the circuits F0 and F1 do not depend on xn, both F0pAαq “ tǫu
and F1pAαq “ tǫu must hold in this case. Indeed, if say, F0paq “ ǫ for some resolution
a P Aα of α, then also F0pa1q “ ǫ for the resolution a1 “ pa1, . . . , an´1, 0q of α, and we obtain
F pa1q “ 1 ¨ ǫ_ ǫ ¨F1pa1q “ ǫ ‰ ǫ. Thus, both F0pAαq “ tǫu and F1pAαq “ tǫu hold. Then both
values F0pαq and F1pαq must belong to tǫ, uu (see Remark 3). Since u^ 0 “ 0 and u_ 1 “ 1,
both F0pαq “ ǫ and F1pαq “ ǫ cannot hold because then F pαq “ u ¨ ǫ_ u ¨ ǫ_ ǫ “ ǫ ‰ u. So,
Fipαq “ u holds for some i P t0, 1u, meaning that the circuit Fi has a ǫ-hazard at α.

When directly applied, the recursion Eq. (3) yields Lupnq “ Op2nq. Nitin Saurabh (personal
communication) suggested to combine the hazard-freeness preserving recursion Eq. (3) with
the argument used by Shannon [26] and Muller [21] to show Lpnq “ Op2n{nq for unrestricted
circuits. And indeed, the combination yields much better upper bound Lupnq “ Op2n{nq.

Take an arbitrary Boolean function fpx1, . . . , xnq, and apply the recursion Eq. (3) for n´m

steps to obtain a hazard-free circuit Fn´m of size 5 ¨ 2n´m computing the function f from all
its 2n´m subfunctions fbpx1, . . . , xmq “ fpx1, . . . , xm, b1, . . . , bn´mq on the first m variables;
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Figure 1. On the left is a fragment of a circuit for the consensus recursion
Eq. (3), and on the right is a schematic form of a hazard-free circuit which
results after combining this recursion with the Shannon-Muller construction.

here, m ď n is a parameter to be specified latter. Inputs to F are Boolean functions from the
set Hm of all |Hm| “ 22m

Boolean functions hpx1, . . . , xmq on the first m variables. Shannon’s
idea is this: if 2n´m " 22m

, then same functions from Hm will appear many times among
the inputs of F . It is then more economical to simultaneously compute all the functions in
Hm once beforehand, rather than to recompute the residual functions fb at each of the 2n´m

inputs of F .
Using the recursion Eq. (3), we can construct a hazard-free circuit Hm of size at most

5 ¨ 22m

which simultaneously computes all 22m

Boolean functions in Hm: given the circuit
Hm´1, we can use the recursion Eq. (3) to obtain the circuit Hm by adding five gates per one
function in Hm (see Figure 1, left). So, the size of the resulting circuit Hm is at most 5 timesřm´1

i“2 22i ď 22m

.
By identifying the input gates fb P Hm of the circuit Fn´m with the corresponding output

gates of Hm, we obtain a hazard-free circuit F for f . That is, the circuit F is obtained from
the circuit Fn´m by further applying the hazard-freeness preserving recursion Eq. (3) (see
Figure 1, right): we only do not repeat the construction for the same input subfunctions fb. By
Proposition 3, the obtained circuit F is hazard-free. The number of gates in F is at most five
times 22m`2n´m. For m “ log2pn´log2 nq, we have 22m “ 2n{n and 2n´m “ 2n{pn´log2 nq “
c ¨ 2n{n, where c “

´
1` log2 n

n´log2 n

¯
. So, Lupnq “ Op2n{nq follows by takings m to be a nearest

to log2pn ´ log2 nq integer. Since Lupnq ě Lpnq “ Ωp2n{nq, the order of magnitude of the
Shannon function for hazard-free circuits is already known: Lupnq “ Θp2n{nq. It remains,
however, open whether Lupnq „ 2n{n holds.
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