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Abstract

For a constant t ∈ N, we consider the problem of counting the number of t-cliques mod 2
in a given graph. We show that this problem is not easier than determining whether a given
graph contains a t-clique, and present a simple worst-case to average-case reduction for it.
The reduction runs in linear time when graphs are presented by their adjacency matrices, and
average-case is with respect to the uniform distribution over graphs with a given number of
vertices.

1 Informal description

For a constant integer t ≥ 3, finding t-cliques in graphs and determining their mere existence are
archetypical computational problems within the frameworks of parameterized complexity and fine
grained complexity (see, e.g., [FG06] and [W15], resp.). The complexity of counting the number of
t-cliques has also been studied (see, e.g., [GR18, BBB19]). In this work, we consider a variant of
the latter problem; specifically, the problem of counting the number of t-cliques mod 2.

Determining the number of t-cliques mod 2 in a given graph is potentially easier than deter-
mining the number of t-cliques in the same graph. On the other hand, as shown in Theorem 1,
determining the said number mod 2 is not easier (in the worst-case sense) than determining whether
or not a graph contains a t-clique. Hence, the worst-case complexity of counting t-cliques mod 2
lies between the worst-case complexity of counting t-cliques and the worst-case complexity of de-
termining the existence of t-cliques. Consequently, as far as worst-case complexity is concerned,
using the “counting mod 2 problem” as proxy for the “existence problem” is at least as justified as
using the “counting problem” as such a proxy.

Our main result (presented in Theorem 2) is an efficient worst-case to average-case reduction
for counting t-cliques mod 2. The reduction in efficient in the sense that it runs in linear time when
graphs are presented by their adjacency matrices. Average-case is with respect to the uniform
distribution over graphs with a given number of vertices, and it yields the correct answer (with
high probability) whenever the average-case solver is correct on at least a 1 − 2−t

2
fraction of the

instances. In other words, the average-case solver has error rate at most 2−t
2
. The question of

whether the same result holds with respect to significantly higher error rates, and ultimately with
error rate 0.49, is left open.
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Relation and comparison to prior work. Efficient worst-case to average-case reductions were
presented before for the related problem of counting t-cliques (over the integers). Specifically, Gol-
dreich and Rothblum provided such a reduction with respect to a relatively simple distribution over
graphs with a given number of vertices, alas not the uniform distribution [GR18]. On the other
hand, their reduction works even when the average-case solver has error rate that approaches 1;
specifically, its error rate on n-vertex graphs may be as large as 1 − 1

poly(logn) = 1 − o(1). In con-
trast, Boix-Adsera, Brennan, and Bresler provided an efficient worst-case to average-case reduction
with respect to the uniform distribution, but their reduction can only tolerate a vanishing error
rate [BBB19]; specifically, its error rate on n-vertex graphs is required to be 1/poly(log n) = o(1).

Hence, our worst-case to average-case reduction, which is for a related (but different) problem,
matches the better aspects of the prior works (see Table 1): It refers to the uniform distribu-
tion (as [BBB19]), and tolerates a constant error rate (which is better than [BBB19] but worse
than [GR18]).

problem distribution error rate where

counting relatively simple 1− 1/poly(log n) = 1− o(1) [GR18]

counting uniform 1/poly(log n) = o(1) [BBB19]

counting mod 2 uniform exp(−t2) = Ω(1) here

Table 1: Comparison of different worst-case to average-case reductions for variants of the t-CLIQUE
problem, for the constant t, where n denotes the number of vertices. The first column indicates the
version being treated, the second indicates the distribution for which average-case is considered,
and the third indicates the error rate allowed for the average-case solver.

Techniques. In contrast to [GR18, BBB19], which relate the t-clique counting problem to the
evaluation of lower degree polynomials over large and medium sized fields, we related the counting
mod 2 problem to low degree polynomials over GF(2). This relation allows us to present reductions
that are much simpler than those presented in [GR18, BBB19].

As noted above, we leave open the problem of improving the error rate that can be tolerated
by a worst-case to average-case reduction (for counting t-cliques mod 2). We note that tolerating
an error rate that approaches 0.5 presupposes that approximately half of the n-vertex graphs have
an odd number of t-cliques (unless finding t-cliques can be done in Õ(n2)-time). This is indeed the
case, as can be seen from a general result of Kolaitis and Kopparty [KK13, Thm. 3.2].

2 Formal statements and proofs

For a fixed integer t ≥ 3 and a graph G, we denote by CC(t)(G) the number of t-cliques in G, and let

CC
(t)
2 (G)

def
= (CC(t)(G) mod 2) denote the parity of this number. We often represent n-vertex graphs

by their adjacency matrices; hence, CC
(t)
2 (A) = CC

(t)
2 (G), where A is the adjacency matrix of G, and

it follows that
CC

(t)
2 (A) =

∑
i1<···<it∈[n]

∏
j<k∈[t]

Aij ,ik mod 2, (1)

where Au,v is the (u, v)th entry of A (indicating whether or not {u, v} is an edge in G).
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Theorem 1 (deciding the existence of t-cliques reduces to computing CC
(t)
2 ): For every integer

t ≥ 3, there is a randomized reduction of determining whether a given n-vertex graph contains a

t-clique to computing CC
(t)
2 on n-vertex graphs such that the reduction runs in time O(n2), makes

exp(t2) queries, and has error probability at most 1/3.

