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Abstract

We show that is hard to find regular or even ordered (also known as Davis-Putnam) Res-
olution proofs, extending the breakthrough result for general Resolution from Atserias
and Müller [AM19] to these restricted forms. Namely, regular and ordered Resolution
are automatable if and only if P = NP. Specifically, for a CNF formula F the problem
of distinguishing between the existence of a polynomial-size ordered Resolution refu-
tation of F and an at least exponential-size general Resolution proof being required to
refute F is NP-complete.
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1 Introduction

A propositional proof system is a sound and complete polynomial-time verifier for purported
proofs of propositional statements. Such a proof system is called automatable (in polynomial
time) if there is an algorithm that on input of a CNF formula F will find a proof refuting
F in time polynomial in the length of F and the shortest proof that exists in the system.
It has long been an question of interest whether a natural proof system called Resolution,
which is the basis of all CDCL SAT solvers, is automatable. Getting within an additive
polynomial or constant factor of minimum Resolution proof size, stricter requirements than
automatability, have been known to be NP-hard for a while [Iwa97, ABMP01]. Results
supporting the idea that Resolution is not automatable either under various assumptions
include those in [AR08, EGG08, MPW19].

In 2019, there was a breakthrough result from Atserias and Müller [AM19] that was
able to show that Resolution is not automatable in polynomial time under the optimal
assumption that P 6= NP (optimal since if P = NP, then Resolution would have to be
polynomial-time automatable). Over the last year, several more exciting results followed
that extended their results to several algebraic and semialgebraic proof systems, due to
Göös et al. [GNP+20, GKMP20].

More precisely, altogether, these results showed that Resolution (Res), Nullstellensatz
(NS), Polynomial Calculus (PC), Sherali-Adams (SA), and Cutting Planes (CP) are each
automatable in polynomial time if and only if P = NP. They are also not automatable
in subexponential time unless the Exponential Time Hypothesis (ETH) fails, which is the
conjecture that 3-SAT on n-variable formulas requires 2Ω(n) time. Further, it is not possible
to approximate minimum proof length in each system within subexponential error unless P
= NP. These results are all consequences of the following finding of these papers:

Proposition 1.1 ([AM19, GNP+20, GKMP20]). For any proof system S = Res,NS,PC,
SA,CP, there is a polynomial-time algorithm A that on input of an n-variate 3-CNF formula
F outputs a CNF formula A(F ) such that:

• If F is satisfiable, then A(F ) admits an S-refutation of size at most nO(1).

• If F is unsatisfiable, then A(F ) requires S-refutations of size at least 2nΩ(1)
.

One major implication of these results is that if P 6= NP, any SAT solver that is based on any
of the above proof systems will sometimes take superpolynomial time to find a proof even
when a polynomial-size proof exists. Further, they will sometimes take exponential time
unless ETH fails. This includes the most common kind of SAT solver, CDCL SAT solvers,
because they produce Resolution proofs.

A question that naturally arises is whether this result can also be extended to several
restricted forms of Resolution with exponential separation from general Resolution. Perhaps
if there is a short proof in a more restricted form of Resolution with fewer possibilities
then this would allow us to find a short proof efficiently. Indeed, [BP96] noted that tree-
like Resolution is automatable in quasi-polynomial time using a divide-and-conquer method
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related to the size-width tradeoff. Thus it is not expected that Proposition 1.1 can be
extended to tree-like Resolution since if it could be, ETH would fail. After the talk given
by Atserias at the 2020 Banff Proof Complexity conference, whether the result extends to
another natural restriction of Resolution called regular Resolution was raised as an open
question [Ats20].

In this paper, we answer this question and show that Proposition 1.1 can be extended to
the restricted version of Resolution given by the proof system of regular Resolution (Resreg).
Further, we are able to show that these results hold for an even more restricted special case of
regular Resolution, ordered Resolution (Resord). This proof system is also known as Davis-
Putnam Resolution, and goes back to the initial development of Resolution-based proof
search algorithms in [DP60]. Ordered Resolution is a very restricted form of Resolution
that is incomparable with tree-like Resolution since neither proof system can polynomially
simulate the other, but both can be compared with regular Resolution as the smallest proofs
in each system are regular [Urq95, BDP09]. Unlike with tree-like Resolution however, it is
also NP-hard to find ordered Resolution proofs, or to even distinguish between when there
is a short (polynomial-size) ordered Resolution proof and when a long (exponential-size)
proof is necessary even using general Resolution or other more powerful proof systems from
Proposition 1.1.

To establish these results, we will extend the proof systems Proposition 1.1 applies to
and show

Theorem 1.2. There is a polynomial-time algorithm A that on input of an n-variate 3-CNF
formula F outputs a CNF formula A(F ) such that for either proof system S = Resreg or
Resord,:

• If F is satisfiable, then A(F ) admits an S-refutation of size at most nO(1).

• If F is unsatisfiable, then A(F ) requires S-refutations of size at least 2nΩ(1)
.

It was shown in [GNP+20] that all of the Proposition 1.1 results—except for CP—can be
proven using the same formula A(F ). We will use this same formula to establish The-
orem 1.2. We thus inherit the lower bound in the case that F is unsatisfiable from the
previous treatment of Resolution, and need only establish the upper bound in the case that
F is satisfiable within these restricted systems. Thereby using the same A(F ) (plus a slight
adjustment for CP) also implies

Theorem 1.3. For any proof system S = Res,NS,PC,SA,CP,Resreg,Resord, there is
a polynomial-time algorithm A that on input of an n-variate 3-CNF formula F outputs a
CNF formula A(F ) such that:

• If F is satisfiable, then A(F ) admits an Resord-refutation of size at most nO(1).

