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Abstract

For a constant ¢ € N, we consider the problem of counting the number of t-cliques mod 2
in a given graph. We show that this problem is not easier than determining whether a given
graph contains a t-clique, and present a simple worst-case to average-case reduction for it.
The reduction runs in linear time when graphs are presented by their adjacency matrices, and
average-case is with respect to the uniform distribution over graphs with a given number of
vertices.

Correction (July 16th, 2020): It turns out that the foregoing results were previously obtained
by Boix-Adsera, Brennan, and Bresler (FOCS’19), using a slightly more complex worst-case to
average-case reduction.

1 Informal description

For a constant integer ¢ > 3, finding t-cliques in graphs and determining their mere existence are
archetypical computational problems within the frameworks of parameterized complexity and fine
grained complexity (see, e.g., [FG06] and [W15], resp.). The complexity of counting the number of
t-cliques has also been studied (see, e.g., [GR18, BBB19]). In this work, we consider a variant of
the latter problem; specifically, the problem of counting the number of ¢-cliques mod 2.

Determining the number of t-cliques mod 2 in a given graph is potentially easier than deter-
mining the number of t-cliques in the same graph. On the other hand, as shown in Theorem 1,
determining the said number mod 2 is not easier (in the worst-case sense) than determining whether
or not a graph contains a t-clique. Hence, the worst-case complexity of counting t-cliques mod 2
lies between the worst-case complexity of counting t-cliques and the worst-case complexity of de-
termining the existence of t-cliques. Consequently, as far as worst-case complexity is concerned,
using the “counting mod 2 problem” as proxy for the “existence problem” is at least as justified as
using the “counting problem” as such a proxy.

Our main result (presented in Theorem 2) is an efficient worst-case to average-case reduction
for counting t-cliques mod 2. The reduction in efficient in the sense that it runs in linear time when
graphs are presented by their adjacency matrices. Average-case is with respect to the uniform
distribution over graphs with a given number of vertices, and it yields the correct answer (with
high probability) whenever the average-case solver is correct on at least a 1 — 2~ fraction of the
instances. In other words, the average-case solver has error rate at most 2=, The question of
whether the same result holds with respect to significantly higher error rates, and ultimately with
error rate 0.49, is left open.
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Relation and comparison to prior work. Efficient worst-case to average-case reductions were
presented before for the related problem of counting t-cliques (over the integers). Specifically, Gol-
dreich and Rothblum provided such a reduction with respect to a relatively simple distribution over
graphs with a given number of vertices, alas not the uniform distribution [GR18]. On the other
hand, their reduction works even when the average-case solver has error rate that approaches 1;
specifically, its error rate on n-vertex graphs may be as large as 1 — m =1-0(1). In
contrast, Boix-Adsera, Brennan, and Bresler provided an efficient worst-case to average-case re-
duction with respect to the uniform distribution, but their reduction can only tolerate a vanishing
error rate [BBB19, Thm. IL8|; specifically, its error rate on m-vertex graphs is required to be
1/poly(logn) = o(1).

Hence, our worst-case to average-case reduction, which is for a related (but different) problem,
matches the better aspects of the aforementioned results (see Table 1): It refers to the uniform dis-
tribution (as [BBB19, Thm. I1.8]), and tolerates a constant error rate (which is better than [BBB19,
Thm. I1.8] but worse than [GR18]).

As stated in the abstract, it turns out that a similar result was proved before by Boix-Adsera,
Brennan, and Bresler [BBB19, Thm. I1.9], using a conceptually similar but slightly more compli-
cated reduction (which is due to their obtaining this result by modifying the approach they used
to obtain their other results).

problem ‘ distribution ‘ error rate ‘ where ‘
counting relatively simple | 1 — 1/poly(logn) =1 — o(1) [GR18]
counting uniform 1/poly(logn) = o(1) [BBB19, Thm. I1.§]
counting mod 2 | uniform exp(—O(t?)) = Q(1) [BBB19, Thm. II.9]
counting mod 2 | uniform exp(—t?) = Q(1) Theorem 2

Table 1: Comparison of different worst-case to average-case reductions for variants of the t-CLIQUE
problem, for the constant t, where n denotes the number of vertices. The first column indicates the
version being treated, the second indicates the distribution for which average-case is considered,
and the third indicates the error rate allowed for the average-case solver.

Techniques. In contrast to [GR18, BBB19], which relate the ¢-clique counting problem to the
evaluation of lower degree polynomials over large and medium sized fields, we related the counting
mod 2 problem to low degree polynomials over GF(2). This relation allows us to present reductions
that are much simpler than those presented in [GR18, BBB19].

As noted above, we leave open the problem of improving the error rate that can be tolerated
by a worst-case to average-case reduction (for counting ¢-cliques mod 2). We note that tolerating
an error rate that approaches 0.5 presupposes that approximately half of the n-vertex graphs have
an odd number of ¢-cliques (unless finding ¢-cliques can be done in O(n?)-time). This is indeed the
case, as can be seen from a general result of Kolaitis and Kopparty [KK13, Thm. 3.2].