(Added in revision: The proof of Theorem 1 is similar to the proof of [WWWY, Lem. 2.1].)1

Proof: Consider a randomized reduction that, on input G = ([n], E), flips each edge to a non-edge

with probability 0.5, leaves non-edges intact, and returns the value of CC
(t)
2 on the resulting graph;

that is, the reduction generates a random subgraph of G, denoted G′, and returns CC
(t)
2 (G′).

To analyze the output of this procedure (on input G), consider a (symmetric) n-by-n matrix X

such that xi,j is a variable if {i, j} ∈ E and xi,j = 0 otherwise. We view CC
(t)
2 (X), which is defined

as in Eq. (1), as a multivariate polynomial over GF(2), and observe that it has degree at most
(
t
2

)
.

The key observation is that CC
(t)
2 (X) is a non-zero polynomial if and only if the graph G contains a

t-clique (i.e.,CC(t)(G) > 0). Hence, the foregoing reduction can be viewed as returning the value of

CC
(t)
2 (X) on a random (symmetric) assignment to the variables in X. It follows that the reduction

always returns 0 if CC(t)(G) = 0, and returns 1 with probability at least 2−(t
2) otherwise (i.e., when

CC(t)(G) > 0). The latter assertion is due to the Schwartz–Zippel for small fields (i.e., for GF(2)).2

Applying the foregoing reduction for exp(t2) times, the claim follows.

Theorem 2 (worst-case to average-case reduction for CC
(t)
2 ): For every integer t ≥ 3, there is a

randomized reduction of computing CC
(t)
2 on the worst-case n-vertex graph to correctly computing

CC
(t)
2 on at least a 1− exp(−t2) fraction of the n-vertex graphs such that the reduction runs in time

O(n2), makes exp(t2) queries, and has error probability at most 1/3.

Proof: Setting d =
(
t
2

)
, consider the following random self-reduction of CC

(t)
2 . On input a symmetric

and non-reflective n-by-n matrix, A:

1. Select uniformly d random (symmetric and non-reflective) n-by-nmatrices, denotedR(1), ..., R(d),
and let R(0) = A.

2. Making adequate queries to CC
(t)
2 , return

∑
I⊆{0,1,...,d}:I 6={0} CC

(t)
2 (R(I)) mod 2, where R(I) def

=∑
i∈I R

(i) mod 2 and CC
(t)
2 (R(∅)) = 0.

Hence, the foregoing reduction performs 2d+1 − 2 queries, and each of these queries (i.e., each R(I)

for I 6∈ {∅, {0}}) is uniformly distributed over the set of all symmetric and non-reflective n-by-n
matrices.

We claim that, for any fixed R(0), R(1), ..., R(d), it holds that
∑

I⊆{0,1,...,d}:I 6={0} CC
(t)
2 (R(I)) equals

CC
(t)
2 (R(0)) mod 2. This claim is proved by considering the multivariate polynomial P (x0, x1, ..., xd)

over GF(2) that is defined to equal CC
(t)
2 (
∑d

i=0 xiR
(i)). Specifically, we use the following facts:

• P (b0, b1, ..., bd) = CC
(t)
2 (R({i:bi=1})); in particular, P (0, 0, ..., 0) = 0 and P (1, 0, ..., 0) = CC

(t)
2 (R(0)).

1A result of similar nature appears in [AFW20, Thm. 2].
2See [G17, Exer. 5.1]. (Alternatively, see [WWWY, Lem. 2.2].)
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• P has degree
(
t
2

)
= d, since P (x0, x1, ..., xd) = CC

(t)
2 (L(x0, x1, ..., xd)) such that L(x0, ..., xd)

is a matrix of linear functions (i.e., the (u, v)th entry of L(x0, ..., xd) equals
∑d

i=0R
(i)
u,vxi).

(Indeed, using Eq. (1), it follows that P = CC
(t)
2 (L) has degree

(
t
2

)
.)

• for any (d+ 1)-variate polynomial of degree at most d over GF(2) it holds that the sum of its
evaluation over all 2d+1 points is 0.

This general fact can be seen by considering an arbitrary monomial M(x0, x1, ..., xd) =∏
i∈I xi, where I ⊂ {0, 1, .., d}. Indeed,∑

(b0,b1,...,bd)∈GF(2)d+1

M(b0, b1, ..., bd) =
∑

(b0,b1,...,bd)∈GF(2)d+1

∏
i∈I

bi

= 2d+1−|I| ·
∏
i∈I

∑
bi∈GF(2)

bi

which equals 0 (mod 2), since |I| ≤ d.