• If F is unsatisfiable, then A(F ) requires S-refutations of size at least 2nΩ(1)
.
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In particular, even if there is a short ordered Resolution proof, there is no algorithm that
will be able to find a short general Resolution proof in polynomial time (if P 6= NP) or in
subexponential time (if ETH holds). It is even NP-hard to distinguish between the existence
of a polynomial-size ordered Resolution proof and an exponential-size Resolution proof being
required in general.

2 Preliminaries

Resolution is a proof system for CNF formulas. A Resolution refutation of an unsatisfiable
CNF formula F with clauses C1, C2, . . . , Cm is a sequence of clauses (B1,B2, . . . ,Bs) where
each Bi is derived one of two ways and we end with Bs = ∅ (which implies that if F is
satisfied, the empty clause will be too, which is impossible, giving us our refutation). One
option is that Bi can be the weakening of one of the Ck axioms. The other is that is can be
the result of weakening the A ∨B clause given by the following rule:

A ∨ x B ∨ x
A ∨B

where x is a variable and BiL = A∨x (the left premise) and BiR = B ∨x (the right premise)
are two previous clauses in the refutation (iL, iR < i).

Two complexity measures commonly used for Resolution are size and width. The size
of a Resolution refutation is s, the number of clauses in it. The minimum size of any
Resolution refutation of a CNF formula F is denoted by Res(F ). The width of a Resolution
refutation is the maximum number of literals in any clause in the refutation. In this paper,
a generalization of the concept of width will be more useful. After defining a partitioning
of the variables of F into blocks, the block-width of a Resolution refutation is the maximum
number of blocks touched by any clause in the refutation. Notice that the block-width is
the same as the width if each variable is defined to be in a separate block. We will denote
the block-width of a Resolution refutation P by bw(P). The minimum block-width of any
Resolution refutation of a CNF formula F is denoted by bw(F ` ⊥).

A Resolution refutation can also be depicted as a DAG with the Bi as its nodes. Specif-
ically, the Ck axioms (or weakenings of them) are the leaves, ∅ or ⊥ is the root, and the
internal nodes are the clauses derived via the Resolution rule. The edges in the DAG are
from the left premise and right premise to the clause they were used to derive.

This view allows us to more easily define the proof systems of regular Resolution and
ordered Resolution. A regular Resolution refutation is a Resolution refutation where any
variable is resolved upon at most once along any path through the DAG of the refutation.
An ordered Resolution refutation is a regular Resolution refutation where a single total order
of the variables is respected by the variables resolved upon along any path through the DAG.

It is also useful to view regular and ordered Resolution through a lens brought to us
by read-once branching programs [Kra95]. In this frame, a querier is interacting with an
assignment and seeking to find the input clause that the assignment violates, which must
exist since the formula is unsatisfiable. A path through the DAG of a regular Resolution proof
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corresponds to responses to a sequence of queries of the variables involved that ultimately
finds this conflicting clause, so that we see the DAG corresponds to a read-once branching
program solving the conflict clause search problem.

In particular, a node labelled with a given clause in the DAG corresponds to a node
in the branching program labelled with a partial assignment which precisely violates that
clause. Start at the root of the DAG. If we are at a derived node in the DAG, we then
query the variable that was resolved on to derive it and continue our path to the clause
with the literal that is false under the assignment to that variable to maintain our invariant.
Further, if there are variables that are assigned which are no longer in this new clause, then
we forget them. Because the Resolution refutation is regular, we need not be concerned
about querying them again later. When we reach a leaf, we will have found an input clause
that is precisely violated by the assignment. We can also construct an assignment that will
take us along any path through the DAG we choose when this procedure is followed.

Therefore showing that a refutation is regular can also be framed as showing that any
path through the DAG corresponds to responses to a sequence of queries in which the same
variable is never re-queried, producing a read-once branching program. Likewise, to show
that it is ordered, we can show that a fixed ordering of variables is always respected by the
sequence of queries, producing a special case of a read-once branching program called an
Ordered Binary Decision Diagram (OBDD) [LNNW95].

3 The Ref(F ) formula

The formula A(F ) from the introduction is based on (a slight variation of) the Ref(F )
formula described below, which semantically describes a short Resolution refutation of F .
The formula we present is slightly different from the encodings used in previous works. This
is done for convenience, and does not affect the ultimate result. See Appendix A for the
details of how our formalization differs from those of [AM19] and [GNP+20].

3.1 Variables of Ref(F )

Fix a CNF formula F with n variables and m = poly(n) clauses, C1, C2, . . . , Cm. Fix a
maximum allowed refutation length s for the Resolution refutation refuting F described by
Ref(F ). We ultimately set s = n3. Let Bi denote the ith clause in the Resolution refutation
of F (B1,B2, . . . ,Bs) described by Ref(F ). See Table 1 for the definition of the variables we
will use.