2 Formal statements and proofs

For a fixed integer ¢t > 3 and a graph G, we denote by CC(t)(G) the number of ¢-cliques in G, and let

CCét)(G) dof (cc (@) mod 2) denote the parity of this number. We often represent n-vertex graphs

by their adjacency matrices; hence, CCS) (A) = CCét)(G), where A is the adjacency matrix of G, and

it follows that
(A= [T Ai., modz2, (1)

11<-<it€[n] J<ke€[t]

where A, is the (u,v)" entry of A (indicating whether or not {u,v} is an edge in G).

Theorem 1 (deciding the existence of t-cliques reduces to computing cht)): For every integer
t > 3, there is a randomized reduction of determining whether a given n-vertex graph contains a
t-clique to computing ch) on n-vertex graphs such that the reduction runs in time O(n?), makes
exp(t?) queries, and has error probability at most 1/3.

(Added in revision: The proof of Theorem 1 is similar to the proof of WWWY, Lem. 2.1].)! (Added
in later revision: Theorem 1 is identical to [BBB19, Lem. A.1].)

Proof: Consider a randomized reduction that, on input G = ([n], F), flips each edge to a non-edge
with probability 0.5, leaves non-edges intact, and returns the value of ch) on the resulting graph;
that is, the reduction generates a random subgraph of GG, denoted G’, and returns CCét)(G' ).

To analyze the output of this procedure (on input G), consider a (symmetric) n-by-n matrix X
such that z; ; is a variable if {i,j} € E and x;; = 0 otherwise. We view CCét) (X), which is defined
as in Eq. (1), as a multivariate polynomial over GF(2), and observe that it has degree at most (3).
The key observation is that CCét) (X) is a non-zero polynomial if and only if the graph G contains a
t-clique (i.e.,cCM(G) > 0). Hence, the foregoing reduction can be viewed as returning the value of
CCS”(X ) on a random (symmetric) assignment to the variables in X. It follows that the reduction
always returns 0 if CC(t)(G) = 0, and returns 1 with probability at least 9-(2) otherwise (i.e., when
cc® (@) > 0). The latter assertion is due to the SchwartzZippel for small fields (i.e., for GF(2)).2
Applying the foregoing reduction for exp(#?) times, the claim follows. [l
(t))

Theorem 2 (worst-case to average-case reduction for CC,

randomized reduction of computing cht) on the worst-case n-vertexr graph to correctly computing

. For every integer t > 3, there is a

CCét) on at least a 1 —exp(—t2) fraction of the n-vertex graphs such that the reduction runs in time
O(n?), makes exp(t?) queries, and has error probability at most 1/3.

Proof: Settingd = (;), consider the following random self-reduction of CCS). On input a symmetric
and non-reflective n-by-n matrix, A:

1. Select uniformly d random (symmetric and non-reflective) n-by-n matrices, denoted RM .. R

and let RO = A,

LA result of similar nature appears in [AFW20, Thm. 2].
2See [G17, Exer. 5.1]. (Alternatively, sce [ WWWY, Lem. 2.2].)




2. Making adequate queries to CC( ) , return 212{071”“,(1}11#0} ch) (R") mod 2, where RU) def

S ier B9 mod 2 and CC% )(R( )) = 0.
Hence, the foregoing reduction performs 247! — 2 queries, and each of these queries (i.e., each R
for I ¢ {0,{0}}) is uniformly distributed over the set of all symmetric and non-reflective n-by-n

matrices.
We claim that, for any fixed R, R ... R it holds that ZIQ{OJWJ}:I#O} CCS:) (RU) equals

ch)(R(O)) mod 2. This claim is proved by considering the multivariate polynomial P(xq, x1, ..., xq)
over GF(2) that is defined to equal CC( )(Z "o 7 RW). Specifically, we use the following facts:
o P(bg,b1,....,bq) = CCg) (RUE6:=11) in particular, P(0,0,...,0) = 0 and P(1,0, ...,0) = cht)(R(o)).
e P has degree (;) = d, since P(xg,x1,...,Tq) = CCét)(L(IL‘(),ZL‘l, ...,xq)) such that L(xo, )
is a matrix of linear functions (i.e., the (u,v)™ entry of L(xo, ..., z4) equals Z Ru U:m)
(Indeed, using Eq. (1), it follows that P = CCét)(L) has degree (;))

e for any (d+ 1)-variate polynomial of degree at most d over GF(2) it holds that the sum of its
evaluation over all 2%+1 points is 0.

This general fact can be seen by considering an arbitrary monomial M (zg,z1,...,24) =
[Lic; zi, where I C {0,1,..,d}. Indeed,

> M (bo, by, ....by) = > 1%

(bo,b1,...,bq) EGF(2)d+1 (bo,b1,...,bg) EGF(2)4+1 1€l
RSN IS
i€l b;eGF(2)

which equals 0 (mod 2), since |I| < d.