Combining the foregoing facts, it follows that
∑

I⊆{0,1,...,d}:I 6={0} CC
(t)
2 (R(I)) equals CC

(t)
2 (R0) (mod 2).

Thus, given oracle access to a program Π such that PrR[Π(R) = CC
(t)
2 (R)] ≥ 1 − ε, when

making queries to Π rather than to CC
(t)
2 , the foregoing reduction returns the correct value with

probability at least 1 − (2d+1 − 2) · ε (i.e., whenever all queries are answered correctly). Using
ε = 2−t

2
, we obtain a worst-case to average-case reduction that fails with probability less than

2d+1−t2 = 2−(t
2+t−2)/2 < 1/3 when given access to a procedure that is correct on at least a 1− 2−t

2

fraction of the instances.3

Remark 3 (the distribution of CC
(t)
2 (R) for random R): The proof of Theorem 2 implies that

2−t
2
< PrR[CC

(t)
2 (R) = 1] < 1 − 2−t

2
. To see this, using notation as in the proof, suppose towards

the contradiction that PrR[CC
(t)
2 (R)=b] ≥ 1− 2−t

2
for some b. Then, for every R0, it holds that

PrR1,...,Rd

 ∑
I⊆{0,1,...,d}:I 6={0}

CC
(t)
2 (R(I)) ≡ 0 (mod 2)


≥ PrR1,...,Rd

[
(∀I ⊆ {0, 1, ..., d} \ {{0}, ∅}) CC(t)2 (R(I))=b

]
≥ 1− (2d+1 − 2) · 2−t2 > 0

where the last inequality uses 2d+1−t2 = 2−(t
2+t−2)/2 < 1. But this is impossible when CC

(t)
2 (R0) = 1

(e.g., if CC(t)(R0) = 1).

While Remark 3 only asserts that ER[CC
(t)
2 (R)] is bounded away from both 0 and 1, it is known to

be approximately 1/2. The latter fact follows as a special case of a general result of Kolaitis and
Kopparty [KK13, Thm. 3.2].4

3Indeed, we can slightly improve the bound by using any constant ε < 2−d−2 = 2−(t2−t+4)/2.
4The comment was added in revision. The original version included proofs of the cases of t ∈ {3, 4}, since (at the

time) I was unaware of the results of Kolaitis and Kopparty [KK13].
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Open Problem 4 (stronger worst-case to average-case reduction for CC
(t)
2 ): For every integer

t ≥ 3 and γ > 0.5, is there a randomized reduction of computing CC
(t)
2 on the worst-case n-vertex

graph to correctly computing CC
(t)
2 on at least a γ fraction of the n-vertex graphs such that the

reduction runs in time Õ(n2), and has error probability at most 1/3.

This strengthens Theorem 2 by requiring the reduction to tolerate error rate that is arbitrary close

to 0.5 rather than error rate exp(−t2). The fact that ER[CC
(t)
2 (R)] ≈ 0.5 may be viewed as a sanity

check for Problem 4, since |ER[CC
(t)
2 (R)]− 0.5| > δ would have implied that CC

(t)
2 can be computed

correctly with probability 0.5 + δ in constant time.

3 Conclusion

Theorem 2 asserts an efficient worst-case to average-case reduction for counting t-cliques mod 2,
where average-case is with respect to the uniform distribution over graphs with the given number

of vertices. Specifically, for any integer t ≥ 3, computing CC
(t)
2 on the worst-case n-vertex graph is

reducible (in O(n2)-time) to computing CC
(t)
2 correctly on a 1 − exp(−t2) fraction of all n-verterx

graphs.
We believe that Theorem 2, which has a very simple proof, is as interesting as an analogous

result that refers to counting t-cliques (i.e., computing CC(t)), because (as shown in Theorem 1)

computing CC
(t)
2 is not easier than determining whether a given graph contains a t-clique. The

point is that the decisional problem (i.e., t-CLIQUE) is the one that has received most attention

in prior work, and results regarding either CC(t) or CC
(t)
2 are mostly proxies for it (i.e., for results

regarding t-CLIQUE). In particular, combining Theorems 1 and 2, it follows that deciding t-CLIQUE

on the worst-case n-vertex graph is reducible (in O(n2)-time) to computing CC
(t)
2 correctly on a

1− exp(−t2) fraction of all n-verterx graphs.
We note that prior works fall short of establishing results analogous to Theorem 2: The results

of [GR18] are not for the uniform distribution (but rather for a relatively simple but different
distribution), where the results of [BBB19] hold for a notion of average-case that allows only a
vanishing error rate (i.e., the “average-case algorithm” is required to be correct on at least a
1− 1

poly(logn) fraction of the n-vertex graphs).
As stated in Problem 4, we leave open the problem of obtaining a result analogous to Theorem 2

for “average-case algorithms” that are correct on a γ fraction of the instances, for every γ > 1/2.
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