We partition these variables into blocks based on which clause Ck or Bi they are primarily
associated with. Specifically, for each k ∈ [m], the variables Ck,q,b ranging over q ∈ [n] and
b ∈ {0, 1} constitute a block. We will call this the Ck block of variables. Additionally, for
each i ∈ [s], the variables Bi,q,b, Di, Ai, Wi,k, and Ii,iL,iR,` ranging over all other indices
constitute a block. We call this the Bi block. We do this in preparation to lift bounds on
block-width to bounds on size in order to maintain the desired lower bound in the case that
F is unsatisfiable.
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Variable Meaning

Ck,q,b
Input clause Ck of F contains xb

q where x1
q = xq and x0

q = xq

k ∈ [m], q ∈ [n], b ∈ {0, 1}

Bi,q,b
Clause Bi of the refutation of F contains xb

q

i ∈ [s], q ∈ [n], b ∈ {0, 1}

Di
Clause Bi is disabled (we do not enforce rules on it)

i ∈ [s]

Ai
Clause Bi is a weakening of an input axiom

i ∈ [s]

Wi,k
Clause Bi is a weakening of input clause Ck

i ∈ [s], k ∈ [m]

Ii,iL,iR,`
Clause Bi is inferred from BiL and BiR by resolving on x` (x` ∈ BiL , x` ∈ BiR)

i ∈ [s], 1 ≤ iL, iR < i, ` ∈ [n]

Table 1: Variables of Ref(F )

3.2 Axioms of Ref(F )

We define the following axioms for Ref(F ) given in Table 2 so that it must encode a valid
refutation of F of length at most s (allowing weakening throughout). Thus Ref(F ) can
be written in CNF form with a polynomial number of clauses in n, m, and s (and thus
ultimately in n). Notice that the block-width of Ref(F ) is 2 since no more than two clauses
are directly discussed at a time.

As the (1) and (1’) axioms make clear, the Ck,q,b variables are technically unnecessary
since their values are immediately forced. In particular, the (1’) axioms will not even be
used in the refutation (as they have nothing to resolve with). These variables and axioms are
included to help clarify what is going on in the Ref(F ) formula and its refutation semantically.

4 Order that will be respected by our refutation

Our resolution of variables respects an ordering starting with all of the Ck (with any ordering
between them) followed by the Bi blocks starting from 1 up to s. Essentially, in the language
of branching programs and queries (for which the order is reversed since we start at the root),
we are able to iteratively reduce our search for a conflicting clause from variables defining a
Bi clause to those defining a Bj clause earlier in the refutation or finally to those defining an
input axiom Ck.

Additionally, our resolution of variables within a given Bi block respects the following
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Axiom Meaning

(1) Ck,q,b
xbq is in Ck of our fixed F where x1

q = xq and x0
q = xq

k ∈ [m], q ∈ [n] and b ∈ {0, 1} such that xbq ∈ Ck

(1’) Ck,q,b
xbq is not in Ck of our fixed F

k ∈ [m], q ∈ [n] and b ∈ {0, 1} such that xbq 6∈ Ck

(2) Di ∨Ai ∨
∨

1≤iL,iR<i
`∈[n]

Ii,iL,iR,`

Either Bi is disabled, the weakening of an axiom,
or it is derived from something

i ∈ [s]

(3) Ai ∨
∨

k∈[m] Wi,k

If Bi is a weakening of an input axiom,
then it must be the weakening of a specific one

i ∈ [s]

(4) Wi,k ∨ Ck,q,b ∨Bi,q,b

If clause Bi is a weakening of input clause Ck,
then everything in Ck must be in Bi

i ∈ [s], k ∈ [m], q ∈ [n], b ∈ {0, 1}

(5) Ii,iL,iR,` ∨DiL

If Bi is derived from BiL , BiR by resolving on x`,
then BiL cannot be disabled

i ∈ [s], 1 ≤ iL, iR < i, ` ∈ [n]

(6) Ii,iL,iR,` ∨DiR

If Bi is derived from BiL , BiR by resolving on x`,
then BiR cannot be disabled

i ∈ [s], 1 ≤ iL, iR < i, ` ∈ [n]

(7) Ii,iL,iR,` ∨BiL,`,1

If Bi is derived from BiL , BiR by resolving on x`,
then BiL must contain x`

i ∈ [s], 1 ≤ iL, iR < i, ` ∈ [n]

(8) Ii,iL,iR,` ∨BiR,`,0

If Bi is derived from BiL , BiR by resolving on x`,
then BiR must contain x`

i ∈ [s], 1 ≤ iL, iR < i, ` ∈ [n]

(9) Ii,iL,iR,` ∨BiL,q,b ∨Bi,q,b

If Bi is derived from BiL , BiR by resolving on x`,
then everything in BiL must be in Bi—except x`

i ∈ [s], 1 ≤ iL, iR < i, ` ∈ [n],
q ∈ [n] and b ∈ {0, 1} except q = ` and b = 1

(10) Ii,iL,iR,` ∨BiR,q,b ∨Bi,q,b

If Bi is derived from BiL , BiR by resolving on x`,
then everything in BiR must be in Bi—except x`

i ∈ [s], 1 ≤ iL, iR < i, ` ∈ [n],
q ∈ [n] and b ∈ {0, 1} except q = ` and b = 0

(11) Ds The final clause cannot be disabled

(12) Bs,q,b
The final clause must be empty

q ∈ [n], b ∈ {0, 1}

Table 2: Clauses of Ref(F )

7



order on variable types as well:
Ii,iL,iR,`

Wi,k

Ai

Bi,q,b

Di

We can also adjust our refutation to respect whatever order we want within the Ii,iL,iR,`,
Wi,k, and Bi,q,b variable types because we will resolve on all of the variables of a type one
after the other in an arbitrary sequence. This holds true as well for the one variable type in
a Ck block, the Ck,q,b.