Combining the foregoing facts, it follows that >~ ;01 a1.1£¢0} cht) (RD) equals CC( )(Ro) (mod 2).

Thus, given oracle access to a program II such that Prg[II(R) = ch)(R)] > 1 — €, when
making queries to Il rather than to CCét), the foregoing reduction returns the correct value with
probability at least 1 — (297! — 2) - ¢ (i.e., whenever all queries are answered correctly). Using
€ = 2_t2, we obtain a worst-case to average-case reduction that fails with probability less than
odH1-t* — 9—(*+1-2)/2 1 /3 when given access to a procedure that is correct on at least a 1 —2~°

fraction of the instances.®> [}

Remark 3 (the distribution of CCg) (R) for random R): The proof of Theorem 2 implies that
2t < PrR[CCg) (R)=1]<1- 2= To see this, using notation as in the proof, suppose towards
the contradiction that PrR[CC(t)(R):b] >1 -2t for some b. Then, for every Ry, it holds that

Prg, R, > cc(RDYy=0 (mod 2)
1C{0,1,....d}:I#£{0}

3Indeed, we can slightly improve the bound by using any constant e < 27472 = 2~ (t2—t+4)/2,



Y

Priy,oity [ (VI € {0, 1, d} \ {0},0)) cCf (RD) =0
> 1- (241 —2).27" > ¢

where the last inequality uses 2d+1-1* — 9—(*+1=2)/2 | Byt this is impossible when CCét)(Ro) =1
(e.g., if CCD(Ry) = 1).

While Remark 3 only asserts that ER[CCS)(R)] is bounded away from both 0 and 1, it is known to
be approximately 1/2. The latter fact follows as a special case of a general result of Kolaitis and
Kopparty [KK13, Thm. 3.2].4

Open Problem 4 (stronger worst-case to average-case reduction for cht)): For every integer

(®)

t >3 and v > 0.5, is there a randomized reduction of computing CCy’ on the worst-case n-vertex

)

reduction runs in time 5(712), and has error probability at most 1/3.

graph to correctly computing ch on at least a v fraction of the n-vertexr graphs such that the

This strengthens Theorem 2 by requiring the reduction to tolerate error rate that is arbitrary close
to 0.5 rather than error rate exp(—t2). The fact that ER[CCS)(R)] ~ 0.5 may be viewed as a sanity

check for Problem 4, since ]ER[CCét)(R)] —0.5] > ¢ would have implied that CCS) can be computed
correctly with probability 0.5 4+ § in constant time.

3 Conclusion

Like [BBB19, Thm. I1.9], Theorem 2 asserts an efficient worst-case to average-case reduction for
counting t-cliques mod 2, where average-case is with respect to the uniform distribution over graphs
(t)

with the given number of vertices. Specifically, for any integer ¢ > 3, computing CCy’ on the worst-
case n-vertex graph is reducible (in O(n?)-time) to computing ch) correctly on a 1 — exp(—t?)
fraction of all n-vertex graphs.

We believe that Theorem 2, which has a very simple proof, is as interesting as an analogous

result that refers to counting t-cliques (i.e., computing CC)), because (as shown in Theorem 1

and [BBB19, Lem. A.1]), computing CCét) is not easier than determining whether a given graph
contains a t-clique. The point is that the decisional problem (i.e., --CLIQUE) is the one that has
received most attention in prior work, and results regarding either cc(*) or CCg) are mostly proxies
for it (i.e., for results regarding ¢-CLIQUE). In particular, combining Theorems 1 and 2, it follows

that deciding ¢-CLIQUE on the worst-case n-vertex graph is reducible (in O(n?)-time) to computing
ch) correctly on a 1 — exp(—t2) fraction of all n-vertex graphs. (Recall that a similar result was
established in [BBB19], by combining [BBB19, Lem. A.1] and [BBB19, Thm. I1.9].)

We note that [GR18] and [BBB19, Thm. I1.8], which refer to the counting problem, fall short of
establishing results analogous to [BBB19, Thm. I1.9] and Theorem 2: The results of [GR18] are not
for the uniform distribution (but rather for a relatively simple but different distribution), where
the result of [BBB19, Thm. II.8] holds for a notion of average-case that allows only a vanishing

“The comment was added in revision. The original version included proofs of the cases of t € {3,4}, since (at the
time) I was unaware of the results of Kolaitis and Kopparty [KK13].
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error rate (i.e., the “average-case algorithm” is required to be correct on at least a 1 — ——+———
) poly(logn)

fraction of the n-vertex graphs).
As stated in Problem 4, we leave open the problem of obtaining a result analogous to Theorem 2
for “average-case algorithms” that are correct on a «y fraction of the instances, for every v > 1/2.
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