By maintaining this order, we will show that our refutation is not only regular, but
ordered. Further, notice that this ordering demonstrates that our refutation is what we will
call block-regular and block-ordered, which essentially means that its regularity and ordering
respect the blocks the variables of the formula are partitioned into:

Definition 1. A Resolution refutation is block-regular if it is a regular Resolution refutation
where variables from a given block are resolved upon in at most one consecutive segment along
any path through the DAG of the refutation.

Definition 2. A Resolution refutation is block-ordered if it is ordered, and the ordering on
its variables respects an ordering on the blocks.

Notice that a Resolution refutation is block-ordered if and only if it is block-regular and
ordered. These properties will be crucial when we seek to maintain regularity and order on
the lifted version of the Ref(F ) formula.

5 Upper bound on ordered refutation size for Ref(F )

with F satisfiable

We will describe a polynomial-size refutation of Ref(F ) in the case that F is satisfiable. Thus
let the sets P ⊆ [n] and N = [n] \ P reflect a satisfying assignment by placing q ∈ P if the
satisfying assignment sets xq = 1 and q ∈ N if the satisfying assignment sets xq = 0 for each
q ∈ [n]. This satisfying assignment will guide our efficient refutation.

The outline of the refutation of Ref(F ) is as follows. For each i (starting with 1 and
ending with s) we seek to derive

Di ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0,

which says that if clause Bi is not disabled, then it contains a literal which is satisfied by the
satisfying assignment of F . This is to be expected since Resolution is sound, all of the input
axioms of F are satisfied by the assignment, and Bi must have been ultimately derived from
these if it is not disabled.
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It is thus also clear where our ultimate contradiction arises. The final clause in the
refutation is not disabled and must be the empty clause, and thus cannot contain a literal
which is satisfied under the given assignment. Indeed, once we derive

Ds ∨
∨
q∈P

Bs,q,1 ∨
∨
q∈N

Bs,q,0,

we can resolve it with the appropriate (12) Bs,q,b (all q ∈ [n] with b = 1 if q ∈ P and b = 0
if q ∈ N) and finally the (11) Ds axiom to derive the empty clause and finish the refutation
of Ref(F ).

Notice that this contributes no more than 1+n derived clauses to the size of our refutation,
and all clauses involved have block-width 1. Also notice that our ordering has been respected
because we are ending with resolving variables from the Bs block, and we first resolved the
Bs,q,b and finally Ds.

To fill in the details of this strategy, it is natural to describe the reduction inductively.
Assume that we have already derived

Dj ∨
∨
q∈P

Bj,q,1 ∨
∨
q∈N

Bj,q,0

for all j < i and now seek to derive

Di ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0.

To verify that these steps of the refutation remain ordered, we will see that in the process
of deriving the i-th clause above we will only resolve on the following types of variables in
the following order after using our derivation of a j < i clause:

Bj,q,b

Dj

Ii,iL,iR,`

Ai

or we will respect the following ordering:
Ck,q,b

Wi,k

Ai

In either case, we respect our total order, though where the variables belonging to each Bj
block are resolved on is split between the end of their own j-th step and the beginning of
the i-th step that follows.

We will proceed in our reduction case-wise. It may be helpful to refer to Fig. 1 below,
especially to see how the order is respected.
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⊥

(11)		𝐷𝑠 𝐷𝑠

𝐷( ∨ Sat(𝑠) (12)		𝐵𝑠𝑞𝑏

𝐷1 ∨ Sat(𝑖)

𝐷1 ∨ 𝐴1 ∨ Sat(𝑖) 𝐴1 ∨ Sat(𝑖)

(3)		𝐴1 ∨ ⋁ 𝑊17
�
7

𝑊17 ∨ Sat(𝑖)

(1)		Sat′(𝑘) (4)		𝑊17 ∨ 𝐶𝑘𝑞𝑏 ∨ 𝐵𝑖𝑞𝑏
(2)		𝐷1 ∨ 𝐴1 	∨ ⋁ 𝐼11>1?ℓ

�
1>1?ℓ𝐼11>1?ℓ ∨ Sat(𝑖)

(5,	6)		𝐼11>1?ℓ ∨ 𝐷D 𝐷D ∨ 𝐼11>1?ℓ ∨ Sat(𝑖)

𝐷D ∨ Sat(𝑗)
(9,	10)		𝐼11>1?ℓ ∨ 𝐵𝑗𝑞𝑏 ∨ 𝐵𝑖𝑞𝑏

recurse

Figure 1: This diagram is a schematic representation of the DAG of the refutation we describe,
in an orientation that corresponds naturally to the querying view of the refutation. Note that
it presents a top-down view of the refutation, while the main text describes the refutation in a
bottom-up manner. Thus the natural way of viewing the order is reversed. Sat(i) represents∨

q∈P Bi,q,1 ∨
∨

q∈N Bi,q,0, and Sat′(k) represents
∨

q∈P Ck,q,1 ∨
∨

q∈N Ck,q,0. Axioms are numbered
as in Table 2. The variables being resolved upon (queried, when viewed top-down) in each step are
in red. Three arrows coming from a block represents resolving in sequence versions of the clause
produced by varying over the appropriate indices. The index j = iL or iR depending on whether
` ∈ N or P respectively, leading the appropriate of the pair of axioms indicated to be invoked.
Notice that Dj ∨ Sat(j) is used by all i > j, but only once in any single path through the DAG.
For the base case i = 1, only the axiom side exists, thereby terminating our recursion.
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5.1 Case 1: Derived

Our goal in this first subsection is to derive

Ii,iL,iR,` ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0,

which corresponds to the case that Bi was derived from BiL and BiR by resolving on x` for
some 1 ≤ iL, iR < i, ` ∈ [n]. This clause says that if Bi was derived from BiL and BiR by
resolving on x`, then it must contain a literal which is satisfied by the assignment. To decide
how to derive this, we check whether ` ∈ P or ` ∈ N . This is because the literal x` or x`

may have been causing BiL or BiR to be satisfied by the assignment respectively, but not
both at once, so Bi will inherit its satisfaction from whichever cannot have been satisfied by
the assignment to x`.

Thus if ` ∈ N , then we use our inductive hypothesis for iL < i:

DiL ∨
∨
q∈P

BiL,q,1 ∨
∨
q∈N

BiL,q,0.

Since ` ∈ N , we can transform each of these BiL,q,b’s into Bi,q,b’s by resolving with each

(9) Ii,iL,iR,` ∨BiL,q,b ∨Bi,q,b

for all q ∈ [n] with b = 1 if q ∈ P and b = 0 if q ∈ N in sequence—without needing to call
on the q = ` and b = 1 case, which we do not have for iL. We then resolve on DiL :

(5) Ii,iL,iR,` ∨DiL DiL ∨ Ii,iL,iR,` ∨
∨

q∈P Bi,q,1 ∨
∨

q∈N Bi,q,0

Ii,iL,iR,` ∨
∨

q∈P Bi,q,1 ∨
∨

q∈N Bi,q,0

obtaining our goal.
On the other hand, if ` ∈ P , then we proceed identically but with iR instead of iL in

order to derive the same clause, which we can again safely do by this protocol because we
are not asked to use the non-existent axiom

Ii,iL,iR,` ∨BiR,`,0 ∨Bi,`,0.

We repeat this process for all 1 ≤ iL, iR < i, ` ∈ [n], finishing with the clauses

Ii,iL,iR,` ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0

for all possible combinations of these indices. Notice that this process has contributed no
more than s2n · (1 + n) derived clauses to the size of our refutation, and all clauses involved
have block-width at most 2. Also notice that we have respected our desired order within
this case because after using the inductive hypothesis for either j = iL or iR < i, we resolve
on the Bj,q,b and then Dj.
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5.2 Case 2: Weakened Axiom

Now we will address the case that Bi is the weakening of an input axiom of F and derive

Ai ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0,

which says that if Bi is a weakening of an axiom, then it must contain a literal which
is satisfied by the assignment. In this case, we do not need to appeal to our inductive
hypothesis because this follows straightforwardly from P and N reflecting an assignment
that satisfies all of the input clauses of F .

First, notice that since P , N reflect the satisfying assignment,∨
q∈P

Ck,q,1 ∨
∨
q∈N

Ck,q,0

is a weakening of one of the (1) Ck,q,b axioms describing what is in Ck ∈ F , since it must
contain some literal which is satisfied by the assignment.

Then we can resolve this with each appropriate

(4) Wi,k ∨ Ck,q,b ∨Bi,q,b

(for all q ∈ [n] with b = 1 if q ∈ P and b = 0 if q ∈ N) in sequence to transform each of
these Ck,q,b’s into Bi,q,b’s, ultimately obtaining

Wi,k ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0,

which says that if Bi is the weakening of input axiom Ck, then it must contain a literal which
is satisfied by the assignment.

We do the same process for all k ∈ [m], and then resolve them each with

(3) Ai ∨
∨

k∈[m]

Wi,k

in sequence to obtain

Ai ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0,

as desired. Notice that this case has contributed no more than m · (n+ 1) derived clauses to
the size of our refutation, and all clauses involved have block-width at most 2. Also notice
that we have respected our desired order within this case because we resolve on the Ck,q,b

followed by the Wi,k.
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5.3 Combining the cases

Since Bi must either be disabled, the weakening of an axiom, or derived and we have just
shown that the latter two cases imply that it must contain a literal which is satisfied by the
assignment, our final result is straightforward to derive from here.

First we resolve
(2) Di ∨ Ai ∨

∨
1≤iL,iR<i

`∈[n]

Ii,iL,iR,`

with each
Ii,iL,iR,` ∨

∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0

for all 1 ≤ iR, iL < i, ` ∈ [n] in sequence to obtain

Di ∨ Ai ∨
∨
q∈P

Bi,q,1 ∨
∨
q∈N

Bi,q,0.

Now we resolve on Ai to derive our goal:

Di ∨ Ai ∨
∨

q∈P Bi,q,1 ∨
∨

q∈N Bi,q,0 Ai ∨
∨

q∈P Bi,q,1 ∨
∨

q∈N Bi,q,0

Di ∨
∨

q∈P Bi,q,1 ∨
∨

q∈N Bi,q,0

Notice that this combination has contributed no more than s2n + 1 derived clauses to the
size of our refutation, and all clauses involved have block-width 1.

Now we must consider how to deal with the base case where i = 1. But we have already
shown this! Since there are no iL, iR < i, we simply have the axiom

D1 ∨ A1,

so we skip the first part of the process and simply use the axiom case, which did not rely on
the inductive hypothesis.

Let us consider our overall size and block-width. Summing over all 1 ≤ i ≤ s as well as
the extra steps at the end to get to the empty clause from the i = s result, the size of our
refutation is bounded by a constant times the number of derived clauses

s · (s2n · (1 + n) + m · (n + 1) + s2n + 1) + 1 + n ∈ nO(1)

for s = n3 and m = poly(n). Our block-width was also bounded by 2 ∈ O(1) throughout.
Also notice that we have respected our desired order throughout the refutation, along

both paths which merged when we resolved on Ai. The Derived path came from a previous
j < i step and respected the following order:

Bj,q,b

Dj

Ii,iL,iR,`

Ai
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while the Weakened Axiom path respected the order:
Ck,q,b

Wi,k

Ai

Therefore we have maintained order throughout our refutation as desired.

6 Maintenance of regularity and order in

the refutation of Lift(Ref(F ))

Taking into account Appendix A, which shows that the refutation of our encoding of Ref(F )
can be slightly adjusted to refute the encoding given in [AM19], we inherit their upper bound
in the case that F is unsatisfiable and thus have shown Theorem 1.2. However, in order to
use the same formula to do so as for S = NS,PC,SA as well, one issue remains.

In [GNP+20], the lower bound in the case that F is unsatisfiable is obtained by lifting a
lower bound on block-width to one on size, and thus uses A(F ) = Lift(Ref(F )). For a CNF
G, Lift(G) is defined by creating two variables x0

i and x1
i for each variable xi of G as well as a

selector variable sB for each block and using the gadget g(x0
i , x

1
i , sB) = xsB

i for xi in block B
to substitute for xi in the original formula. It turns out that if G has O(1) block-width (like
Ref(F ) does), then Lift(G) can be constructed in polynomial time from G. See [GNP+20]
for the full details.

So far, after inheriting part (ii), we have shown part (i) of the following lemma, which is
an extension Lemma 2.1 in [GNP+20].

Lemma 6.1. There is a polynomial-time algorithm that on the input of a O(1) block-width
CNF formula F outputs a O(1) block-width CNF formula Ref(F ) such that

(i) If F is satisfiable, then Ref(F ) admits a size-nO(1) O(1) block-width Resord refutation
that is also block-ordered.

(ii) If F is unsatisfiable, then Ref(F ) requires a Res refutation of block width at least nΩ(1).

Now we must ensure that our block-ordered, polynomial-size, and O(1)-block-width refuta-
tion of Ref(F ) (which Appendix A shows can be slightly adjusted to refute the encoding given
by [GNP+20]) implies that there is also a regular and even ordered refutation for Lift(Ref(F ))
of polynomial size in the F satisfiable case, while in the unsatifiable case we get exponential
size. We will do this by proving the following lemma, which is an extension of Lemma 2.3
in [GNP+20], which shows this lift with general Resolution given a general Resolution refu-
tation. In order for the lift to maintain regularity and order, we need block-regularity and
block-order instead of simply regularity and order in the original refutation.

Lemma 6.2. There is a polynomial-time algorithm that on the input of a O(1) block-width
CNF formula G outputs a CNF formula Lift(G) such that

2Ω(bw(G`⊥)) ≤ Resreg(Lift(G)) ≤ 2O(bw(P)) · ||P||

14



where P is any block-regular Resolution refutation of G. Additionally, Lift(G) is such that

2Ω(bw(G`⊥)) ≤ Resord(Lift(G)) ≤ 2O(bw(P)) · ||P||

where P is any block-ordered Resolution refutation of G.

Proof. Recall from Section 2 that regular Resolution refutations can be characterized as
read-once branching programs (which can be generalized to query strategies for general
Resolution). It will be useful to use the querying framework for this proof.

We use the same construction of Lift(G) as [GNP+20], and thus inherit their lower bound
from the lower bound for general Resolution in both cases. We also use the same construction
of a query strategy for Lift(G) from that for G as [GNP+20] does, so we also inherit their
upper bound as long as we can ensure regularity and order in each case.

Following their construction, given a regular query strategy for G, we construct one for
Lift(G) as follows. Whenever the strategy for G queries xi in block B, if sB is not yet
queried then we query it and then query the appropriate xsB

i based on the value of sB. We
then proceed as if the strategy for G received the result for xi that we received for xsB

i .
Additionally, whenever the strategy for G forgets some subset of variables, we forget all
variables associated with them unless they are needed to determine the appropriate xsB

i to
use for a variable xi that we still remember (i.e., we remember all of the sB variables for
blocks that contain variables the strategy for G is still remembering). It is easy to see that
this strategy solves the conflict cause search problem for Lift(G), because if the strategy
for G gets to a conflict clause C we will get to the one for Lift(G) that was created by
substituting the g(x0

i , x
1
i , sB) gadgets into C. It is also easy to see that we get a O(2bw(P))

blowup compared to the original size, because we only ever need to have 2bw(P) versions of a
node in the original strategy for all possible assignments to the at most bw(P) sB variables
we ever need to know at once.

Now, let P be a block-regular Resolution refutation of G. Notice that the Resolution
refutation of Lift(G), or query strategy for Lift(G), remains regular for two reasons. First,
because the original refutation was regular, the new refutation is regular with respect to the
x0
i , x1

i variables. Second, because the original refutation was block-regular, we can safely
forget a selector sB variable when the protocol indicates without concern of requerying it
later. This is because if after querying some of the variables associated with a block we
forget all of them (which must occur after querying a variable from a different block), we
know we will not query another variable from the same block later due to the original proof’s
block-regularity and so will not query sB again either. Thus regularity is maintained.

It is easy to see how this also maintains order if we let P be a block-ordered Resolution
refutation of G. Since we use the same construction of a query strategy again, from what
we have just shown, we have maintained regularity in our new proof since a block-ordered
a refutation must be block-regular as well. Notice that the Resolution refutation of Lift(G)
remains ordered as well for two reasons. First, because the original refutation was ordered,
the new refutation is ordered with respect to the x0

i , x
1
i variables (with arbitrary ordering

between x0
i and x1

i for a given i in our new order). Second, the refutation is also ordered with
the sB included because if we insert each sB before all of the other variables associated with
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its block in the ordering, this order will be respected. This is because in our new protocol we
always query sB before we query anything else from the block. Thus order is maintained.

We now seek to also prove our result using the formula that was used to show Proposi-
tion 1.1 for CP. In [GKMP20], a slightly different kind of lifting is used to show this result
for CP. Instead of one selector variable for each block specifying which of two copies of the
variables to use, a O(log n)-bit pointer specifies which of the O(n) copies of the variables
in the block to use. [GKMP20] shows this variation can be also constructed in polynomial
time. In a similar way as Lemma 6.2, we can extend Theorems 4 and 8 from [GKMP20] to
show

Lemma 6.3. There is a polynomial-time algorithm that on the input of a O(1) block-width
CNF formula G outputs a CNF formula LiftCP(G) such that

2Ω(bw(G`⊥)) ≤ Resreg(LiftCP(G)) ≤ nO(bw(P)) · ||P||

where P is any block-regular Resolution refutation of G. Additionally, Lift(G) is such that

2Ω(bw(G`⊥)) ≤ Resord(LiftCP(G)) ≤ nO(bw(P)) · ||P||

where P is any block-ordered Resolution refutation of G.

Proof (sketch). Like before, we inherit the lower bound from [GKMP20]. To establish the up-
per bound, we use the same query strategy as in the proof of Lemma 6.2 with one adjustment.
Instead of querying the single selector variable when the original strategy queries a variable
from a new block, we query all of the pointer variables to determine which version of the
variable to use. This then causes the size to blow up by a factor of 2O(logn·bw(P)) = nO(bw(P))

instead of a factor of 2O(1·bw(P)). Regularity and order are maintained (under the appropriate
assumptions about P) for the same reasons as in Lemma 6.2.

Notice that the upper bound remains polynomial for constant bw(P), so this gives us the
bounds we need for this version of lifting as well.

7 Conclusion

Combining Lemmas 6.1 and 6.2, we have shown that usingA(F ) = Lift(Ref(F )) suffices to es-
tablish Theorem 1.2. Alternatively, we can use the slight variation A(F ) = Lift(TreeRef(F ))
so that all of Res,NS,PC,SA,Resreg,Resord can be established using the same formula.
TreeRef(F ) simply has extra axioms ensuring the described refutation of F is tree-like,
which are only needed for the upper bound in the NS case. By using the same formula as
for Res,NS,PC,SA,Resreg, we have also established Theorem 1.3 except for CP. Finally,
Lemma 6.3 allows us to extend this result to CP as well.

Altogether, we have shown that regular and ordered Resolution are automatable in poly-
nomial time if and only if P = NP. They are also not automatable in subexponential time
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unless ETH fails. Additionally, it is not possible to approximate minimum proof length
in each system within subexponential error unless P = NP. Further, the problem of distin-
guishing between the existence of a polynomial-size ordered Resolution refutation of F and at
least exponential-size general Resolution, Nullstellensatz, Polynomial Calculus, and Sherali-
Adams proofs being required to refute F is NP-complete. The problem of distinguishing
between the existence of a polynomial-size ordered Resolution refutation of F and at least
exponential-size Cutting Planes proof being required to refute F is likewise NP-complete.

A major open problem in this area that remains is whether Proposition 1.1 can be ex-
tended to include the semi-algebraic proof system Sum of Squares (SoS) as well. The tech-
nique used in [GNP+20] to extend the result to other algebraic and semi-algebraic systems
by showing the exponential lower bound using a reduction from the Pigeonhole Principle
will not work for SoS, since it does have low-degree proofs of the Pigeonhole Principle. The
method [GKMP20] used for CP will not work for SoS either because even its lifted version
of the Pigeonhole Principle is too easy for SoS. Thus a new approach would be required to
extend these results to SoS.
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A Essential equivalence of our formalization of Ref(F )

to previous ones

In the main text, we have used a slightly different variable and axiom encoding for the
semantic meaning of Ref(F ) than [AM19] or [GNP+20]. This was done in order to more
naturally describe the refutation of F and make it easier to see what was happening in
the refutation. In this appendix, we describe these differences and outline how our ordered
Resolution refutation above could be modified for the encoding of Ref(F ) of [AM19], and
modified a bit further again to address the encoding of Ref(F ) given by [GNP+20], which
also differs slightly from that of [AM19], so that we can utilize their lower bounds in the case
that F is unsatisfiable.

A.1 Adjustments for the [AM19] encoding

There are a few differences between our encoding and that of [AM19]. See their paper for
their full formalization of Ref(F ) (actually what they refer to as RRef(F )), but the differences
from ours in terms of variables and axioms can be summarized as follows.

Differences between our variables

1. They do not have Ck,q,b variables. Their values from the (1) Ck,q,b axioms have already
been substituted into the (4) Wi,k ∨ Ck,q,b ∨Bi,q,b axioms.

2. Instead of Di, they have a variable that means the opposite (i.e. that a clause is active,
instead of that it is disabled). This is immaterial, so we will continue using Di in what
follows.

3. They do not have Ai variables. Instead, there is are Wi,k for k = 0 to set the axiom
from which Bi was weakened to null. Thus Ai has the same meaning as Wi,0, so we
will continue to use Ai in the place of Wi,0.

4. Instead of one Ii,iL,iR,` variable to express that clause Bi is inferred from BiL and BiR
by resolving on x`, there are three separate variables Li,iL , Ri,iR , and Vi,` to indicate
the left premise, the right premise, and the variable that is resolved upon to derive Bi
respectively. Thus Ii,iL,iR,` has the same meaning as Li,iL ∧ Ri,iR ∧ Vi,`. Further, these
can also be set to null by extra variables associated with the index iL = 0, iR = 0, or
` = 0 being true respectively.

[AM19] has 2s2 + 3sn+ sm+ 5s variables in total, while we use 1
3
s3n− 1

2
s2n+ 13

6
sn+ sm+

2s + 2mn.

Differences between our axioms

1. (1) and (1’) are of course missing.
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2. Instead of (2), they have:

Di ∨
∨

iL∈{0}∪[s]

Li,iL ,

Di ∨
∨

iR∈{0}∪[s]

Ri,iR ,

and
Di ∨

∨
`∈{0}∪[n]

Vi,`.

They also have
Di ∨ Li,iL

for iL ≥ i and
Di ∨Ri,iR

for iR ≥ i, which we can resolve with the first two to get

Di ∨
∨

0≤iL<i

Li,iL

and
Di ∨

∨
0≤iR<i

Ri,iR .

Finally, they have
Di ∨ Ai ∨ Li,0,

Di ∨ Ai ∨Ri,0,

and
Di ∨ Ai ∨ Vi,0

to ensure that if if a clause is not disabled or the weakening of an axiom, it is derived
from something. We can resolve these with the appropriate clauses just mentioned to
derive

Di ∨ Ai ∨
∨

1≤iL<i

Li,iL ,

Di ∨ Ai ∨
∨

1≤iR<i

Ri,iR ,

and
Di ∨ Ai ∨

∨
`∈[n]

Vi,`

which are simply (2) split into three parts.

3. Their versions of (3) through (10) have Di added to the OR (in addition to the vari-
ations described below). (7) and (9) have DiL added. (8) and (10) have DiR added.
(12) has Ds added.
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4. In (4), they have the values of the Ck,q,b already substituted in as mentioned before.
Clearly, these differences due to the lack of Ck,q,b variables simply allow us to do a little
less work in the Weakened Axiom Case.

5. In (5), they have Li,iL in the OR instead of Ii,iL,iR,`.

6. In (6), they have Ri,iR in the OR instead of Ii,iL,iR,`.

7. In (7) and (9), they have Li,iL and Vi,` in the OR instead of Ii,iL,iR,`.

8. In (8) and (10), they have Ri,iR and Vi,` in the OR instead of Ii,iL,iR,`.

9. They have several additional axioms that go unused in our refutation.

[AM19] has 2s3 + 4s2n2 − 2s2n + 5s2 + sn2 + sm2 + 2sn + sm + 9s + 2n + 1 with as many
as 2smn additional axioms in total (depending on how many xi are in the input axioms),
while we use 4

3
s4n2 + 2

3
s4n− 2s3n2 − s3n + 2

3
s2n2 + 1

3
s2n + 2snm + 2s + 2nm + 2n + 1.

Adjusted order It is not too difficult to see that while resulting in a slightly messier
refutation and order, we can adjust our refutation to address these differences and still
maintain a block-order. We will respect the same order between blocks, and respect this
order on variable types within a block:

Ri,iR for iR ≥ i
Ri,0

Ri,iR for iR < i
Li,iL for iL ≥ i

Li,0

Li,iL for iL < i
Vi,0

Vi,` for ` 6= 0
Wi,k

Ai

Bi,q,b

Di

Again, the specific order within variable types is immaterial because we would resolve on
all of the variables of a type one after the other in an arbitrary sequence. It is easy to
see that polynomial size, constant block-width, and the order described can be maintained
throughout the adjusted refutation.

A.2 Adjustments for the [GNP+20] encoding

The difference in the encoding of Ref(F ) in [GNP+20] is that instead of indicator variables
for whether Bi is derived from BiL , BiR by resolving on x` and whether it is the weakening
of Ck ∈ F , there are 2 log s + log n and logm variables respectively encoding in binary what
Bi is derived from or weakened from (which relationship is enforced depends on Ai). All of
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these are considered to be in the Bi block of variables. Once we set s = n3 and m = poly(n),
we see that after querying Ai we simply must query O(log n) instead of poly(n) variables
to deduce what Bi is derived from (if Ai = 0) or weakened from (if Ai = 1), so this change
only decreases the size of our refutation and leaves the block-width unchanged. Finally, in
our order we can simply the replace the Ii,iL,iR,` variable type with the O(log n) variables
that tell us what Bi is derived from in any order amongst themselves (we can also separate
these out in the manner of [AM19] and associate a subset of these variables with the Li,iL ,
Ri,iR , and Vi,` variables in the order above) and similarly replace the Wi,k variable type with
the O(log n) variables that tell us what Bi is weakened from, again in any order amongst
themselves.
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